
 
 
 

A Comparison of Two Prominent Instructional Approaches 
 to the Teaching and Learning of Multi-digit Computation   

 
 

by 

 

Delena Marie Harrison 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy 
(Educational Studies) 

in the University of Michigan 
2013 

 

 

 

Doctoral Committee: 

Professor Deborah Loewenberg Ball, Chair 
Professor Hyman Bass 
Professor Brian Rowan 
Professor Stephen Raudenbush, University of Chicago 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Delena Marie Harrison 
2013 

 



ii 
 

Dedication 

 

To Jeff, Benjamin, Anna, and Claudia — my family — who have been so 

patient when I’ve said, “I need to work on my dissertation,” but still have 

no idea what I’ve been doing all this time 

 

To my parents, Sandra and Lenn, for their support from beginning to end 

  

To Abby and in memory of Tiffany, who have been the best little pets and 

perfect company as I worked on this dissertation 

 

 

 



iii 
 

Acknowledgements 

 

 I have enjoyed working on this dissertation and working with the 

data from the Study of Instructional Improvement. This work has 

afforded many more experiences than are evident in this dissertation.  

First, I would like to thank the principal investigators for The 

Study of Instructional Improvement — Deborah Loewenberg Ball, David 

K. Cohen, and Brian Rowan — for providing financial support and 

graduate research support early in this work. This project gave me the 

chance to work with many other researchers — Sally Atkins-Burnett, 

Eric Camburn, Heather C. Hill, Doug Corey, Geoffrey Phelps, Charles 

Vanover, Stephen Schilling, and especially my officemates, Keisha 

Ferguson, Andy Hayes and James Taylor. My work with this project came 

at a time when I was taking methods courses and this project gave me 

opportunities to try out these “new” methods.  I would also like to thank 

the School of Education for several years of financial support. 

Second, I would like to thank my committee, Deborah Ball, Brian 

Rowan, Stephen Raudenbush, and Hyman Bass, for their comments 

along the way, for their patience as I took breaks in my work to have 

three children, and for their constant belief that I could finish this 

dissertation.   

Third, I would like to thank several groups of people who 

contributed knowledge along the way. Ravin Pan, Mark Hoover-Thames, 



iv 
 

and others helped with a validation study on my use with the 

achievement items. Stephen Schilling shared his expertise in 

psychometric analysis and consulted on my use of the achievement 

items. Stephen Raudenbush shared his expertise over and over as I tried 

to fairly use the SII data for a secondly investigation. Graeme Tank 

shared his Ruby programming skills when I was less than thrilled to run 

the many t-tested needed for testing balance on the propensity scores. 

Even with it programmed to run nearly automatically, it ran for over a 

week! So thank you Graeme! I would like to thank Dr. Furong Gao, from 

CTB McGraw-Hill, with her help in trying share TerraNova item 

parameter information and a draft of a nondisclosure agreement. Thanks 

also goes to University of Michigan’s legal department for help with this 

agreement.  I also thank Brady West and Carrie Hsoman with CSCAR for 

consulting on the propensity score analysis. 

Fourth, I would like to thank my special friends, Guanglei Hong, 

Ji-Soo Kim, and Naomi Norman for talking, listening, and thinking with 

me at various stages of my work.  

Fifth, I would like to thank my chair, Deborah Ball, for her 

persistence, patience, timely comments, coaching, sensitivity and 

understanding. I have needed each of these qualities from her at different 

times. Thank you! Without you, it would not be done. 

Finally, a special thanks goes to my family. Thank you for sticking 

with me till the end.  



v 
 

Table of Contents 

 

Dedication ............................................................................................... ii 

Acknowledgements ................................................................................. iii 

List of Tables ......................................................................................... vii 

List of Figures ........................................................................................ ix 

List of Appendices ................................................................................... x 

Abstract ................................................................................................. xi 

Chapter I Introduction ............................................................................ 1 

Two Intersecting Problems ................................................................... 2 

Data ..................................................................................................... 9 

Instruction Emphasizing Procedural and Conceptual Knowledge ......... 9 

Research questions ............................................................................ 16 

Organization of the Dissertation ......................................................... 17 

Chapter II Instruction on Multi-digit Computation: A Review of Current 
Knowledge, Gaps and Opportunities for Future Research ..................... 19 

Defining Multi-digit Numbers, Computation Problems, and Curricular 
Significance ....................................................................................... 20 

Achievement Concerns Related to Multi-digit Number and Computation
 .......................................................................................................... 23 

Delineating the Scope of this Review .................................................. 26 

Discussion of the Five Topic Areas Covered by Research on Multi-digit 
Computation ...................................................................................... 33 

Conclusions ....................................................................................... 62 

Chapter III Methods .............................................................................. 68 

Data ................................................................................................... 70 

Mathematics Teacher Log .................................................................. 71 



vi 
 

Student Achievement Data ................................................................. 79 

Measurement and Missing Data ......................................................... 83 

Analytic Models ................................................................................ 118 

Chapter IV Results .............................................................................. 162 

Multiple Imputation ......................................................................... 163 

Analytic Models ................................................................................ 166 

Reliability ......................................................................................... 181 

Chapter V Discussion ......................................................................... 194 

The Case of Common versus Blended Instructional Approaches ...... 196 

Comments on Measurement and Methods ....................................... 202 

Final Remarks ................................................................................. 208 

Footnotes ............................................................................................ 211 

Appendices ......................................................................................... 213 

Bibliography........................................................................................ 234 

 

  



vii 
 

List of Tables 

 

Table III.1 Spearman rank correlations between teacher and canonical 
mathematics log items, for focal gateway item and operations section 
mathematics log items   ........................................................................... 76

Table III.2  Initial Sample: Fall by Spring Crosstabs for students taking the 
TerraNova by grade and test form   .......................................................... 84

Table III.3  Final analytic sample: Fall by Spring Crosstabs for students 
taking the TerraNova by grade and test form   .......................................... 86

Table III.4  Proportion of logs from the Operations section of the SII 
Mathematics Teacher Log that focus on multi-digit computation 
instructional practices (n=72852)   ......................................................... 102

Table III.5  Descriptive statistics for class proportion of days endorsing 
procedures (abbr. Procdr) and concepts (abbr. Concpt)   .......................... 103

Table III.6  Frequency (proportions) of classes assigned to high and low 
emphasis on procedures and concepts, a crosstabulation (n=1183)   ....... 104

Table III.7  Frequency (proportions) of classes by grade endorsing high 
emphasis on procedures and high emphasis on both (n=727 classes)  .... 104

Table III.8  Descriptive statistics on independent variables for students, 
classes, and schools in analytic sample, prior to multiple imputation   .... 105

Table III.9  Frequencies (proportions) and chi-square statistics for 
TerraNova Fall test level predicting instructional approach, by grade   .... 108

Table III.10  Frequencies (proportions) and chi-square statistics for 
instructional approach predicting TerraNova Spring test level, by grade   109

Table III.11 Frequencies (proportions) and chi-square statistics for 
instructional approach predicting change in TerraNova test level, by grade

  ........................................................................................................... 111

Table III.12  Frequencies and reliability estimates for multi-digit, by 
content and test level   ........................................................................... 114

Table III.13  Pre-treatment covariates available for propensity score 
models, source of measurement, variables selected for PS models by grade

  ........................................................................................................... 138



viii 
 

Table III.14 Descriptive statistics for Fall multi-digit scale score for classes 
receiving common and blended instructional approach, by grade   .......... 149

Table III.15  Descriptive statistics for Spring multi-digit scale score for 
classes receiving common and blended instructional approach, by grade

  ........................................................................................................... 150

Table IV.1  Results from unconditional 2-level logistic regression model, 
second through fifth grades   ................................................................. 169

Table IV.2  Results of conditional 2-level logistic regression models, second 
through fifth grades   ............................................................................. 178

Table IV.3  Results for conditional model at level 1 and unconditional at 
level 2, fifth grade   ................................................................................ 179

Table IV.4  Variance Decomposition of Achievement on Multi-digit 
Computation from the unconditional models, second through fifth grades

  ........................................................................................................... 181

Table IV.5  Results of Wald Test used with Causal Models, composite 
hypothesis tests of interaction of treatment by strata for second through 
fifth grades   .......................................................................................... 182

Table IV.6  Results for second grade causal model: Final estimation of 
fixed effects (with robust standard errors)   ............................................ 186

Table IV.7  Results for Third grade causal model: Final estimation of fixed 
effects (with robust standard errors)  ..................................................... 187

Table IV.8  Results for Fourth grade causal model: Final estimation of fixed 
effects (with robust standard errors)  ..................................................... 188

Table IV.9  Results for Fifth grade causal model: Final estimation of fixed 
effects (with robust standard errors)  ..................................................... 189

Table IV.10  Results of Wald Test used with Causal Models, composite 
hypothesis tests of treatment effect on intercepts and slopes   ................ 190



ix 
 

List of Figures 

 

Figure III.1 Fall multi-digit scale scores, in logits, by grade and treatment 
groups   ................................................................................................ 145

Figure III.2 Spring multi-digit scale scores, in logits, by grade and 
treatment groups   ................................................................................ 146

Figure III.3 Gain scores on TerraNova mathematics scale, by grade and 
treatment groups   ................................................................................ 147

 

  



x 
 

List of Appendices 

 

Appendix A Table of Frequencies for Students Taking the TerraNova 
by Test Session, Grade, and Test Form ............................................... 213 
 
Appendix B Table of Descriptive statistics for multiply imputed data .. 214 
 
Appendix C Tables for T Statistics from Balance Testsa for Second 
Through Fifth Grades on Five Imputed Data Sets ................................ 220 
 

 

 

 

  



xi 
 

ABSTRACT 

A Comparison of Two Prominent Instructional Approaches 

to the Teaching and Learning of Multi-digit Computation 

by 

Delena Marie Harrison 

 

Chair: Deborah Loewenberg Ball  

 

This dissertation compares two approaches commonly used to 

teach multi-digit computation in second through fifth grades. The two 

instructional approaches under investigation differ in their emphasis on 

aspects of mathematical proficiency, often referred to as procedural and 

conceptual knowledge. The question––of which approach should be 

preferred–– has been the center of debates in mathematics instruction for 

over 20 years. Instruction that differs in its emphasis on procedural and 

conceptual knowledge is thought to differ in cognitive demand on 

students. Instruction in U.S. schools has historically placed a high 

emphasis on procedural knowledge, the emphasis that is thought to be 

less cognitively demanding.  I call this emphasis the common 

instructional approach. Research suggests that a more balanced and 

intertwined emphasis on procedural and conceptual knowledge, referred 

to as the blended instructional approach, will better support students’ 

learning. Other research suggests emphasis depends on who is being 
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taught. Given new analytic methodologies, I investigated these theories 

using data from a daily teacher log and second through fifth grade 

student achievement measures collected by the Study of Instructional 

Improvement. I used four log items to define the instructional approach 

used in classrooms. Further, I use existing items and an IRT 2-parameter 

model to measure student’s knowledge of multi-digit computation. 

Limitations for linking levels without linking items or linking group were 

unsolved. I applied hierarchical linear models, Rubin’s causal framework, 

and propensity score causal inference techniques for studying causation. 

I found very few covariates systematically predict who receives the 

approaches. In the lower grades, school characteristics influence the 

instructional approach in use, but class characteristics influence the 

approach in use in the upper grades. From the causal analysis, students 

in classes receiving the blended instructional approach achieved the 

same as students in classes receiving the common instructional 

approach. Overall, this investigation found no support for the 

instructional approaches supported by the Standards. Furthermore, 

regarding analytic methods, this research concluded that future 

investigations comparing instructional treatments might benefit from 

using statistical methods that model treatments as they are received by 

students within and across academic years.
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Chapter I  

Introduction 

 

This dissertation compares two approaches commonly used to 

teach multi-digit computation in elementary grades. The two 

instructional approaches under investigation differ in their emphasis on 

aspects of mathematical proficiency, often referred to as procedural and 

conceptual knowledge. The question––of which emphasis should be 

preferred–– has been the center of debates in mathematics instruction for 

over 20 years. Instruction that emphasizes conceptual knowledge is 

thought to be more cognitively demanding, emphasizing student work on 

both standard algorithms and invented procedures, intertwined with 

justification and connections with place value concepts. Instruction that 

emphasizes procedural knowledge is thought to be less cognitively 

demanding. It places a very high emphasis on repetition of standard 

algorithms and little or no emphasis on invented or alternative 

procedures focused on justification and connections with multi-digit 

concepts.  
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Two Intersecting Problems 

This dissertation addresses two problems, one related to 

instruction on multi-digit computation and the other connected to 

methods of measurement and statistical models. First, research on 

enacted mathematics instruction, in general, and instruction on multi-

digit computation, in particular, has found that conventional instruction 

regularly places a high emphasis on procedural work. In contrast, 

research on mathematical learning suggests that instruction that 

intertwines procedural and conceptual knowledge enhances students’ 

development of higher-order thinking skills and mathematical proficiency  

(Rittle-Johnson, Siegler, & Alibali, 2001; Stigler & Hiebert, 1999) 

Furthermore, professional organizations recommend that instruction 

incorporate a more balanced emphasis on procedural and conceptual 

knowledge (National Council of Teachers of Mathematics, 1989, 2000). 

Although this recommendation has appeal, there is no scientific evidence 

supporting the superiority of this balanced approach.  Moreover, there is 

persistent evidence from national studies of student achievement that 

reveals deficiencies in student learning and achievement gaps between 

dominant and marginalized groups (National Center for Education 

Statistics, 2009, 2011). Research that seeks to investigate these gaps 

and deficiencies has found that students with low prior achievement are 

more likely than their counterparts to receive instruction that 

emphasizes procedures while their higher achieving peers are more likely 
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to receive instruction emphasizing procedures and concepts (Gamoran, 

2010). Is one approach more effective than the other, and does the 

answer differ by student characteristics? Research investigating the 

effectiveness of the two instructional approaches has not directly 

attended to issues of varying effectiveness on group characteristics. The 

general position of many mathematics educators has been that, for all 

students, development of higher-order thinking skills is more well 

supported by instruction emphasizing both procedures and concepts. 

There are other reasons to be concerned about the classroom use 

and effects of the two instructional approaches under investigation. 

Findings from research on teacher selection and implementation of 

instructional programs have identified relationships between ethnicity, 

social class, and socioeconomic levels and “slow-paced, dead-end” 

instruction (Gamoran, 2010, 2011; Oakes, Gamoran, & Page, 1992). 

Related to this investigation, these findings suggest that minority 

students from low income families are more likely to receive instruction 

that emphases procedures and less likely to support development of 

higher-order thinking skills. Some educators argue that difference in use 

of instructional approaches may be needed and reasonable. Their 

argument rests on claims that teachers may be responding to students’ 

developmental needs constrained by instructing large classes and not 

their minority status (Ansalone & Biafora, 2004). Are differences in 

emphasis on procedures and concepts responsive to students’ needs or 
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the result of social factors? From teachers’ professional judgment, there 

is evidence that more than one approach may be valuable and 

productive. Early research agreed with this observation (Peterson, 1979).i

There are reasons for the persistence of this fundamental 

controversy. Research evidence is insufficient to guide instructional 

polices. The reasons for this lack of evidence are complex. Overall, these 

instructional issues have not been easy to investigate, despite ongoing 

interest and will among educational researchers to investigate them. 

Three challenges stand out. 

 

Since teachers work in isolation from their peers and they have 

autonomy over class endeavors, instructional decisions such as these are 

often rooted in personal or idiosyncratic warrants (Lortie, 1975). 

 First, fundamental measurement issues have plagued this line of 

research. Specifically, research has lacked systematic methods for 

recording instruction in detail and at scale. Researchers primarily 

focused on teaching practices, ranging narrowly from planning to 

classroom activities, with little attention to instructional approach or 

content (Rosenshine & Furst, 1973; Shavelson, Webb, & Burstein, 1986). 

Records of practice relied on frequencies recorded using Likert type 

scales, categories and tally marks without pertinent connections or 

teacher input. Furthermore, data have been collected mainly in 

classrooms without attention to factors outside the classroom —for 

example, school climate on academic performance or pressures on 
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teachers to use innovative instructional approaches—that might 

influence classroom activities. Samples were mainly small, ranging 

between 20 to 100, due to observer time constraints and the cost of 

hiring large numbers of observers (Good & Grouws, 1977; Wallen & 

Travers, 1963). Concerns over inter-rater reliability and bias due to an 

inadequate number of variables have been raised.  

More recent studies have used teacher logs or diaries. Data 

collected retrospectively and gleaned from early versions of these 

instruments often suffered from problems of memory distortion and 

inaccuracy that arose when respondents were asked to summarize 

behaviors they engaged in over an extended period (Bradburn, Sudman, 

& Wansink, 2004; Hilton, 1989; Hoppe et al., 2000; Leigh, Gillmore, & 

Morrison, 1998; Lemmens, Knibbe, & Tan, 1988; Lemmens, Tan, & 

Knibbe, 1992; Sudman & Bradburn, 1982). However, newer teacher log 

designs and log items have been shown to produce reliable data on 

instruction and with greater depth on core content of the elementary 

grade than by previous means (Camburn & Barnes, 2004). However, 

using these new teacher records for identifying the instructional 

approach used in the classrooms during instruction on a particular 

content has not been explored.  

Second, this research often lacks meaningful student achievement 

measures that mirror the content being taught. When student 

achievement is the outcome of interest, researchers rely heavily on 
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measurements of knowledge on subject basic skills using standardized 

tests. Typically, test items and students’ responses are not available to 

researchers. This is generally the situation today, but greater 

accessibility to computers, enhancements of computational power, and 

psychometric software have changed the outlook for the use of test items 

and the analysis of outcomes. Research, however, has not explored these 

possibilities. 

Third, this line of research also lacks advanced statistical methods 

that accurately model the instructional environment, control for 

mediating effects, and produce answers backed with scientific evidence. 

Unfortunately, researchers rely heavily on an exploratory disposition, 

using descriptive statistics, correlations, and, too rarely, analysis of 

variance. In the end, these methods only produce descriptions of central 

tendencies and bivariate relationship without control for confounding 

variables that bias results (Stone, 1993). Furthermore, statistical 

methods available around the 1970s and 1980s limited researchers’ 

ability to investigate the varying effects of instruction for different units, 

such as classrooms and schools, however, advances in statistical 

methods, particularly hierarchical linear models (Bryk & Raudenbush, 

1992; Raudenbush & Bryk, 2002), have expanded knowledge about how 

schools and classes affect student achievement. Recent research by 

Rowan, Harrison, & Hayes (2004) provides a good example. These 

researchers found that there is more variability in instructional practices 
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among classrooms within schools than between schools. This finding is 

at variance with prior models on school, classroom, and instructional 

effects. Presently, research now recognizes hierarchical models as the 

appropriate methodological approach for exploring instructional effects 

and attending to the nested school structure and the random effects for 

schools and classrooms.  

Still, other advances in statistical methods have created new 

opportunities for readdressing the past theories on teaching 

effectiveness. Much of the past and present theories and inquiries on 

instructional effects on student achievement are about causal effects, yet 

researchers lack the appropriate statistical methodologies to provide 

essential answers. Randomized experiments are preferred for answering 

causal questions, as randomization ensures that pre-existing 

characteristics of experimental units are unrelated to treatment group 

assignments and statistical inferences on data about group differences 

provide unbiased estimates of the causal effects of interest. 

Unfortunately, random assessment is often not feasible (Cook, 2002). In 

such cases, methodologists have found Rubin’s casual framework in 

conjunction with propensity scores to be useful (Imai & van Dyk, 2004; 

Rosenbaum & Rubin, 1983; Rubin, 1997). I discuss these methods in 

Chapter III. In general, results from studies using these methods provide 

better support for causal claims. Propensity score methods allow the 

researcher to match cases on probability of being treated, and, when 
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used in a linear model, test for treatment effects as if an experimental 

design had been used. Furthermore, these techniques are currently 

being adapted to multi-level or nested data, and there is sufficient 

support for use of this method in studying instructional effects on 

student achievement. Still, few studies have used these methods to 

investigate effects on student achievement of instructional approaches 

and establish causal evidence.   

This dissertation sits at the nexus of these two problems – one 

being about quality of instruction and outcomes for students and the 

other related to how research can contribute to improvements. This 

dissertation asks the first question by developing ways to answer the 

question with rigor. To address the first question, I use a set of multi-

level models, where two treatments are defined by differences in 

instructional approaches on procedures and concepts. In the first set of 

models, I investigate class, teacher and school characteristics that 

predict instructional treatment. Here, instructional approach is the 

dependent variable in two-level hierarchical models. For the class 

characteristics, I consider class ethnic composition, gender, initial 

achievement, and socioeconomic status. I also consider teachers’ years of 

experience and several variables measuring professional preparations. At 

the school level, I test the school environment using averages on these 

measures. In a second set of models, I study instructional treatment 

effects on student achievement, the outcome, using a three-level model. 
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At the student level or level-1, I control for group characteristics in terms 

of prior knowledge. At the classroom level or level-2, this is where I 

control for treatment effect and propensity for being treated. This model 

also includes a school level at level-3. I define these models and 

covariates in more detail in Chapter III. 

 

Data  

This research uses data from The Study of Instructional 

Improvement (SII), originally a large-scale quasi-experimental 

investigation of the design, implementation and instructional 

effectiveness of three of America’s widely disseminated Comprehensive 

School Reform (CSR) programs. This research relies primarily on daily 

teacher records of instructional practice and bi-annual student 

achievement assessments. The details of SII and its data are described in 

Chapter III. Compared to past teaching effectiveness studies, this 

research focuses on all elementary grades, sampled large urban 

populations, and uses advanced measurement techniques.  

 

Instruction Emphasizing Procedural and Conceptual Knowledge  

What is procedural and conceptual knowledge? For this 

dissertation, I utilize the widely established definitions of procedural and 

conceptual knowledge presented by Hiebert and Lefevre (1986) over 20 

years ago.ii They define procedural knowledge as the familiarity with 
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mathematical symbols, their appropriate representation and use and to 

the rules or procedures for solving mathematical problems, and 

conceptual knowledge refers to knowledge rich in relationships and 

connections between pieces of information. In terms of work on multi-

digit computation, procedural knowledge is the familiarity with symbols 

associated with addition, subtraction, multiplication, and division or 

specifically, the symbols +, -, x, and ÷. It includes standard 

representations such as  

 

Students who have multi-digit computation procedural knowledge 

are also able to carry and borrow and recognize contextual clues for 

when to use each operation and the appropriate representation such as 

the sum for addition and difference for subtraction. Alternatively, 

learners who recognize the relationships between addition and 

subtraction, multiplication and division, and addition and multiplication, 
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and use the opposite operation to check their work and identify mistakes 

have multi-digit conceptual knowledge. They understand the usefulness 

of the representations in (a) – (e), their knowledge of multi-digit number 

concepts carries over such that they understand what the numerals 

mean (their positional value or meaning) in each of the representations, 

and they know how to expand the representations for larger numbers. 

Additionally, they can develop alternative algorithms and make sense of 

alternative algorithms developed by others.  

 

Relation to Instruction 

In the past, mathematics curricula emphasized procedural skills  

(Hiebert & Lefevre, 1986). Research has found that instructional 

approaches emphasizing procedural skills spend a lot of time on 

executing computation algorithms accurately without attention to why —

the multi-digit concepts that justify the steps of the algorithm (Mitchell, 

Hawkins, Jakwerth, Stancavage, & Dossey, 1999; National Research 

Council, 2001; Stigler & Hiebert, 1999). In these classrooms, instruction 

attends to dissecting algorithms into their sequential steps and language 

is on columns and not on place-value. Students in the class may 

individually or together practice over and over executing the steps of an 

algorithm. Seat work and home work entail more problems using the 

same skills and practicing the same series of steps. Manipulatives and 
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calculators are distractions as they draw attention away from the 

algorithm towards a focus on reasoning. 

Researchers found that students who rely on only procedural 

knowledge can have “buggy” algorithms and misunderstandings and lack 

knowledge to repair their “bugs” (Brown & VanLehn, 1982). As a result, 

instructional guidance has pushed for more instructional emphasis on 

concepts and a de-emphasis on rote procedural skills (National Council 

of Teachers of Mathematics, 1989, 2000; National Research Council, 

2001). Children who have multi-digit computation conceptual knowledge 

understand the relationships and connections among facts and 

procedures. For example, children can develop conceptual knowledge 

when instruction incorporates alternative algorithms and attends to why 

conventional and alterative algorithms work (Brownell & Moser, 1949). 

Instruction that attends to students’ development of conceptual 

knowledge is still not the norm today (Rowan, et al., 2004). 

Which of the two instructional approaches is most effective for 

students’ learning of multi-digit procedural and conceptual knowledge 

has not been identified. How students develop procedural and conceptual 

knowledge and what is an appropriate instructional approach have been 

the center of debates for over twenty years. The current view is that the 

development of these two types of knowledge is intertwined and 

inseparable (Rittle-Johnson & Alibali, 1999; Rittle-Johnson & Siegler, 

1998; Rittle-Johnson, et al., 2001). Still little is known about how 
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instruction should attend to each type of knowledge – to what order, 

emphasis, and duration. This has been essentially left for teachers to 

figure out. 

Therefore, instructional approaches to teaching multi-digit 

computation vary greatly. Furthermore, within this variability, some 

approaches model practices at the center of the debates and follow the 

descriptions in the Standards. Still others differ substantially from these 

approaches.  In this dissertation, I focus on the two instructional 

approaches at the center of the debates – one being primarily focused on 

procedural knowledge and the other blending an emphasis on procedural 

and conceptual knowledge. In the following section, I elaborate on the 

features of these two approaches.   

 

Distinct Features of the Two Instructional Approaches 

Instruction on multi-digit computation that places a strong 

emphasis on skill efficiency or procedural work has a long history in U.S. 

classrooms and is still common practice today. This practice defines one 

of the approaches examined by this inquiry.  Research suggests that 

instruction that features this approach generally contains teacher-

centered demonstrations, uses teacher-posed lower-order questions, is 

fast paced, and emphasizes error-free practice (Brophy & Good, 1986). 

Instruction that incorporates these features is thought to promote 

procedural competencies.  
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  Conversely, our current theoretical understanding of how children 

develop procedural and conceptual knowledge defines the second 

approach examined in this dissertation. This instructional approach is 

thought to support children’s development of both procedural and 

conceptual knowledge. In comparison to the first approach, this 

instructional approach places prominence on making important 

mathematical relationships explicit (Brownell & Moser, 1949; Fuson & 

Briars, 1990; Hiebert & Wearne, 1993).  Research on this approach has 

found elements that cut across features of old dichotomies. For example, 

in some classrooms where this approach was used, teachers explained to 

the class the mathematical relationships using arithmetic procedures, a 

feature of the direct teaching approach. Still, in other instances, students 

developed their own algorithm and justified its validity, a feature of the 

inquiry-based teaching approach. Still in other classrooms, students 

were exploring relationships using symbolic presentations and concrete 

materials to compare similarities and differences – features that might 

align with the discovery, student-centered, and reform-based 

approaches. This second approach cuts across many of the salient 

features of “old” definitions of instructional approaches.   

To define the two instructional approaches examined in this 

investigation, I focus on instructional work with/on algorithms. I use the 

features found in the definitions of what is means to have procedural and 

conceptual knowledge.  These approaches do not place weight on who is 
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at the center of the work as in teacher-centered versus student centered 

instruction or direct instruction versus inquiry based instruction. I 

assume, for example, that if the teacher is demonstrating or discussing, 

then the student is also engaged in this work which is just as important 

as if the students were doing it themselves.  I also do not attend to the 

pace of instruction or the level of cognitive demands associated with 

questioning. While practices share features with the two approaches 

under investigation, this information in not available in the SII data. 

Future research will need to define how to collect this data, whether by 

daily teacher logs or by other means. 

 

Definitions of Common and Blended Instructional Approaches 

 The first of the two instructional approaches is similar in emphasis 

on skill efficiency as the one described in research as stated above. This 

approach is marked by attention to how to carry out the steps of a 

conventional procedure and students practicing doing so. This approach 

is called common instructional approach and is generally marked by a 

high instructional emphasis on procedures and little to no emphasis on 

concepts. The second theory holds that instruction should intertwine an 

emphasis on procedures and concepts. In this approach, instruction 

attends to both how and why conventional and alternative procedures 

work and to mathematical relationships. Students may also have 

opportunities for practice. I call this approach a blended instructional 
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approach. In contrast to a common instructional approach, it is marked 

by a high and more equal emphasis on procedures and concepts.     

  

Research questions 

I investigate the two problems using two sets of research questions. The 

first set of questions addresses the many parts of the problem related to 

instruction on multi-digit computation. The second set of questions 

addresses inquiries related to the use of methods of measurement and 

analysis while studying the two instructional approaches.   

First research questions: 

Does the blended instructional approach to teaching multi-digit 

computation to second through fifth graders cause greater learning 

for all students, as endorsed by the Standards? 

Inside this first question, I investigate claims that led to or are related to 

this endorsement. In one investigation I study who gets the blended 

approach and what factors influence its use. Specifically, this 

investigation addresses whether teachers choose their instructional 

approach based on who they are instructing or by other factors. The 

other factors I investigate include teachers’ knowledge, years of 

experience, professional preparation, gender, and ethnicity; curriculum 

material; class average ethnic, gender, and socioeconomic composition; 

and school environment. The second piece motivating this endorsement 

is related to causality. Here, I investigate whether classes who receive the 
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blended approach learn more than classes receiving the common 

instructional approach and if these gains in learning depend on the 

child’s prior knowledge or their grade?  

Second question: 

Can new measurement and statistical methods be used to provide 

scientific evidence to an investigation on the causal effect of the 

blended instructional approach used in the teaching and learning of 

multi-digit computation?  

Inside this investigation, I investigate the use of four items from a daily 

teacher log that measure differences in emphasis on multi-digit 

procedures and concepts to identify retrospectively classes receiving 

common and blended instructional approaches. Second, I investigate the 

use of items from standardized achievement tests, designed to measure 

general knowledge, to reliability measure student knowledge of multi-

digit computation. Third, I investigate the usefulness of Rubin’s Causal 

Framework and propensity score methods in assessing the causality of 

the blended instructional approach.   

 

Organization of the Dissertation 

The primary purposes of this dissertation are to test the use of new 

measurement and statistical methods that might permit/support 

answering long-standing questions about the use of instruction 

emphasizing multi-digit computation procedures and concepts in 
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elementary grades. Using an unusually large data set, I test the use of 

daily teacher log items to measure instructional approach, standardized 

test items to measure student knowledge of multi-digit computation, and 

multi-level models to study their relationship and occurrence.  

I have organized this dissertation into five chapters. In Chapter II, I 

review the research on the teaching and learning of multi-digit 

computation. In Chapter III, I report on (a) measurement techniques 

used with the daily teacher log items, (b) psychometric methods used to 

measure students’ knowledge on multi-digit computation, and (c) 

analytic methods, including Rubin’s Causal Framework, propensity score 

methods, and hierarchical linear models. In Chapter IV, I report and 

summarize the results as they relate to the research questions. Also, in 

this fourth chapter, I discuss the limitations of this study. In the last 

chapter, I appraise the merits of the “new” measurement techniques and 

analytic methodologies used by this investigation, discuss the analytical 

results and related policy implication, and propose future research in 

terms of both studies on common and blended instruction and new 

inquiries on methods of measurements and analysis.  
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Chapter II  

Instruction on Multi-digit Computation: A Review of Current Knowledge, 

Gaps and Opportunities for Future Research  

 

Multi-digit computation is a broadly important mathematics topic. 

Competencies in this content area are needed for basic citizenship and 

for success in advanced mathematics topics including algebra. Therefore, 

effective teaching and learning of multi-digit computation is crucial. 

Fortunately, multi-digit computation is one of the most comprehensively 

studied topics of mathematics education, and given new instrumentation 

and methodologies, research within the topic is well positioned to identify 

well-founded ways to teach computational skills. Still, what is known 

about instruction on multi-digit computation? The purpose of this 

chapter is to appraise the nature and quality of knowledge about 

instruction on and learning of multi-digit computation with whole 

numbers in the U.S. as described in mathematics education literature 

since the 1940s. In this chapter, I pay particular attention to the state of 

evidence and position for defining instructional approaches and for 

whom the approaches are intended.  But, before this discussion, I first 
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provide some definitions, review trends in student achievement, and 

delineate the scope of this review. 

 

Defining Multi-digit Numbers, Computation Problems, and Curricular 

Significance 

First, what are multi-digit numbers and multi-digit computation 

problems? For the purpose of this research, I consider a multi-digit 

number to be any whole number greater than 9. For example, 10, 101, 

and so on are multi-digit numbers. Furthermore, for this study, I restrict 

the set of multi-digit numbers to only positive integers greater than 9, 

leaving decimal representations of rational numbers for future research.  

 

Multi-digit Number and Computation Problems 

Multi-digit computation problem include computation problems 

involving addition, subtraction, multiplication, and division where the 

numbers involved have a total greater than 18. For example, 19 - 10 = 9 

and 100 + 1 = 101 are included in the domain of multi-digit computation 

problems, and solutions to such problems as 21 ÷ 4 would be reported as 

5 remainder 1. The decimal representation is outside the scope of this 

review. Furthermore, this study is not restricted to any one problem 

context – pure calculations problems, word problem,iii work with 

manipulatives, and using information from pictures or graphs – or 

models of addition, subtraction, multiplication, or division. For examples 
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of the different models, see Vest (1969, 1971); Bell, Greer, Grimison, and 

Mangan (1989); Fuson (1992b); and Greer (1992). Likewise, this review 

and research is not limited to particular algorithms; therefore, solutions 

to multi-digit computation problems may be obtained by standard or 

non-standard algorithms. Examples of these algorithms are given in 

Chapter III, Methods.  

 

Curricular Emphasis  

The priority placed on multi-digit number and computation is 

universal; in both the U.S. and other countries, it is a topic that students 

encounter early in their formal education and that continues throughout 

their elementary years. Furthermore, many children begin their formal 

schooling with informal computation skills and then in the elementary 

grades they develop formal knowledge of numerical operations – an 

understanding of and how to use whole-number computation algorithms 

(National Council of Teachers of Mathematics, 1989, 2000).  In U.S. 

schools, there is a general curricular pattern in which children 

matriculate in learning computational skills, beginning first with an 

emphasis on whole number concepts and computation. In either 

kindergarten or first grade, children in begin with single-digit number 

concepts and computation when informal computational procedures are 

adequate and the essential conceptual knowledge centers on number — 

sequencing and cardinal meaning — and manipulation of objects. Then 
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later in these early grades, children begin to learn more formal 

computation procedures, most likely the standard single-digit 

computation procedures and notations and still base-ten concepts are 

not yet essential for success. In first and second grades, children begin 

work on multi-digit computation procedures and concepts; here, base-

ten concepts become essential for children to become proficient.   

There is also a general curricular pattern of exposure to the 

various operations. In the early grades, children focus primarily on 

addition and subtraction and begin to study multiplication and division, 

and then, while in grades three through five, they are expected to develop 

fluency in whole number operations (National Council of Teachers of 

Mathematics, 1989, 2000). This allocation of focus also approximates the 

emphasis reported by teachers. From the 1996 NAEP mathematics 

assessment, teachers of 93% of the fourth graders reported giving 

number and operations “a lot” of instructional emphasis (Allen, Carlson, 

& Zelenak, 1996). In a more recent investigation, Rowan, Harrison, and 

Hayes (2004) found that 39.5%, 40% and 41.9% of lessons in first, third, 

and fourth grades, respectively, included emphasis on multi-digit 

computation. Of these lessons, work with whole numbers comprised 

91.8%, 82.4%, and 76.2% of lessons in first, third, and fourth grades, 

respectively. Therefore, multi-digit computation, within the standard U.S. 

curriculum, is a major part of the first- through fifth-grade curriculum.  
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Achievement Concerns Related to Multi-digit Number and Computation 

Despite the likelihood that students have years to learn multi-digit 

concepts and computation procedures, there is still reason for concern 

about achievement in this content area. Educational researchers and 

policy makers know from national and international studies that 

elementary students’ achievement is below desired levels.  

 

Results from National Studies  

Results reported for mathematics in 2005 of the National 

Assessment of Educational Progress (NAEP), an assessment comprising 

40% of items on whole number concepts and operations, showed small 

gains over previous years’ results (Perie, Grigg, & Dion, 2005). Only 36% 

of fourth graders performed at or above the proficient level. These results 

have been fairly consistent for many years with reform efforts resulting in 

little change in these results. 

Specifically, results from more resent assessments have showed 

shown insignificant improvements and reports have emphasized these 

findings (National Center for Education Statistics, 2009, 2011). From 

1990 to 2011, scores have only increased by 28 points, on average, over 

the 21 years of testing. Furthermore, for the 2007, 2009, and 2011 

assessments, there has been no increase in the number of students 

reaching “basic” level. On all of these recent assessments, 82 percent of 

students reached “basic” level and were able to compute the difference 
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between two 4-digit numbers, for example; however, 18 percent of fourth 

graders were unable to solve such problems. (Note that 40 percent of 

fourth grade assessment items focused on number properties and 

operations.)   

NAEP results also reveal differences in mathematics achievement 

between student groups represented by different demographics. For 

example, since 2003, NAEP has recorded a 25-point or more gap between 

African Americans and Caucasians and at least a 20-point difference 

between whites and Hispanics and Caucasians and American Indians. 

For the 2011 assessment, researchers compared the demographic 

profiles of students scoring below the 25th percentile and those scoring 

above the 75th percentile. Students in the lowest percentile compared to 

the highest percentile comprised 41 percent fewer Caucasians, 23 

percent more African Americans, 24 percent more Hispanic, and 8 

percent fewer Asians. They were also 51percent more eligible for free or 

reduced school lunch, 20 percent more with disabilities, and 19 percent 

more as English language learners. In sum, differences in mathematics 

achievement are strongly related to socio-economic differences. 

 

International Comparison Studies  

Results from the Third International Mathematics and Science 

Study (TIMSS) also underscore the need for improving K-5 student 

mathematics achievement. These results have called attention to the 
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elementary mathematics curriculum indicating that U.S. children’s 

mathematics achievement for basic computational skills lags behind 

their Chinese, Japanese, and Korean peers in their computation skills 

(for a list of publications, see http://nces.ed.gov/nations reportcard/; 

http://nces.ed.gov/timss/ ). The TIMSS assessment given to 9 year olds 

(for most countries this was third and fourth grades) contained 102 items 

with 25% of these items assessing whole number competencies which 

tested a range of performance expectations — knowing, performing 

routine procedures, using complex procedures, and solving problems 

(Mullis et al., 1997). Compared to 17iv other countries, United States 

fourth grades mean mathematics scores were significantly lower than 

that of seven countries and significantly higher than that of 12 countries. 

Alternatively, Singapore and Korea had scores that were significantly 

higher than all other participating countries. In comparing results for 

third graders, the United States was ranked sixth among the 16v

The findings are consistent with reports on the lag in student 

achievement scores in mathematics and the persistent gap between 

student groups. Reasons for these findings are, however, less consistent 

and obvious. Therefore, given the longstanding poor mathematics 

achievement and persistent achievement gaps, there is a need to 

 

comparable countries. Overall, these results suggest that, on average, 9 

years old in the United States can perform higher and become more 

proficient in primary-school mathematics.  

http://nves.ed.gov/nations%20reportcard/�
http://nces.ed.gov/timss/�
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understand what is known about the teaching and learning of multi-digit 

computation and to identify areas which have not been addressed in the 

research.  

 

Delineating the Scope of this Review 

This review focuses on research on the teaching of whole number 

multi-digit computation procedures and concepts to students in 

elementary grades in traditional U.S. school and classrooms. In the 

sections that follow, I provide my reasons for this limited focus. 

 

Rationale for Focus on Whole Number Multi-digit Computation Procedures 

and Concepts  

I focus this review and the research that follows in subsequent 

chapters on whole number multi-digit computation for several reasons. 

First and fundamentally, as previously stated, knowledge of multi-digit 

computation procedures and concepts is considered minimal knowledge 

needed for citizenship. Thus, knowing the state of knowledge gained from 

research on this content is essential to identifying ways of advancing the 

teaching and learning of this content and ensuring that all students gain 

this minimal knowledge.    

Second, there is evidence that students’ experiences with whole 

numbers is insufficient (Hiebert, 1992). The mathematics represented by 

whole numbers is less complex than the mathematics of decimals, 
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fractions and integers, still preparation for this more complex 

mathematics work begins with work on multi-digit whole numbers. 

Specifically, there is evidence that once children begin operations with 

integers and decimals with choice of operation, errors often arise from 

misconceptions (Bell, Fischbein, & Greer, 1984; Bell, Swan, & Taylor, 

1981). Common misconceptions include multiplication always makes 

bigger, division always makes smaller, and division must be of a larger 

number by a smaller one. These misconceptions arise, in part, due to 

students’ generalizations drawn from problems limited by range of type of 

number, linguistic structure, and context. Much of this research was 

conducted in the 1980s and 1990s. One key finding was that textbooks 

provide too little support and experience that students needed early on in 

order to make sense of later instruction. This finding supports looking 

closely at the teaching and learning of whole number multi-digit 

computation, since there is evidence suggesting there are weaknesses in 

students’ learning experiences with whole numbers and in their 

preparation for work on advanced topics.  

The third reason centers on the fact that the teaching and learning 

of whole number multi-digit computation has received considerable 

attention since the 1940s, and consequently instructional guidance from 

professional organizations and reforms, in general, have targeted this 

content area. Much of the guidance has been in effect for over 20 years. 

Furthermore, this evidence suggests that the reform practices are 
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warranted, but achievement still lags for many children on learning this 

very content area. Therefore, this narrow review looks closely at the state 

of knowledge of the very goals of a major line of research in mathematics 

education. 

In sum, looking closely at the state of knowledge of the teaching 

and learning of whole number multi-digit computation is warranted for 

its core value for citizenship, its prerequisite position, and the 

continuous attention it receives by educational researchers and 

policymakers.  

 

Rationale for Limiting Review to Studies Conducted in the U.S.  

There are two primary reasons for limiting this review to studies 

conducted in the U.S. First, international comparison studies have 

revealed the importance of culture in understanding differences in 

teaching practices and students’ learning (Stigler & Hiebert, 1998, 1999). 

Furthermore, instructional activities, like other cultural activities, are 

highly stable over time, and they are not easily changed. Since 

instructional activities are embedded in the wider culture and not readily 

apparent to its members, understanding differences in these activities 

from country to country will be difficult through deliberate study by non-

members. Further, even when effective practices and approaches are 

identified, cultural activities do not export well into other countries. 
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Therefore, research conducted outside the U.S. is weakly informative to 

the research discussed in this dissertation.  

Second, language plays an important role in learning multi-digit 

concepts, particularly in the early grades. Furthermore, in general, 

language plays an important role in instructional choices and student 

learning. For example, in the English language the base-ten system is 

not readily apparent in the number naming for numbers between 10 and 

20 while in other languages the base ten system is apparent in the 

naming of numbers. Therefore, students learning the multi-digit number 

concepts for the first time using English as the primary language have 

more to learn and instruction must support their learning and account 

for the irregularity in the number naming and lack of support for the 

base ten system gained in many other languages.  Given these 

fundamental language differences, research on instructional and 

students’ approaches to multi-digit computation on whole numbers when 

the language in use is not English, in the end, yields inadequate 

information.  

Therefore, I limit this review to primarily research conducted in the 

U.S. schools or on children receiving their education from schools located 

in the U.S. and when the primary language of instruction is English.vi 

For some research that has been excluded, I have provided references in 

the text which may be helpful to interested in readers.  
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Summary Timeline of Research 

The development of a line of research that examines instruction on 

multi-digit computation and its impact on student learning began 

sometime prior to the 1940s. The earliest identified research within the 

mathematics literature occurred in 1949 by Brownell and Moser, 

however, these researchers acknowledge in their paper that the topic of 

their inquiry had engaged researchers for thirty or more years. So, while 

research on multi-digit computation began more than a century ago, 

interest in this topic gained momentum and rigor in the 1980s. 

During the 1980s, research on multi-digit computation flourished, 

with most being observational in nature and focused on understanding 

how children approach computation, primarily with addition and 

subtraction. Much of the research ranged from studying the informal 

ways that children approach computation (Carpenter & Moser, 1984; 

Fuson, 1982, 1984; Siegler & Booth, 2004; Siegler & Shrager, 1984), 

children’s difficulties and errors (Baroody, 1984; Brown & VanLehn, 

1982; Fuson, 1984; Hatano, 1982; VanLehn, 1986), instructional 

approaches (Lampert, 1986), and instructional effects on achievement 

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). Included in this 

decade is also one study on the comparison of the U.S. elementary 

mathematics curriculum with several non-U.S. curricula (Fuson, Stigler, 

& Bartsch, 1988).  
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Research in the early 1990s on multi-digit computation came in 

support of and in response to the 1989 NCTM Curriculum and Evaluation 

Standards for School Mathematics (aka. Standards). The Standards are 

just one the many attempts in recent times to organize instructional 

guidance, and reform teaching, and improve learning. Of particular 

interested to this dissertation is the guidance provided in the Standards 

which reference instructional practices on multi-digit computation. Here, 

the Standards These recommends suggest a decreased emphasis on 

mechanical drill and memorization and an increased emphasis on 

mathematical reasoning and understanding, but, at the time of its 

publication, justification for these recommendations was dismal at best. 

Research, since the introduction of the Standards, has focused on 

providing evidence for the recommendations and thus has focused on the 

teaching and learning of multi-digit computation with emphasis on 

mathematical reasoning and understanding and on mathematical 

content knowledge needed for teaching.   

For the purpose of this review, I focus on research conducted since 

the 1940s and place more attention on research conducted from 1970s 

to present. 

 

Topics Reviewed  

To synthesize research relevant to instruction on multi-digit 

computation,vii I identified five primary research topic areas discussed in 
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the research literature. The first two areas of concern are the critical 

components of student learning: the mathematics to be learned by 

elementary school students and students’ approaches to this 

mathematics. Another area of interest is instruction and student 

learning, namely instructional approaches that benefit students’ learning 

in this domain. The final two areas of relevance are the critical 

components of teacher knowledge and learning: the knowledge teachers 

need for teaching and opportunities for learning to teach in this domain.  

In order to highlight relevant knowledge and identify gaps in the 

research and opportunities for future research, I have divided this review 

into two sections. In the first section, I discuss knowledge as it is 

comprised in five topic areas of the larger domain of instruction on multi-

digit computation. Specifically, the five topic areas are (1) the 

mathematics to be learned by elementary school students, (2) students’ 

approaches to this mathematics, (3) instructional approaches that 

benefit students’ learning in this domain, (4) the knowledge teachers 

need for teaching in this domain, and (5) teachers’ opportunities for 

learning to teach in this domain. In the second section, I summarize the 

prevailing and identified gaps in knowledge on multi-digit computation 

as they occur across the areas.  
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Discussion of the Five Topic Areas Covered by Research on Multi-digit 

Computation 

 

Areas Covered by the Research 

Research covering the five topic areas generated knowledge 

generated from a century of investigations into multi-digit computational 

concepts. By considering the research specific to each of these five areas, 

additional themes for research and opportunities for future examination 

emerge. For each area, I discuss the prevailing findings and the areas in 

need of additional investigations.  

Generally, there is unequal treatment of the operations, grades, 

and areas across the research. Specifically, there has been more research 

on addition and subtraction, and, for the most part, the research has 

focused on addressing areas 2 and 3 - “ the mathematics students need 

to learn” and “the instructional treatments that are effective in helping 

students learn the mathematics.”  

As I discuss the findings and evidence, I pay particular attention to 

the methods used and type of evidence on which findings rest. There is a 

present interest in knowledge gleaned from scientific studies. Therefore, 

as part of this review, I appraise the expanse of knowledge from such 

studies. 
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The Mathematics Content or Concepts that Students Need to Learn 

Findings.  Ten research articles directly address the mathematics 

content and concepts that students need to learn related to multi-digit 

computation. Eight comprehensive discussion or review articles address 

multi-digit content and conceptual knowledge needed and constructed by 

children. First, this line of research has identified the range of real world 

situations modeled by addition, subtraction, multiplication, and division 

which in turn necessitate learning the meaning of number, the different 

meanings for +, -, and =, how to carry out the different operation, and 

how to communicate and use mathematical ideas (Fuson, 1992b; Greer, 

1992). The three additive situations include “change add to,” ”combine 

physically,” and “combine conceptually.” Similarly, there are three 

subtraction situations – “change take from,” equalize,” and “compare.” 

Fuson (1992b) provides examples of each of these and specific examples 

of word problems involving whole number addition and subtraction. Vest 

(1969) gives an even broader range of examples. Multiplication and 

division derive from a somewhat different set of real world situation. 

Research has summarized the situations into 10 classes – “equal 

groups,” “equal measures,” “rate,” “measure conversion,” “multiplicative 

comparison,” “part/whole,” “multiplicative change,” “Cartesian product,” 

“rectangular area,” and “product of measures” - which are not entirely 

distinct from each (Greer, 1992). In fact, in some case, it is the person 

solving the problem who determines the class in which the problem 
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belongs and its related approach. Greer gives examples for each class for 

both multiplication and division. Anghileri (1989), Kouba (1989), and 

Vest (1971) also present a range of situations modeled by whole number 

multiplication and division with some examples specific to use with 

manipulatives.  

Researchers have studied the conceptual knowledge children build 

for competencies at numbers and addition, subtraction, multiplication, 

and division with numbers up to 100 and, somewhat separately, the 

multiunit numbers greater than 100. Sensibly, much of the knowledge 

children build during work with numbers up to 100 overlaps with the 

conceptual knowledge needed for work with larger numbers.  

Research on unitary conceptual structures has documented the 

knowledge sequence that young children build starting with the spoken 

number names in sequence (Fuson, Richards, & Briars, 1982). For 

example, many children begin counting with knowledge of the number 

sequence that is undifferentiated such as “onetwothreefourfivesixseven.” 

Furthermore, Fuson and her colleagues have mapped out children’s 

developmental sequence for the count and cardinal meaning for 

numberviii and number names with the last developmental level being 

“bidirectional chain/truly numerical counting.” At this final conceptual 

level, children’s knowledge of number is flexible. They understand a 

number word is a sequence word, with sequential words one apart, and a 

cardinal word, where the nth ordinal number word is preceded by a 
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cardinal group of n – 1 objects. Knowledge at this final level is key for 

computation. Specifically for addition, children now see the two addends 

as separate quantities from the total and addends can be partitioned to 

construct different addends. For example, in problems such as 7 + 5 = ? 

Children can now re-write 7 as 5 + 2 and use their knowledge that 5 + 5 

=10 and 10 + 2 = 12.     

A second related conceptual area addressed by this line of research 

includes English number words (i.e. six, eighty-four), written marks (i.e. 

6, 84), and positional value (i.e. 84 represents 8 tens and 4 ones) that 

children construct to interpret and solve whole number addition, 

subtraction, multiplication, and division situations (Fuson, 1990a, 

1990b, 1992b, 2003; Fuson, Fraivillig, & Burghardt, 1992; Fuson & 

Kwon, 1992; Fuson, et al., 1982; Fuson et al., 1997).  This research 

suggests that children need to understand the features of the English 

number words and the system of written number marks (including 

positional values) and how the different multi-digit operations are related 

to each of these systems. Specifically, there are two conceptual 

structures for both number marks and number words that children need 

to learn. For number marks, children need to learn the visual layout and 

that the positions in number marks are ordered in increasing value from 

the right while spoken, and then for written number words, they need to 

learn the unit names for each position and the decreasing order in which 

they are said. Two additional conceptual structures support multi-digit 
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addition and subtraction. Children must learn both the quantities that 

each multiunit represents and the ten-for-one and one-for-ten trades 

between the neighboring positions. 

Research has studied the relationship between the system of 

number marks and the system of English number words and their 

support of multi-digit addition and subtraction, in particular (Fuson, 

1990a, 1992a, 1992b; Fuson & Smith, 1997; Fuson, Wearne, et al., 

1997). This research has found that these systems contribute different 

aspects to multi-digit addition and subtraction. Specifically, when adding 

or subtracting, the quantities of each multiunit represented by the 

English number words direct the operation of like multi-units. Further, 

this research found that the English number words can direct and 

constrain correct trade rules when one has too many or not enough of a 

given multiunit quantity and that the written marks require trading in 

multi-digit addition and subtraction because each multiunit is limited to 

9 or less. 

Children learn the number names, written marks and positional 

value but not without some obstacles. A prominent line of research has 

studied the irregularity of English number names and children’s 

conceptual understanding (Fuson, 1990a; Fuson, et al., 1992; Fuson & 

Kwon, 1992; Fuson, et al., 1982; Fuson & Smith, 1997; Fuson, Wearne, 

et al., 1997).  Through observational analysis, Fuson, either alone or with 

colleagues, documented the irregularity in number names in the system 
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of English number words (in the teen words, decade prefixes, and decade 

names), in the English number named-multiunit system, in children’s 

conceptual understanding, and in children’s multi-digit addition and 

subtraction errors or misunderstandings. Of specific issue are the 

spoken words for the numbers between ten and one hundred. The 

irregularities include special words (i.e. twelve), different pronunciations 

(i.e. four, fourteen, and forty), reversals in the teen words (i.e. nineteen), 

and two different modifications of “ten,” “teen” and “ty.” The system of 

written marks, however, is a regular relative positional system. The 

discussion papers just mentioned discuss this issue, speculating that the 

irregularities in the English system of number words for two-digit 

numbers induce children to use unitary and concatenated single-digit 

conceptual structures rather than multiunit conceptual structures for 

multi-digit numbers (Fuson, 1990a). Fuson and Kwon (1992) expose this 

issue more concretely in a study involving only Korean second and third 

graders. Here, they reported on these children’s understanding of place 

value and multi-digit addition and subtraction as reflected by their 

solution procedures and errors on multi-digit problems and by the 

trading involved in such problem. These researchers found at least 93% 

accuracy rate in computations involving addition and subtraction with 

trading of 2- and 3-digit numbers, with the exception of second-graders 

work on 3-digit subtraction with trading which had an accuracy rate of 

73%. Fuson and Kwon argue that spoken language, written symbols, and 
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aspects of culture can support or interfere with children's construction of 

conceptual structures that facilitate learning 2- and 3-digit addition and 

subtraction. Prior to the research by Fuson and her colleagues, many 

researchers had been trying to hypothesize what may account for the 

apparent facility by which Asian children execute procedures. Fuson et. 

al. highlighted the invisible—the language used to name numerals and to 

operate numerals completely exposes decimal place value in Asian 

languages and that language actually shapes thought.  

A longitudinal study of Chinese and U.S. 2-, 3-, and 4- year olds 

provides some evidence of the affect of the irregularity in the English 

number words (Miller, Kelly, & Zhou, 2005). Using survival analysis, 

these same researchers found no significant differences between the 

percentage of preschoolers who could count to ten, however counting 

from 10 to 20 is significantly easier for Chinese children. Then, of the 

children who could count to 20, there was no significant difference in the 

percentage of U.S. or Chinese preschoolers who could count to 100. 

Research studying the conceptual structures needed for multi-digit 

numbers has identified four advanced concepts that support multi-digit 

multiplication and division which are related to trades and the base-ten 

structure of the English number system (Fuson, 2003).  Two concepts 

refer to the cumulative relationship between positions and values. For 

one, children need to learn the relationship between the number of 

trades and the position. For another, they need to understand the 



40 
 

relationship between the position (or value) and multiplies of 10. For 

example, the fourth position or the thousands position is achieved by 

three trades and is three multiples of ten. The last two conceptual 

structures are related to exponential notation for multiplies of ten, one in 

words and the other in number marks (i.e. “ten to the third power” and 

103). 

In other earlier research, Lampert (1986) studied conceptual 

knowledge needed for multi-digit multiplication and division. She 

described the principled knowledge beneficial for multi-digit 

multiplication includes knowledge of place-value, additive composition of 

numbers, associativity property of addition, commutativity of addition, 

multiplicative composition of numbers, associativity of multiplication, 

commutativity of multiplication, and the distributive property of 

multiplication over addition. She also claimed that the mathematical 

knowledge required for multi-digit division includes place-value concepts 

and a conceptual understanding of ratio and proportion (Lampert, 1992). 

Weaknesses and gaps. Research addressing the conceptual 

knowledge needed for work with multi-digit numbers and multi-digit 

operations has covered the span of content children experience. However, 

there are opportunities to learn more about the knowledge children need 

to learn related to multi-digit computation.  

First, the research makes convincing arguments about the 10 

conceptual structures of multi-digit numbers and their usefulness to 
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multi-digit operations. This research, however, does not attend to how 

children build these conceptual structures. In comparison to the detail 

given about how children build conceptual structures of counting and 

the sequential and cardinal meanings of numbers, the order and minute 

steps in knowledge development, the known conceptual structures 

related to multi-digit numbers and operations are macro or highest/end 

concepts. There are likely intermediate conceptual structures that 

children build in the process. Researchers acknowledge that there may 

even be additional levels in the conceptual structure.  Still, research has 

not attended to this knowledge.  

Related, research has not specifically attended to order in which 

the conceptual structures of multi-digit number develop. I can imagine 

that some concepts develop concurrently, yet other concepts require 

prerequisite knowledge before being learned. This kind of knowledge 

about the relationship between conceptual structures has received little 

attention. 

These shortcomings are due to the limited range in research 

approaches used in this line of research. Except for the research by 

Lampert on fourth graders, this research has focused mainly on children 

between the ages of 2 to 8 years old. Furthermore, more research on 

multi-digit number and operations is based on multi-digit numbers less 

than 100 than on numbers over 100. Both the focus on numbers less 

than 100 and on “young” children have contributed the shortage of 
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knowledge on multi-digit multiplication and division. There are good 

reasons for studying older elementary age children and their conceptual 

development of multi-digit number and operations using larger numbers. 

First, multi-digit addition and subtraction is taught for several years 

beginning in second grade and continuing for several years. Second, 

children’s work on multi-digit multiplication and division usually follows 

work on multi-digit multiplication and division and continues possibly 

into middle school grades.  Third, reports on national assessments 

suggest that a significant proportion of children struggle to learn this 

content. Therefore, there is likely more to learn about the conceptual 

structures children older than 8 years build and attending to this 

limitation might alleviate deficiencies in achievement.   

 

How Students Approach Multi-digit Computation 

Findings. I identified 22 articles that contribute knowledge on 

children’s approaches to multi-digit computation. Approximately 14 

comprehensive studies or discussion articles address addition, 11 

articles address subtraction, four articles address multiplication, and two 

articles address division. Some of the articles dealt with more than one 

operation, usually addition and subtraction were coupled in one study 

and occasionally addition and multiplication were coupled together. One 

study involved 1400 students or 41 classes and another involved 336 

students, but typical samples ranged from 1 to 6 classes or 1 to 132 
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students. Ten studies involved students that ranged from first through 

third grade. One study used third graders only and still another study 

used third, fourth, and fifth graders. One study included first through 

fifth graders and three studies were multi-grade but not described by the 

other “grade” categories. Twelve studies were interpretive or 

observational in design, while the remaining five studies were 

comparative.  

Children’s approaches to addition and subtraction cluster under 

three general categories: strategy use (includes manipulatives, invented 

algorithms, achievements or lack there of (errors)), errors, and procedural 

supports or “crutches.” 

As one would expect, children’s computational strategy choice or 

use becomes more mathematical over time. Children begin to solve 

computational problems by first modeling the problem as stated and 

moving onto partial modeling and then to strategies that involve no 

modeling. The final stage of strategies involves number facts. For 

example, in one study, a longitudinal study of first through third graders, 

children’s addition strategies were found to begin with counting-all, then 

move onto counting-on, and then to include number facts (Carpenter & 

Moser, 1984; Fuson, Wearne, et al., 1997; McIntosh, 1998).ix Children 

initially count-on by ones but eventually learn to count-on by tens and 

ones (Fuson, 1982). Modeling and counting strategies are used before 

formal instruction on arithmetic begins and used after several years of 
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formal instruction (also see Ebby (2005); Fuson (1982); Fuson and Willis 

(1988)). In this same study, children’s strategies for joining missing 

addend problems involved modeling and counting that reflected the 

additive action of the problem. The one variation on the pattern of 

problem solving strategies entailed subtraction for separate problems. 

Children initially modeled the problem using the separate-from strategy 

and this strategy gives way to using number facts, not counting 

strategies. In another study of third, fourth, and fifth-graders’ 

multiplication strategies, students were found to begin with direct 

modeling and as their conceptual understanding of multiplication 

develops, they begin to use complete number strategies followed by 

partitioning strategies (Baek, 1998).  Furthermore in a cross-sectional 

observational study of 33 second-grade students of low, middle, and high 

achievement, children were presented during individual interviews with 

one single-digit subtraction problem and five multi-digit addition or 

subtraction problems (four were addition and one was subtraction) (W. 

M. Carroll, 1996). Of the multi-digit problems, two word problems and 

three numerical problems were presented in horizontal format. Students’ 

responses to these problems were categorized as mental, standard 

written algorithm, counting by ones, and skips (not attempted or not 

complete). Researchers summarized response categories: 48% of the time 

students solved a problem mentally, 35% of the time students used the 

standard written algorithm, and 5% of the time students used a more 
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error-prone counting-by-ones strategy. Counting-by-ones lead to an error 

half the time. Many of these students showed some flexibility in choosing 

a procedure. For example, students who had used a mental procedure 

for solving two-digit problem switched to the standard written algorithm 

on the three-digit problem. Additionally, these children used a number of 

different mental procedures.  

The observational nature of this study allowed researchers to study 

children’s strategy choices but the effect of instruction on strategy choice 

was not apparent (W. M. Carroll, 1996). The student population was 

chosen from three school districts, and it is not clear whether students 

attending the same also attended the same class or different classes. 

Since instruction varies among schools and among classrooms within 

schools (Rowan, et al., 2004), there is reason to believe that students’ 

strategy choices are affected by the instruction they receive. Therefore, 

the variation in student’s strategy choices found in this study may be in 

affect a measure of variation in instruction – not children’s strategy 

choices.    

In a study intended to identify gender differences in strategy use, 

no significant gender differences were found for correctness and strategy 

use for number facts, and addition, subtraction, and non-routine 

problems across the three years of study (Fennema, Carpenter, Jacobs, 

Franke, & Levi, 1998). However, when the researchers analyzed the data 

by year, they found strong and consistent gender differences in the 
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strategies used to solve multi-digit addition and subtraction word 

problems and computational tasks. Girls tended to use more concrete 

strategies like modeling and counting, while boys used more abstract 

strategies that reflected conceptual understanding. Additionally, at the 

end of third grade, the girls used more standard algorithms than the 

boys, and boys were more successful at extending procedures flexibly. 

The ability to solve extension problems in third grade appeared related to 

the use of invented algorithms in earlier grades. 

There is evidence that problem presentation and presence or lack 

of presence of manipulatives affects children’s use of strategies (Fuson, 

1982; Fuson, et al., 1992). The use of manipulatives with multi-units 

helps children construct the multiunit-names, multiunit-quantities, and 

regular ten-for-one and one-for-ten trades conceptual structures. Base-

ten blocks were found to help but coins did not (Fuson & Briars, 1990). 

There was considerable variability in how children drew the ten-sticks 

and dots, enclosed 10 dots, and showed the answer (Fuson, Smith, & Lo 

Cicero, 1997).   

In early multi-digit computation, children must differentiate the 

tens from the ones. To facilitate this differentiation, children invent 

varied and elaborate scaffoldings to mark which are tens and which are 

ones. They underlined tens, drew loops and lines to connect the tens, 

drew separating lines between tens and ones, and labeled them. If 

children have to spend much attention to what goes with what, they can 



47 
 

easily get memory overload, lose track of what they are doing, and forget 

either the numbers involved in the situation or their already obtained 

partial results.   

It is not surprising that children approach multi-digit addition by 

adding the numbers from left to right. They are, of course, engaged in 

learning to read which proceeds left to right. In a study of first- through 

fourth-graders’ multi-digit addition strategies where some classes of 

students were being taught algorithms and some were not, children in 

the “no algorithms” classes worked on the addition problems (similar to 6 

+ 53 + 185) from left to right, adding the tens, then adding the ones, 

followed by adding the two sums (Kamii & Dominick, 1997, 1998). 

Children in the “algorithms” classes, as expected, worked the problem 

from right to left using the standard addition algorithm. Further, the “no 

algorithms” classes, both in the second and the third grade, produced 

the highest percentage of correct answers (45 and 50%, respectively). The 

“no algorithms” second- and third-grade classes produced more correct 

answers than all the fourth-grade classes, who were all taught 

algorithms. The incorrect answers of the second- and third-graders in the 

“no algorithms” classes were more reasonable than the wrong answers of 

the “algorithms” classes.  

A common error occurs when children have inadequate valueless 

conceptual structures for multi-digit numbers, termed concatenated 

single-digit structure (Fuson, 1990a; Fuson & Smith, 1997; Fuson, 
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Wearne, et al., 1997). Others have identified more than 26 impoverished 

subtraction procedures (Brown & VanLehn, 1982). These researchers 

believe that children’s errors in procedures are systematic with some 

instabilities.  

“Crutches” that facilitate learning are easy for children to learn and 

use and can be easily discarded once a child no longer needs them 

(Brownell & Moser, 1949). Here the crutches children used arose in the 

form of borrowing notations that supplemented the language patterns 

with perceptual patterns and showed concretely and visually the 

rationale of the procedure. These crutches were taught to the children, 

not self invented crutches. Carpenter and Moser (1984), on the other 

hand, found in a study of 88 first through third graders that children 

develop their own strategies that make the procedure more concrete and 

visual. They found that children are able to solve addition and 

subtraction problems using a variety of modeling and counting strategies 

even before they received formal instruction in arithmetic. Similar results 

were found by Fuson and Willis (1988) in a study of children’s use of 

counting-up to solve subtraction problems. Here, first and second grade 

children who were taught counting-up with finger patterns could use it 

to subtract numbers with as many as 10 places. Additionally, they claim 

that children can be expected to invent counting-up strategies after work 

on counting-on strategies and before instruction on counting-up 

strategies. Most of these invented strategies evolve from work on compare 
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and equalize subtraction word problems. Further, students have 

demonstrated significantly fewer systematic errors when allowed to 

invent their own problem solving strategies (Carpenter, Franke, Jacobs, 

Fennema, & Empson, 1998).  

Weaknesses and gaps. Much of the knowledge on children’s 

approach to multi-digit computation comes from studies of similar design 

- studies of mainly first and second graders who were presented some 

addition and/or subtraction problems during individual interviews. 

Children’s approaches described here occurred under atypical settings, 

an interview setting and not during instruction from their regular 

teacher. What is not clear from this research is how children’s approach 

is affect by context, problem choice, and instruction.  

Many researchers advocate for instruction that accounts for how 

children approach multi-digit computation. Yet, research does not 

provide knowledge on children’s approach to multi-digit computation in 

typical instructional settings, usually thought to be instruction given by 

their regular teacher. Furthermore, instruction varies between 

classrooms within schools and between schools. The observational 

nature of most of the studies on children’s approaches to multi-digit 

computation does not allow researchers to account for the variations in 

instruction that students receive. Without controlling for instruction, it is 

unclear whether the variation in strategy choices and approaches to 
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computation is due to children’s choices or teachers’ instructional 

choices. 

Studies varied in problem choices used to assess children’s 

approaches. The range of problems included computational tasks, word 

problems, addition, subtraction, multiplication, division, two-digit 

numbers, three-digit numbers, and so on, but no studied included all 

problems. Each study’s findings are limited but the problems used, as it 

is expected that students’ approaches are affected by the problems 

presented to them.  

Additionally, research needs to occur on upper elementary children 

and on multiplication and division. Presently, knowledge on children’s 

approach to multi-digit multiplication and division is nearly non-existent. 

 

Instructional Treatments that Are Effective in Helping Students Learn 

Multi-digit Computation  

In this section, I focus my review on instructional treatments or 

practices that are specifically and uniquely effective in helping students 

learn multi-digit computation skills and concepts. Therefore, I exclude 

practices and treatments that are more generally effective in helping 

students learn mathematical skills and concepts. For example, Anghileri 

(2006) recently reported on scaffolding practices that enhanced 

mathematics learning. Such practices maybe important components of 

effective instructional approaches. However, since scaffolding practices 



51 
 

and similar practices are not unique to instruction on multi-digit 

computation, they are not reviewed here. 

Findings. Nearly half the articles address, either directly or 

indirectly, instructional treatments that are helpful to children’s learning 

of multi-digit computation. Eighteen articles discuss research using an 

observational design and qualitative methods, and eight have a 

comparative design and statistical methods, but not methods linked to 

experimental designs. Twenty articles and 18 articles address addition 

and subtraction, respectively, while seven and four articles address 

multiplication and division, respectively. Eleven studies used first 

through third graders, though mostly first through second graders. 

Seven studies used third through fifth graders. Two studies used only 

third graders, and six studies spanned multiple grades not described 

previously. These six studies often spanned four or more grades.  

The findings or claims for approaches to instruction on multi-digit 

computation seem to fit in the spectrum from pre-enactment to 

enactment. There are findings that range from advocating for what 

should be emphasized during instruction to the use of conceptual 

supports and what the teacher should be doing during instruction to 

allowing and supporting children to invent algorithms. Findings in each 

of these areas are discussed below. 

Several authors claim that instruction should emphasize 

conceptual understanding and that through building the conceptual 
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knowledge children build procedural knowledge as well (Brownell & 

Moser, 1949; Hiebert & Wearne, 1996; Rittle-Johnson & Alibali, 1999). In 

a comparative study of 1400 third-graders learning subtraction with 

borrowing, Brownell and Moser found that conceptual knowledge was 

hard to build upon procedural knowledge, though not impossible. In 

another longitudinal comparative study of first through fourth graders 

who were learning multi-digit addition and subtraction, students were 

divided into two groups: one group of students received alternative 

instruction emphasizing conceptual understanding via invented 

algorithms and discussion and the other group received conventional 

textbook instruction that emphasized direct instruction and practice 

(Hiebert & Wearne, 1996). These researchers found that conceptual 

understanding seemed to play a bigger role in the development and 

adoption of procedures in the alternative instruction classrooms than in 

the conventional textbook instruction classrooms. They concluded that 

conceptual understanding makes possible the construction and 

deployment of meaningful solution procedures and that conceptual 

understanding must be the goal of instruction.  

Research, however, by Rittle-Johnson and Alibali (1999) paints a 

slightly different picture of the role of conceptual and procedural 

knowledge in instruction and learning. They concluded that the relation 

between conceptual and procedural knowledge is not unidirectional, 

instead, conceptual and procedural knowledge appear to develop 
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iteratively, with gains in one type of knowledge leading to gains in the 

other. This study, comparative in nature as well, considered fourth- and 

fifth-graders addition and multiplication knowledge and the concept of 

equivalence. Students were assigned to one of three instruction groups, 

either conceptual instruction, procedural instruction, or control (no 

instruction).  

While there are too few studies to generalize these claims, these 

three studies do paint a picture of a slightly changing role of conceptual 

and procedural knowledge in students’ learning of concepts and 

procedures. That is, for children in first through third grades, procedural 

knowledge evolves out of instruction that emphasizes conceptual 

knowledge, and for older children, fourth and fifth graders, they benefit 

from varying the instructional emphases between concepts and 

procedures.   

 In several studies by Fuson and colleagues, manipulatives have 

been found to aid in the development of conceptual understanding and 

procedural knowledge, and therefore, this research advocates for 

instruction that meaningfully links concrete quantities to written 

methods (Fuson, 1990a; Fuson & Briars, 1990; Fuson & Burghardt, 

2003; Fuson, et al., 1992; Fuson & Smith, 1997; Fuson, Smith, et al., 

1997). In a  recent study having a comparative design, 26 high achieving 

second-graders were assigned to groups of 4-5 children based on pre-test 

scores (Fuson & Burghardt, 2003). Students worked in groups on 
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addition and subtraction problems using base-10 blocks. Half the 

student groups were asked to link block and mark solutions by recording 

everything they did with the blocks with the digit cards, and the other 

half of the groups recorded their work on a magic pad. Researchers for 

this study found that with adult prompts, second-graders were able to 

translate their concrete procedures into written procedures and that 

some of these invented written methods were conceptually and 

procedurally superior to the standard U.S. algorithm. Many incorrect 

written addition methods were invented because children did not link 

them to their block solutions. Therefore, pedagogical objects such as 

base-ten blocks along with teacher monitoring and feedback and the 

interaction of cooperative-learning groups are essential instructional 

supports for students’ small-group invention of meaningful calculation 

methods. Furthermore, given a proper social and intellectual 

environment, children's work in small groups can facilitate their 

inventions of computational procedures and help them deepen their 

arithmetic knowledge. 

Lampert (1986) also claims that the teacher is important to 

students’ learning. She found while studying her teaching of 

multiplication to fourth-graders that “[t]he role of the teacher while 

teaching multi-digit multiplication is to bring students’ ideas about how 

to solve or analyze problems into the public forum of the classroom, to 

referee arguments about whether those ideas are reasonable, to sanction 
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students' intuitive use of mathematical principles as legitimate, to teach 

new information in the form of symbolic structures and emphasize 

connection between symbols and operations on quantities, and to require 

students to use their own ways of deciding whether something is 

mathematically reasonable in doing the work” (Lampert, 1986, p. 339). 

(Also see Yackel, Cobb, and Wood (1999) for a similar description of the 

role of teachers in second-graders’ learning of addition and subtraction.). 

Lampert also claims that students need to be asked questions in which 

answers can be "figured out" not by relying on memorized rules for 

moving numbers around but by thinking about what the numbers and 

symbols mean.  

Finally, the research advocated for student invented algorithms 

(Baek, 1998; Hiebert et al., 1996; Kamii & Dominick, 1997; Morrow & 

Kenney, 1998; Schifter, 1999) and alternative algorithms to the standard 

ones (W. M. Carroll & Porter, 1998). In fact, Hiebert, Carpenter, et al. 

(1996) found that instruction in which students see the development of 

procedures or algorithms as the problem to be solved is a form of 

instruction in which students will develop high levels of conceptual 

understanding that are closely connected with their procedural skills.  

Weaknesses and gaps. Instructional treatments vary across 

studies including alternative instruction, direct instruction, and 

instruction emphasizing concepts, instruction emphasizing procedures, 

and adult prompts. It is also expected that the quality of instruction 
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varied as well. Without complete knowledge of the instruction that 

students received, it is hard to replicate the findings. While this research 

sheds light on elements of instruction that are helpful to student 

learning, the uniqueness of instruction makes generalizing the results 

questionable. Furthermore, the context of instruction varied in other 

ways: the grade of the students, their ethnicity, achievement levels, and 

the content focus of instruction. For example, one argument was based 

on one second-grade class composed of a large Latino population 

(Hiebert, et al., 1996) — a context not replicated in other studies. In this 

study, students were engaged in a problem to find the difference in the 

height of two children — content not replicated in other studies.  

In some studies, instruction emphasizing reform ideas was 

delivered by a specially trained teacher (Hiebert & Wearne, 1996; Kamii 

& Dominick, 1998) while instruction not emphasizing reform ideas was 

delivered by the regular classroom teacher (Hiebert & Wearne, 1996). 

Since instruction varies between classrooms within schools, there is 

likely more variability in instructional treatments that had been labeled 

the same by researchers. While instruction delivered by specially trained 

teachers reduced the variability between classrooms within schools, 

findings from studies using this mode of instructional treatment are 

questionable when it comes to replicating the results when classroom 

teachers are delivering the instruction. Findings are also questionable in 

studies where instruction was not standard across classrooms since it is 
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likely that not all students received the same treatment. Furthermore, it 

is reasonable to question, even with a specially trained teacher delivering 

the experimental instruction, whether the regular teacher learned about 

and tried to deliver the experimental instruction. It is not clear how 

studies controlled for cross over in treatment.  More studies are needed 

that control for variability in instructional treatment and allow for 

regular classroom teachers to deliver alternative instruction.   

Again, research on multiplication and division and on children in 

the upper elementary grades has been limited in the area. Exactly how 

instruction should be sequenced to build on children’s informal 

mathematical knowledge is still an open question that requires further 

study. 

 

Knowledge Teachers Need to Have to Teach Multi-digit Computation  

Findings. One article and one book touch on the issue of what 

teachers need to know to teach multi-digit computation. The authors of 

the one article address what teachers know. In a correlational study of 

measures of teachers' knowledge of distinctions between addition and 

subtraction problem types, children's problem solving strategies, and 

knowledge of their own students’ achievement on number facts and 

problem solving (Carpenter, Fennema, Peterson, & Carey, 1988).  The 

teachers' ability to predict their students’ success in solving different 

problems was significantly correlated with both measures of students' 
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achievement. However, their ability to predict the strategies that students 

would use was not correlated with either achievement measure. The 

teachers could distinguish some basic differences between the major 

types of addition and subtraction problems. Most teachers did not 

appear to have a coherent framework for classifying problems, and they 

frequently could not articulate the basis for the distinctions they made 

between problems. Most teachers were familiar with the most frequently 

used strategies for solving addition and subtraction problems, and they 

could successfully identify strategies when they observed children using 

them on videotape. However, they generally did not categorize problems 

in terms of the strategies that children use to solve them. Many teachers 

did not seem to recognize the general principle that problems that can be 

directly modeled are easier to solve than problems that cannot be directly 

modeled.  

Most teachers were reasonably successful in identifying many of 

the critical distinctions between problems and the primary strategies that 

children use in solving addition and subtraction problems. However, this 

knowledge generally was not organized by the teachers into a coherent 

network that related distinctions between problems, children's solutions, 

and problem difficulty to one another - relationships that took 

researchers many years to specify clearly. None of the measures of 

teachers' general knowledge of problems, problem difficulty, or strategies 

were significantly correlated with student achievement or even with 
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teachers' ability to predict either their students' success in solving 

different problems or the strategies the students use to solve them. Most 

teachers had the general knowledge needed to predict their students' 

problems-solving performance and were capable of identifying their own 

students' strategies when they saw them. 

In interviews of U.S. and Chinese teachers discussing their 

instruction of subtraction with regrouping, Ma (1999) concluded that 

“three kinds of mathematical knowledge are included in a fully developed 

and well-organized knowledge package of conceptual understanding: 

procedural topics, conceptual topics, and basic principles of the subject” 

(Ma, 1999, p. 23). She found, however, that 77% of the U.S teachers and 

14% of the Chinese teachers displayed only procedural knowledge of the 

topic and that the variation in knowledge of subtraction with regrouping 

led to different instructional goals. 

Weaknesses and gaps. While correlational significance can provide 

direction, this information does not illuminate what knowledge teacher 

need in order to lead students in learning multi-digit computation.  Here, 

what is needed are carefully controlled studies that rule out possible 

confounders. The relationship between teachers' ability to predict their 

students’ success in solving different problems and measures of students 

achievement on numbers facts and problem solving may be related to 

other measures and in fact it is these measures that are causing the 

correlational significance.  
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Additionally, we need to know more about how teachers’ knowledge 

relates to topics within the domain of multi-digit computation and how 

their knowledge relates to various instructional practices and student 

achievement. This relationship may of course vary by grade and student 

composition (SES, achievement levels, parental support). The 

relationships between teacher knowledge and student characteristics 

need to be considered as well. 

  

Opportunities for Teachers to Learn to Teach Multi-digit Computation  

Findings. This area has been addressed by a collection of articles 

on teachers engaged in instruction following California’s reformation of 

mathematics instruction and an article resulting from the Cognitively 

Guided Instruction study. Three second-grade and two fifth-grade 

California teachers were observed during instruction on multi-digit 

addition and/or subtraction and multi-digit multiplication and/or 

division, respectively (Ball, 1990; Cohen, 1990; Cohen & Ball, 1990a, 

1990b; Darling-Hammond, 1990; Peterson, 1990a, 1990b; Wiemers, 

1990; Wilson, 1990). These California teachers’ opportunities to learn the 

practices called for by the reform policies came in the form of textbooks, 

district-level materials, and the “Mathematics Framework,” not all of 

which were read by the teachers. Regardless of which reference to the 

reform policies was used, these teachers learned policies from their 

current frames’ of reference – their pre-existing practice, knowledge, and 
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beliefs – while working in conditions that lacked time, support, 

encouragement, and access to new knowledge. Here, teachers needed to 

learn what was being asked of them in light of their current practice, and 

unfortunately, opportunities to learn came in the form of written 

materials, which were filtered through each teacher’s frame of reference 

and understanding of the policies and resulted in no change in practice 

and no apparent learning.   

The research by Fennema, Carpenter, Franke, et al. (1996) 

reported on teachers’ learning to teach in new ways. These researchers 

worked with 21 first-, second-, and third-grade teachers and their 

students over a 4 year period. They found that knowledge of children's 

thinking is a powerful tool that enables teachers to transform this 

knowledge and use it to change instruction. Here, each teacher came to 

know more or gained a better understanding of their children’s 

mathematical thinking through exposure to research on children’s 

mathematical thinking and through engaging their students in a variety 

of problem-solving situations and encouraging them to talk about their 

mathematical thinking. The results of this learning yielded a change in 

teachers’ beliefs and an increase in student achievement in concepts and 

problem solving. 

Weaknesses and gaps. Not every teacher has the opportunity to 

work with researchers to learn about current knowledge on students’ 

thinking. Furthermore, does learning about children’s thinking and 
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using it in instruction get harder as the content gets harder? Studies like 

the one by Fennema and her colleagues need to be replicated with 

teachers varying in teacher characteristics, school environment, and 

student characteristics using a more experimental design.  

 

Conclusions 

While the teaching and learning of multi-digit computation has 

been more thoroughly investigated than other mathematical content 

areas, there are several lines of inquiry that are lacking in knowledge. 

First, research is deficient on the teaching and learning of multiplication 

and division. The majority of studies have focused on addition and 

subtraction and early elementary grades, while far less effort has been 

put forth investigating the teaching and learning of multiplication and 

division. Further, additional examination is needed to understand both 

how children approach multiplication and division and if instructional 

approaches apply equally to these operations as they do to addition and 

subtraction. There is a hint of evidence that the interplay between 

conceptual and procedural knowledge may change as children advance 

in the mathematical knowledge. Since children can rely on informal 

mathematical skills for many years and even after formal mathematical 

instruction occurs, a focus on conceptual knowledge in the early grades 

may help students move from using informal skills to using formal skills. 

Then, in the later grades, teachers may need to focus on both conceptual 
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and procedural skills, iteratively, in order to facilitate learning more 

advanced mathematics for which informal skills can not be relied upon.  

Second, research is needed that includes older elementary 

children, especially those in fourth- and fifth-grades. Most research has 

focused on teaching and learning of students in the first three grades. 

Since teachers reported that work on addition and subtraction continues 

throughout the elementary grades, there is more to be learned about the 

teaching and learning of addition and subtraction in later grades. If the 

lack of inclusion of older elementary students is a subtle way for the field 

of mathematics education to say that teachers should no longer be 

concentrating instruction and learning on addition and subtraction in 

later grades, then research is still needed to understand the reason for 

this later research and the connection between early investigations and 

later studies on these topics. As one can expect, unsatisfactory treatment 

of topics in early grades will lead to continued coverage in later grades. 

The content of U.S. elementary mathematics has been described as spiral 

and that its curriculum adds more topics while never dropping early 

topics. From this review, there appears to be little understanding of why 

our curriculum is designed in this way. Therefore, greater in depth 

research is needed on all topic areas and grade levels so that we can 

move to understanding the whole elementary mathematics curriculum.  

Third, there is a lack of connection, coordination, or 

acknowledgement between the multiple areas of research within the 
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research on multi-digit computation. For example, research has argued 

for or found benefit in an instructional use of base-ten blocks and a 

focus on invented and alternative algorithms. New research should 

incorporate these findings while testing out new theories. If a new theory, 

for example, is about teachers learning to teach for understanding, 

teachers should include base-ten blocks and alternative algorithms in 

their instruction along with the component that is being studied in the 

research. Further, there is little argument within the field in general, 

except of course on the topic of conceptual and procedural knowledge. 

Research needs to account for theories that have been shown to work by 

other research and to consider alternative theories. That is, research 

needs to be cumulative in nature. It needs to build on other research in 

this field. Research also needs to be coordinated in order to make 

progress. 

Fourth, many of these studies are set in a teaching and/or 

learning context that does not mirror the teaching and learning context 

found in the majority of schools in the Unites States. Studies are needed 

that assess students’ performance and instructional practices during 

class when they are engaged in mathematical activities with their peers 

and regular teacher. Most studies included in this review used pre- and 

post-test, interviews, and/or observations, and many times students 

were assessed, interviewed, or observed individually outside the 

classroom. Occasionally, students were observed in small groups. These 
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data collection opportunities do not occur under usual conditions and 

may affect how students perform and what is said or observed and how 

the observations are interpreted. Ultimately, the findings may be 

misleading. For example, Carpenter and his colleagues have been 

intervening on teachers’ practices, an intervention that not all teachers 

have access to. Fuson and colleagues studied the usefulness of base-ten 

blocks for students’ learning while working in small groups, where 

students were pulled out of class. If we are to persuade teachers to 

embark on the hard work of changing their practice, research is needed 

that shows teachers that the instruction being advocated is possible 

within the teaching and learning environment and context similar to 

theirs. Therefore, research is needed that occurs in classrooms as they 

normally exist, with the interruptions, discipline challenges, and time 

constraints that teachers manage everyday. This is not to say the current 

research has little value. Its greatest value is in leading the next phase of 

research – the “clinical trials” of education.   

Finally, most studies are either observational in nature or provide 

expert opinion favoring a theory, practice or approach. Even the few 

comparative studies are not truly experimental and are not designed to 

show a causal effect of an instructional treatment. Further, samples sizes 

were relatively small and subjects were chosen non-randomly — both of 

which impact the studies’ generalizability. While one study used 1400 

third-graders (Brownell & Moser, 1949), this was the exception. More 
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typical, study designs ranged from one to a half dozen students, 

classrooms, and/or teachers. In general, the mode of data collection and 

small sample sizes have not permitted research to move beyond 

providing expert opinions and the use of small sample statistics. 

Therefore, research, currently nonexistent, is needed that permits 

statistical evidence from randomized controlled studies allowing for 

causal claims in instruction on student achievement.    

 

So, what is known about instruction on multi-digit computation? A 

lot, but yet not enough. Research on the teaching and learning of multi-

digit computation has laid a strong foundation for the next phase of 

research. At this point in the discussion, it seems more appropriate to 

ask, what isn’t known about instruction on multi-digit computation? In 

general, there is a need for more research on instruction on 

multiplication and division, for research to consider instructional 

approaches that are effective for learning all operations, for study designs 

to include all elementary grades, for research that takes place in natural 

educational settings with regular teachers delivering the instruction, for 

research that builds on prior knowledge, and for study designs that move 

beyond observational designs and allows for more rigorous analytic 

methods. Future research should include and allow for the 

understanding the causal effects of instructional practices on student 

achievement, how variations in instructional practices arise, and how 



67 
 

teachers’ characteristics, particularly their knowledge for teaching, affect 

their engagement in high quality instructional practices.  
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Chapter III  

Methods 

 

This chapter describes the data and research methods used to 

compare two instructional approaches used to teach multi-digit 

computation in the elementary grades. The two approaches differ in their 

emphasis on multi-digit computation procedures and concepts, two 

strands of mathematical proficiency. Little is known about the causal 

effects of these two well-studied instructional approaches in mathematics 

education on students’ learning. This is in part due, on the one hand, to 

challenges in garnering useful data at-scale on such instructional effects 

and achievement, and, on the other hand, even when such data is 

available challenges to measuring instructional approaches and 

achievement and to drawing valid causal inferences abound. Fortunately, 

there have been recent methodological advances in causal inferences for 

non-experimental data which I draw upon in this study and discuss in 

this chapter. Still, there is little guidance on identifying and assigning 

labels to classrooms on instructional approaches post enactment. This is 

new territory. In this chapter, I describe the methods used for gleaning 

evidence on the annual instructional approach used in study classrooms 
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from data collected on daily teacher logs. Then separately, I describe the 

methods used to measure student achievement that get “closer” to the 

target of instruction than previous studies. In the last section, I describe 

the methods used to compare instructional approaches and study the 

causality of these approaches on related achievement measures.  

For purposes of clarity, I restate the research questions being 

addressed in this chapter. The main research question asks, Does the 

blended instructional approach to teaching multi-digit computation in 

the elementary grades cause greater learning for all students? To answer 

this larger questions, I address four questions– (1) do teachers choose 

their instructional approach based on who they are teaching or is their 

approach influenced by other factors (i.e. teachers’ knowledge, years of 

experience, professional preparation, gender, and ethnicity; curriculum 

material; class average ethnic, gender, and socioeconomic composition; 

and school climate, and (2a) do classes who receive the blended 

instructional approach learning more than classes receiving the common 

instructional approach (2b) does the benefit of blended instruction vary 

by level of prior knowledge, and (2c) are there grade-level differences? 

 I have organized the chapter into three sections. The first section 

describes the study from which the data was drawn, the data, and the 

sample. In the second section, I attend to methods related to 

measurement and missing data. In the last section, I describe the 
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analytic methods and models that are used to answer the preceding 

research questions.  

 
Data 

For this dissertation, I use data collected by the Study of 

Instructional Improvement (SII), originally a large-scale quasi-

experimental study of the design, implementation and instructional 

effectiveness of three of America’s widely disseminated CSR programs. SII 

collected data in two phases from schools and, within each phase, on two 

cohorts of students.  

Phase 1 began in AY 1999-2000 with the entry of 53 elementary 

schools and Phase 2 added 66 more schools in AY 2000-2001. Within 

each school, two cohorts of students were studied as they passed from 

kindergarten through second grade and third through fifth grade. Within 

each classroom, eight students were selected at random as “target 

students.” If a target student left the school, they were replaced. 

Teachers of these target students were asked to record information about 

the instruction they received in mathematics and language arts on the 

Mathematics Daily Teacher Log and the Language Art Daily Teacher Log, 

respectively. SII conducted bi-annual — fall and spring — assessments of 

students’ achievement using the CTB McGraw-Hill’s TerraNova, 

mathematics, language arts, and reading sections. Additionally, during 

each year of the study, SII administered several questionnaires, surveys 

and interviews to collect data from teachers, school leaders, parents of 
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target students, and administrators on additional information that may 

be related to instructional improvement. In this dissertation study, I use 

data from all sources but with greater emphasis on the Mathematics 

Teacher Log data and the mathematics items from the TerraNova. In the 

following section, I describe the data collected using these two 

instruments. Electronic copies of the instruments are available at 

www.sii.soe.umich.edu.  

 

Mathematics Teacher Log  

SII developed a four page daily mathematics log aimed to measure 

the mathematics instruction target students received during instruction 

by their regular classroom teacher. This log was specifically designed for 

teachers to record mathematics instruction occurring in elementary 

school classrooms over a given day. On page 1 of the mathematics log, 

the teacher was asked to record the duration of the instruction or, if 

applicable, the reason for no instruction. When instruction occurred, 

teachers were asked to record when eight topics - number concepts; 

operations; patterns, functions, or algebra; money, telling time, calendar; 

representing or interpreting data; geometry; measurement; probability; 

percent, ratio, or proportion; negative numbers; other - were addressed 

and the extent to which these topics were addressed as being a major 

focus, minor focus, touched on briefly, or not taught. If teachers recorded 

a major or minor focus on number concepts; operations; or patterns, 
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functions, or algebra; they were directed to pages 2 through 4, 

respectively, of the log to give more details of this instruction. On these 

pages, teachers are asked to record instruction on number, subtopics, 

and resources, and on instructional activities and organization. Section 

A, page 2, focuses on instruction on Number Concepts; section B, page 

3, focuses on instruction on Operations; and section C, page 4, focuses 

on instruction on Patterns, Functions, or Algebra. This study uses items 

from section B, Operations, which I describe in a later section. 

 Log data collections were broken into three sessions per logging 

year––one each in the fall, winter and spring––for about 80 days and 

about 90% were completed and returned to project staff in usable form. 

Logging only occurred for the target student of that day and logging was 

not scheduled for kindergarten.  

Of the 89,184 logs collected by SII, 72,852 logs provide records of 

instruction when school was in session, and both the teacher and 

student were present at school on the logging day. About 20% of the total 

logs come from each grade. 

Validity of teacher log items.  SII researchers developed the 

mathematics teacher log with attention to accuracy and validity. First, 

they chose to use a daily teacher log format instead of less frequently 

administered questionnaires or costly observer records. Daily logs or 

diaries are considered more accurate since they suffer less from the 

inaccuracies due to memory distortions. In this case, the daily logs were 



 

73 
 

completed shortly after the logging events occurred. In all, the use of 

daily teacher logs, its timing and collection procedure, were all chosen to 

ensure validity of data collected on instruction practices use in the 

classrooms under study.    

Second, the content of the mathematics log was chosen to 

represent a range of instructional approaches. Most teachers at the time 

the log was used were aware of instructional practices recommended in 

the Curriculum and Evaluation Standards for School Mathematics 

(National Council of Teachers of Mathematics, 1989). Researchers 

“…developed …[log items]… that were agnostic with respect to particular 

views of good teaching”  (Ball & Rowan, 2004, p. 7). Items or groups of 

items are written so that they do not describe “good” and “bad” teaching 

or measure teachers’ knowledge of reform practices.  

Third, these researchers worked through several rounds of 

instrument pilot testing, incorporating language comprehensible to 

teachers. In this process they developed a log glossary that provided 

meaning for terms and examples. For the final log, teachers received 

training and access to support throughout the study.  

Finally, researchers conducted a formal validation study on a pilot 

version of the language arts log using triangulation methods (Camburn & 

Barnes, 2004). Depending on the section, they found between 73%-90% 

comparable agreement between teacher and observer with the more 

frequently taught content being at the upper end of this range. Observer 
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to observe agreement was only marginally better at 79%-97% agreement. 

In the end, the researchers claim that the validation study provided 

valuable information for revising items, clarifying terms in the glossary, 

and even eliminating some items. 

Mathematics log reliability. SII researchers assessed log item 

reliability using observer records of 68 mathematics log teachers logging 

in years three and four of the study. Observations were spread across 

first through fifth grades, totaling 32, 8, 1, 20, and 7 observations, 

respectively. Five SII researchers were trained to use the mathematics 

log. For each observation, two researchers independently read 

transcriptions of observer records and reported on the mathematics log.  

The researcher pairs compared their log reports and discussed 

discrepancies. Once the researcher pair agreed on how to appropriately 

record the observation, they created one final researcher log called a 

canonical log. I assessed log item reliability using the canonical and 

teacher logs. Note that teacher logs were collected as part of the regular 

study, and no additional or separate logs were collected for this reliability 

assessment. 

Since logs responses are non-continuous or binary, I assess 

reliability using a Spearman’s rank correlation, a non-parametric test of 

association on the ranked data where -1 and 1 represents perfect 

agreement and zero no agreement. In Table III.1, I report the correlations 

for the three focal gateway items and for items in the Operations section, 
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the focus of this dissertation. For the three gateway items reported, the 

correlation is moderate, from .30 to .67. Correlations for items in the 

Operations section range from low, near zero, to moderately high or from 

-.02 to .89 and for three items, no relationship could be computed 

because the canonical logs never reported an occurrence while the 

teacher log reported at least one occurrence.  

Many of the log items rarely occur in regular classrooms and the 

SII researchers expect these items will have low reliability. Because the 

reliability study included only 68 observations, many of the items that 

regularly occur in classrooms are likely to have low reliability due to 

chance, time of year when the observations took place, and grades that 

were observed.  To average out the effects of these factors, I calculated an 

average correlation across the items in the Operation section, using the 

absolute value thereby ignoring the direction of the correlation. I found 

the average correlation on these items to be moderately low at .37 

excluding the four items where no correlation was reported. 
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Table III.1 
Spearman rank correlations between teacher and canonical mathematics 
log items, for focal gateway item and operations section mathematics log 
items 

Log Item (Reference label) 

Spearman 
Rank 

Correlation 
To what extent were the following topics a focus of your work 
with the target student in mathematics today?   

 

  Number concepts (ml4a)      .50** 
  Operations (ml4b)      .67** 
  Patterns, Functions, or Algebra (ml4c)      .30* 

Operations (Section B)  
  Which operations did you focus on today?  
    Addition (mlB0a)      .54** 
    Subtraction (mlB0b)      .46** 
    Multiplication (mlB0c)      .34** 
    Division (mlB0d)      .60** 

  What were you using in your work on operations?  
    Whole Numbers (mlB1a)      .52** 
    Decimals (mlB1b)      .89** 
    Fractions (mlB1c)      .21 

  What did the target student work on today?  
    The meanings or properties of an operation (mlB2a)      .18 
    Basic facts (whole numbers only):   
      Methods/strategies for finding answers to basic facts  
      (mlB1b) 

     .39** 

      Practicing basic facts for speed or accuracy (mlB2c)      .03 
    Computation with multi-digit whole numbers, decimals, 
    or fractions: 

 

      Why a conventional computation procedure works          
      (mlB2d) 

-- 

      How to carry out the steps of a conventional   
      computation procedure (mlB2e) 

     .35** 

      Practicing computation procedures for speed, accuracy,  
      or ease of use (mlB2f)  

     .34** 

      Developing transitional, alternative, or non-conventional  
      methods for doing computation (mlB2g) 

     .40** 

    Applying basic facts or computation to solve work  
    problems or puzzles (mlB2h)  

     .35** 

    Estimating the answer to a computation problem (mlB2i)      .45** 
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Table III.1 (cont.)  
    What did you or the target student use to work on the  
    aspects of operations that you checked in Question B2? 

 

      Numbers or symbols (mlB3a)      .55** 
      Concrete materials (mlB3b)      .41** 
      Real-life situations or word problems (mlB3c)      .35** 
      Pictures or diagrams (mlB3d)      .53** 
      Tables or charts (mlB3e)      .31* 
      I made explicit links between two or more of these  
      representations (mlB3f) 

     .48** 

    What was the target student asked to do during the work 
    on operations? 

 

      Listen to me present the definition for a term or the  
      steps of a procedure (mlB4a) 

     .23 

      Perform tasks requiring ideas or methods already  
      introduced to the student (mlB4b)  

     .54** 

      Assess a problem and choose a method to use from 
      those already introduced to the student (mlB4c) 

     .13 

      Perform tasks requiring ideas or methods not already 
      introduced to the student (mlB4d) 

     -.05 

      Explain an answer or a solution method for a particular 
      problem (mlB4e) 

     .33** 

      Analyze similarities and differences among  
      representations, solutions, or methods (mlB4f) 

-- 

      Prove that a solution is valid or that a method works for  
      all similar cases (mlB4g) 

     .36** 

    Did the target student's work on operations today include 
    any of the following?   

 

      Orally answering recall questions (mlB5a)      .31* 
      Working on textbook, worksheet, or board work  
      exercises for practice or review (mlB5b) 

     .48** 

      Working on problem(s) that have multiple answers or  
      solution methods, or involve multiple steps (mlB5c) 

     -.02 

      Discussing ideas, problems, solutions, or methods in  
      pairs or small groups (mlB5d) 

     .25* 

      Using flashcards, games or computer activities to  
      improve recall or skill (mlB5e) 

     .30* 

      Writing extended explanations or mathematical ideas,  
      solutions, or methods (mlB5f) 

-- 

      Working on an investigation, problem, or project over an  
      extended period of time (mlB5g) 

-- 

** p <.01, * p <.05 
-- Correlation could not be reported due to canonical log never observed.  
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Responses to the log item measuring time, ”How much total time 

did target student spend on mathematics today? Please include all 

mathematics instruction the target student received, including routine 

times such as morning/calendar math, even if [it] took place in another 

room or by another teacher,” might provide reasons for the moderately 

low reliability, on average. The Pearson correlation between canonical 

and teachers records on this item is .61.x

Despite the moderately low average reliability, SII researchers’ use 

of daily teacher logs, its timing and collection procedure, and their 

attention to item writing with specific intentions to not sway teachers’ 

responses were all chosen to ensure validity of data collected on 

instruction practices use in the classrooms under study.  Furthermore, 

their extensive measures to pilot items and logs, revise, and study 

teachers use of the final log were extensive steps to ensure validity and 

reliability. 

  This moderately correlation 

suggests that teachers might have logged on instruction that was outside 

the observation time and not included in the observation record.  

In all, SII researchers’ use of daily teacher logs, its timing and 

collection procedures, and their attention to item writing with specific 

intentions to not sway teachers’ responses were all chosen to ensure 

validity of data collected on instruction practices use in the classrooms 

under study.  Furthermore, their extensive measures to pilot items and 
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logs, revise, and study teachers use of the final log were extensive steps 

to ensure validity and reliability. 

 

Student Achievement Data 

I use achievement data collected by SII to construct achievement 

measures on multi-digit computation. SII used the TerraNova Form A by 

CTB McGraw-Hill as their achievement assessment. CTB provided to SII 

students’ item specific response data, overall mathematics scores, and 

scores on several subscales including Number and Number Relations, 

Computation and Estimation, and Operation Concepts.xi

Assessment administrations procedures. SII researchers assessed 

target students in the fall and spring of each study year. They assigned 

students to test levels using a rubric developed in consultation with an 

ETS psychometrican. The goal of the rubric was to minimize the 

standard error of the scale score. In general, while many levels of the 

TerraNova are appropriate for assessing students across more than one 

grade, students were assigned to take the test level associated with their 

 The Operation 

Concepts scale measures both single-digit and multi-digit computation 

knowledge. Given my interest in studying the effects on achievement on 

multi-digit computation, I chose not to use the Operation Concepts scale 

and to create a measure of multi-digit computation from specific items 

requiring multi-digit computation knowledge. Methods for creating this 

measure are presented below. 



 

80 
 

grade and the time of year the assessment was taken.  For example, 

levels 11 and 12 are the levels best suited for second grade fall and 

spring assessments, respectively, and levels 12 and 13 for third grade fall 

and spring assessments, respectively, and so on. If the target student 

was expected to outperform or under perform on their grade level 

assessment, an alternate level was recommended. This assessment plan 

meant that high and low performing students were at risk of taking 

different test levels from “average” or typical students. This presents 

concerns for this investigation. Different levels have different items, and, 

therefore, scores from items on these levels are not comparable. I 

investigated using methods that might link or make comparable the 

different levels. I discuss these methods below.  

Table III.2 presents the assessment pattern and frequencies by test 

session, grade, and test form of the collected data. This table only shows 

the frequencies for second through fifth grades, the grades used in my 

study. In all, just over 11,000 mathematics assessments were collected 

during each of Fall and Spring sessionsxii and about 4000 students were 

tested in each grade. Since I am interested in measuring student 

achievement on multi-digit computation and the scale scores provided by 

CTB McGraw-Hill do not measure multi-digit computation specifically, I 

use the items requiring multi-digit computation knowledge and students’ 

response data to create scale scores using IRT methodologies. The 

challenge, however, was whether scores from different test levels could be 
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comparable. Having comparable scores would render all available data 

useable, preserving achievement data for potentially high and low 

achieving students. Alternatively, the loss of scores from high and low 

performing students means potentially studying the effect of instruction 

on only “average” students.  

I consulted two reports published by CTB McGraw-Hill on the 

TerraNova that were available at the time of the SII study which provided 

scant information about the test and items (CTB McGraw-Hill, 1999, 

October 1997). Advanced technical information on the test and items 

were unavailable. The Teacher’s Guide to the TerraNova claims that “[a]ll 

[test editions] are tied to a common scale and share a set of linking 

items.” (CTB McGraw-Hill, 1999, p. 4) Furthermore, the reports suggest 

that test levels overlap in difficulty and mention vertical scaling. Personal 

conversations with a CTB McGraw-Hill psychometrican confirmed the 

lack of sufficient published information which would allow items from 

different forms to be put on the same scale. Furthermore, given the lack 

of item parameters used by CTB McGraw-Hill for scoring, I pursued 

several methods of scoring multi-digit items that relied on available 

information. 

First, I pursued methods that preserved cases, such as creating 

scales related to item difficulty by using items from different levels. 

However, in the end, this method was insufficient; because of the small 
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number of multi-digit computation items on each level, there were too 

few commonalities to accurately define the different levels.  

I pursued a second approach that relies on “linking items” or group 

of “linking students” which are the most reliable methods for linking 

scores across test levels. Linking items are items that appear exactly the 

same on more than one test level and have known psychometric 

properties that facilitate assigning students test scores that are 

comparable across test levels. The linking items and psychometric 

properties are not typically available to “end” users, as is the case here.xiii

The third and final approach I considered relied on scoring 

students using the item parameters derived from the SII achievement 

data, the item level data. This approach, however, does not generate 

comparable scores from different test levels and it also poses concerns 

that the sample maybe related to the instruction students received. I 

explore this possibility in a later section after I define the instructional 

treatment. In the end, this study uses data from test levels taken by the 

 

Furthermore, after comparing items across Levels 11 through 16, I found 

no linking items or even similar items that could stand in for linking 

items. Alternatively, linking students are a group of students who took 

more than one test level at a single testing session. Here again, this 

group of students is not available in the SII data or from the available 

technical information.  
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majority of students, and, therefore, maximizes the sample of useable 

data.xiv

Thus, the focus of my dissertation study is on second through fifth 

grades using TerraNova Form A Levels 11-15. 

  

Table III.3 describes the 

final analytic sample in terms of test levels. I describe the scales and 

items in a later section. 

 

Measurement and Missing Data  

In this section, I describe how I made use of the “raw” data detailed 

in the previous section in order to obtain accurate summary measures 

usable in statistical models.  I first discuss the methods used to turn 

daily teacher log data into annual measures of instructional approach. 

Second, I describe the IRT methods for scoring the multi-digit 

computation items. Lastly, in this section, I discuss the methods used to 

address missing data.  

 

Constructing Measures of Instruction on Multi-digit Computation 

Procedures and Concepts   

This study uses the SII mathematics log items to identify two 

instructional approaches that place different emphases on procedural 

and conceptual knowledge and log data to identify classes using the two 

approaches. I focus on four log items to makes these distinctions. These 

items are presented in the next section. 
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Table III.2  
Initial Sample: Fall by Spring Crosstabs for students taking the TerraNova by grade and test form  
(total sample =15,951 students) 
   Spring 

Total 
TerraNova 
Form 

Missing 
 

Level 
10 

Level 
11 

Level 
12 

Level 
13 

Level 
14 

Level 
15 

Level 
16 

Fall           
Second Grade          
  Missing 1363 0 38 142 17 0 0 0 1560 
  Level 10 7 1 30 1 0 0 0 0 39 
  Level 11 165 0 75 1614 0 0 0 0 1854 
  Level 12 23 0 0 187 7 0 0 0 217 
  Level 13 1 0 0 0 17 2 0 0 20 
  Total 1559 1 143 1944 41 2 0 0 3690 
Third Grade          
  Missing 1184 0 20 64 181 23 0 0 1472 
  Level 11 1 0 0 0 0 0 0 0 1 
  Level 12 246 0 0 94 1967 307 0 0 2614 
  Total 1431 0 20 158 2148 330 0 0 4087 
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Table III.2 (cont.)        
 Spring 
TerraNova 
Form 

Missin
g 

Level 
10 

Level 
11 

Level 
12 

Level 
13 

Level 
14 

Level 
15 

Level 
16 Total 

Fourth Grade          
  Missing 1430 0 1 15 63 153 2 0 1664 
  Level 10 1 0 0 0 0 0 0 0 1 
  Level 11 2 0 0 6 0 0 0 0 8 
  Level 12 24 0 0 0 116 24 0 0 164 
  Level 13 206 0 0 1 109 1504 23 0 1843 
  Level 14 26 0 0 0 2 341 25 0 394 
  Level 15 1 0 0 0 0 1 11 0 13 
  Total 1690 0 1 22 290 2023 61 0 4087 
Fifth Grade          
  Missing 1689 0 0 0 21 44 92 16 1862 
  Level 11 0 0 0 1 0 0 0 0 1 
  Level 12 0 0 0 0 3 0 0 0 3 
  Level 13 50 0 0 0 3 191 2 0 246 
  Level 14 139 0 0 0 0 139 1303 0 1581 
  Level 15 39 0 0 0 0 0 324 17 380 
  Level 16 1 0 0 0 0 0 0 13 14 
  Total 1918 0 0 1 27 374 1721 46 4087 
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Table III.3  
Final analytic sample: Fall by Spring Crosstabs for students taking the 
TerraNova by grade and test form 
 Spring   
TerraNova Form Level 12 Level 13 Level 14 Level 15 Total 

Fall      
  Second Grade      
    Level 11 932 0 0 0 932 
  Third Grade      
    Level 12 0 914 0 0 914 
  Fourth Grade      
    Level 13 0 0 770 0 770 
  Fifth Grade      
    Level 14 0 0 0 740 740 
Total 932 914 770 740 3356 
 

 

Mathematics log items measuring multi-digit computation. I use 

items given on page 3 of the Mathematics Teacher Log, called Operations, 

to identify two instructional approaches to the teaching of multi-digit 

computation procedures and concepts.xv  The items in this Operations 

section ask teachers to report on students’ work on computation, 

including work specifically with multi-digit whole numbers, decimals, 

and fractions. The first item asks teachers “Which operation(s) did you 

focus on today?” The teacher can mark addition, subtraction, 

multiplication and/or division. Instruction involving all of these 

operations is of interest to this study. The second item asks teachers 

“What were you using in your work on operations?” Here, the teacher is 

asked to mark whole numbers, decimals, and fractions. Only lessons 
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involving whole numbers or whole numbers and decimals are included in 

this study. Since it is hard to disentangle work on only whole numbers 

when work on decimals was also marked, I include these lessons in this 

study. Procedures and concepts used to operate on decimals are similar 

to those for whole numbers so I include logs when multi-digit whole 

numbers and decimals are recorded. Since procedures and concepts for 

operations involving fractions are different from those for whole 

numbers, logs reporting work involving instruction on fractions is left for 

future research and not included in this study.  

The third item asks “What did the target student work on today?” 

The teacher is asked to respond to 11 sub-items. Four of these sub-items 

are the focus of this study. These sub-items are (1) Why a conventional 

computation procedure works (B2d), (2) How to carry out the steps of a 

conventional computation procedure (B2e), (3) Practicing computation 

procedures for speed, accuracy, or ease of use (B2f), and (4) Developing 

transitional, alternative, or non-conventional methods for doing 

computation (B2g). These items were designed to measure student work 

on multi-digit computation procedures and concepts. The glossary 

statements give some clarity on what each item measures which I restate 

here:  

Computation with multi-digit whole numbers, decimals, or 
fractions: Computation with multi-digit whole numbers comprises 
whole number addition, subtraction, multiplication, or division 
beyond basic facts (e.g., 8 + 14, 23 – 4, 12 x 14, 81 ÷ 3). 
Computation with decimals or fractions includes any addition, 
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subtraction, multiplication, or division with any type of decimal or 
fraction (e.g., .2 + .2 or  1

2
+ 1

3
 ). 

B2d. Why a conventional computation procedure works 
Use this category to record work on exploring why a conventional 
computation procedure works. For instance, when teaching the 
problem 53 − 29, you or the target student might have used blocks 
to turn 53 into 40 + 13, explaining that 40 + 13 is another way of 
representing 53, which makes it possible to subtract the nine in 
the units column. Or when adding decimals, you might have 
shown students that lining up the decimal point allows you to 
combine tenths with tenths, hundredths with hundredths, etc. If 
you simply explained the steps or walked through a procedure and 
did not explain why they work, please mark that in B2e or B2g. 
B2e. How to carry out the steps of a conventional computation 
Procedure 
Use this category to represent work on following steps to complete 
computation problems. The target student should have worked to 
master the steps in the procedure, not yet striving for speed or 
accuracy. For instance, you might introduce multiplication with 
decimals, and the student might work that day to follow the steps 
of this procedure correctly. If teaching alternative (or non-
conventional) procedures, record in B2g. 
Please see the box above for what we mean by conventional 
procedures. 
B2f. Practicing computation procedures for speed, accuracy, 
or ease of use 
Use this category to represent work on helping the target student 
increase the speed, accuracy, or ease of use in following 
procedures for computation. The target student might have used 
flashcards, worksheets, textbooks, games, mental math, or other 
means of practicing computation procedures. 
B2g. Developing transitional, alternative, or non-conventional 
methods for doing computation 
Use this category to represent work on learning, using, or 
inventing non-conventional methods for computing with whole 
numbers, decimals or fractions. These include methods that differ 
from those described above as conventional procedures. Work with 
nonconventional methods may be informal, such as adding 53 + 19 
by “rounding and compensating” (i.e., 53 + 20 = 73; 73 − 1 = 72) or 
mentally adding the tens before the ones. Other non-conventional 
methods may help the target student “see” the steps in an 
operation more clearly, as in these non-conventional methods for 
multi-digit multiplication and division: 
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231 
      
         4 (1 x 4) 

x 4 

     120 (30 x 4) 
     800
     924 

 (200 x 4) 

29417  
    170
    124 

 (17 x 10) 

      85
      39 

 (17 x 5) 

      34
        5 

 (17 x 2) 

 
10 + 5 + 2 = 17 R5 

 
With decimal multiplication, the target student might use a non-
conventional multiplication procedure and/or might use a non-
conventional approach to place the decimal point in the answer. 
For example, the target student might estimate what would make 
sense in terms of the size of the answer instead of counting the 
number of decimal digits. 
With fractions, the target student might do 2 1

2
  x 2 by doing  

2 x 2 + 2 x 1
2
, for example, or the student might do 3 divided by 

1
2
 either mentally or by using pictures and asking how many 1

2
’s go 

into 3 wholes. (Ball, Cohen, & Rowan, 2002, pp. 11-13) 
 
This concludes the item descriptions for items which were the 

focus of this study. There are additional items on the teacher log, but 

these items are not related to instruction on multi-digit computation and 

not useful to this study. 

Connecting log items to emphasis on procedures and concepts. In 

this section, I document connections between the mathematics log items 

described above to an instructional emphasis on procedures or concepts. 

Specifically, I use these items and their definitions to identifying whether 

the target student worked on multi-digit procedures or concepts. First, 

two items measure work on procedures - “How to carry out the steps of a 

conventional computation procedure” (a.k.a. B2e) and “Practicing 

computation procedures for speed, accuracy, or ease of use” (a.k.a. B2f). 
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These two items record work focused on “following steps,” “master[ing] 

the steps in the procedure,” and “speed, accuracy, or ease of use in 

following procedures for computation” on conventional procedures. These 

characteristics embody the kind of work students need to do to gain 

procedural knowledge. Recall the definition: procedural knowledge refers 

to a familiarity with mathematical symbols, their appropriate 

representation and their use and to the rules or procedures for solving 

mathematical problems. Items B2e and B2f exemplify this definition. 

 Second, the other two items, “why a conventional computation 

procedure works” (a.k.a. item B2d) and “developing transitional, 

alternative, or non-conventional methods for doing computation” (a.k.a. 

item B2g) measure conceptual knowledge. Item B2d is about why steps 

to conventional procedures are sensible or mathematically reasonable. 

When this item is marked, students are likely to be justifying the steps of 

conventional procedures and making connections to number concepts. 

Item B2g is about alternative methods for doing computation. Here, 

students might also be justifying the steps of alternative procedures or 

making connections to conventional procedures. Since work where the 

teacher “simply explained the steps or walked through a procedure” is not 

recorded in these items, marking these items means that students are 

making connections between steps in procedures and multi-digit number 

concepts. These items represent instructional emphasis on conceptual 

knowledge, learning about the relationships between computation 
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methods and making connections to the reasoning for the steps in 

procedures. Recall the definition of conceptual knowledge:  conceptual 

knowledge refers to knowledge rich in relationships and connections 

between pieces of information. Items B2d and B2g exemplify the meaning 

of an instructional emphasis on learning concepts. 

In all, two log items, B2e and B2f, suggest that an instructional 

emphasis on procedures occurred, while the other two log items, B2d 

and B2g, suggest that an instructional emphasis on concepts occurred. 

Emphasis on either or both procedures and concepts can occur within a 

single instructional period and vary across instructional periods, and it is 

this emphasis that I map onto two approaches to instruction on multi-

digit computation, previously labeled common and blended instruction.  

Recall that common instruction places a high instructional emphasis on 

students’ development of procedural skills, with little or no attention to 

connections with concepts. Classrooms receiving the common 

instructional approach will log primarily on items B2e and B2f and rarely 

on items B2d and B2g. Conversely, recall that blended instruction 

incorporates deliberate opportunities for student work developing 

conceptual understanding with opportunities for work on procedural 

skills. For classrooms receiving the blended instructional approach, 

teachers will regularly log all four items throughout the school year.   

Identifying classes using common and blended instruction. In this 

section, I present the steps I used for identify which classes receive 
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common and blended instructional approaches. I again focus on the four 

log items measuring daily emphasis on multi-digit computation 

procedures and concepts and the data collected on these items. Using 

this information I present my rationale of labeling a class as receiving 

common or blended instructional approach.   

I begin with first studying the rate of daily records for each of the 

four log items for each grade. Table III.4 restates the four log items and 

gives the grade average proportion of logs reporting work on each item. 

Overall, the average proportion increased as grade level increased for all 

four items. This suggests that with each subsequent grade students are 

receiving instruction with increasing emphasis on procedures and 

concepts when multi-digit computation is the focus. Item B2e “how to 

carry out the steps a of conventional computation procedure” received 

higher average emphasis compared to the other three items, while item 

B2g “developing transitional, alternative, or non-conventional methods 

for doing computation” received the lowest average emphasis. This also 

means that procedures received more instructional emphasis since B2e 

measures work on procedures while concepts received less emphasis 

since B2g measures work on concepts. This concurs with research 

findings in that typical classrooms emphasize low-level skills and rarely 

attend explicitly to the important mathematical relationships (National 

Advisory Committee on Mathematics Education, 1975; Rowan, et al., 

2004; Weiss, Pasley, Smith, Banilower, & Heck, 2003).  
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The rightmost column in Table III.4 restates which––either 

procedures or concepts –– is being measured by the corresponding log 

item. In the next step I code individual logs as reporting emphasis on 

procedures or concepts. Therefore, I code a log as including an emphasis 

on “procedures” if the teacher reported an endorsement of B2e “how to 

carry out the steps of a conventional computation procedure” or B2f 

“practicing computation procedures for speed, accuracy, or ease of use” 

or both. Similarly, I code a log as including an emphasis on “concepts” if 

the teacher reported an endorsement of B2d “why a conventional 

computation procedure works” or B2g “developing transitional, 

alternative, or non-conventional methods for doing computation” or both. 

From this log coding for procedures and concepts, I estimate for each 

class the proportion of days that included each emphasis. These 

proportions provide a measure of how much instructional emphasis a 

class received on each multi-digit computation procedures and concepts. 

In Table III.5, I provide the descriptive statistics for average class 

emphasis on procedures and concepts by grade.xvi The distributions for 

class emphasis on procedures and class emphasis on concepts are 

positively skewed except for the distribution of fifth grade class emphasis 

on procedures. This suggests that there is opportunity for an increase in 

emphasis on procedures and concepts during instruction on multi-digit 

computation in most classes. The mean emphasis for procedures varies 

from .17 for first grade classes to .30 for fifth grade classes, and the 
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mean emphasis for concepts varies from .12 for first grade classes to .24 

for fifth grade classes. These findings are sensible since we know that 

content gets added to the curriculum and that in many classes earlier 

content continues to be revisited. For example, Rowan, Harrison, and 

Hayes (2004) found, “[w]ith respect to redundancy, … that students in 

third and fourth grades continued to work on addition and subtraction, 

even as they moved to work on multiplication and division.  Moreover, 

students continued to work on addition and subtraction problems with 

whole numbers, even as they learned to work with fractions and 

decimals” (Rowan, et al., 2004, p. 112).  The finding that there is 

variation from grade to grade on emphasis on procedures and concepts, 

however, suggests that there are elements of instruction that vary 

between grades but what is not clear is how this variability is related to 

instructional approach. Still, the low mean class emphasis on both 

procedures and concepts for first grade compared to second through fifth 

grades confirms that multi-digit computation is not the focus of their 

content. This finding also reaffirms my focus on second through fifth 

grades for this study.  

Using these class level proportions, I divide classes into those 

receiving low emphasis and those receiving high emphasis for both 

procedures and concepts. I use a cut-point of .2 on the proportion of 

days endorsing procedures and concepts to divide the classes into high 

and low emphasis because it is representative of the mean and median 
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and is generally easy to interpret. For example, I interpret classes above 

.2 on the measure as having worked, on average when focused on multi-

digit computation, at least one day per week on either procedures or 

concepts, depending on which is being measures. Therefore, I code a 

class as endorsing a low instructional emphasis on procedures if the 

class proportion is .2 or less. Conversely, I code a class as endorsing a 

high instructional emphasis on procedures if the class proportion is 

greater than .2. I use the same rule for coding low and high instructional 

emphasis on concepts. The results from this coding show that there are 

four types of class emphasis as shown in Table III.6, the table of 

frequencies of classes for each type. There are 407 classes which I 

indentified as endorsing a low instructional emphasis on procedures and 

concepts, located in the upper left-hand cell of the table, and there are 

459 classes which I indentified as endorsing a high instructional 

emphasis on procedures and concepts, located in the lower right-hand 

cell of the table. The remaining cells of the table indentify classes 

endorsing only high emphasis for either procedures or concepts. For this 

analysis, I study only the two types of instructional emphasis defined by 

high emphasis on procedures and low emphasis on concepts (i.e. 268 

classes) and high emphasis on both procedures and concepts (i.e. 459 

classes), here by referred to as common and blended instructional 

approaches, respectively.  
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Table III.7 shows the sample of classes by grade receiving common 

and blended instructional approaches.  I have identified between 169 

and 189 classrooms across the different grades and between 31 to 43 

percent received a common instructional approach. Therefore, there are 

enough cases to study instructional effects on achievement and to 

explore influences on endorsing an instructional approach. This is the 

sample of classrooms and students in these classrooms that are used to 

answer my research questions. 

 Sample descriptives. Table III.8 describes the students and classes 

by grade in terms of covariates.  Student characteristics are fairly similar 

across the grades. Each grade has between 45 and 50 percent males, 17 

and 24 percent Caucasian, 46 and 52 percent African American, and 

about 20 percent Hispanic. Second grade has slightly higher poverty 

than the other grades with an average socioeconomic status (SES) of -.03 

while the other grades have an average SES between -.10 and -.13. 

Achievement in reading, language arts, and mathematics increases as 

grade increases, as expected. For second grade, the average achievement 

score in mathematics, for example, is 541.87 while the average for fifth 

grade is 615.54. Proportions of LEP (A.K.A. Limited English Proficiency) 

and learning disable are similar across grades as well.    

Teacher characteristics are similar across grades except for a few 

noteworthy differences. In terms of teacher’s gender, the proportion of 

male teachers generally increases as grade increases. Second and third 



 

97 
 

grades have fewer male teachers, 7 and 6 percent, respectively; while 

fourth and fifth grades have 13 and 22 percent male teachers, 

respectively. Over 50 percent of teachers are Caucasian with 25 percent 

African American and about 10 percent each Hispanic and other 

ethnicity. About two-thirds of teachers in each grade majored in 

education and about the same proportion have a graduate degree. 

Between 83 and 87 percent of teachers in each grade hold a permanent 

or standard teacher certification. On average, teachers in each grade 

have between 11 and 14 years of teaching experience but have been 

teaching between six to eight years at their present school.  Average 

course taking and professional development is similar across grades as 

well. Average scores on content knowledge for teaching, however, are 

markedly different. Average second and third teachers’ scale scores are 

lower, at .06 and -.01, respectively, while fourth and fifth grader average 

teacher scores are .27 and .26, respectively.   

Table III.8 displays average school characteristics by grade. At the 

school level, there are few differences across grades. For example, 

average school enrollment is just under 500 students with 6.45 hours 

school day. Average schools are comprised of about 50 percent African 

American students and 46 percent of students come from single parent 

family. About 10 percent of parents report problem behaviors at home 

and 6 percent of student are LEP or ESL. Schools are distributed nearly 

equally across the four whole school reform programs, America’s Choice, 
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Accelerated Schools, Success for All, and comparison schools, studied by 

SII. On average, 30 percent of schools have an NSF curriculum in use at 

their school.  

Exploring the relationship between test level and instructional 

approach. My investigation, described in the sections that follow, 

excludes about 79 percent of the student achievement data collect by the 

SII study. I exclude these students for several reasons. About 47 percent 

(n=7490) students were excluded because either or both fall and spring 

achievement scores are missing. Another 19 percent (n=3032) of 

students are in classes that did not receive either the common or blended 

instructional approach and are excluded. The remaining 13 percent are 

excluded because they took a non-standard sequence of test levels. Since 

SII researchers assigned students to test levels during their data 

collection, it is possible that the instructional approach they received 

may have influenced their assigned test level. For example, fourth grade 

students receiving the blended instructional approach may have been 

performing better than peers in common classrooms and assigned to 

take level 15 in the spring after taking level 13 in the fall. Alternatively, 

students in common classrooms may retake level 13 in the spring 

because they were un-performing compared to their peers. This is just 

one example and instruction may influence assignment to test level in 

different ways. In this section I explore the relationship between test level 

and instructional approach and its potential for biasing my results. 
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I first explore the relationship between Fall test level and 

instructional approach. Specifically, Fall test level predicts instructional 

approach. This sample includes all students with a Fall test score. 

Results from crosstabs and chi-square tests are given in   Table III.9. For 

all grades, the chi-square statistics, given in the rightmost column, are 

not significant at the .05 level. Therefore, the proportions of student 

taking a test level are similar across instructional treatments, common 

and blended, and there is no evidence that test level influences which 

instructional approach the students received.   

In a second analysis, I explore whether instructional approach 

influences students’ Spring test level in two ways. First, I test whether 

instructional approach predicts Spring test level. This sample includes 

all Fall test takers and any new students added to the sample in the 

Spring. Some students in this sample are missing a Spring assessment 

and their respective test level. Including these students in this 

exploration allows me to assess whether instructional approach 

influences their missing Spring assessment or whether poorly performing 

students were less likely to be assessed. In Table III.10, I give the results 

from the crosstabs and chi-square tests. Overall, for all grades, the chi-

square statistics are not significant at the .05 level. Therefore, the 

proportions of students receiving common and blended instructional 

approach are similar across Spring test levels, including missing 

assessment. For fifth grade only, there is a significant difference in the 
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proportion of students receiving common and blended instructional 

approach and taking level 14 only. For the 162 fifth grade students 

taking level 14, 15.7 percent received the common instructional 

approach while 10.6 received blended. The difference between these 

percentages is not exceptionally large but the pattern does different from 

those for the other test levels. Specifically, at every other test level, the 

proportion of fifth grade students receiving blended instructional 

approach was mildly higher than those receiving common which is the 

reverse pattern to what occurred at level 14. To get a better idea of 

significance of these findings, I explore the relationship between test 

taking pattern and instructional approach. 

In this second approach I use a measure of the difference between 

Fall and Spring test levels, calculated as Spring test level minus Fall test 

level, to assess whether students moved from Fall to Spring without 

being influenced by their instructional approach. The Spring to Fall test 

level difference ranges from -1 for down one level to 2 for up two levels.  

TerraNova test levels can be used to measure student mathematical 

knowledge at more than one time point, varying both by Fall, Spring, and 

grade. SII’s intention was to assign students to the level that was best 

suited for individual students. Also, they followed a general protocol of 

assigning students in the Spring to the test that is one level up from their 

Fall test level. Therefore, these fourth graders may be taking the next 
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appropriate level, and this finding is due to chance and not due to their 

instruction. Therefore, it is not clear whether the fourth grade results in  

 is concerning.  

Table III.11 gives the results from crosstabs and chi-square tests 

for instructional approach predicting change in test level. Given the small 

number of proportions in question, there is no evidence that test level 

influences which instructional approach the students received.  For all 

grades the chi-square statistic is not significant. Therefore, overall, the 

proportions of students in each change category are not significantly 

different for the two approaches. For fourth grade, there is one category, 

namely up one level, that has significantly different proportion of 

students. Of fourth grade students receiving the common instructional 

approach, about 81.9 percent moved up one test level while about 75.3 

percent of those receiving the blended approach moved up one test level. 

The difference in proportion is not exceptionally large. It does, however, 

suggest that fourth graders receiving a common approach were more 

likely to move up one level that their peers receiving the blended 

approach. 

Overall, the results from comparing instructional approach and 

test level measures suggests there is no clear pattern that instruction 

influences students’ assigned test level. The differences in percentages at 

fourth and fifth grades are small and biases to results of my investigation 

are unlikely.  
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Table III.4  
Proportion of logs from the Operations section of the SII Mathematics Teacher Log that focus on multi-digit 
computation instructional practices (n=72852) 

 

A 
Proportion Endorsed either “Touched On” or 

“A Focus of Instruction” 

B 
Category 

Item (Reference Number) 
All 

Grades 
Grade  

First Second Third Fourth Fifth  
Sample 72,852 14894 13984 16040 15432 12502  

Why a conventional 
computation procedure 
works (B2d) 

.15 .10 .16 .14 .17 .21 Concepts 

How to carry out the steps 
a of conventional 
computation procedure 
(B2e) 

.21 .13 .22 .20 .24 .27 Procedures 

Practicing computation 
procedures for speed, 
accuracy, or ease of use 
(B2f) 

.17 .11 .19 .17 .18 .20 Procedures 

Developing transitional, 
alternative, or non-
conventional methods for 
doing computation (B2g) 

.11 .07 .11 .09 .13 .15 Concepts 
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Table III.5  
Descriptive statistics for class proportion of days endorsing procedures (abbr. Procdr) and concepts (abbr. 
Concpt) 

   
 

Grade 

 All Classes 
(1491) 

 

First 
(308) 

Second 
(295) 

Third 
(336) 

Fourth 
(305) 

Fifth 
(247) 

 Procdr Concpt Procdr Concpt Procdr Concpt Procdr Concpt Procdr Concpt Procdr Concpt 
Mean  
(SD) 

.25  
(.19) 

.19 
(.17) 

.17 
(.17) 

.12 
(.15) 

.27 
(.19) 

.20 
(.19) 

.26 
(.18) 

.17 
(.17) 

.27 
(.19) 

.21 
(.16) 

.30 
(.18) 

.24 
(.19) 

Median .22 .14 .10 .06 .25 .15 .23 .13 .24 .17 .26 .19 
Min 0 0 0 0 0 0 0 0 0 0 0 0 
Max 1 .94 .87 .83 0.9 0.89 .89 .87 1 .88 .87 .94 
Kurtosis 
(SE) 

.78 
(.13) 

2.08 
(.13) 

2.40 
(.28) 

4.10 
(.28) 

1.24 
(.28) 

1.96 
(.28) 

.95 
(.27) 

2.68 
(.27) 

.80 
(.28) 

1.69 
(.28) 

0.02 
(.31) 

1.36 
(.31) 
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Table III.6  
Frequency (proportions) of classes assigned to high and low emphasis on 
procedures and concepts, a crosstabulation (n=1183) 
  Procedures 

Total   Low Emphasis High Emphasis 
Concepts Low Emphasis 407  

(.34) 
268  
(.23) 

675  
(.57) 

High Emphasis 49  
(.04) 

459  
(.39) 

508  
(.43) 

Total 456 
(.39) 

727 
(.62) 

1183 
(1.00) 

 

 

 

Table III.7  
Frequency (proportions) of classes by grade endorsing high emphasis on 
procedures and high emphasis on both (n=727 classes) 
 Grade  
 Second Third Fourth Fifth Total 
High Emphasis on Procedures 
(a.k.a. common instructional 
approach) 

80 
(.43)  

77 
(.41)  

56 
(.31) 

55 
(.33) 

268  
(.37) 

High Emphasis on Procedure 
and Concepts (a.k.a. blended 
instructional approach) 

108 
(.57)  

112 
(.59)  

125 
(.69) 

114 
(.67) 

459  
(.63) 

Total 188 189 181 169 727 
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Table III.8  
Descriptive statistics on independent variables for students, classes, and schools in analytic sample, prior to 
multiple imputation 

 
 

Grade 
Second Third Fourth 

Independent Variables 
Fifth 

N Mean SD N Mean SD N Mean SD N Mean SD 
Student Level 932   914   770   740   
Classroom Level 180   171   171   158   
  Student characteristics             
    Proportion male  0.50 .19  .49 .18  .47 .19  .45 .19 
    Proportion by Ethnicity             
      Caucasian  .24 .33  .24 .32  .20 .29  .17 .28 
      African American  .47 .40  .46 .37  .48 .39  .52 .40 
      Hispanic  .21 .32  .23 .32  .20 .31  .21 .30 
      Asian  .04 .15  .04 .12  .08 .24  .05 .17 
      American Indian  .00 .03  .00 .02  .00 .02  .00 .01 
      Other ethnicity  .04 .13  .03 .09  .03 .11  .04 .10 
    SES composite -.03 .50  -.10 .45  -.13 .45  -.10 .44 
    Fall TerraNova Scores             
      Reading  589.97 25.67  605.05 20.50  625.30 24.00  630.75 21.18 
      Language Arts  584.02 23.47  597.67 20.68  621.02 21.30  631.60 20.90 
      Mathematics  541.87 22.48  561.35 21.92  599.53 29.21  615.54 25.67 
    Percent LEP/ESL (prop.)             
      Under 5% of students  .67 -  .70 -  .72 -  .68 - 
      5%-50% of students  .27 -  .21 -  .20 -  .28 - 
      Over 50% of students  .07 -  .09 -  .09 -  .04 - 
    Percent Learning Disabled (prop.)           
      Under 5% of students  .61 -  .51 -  .55 -  .57 - 
      5%-50% of students  .39 -  .49 -  .45 -  .43 - 
  Teacher Characteristics             
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Grade 
Second Third Fourth 

Independent Variables 
Fifth 

N Mean SD N Mean SD N Mean SD N Mean SD 
    Gender (male=1, female=0) .07 -  .06 -  .13 -  .22 - 
    Ethnicity (proportion)             
      Caucasian  .56 -  .62 -  .51 -  .51 - 
      African American  .25 -  .23 -  .28 -  .28 - 
      Hispanic  .09 -  .08 -  .09 -  .07 - 
      Other  .10   .07 -  .11 -  .14 - 
    Undergraduate major  
      (education=1, other=0)  .71 -  .67 -  .72 -  .64 - 

    Graduate degree (yes=1, no=0) .62 -  .68 -  .67 -  .69 - 
    Permanent Teacher  
      Certification (prop.) 

.84 -  .84 -  .87 -  .83 - 

   Years teaching  13.35 10.58  14.17 10.64  14.04 10.51  11.92 9.92 
    Years at present school  7.60 7.20  8.63 8.77  8.02 7.64  6.78 6.45 
    Number of math courses (prop.)            
      No classes    .06 -  .11 -  .11 -  .09 - 
      1-6 classes  .72 -  .67 -  .69 -  .69 - 
      7-15 classes  .19 -  .16 -  .18 -  .19 - 
      16 or more classes  .03 -  .06 -  .02 -  .03 - 
    Number of math method courses (prop.)            
      No classes    .09 -  .16 -  .12 -  .19 - 
      1-6 classes  .76 -  .72 -  .75 -  .67 - 
      7-15 classes  .11 -  .09 -  .11 -  .12 - 
      16 or more classes  .04 -  .02 -  .02 -  .01 - 
    Math Professional Development (prop.)            
      No hours   .08 -  .07 -  .09 -  .13 - 
      1-10 hours  .69 -  .58 -  .75 -  .67 - 
      11-15 hours  .13 -  .14 -  .08 -  .20 - 
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Grade 
Second Third Fourth 

Independent Variables 
Fifth 

N Mean SD N Mean SD N Mean SD N Mean SD 
      16 or more hours  .10 -  .22 -  .08 -  .10 - 
    Content Knowledge for  
      Teaching (CKT) 

.06 .98  -.01 .93  .27 1.02  .26 .99 

School: 86   91   84   82   
  Enrollmenta  495 192  479 188  467 172  477 187 
  Length of day (in hours)  6.44 .34  6.44 .34  6.44 .37  6.45 .34 

  Percent African American  51.86 36.37  52.94 36.9
6 

 49.57 36.56  51.93 37.7
4 

  Proportion single parents  .46 .15  .46 .15  .46 .15  .46 .16 
  SES composite -.08 .37  -.11 .34  -.09 .37  -.011 .36 
  Teacher average CKT  .00 .30  -.01 .28  .00 .29  .00 .30 
  Woodcock Johnson 
Mathematics  

13.58 1.90  13.44 1.79  13.60 1.93  13.47 1.80 

  Proportion of grade repeaters .15 .09  .15 .09  .15 .09  .13 .09 
  Proportion problem behavior      
    reported by parent 

.10 .05  .10 .05  .11 .05  .10 .05 

  Proportion ESL students  .06 .08  .06 .08  .06 .07  .06 .07 
  Whole School Reform  
    Involvement (prop.) 

         

    America’s Choice  .28 -  .25 -  .24 -  .23 - 
    Accelerated Schools  .26 -  .24 -  .25 -  .29 - 
    Success for All  .26 -  .26 -  .25 -  .23 - 
    Comparison School  .21 -  .24 -  .26 -  .24 - 
  NSF Curriculum  .29 -  .28 -  .31 -  .27 - 
Note. (Prop.) = proportion. 
a Enrollment estimates are rounded to whole number. 
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  Table III.9  
  Frequencies (proportions) and chi-square statistics for TerraNova Fall test level predicting instructional    
  approach, by grade 

 TerraNova Test Level  
Grade  
  Instructional Approach 

Level 
10 

Level 
11 

Level 
12 

Level 
13 

Level 
14 

Level 
15 

Level 
16 

Total 𝑥2 
Statistic 

Second Grade (n=1141)         .73 
  Common 7 

(43.8) 
438 

(44.3) 
51 

(40.2) 
5 

(55.6) 
   501 

(43.9) 
 

  Blended 9 
(56.2) 

551 
(55.7) 

76 
(59.8) 

4 
(44.4) 

   640 
(56.1) 

 

Third Grade (n=1264)         .63 
  Common  0 

(0.0) 
605 

(48.1) 
2 

(50.0) 
   607 

(48.0) 
 

  Blended  1 
(100) 

654 
(51.9) 

2 
(50.0) 

   657 
(52.0) 

 

Fourth Grade (n=1232)         .22 
  Common  0 

(0.0) 
29 

(39.7) 
307 

(33.7) 
69 

(28.9) 
3 

(50.0) 
 408 

(33.1) 
 

  Blended  3 
(100) 

44 
(60.3) 

604 
(66.3) 

170 
(71.1) 

3 
(50.0) 

 824 
(66.9) 

 

 Fifth Grade (n=1238)         .20 
  Common   1 

(100) 
55 

(42.0) 
295 

(33.3) 
76 

(35.8) 
2 

(28.6) 
429 

(34.7) 
 

  Blended   0 
(0.0) 

76 
(58.0) 

592 
(66.7) 

136 
(64.2) 

5 
(71.4) 

809 
(65.3) 

 



  
 

109 
 

 
Table III.10  
Frequencies (proportions) and chi-square statistics for instructional 
approach predicting TerraNova Spring test level, by grade 
Grade Instructional Approach 𝑥2 

Statistic TerraNova Level Common Blended Total 
Second Grade (n=1186)   .93 
  Missing 7 

(1.4) 
13 

(1.9) 
20 

(1.7) 
 

  Level 11 17 
(3.3) 

19 
(2.8) 

36 
(2.8) 

 

  Level 12 481 
(93.9) 

634 
(94.1) 

1115 
(94.0) 

 

  Level 13 6 
(1.2) 

7 
(1.0) 

13 
(1.1) 

 

  Level 14 1 
(0.2) 

1 
(0.1) 

2 
(0.2) 

 

Third Grade (n=1644)   .91 
  Missing 135 

(17.6) 
164 

(18.7) 
299 

(18.2) 
 

  Level 11 6 
(0.8) 

4 
(0.5) 

10 
(0.6) 

 

  Level 12 37 
(4.8) 

42 
(4.8) 

79 
(4.8) 

 

  Level 13 513 
(66.9) 

581 
(66.2) 

1094 
(66.5) 

 

  Level 14 76 
(9.9) 

86 
(9.8) 

162 
(9.9) 
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Table I.10 (cont.) 
Grade Instructional Approach 𝑥2 

Statistics TerraNova Level Common Blended Total 

Fourth Grade (n=1387)   .97 
  Missing 35 

(7.6) 
79 

(8.5) 
114 
(8.2) 

 

  Level 11 0 
(0.0) 

1 
(0.1) 

1 
(0.1) 

 

  Level 12 5 
(1.1) 

9 
(1.0) 

14 
(1.0) 

 

  Level 13 42 
(9.1) 

80 
(8.6) 

122 
(8.8) 

 

  Level 14 366 
(79.2) 

729 
(78.8) 

1095 
(78.9) 

 

  Level 15 14 
(3.0) 

27 
(2.9) 

41 
(3.0) 

 

Fifth Grade (n=1308)   .06 
  Missing 28 

(6.2) 
60 

(7.0) 
88 

(6.7) 
 

  Level 12 0 
(0.0) 

1 
(0.1) 

1 
(0.1) 

 

  Level 13 4 
(0.9) 

14 
(1.6) 

18 
(1.4) 

 

  Level 14 71* 
(15.7) 

91* 
(10.6) 

162 
(12.4) 

 

  Level 15 343 
(76.1) 

671 
(78.3) 

1014 
(77.5) 

 

  Level 16 5 
(1.1) 

20 
(2.3) 

25 
(1.9) 

 

* Denotes significant different between column proportions at the .05 level. 
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Table III.11 
Frequencies (proportions) and chi-square statistics for instructional 
approach predicting change in TerraNova test level, by grade 
Grade Instructional Approach 𝑥2 

Statistic   Change in Test Level Common Blended Total 
Second Grade (n=970)    .82 
  No Change 44 

(10.3) 
58 

(10.7) 
102 

(10.5) 
 

  Up 1 Level 385 
(89.7) 

483 
(89.3) 

868 
(89.5) 

 

Third Grade (n=942)    .51 
  No Change 13 

(2.8) 
13 

(2.7) 
26 

(2.8) 
 

  Up 1 Level 411 
(89.7) 

444 
(91.7) 

855 
(90.8) 

 

  Up 2 Levels 34 
(7.4) 

27 
(5.6) 

61 
(6.5) 

 

Fourth Grade (n=886)    .10 
  Down 1 Level 0 

(0.0) 
2 

(0.3) 
2 

(0.2) 
 

  No Change 48 
(15.8) 

118 
(20.3) 

166 
(18.7) 

 

  Up 1 Level 249* 
(81.9) 

438* 
(75.3) 

687 
(77.5) 

 

  Up 2 Levels 7 
(2.3) 

24 
(4.1) 

31 
(3.5) 

 

Fifth Grade (n=890)    .72 
  No Change 63 

(19.5) 
106 
18.7) 

169 
(19.0) 

 

  Up 1 Level 260 
(80.5) 

460 
(81.1) 

720 
(80.9) 

 

  Up 2 Level 0 
(0.0) 

1 
(0.2) 

1 
(0.1) 

 

* Denotes significant different between column proportions at the .05 level. 
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This concludes the section on measurement related to 

instructional approach and sample. In the next section, I describe 

methods used for measuring student achievement on multi-digit 

computation. 

 

Constructing Achievement Measures on Multi-digit Computation 

The main research question I study in this dissertation considers 

instructional effects on achievement centered on multi-digit computation. 

In this section, I describe methods used to construct these measures of 

student achievement. Specifically, I describe the methods used for 

identifying useable items and for obtaining scale scores for each student.  

The first step in creating scores on multi-digit items was to identify 

useable multi-digit computation items from the CTB McGraw-Hill 

TerraNova Form A that require either or both procedural and conceptual 

knowledge of students. Using the mathematics sections of TerraNova 

Form A Levels 11-15, I selected items from each level that require 

students to have knowledge of multi-digit computation in order to answer 

the item correctly.xvii

An item is a multi-digit computation item if, in order to obtain the 

correct answer, it is reasonable to expect that the student must 

add, subtract, multiply, and/or divide where one or more of the 

 I chose items using the following definition of a 

multi-digit computation item: 
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numerals are either greater than 9 or a number containing non-

zero numbers to the right of the decimal. 

Using this definition, I identified between 5 and 13 multi-digit 

computation items per test level, shown in column B of Table III.12. The 

total number of mathematics items per level ranges from 26 to 47.xviii 

Table III.12

See 

column C in  for this information.  

The second step pertains to scoring students’ responses on the 

items selected in the previous step. To create scores or measures of 

student achievement using the multi-digit computation items, I use a 2 

parameter IRT model (Zimowski, Muraki, Mislevy, & Bock, 2003). In 

column D of Table III.12, I give the IRT model reliabilities which range 

from about .48 to .81. In general, tests with fewer items yielded a lower 

reliability while tests with higher number of items yielded a higher 

reliability. These reliabilities suggest that the 2-parameter model and test 

items yield scores with moderate to fairly high certainty of accurate 

scores for students on multi-digit computation. 

I use the student achievement scores on multi-digit computation 

items in causal models described in a later section. In the section that 

follows, I describe the methods I used for handling missing data. 
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Table III.12  
Frequencies and reliability estimates for multi-digit, by content and test 
level 
TerraNova Level A 

Number 
Concepts 

B 
Operations 

C 
Total 

D 
Reliability 

Using all data (2 
parameter IRT 

model) 
Level 10 NAa 0 30 NAa 
Level 11 
  Fall 
  Spring 

5 5 47  
.603 
.620 

Level 12 
  Fall 
  Spring 

4 6 26  
.556 
.601 

Level 13 
  Fall 
  Spring 

6 6 30   
.476 
.518 

Level 14 
  Fall 
  Spring 

5 10 32  
.581 
.587 

Level 15 
  Fall 
  Spring 

5 13 32  
.758 
.701 

Level 16 
  Fall 
  Spring 

8 11 31  
.782 
.814 

Note. a Fairly early on I stopped keeping track of information on Level 10 
because this level was not taken by the students used in this study.  
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Statistical Methods for Missing Data: Multiple Imputation  

Using MICE. In the case of missing values, I use MICE (Version 2.3 

for R Version 2.10.1) for multiple imputation (Allison, 2000; Gelman & 

Hill, 2006a, 2006b; Horton & Kleinman, 2007; Rubin, 1996; Wayman, 

2003; White, Royston, & Wood, 2011; Yuan).  MICE uses multiple 

imputation by chained equations and generates imputations based on a 

series of imputation models, one for each variable with missing values. In 

the first step in the imputation process, all missing values are replaced 

by sequential regressions with values from simple random sampling with 

replacement from the observed values. For the next step, the first 

variable with missing values, say x1, is regressed on all other variables 

x2, . . . , xk , restricted to individuals with the observed x1. Missing 

values in x1 are replaced by simulated draws from the corresponding 

posterior predictive distribution of x1. The process continues with the 

next variable with missing values, say x2, which is regressed on all other 

variables x1, x3, . . . , xk , restricted to individuals with the observed x2, 

and using the imputed values of x1. Missing values in x2 are replaced by 

draws from the posterior predictive distribution of x2. The process is 

repeated for all other variables with missing values and the first “cycle” 

ends. In order to stabilize the results, the procedure is usually repeated 

for many cycles to produce a single imputed data set, and the whole 

procedure is repeated m times to give m imputed data sets. 
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Multiple imputation on SII data. For multiple imputation purposes, I 

intended to include many more variables in the imputation procedure 

than those variables planned for use in the propensity models. However, 

I found that issues of multicollinearity were abundant and persistent 

among potential variables. I was able to eliminate some instances of the 

multicollinearity using principle component analysis where by including 

only the first principle component for a related group of variables. 

Generally, the first principle component describes the greatest amount of 

variation in the group of variables as compared to second and third 

components, etc. For example, since variables measuring student 

achievement on mathematics, language arts, and reading were 

significantly correlated, I was able to combine and describe their 

common variable using principle component analysis. I use the results 

from the first principle component in place of the three achievement 

variables in the propensity score model. To further reduce issues of 

multicollinearity, I also combined independent variables when the group 

or first principle component was interpretable. Still, I found that 

multicollinearity persisted, mainly due to the missing pattern in the data. 

For this reason, in the end, I only included those variables considered for 

the propensity score models in the multiple imputation models. With this 

smaller subset of available covariates, I was able to run the imputation 

model. I leave improvements to imputation techniques for future 

research.    
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In Table III.8, I list the variables used for imputation. Five data sets 

were imputed. This was the default setting in MICE. From consulting 

imputation experts, I learned that imputing between five and ten data 

sets is recommended. The idea is that fewer than five data sets are 

insufficient for representing the uncertainty of the imputed data and 

more than ten data sets results in redundant information. Since there 

was no information suggesting that five data sets were insufficient for 

this study, I used the default of five imputed data sets.  

Since MICE 2.3 does not handle multilevel data, school and 

classroom level variables were imputed by separate imputation models. 

All classroom level variables, continuous and non-continuous, were 

centered at their respective school means (Schafer, 1997; Shin & 

Raudenbush, 2007, 2010). To do so, for each classroom level variable I 

subtracted the average school specific response. I ran the imputation on 

the centered classroom covariates.  Following imputation, I then un-

centered the variables by adding the average school specific response for 

each variable. When all classroom level responses within a specific 

school were missing, the school average was also missing. In this case, I 

used the grand mean or the mean across all available responses. No 

adjustments were made to the school level variables, but for imputation I 

included the imputed classroom level variables. Once I obtained the five 

imputed data sets for classroom and school level covariates, I checked all 

covariates to ensure that the imputed values were reasonable by 
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comparing the mean, standard deviation, minimum, and maximum of 

the imputed data with the non-imputed data. The imputed data and the 

non-imputed data should have similar or near equal descriptive statistics 

if imputation was sufficient. Following imputation, I proceeded with the 

propensity models discussed in the next section.   

MICE assumes that missing data is missing at random (MAR), the 

probability of data being missing does not depend on the unobserved 

data, conditional on the observed data (Little & Rubin, 2002). Other 

forms of missingness include missing completely at random (MCAR) 

where the probability of data being missing does not depend on the 

observed or unobserved data and missing not at random (MNAR) where 

the probability of data being missing does depend on the unobserved 

data, conditional on the observed data. Departures from MAR can arise 

when larger fractions of data are missing. One way to deal with this is to 

include many variables in the imputation model in an effort to make 

MAR more plausible.  

Descriptive statistics for the imputed data are given in Appendix B. 

Since there are no large differences between descriptive statistics, I 

concluded that the imputation was successful. 

 

Analytic Models 

I begin this section by first presenting the methods used to study 

who uses or receives the blended and common approaches and 
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conditions affecting their use. These are a set of predictive models 

including a set of covariates focused on teachers’ knowledge, years of 

experience, professional preparation, gender, and ethnicity; curriculum 

materials; class average ethnic, gender, and socioeconomic composition; 

and school climate. In the next section, I expand the predictive model 

and develop the propensity score models. These models include far more 

covariates than the previous models. Finally, the last set of models 

address my research questions about the causal effects of instruction on 

achievement situated in multi-digit computation. Recall that this 

dissertation assesses the casual effect of the blended instructional 

approach compared with the common approach on student achievement 

measuring multi-digit computation knowledge using the teacher log and 

achievement data previously described. I hypothesize that students 

should learn more and have greater success in classrooms receiving 

blended instruction than if had they been in classroom receiving 

common instruction.  

 

Predictive Models 

What affects the enactment of a common or blended instructional 

approach while teaching multi-digit computation? In this section, I 

present the methods and measures used to answer this research 

question. In particular, I select several key independent variables 

measuring teacher, class, student, and school characteristics for 
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inclusion based on current knowledge of instructional. Many agree that 

instruction is the interaction among teachers, students, mathematics, in 

contexts (Cohen & Ball, 1999; National Research Council, 2001). 

Furthermore, summaries of research suggests that “…quality of 

instruction is a function of teachers’ knowledge and use of mathematical 

content, teachers’ attention to and handling of students, and students’ 

engagement in and use of mathematical tacks” (National Research 

Council, 2001, p. 315). It is this research that guides my selection of 

variables to be included in the predictive models.  

Specifically, I consider 16 variables measuring teacher, student, 

class, and context characteristics and 10 variables measuring school 

characteristics for inclusion in the final model which were selected for 

their theoretical merit in influencing the use of instructional approach. In 

the next several paragraphs I describe my reasoning for their inclusion. I 

use variable selection procedures — assess bivariate relationships and 

enter variables using stepwise, forward, and backward selection — to 

develop parsimonious models.  

First, in order to assess the relationship between teachers’ 

knowledge and years of experience on instructional approach, I consider 

a measure of teacher’s content knowledge for teaching (KNOW) drawn 

from items on the teacher questionnaire. Each of the four years of the SII 

study, teachers were asked to respond to a small number of questions 

about their content knowledge related to mathematics teaching in the 
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elementary grades. Once the SII study was complete, SII researchers 

combined the item responses from across the four years to create a 

single measure of teachers’ content knowledge for teaching. I use this 

measure to represent teachers’ knowledge and how well prepared they 

are to work with students on the content. As shown in Table III.8, fourth 

and fifth grade teachers have higher content knowledge for teaching than 

second and third grade teachers with means at .27 and .26, respectively, 

compared to .06 and -.01, respectively. The standard deviation on this 

measure is about the same across the grades with third grades being a 

little less (SD = .93). Since, for many teachers, learning to teach and 

gaining skills to work with students on the content takes place from on-

the-job experience, I also include the first principal component from two 

items – number of years at current school and number of years teaching 

– on the teacher questionnaire measuring years of experience (YEARS). 

On average, depending on the grade, teachers have about 1 to 14 years 

of experience and spent between 6 to 9 years at their present school.  

I consider four variables representing teachers’ professional 

preparation and professional preparation for using the mathematics 

content for inclusion (Lubienski, 2002). From items on the annual 

teacher questionnaire, I consider binary measures of whether teachers’ 

undergraduate field was in education (UNDERED), whether they 

obtained a graduate degree (GRADED), and whether they hold 

permanent or standard certification (CERT). I also consider controlling 
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for the number of mathematics professional development hours in 

mathematics and language arts the teacher completed (PD) and the 

number of courses taken in mathematics and mathematics methods. See 

Table III.8 for response categories and descriptive statistics. Again, 

depending on the grade, between 64 to 72 percent of teachers have an 

undergraduate degree in education, between 62 and 69 percent have 

graduate degrees, and at least 83 percent hold permanent or standard 

teaching certification. More teachers marked having completed between 

1-10 professional development hours and 1-6 mathematics and 

mathematics methods courses. I summarize the information from 

variables measuring course taking using principal component analysis. 

The final course variable (COURSE) explained 69 percent of the variance.  

Using another group of covariates, I explore the effects of class 

context through variables measuring teacher and students' gender and 

ethnicity. I consider including male teacher (TMALE), Caucasian teacher 

(TCAUC), class average proportion of Caucasian students (SCAUC), class 

average proportion of African American students (SAA), class average 

proportion of Hispanic students (SHISP), class average proportion of 

students of other ethnicity (SOETHN), and class average proportion of 

male students (SMALE). Overall, fourth and fifth grades have more male 

teachers, 13 and 22 percent, respectively, than second and third grades, 

7 and 6 percent, respectively. About half the students are male, but the 

proportion decreases as grade increases. More than half the teachers are 
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Caucasian while between 17 and 24 percent of students are Caucasian, 

depending on the grade.  

Since research has found evidence that teachers make 

instructional choices based in part on student income status (Lubienski, 

2002; Page, 1991; Rist, 1970a, 1970b; Rosenthal & Jacobson, 1968), I 

also consider including a measure of students’ socioeconomic level with 

the context variables. Using data from the parent questionnaire, SII 

researchers created a composite SES measure from data collected on 

mother’s highest level of education, mother’s occupational status, 

father’s highest level of education, father’s occupational status, and 

household income level. Bivariate correlations of SES with measures of 

families without enough clothing, emphasizes counting money, and 

practices percent and multiplication with child, and a measure of 

number of books in the home are moderately large.  I use the SES 

composite as a measure of students’ SES and consider it more generally 

as a measure of family resources.  

SII collected student achievement data on mathematics, reading 

and language arts. In all grades, student achievement was generally 

highest in reading, ranging from about 589 for an average second grader 

to about 631 for an average fifth grader. Average language arts 

achievement ranged from about 584 to 632 for second through fifth 

grades, respectively. Average class achievement was lowest in 

mathematics, ranging from about 542 to 616 in these same grades. From 
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this data, I created class average achievement measures. Given that 

these achievement variables are highly correlated, I summarized this 

formation into one achievement variable (ACHIEVE) using principal 

component analysis which explains 87 percent of the variance.  

Lastly, I consider including, at the classroom level, two variables 

that measure context in terms of the proportion of students being non-

standard learners — percent LEP or ESL students (LEP) and percent of 

learning disabled students (LD). In most classes, less than five percent of 

students are considered to be in either of these categories. 

In my predictive models, I consider controlling for school context 

associated with mathematics materials in use. The first of the two 

independent variables is associated with school reform programs. SII 

chose schools for their engagement in Whole School Reform, particularly 

three of the more widely used programs —America’s Choice (AC), 

Accelerated Schools (AS), and Success for All (SFA). About a fourth of the 

original 115 schools were engaged in each of these programs, and the 

remaining fourth were chosen as comparison schools (COMP).  Much of 

the guidance and materials provided by the reform programs were 

focused on reading instruction, however, AC and SFA included 

mathematics materials. To control for and test the effect of the context 

and mathematics guidance provided by AC and SFA only, I construct a 

binary variable (ACSFA) indicating school involvement with either of 

these two programs. In a second variable, I control for mathematics 
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curriculum materials in use at the school.  Since curriculum materials 

may or may not provide support for or influence instructional choices, I 

consider a summary variable of curriculum available in all models. From 

phone interviews with school personal, SII researchers collected data on 

mathematics curriculum in use. From this data, I created a binary 

variable on whether an innovative mathematics curriculum supported by 

the National Science Foundation (NSF) was in use during any of the four 

years. For this variable, NSF, a 1 represents that either Everyday 

Mathematics (University of Chicago School Mathematics Project, 1999), 

Investigations in Number, Data, and Space (Cory, 1995), or Math 

Trailblazers (Becker & Morgenthaler, 1998) were available at the time of 

the study.xix

At the school level, I also consider including two variables that 

describe the school context in which instruction and learning takes 

place. Collected from the School Characteristics Inventory, one variable 

is a measure of the size of the school, or number of students enrolled at 

the school (ENROLL) and a second variable measures the length of the 

school day (LENGTH). On average, schools in this study have just under 

500 students and in session for nearly 6.5 hours per day.  

 In about 30 percent of schools, an NSF curriculum was in 

use at some point in the four year study.  

Another six variables describe student and family context or 

“neighborhood” in which the school resides. Many of these variables are 

aggregates of variables included at the classroom level. These variables 
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include percent African American students (AAS), proportion from single 

parent families (SINGLE), average family socioeconomic status (AVESES), 

proportion of students with problem behaviors  (BEHAVE), and average 

kindergarten achievement measure (WOOD). Finally, I consider one final 

variable, one that measures school average content knowledge for 

teaching, which may measure teachers’ colloquial support for teaching.  

 Since, during model development, including fewer covariates leads 

to more precise parameter estimates, I eliminate variables based on 

statistical evidence. Bivariate relationships of these covariates with 

treatment are given in Appendix B. Significant bivariate relationships are 

suggestive of inclusion while collinearity suggests that a variable(s) can 

be excluded. Note that if two covariates are highly correlated, then there 

is no need to include them both in the final model. Large standard errors 

can also be evidence of collinearity. In order to make grade level 

comparisons, I include the same variables in all models. Since I found 

that, for this data, coefficients and standard errors were fairly consistent 

for models having n covariates to models having n-1 covariates, I 

eliminated covariates that were non-significant in any grade level model. 

For variables included at the school level, level 2, I also include the 

corresponding classroom level, level 1, variable even if it was not 

significant in any of the grade level models.  

 The final models include 7 classroom-level covariates and 6 school-

level covariates which are defined in the model specifications below. At 
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the classroom level, I removed variables measuring teachers’ professional 

preparation, proportion of non-standard learners, and class average SES 

from the model due to lack of statistical support, while at the school 

level, I removed a measure of student behavior due to large standard 

error and likely collinearity. I also left out variables measuring 

enrollment, proportion of singles families, and average SES due to lack of 

statistical support. 

For the final predictive model, I use a two-level logistic regression 

model similar to the one presented above for estimating the propensity 

scores. Again, the subscript j denotes the level-1 units, classrooms, and 

k denotes the level-2 units, schools, such that, I let jkY , an indicator 

variable, take on a value of 1 if classroom j from school k endorsed a 

blended instructional approach and 0 if classroom j from school k 

endorsed a common instructional approach. As before, jkµ denotes the 

probability that 1=jkY , which varies randomly across classrooms. 

Therefore, when conditioning on this probability, jkjkY µ| ~ Bernoullixx 

and a logistic regression model. The model at level 1 accounts for 

predictable variation within classrooms across schools. It views the log-

odds of finding an emphasis on a blended instructional approach for 

classroom k as depending on aggregate student, class, and teacher 

characteristics. All variables were entered grand-mean centered which 
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aides the interpretation of the coefficients. Therefore, the level 1 equation 

is 
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(1) 

where 

k0β  is the average adjusted log-odds for classes emphasizing a blended 

instructional approach for school k;  

k1β  = the average adjusted log-odds for classes emphasizing a blended 

instructional approach associated with a class average proportion of 

male students (SMALE) within school k; 

k2β  = the average adjusted log-odds for classes emphasizing a blended 

instructional approach associated with a class average proportion of 

African American students (SAA) within school k; 

k3β  = the average adjusted log-odds for classes emphasizing a blended 

instructional approach associated with a class average proportion of 

Hispanic students (SHISP) within school k; 

k4β  = the average adjusted log-odds for classes emphasizing a blended 

instructional approach associated with a class average achievement 

(ACHIEVE) within school k; 
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k5β  = the average adjusted log-odds for classes emphasizing a blended 

instruction approach associated with a class having a males teacher 

(TMALE) within school k; 

k6β  = the average adjusted log-odds for classes emphasizing a blended 

instructional approach associated with a class having a Caucasian 

teachers (TCAUC) within school k; and 

k7β  = the average adjusted log-odds of classes emphasizing a blended 

instructional approach associated with a class teachers’ mean response 

for teacher knowledge (KNOW) within school k. 

 The level 2 model accounts for variation in the log-odds between 

schools on blended instructional approach. Therefore, the level 2 

equation is  
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(2) 

where 

00γ  is the average adjusted log-odds on emphasizing a blended 

instructional approach across schools;  

01γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with school k having average length of 

school day (LENGTH); 
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02γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with an average class proportion of 

African American students (AAS) in school k; 

03γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with school k average teacher content 

knowledge for teaching mathematics (AVEKNOW); 

04γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with average kindergarten students’ 

Woodcock Johnson mathematics score (WOOD) in school k; 

05γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with school k using an AC or SFA 

mathematics materials (ACSFA);  

06γ  = the average adjustment in log-odds on emphasizing a blended 

instructional approach associated with using an NSF mathematics 

curriculum (NSF) in school k; and 

ju0 = the random error associated with school k after adjusting for class 

and school level covariates. 

 This concludes the section on predictive models. In the next 

section, I extend these models for use in the propensity score methods.  

 
Propensity Score Methods and Models Supporting Causal Inferences 

The main research question of this dissertation addresses the 

causal effect of the common instructional approach versus blended 
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instructional approach or treatment. Throughout this discussion, I 

characterize the treatment using a binary indicator if 𝑍𝑗𝑘 = 1 if the jth 

classroom in the kth school received the blended instructional approach 

and 𝑍𝑗𝑘 = 0 if the jth classroom in the kth school received the common 

instructional approach. Had this study actually taken place and not used 

data drawn from non-experimental study, classrooms would have been 

assigned to a treatment using an experimental design. That is, each 

classroom would be randomly assigned to receive a common or blended 

approach to instruction, control or treatment, respectively. The average 

gain in achievement on multi-digit computation, then, would be 

computed for the blended, or treatment, and common, or control, 

classrooms, denoted 𝐸[𝑌|(𝑍 = 1)] and 𝐸[𝑌|(𝑍 = 0)], respectively, and the 

difference between the two averages, denoted 𝐸[𝑌|(𝑍 = 1)] − 𝐸[𝑌|(𝑍 = 0) =

𝐸[𝑌(1)|(𝑍 = 1)] − 𝐸[𝑌(0)|(𝑍 = 0)], would be an unbiased estimate of the 

average causal effect of the blended approach. This estimate is unbiased 

because random assignment ensures that confounding effects from 

variables such as characteristics of teachers, students and classrooms 

are unrelated to treatment assignment or receiving the blended 

instruction and outcome or achievement on multi-digit computation. In 

the absence of random assignment, such a difference between the two 

group averages cannot be regarded as an unbiased estimated of the 

causal effect without some additional statistical controls, as is the case 

in this study.  For this reason, I approach this study using causal 
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inference techniques that will yield scientifically-based answers. I use 

Rubin’s Causal Model (Holland, 1986; Rosenbaum & Rubin, 1983; 

Rubin, 1978) for the causal analysis and propensity score stratification 

in the statistical models. In the next few paragraphs, I will explain how 

the propensity scores are used in the causal analysis and then present 

the propensity score models.  Following this section, I will present the 

causal models.  

 Rubin’s causal model. Each class, j,k, whether a case or control, 

has two potential outcomes 𝑌𝑗𝑘(𝑍 = 1) (if case) and 𝑌𝑗𝑘(𝑍 = 0) (if control). 

The causal effect of the treatment is the difference between 𝑌𝑗𝑘(𝑍 = 1) and 

𝑌𝑗𝑘(𝑍 = 0) (or 𝑌𝑗𝑘(𝑍 = 1) − 𝑌𝑗𝑘(𝑍 = 0)) for each class. Since the class either 

belongs to the control group or the case group, it is impossible to observe 

both 𝑌𝑗𝑘(𝑍 = 1) and 𝑌𝑗𝑘(𝑍 = 0) for each class under the same conditions, 

the “Fundamental Problem of Causal Inference.” Furthermore, if 𝑍𝑗𝑘 = 1 

is the treatment applied to the jkth class, 𝑌𝑗𝑘(𝑍 = 0) is the counterfactual 

outcome and cannot be observed; likewise, if 𝑍𝑗𝑘 = 0 for jkth class, 

𝑌𝑗𝑘(𝑍 = 1) is the counterfactual outcome and unobserved. However, we 

can estimate the average causal effect of a treatment in a population 

under the assumption that the potential outcomes of treatment are 

conditionally independent of treatment assignment given the covariates.  

This problem of causal inference is directly applicable to the study 

of causal effects of instruction. If class jk received a blended instructional 
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approach, with 𝑍𝑗𝑘 = 1 denoting the treatment approach was applied to 

this class, we would observe the classes outcome in terms of 

achievement at the end of the school year, represented by 𝑌𝑗𝑘(𝑍 = 1). 

Given the potential of an alternative treatment, the common instructional 

approach, causal questions loom. For example, what if this class had 

received the common instruction approach? If this class would have 

exhibited a better learning outcome as a results of the common 

instructional approach, represented by 𝑌𝑗𝑘(𝑍 = 0), 𝑌𝑗𝑘(𝑍 = 1) − 𝑌𝑗𝑘(𝑍 = 0) 

would be negative, suggesting a detrimental effect of blended 

instructional approach on this class’s academic growth. However, once 

the class receives the blended instructional approach during an 

academic year, the alternative treatment or common instructional 

approach, is no longer available to them. Therefore, the outcome 

𝑌𝑗𝑘(𝑍 = 0) is the counterfactual outcome and can never be observed, and 

questions related to instruction approach remain unanswered. This is 

the main reason why policies on instructional approach are absent and 

instructional guidance remains vague.  

While it is impossible to estimate 𝑌𝑗𝑘(𝑍 = 1) − 𝑌𝑗𝑘(𝑍 = 0), we can 

estimate the population average causal effect under some assumptions, 

denoted as 𝐸[𝑌(𝑍 = 1)] − 𝐸[𝑌(𝑍 = 0)], where 𝐸[. ] denotes the expected 

value for the population. This expected causal effect can be interpreted 

as the difference between the population average potential outcome if 

blended instructional approach (𝑍 = 1) is applied to the whole population 
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of classes and the population average potential outcome if the common 

instructional approach (𝑍 = 0) is applied to the whole population of 

classes. Answers to related population questions are of particular 

interest to educators and educational researchers who advocate that all 

students benefit from a blended instructional approach while others 

advocate that effect varies across subgroups. This causal question, 

therefore, has direct policy implications on whether blended instructional 

approach offers any benefit at all, on average, to classes or whether the 

benefit varies across sub-populations of classes.   

Given the need to explicate the expected causal effect of blended 

instructional approach, I now turn to discussing the supportive 

statistical techniques. 

Propensity score methods. In observational studies, assignment to 

treatment is not randomized. Therefore, potential outcomes, 𝑌(𝑍 = 1) and 

𝑌(𝑍 = 0), are no longer independent of treatment assignment and the 

researcher must be concerned about pre-treatment characteristics of 

treated and control groups (e.g. teacher and classrooms characteristics) 

that might be related to the two potential outcomes, 𝑌(𝑍 = 1) and 

𝑌(𝑍 = 0). The researcher must infer the treatment assignment from the 

available data, assuming that all the relevant information has been 

collected. In most observational studies some of the pre-treatment 

characteristics get measured while others do not. The characteristics of 

most concern are those pre-treatment characteristics that are predictive 
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of potential outcomes 𝑌(𝑍 = 1) and 𝑌(𝑍 = 0) and the treatment 

assignment 𝑍 = 1 and 𝑍 = 0, also called confounding variables. Using the 

“strong ignorability assumption” (Rosenbaum & Rubin, 1983), the 

research can ignore non-confounding variables as long as he controls for 

confounding variables, denoted by 𝑋. Therefore, the conditional 

probability of assigning each class, as is the case in this study, to a 

particular instructional approach can be expressed, as a function of 𝑋, as 

𝑒(𝑋) = 𝑃𝑟𝑜𝑏 (𝑍 = 1|𝑋) , where 𝑒(𝑋) is called the propensity score. This is 

read as the propensity score equals the probability of receiving the 

blended instructional approach given or conditional on the covariates. By 

including the propensity score which summarizes the information that 

the covariates carry about treatment assignment, the regression model 

will yield valid causal inferences. 

Estimating the propensity score. When there is only one or only a 

few confounding covariates, these can be included in the final causal 

model. However, more often, there are many confounding variables and 

problems with multicollinearity arise. In such cases, the propensity score 

model given above which estimates the propensity score is useful. This 

method replaces a large number of pre-treatment variables with a 

summary score, the propensity score which contains all the necessary 

information about treatment assignment from the covariates. Such 

scores can then be used in causal models to yield valid inferences. This 

study considers only two groups where the treatment group received the 
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blended instructional approach and the control group received the 

common instructional approach. Generally, in the case of a binary 

treatment, the propensity score is obtained by predicting treatment 

group membership from the pre-treatment covariates using a logistic 

regression model. I extend this general case of the propensity score 

model to a multilevel propensity score model. I use two-level logistic 

regression models with classrooms nested within schools. Teacher and 

classroom pre-treatment covariates are included at the classroom level 

and average teacher and classroom and school pretreatment covariates 

are included at the school level, see Table III.13 for the specific covariates 

considered for this analysis.  

Selection of model covariates. Model covariates were selected from 

the variables included in the multiple imputation models discussed in 

the previous section. In order to not over specify the propensity score 

models and still have balance between the treatment groups on the 

observed pre-treatment covariates, I took steps to select the smallest 

subset of these variables. For each grade, I determined the variables to 

be used in the propensity score models by testing for significant bivariate 

relationships using t-tests and through variable selection techniques 

such as stepwise, forward, and backward regression. Due to imputation, 

I have five classroom and school level data sets for each grade and my 

goal here was to identify the subset of observed pre-treatment covariates 

that hopefully balance on all pre-treatment covariates between treatment 
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groups for all five imputation data sets. To achieve this, I first identify the 

appropriate subset of variables for the propensity score model on one 

data set for each grade and test all possible pretreatment covariates 

using t-tests and all conditional associations on each pre-treatment 

covariate between treatment groups, controlling for strata. I then repeat 

these tests of balance for the other four sets of data. For all grades, I was 

able to identify a small number of observed pretreatment covariates 

which I use in the propensity models and successfully balance the two 

groups on all covariates across the five imputes data sets. In Table III.13, 

the four right columns, I give the pre-treatment covariates used in the 

grade-level propensity scores models.  
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Table III.13  
Pre-treatment covariates available for propensity score models, source of measurement, variables selected 
for PS models by grade 
  Grade 
Variable Source 2nd 3rd 4th 5th 
Classroom Level      
  Student Characteristics      
    Proportion Males  Parent  X  X X 
    Proportion by Ethnicity Questionnaire     
      Caucasian      
      African American      
      Hispanic     X 
      Asian   X  X 
      American Indian    X  
      Other ethnicity  X    
    Socioeconomic status composite      
    First principal component of average achievement TerraNova    X 
      Reading      
      Language Arts class      
      Mathematicsa      
    Percent of LEP or ESL students Teacher     
    Percent of learning disabled students Questionnaire     
  Teacher Characteristics      
    Male teacher Teacher   X  
    Ethnicity Questionnaire     
      White    X  
      African American      
    Undergraduate major field of study in education Teacher    X 
    Graduate degree Questionnaire     
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  Grade 
Variable Source 2nd 3rd 4th 5th 
    Permanent or standard certification     X 
    First principal component of years of experience 
      Career experience in years 
      Years at current schoolb 

     

    First principal component of 4 items on university 
      content and methods courses     

 X    

    First principal component of math, LA PD hours      
    Measure of Content Knowledge for Teaching     X 
School Level      
  Enrollment School     X 
  Length of day Characteristics 

Inventory 
X X  X 

  Percent African American students  Parent   X  X 
  Covariates on families attending school Questionnaire     
    Proportion of single parents      
    Socioeconomic Status composite      
    Proportion of families without needed clothing     X 
    Child practices counting money at home     X 
    Child is often read to at home    X  
    Number of books in home     X 
  Proportion of problem behaviors reported    X X 
  Proportion of grade repeaters     X 
  Teacher average Content Knowledge for Teaching Teacher      
  Proportion of students in ESL Questionnaire X    
      
  Average Woodcock Johnson Mathematics Woodcock 

Johnson 
 X   
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  Grade 
Variable Source 2nd 3rd 4th 5th 
      
      
  Whole School Reform Involvement School 

Characteristics 
Inventory 

    
    American’s Choice     
    Accelerated Schools     
    Success for All  X   
    Comparison School     
  NSF Curriculum in use Phone 

consultation 
with school 
personnel 

X    

a For principal component of mathematics, reading, and Language arts achievement, .87 variance was explained.  
b For principal component of years of experience, .85 variance was explained.  
c For principal component of  number of content and method courses, .69 variance was explained. 
d For principal component of mathematics and Language Arts professional development, .82 variance was explained.  
e Empirical Bayes estimate was used. 
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The propensity score model. Next, I describe the logistic regression 

propensity score models generally, since the models vary by grade. In 

order to be consistent with the causal models and predictive models 

described later in this chapter, I use the subscript j to denote the level-1 

units, classrooms, and k to denote the level-2 units, schools.    

Specifically, let jkY  be an indicator taking on a value of 1 if teacher j from 

school k endorsed a blended instructional approach. Thus, 0=jkY  if 

teacher j from school k endorsed a common instructional approach. Let 

jkµ denote the probability that 1=jkY , and this probability varies 

randomly across teachers. Therefore, when conditioning on this 

probability, jkjkY µ| ~ Bernoullixxi
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 and the appropriate model is a logistic 

regression. The model at level 1 accounts for predictable variation within 

teachers across schools. It views the log-odds of finding an emphasis on 

a blended instructional approach for teacher k as depending on 

aggregate student, class, and teacher pre-treatment characteristics. 

Therefore, the level 1 equation is 

 
(3) 

where 

k0β  is the class average adjusted log-odds of emphasizing a blended 

instructional approach for school k;  
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k1β  = the average adjusted log-odds associated with the mean response 

on covariate 1 (COV1) in school k;    

k2β  = the average adjusted log-odds associated with the mean response 

on covariate 2 (COV2) in school k; 

k19β  = the average adjusted log-odds associated with the mean response 

on covariate 19 (COV19) in school k. Note that at most 19 covariates 

could be included in the propensity model, however, no more than 7 

classroom level covariates were included in the final subset of observed 

pre-treatment covariates per grade.  

 The level 2 model accounts for variation in the log-odds between 

schools on blended instructional approach. Therefore, the level 2 

equation is  

,)19(...)2()1( 00190201000 kkkkk uSCOVSCOVSCOV +++++= γγγγπ  

0nnj γπ = for n=1 to 19 

(4) 

where 

00γ  is the average adjusted log-odds across schools in emphasizing a 

blended instructional approach;  

01γ  = the average adjustment in log-odds associated with school covariate 

1 (SCOV1) on emphasizing a blended instructional approach;  

02γ  = the average adjustment in log-odds associated with school covariate 

2 (SCOV2) on emphasizing a blended instructional approach; 
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019γ  = the average adjustment in log-odds associated with school 

covariate 19 (SCOV19) on emphasizing a blended instructional approach; 

ju0 = the error associated with school k; and  

0nγ  for n=1 to 19 are the average log-odds across schools for the 

respective 19 classroom level covariates in emphasizing a blended 

instructional approach. Note that at most 19 covariates could be 

included in the propensity models, however, no more than 8 school level 

covariates were included in the final subset of observed pre-treatment 

covariates per grade. 

Subclassification of the propensity score. I use propensity score 

stratification (Rubin, 1997) to stratify the estimated logits derived from 

the propensity score models described above.  Using this method, I first 

rank the estimated logits, divide the rankings into five percentile groups 

while disregarding assignment to treatment group, and then assign 

members of the five percentile groups to their respective strata such that 

five binary variables are created.  

Propensity score theory claims that if the propensity scores are 

relatively constant within each subclass, then within each subclass, the 

distribution of all covariates should be approximately the same in both 

treatment groups. I test this property by accessing balance between 

treatment groups on each covariate while controlling for strata.  To test 

balance, I use logistic regression.  The outcome again is treatment or the 
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instructional approach. To the unconditional model, I add each pre-

treatment covariate one by one, and I obtain the t-statistic representing 

its relationship with the treatment or outcome. I repeat these models 

including four of the five strata with one pre-treatment covariate at a 

time and again obtain the t-statistic. Significant t-statistics suggest a 

lack a balance. I present the results from the balance tests in Appendix 

C. After controlling for strata (provided in the conditional t-statistics 

column) using a linear regression model, balance was achieved between 

the two treatment groups on nearly all pretreatment covariates. 

Significant differences at the .05 level were found for (a) second grade 

imputed data set 3, variables mathematics and mathematics methods 

courses and professional development, (b) second grade imputed data set 

5 variable professional development, and third grade imputed data set 1 

variable courses. 

   

Raw Achievement Differences between Common and Blended Classes  

 In this section, I compare the raw multi-digit computation scores 

for classes receiving common and blended approaches. Average fall 

multi-digit scores were higher for common second, third, and fourth 

grade classes but lower for fifth grade classes compared to blended 

classes. Figures III.1 and III.2 give the Fall and Spring logit scores for the 

multi-digit scale. By Spring, only second and fourth common classes 

scored higher than their blended peers, on average. For both Fall and 
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Spring assessments, average fifth grade blended classes outperformed 

their peers. Compared to the fall assessment, average third grade 

blended classes outpaced average common classes. Overall, this does not 

suggest that the blended instructional approach is superior to the 

common approach. 

 

 

Figure III.1 Fall multi-digit scale scores, in logits, 
by grade and treatment groups 

 

 

Recall that Fall and Spring multi-digit scale scores are not 

comparable. In order to get a sense of how much real mathematics 

learning occurred during the year between the treatment groups, I 

explore yearly gains using the TerraNova mathematics scale which are 

comparable. I used students Fall and Spring scores to estimate their 

yearly gain in mathematics. The results are similar to those for the multi-
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digit scales. For second grade, the average gain in mathematics was 

about 43 points for common and 40 points for blended classes. For third 

grade, the average gain was 25 points for common and 29 points for 

blended classes. For fourth and fifth grades, the difference in gains 

between the treatment groups is smaller.  At both grades, common 

classes on average gained about one point more than the average gain for 

blended classes. Again, this unadjusted comparison does not give 

evidence that the blended instructional approach yields greater gains in 

mathematics learning. However, given the differences in initial status, I 

can not draw causal conclusion about effect from instructional approach.  

 

 

 

Figure III.2 Spring multi-digit scale scores, in logits,  
by grade and treatment groups 
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Figure III.3 Gain scores on TerraNova mathematics scale,  
by grade and treatment groups 
 

 

Given the previous raw findings, I explore the within-stratum mean 

differences between common and blended classes. Within-stratum 

groups should be more similar on pretreatment variables. Table III.14 

and Table III.15 give within-stratum descriptive statistics for common 

and blended classes and mean differences between treatment groups for 

each grade. Mean differences represent mean for common classes minus 

the mean for blended classes. Therefore, a positive difference suggests 

higher level of achievement for common classes and a negative difference 

suggests higher level for blended classes. For the Fall assessment and for 
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more strata, blended classes showed a lower level of mathematics 

achievement compared to common classes.   

 Results for Spring assessment are different. Again, a positive 

difference suggests a higher level of achievement for common classes and 

negative differences suggest a higher achievement for blended classes. 

For second grade, all within-stratum differences are positive and 

common classes showed a higher level of achievement compared to peers 

in blended classes. For third grade, all within-stratum differences are 

negative and blended classes showed a higher level of achievement.  For 

both fourth and fifth grades, within-stratum differences are mixed but 

more differences are positive. In the upper grades, more strata suggest 

that common classes showed a higher level of achievement as compared 

to blended classes.  
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Table III.14 
Descriptive statistics for Fall multi-digit scale score for classes receiving 
common and blended instructional approach, by grade 
 Common Mean 

Difference 
Blended 

Stratum N Mean S.D. N Mean S.D. 
Second Grade       
  1 170 0.08 0.69 8 0.09 0.49 -0.01 
 2 124 0.24 0.65 64 -0.16 0.81 0.40*** 
 3 88 0.00 0.74 103 -0.01 0.76 0.01 
 4 20 -0.02 0.66 159 0.18 0.66 -0.20 
 5 8 0.28 0.97 188 0.10 0.71 0.18 
Third Grade        
 1 133 0.17 0.60 41 -0.12 0.62 0.29** 
 2 121 -0.03 0.65 62 -0.05 0.66 0.02 
 3 76 -0.13 0.71 122 -0.04 0.64 -0.09 
 4 68 0.04 0.73 112 0.04 0.65 0.00 
 5 42 0.04 0.67 137 0.09 0.62 -0.05 
Fourth 
Grade        

 1 132 0.01 0.64 35 0.27 0.57 -0.26* 
 2 72 0.01 0.72 84 0.18 0.46 -0.17 
 3 29 0.00 0.62 106 -0.12 0.68 0.12 
 4 18 0.41 0.52 119 0.08 0.66 0.33* 
 5 12 0.23 0.73 163 -0.03 0.70 0.26 
Fifth Grade        
 1 138 0.08 0.68 3 -0.44 0.89 0.52 
 2 62 0.14 0.70 103 0.05 0.79 0.09 
 3 29 0.20 0.75 137 0.16 0.70 0.04 
 4 12 0.16 0.71 121 0.17 0.66 -0.01 
 5 6 0.21 0.56 129 -0.01 0.76 0.22 

†p < .1, *p < .05, **p < .01, ***p < .001 
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Table III.15  
Descriptive statistics for Spring multi-digit scale score for classes receiving 
common and blended instructional approach, by grade 
 Common Mean 

Difference 
Blended 

Stratum N Mean S.D. N Mean S.D. 
 Second 
Grade        

  1 170 0.02 0.78 8 -0.24 1.15 0.26 
  2 124 0.09 0.68 64 -0.06 0.75 0.15 
  3 88 0.02 0.81 103 -0.21 0.81 0.23* 
  4 20 0.29 0.80 159 0.07 0.74 0.22 
  5 8 0.26 0.86 188 -0.10 0.78 0.36 
 Third Grade        
  1 133 -0.08 0.75 41 0.01 0.63 -0.09 
  2 121 -0.13 0.75 62 -0.12 0.71 -0.01 
  3 76 -0.15 0.69 122 0.01 0.65 -0.16 
  4 68 -0.13 0.74 112 -0.10 0.74 -0.03 
  5 42 -0.12 0.67 137 0.05 0.69 -0.17 
 Fourth Grade        
  1 132 -0.08 0.74 35 0.05 0.65 -0.13 
  2 72 -0.09 0.76 84 0.09 0.65 -0.18 
  3 29 -0.01 0.84 106 -0.23 0.78 0.22 
  4 18 0.22 0.70 119 -0.05 0.67 0.27 
  5 12 0.40 0.71 163 -0.04 0.73 0.44* 
 Fifth Grade        
  1 138 -0.05 0.80 3 -0.03 0.63 -0.02 
  2 62 -0.36 0.83 103 -0.22 0.81 -0.14 
  3 29 0.04 0.91 137 -0.05 0.75 0.09 
  4 12 -0.11 0.77 121 -0.03 0.82 -0.08 
  5 6 -0.13 0.33 129 -0.07 0.82 -0.06 
†p < .1, *p < .05, **p < .01, ***p < .001 
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Statistical Causal Models 

Now that the propensity score stratification is complete, I am now 

ready to set up the causal models that test the causal effect of the 

common instructional approach versus the blended instructional 

approach, the control and case groups, respectively, on student 

achievement. Here, I use a set of causal models that includes the 

propensity score stratification, as discussed previously, to control for 

possible confounding variables. Furthermore, I control for three levels of 

student achievement, or prior knowledge, on multi-digit computation of 

the fall assessment period of the TerraNova.  

Research suggests that students’ prior knowledge may influence 

both which instructional approach students receive and the effectiveness 

of the approach received. Furthermore, it suggests that students with 

similar abilities or prior knowledge are often tracked into the same class 

(Barr, Dreeben, & with Wiratchai, 1983; Rist, 1970a, 1970b; Rosenthal & 

Jacobson, 1968). Many, including teachers, believe that the two 

instructional approaches under study here are more favorable or 

appropriate for use with students of certain abilities (Gamoran, 

Nystrand, Berends, & LePore, 1995; Gamoran & Weinstein, 1998; Oakes, 

1985, 1992). Imagine, for example, students with low prior knowledge 

are more likely to be tracked into classes which are more likely to receive, 

say, the common approach, while student with high prior knowledge are 

more likely to be tracked into classes receiving the blended approach. 
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First, analytic models lacking controls for prior knowledge could lead to 

inaccurate conclusions that one approach is more effective when really 

the effect was due to prior knowledge and selection bias. Alternatively, if I 

control for prior knowledge using the “raw” logit scores or the continuous 

variable, I may over estimate or under estimate the effect because group 

membership effects which treatment is given. Say, for example, that by 

chance my data is completely divided. By this I mean that all classes 

with low prior knowledge on average received the common approach 

while all classes with high prior on average received the blended 

approach. Further suppose that classes with mean prior knowledge on 

average were split 50/50 for receiving either approach. In the end, 

results in such a case are likely misleading if in practice students in each 

prior knowledge group are not equally likely to receive either 

instructional approach.  Therefore, I device a causal model that 

estimates, not only central tendencies of instructional effects, but also 

the variation in the effects across relevant student groups. 

Other realities may also affect the results of models lacking 

controls for prior knowledge. For example, students with high prior 

knowledge may do well no matter what, and students with low prior 

knowledge may do poorly with either approach. Likewise, the reverse 

argument may be true. Another concern with such a model is that gains 

by either group of students under either instructional approach may not 

be uniform. For example, one group may result in large gains in 
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achievement under said approach while the other group may show low 

gains. Therefore, ascertaining valid findings is only possible with 

studying or modeling group membership. These control variables, 

described in detail in the following paragraph, then allow me to assess 

treatment effects for each group and the corresponding hypotheses.  

In this section I describe the specifics of the models used to 

estimate the effect of instructional approach on student achievement and 

the relevant student groups. Specifically, the model is a three-level 

hierarchical linear model with a student level, a classroom level, and a 

school level. At level 1, the student level, the model is a simple linear 

regression with indicator variables that control for prior achievement 

level on multi-digit computation (J. B. Carroll, 1963). Here, I control for 

prior achievement using the multi-digit scale scores from the fall 

assessments. Specifically, I have divided these fall achievement scores 

into three groups, or thirds. I use thirds as the resulting groups largely 

represent the student groups tied to arguments on appropriate 

instructional approach. I characterize the lowest third by the dummy or 

indicator variable FAL1. Here, FAL1 = 1 if child’s fall achievement score 

on the multi-digit computation scale falls in the lowest third, otherwise, 

FAL1 = 0. Similarly, FAL2 = 1 if child’s fall achievement score on the 

multi-digit computation scale falls in the middle third, otherwise FAL2 = 

0. And likewise, FAL3 = 1 if child’s fall achievement score on the multi-

digit computation scale falls in the highest third, otherwise, FAL3 = 0. By 
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partitioning fall achievement into these three groups, I am able to study, 

at level 2, the effectiveness of the blended instructional approach for 

each group and whether that group membership plays a role in its 

effectiveness. I include only two of these variables as one has been left 

out as the reference group, namely the middle group, called middle Fall 

achievement group or FAL2. Furthermore, in the preceding model, I 

grand-mean center FAL1 and FAL3. This centering does not affect the 

level-1 estimates since the proportion of students in FAL1, FAL2, and 

FAL3 should be equal due to the way the variables were constructed. 

Grand mean centering, however, affects the interpretation of jk0π and the 

corresponding level-2 model. For the un-centered case, jk0π  is the 

average spring achievement score on the multi-digit computation scale 

for students in FAL2 from classroom j in school k. It is possible that for 

some classrooms and schools this value does not exist because these 

classrooms and schools have no students in the FAL2 achievement 

category. Conversely, all classrooms and schools have an average 

achievement score. This is the primary reason I choice to grand-mean 

center the level-1 variables, FAL1 and FAL3.xxii

Finally, the level 1 equation is:   

     

ijkijkjkijkjkjkijk eFALFALY +++= )3()1( 210 πππ  (5) 

where 
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ijkY  is the Spring achievement score on the multi-digit computation scale 

for a level of the TerraNova for student i in classroom j in school k; 

jk0π  = the average Spring achievement score on the multi-digit 

computation scale for classroom j in school k; 

jk1π  = the average Spring achievement score on the multi-digit 

computation scale for students in lowest third on Fall achievement 

(FAL1) for classroom j in school k; 

jk2π  = the average in Spring achievement score on the multi-digit 

computation scale for students in upper third on Fall achievement (FAL3) 

for classroom j in school k; 

ijke  = the error term, the difference of a students’ Spring achievement 

score from the classroom average score for their Fall reference group, 

which is assumed to be normally distributed with a mean of zero and a 

standard deviation of 2σ . 

At level 2, the classroom level, this is where I study the effects on 

classroom average achievement of common versus blended instructional 

approach on classroom average achievement, the main focus of this 

study. The two instructional approaches have fundamental 

characteristics that make them distinct from each other and yet uniform 

within the approaches. It is these distinct that support assumptions of 

homogeneity. xxiii From day-to-day or unit-to-unit there may be 



  
 

156 
 

differences in instructional approach but, annually, these differences are 

minimal, especially in their effect on “annual” student achievement.  

The first equation depicts the average Spring achievement for the 

three Fall achievement groups as a function of the two instructional 

treatments, common and blended, and strata group membership. 

Blended = 1 if class received blended instructional approach and Blended 

= 0 if class received common instructional approach. Each stratum 

variable is coded a 1 if class in the stratum and 0 otherwise. The next 

two equations model the Spring achievement for students in the lowest 

and highest thirds on the Fall assessment as a function of the 

instructional treatment. All Blended and Strata variables were grand-

mean centered. For the strata variables, there are essentially equal 

numbers of classes in each strata so entering these variables has little 

effect on the interpretation of  k02β  through k05β . Doing so, however, 

makes the interpretation of k00β , k10β , and k20β clearer, especially since 

variable Blended is also grand-mean centered. Here, each (𝐵𝑙𝑒𝑛𝑑𝑒𝑑)𝑗𝑘, a 

dummy or indicator variable, is adjusted by the grand-mean or 

�𝐵𝑙𝑒𝑛𝑑𝑒𝑑������������.. which affects the interpretation of k00β , k10β , and k20β . Each 

k00β , k10β , and k20β  is adjustment for differences among schools in the 

proportion of common classes and their interpretation reflect this 

adjustment.   

Therefore, the level 2 equations are:  
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jkkkjk Blended )(21202 ββπ +=  

(6) 

where 

k00β  is the average Spring achievement score on the multi-digit 

computation scale for classrooms in school k regardless of instructional 

approach or stratum membership;  

k01β = the adjustment in class average Spring student achievement on the 

multi-digit computation scale with a blended instructional approach 

regardless of stratum membership;  

k02β through k05β  = the adjustment for being a member of 1Stratum  through 

5Stratum ,respectively, on class average Spring achievement for the average 

Fall achievement group as compared to the reference stratum holding 

instructional approach constant for the respective Fall achievement 

group and h varies from 1 to number of strata determined by 

stratification (less one for the reference group);  

jkr0 = the error term at level 2, or the difference between the estimated 

class average Spring achievement and the actual average class 

achievement for average Fall achievement group, which is assumed to be 

normally distributed and have a mean of zero and variation of ω ; 
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and k10β  and k20β = the average in Spring achievement scores on the 

multi-digit computation scale for the lowest and highest Fall achievement 

group, respectively, for a classrooms in school k, regardless of  

instructional approach in use; 

and finally, k11β  and k21β  = the adjustment, or treatment effect, in class 

average Spring student achievement in being in the lowest or highest Fall 

achievement group, respectively, on the multi-digit computation scale 

with a blended instructional approach.  

The level 3, or school level, equations are: 

,0000000 kk u+= γβ  

,01001 γβ =k  

,00)1(0 hkh γβ =+  

and 0qpqpk γβ =  for q=1 & 2 and p=0 & 1  

(7) 

where 

000γ  is, for the Fall achievement level 3, the average, or grand mean, 

Spring achievement score across schools regardless of instructional 

approach in use; 010γ  = for middle third Fall achievement group, the 

average adjustment on Spring achievement for a blended instructional 

approach across all schools; 00hγ = for average Fall achievement group, 

the average adjustment or effect of stratum membership across all 

schools; ku00 = for this same middle Fall achievement group, the school 
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level error term,  the difference between the school k mean Spring 

achievement and the grand mean Spring achievement for schools 

receiving blended instructional approach, which is assumed to be 

normally distributed with a mean of zero and a variance of τ ; 

and 100γ  and 200γ  = for the lowest and highest Fall achievement groups, 

respectively, the average, or grand mean, adjustment in Spring 

achievement adjustment score across schools, regardless of instructional 

approach in use; 

110γ  and 210γ = for the respective Fall achievement level, the average 

adjustment on the adjusted Spring achievement for a blended 

instructional approach across all schools; 

 Through separate analyses, this model is used with data from 

grades 2 through 5 and the respective levels of the TerraNova, levels 12 

through 15. Additionally, the Wald Test is used to test the significance of 

strata or group variables.  To the causal model stated above, I include 

∑
=

+

4

1
)5(0 )(*)(

h
jkhkh BlendedStratumβ  where kh )5(0 +β  and l varies from 1 to 4, the 

total number of strata less one for the reference group, represents the 

treatment effect for each strata. The multi-parameter Wald test, in this 

case, tests the following hypotheses: 

,0...: )5(0)52(0)51(00 ==== +++ khkkH βββ  
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where kh )5(0 +β is the effect of jkh BlendedStrata )(*)( on the intercept. For this 

group of variables if the Wald Test or resulting chi-square statistic is 

significant with a p-value less than α=.05 then I will conclude that it is 

highly unlikely that the observed estimated for kh )5(0 +β could have 

occurred under the hypothesis stated above. Furthermore, I will conclude 

that the observed estimates for kh )5(0 +β are not zero and the variables for 

jkh BlendedStrata )(*)( should be included in the model. Conversely, if the 

chi-square statistic is not significant, having a p-value of α ≥ .05 then I 

will conclude that it is highly likely that these observed estimates for 

kh )5(0 +β could have occurred under that hypothesis stated above. 

Furthermore, the variables for jkh BlendedStrata )(*)( can be omitted from 

the model. Adjustments to the model above were made according to the 

results of the Wald Test.  

 A second set of Wald Tests addresses one of my secondary 

research questions: Does the benefit of blended instruction vary by level 

of prior knowledge?  Three Wald Tests address the following hypotheses: 
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Where k01β  is the effect of Blended on the intercept, or average fall multi-

digit computation achievement and k11β and k21β are the effects of Blended 

on the slope of the lowest and highest fall multi-digit computation 
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achievement groups, respectively. If the Wald Test or the resulting chi-

squared statistic is significant using a cut-off p-value of α=.05, I will 

conclude, for the pairwise comparison, that it is highly unlikely that the 

observed estimates k01β  or k01β  or k01β for the treatment effect is different 

for the two groups. Conversely, if the results are not significant, I will 

conclude, for the pairwise comparison, that the treatment effect is not 

different for the two groups. In this case, a model that only studies the 

effect of Blended on the average Fall multi-digit computation 

achievement is reasonable, however, the current model represented by 

equations 1-3 model current theory and a discussion of the results of the 

results is likely to be as informative to instructional practice and future 

research. Therefore, in either case, no changes will be made to the causal 

model.   

  

 In Chapter 4, I present the results from multiple imputation and 

the predictive and causal models. 
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Chapter IV  

Results 

 

In Chapter III, I presented the appropriate methods for addressing 

my research questions. The prominent research question addressed by 

this dissertation is “would the average class receiving a treatment of 

common instruction learn significantly more had they received blended 

instruction in the same school?”  Furthermore, I explore answers to the 

question, Does the benefit of blended instruction vary by level of prior 

knowledge?  Are there grade-level differences? And, what affects teachers’ 

choices of instructional approach? Specifically, is there a relationship 

between teachers’ knowledge, gender, and ethnicity; class average 

ethnicity, gender, and achievement; and school day length, minority 

composition, whole school reform participation, curriculum 

endorsement, average teacher content knowledge for teaching, and 

average achievement for entering kindergarteners and the enacted 

instructional approach? Addressing such questions about instruction is 

new territory. In this chapter, I present the results of my inquiry. 

I divide the chapter into three sections. In the first section, I 

present the results from multiple imputation for missing data. In the 
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next section, I present the results from the analytic models, first the 

predictive model results followed with the causal model results. In the 

final section I discuss the limitations. 

 

Multiple Imputation 

As is typical for survey data, data from the Study of Instructional 

Improvement (SII) used in this study contain observations with missing 

values on variables. Past methods for dealing with missing data usually 

resulted in statistical procedures which exclude from the analysis 

observations with any missing variable values or imputing known values 

such as the mean. These exclusionary methods also meant that valid 

values on variables were removed from the analyses. In cases when mean 

values are imputed, standard errors of the variables at issue are 

narrowed compared to the true standard errors, and results are, 

therefore, compromised. Multiple imputation (MI) methods address both 

of these limitations. They eliminate the need for exclusion of observations 

with missing variable values by replacing each missing value with a set 

of plausible values that represent the uncertainty about the right value 

to impute. Furthermore, the process of choosing plausible values also 

strives to preserve the original mean and standard errors. MI also has 

the advantage of preserving all valid responses on variables. Given the 

large amount of missing data and the positive attributes of MI, I chose to 

use it in this analysis and begin this chapter by presenting those results. 
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Because the imputed values were needed prior to statistical modeling 

and the integrity of the imputed data impact the results from the causal 

and predictive models, I present the results here and not in the previous 

chapter, the methods chapter.   

Imputation procedures are discussed in Chapter III, Methods, but 

recall that, for imputation purposes, I use all available and pertinent 

data from SII which could potentially that could potentially inform the 

imputation model and improve accuracy and reduces bias in the imputed 

data. Therefore, I used more data than I expected to use in the statistical 

models.  

The results from multiple imputation, a procedure implemented in 

MICE 2.0, are provided in Appendix B. For details about MICE, see 

Chapter III, Methods, where I discuss the imputation method used and 

its limitations.  

MICE assumes that missing data are missing at random (MAR). 

Departures from MAR can arise when large fractions of data are missing 

as is the case in the SII data. There is currently no test to assess whether 

MAR is violated (Potthoff, Tudor, Pieper, & Hasselblad, 2006). However, 

there may be evidence that assuming MAR is or is not appropriate from 

studying patterns of missing data.  

In terms of the SII data, many variables are missing many data 

points, and, for many cases, many variables are missing data. A large 

portion of the data heavily used in this study, came from annual 
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Teachers Questionnaire which was administered every year to every 

teacher in the SII study. Some missing data is due to not returning the 

questionnaire. In other cases, since the questionnaire was quit long, a 

bulk of the missing data came at the end of the questionnaire. This type 

of missing pattern meant that the later section(s) contained items with 

missing responses more often. The last sections asked about 

demographic, credential and training. By looking at available data, I 

could assess whether responses are missing because respondents did 

not want to give particular answers. It does not seem that the range of 

data was affected and therefore, missing data are unrelated to the 

response.  This seemed to be true across all items. That is, the expected 

range of responses was evident in the available data. Furthermore, for 

some questionnaire items, the instrument was given many times over the 

four year, therefore, in the case of missing data, I could extrapolate and 

estimate of the true response. Here again, there are no patterns in the 

missing data. Therefore, without a specific test for MAR, the evidence as 

it exists supports assuming MAR and using multiple imputation.  

In Appendix B, I report, for comparison and assessment of the 

quality of the imputed data, descriptive statistics for the complete data 

and for the five multiply imputation data sets. Since the classroom level 

variables are school-mean centered for the imputation procedure, this 

table provides the descriptive statistics of centered data.  The data are 

then un-centered for use in the statistical procedures. The means and 
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standard deviations of the original, complete data and the five combined, 

complete plus imputed, data should be approximately the same if the 

imputation routine successfully imputed plausible values which I find to 

be true. A check for senseless values is also warranted.  

For each variable where data was imputed, I first checked to see 

that the imputed data falls within the minimum and maximum, imputing 

no extreme or outlying values. Next, I compared the means and standard 

deviations. Since the original data are group mean centered and 

therefore have a mean of zero, I checked the imputed data which also 

have means reasonably close to zero. Therefore, from the imputation 

results, this all shows that the imputation procedure in MICE 2.0 was 

successful.  

With the successfully imputed data, I now precede with the results 

from the statistical models. 

 

Analytic Models 

At this point in the analysis, I begin the model building that 

directly addresses my research questions. Here, I move from using all 

available and relevant SII data and results from multiple imputation to 

only data useful to the grade specific analysis. Results are presented for 

each grade. I begin with results for the predictive models.  
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Predictive Models 

What influences a class receiving a blended instructional 

approach? In Chapter III, Methods, for each grade, I propose a predictive 

model containing seven classroom-level covariates and six school-level 

covariates to address this question. I use a 2-level logistic regression with 

these covariates modeling the intercept. See Equations 6 and 7 in 

Chapter III. This model assesses the relationship between instructional 

approach and class composition on gender, ethnicity, and achievement 

and teacher gender, ethnicity, and content knowledge for teaching. It 

also accesses the relationship between instructional approach and school 

characteristics and aggregate student and teacher characteristics.  

Second grade results. I present the results in grade order beginning 

with second grade. See 

Table IV.1 and Table IV.2 for results from unconditional and 

conditional models, respectively.  The average second grade class in 

average schools has a 59 percent chance of receiving blended 

instruction. There is only a moderate reliability (r = .41) among schools to 

distinguish on receiving a blended instructional approach. Only a few 

variables show a significant association with the treatment assignment, 

blended instruction. For second grade, there are no classroom-level 

variables which show a significant association with receiving blended 

instruction. That is, these results suggest that class gender, ethnicity, 

and prior knowledge and teachers’ gender, minority status, and content 
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knowledge for teaching are unrelated to second grade classes receiving 

blended instructional approach.  

There are, conversely, several school-level variables which show a 

significant association. First, school minority composition (percent 

African American (AAS)) and involvement in whole school reform (ACSFA) 

are unrelated to second grade class’s probability in receiving blended 

instructional approach. The coefficients for length of school day 

(LENGTH) and school average Woodcock Johnson mathematics score 

(WOOD) are negative and significantly associated with receiving blended 

instruction, coefficients -1.85 (SE = 0.9) and -0.40 (SE = 0.16), 

respectively. Recall that WOOD represents the mathematics achievement 

score for kindergarteners. Thus, classes in schools of average LENGTH 

and average WOOD have a reduced probability in receiving blended 

instruction, and schools having WOOD or LENGTH one or even two 

standard deviations greater are even more likely to not receive blended 

instruction. This last finding is consistent with research findings 

suggesting that students in low academic tracks or groups receive 

instruction that is less cognitively demanding. Furthermore, given these 

school level achievement results and the fact that class characteristics 

are unrelated to the instructional approach received, these results 

suggest that second grade teachers’ perceptions have more influence on 

the instructional approach they support than the characteristics of the 
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students they were teaching. This conclusion is also supported by 

research on tracking and instructional differentiation.    

 

Table IV.1  
Results from unconditional 2-level logistic regression model, second 
through fifth grades 
 Fixed Effect, 

𝛾00 
(SDa) 

Probability, 
1

1 + 𝑒−𝛾00 

Among 
Schools, µ00 

 
 Variance Reliability 
Second grade  
(n= 180 classrooms) 

0.38 
(0.20) 

0.59 1.35*** .41 

Third grade  
(n=171 classrooms) 

0.06 
(0.15) 

0.51 0.01 .00 

Fourth grade  
(n=171 classrooms) 

0.80 
(0.19) 

0.69 0.87** .29 

Fifth grade  
(n=158 classrooms) 

0.82 
(0.23) 

0.69 2.22*** .50 

*** p <.001, ** p <.01, * p <.05 
a SD = standard deviation 
 

 

The coefficients for school average teachers’ content knowledge for 

teaching (AVEKNOW) and NSF curriculum in use (NSF) are positive and 

significantly related to receiving blended instructional approach, namely 

2.21 (SE = 1.10) and 1.22 (SE = 0.58), respectively. Furthermore, these 

coefficients are large compared to the other coefficients in the model. 

These results suggest that having highly competent teacher colleagues 

and an NSF curriculum in use at the school that supports or models a 

blended instructional approach improves markedly second graders 

probability in receiving blended instruction.  
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The second grade model supporting these results written in mixed 

form is 
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Third grade results. Third grade results are similar to second grade 

results. The average third grade class in average schools has a 51 

percent or nearly equal chance of receiving blended instruction versus 

common instruction. There is very low reliability (r = .00) among schools 

to distinguish on receiving a blended instructional approach, so I 

cautiously report these results. Here again, only a few variables show a 

significant association with the treatment, blended instruction. Similar to 

second grade results, there are no classroom-level variables which show 

a significant association with receiving blended instruction in third 

grade. Again, these results suggest that class gender, ethnicity, and prior 

knowledge and teachers’ gender, minority status, and content knowledge 

for teaching are unrelated to third grade classes receiving blended 

instructional approach.  

There are three school-level variables which have a significant 

association and three covariates which have a non-significant 

relationship with third grade classes receiving blended instructional 

approach. First, school average teachers’ content knowledge for teaching 

(AVEKNOW), involvement in school reform (ACSFA), and NSF curriculum 
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in use (NSF) are unrelated to third grade class’s probability in receiving 

blended instruction. Conversely, length of school day (LENGTH), school 

minority composition (or percent of African American students [AAS]), 

and average kindergarten mathematics achievement (WOOD) are 

negatively and significantly related to third grade classes receiving 

blended instruction. The estimated effect for average kindergarten 

mathematics achievement (WOOD) is small at -0.28 (SE = 0.14) and for 

school minority composition (AAS) even negligible at -0.03 (SE = 0.01), 

but the estimated effect of length of school day (LENGTH) was 

comparatively large at -2.14 (SE = 0.63). Overall, these third grade 

results, like the results for second grade, suggest that factors influencing 

instructional approach lie outside the classroom. 

Written in mixed form, the third grade model supporting these 

results is 
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Fourth and fifth grade results are markedly different from results 

for second and third grades. Average fourth and fifth grade classes in 

average schools have a 69 percent chance of receiving blended 

instructional approach.  The reliability to distinguish between schools on 

their log-odds of receiving blended instruction in fourth grade is 

moderately low at .29 and for fifth grade, it is moderate at .50. 
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Results for fourth grade show significant relationship between 

classroom covariates and receiving blended instruction but not between 

school covariates and receiving blended instruction. Class minority 

composition (proportion African American (SAA) and Hispanic (SHISP)), 

average class prior achievement (ACHIEVE), and teachers’ content 

knowledge for teaching (KNOW) are not significantly related to receiving 

blended instruction. Conversely, students’ gender (SMALE) and teacher’s 

gender (TMALE) are positive and significantly related, while teacher’s 

ethnicity (TCAUC) is negative and significantly related. The estimated 

effects of students’ gender (SMALE), teacher’s gender (TMALE), and 

teacher’s ethnicity (TCAUC) are 2.92 (SE = 1.09), 1.74 (SE = 0.71), and -

1.02 (0.52), respectively. Thus, fourth grade classes having higher 

proportion of males and a non-Caucasian male teacher are more likely to 

receive blended instruction. In contrast to second and third grade 

results, length of school day (LENGTH), average student characteristics 

(AAS and WOOD), school resources (AVEKNOW and NSF), and reform 

program endorsement (ACSFA) are not influential on instructional 

approach. Alternatively, fourth grade instructional approach is 

influenced, not by external factors as is the case with second and third 

grades, instead by internal factors such as teacher and student 

characteristics. These results could be viewed also as support for claims 

from research on tracking that instructional difference are due to 

teachers’ perceptions. Given the lack of influence from average class 
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prior achievement and teachers’ content knowledge of teaching, the 

significant covariates suggest that instruction in fourth grade class is 

influenced by cultural biases. There are long standing stereotypes that 

boys do better in mathematics than girls and are more likely to be asked 

more demanding questions. From these results, classes with more males 

are more likely to receive an instructional approach that emphasizes 

greater cognitive demanding, here the blended instructional approach. 

The positive significant effect of male teachers and the negative 

significant effect of Caucasian teachers on instructional treatment are 

less clear but maybe related to instructional biases. 

The fourth grade model supporting these results written in mixed 

form is 
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Fifth grade results. Results for fifth grade are inconsistent with 

those for the previously reported grades. Of the six classroom-level and 

seven school-level independent variables, none of them are significantly 

related to receiving blended instructional approach using a cut-off p-

value of .05. Proportion of Hispanic students is the only variable that has 

a p-value less than .10 which has an estimated coefficient of 2.82 (SE = 

1.59). This model, containing 13 covariates, may over-fit the fifth grade 

data, but I report the results for this model so that grade comparisons 
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can be made. As is, these results suggest that class, teacher, and school 

characteristics do not influence instructional approach in fifth grade.  

Results from a very parsimonious model containing only two 

classroom-level covariates, namely, proportion of Hispanic students 

(SHISP) and teachers content knowledge of teaching (KNOW), suggest a 

different story. See Table IV.3 for these results.  The magnitude of the 

coefficients for these two variables are similar in the two models, the “13-

covariate model” and the “2-covaraite model,” which further suggests 

that the model containing 13 covariates over-fits the data. Results from 

the two-covariate model suggest that proportion of Hispanic students 

(SHISP, coefficient = 2.13, SE = 0.89) and teacher’s content knowledge 

for teaching (KNOW, coefficient = 0.48, SE = 0.23), controlling for no 

other factors, are positive and significantly related to fifth grade classes 

receiving a blended instructional approach. That is, the greater the 

proportion of Hispanic students in the class and the greater the teacher’s 

content knowledge for teaching the more likely the class will receive a 

blended instructional approach. These findings are consistent with 

recommendation from the Standards, recommendation that support a 

blended instructional approach for all students regardless of their 

ethnicity. Unlike results for other grades, these findings are not 

consistent with research on tracking. This area of research finds that 

students with a less privileged social background receive instruction that 

is less demanding, on the one hand, but there are also findings that 
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suggest the teachers’ make instructional choices in response to their 

students needs. How these findings relate to the fifth grade data is less 

clear. Both measures of social background and class average 

achievement are not related to instructional approach. Exploring 

interaction terms might explain the relationship between proportion 

Hispanic and teacher’s content knowledge for teaching with instructional 

approach. This, however, is left for further research. 

The fifth grade model supporting these results written in mixed 

form is 
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Across grade comparisons. There are across grade-level similarities 

and differences. Second and third grade results are more alike while 

results for fourth and fifth grades share some commonalities. In the 

lower grades, second and third, instructional influences are external. On 

average, instruction on multi-digit computation begins in second grade 

where they primarily focus on multi-digit addition and incorporate 

subtraction later in the year. Multiplication and division are new and the 

center of the introductory work in third grade. In light of the content 

focus, it seems from these results that teachers find support in their 

instructional choices from printed resources and colleagues and their 

perceptions of students needs. These results may also suggest that 
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instructional approach is planned in advance, and, therefore, classroom 

characteristics, internal influences, are inconsequential. 

The story changes in fourth and fifth grades when the focus is less 

on introducing new material in terms of new computational procedures. 

In these grades, the content is a mix of new procedures that require 

competencies on earlier computation procedures. For example, long 

division is new content, having specific procedural steps and concepts. 

Success, however, relies on knowledge of basic multi-digit computation 

skills, and students’ prerequisite knowledge is more likely to influence 

instruction. 

This research found that school characteristics have no influence 

on instructional approach in the upper grades while classroom 

characteristics do. The specific influences are mixed. In fourth grade, 

stereotypes affect instructional approach but not in fifth grade. One 

explanation might be that teachers lack “real” measures of their 

prerequisite knowledge and stereotypical expectation fill in the missing 

information. Furthermore, as teachers work with their students they 

identify information that affirms the stereotypes and ignores contrary 

evidence. In fifth grade, while the results are questionable, there is 

evidence that professional guidance plays a role. This is sensible since 

fifth grade teachers are responsible for getting students ready for sixth 

grade which is often a middle school grade. In sixth grade, students often 

“change classes” and have subject specific teachers who may 
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communicate expected prior knowledge for entering sixth graders in an 

effort to coordinate multiple schools feeding into the middle school.  

In summary, for both second and third grades, the estimates for 

length of school are one of the largest and significant, but not the case 

for fourth and fifth grades. Comparatively, long days for younger 

elementary classrooms contributes to less demanding instructional 

choices, while it seems inconsequential for older elementary classrooms. 

Colloquial support seems to help combat this. On the other hand, the 

strength of gender stereotypes seems to surface in the later graders.  

Further studies are needed to make sense of these results. Overall, 

the results seem sensible and one explanation suggests that there is 

complicated interplay between instructional approach and content, 

prerequisite knowledge, stereotypes, teacher knowledge, and curriculum. 
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Table IV.2  
Results of conditional 2-level logistic regression models, second through 
fifth grades 
 Grade 2 Grade 3 Grade 4 

Predictor 

Grade 5 
Β 

(SE) 
Β 

(SE) 
Β 

(SE) 
Β 

(SE) 
Intercept 0.47* 

(0.21) 
0.04 

 (0.19) 
1.10*** 
(0.26) 

1.14* 
(0.35) 

Classroom Level     
  Student Characteristics     
    Proportion males (SMALE) 1.11 

(0.98) 
0.40 
(1.00) 

2.92** 
(1.09) 

1.32 
(1.21) 

    Proportion African American   
      (SAA) 

-0.25 
(1.18) 

1.96† 

(1.17) 
-0.37 
(1.59) 

-3.00 
(1.90) 

    Proportion Hispanic (SHISP) 0.92 
(0.88) 

0.57  
(0.85) 

-0.53 
(1.18) 

2.82† 
(1.59) 

    First principal component of 
      average achievement on      
      Reading, Language arts, &  
      Mathematics (ACHIEVE) 

0.09 
(0.21) 

0.43 
(0.29) 

-0.27 
(0.31) 

-0.27 
(0.71) 

  Teacher Characteristics     
    Male teacher (TMALE) 0.35 

(0.71) 
0.40 
(0.77) 

1.74* 
(0.71) 

0.52 
(0.78) 

    Teacher is Caucasian   
      (TCAUC) 

-0.03 
(0.42) 

0.08 
(0.43) 

-1.02* 
(0.52) 

0.62 
(0.52) 

    Measure of Content 
      Knowledge for Teaching  
      (KNOW) 

0.26 
(0.22) 

0.00 
(0.22) 

0.09 
(0.23) 

0.48 
(0.41) 

School Level     
  Length of school day   
      (LENGTH) 

-1.85** 

(0.69) 
-2.14*** 
(0.63) 

-0.78 
(0.83) 

-1.31 
(1.10) 

  Percent African American 
    Students (AAS) 

0.00 
(0.01) 

-0.03* 
(0.01) 

-0.01 
(0.02) 

0.03 
(0.02) 

  Teacher average Content 
    Knowledge for Teaching  
    (AVEKNOW) 

2.21* 
(1.10) 

1.56 
(0.98) 

-0.98 
(1.46) 

-0.79 
(1.76) 

  Average Woodcock Johnson 
    Mathematics score (WOOD) 

-0.40* 
(0.16) 

-0.28* 
(0.14) 

0.15 
(0.17) 

0.03 
(0.24) 

  American’s Choice or  
    Success for All School  
    (ACSFA) 

0.37 
(0.47) 

0.73† 
(0.38) 

-0.28 
(0.55) 

-0.03 
(0.07) 

  NSF curriculum in use (NSF) 1.22* 
(0.58) 

0.32 
(0.48) 

0.62 
(0.67) 

0.69 
(0.85) 

Random Effect (Variance)     
Between-school, u0j 0.95* 0.00 2.61*** 4.83*** 
†p < .10, *p < .05, **p < .01, ***p < .001 
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Table IV.3  
Results for conditional model at level 1 and unconditional at level 2, fifth 
grade 
 

Predictor 

Grade 5 
Β 

(SE) 
Intercept 0.92** 

(0.25) 
Classroom Level  
  Student Characteristics  
    Proportion Hispanic 2.13* 

(0.89) 
  Teacher Characteristics  
    Measure of Content Knowledge for Teaching 0.48* 

(0.23) 
School Level  
  -unconditional-  
Random Effect (Variance)  
Between-School, u0j 2.46*** 

†p < .10, *p < .05, **p < .01, ***p < .001 
 

 

Statistical Causal Models 

  Would the average class receiving a treatment of common 

instruction learn significantly more had they received blended 

instruction in the same school?  In this section, I discuss the results of 

the causal models which answer this question. I define blended and 

common instructional approach similarly for all grades. Blended 

instructional approach is an instructional emphasis during a focus on 

multi-digit computation that incorporates a high emphasis on 

procedures and a moderate to high emphasis on concepts. Alternatively, 

common instructional approach is an instructional approach during a 
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focus on multi-digit computation that incorporates a high emphasis on 

procedures and no or low emphasis on concepts. I present the results for 

each grade beginning with second grade.  

I estimated the results for the causal models using the 3-level HLM 

model described by Equations 5-7 given in Chapter III, Methods 

(Raudenbush, Bryk, & Congdon, 2009). Recall that I hypothesize that 

blended instruction is positively and significantly related to the average 

class Spring achievement score on the multi-digit computation scale. 

Prior to obtaining the results to the causal models, I begin with a 

statistical analysis of the data structure using an unconditional model. 

See Table IV.4 for the variance decomposition of the grade level measures 

of achievement on multi-digit computation. Between 80 to 91 percent of 

the variation in spring achievement on multi-digit computation lies 

between students, while 4.6 to 9.5 percent lies among classrooms within 

schools and 2.8 to 14.4 lies among schools. For second and fifth grades, 

there is more variation in spring achievement among schools than among 

classrooms within schools. Conversely, for third and fourth grades, there 

is more variation among classrooms within school than among schools. 

For all grades, the reliability to distinguish among classrooms within 

schools and among schools on spring multi-digit computation 

achievement is moderate to moderately low. The differences between 

grades are reasonable since the test items and the number of items used 

to measure achievement on multi-digit computation also differ by grade. 



  
 

181 
 

Using a statistical significance cut-off of α=.05, the variance among 

classrooms within schools was significant for second and third grades 

only. The variance, however, among schools was significant for all 

grades. 

 

Table IV.4  
Variance Decomposition of Achievement on Multi-digit Computation from 
the unconditional models, second through fifth grades 
 Among 

Students within 
Classrooms, ε 

 

Among  
Classrooms  

within Schools, ρ0 

Among  
Schools, µ00 

 Percent  
Variance 

Percent 
Variance 

Reliability  Percent 
Variance 

Reliability 

Second grade  
(n=932 students) 

    

 80.0 9.5*** .365 10.5*** .431 
Third grade  
(n=914 students) 

    

 90.0 7.3* .294 2.8* .167 
Fourth grade  
(n=770 students) 

    

 90.9 4.6 .182 4.4** .249 
Fifth grade  
(n=740 students) 

    

 80.5 5.1 .222 14.4*** .518 
*** p <.001, ** p <.01, * p <.05 

 

 

I continued model development by fitting the models described by 

Equations 5-7 in Chapter III, Methods. Before reporting the results, I 

assessed whether the interaction terms describing strata by match group 

assignment, written as jkhkh BlendedStrata )(*)()5(0 +β , are needed in the 
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model. I used a multi-parameter Wald test, with results given in Table 

IV.5, to test whether the coefficients for the interaction terms are all 

equal to zero. If this test results in a significant p-value, α ≤ .05, then the 

treatment effect is not constant across groups and the interactions 

should stay in the model. Conversely, if this test results in a non-

significant p-value, α > .05, then the treatment effect is the same across 

the matched groups and the interaction terms can be removed from the 

model.  For all grades, the Wald test results — chi-square statistics, 

degrees of freedom, and p-values — yielded p-values greater than a cut-

off of .05, so, therefore, I failed to reject the null hypothesis and do not 

include the interaction terms in the final causal models.xxiv

 

 

Table IV.5  
Results of Wald Test used with Causal Models, composite hypothesis tests 
of interaction of treatment by strata for second through fifth grades 
 Chi-square 

Statistic 
Degrees of 
Freedom 

P-value 

Second grade (n=932 students) 2.12 4 >.50 

Third grade (n=914 students) 1.38 4 >.50 
Fourth grade (n=770 students) 6.79 4 .15 
Fifth grade (n=740 students) 1.24 4 >.50 
*** p <.001, ** p <.01, * p <.05 

 
 

Using the results given in Table IV.6 through Table IV.9, I assess 

the results from the causal models for statistical significance using a cut 

point of α=.05. These models test the causal effect of blended instruction 

on spring student achievement. Blended instruction, an annual measure 
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of instructional emphasize on conceptual and procedural knowledge 

during content focused on multi-digit computation, is compared to 

common instruction, an annual measure instruction emphasizing, 

primarily, procedural skills during work on multi-digit computation. 

These models also tested the effect of blended instruction on prior fall 

achievement on multi-digit computation. Recall that the hypotheses 

being tested are that blended instruction as compared to common 

instruction is (a) positively and significantly related to average classroom 

achievement on multi-digit computation and (b) more beneficial to high 

achieving students that lower achievement students, as measured in the 

fall. Results vary by grade. 

For second and fourth grades, the estimate for the causal effect of 

blended instructional approach on multi-digit computation achievement 

was negative with coefficient estimate of -0.12 (standard error (SE) = 

0.07) and -0.04 (SE = 0.07), respectively, and not statistically significant. 

Conversely, for third and fifth grades, the estimated blended 

instructional effect was positive at 0.09 (SE = 0.06) and 0.11 (SE = 0.09), 

respectively and also not statistically significant. Therefore, in terms of 

my two part hypothesis stated in the previous paragraph, part (a) is 

rejected. While no treatment effect was significant, the direction of the 

effect differed across the grades. For second and fourth grades, the effect 

is positive, while, the effect is negative for third and fifth grades. The 

mixed directional effects are puzzling. Recall that students who took 
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different test levels are not included in this analysis due to 

methodological limitations for generating scores that are comparable 

across forms. These students were taking more or less difficult test levels 

and may be the beneficiates of the blended instructional approach. In the 

end, by not including these students, I may have distorted the 

effectiveness of blended instructional approach. I am cautiously 

optimistic that when a full range of students are included blended 

instruction can have significant effects on learning.  

Another part of the causal model estimates the blended 

instructional effect on the slopes of the lower and upper third 

achievement groups. Since the slope models the rate of change in 

achievement for each of these achievement groups, the coefficient of 

treatment in Equation 4 then represents the estimate of the difference in 

the rate of change in achievement in favor of blended versus common 

instruction. The results estimating the treatment effect on slope or rate 

are relatively consistent across the grade level models. For all grades, the 

blended instruction effect on lower third achievement group slope was 

negative and not statistically significant, with estimates between -0.10 

(SE = 0.13) and -0.01 (SE = 0.13). The instructional effect of treatment on 

upper third achievement group slope was negative and not statistically 

significant for second and fifth grades, with estimates -0.08 (SE = 0.12) 

and -0.22 (SE = 0.13), respectively. Conversely, for third and fourth 

grades, the effect of treatment on upper third achievement group slope 
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was positive and not statistically significant with estimates 0.04 (SE = 

0.11) and 0.06 (SE = 0.13), respectively. Therefore, given of the non-

significant findings and negligible effects, it is highly unlikely that there 

is a significant difference in rate of change between classrooms who 

receive blended instruction compared to those who receive common 

instruction in both lower and upper achievement groups. Furthermore, 

these results provide no evidence that blended instruction is more or less 

beneficial given initial achievement status and therefore I reject my 

hypothesis that blended instruction is particularly beneficial to low 

achieving students. 

Again, these results are limited by the pool of students’ scores that 

are usable for this study. The student groups defined to be in the lower 

and upper third of achievement groups would likely not be in those 

groups if I was able to include all students assessed by SII. Recall that 

students who were expected to outperform or underperform on the 

standard test level were given an alternate level, and, for this study 

scoring methods limited my ability to include these students. As a 

results, I expect that this study excludes an unknown proportion of high 

and low achieving students, some of the who would have been included 

the high and low achievement groups defined in this study. Therefore, 

the non-significant blended instruction effect is not surprising when 

there was also a non-significant effect on average students.      
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Table IV.6  
Results for second grade causal model: Final estimation of fixed effects 
(with robust standard errors) 

Fixed Effect Coefficient 
Standard 

Error 
School Level – Intercept,𝛾000 -0.02 0.03 
Classroom Level – Intercept   
  Treatment, 𝛽01𝑘 -0.12 0.07 
  Stratum 1, 𝛽02𝑘 0.06 0.10 
  Stratum 2, 𝛽03𝑘 0.12 0.09 
  Stratum 3 Reference 

group 
--- 

  Stratum 4, 𝛽04𝑘 0.14 0.09 
  Stratum 5, 𝛽05𝑘 0.04 0.10 
Classroom Level – Slope   
  Lower Third Achievement Group, 𝛽10𝑘 -0.42*** 0.06 
    Treatment, 𝛽11𝑘 -0.10 0.13 
  Upper Third Achievement Group, 𝛽20𝑘 0.23*** 0.06 
    Treatment, 𝛽21𝑘 -0.08 0.12 

Variance Components Estimate 

Percent 
Variance 
Explained 

Between Students within Classrooms, 𝑒𝑖𝑗𝑘 0.42 11.3 
Between Classrooms within Schools, 𝑟𝑜𝑗𝑘 0.03** 50.0 
Between Schools, 𝑢00𝑘 0.04*** 40.0 
***p<.001, **p<.01, *p<.05 
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Table IV.7  
Results for Third grade causal model: Final estimation of fixed effects (with 
robust standard errors) 

Fixed Effect         Coefficient 
Standard 

Error 
School Level – Intercept, 𝛾000 -0.06* 0.03 
Classroom Level – Intercept   
  Treatment, 𝛽01𝑘 0.09 0.06 
  Stratum 1, 𝛽02𝑘 0.00 0.09 
  Stratum 2, 𝛽03𝑘 -0.05 0.09 
  Stratum 3 Reference 

Group 
--- 

  Stratum 4, 𝛽04𝑘 -0.07 0.09 
  Stratum 5, 𝛽05𝑘 0.02 0.09 
Classroom Level   
  Lower Third Achievement Group, 𝛽10𝑘 -0.19** 0.05 
    Treatment, 𝛽11𝑘 -0.08 0.11 
  Upper Third Achievement Group, 𝛽20𝑘 0.19** 0.06 
    Treatment, 𝛽21𝑘 0.04 0.11 

Variance Components Estimate 

Percent 
Variance 
Explained 

Between Students within Classrooms, 𝑒𝑖𝑗𝑘 0.44 3.4 
Between Classrooms within Schools, 𝑟0𝑗𝑘 0.03* 9.3 
Between Schools, 𝑢00𝑘 0.01 55.8 
***p<.001, **p<.01, *p<.05 
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Table IV.8  
Results for Fourth grade causal model: Final estimation of fixed effects 
(with robust standard errors) 

Fixed Effect         Coefficient 
Standard 

Error 
School Level – Intercept, 𝛾000 -0.05 0.03 
Classroom Level – Intercept   
  Treatment, 𝛽01𝑘 -0.04 0.07 
  Stratum 1, 𝛽02𝑘 0.06 0.10 
  Stratum 2, 𝛽03𝑘 0.13 0.09 
  Stratum 3 Reference 

Group 
--- 

  Stratum 4, 𝛽04𝑘 0.10 0.10 
  Stratum 5, 𝛽05𝑘 0.14 0.09 
Classroom Level – Slope   
  Lower Third Achievement Group, 𝛽10𝑘 -0.23*** 0.06 
    Treatment, 𝛽11𝑘 -0.01 0.13 
  Upper Third Achievement Group, 𝛽20𝑘 0.21** 0.06 
    Treatment, 𝛽21𝑘 0.06 0.13 

Variance Components Estimate 

Percent 
Variance 
Explained 

Between Students within Classrooms, 𝑒𝑖𝑗𝑘 0.46 4.6 
Between Classrooms within Schools, 𝑟0𝑗𝑘 0.02 27.9 
Between Schools, 𝑢00𝑘 0.02* 25.3 
***p<.001, **p<.01, *p<.05 
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Table IV.9  
Results for Fifth grade causal model: Final estimation of fixed effects (with 
robust standard errors) 

Fixed Effect         Coefficient 
Standard 

Error 
School Level – Intercept, 𝛾000 -0.10* 0.04 
Classroom Level – Intercept   
  Treatment, 𝛽01𝑘 0.11 0.09 
  Stratum 1, 𝛽02𝑘 0.12 0.13 
  Stratum 2, 𝛽03𝑘 -0.15 0.10 
  Stratum 3 Reference 

Group 
--- 

  Stratum 4, 𝛽04𝑘 -0.06 0.10 
  Stratum 5, 𝛽05𝑘 0.02 0.10 
Classroom Level – Slope   
  Lower Third Achievement Group, 𝛽10𝑘 -0.48*** 0.06 
    Treatment, 𝛽11𝑘 -0.05 0.14 
  Upper Third Achievement Group, 𝛽20𝑘 0.37*** 0.06 
    Treatment, 𝛽21𝑘 -0.22 0.13 

Variance Components Estimate 

Percent 
Variance 
Explained 

Between Students within Classrooms, 𝑒𝑖𝑗𝑘 0.44 16.4 
Between Classrooms within Schools, 𝑟0𝑗𝑘 0.01 71.5 
Between Schools, 𝑢00𝑘 0.06*** 37.0 
***p<.001, **p<.01, *p<.05 

 

 

Using Wald Tests, I apply a second set of multi-parameter tests 

involving the slopes or rate in change in achievement. I examine whether 

a blended instructional approach has a similar effect on the intercept 

and slopes. Again, the intercept models the average effect while the 

slopes model the rate of change for particular groups, here the lower and 

upper achievement groups. These results are given in Table IV.10. The 

chi-square statistics range from 0.34 to 4.46 for the hypothesis tests 
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comparing a blended instruction effect on intercept and slope of both 

lower and upper third achievement groups and are not statistically 

significant. Therefore, it is highly unlikely that the blended instruction 

effect differs significantly for the intercepts and slopes for any grade. I 

also compared the blended instruction effect of blended instruction on 

the slopes of lower and upper third fall achievers. For all grades, there is 

no significant difference in this effect with Chi-squares ranging from 0.30 

to >3.14. As previously mentioned, these results are not surprising since 

the range of students is limited due to methodology constraints on 

comparing students’ achievement scores across different test levels.  

 

Table IV.10  
Results of Wald Test used with Causal Models, composite hypothesis tests 
of treatment effect on intercepts and slopes 

 Chi-square 
Statistic 

Degrees of 
Freedom 

P-value 

Second grade (n=932 students)    
  Intercept by Lower Third 3.23 2 .20 
  Intercept by Upper Third 3.03 2 .22 
  Lower Third by Upper Third 0.61 2 >.50 
Third grade (n=914 students)    
  Intercept by Lower Third 3.13 2 .21 
  Intercept by Upper Third 2.73 2 .25 
  Lower Third by Upper Third 1.14 2 >.50 
Fourth grade (n=770 students)    
  Intercept by Lower Third 0.34 2 >.50 
  Intercept by Upper Third 0.54 2 >.50 
  Lower Third by Upper Third 0.30 2 >.50 
Fifth grade (n=740 students)    
  Intercept by Lower Third 1.80 2 >.50 
  Intercept by Upper Third 4.46 2 .11 
  Lower Third by Upper Third 3.14 2 .21 
*** p <.001, ** p <.01, * p <.05 
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Limitations 

I have interpreted the findings with caution as there are several 

limitations. First, there were methodological challenges. I ran into 

methodological challenges during multiple imputation because of the 

large amount of missing data. Imputation took place at the beginning of 

the analysis and choices were made that may have impacted the results. 

For example, for highly correlated variables, I either combined those 

using principal components analysis or dropped all but one that 

remained to represent the groups of variables. Furthermore, I only used 

the first principal component which represents only part of the variation 

in the original group of variables. It is unclear how and to what degree 

these choices affect the results reported here. 

I have mentioned a second methodological challenge throughout 

this chapter related to test forms. Data used in this study were collected 

as part of SII’s research. Their procedures for measuring student 

achievement were such that students who were expected to outperform 

or underperform the assigned test level were given an alternate level 

which contained different items. For SII, students’ scores were 

comparable because the test publisher had access to linking items and 

item information and provided SII with the scores. This study was a 

secondary investigation, and, by the time I had defined this research, 

data had already been collected. My interest was in only multi-digit 
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computation items and students’ scores on those items, unfortunately, 

the test publisher did not provide scores on only those items, linking 

items, or a linking group(s) of students. Given the lack of methods for 

handling this limitation, I was left with focusing my analysis on only 

students’ scores that are comparable. Consequently, I had to limit my 

analysis to only those scores from students who took the standard test 

level. There are no records on what SII knew about the students’ 

achievement for those who took the alternate form. Some students may 

have been assigned for an alternate test level in error, but I expect that 

the majority of these students were high achieving or low achieving. 

Therefore, this study encompassed more average students.  

Another limitation relates to the TerraNova items. While the items 

are not reported here, very few items on each level measured only 

computational skills. Most items required knowledge in more than one 

mathematics content area. For example, typical items required students 

to read a graph, compute, and then select the answer. It is possible that 

students could compute correctly but did not read the graph correctly, 

and then, in the end, chose the wrong answer. Therefore, results on 

wrong answer are inconclusive. That is, it is not clear how effective the 

instructional approach was when a student gets these kinds of item 

incorrect.   

Another limitation is related to defining classes as receiving 

common and blended instructional approach. I took into account how 
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often, day to day, students worked on multi-digit computation 

procedures and concepts. A piece of information that is possibly equally 

important in defining “dose” is how much in a day a class worked on this 

content. The Daily Mathematics Teacher Log asked about daily time but 

teachers recorded the total time on any mathematics topic. Since on 

many days, students worked on multiple topics, time on multi-digit 

computation was not discernible and not accounted for when I defined 

classed on instructional approach. Therefore, classes may have been 

unfairly assigned as receiving an approach. Without having information 

about daily time, it is hard to know how it might have changed a class’ 

assignment to an approach. I leave this to future studies. 

Lastly, the causal results are limited by the usual limitations of 

causal methodologies. During propensity score analysis, I attempted to 

include all potential confounding variables. The results, however, could 

be compromised if an unmeasured confounder was omitted. 

 

In Chapter V, I discuss this study’s implications, conclusions and 

future research.



  
 

194 
 

Chapter V  

Discussion  

 

The purpose of this dissertation was to address a critical 

instructional problem by investigating methods that may well be useful 

for establishing scientific answers to questions about its use and 

effectiveness. On the surface, I have focused this investigation on 

comparing two instructional approaches to teaching multi-digit 

computation procedures and concepts in second through fifth grades. I 

first studied relationships between key class, teacher, and school 

characteristics to the use of these two approaches and how the 

relationships compare across grades. Then, using a causal 

methodological approach, I have studied whether these two approaches 

differ in their effects on student achievement for different groups of 

students. Inside this substantive study on the two approaches to 

teaching multi-digit computation, I examine measurement and 

methodological challenges to using daily teacher logs to measure 

treatment assignment and define instructional approach and challenges 

to using general mathematics test items to measure knowledge on multi-

digit computation, a specific content area. In this chapter, after first 
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summarizing my findings, I discuss the empirical results of the 

substantive investigations in light of policy implications and appraise the 

success and challenges to measures and methods used. In each of these 

discussions I point out areas in need of future research. 

Overall, I found that items from the SII daily teacher log are useful 

in measuring and distinguishing instructional approaches differing in 

emphasis on procedural and conceptual knowledge. From descriptive 

statistics, I found that teachers do differ in their emphasis on the two 

approaches under study and the differences align with past research 

findings focused on mathematics instructional approaches in U.S. 

elementary classrooms. Additionally, very few class, teacher, or school 

characteristics are predictive of the instructional approach used. This 

finding is also confirmed by previous studies looking at similar 

relationships in mathematics education. On the few significant factors, I 

found that the influential factors suggest that policies may be needed 

that focus on grades that differ from our present procedures. Then, in 

terms of findings from the causal investigation, I found no significant 

treatment effect for the blended instructional approach and no 

significant differences in treatment effect for student groups differing in 

prior knowledge. Furthermore, I found no evidence that one approach – 

common or blended – is superior and no evidence that supports choosing 

one of these instructional approaches based on students’ prior 

knowledge. Therefore, this investigation found no support for the 
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instructional approaches supported by the Standards. I discuss each of 

these findings in detail below.  

 

The Case of Common versus Blended Instructional Approaches 

   My findings complement the body of research and knowledge on 

the teaching and learning of multi-digit computation by describing 

general patterns on factors influencing instructional approach and by 

providing prescriptive information or “a recipe.” Before discussing my 

findings related to the research questions, I have some incidental 

findings that I would like to comment on. In particular, the descriptive 

results on the teacher log items measuring instruction on procedures 

and concepts suggest that rather little emphasis is placed on procedures 

and concepts during instruction on multi-digit computation. On average, 

second through fifth graders spend between 26 percent and 30 percent of 

lessons on multi-digit computation on procedures and between 17 

percent and 24 percent of these lessons on multi-digit concepts. See 

Table III.5. This seems like a rather small percent of lessons on content 

that is fundamental to students’ success in Algebra. Furthermore, from 

previous reports from the SII study, instruction on operation, in general, 

occurred on 40.0 percent and 41.9 of lessons for third and fourth grades, 

respectively (Rowan, et al., 2004). Therefore, in classrooms from schools 

that have a 180 day school year, one might expect the average class of 

third graders, for example, to spend around only 18 days per school year 
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working on procedural skills and about 12 days working on conceptual 

skills. These days may in fact overlap leaving somewhere between 150 to 

162 “allocated” days for instruction, for the average third grade class, 

when additional work on this content could occur. We know that 

instruction does not occur on of the allocated days and that, on average, 

no instruction on mathematics occurs on 43 days of the school year due 

to teacher or student absences, field trips, testing, etc. Therefore, in this 

average third grade class, there are between 107 to 119 days when 

instruction should be possible (Phelps, Corey, DeMonte, Harrison, & 

Ball, 2012).    

 These basic descriptive findings suggest that instructional 

guidance is needed for both day to day instructional activities and across 

the school year. I found a large variability in endorsing procedures and 

concepts, suggesting that some teachers are highly endorsing this 

content but these same teachers ignore this content on too many school 

days.   

Keep in mind that this is the context in which I identified 

treatment classes and tested for treatment effects. Still, there are 

findings to report. 

 

Discussion of Predictive Model Results 

Overall, the data I present show a pattern for factors influencing 

instructional approach that align with middle and upper elementary 
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grades. The results from the unconditional models that probe grade level 

probabilities in receiving blended or common instructional approach 

suggest that fourth and fifth grade teachers find it easier to endorse the 

blended instructional approach that second and third grade teachers. 

Results from the conditional models suggest that these four grades differ 

in their influences but the middle grades (second and third grades) and 

upper grades (fourth and fifth grades) share factors of influences. On 

average, the instructional approach used in middle grade classes is 

influenced by factors outside the classroom, but in upper grades 

instructional approach is influenced by class characteristics, particularly 

student and teacher gender and ethnicity.  At the basic level, these 

findings debunk the use of one set of policies or instructional guidance 

for all elementary grades. Given the different influential factors, there is 

reason to think about creating policies or guides that “push on” these 

factors differently depending on the grade(s) targeted by the policies or 

guides. In particular, policies and instructional guidance often lump 

third grade with fourth and fifth grades under a general category of 

upper elementary grades. These findings suggest caution in doing so, 

since policies on instruction may adversely affect instructional approach 

and thereby students’ opportunities to learn. Still, in general, other 

results suggest that policies on instructional approach could be 

beneficial, if focused on the right grades. The results suggest that 

beginning in fourth grade, biases begin to influence instructional 
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approach. Policies that target instructional approach in fourth grade 

could eliminate the effects of bias.      

Alternatively, these results suggest that middle elementary 

teachers need more or use more instructional guidance than the teachers 

of upper elementary grades. Guidance seems invaluable in this case, as 

it is already in use. It just needs to be refined in ways the move 

instruction so it aligns with reform expectations. In particular, consider 

the results on the effect on instructional approach of length of school 

days. I found a negative significant effect suggesting that classrooms in 

schools with long days are less likely to receive the blended instructional 

approach. Therefore, teachers adapt to long school days by “dumming 

down” their instructional approach even when good collegial support is 

available and when quality curricular materials are in use. Therefore, on 

one hand, caution is advised for schools considering lengthening their 

school day, but, on the other hand, policies guiding the use of the school 

day could be invaluable to limiting the use of such adaptations. In all, 

these results support the need for more instructional guidance. 

Regarding the general finding that very few variables (factors) 

explain instructional approach when focused on multi-digit computation. 

This finding, the small number of significant variables, is similar to what 

others studying instruction have found. But, the sensibility of my 

findings (not the number of significant variables)—the significant effects 

by grade, the direction of their effects and the non-significant factors by 
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grade—speaks to the appropriate approach to studying instruction. It 

seems reasonable that future research would focus on instruction within 

a specified content and that lumping all content together has proved to 

be less informative.  

 

Discussion of Causal Model Results 

Overall, at the level of at least one day per week (or one-fifth of 

allocated school days) on procedures and concepts, the blended 

instructional approach produces no significant difference in student 

achievement, as compared to the common approach. This finding is 

consistent with previous research on student achievement suggesting 

that student achievement lags behind expected levels even in the post 

reform era. The basic descriptives discussed above—the low percentage 

of days when multi-digit computation is the focus of instruction and then 

the low percentage of days when procedures or concepts are the focus—

suggests this finding is reasonable because emphasis is too low to benefit 

any group of students’ learning, regardless of which instructional 

approach is used. Therefore, the treatment, blended instruction, as it is 

measured in this study provides too little opportunity to learn to assess 

its benefit over the common instructional approach, regardless of the 

student group membership. Furthermore, in terms of identifying the 

frequencies in which students should be working on multi-digit 

procedures and concepts, in order to develop the rich computational 
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knowledge envisioned in the Standards and noted in the comparative 

studies, these findings suggest that instruction should likely encourage 

student work on more than one day per week. This needs to be tested, 

but we need sufficient numbers of classes deploying a strong emphasis 

in order to test its effectiveness. Furthermore, given the low number of 

classes where emphasis occurs on more than one day per week, it may 

not be possible to test greater and greater emphasis using this sample 

which leads to questions about if and whether such approaches are in 

use in high poverty U.S. elementary schools, or in any U.S. elementary 

school. This needs to be investigated. In future research I plan to explore 

the use of SII data in investigating the use of treatments defined by a 

stronger emphasis.  

Aside from studying effects on achievement on “average” students, 

I also set out to study the effectiveness of blended instructional approach 

on the academically advanced and the academically under-achieving 

students and whether advanced, average, or under-achieving students 

benefit equally from the blended instructional approach. I found no 

significant differences. Furthermore, I aimed to appraise if grade level 

differences existed. In all cases, no differences were found.  These 

findings may in part be due to the sample characteristics. SII sampled 

from high poverty schools, and high poverty schools tend to have few 

true academically advanced students. Therefore, it is not clear just how 

academically advanced the upper third of students is on prior 
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achievement. Therefore, the lack of difference in instructional effects may 

in fact be due to all students being closer to average in prior knowledge. 

Future research is needed to study the effect of instructional approach 

for student groups defined by their prior knowledge.    

  Lastly, patterns of variation in instructional approach are 

consistent with previous research findings. Even with moderately low 

reliability, the instructional approaches varied less across schools than 

among teachers within the same school. That is, students in the same 

school, same grade, and studying the same content experience widely 

different instructional programs. And the findings from this investigation 

seem to suggest that this variability is not helping students. This 

variability in emphasis too often falls at the low end of the emphasis 

spectrum. There is too little emphasis on core content. Others have 

described the U.S. elementary curriculum as slowly paced and 

redundant.  It, therefore, seems possible to change the face of our 

elementary curriculum by reprioritizing teachers’ emphasis on core 

content like multi-digit computation.  

 

Comments on Measurement and Methods  

Measurement Using a Daily Teacher Log 

I set out in this investigation to identify class level use of the 

blended and common instructional approaches. Research gives vivid 

details of both instructional approaches but recipes for their use across 
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an academic year are missing. In an era when so many talk about 

teacher accountability, I find the level of detail in instructional guidance 

on the teaching of multi-digit computation weak and timid. (I question 

how anyone can identify accountable instruction with the level of detail 

teachers are given about effective instructional approaches.) Therefore, in 

order to use the log items and define instructional approach in use, I had 

to interpret from the available guidance what is means to highly 

emphasis multi-digit procedures and concepts. To this end, I chose one 

day per five school days (or one-fifth of allocated instructional days) of 

focus on multi-digit computation as the distinction between low 

instructional emphasis and high instructional emphasis and I found no 

distinguishable differences in their effects on student achievement.  

Still, with focused teacher log items, I found that the methods for 

defining and identifying instructional approach to be very systemic. Four 

binary response items proved to be the most useful. Binary items average 

across days sensibly and with easy in interpretation. Additionally, four 

items lead nicely to a two-by-two crosstabs table which is reasonable to 

synthesize. Using more items to measure and distinguish instructional 

approach is not impossible, but more clarity on blended and common 

instructional approaches is needed for their use. With tables larger than 

two-by-two, it is less clear which cells in the table represent which 

approach. For example, how should ties in emphasis be handled? Or 

when using more items, how should high emphasis in a subset of items 
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be interpreted when two items give mixed information? Overall, I found 

that using more items is more complex and to do so, we need a better 

understanding of the instructional approaches. Furthermore, given the 

complexity, I chose to focus on the use of four log items and, in future 

research, I plan to investigate the use of more log items. 

The use if items that cut across more than one gateway section is 

worthy of comment. This investigation focused on four items from the 

Operation section, one of three gateway sections in SII’s daily 

mathematics teacher log. The first gateway section focused on Number 

Concepts. Two items from this section seem relevant to instructional 

emphasis on multi-digit computation concepts – (1) composing and 

decomposing (grouping) whole numbers or decimals into tenths, ones, 

tens, hundreds, etc and (2) identifying the values of the places in whole 

numbers or decimals.  Because teachers only entered a gateway section 

if they marked their focus was major or minor. If they marked “touched 

on briefly” or “not taught today,” they were asked to skip the section. It 

was not clear whether using these two Number Concepts items would be 

helpful in identifying class emphasis on concepts. I expect that teachers 

might mark these items when they also marked working on the four 

items I did focus on in the Operations section. Adding information from 

items outside the Operations section proved complex, part due to the 

added number of items and also part due to the way teachers were asked 

to respond to items in gateway sections. Therefore, I also left 
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investigating the use of items from the Number Concepts section for 

future research.  

 The log items used in this study have low reliability, and, 

therefore, labels on instructional approach used in classrooms derived 

from the log items are subject to speculation.  How can I confirm the 

instructional approach label given to SII classes using the four log items? 

The SII data might have a sample that could serve as a validation group. 

There are 407 classrooms that reported low work on both procedures 

and concepts. This sample and the blended and common sample were 

given in Table III.6. On the surface, it seems that in these classes 

instruction places little or no emphasis on multi-digit computation, and 

therefore, student achievement for students in the classrooms should 

reflect this lack of opportunity to learn this content. Studies comparing 

the common and blended samples to the 407 sample could document 

whether the common and blended approaches actually created 

opportunity to learn and whether the four log items are signally of an 

approach in use.   

The idea that teachers deploy instruction within subtopics, like 

multi-digit computation, using a set approach is new territory. We do not 

know if teachers think about their work in this way or if they focus and 

choose their approach from lesson to lesson or day to day within a 

subtopic.     
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Measurement of Student Achievement 

I created student achievement measures of multi-digit computation 

knowledge from selected items from the TerraNova. Very few items 

focused solely on multi-digit computation and when they do they are the 

typical straight computation problems. A large portion of items required 

students to read and use information from graphs and diagrams, and no 

items directly assessed students’ multi-digit conceptual knowledge. How 

to interpret wrong answers and their relation to multi-digit computation 

knowledge is not clear. Therefore, the lack of treatment effect may in part 

be due to the pool of items used to measure student achievement. Future 

research could benefit from achievement measures created from items 

more focused on knowledge of multi-digit computation procedures and 

concepts.   

My investigation faced a second limitation related to creating 

achievement measures on multi-digit computation. I initially set out to 

study the treatment effect on growth of student achievement. The lack of 

items parameters which created the link between test levels prohibited 

this inquiry. It may be that real differences between the two instructional 

approaches are not realized in one academic year. For some students, 

the real effects on their learning come only after two or three of receiving 

the same instructional approach. Only growth models will permit 

exploring the effects on achievement of instructional approaches as they 
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are experienced over many academic years which I plan to pursue in 

future research. 

 

Analytic Methods 

  The causal models control for prior knowledge using a fall measure 

of achievement. Fall assessments occurred in late September through 

early November. For all classes, instruction was well under way. While I 

found no relationship between test level (or movement across levels), 

some of the treatment effect may have been absorbed by the Fall 

measure, especially classes who were assessed in November. How much 

of the treatment effect that can be absorbed is not well understood. For 

example, students may make large gains in achievement early in an 

approaches use or gains may be achieved more evenly or steadily across 

the year. Without an alternative achievement measure, one that occur 

prior to students exposure to an approach, it’s unclear how approaches 

effect achievement.  

SII did measure achievement every year in the Fall and Spring. 

Therefore, an alternative to the Fall measure is using the prior years’ 

Spring achievement measure. This too has its drawbacks, particularly 

related to the SII study design. On set of students was followed from 

kindergarten through second grade and a second set was followed from 

third through fifth grades. Therefore, on drawback is the lack of prior 

years’ achievement scores for all third graders. This is particularly 
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troublesome since multi-digit computation content is prominent in third 

grade. My investigation can only study second, fourth, and fifth grades, 

which could be a very significant contribution. Second, higher rates of 

missing data occur when trying to track students across grades. How to 

handle missing data becomes even more uncertain since test level is also 

unknown.  Future research could try models using Spring prior 

achievement.  

My last comment pertains to logistic regression and models or 

theories of instruction. First, I used a logistic regression causal model in 

this analysis which lead to comparing two instructional approaches, 

when, in fact, the number of approaches is unknown. Little is known 

about differences in instructional approach—when a new label and new 

model specifications are needed. A causal model using continuous or 

categorical variables as treatment maybe more appropriate for studies on 

instruction. These should be explored as advances in causal techniques 

permit their use.  

Final Remarks 

This research investigated the relationship between instructional 

approach and student achievement inside one year of instruction on one 

topic, multi-digit computation. It is likely that this relationship is far 

more complex, extending across content and topics and beyond a single 

year. One suggestion, raised at my oral defense, is to control for the 

instructional approach a student received in prior year(s). In the context 
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of the analytic models used in this research, one might control for prior 

knowledge, prior instructional approach, and their interactions terms. 

This model will still likely oversimplify the expected complex relationship 

between instructional approach and learning across a child’s academic 

career. Using propensity scores methods and Rubin’s Causal Framework 

seem promising for yielding the scientific evidence that is badly needed. 

These methods and the multi-level models used in this dissertation, 

however, do not account for how instruction is administered — when a 

treatment began and with what regularity—across academic years which 

maybe keys pieces to the success of an instruction treatment. Therefore, 

future research that seeks to better understand how an instructional 

approach acts on learning within a context of a child’s academic career 

will need new or advanced statistical techniques.  

Using a three-level model and studying treatment effects at the 

classroom level is not sufficient. Next steps in modeling will likely 

incorporate cross classified and survival analytic methods. I expect that 

cross classified methods will support models of different learning groups, 

classes, and environments and students’ experience across many years, 

and by adding in survival analysis techniques we can bring into the 

model information about when topic coverage began and for how long the 

focus was maintained. This model is only a vision, a vision for identifying 

successful treatments and much needed instructional guidance. Future 

research is needed that investigates the use and limitations of these 
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advanced techniques for comparing instructional approaches while still 

yielding scientific evidence.  
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Footnotes 

 

i Research focused on instructional approaches that are effective for students with 
learning disabilities has found the direct instruction approach (also referred to as 
explicit instructional approach) to be effective. This approach is defined on repeatedly 
practicing skills at a pace determined by the teacher’s understanding of student needs 
and progress (Swanson, 2001). Direct instruction has been found to be especially 
successful when a child has problems with a specific or isolated skill (Kroesbergen & 
Van Luit, 2003). Also see (Steedly, et al., 2008). 
ii Recently Star (2005) has questioned these definitions, principally the definition of 
procedural knowledge. He noted, for one, that the widely used definitions given by 
Hiebert and Lefevre suffer from an entanglement of knowledge type and knowledge 
quality and that deep procedural knowledge, “knowledge of procedures that is 
associated with comprehension, flexibility, and critical judgment…[which] is distinct 
from (but possibly related to) knowledge of concept”, fits poorly into either of the 
definitions for procedural knowledge and conceptual understanding (Star, 2005, p. 
408). Star also reasons that Hiebert and Lefevre’s definition of procedural knowledge 
was intended for learning algorithms, not heuristic procedures, rules of thumb or more 
abstract procedures. While Star’s argument has merit, Hiebert and Lefevre’s definitions 
are particularly appropriate for this research since the definitions are centered on 
algorithms and the focus of the dissertation is on multi-digit computation algorithms. I 
do think that Star’s distinction between the 1986 definition and deep procedural 
knowledge would come into play if I was assessing students’ learning of procedural and 
conceptual knowledge and how the knowledge is used. As discussed in Chapter III, the 
items on the assessment used in this research do not permit distinguishing between 
type of knowledge learned and how it is used to answer the items, only whether 
students were working on multi-digit computation. Therefore, I think the distinctions 
made by Hiebert and Lefevre in their definitions are suitable for this research and I 
leave for future research the effort to distinguish between instructional approaches that 
emphasize procedural knowledge (as defined by Hiebert and Lefevre in 1986) and deep 
procedural knowledge. 
iii See Moyer, Moyer, Sowder, & Threadgill-Sowder (1984) for example word problems 
and some comments on instructional practices and student difficulties with word 
problems. 
iv Of the 25 participating countries, only 17 met the comparison guidelines at fourth 
grade.  
v Of the 25 participating countries, only 16 met the comparison guidelines at third 
grade. 
vi At this time, I have also excluded research on the teaching and learning of whole 
number multi-digit computation by adults and similar research on pre-service teachers 
(e.g. (Tirosh, 2000; Tirosh & Graeber, 1989)).    
vii I identified the majority of literature included in this review through advice from 
researchers in this area. Additional materials were identified through Internet searches 
of the websites of these researchers and their project websites, through publications 
from the National Council of Teachers of Mathematics (e.g. yearbooks), and from 
reference lists provided by relevant articles. In general, I rejected publications whose 
subjects were not practicing teachers or school aged children of the U.S. Exceptions 
were allowed when reading the publication was advised by a prominent researcher in 
this field.  
viii A cardinal number (such as 1, 2, or 3) is used in counting to indicate quantity but 
not order. 
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ix Note that children’s two-digit number concepts seem to sequence through two-digit 
number representation similar to the sequence of computation strategies. First the 
sequence in a unitary concept of two-digit numbers where children generally count two-
digit numbers by ones, then onto a sequence conception in which they count by tens 
and then by ones, and then onto a separate tens and ones conception in which the 
units of tens and the units of ones are counted separately. Finally an integrated 
conception arises when children construct both the sequence-ten and separate-tens 
conceptions and relate then to each other in an integrated sequence-separate 
conception (Fuson & Smith, 1997).   
x A second item asks, “Of the mathematics time recorded in Question 1, how much time 
were you either the teacher or an observer of the teaching?” Correlation of time reported 
on the canonical log with this item is .46.  
xi CTB McGraw-Hill also provided scale scores for Measurement, Geometry and Spatial 
Sense, Data, Statistics, and Probability, Patterns, Fractions, and Algebra, Problem 
Solving and Reasoning, and Communications. Scales scores are only provided on test 
levels that have 4 or more scale items. The sub-scales scores are derived from an 
algebraic formula, not from IRT. The algebraic formula is not publicly available. 
xii Appendix A gives a table showing the collected data by fall and spring testing sessions 
and first through fifth grades.  
xiii CTB McGraw-Hill was willing to share the item IRT properties but their lawyers and 
U of M’s lawyers could not agree on the terms. 
xiv Multiple imputation of missing scores is possible. However, since students could take 
a number of different forms, imputation process would need to generate possible levels 
the student could take and then possible scores on those levels. Since my use for the 
achievement data was not part of the original plan, I left exploring the use of imputed 
levels and scores for future studies. 
xv A copy of the mathematics teacher log is available at www.sii.soe.umich.edu. 
xvi Note that the average number of school days per year for schools in the SII study was 
reportedly 180 days, and for this analysis teachers who provided less than 18 logs were 
dropped as they provided instructional data on less than 10 percent of the year.   
xvii Due to copyright laws, the items referenced by this study have not been reproduced 
in this report. Those interested in the forms and items should contact CTB McGraw-
Hill. 
xviii Note that Level 11 was also labeled “CTBS Basic Battery” and Levels 12-16 were 
labeled “CTBS Survey.” The significance of these labels is not well described by in the 
Technical Bulletin but maybe related to the large difference in number of items on the 
tests. 
xix Curriculum materials used in each classroom each year was not collected. 
xx ijijijYE µµ =)|(  and )1()|( ijijijijYVar µµµ −= . 
xxi ijijijYE µµ =)|(  and )1()|( ijijijijYVar µµµ −= . 
xxii In comparing results between models with and without grand-mean center on these 
variables, I found no significant difference in estimates for coefficients and variances. 
xxiii Depending on the results of this study, there may be reason to question this 
assumption of homogeneity and the longstanding characteristics of these approaches to 
instruction.  
xxiv For the second grade model, I compared results from the chi-square tests for fixed 
effects versus robust standard errors and found differences in significance leading to 
different conclusions. In the case of robust standard errors, the chi-square 11.21 
(degrees of freedom=4) and p-value is .02. I compared the standard errors and found 
difference for Strata 5 and strata 5*treatment which suggested that the model was mis-
specified. I made changes to the model, including running a model with random slopes 
for strata 5 and strata 5*treatment, and found differences in chi-square test results 
were eliminated and I could then conclude no difference in strata*treatment.   
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Appendix A  

Table of Frequencies for Students Taking the TerraNova 

by Test Session, Grade, and Test Form 

 

TerraNova  
Form 

GRADE  
First Second Third Fourth Fifth Sixth Total 

Fall         
  Level 10 2082 35 0 1 0 0 2118 
  Level 11 130 1773 7 6 1 0 1917 
  Level 12 2 217 2630 149 2 0 3000 
  Level 13 0 20 70 1791 227 1 2109 
  Level 14 0 0 3 474 1498 0 1975 
  Level 15 0 0 0 14 379 0 393 
  Level 16 0 0 0 0 14 0 14 
  Total 2214 2045 2710 2435 2121 1 11526 
Spring        
  Level 10 62 1 1 0 0  64 
  Level 11 2138 73 20 1 0  2232 
  Level 12 13 1938 163 20 1  2135 
  Level 13 1 42 2210 229 26  2508 
  Level 14 0 2 349 2094 283  2728 
  Level 15 0 0 0 68 1714  1782 
  Level 16 0 0 0 0 46  46 
  Total 2254 2103 3372 2623 2227  11495 
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Appendix B  

Table of Descriptive statistics for multiply imputed data 

 

Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

Classroom Level Variables      
Class mean SES      
  Complete 1465 .00000 .352306 -1.412 2.409 
  Imputed Data 1 40 -.14670 .423885 -1.208 0.718 
  Imputed Data 2 40 -.10264 .349885 -0.813 0.445 
  Imputed Data 3 40 -.14103 .367043 -0.813 1.087 
  Imputed Data 4 40 -.10893 .392434 -1.030 0.934 
  Imputed Data 5 40 .00981 .282303 -0.634 0.520 
  Combined results      
    Imputed Data 1 1505 -.00390 .355014 -1.412 2.409 
    Imputed Data 2 1505 -.00273 .352513 -1.412 2.409 
    Imputed Data 3 1505 -.00375 .353309 -1.412 2.409 
    Imputed Data 4 1505 -.00290 .353722 -1.412 2.409 
    Imputed Data 5 1505 .00026 .350553 -1.412 2.409 
Class proportion of male students      
  Complete 1489 .00000 .221449 -0.674 0.630 
  Imputed Data 1 16 -.03562 .159186 -0.284 0.401 
  Imputed Data 2 16 .04621 .247380 -0.272 0.502 
  Imputed Data 3 16 -.08964 .218249 -0.522 0.266 
  Imputed Data 4 16 -.02701 .226448 -0.402 0.484 
  Imputed Data 5 16 .09064 .270990 -0.451 0.454 
  Combined results      
    Imputed Data 1 1505 -.00038 .220871 -0.674 0.630 
    Imputed Data 2 1505 .00049 .221699 -0.674 0.630 
    Imputed Data 3 1505 -.00095 .221534 -0.674 0.630 
    Imputed Data 4 1505 -.00029 .221443 -0.674 0.630 
    Imputed Data 5 1505 .00096 .222119 -0.674 0.630 
Class proportion of Caucasian 
students 

     

  Complete 1489 .00000 .123726 -0.784 0.814 
  Imputed Data 1 16 -.01233 .301570 -0.784 0.595 
  Imputed Data 2 16 -.06449 .241194 -0.784 0.227 
  Imputed Data 3 16 -.01964 .262735 -0.752 0.398 
  Imputed Data 4 16 .00895 .322351 -0.752 0.458 
  Imputed Data 5 16 -.03116 .156729 -0.178 0.512 
  Combined results      
    Imputed Data 1 1505 -.00013 .126704 -0.784 0.814 
    Imputed Data 2 1505 -.00069 .125576 -0.784 0.814 
    Imputed Data 3 1505 -.00021 .125849 -0.784 0.814 
    Imputed Data 4 1505 .00010 .127211 -0.784 0.814 
    Imputed Data 5 1505 -.00033 .124099 -0.784 0.814 
Class proportion of African 
American students 

     

  Complete 1489 .00000 .173396 -0.814 0.778 
  Imputed Data 1 16 .01576 .151338 -0.203 0.371 
  Imputed Data 2 16 .00113 .119169 -0.326 0.173 
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Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

  Imputed Data 3 16 .02972 .145938 -0.257 0.411 
  Imputed Data 4 16 -.02813 .137423 -0.349 0.181 
  Imputed Data 5 16 .01563 .154965 -0.441 0.230 
  Combined results      
    Imputed Data 1 1505 .00017 .173140 -0.814 0.778 
    Imputed Data 2 1505 .00001 .172882 -0.814 0.778 
    Imputed Data 3 1505 .00032 .173113 -0.814 0.778 
    Imputed Data 4 1505 -.00030 .173041 -0.814 0.778 
    Imputed Data 5 1505 .00017 .173172 -0.814 0.778 
Class proportion of Hispanic 
students 

     

  Complete 1489 .00000 .152456 -0.663 0.780 
  Imputed Data 1 16 -.00397 .191770 -0.567 0.412 
  Imputed Data 2 16 .03747 .165965 -0.238 0.512 
  Imputed Data 3 16 -.00445 .233027 -0.291 0.780 
  Imputed Data 4 16 -.01133 .171602 -0.329 0.347 
  Imputed Data 5 16 .03730 .078569 -0.024 0.257 
  Combined results      
    Imputed Data 1 1505 -.00004 .152848 -0.663 0.780 
    Imputed Data 2 1505 .00040 .152594 -0.663 0.780 
    Imputed Data 3 1505 -.00005 .153419 -0.663 0.780 
    Imputed Data 4 1505 -.00012 .152613 -0.663 0.780 
    Imputed Data 5 1505 .00040 .151894 -0.663 0.780 
Class proportion of Asian 
students 

     

  Complete 1489 .00000 .075244 -0.733 0.811 
  Imputed Data 1 16 .02299 .063902 -0.037 0.219 
  Imputed Data 2 16 -.01382 .062061 -0.189 0.095 
  Imputed Data 3 16 -.00673 .020522 -0.079 0.010 
  Imputed Data 4 16 .03879 .129974 -0.024 0.508 
  Imputed Data 5 16 -.00569 .055319 -0.158 0.137 
  Combined results      
    Imputed Data 1 1505 .00024 .075152 -0.733 0.811 
    Imputed Data 2 1505 -.00015 .075113 -0.733 0.811 
    Imputed Data 3 1505 -.00007 .074874 -0.733 0.811 
    Imputed Data 4 1505 .00041 .076065 -0.733 0.811 
    Imputed Data 5 1505 -.00006 .075049 -0.733 0.811 
Class proportion of American 
Indian Students 

     

  Complete 1489 .00000 .028591 -0.128 0.664 
  Imputed Data 1 16 -.00300 .012005 -0.048 0.000 
  Imputed Data 2 16 .00000 .000000 0.000 0.000 
  Imputed Data 3 16 .00950 .038017 0.000 0.152 
  Imputed Data 4 16 -.00390 .012298 -0.048 0.000 
  Imputed Data 5 16 -.00304 .012162 -0.049 0.000 
  Combined results      
    Imputed Data 1 1505 -.00003 .028466 -0.128 0.664 
    Imputed Data 2 1505 .00000 .028439 -0.128 0.664 
    Imputed Data 3 1505 .00010 .028708 -0.128 0.664 
    Imputed Data 4 1505 -.00004 .028468 -0.128 0.664 
    Imputed Data 5 1505 -.00003 .028467 -0.128 0.664 
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Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

Class proportion of student of 
other ethnicity 

     

  Complete 1489 .00000 .080889 -0.521 0.858 
  Imputed Data 1 16 -.02981 .082686 -0.257 0.139 
  Imputed Data 2 16 .04029 .079808 -0.028 0.257 
  Imputed Data 3 16 -.01538 .020381 -0.052 0.000 
  Imputed Data 4 16 -.00466 .080499 -0.257 0.117 
  Imputed Data 5 16 -.01226 .061511 -0.197 0.119 
  Combined results      
    Imputed Data 1 1505 -.00032 .080938 -0.521 0.858 
    Imputed Data 2 1505 .00043 .080957 -0.521 0.858 
    Imputed Data 3 1505 -.00016 .080499 -0.521 0.858 
    Imputed Data 4 1505 -.00005 .080860 -0.521 0.858 
    Imputed Data 5 1505 -.00013 .080702 -0.521 0.858 
Teacher has graduate degree      
  Complete 1219 .00000 .434222 -0.947 0.778 
  Imputed Data 1 286 .01600 .431253 -0.889 0.750 
  Imputed Data 2 286 -.00944 0.44545 -0.917 0.727 
  Imputed Data 3 286 .03166 .412946 -0.875 0.778 
  Imputed Data 4 286 .02244 .424493 -0.947 0.750 
  Imputed Data 5 286 .05152 .419066 -0.917 0.727 
  Combined results      
    Imputed Data 1 1505 .00304 .433562 -0.947 0.778 
    Imputed Data 2 1505 -.00179 .43624 -0.947 0.778 
    Imputed Data 3 1505 .00602 .430305 -0.947 0.778 
    Imputed Data 4 1505 .00426 .432340 -0.947 0.778 
    Imputed Data 5 1505 .00979 .431719 -0.947 0.778 
Teacher major in education in 
undergraduate program 

     

  Complete 1218 .00000 .396997 -0.950 0.900 
  Imputed Data 1 287 .00672 .396199 -0.933 0.769 
  Imputed Data 2 287 .02960 .40838 -0.917 0.857 
  Imputed Data 3 287 .03692 .409683 -0.938 0.857 
  Imputed Data 4 287 -.00494 .382279 -0.933 0.769 
  Imputed Data 5 287 .03101 .384943 -0.917 0.769 
  Combined results      
    Imputed Data 1 1505 .00128 .396722 -0.950 0.900 
    Imputed Data 2 1505 .00564 .39922 -0.950 0.900 
    Imputed Data 3 1505 .00704 .399573 -0.950 0.900 
    Imputed Data 4 1505 -.00094 .394112 -0.950 0.900 
    Imputed Data 5 1505 .00591 .394788 -0.950 0.900 
Teacher has permanent or standard 
certification 

    

  Complete 1265 .00000 .350689 -0.958 0.875 
  Imputed Data 1 240 -.05728 .385791 -0.958 0.696 
  Imputed Data 2 240 .00615 .36431 -0.933 0.696 
  Imputed Data 3 240 -.05194 .377560 -0.923 0.667 
  Imputed Data 4 240 -.00892 .383738 -0.958 0.696 
  Imputed Data 5 240 .02929 .321534 -0.950 0.875 
  Combined results      
    Imputed Data 1 1505 -.00913 .357000 -0.958 0.875 
    Imputed Data 2 1505 .00098 .35278 -0.958 0.875 
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Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

    Imputed Data 3 1505 -.00828 .355489 -0.958 0.875 
    Imputed Data 4 1505 -.00142 .356046 -0.958 0.875 
    Imputed Data 5 1505 .00467 .346268 -0.958 0.875 
Teacher is male      
  Complete 1363 .00000 .297965 -0.500 0.966 
  Imputed Data 1 142 -.03708 .250445 -0.400 0.846 
  Imputed Data 2 142 -.00420 .29133 -0.500 0.957 
  Imputed Data 3 142 -.00932 .261175 -0.500 0.923 
  Imputed Data 4 142 .04183 .326676 -0.500 0.958 
  Imputed Data 5 142 .00457 .290334 -0.500 0.909 
  Combined results      
    Imputed Data 1 1505 -.00350 .293936 -0.500 0.966 
    Imputed Data 2 1505 -.00040 .29725 -0.500 0.966 
    Imputed Data 3 1505 -.00088 .294624 -0.500 0.966 
    Imputed Data 4 1505 .00395 .300924 -0.500 0.966 
    Imputed Data 5 1505 .00043 .297162 -0.500 0.966 
Teacher is Causian      
  Complete 1341 .00000 .394481 -0.958 0.909 
  Imputed Data 1 164 .02417 .381976 -0.750 0.867 
  Imputed Data 2 164 .00931 .385555 -0.958 0.778 
  Imputed Data 3 164 -.00044 .374979 -0.722 0.909 
  Imputed Data 4 164 .01359 .379592 -0.909 0.889 
  Imputed Data 5 164 -.05211 .385357 -0.909 0.867 
  Combined results      
    Imputed Data 1 1505 .00263 .393086 -0.958 0.909 
    Imputed Data 2 1505 .00101 .393403 -0.958 0.909 
    Imputed Data 3 1505 -.00005 .392283 -0.958 0.909 
    Imputed Data 4 1505 .00148 .392786 -0.958 0.909 
    Imputed Data 5 1505 -.00568 .393706 -0.958 0.909 
Teacher is African American      
  Complete 1341 .00000 .361015 -0.933 0.958 
  Imputed Data 1 164 -.03758 .323935 -0.933 0.833 
  Imputed Data 2 164 .02468 .371458 -0.778 0.923 
  Imputed Data 3 164 .00326 .328110 -0.600 0.933 
  Imputed Data 4 164 -.00556 .371710 -0.778 0.909 
  Imputed Data 5 164 .00642 .348657 -0.778 0.938 
  Combined results      
    Imputed Data 1 1505 -.00410 .357253 -0.933 0.958 
    Imputed Data 2 1505 .00269 .362122 -0.933 0.958 
    Imputed Data 3 1505 .00036 .357475 -0.933 0.958 
    Imputed Data 4 1505 -.00060 .362073 -0.933 0.958 
    Imputed Data 5 1505 .00070 .359581 -0.933 0.958 
Percent of students who are Limited English Proficient 
or English as Second Language 

   

  Complete 1129 .00000 1.093843 -3.625 4.500 
  Imputed Data 1 376 .07792 1.199564 -3.417 4.462 
  Imputed Data 2 376 -.03740 1.086011 -3.625 4.375 
  Imputed Data 3 376 .02736 1.116557 -3.077 4.500 
  Imputed Data 4 376 -.04180 .949953 -3.417 3.696 
  Imputed Data 5 376 .07724 1.200259 -2.455 4.500 
  Combined results      
    Imputed Data 1 1505 .01947 1.121290 -3.625 4.500 
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Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

    Imputed Data 2 1505 -.00934 1.091652 -3.625 4.500 
    Imputed Data 3 1505 .00683 1.099252 -3.625 4.500 
    Imputed Data 4 1505 -.01044 1.059576 -3.625 4.500 
    Imputed Data 5 1505 .01930 1.121466 -3.625 4.500 
Percent of students who are learning disabled or 
mentally impaired 

   

  Complete 1117 .00000 1.009433 -2.200 4.300 
  Imputed Data 1 388 -.02473 1.079038 -1.857 4.250 
  Imputed Data 2 388 .14140 1.038946 -1.857 4.300 
  Imputed Data 3 388 -.10168 .991127 -2.200 4.120 
  Imputed Data 4 388 -.02389 1.034139 -2.200 4.120 
  Imputed Data 5 388 .06869 .960113 -1.833 4.120 
  Combined results      
    Imputed Data 1 1505 -.00638 1.027522 -2.200 4.300 
    Imputed Data 2 1505 .03645 1.018657 -2.200 4.300 
    Imputed Data 3 1505 -.02621 1.005403 -2.200 4.300 
    Imputed Data 4 1505 -.00616 1.015568 -2.200 4.300 
    Imputed Data 5 1505 .01771 .997089 -2.200 4.300 
Teachers’ score on Content Knowledge for 
Teaching 

    

  Complete 1222 .00000 .891189 -2.833 2.818 
  Imputed Data 1 283 .10943 .887838 -1.989 2.667 
  Imputed Data 2 283 .01361 .88573 -2.079 2.366 
  Imputed Data 3 283 .04808 .953443 -2.247 2.509 
  Imputed Data 4 283 -.01934 .900332 -2.833 2.136 
  Imputed Data 5 283 -.06391 .891846 -2.142 2.509 
  Combined results      
    Imputed Data 1 1505 .02058 .891292 -2.833 2.818 
    Imputed Data 2 1505 .00256 .88989 -2.833 2.818 
    Imputed Data 3 1505 .00904 .903092 -2.833 2.818 
    Imputed Data 4 1505 -.00364 .892647 -2.833 2.818 
    Imputed Data 5 1505 -.01202 .891366 -2.833 2.818 
First Principle component of student achievement on 
Mathematics, Reading, & English Language Arts 

   

  Complete 1029 .00000 .866140 -2.982 2.407 
  Imputed Data 1 476 .00819 .909067 -2.729 2.407 
  Imputed Data 2 476 .03916 .89439 -2.808 2.407 
  Imputed Data 3 476 .01749 .891551 -2.531 2.407 
  Imputed Data 4 476 .05276 .873664 -2.982 2.407 
  Imputed Data 5 476 -.00954 .921986 -2.982 2.133 
  Combined results      
    Imputed Data 1 1505 .00259 .879649 -2.982 2.407 
    Imputed Data 2 1505 .01238 .87507 -2.982 2.407 
    Imputed Data 3 1505 .00553 .873998 -2.982 2.407 
    Imputed Data 4 1505 .01669 .868583 -2.982 2.407 
    Imputed Data 5 1505 -.00302 .883888 -2.982 2.407 
First Principle component of content & 
methods courses taken 

    

  Complete 1146 .00000 .906098 -2.297 3.135 
  Imputed Data 1 359 .00210 .883942 -2.124 2.886 
  Imputed Data 2 359 .13697 1.04677 -2.282 3.135 
  Imputed Data 3 359 .03192 .903818 -2.297 2.572 
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Variables 
Sample 

Size Mean 
Standard 
Deviation Min. Max. 

  Imputed Data 4 359 -.11464 .872339 -2.124 2.885 
  Imputed Data 5 359 -.00570 .913257 -2.297 2.773 
  Combined results      
    Imputed Data 1 1505 .00050 .900571 -2.297 3.135 
    Imputed Data 2 1505 .03267 .94301 -2.297 3.135 
    Imputed Data 3 1505 .00762 .905357 -2.297 3.135 
    Imputed Data 4 1505 -.02735 .899203 -2.297 3.135 
    Imputed Data 5 1505 -.00136 .907510 -2.297 3.135 
First principle component of years of teaching 
experience – career & at present school 

   

  Complete 1257 .00000 .889608 -1.824 3.484 
  Imputed Data 1 248 -.02030 .928134 -1.574 2.968 
  Imputed Data 2 248 .04012 .85151 -1.583 3.158 
  Imputed Data 3 248 -.09703 .863086 -1.678 2.895 
  Imputed Data 4 248 .00375 .863757 -1.679 2.590 
  Imputed Data 5 248 .01896 .868126 -1.602 3.127 
  Combined results      
    Imputed Data 1 1505 -.00335 .895787 -1.824 3.484 
    Imputed Data 2 1505 .00661 .88329 -1.824 3.484 
    Imputed Data 3 1505 -.01599 .885742 -1.824 3.484 
    Imputed Data 4 1505 .00062 .885118 -1.824 3.484 
    Imputed Data 5 1505 .00312 .885847 -1.824 3.484 
First principle component of professional development 
in mathematics & Language Arts 

   

  Complete 1173 .00000 .910024 -2.424 2.252 
  Imputed Data 1 332 -.00068 .947796 -1.943 2.157 
  Imputed Data 2 332 .02411 .96035 -2.424 2.189 
  Imputed Data 3 332 -.11771 .909560 -2.297 2.205 
  Imputed Data 4 332 .01624 .883944 -2.006 2.252 
  Imputed Data 5 332 -.00126 .949296 -2.266 2.157 
  Combined results      
    Imputed Data 1 1505 -.00015 .918170 -2.424 2.252 
    Imputed Data 2 1505 .00532 .92109 -2.424 2.252 
    Imputed Data 3 1505 -.02597 .910929 -2.424 2.252 
    Imputed Data 4 1505 .00358 .904069 -2.424 2.252 
    Imputed Data 5 1505 -.00028 .918511 -2.424 2.252 
School Level Variablesa      
NSF Curriculum (1=yes, 0=no)      
  Complete 110 .31 -- -- -- 
  Imputed Data 1 5 .20 -- -- -- 
  Imputed Data 2 5 .00 -- -- -- 
  Imputed Data 3 5 .00 -- -- -- 
  Imputed Data 4 5 .00 -- -- -- 
  Imputed Data 5 5 .20 -- -- -- 
  Combined results      
    Imputed Data 1 115 .30 -- -- -- 
    Imputed Data 2 115 .30 -- -- -- 
    Imputed Data 3 115 .30 -- -- -- 
    Imputed Data 4 115 .30 -- -- -- 
    Imputed Data 5 115 .30 -- -- -- 

a Only variables that have imputed values are included. 
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Appendix C  

Tables for T Statistics from Balance Testsa for Second through Fifth 

Grades on Five Imputed Data Sets 

 
Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

 
Imputed Data Set 1 

   Class Variable     

Class SES composite (uclses) -0.17 0.60 0.10 0.80 

Proportion Male (uclmale) 1.52 -0.98 0.01 -0.12 

Proportion Caucasian (uclwhit) -0.60 -0.53 -1.51 -0.65 

Proportion African American (uclblk) -0.99 0.80 0.32 0.32 

Proportion Hispanic (uclhisp) 0.61 -0.33 1.27 -0.04 

Proportion Asian (uclasn) 0.86 0.03 -1.50 -0.26 

Proportion American Indian (uclamrn) -0.04 0.71 -0.67 -0.11 

Proportion other ethnicity (ucloeth) 1.80† -0.47 1.39 1.29 

Graduate Degree (ugrddgr) 1.67† 1.21 1.23 0.25 

Standard certificate (utq165a) -0.05 -0.72 0.04 0.80 

Percent LEP/ESL students (utq25a) 1.07 0.35 -0.07 0.35 
Percent learning disabled students 
(utq25c) 

0.84 0.95 1.33 0.63 

Measure of content knowledge for 
teaching (uckt4eb) 

1.98* 0.75 -0.39 -0.24 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

0.53 0.13 0.78 0.81 

First principal component course taking 
(uPCcrs) 

2.76** -1.33 1.31 0.64 

First principal component years 
experience (uPCyexp) 

1.64 0.31 0.46 0.34 

First principal component professional 
development (uPCpd) 

0.63 -1.93t 0.29 0.46 

Undergraduate degree in education 
(uunded) 

-0.37 0.59 -0.92 -0.67 

Male teacher (umalet) 0.29 0.39 0.51 0.67 

Caucasian teacher (uwhitet) 0.22 -1.12 -0.52 -0.32 

African American teacher (ublktch) 0.33 1.45 1.22 1.13 

School Variables     

Enrollment (enroll1) -1.40 -0.68 0.85 0.27 

Length of day (dylngt1) -2.58* 1.31 -2.43* -0.30 

America's Choice school (Amer) -1.43 -1.08 -0.39 0.91 

Accelerated Schools (Accel) 0.30 0.54 -0.93 -0.15 

Success for All school (SFA) -0.30 0.80 2.28* 0.23 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Comparison school (Comp) 1.61 -0.22 -0.91 -0.85 

NSF math curriculum in use (nsf_cur) 1.16 -0.50 -1.11 1.14 

Percent African American (prctbl1) -0.71 0.61 -0.11 0.01 
Proportion single parent families 
(snglpmn) 

-0.38 0.62 1.06 0.49 

Proportion of families without sufficient 
clothes (kidclmn) 

-1.08 -1.36 0.79 0.58 

Proportion of families that emphasize 
counting money (cntmny) 

-1.13 -0.01 -1.24 -0.60 

Average number of books in home 
(nobooks) 

0.68 0.13 -0.60 0.76 

Families reads often (oftnrd) -0.21 -0.24 -0.28 0.17 
Families emphasize percent & 
multiplication skills (prctmlt) 

0.63 0.07 1.44 1.15 

Socioeconomic status composite 
(sesmean) 

0.43 0.37 -0.71 0.04 

Teacher average content knowledge for 
teaching (ckt4ebm) 

2.34* -0.08 -1.23 -0.80 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

-0.61 -1.04 -2.44* -0.16 

Proportion of grade repeaters (prepeat) -0.08 -0.20 -0.03 -0.44 
Proportion of problem behaviors reported 
(pqbhprb) 

0.32 0.27 -1.07 -1.22 

Proportion of students in ESL (everESL) 1.65 -0.70 0.34 0.02 
 Imputed Data Set 2    

Class Variables     

Class SES composite (uclses) -0.17 0.60 -0.03 0.73 

Proportion Male (uclmale) 1.52 -0.98 0.01 -0.12 

Proportion Caucasian (uclwhit) -0.60 -0.53 -1.51 -0.65 

Proportion African American (uclblk) -0.99 0.80 0.32 0.32 

Proportion Hispanic (uclhisp) 0.61 -0.33 1.27 -0.04 

Proportion Asian (uclasn) 0.86 0.03 -1.50 -0.26 

Proportion American Indian (uclamrn) -0.04 0.71 -0.67 -0.11 

Proportion other ethnicity (ucloeth) 1.80† -0.47 1.39 1.29 

Graduate Degree (ugrddgr) 1.66† 1.28 1.11 0.17 

Standard certificate (utq165a) 0.03 -0.30 -0.04 0.54 

Percent LEP/ESL students (utq25a) 1.17 0.29 -0.15 0.18 
Percent learning disabled students 
(utq25c) 

0.52 0.39 -0.89 -1.38 

Measure of content knowledge for 
teaching (uckt4eb) 

2.09* 0.94 -0.03 0.26 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

0.43 0.26 0.78 0.81 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

First principal component course taking 
(uPCcrs) 

2.20* -1.52 2.09* 2.02* 

First principal component years 
experience (uPCyexp) 

1.67† 0.21 -0.16 -0.32 

First principal component professional 
development (uPCpd) 

0.11 -1.96† 0.64 1.05 

Undergraduate degree in education 
(uunded) 

-0.13 0.31 -1.09 -0.72 

Male teacher (umalet) 0.66 0.96 0.33 0.40 

Caucasian teacher (uwhitet) 0.42 -0.94 -0.49 -0.48 

African American teacher (ublktch) 0.33 1.35 1.38 1.29 

School Variables     

Enrollment (enroll1) -1.40 -0.68 1.03 0.44 

Length of day (dylngt1) -2.58* 1.31 -2.30* -0.19 

America's Choice school (Amer) -1.43 -1.08 -0.39 0.91 

Accelerated Schools (Accel) 0.30 0.54 -0.93 -0.15 

Success for All school (SFA) -0.30 0.80 2.28* 0.23 

Comparison school (Comp) 1.61 -0.22 -0.91 -0.85 

NSF math curriculum in use (nsf_cur) 1.16 -0.50 -1.29 1.06 

Percent African American (prctbl1) -0.71 0.61 -0.18 -0.05 
Proportion single parent families 
(snglpmn) 

-0.38 0.62 1.06 0.49 

Proportion of families without sufficient 
clothes (kidclmn) 

-1.08 -1.36 0.79 0.58 

Proportion of families that emphasize 
counting money (cntmny) 

-1.13 -0.01 -1.24 -0.60 

Average number of books in home 
(nobooks) 

0.68 0.13 -0.60 0.76 

Families reads often (oftnrd) -0.21 -0.24 -0.28 0.17 
Families emphasize percent & 
multiplication skills (prctmlt) 

0.63 0.07 1.44 1.15 

Socioeconomic status composite 
(sesmean) 

0.43 0.37 -0.71 0.04 

Teacher average content knowledge for 
teaching (ckt4ebm) 

2.34* -0.08 -1.23 -0.80 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

-0.61 -1.04 -2.44* -0.16 

Proportion of grade repeaters (prepeat) -0.08 -0.20 -0.03 -0.44 
Proportion of problem behaviors reported 
(pqbhprb) 

0.32 0.27 -1.07 -1.22 

Proportion of students in ESL (everESL) 1.65 -0.70 0.34 0.02 
 Imputed Data Set 3    

Class Variables     

Class SES composite (uclses) -0.17 0.60 -0.03 0.73 

Proportion Male (uclmale) 1.52 -0.98 0.01 -0.12 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Proportion Caucasian (uclwhit) -0.60 -0.53 -1.51 -0.65 

Proportion African American (uclblk) -0.99 0.80 0.32 0.32 

Proportion Hispanic (uclhisp) 0.61 -0.33 1.27 -0.04 

Proportion Asian (uclasn) 0.86 0.03 -1.50 -0.26 

Proportion American Indian (uclamrn) -0.04 0.71 -0.67 -0.11 

Proportion other ethnicity (ucloeth) 1.80† -0.47 1.39 1.29 

Graduate Degree (ugrddgr) 1.54 0.77 1.18 -0.02 

Standard certificate (utq165a) 0.24 -0.34 0.24 0.63 

Percent LEP/ESL students (utq25a) 0.79 -0.25 0.24 0.66 
Percent learning disabled students 
(utq25c) 

1.01 0.83 0.83 0.18 

Measure of content knowledge for 
teaching (uckt4eb) 

1.59 0.56 -0.76 -0.65 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

0.37 0.21 0.78 0.81 

First principal component course taking 
(uPCcrs) 

1.96† -2.12* 1.54 1.14 

First principal component years 
experience (uPCyexp) 

1.22 -0.07 0.05 -0.12 

First principal component professional 
development (uPCpd) 

-0.05 -2.09* 1.30 1.52 

Undergraduate degree in education 
(uunded) 

-1.06 -0.32 -1.28 -1.14 

Male teacher (umalet) 0.44 0.65 0.78 0.95 

Caucasian teacher (uwhitet) 0.56 -0.69 0.21 0.29 

African American teacher (ublktch) 0.28 1.40 0.65 0.50 

School Variables     

Enrollment (enroll1) -1.40 -0.68 0.95 0.35 

Length of day (dylngt1) -2.58* 1.31 -2.49* -0.37 

America's Choice school (Amer) -1.43 -1.08 -0.39 0.91 

Accelerated Schools (Accel) 0.30 0.54 -0.93 -0.15 

Success for All school (SFA) -0.30 0.80 2.28* 0.23 

Comparison school (Comp) 1.61 -0.22 -0.91 -0.85 

NSF math curriculum in use (nsf_cur) 1.16 -0.50 -1.29 1.06 

Percent African American (prctbl1) -0.71 0.61 -0.17 -0.04 
Proportion single parent families 
(snglpmn) 

-0.38 0.62 1.06 0.49 

Proportion of families without sufficient 
clothes (kidclmn) 

-1.08 -1.36 0.79 0.58 

Proportion of families that emphasize 
counting money (cntmny) 

-1.13 -0.01 -1.24 -0.60 

Average number of books in home 
(nobooks) 

0.68 0.13 -0.60 0.76 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Families reads often (oftnrd) -0.21 -0.24 -0.28 0.17 
Families emphasize percent & 
multiplication skills (prctmlt) 

0.63 0.07 1.44 1.15 

Socioeconomic status composite 
(sesmean) 

0.43 0.37 -0.71 0.04 

Teacher average content knowledge for 
teaching (ckt4ebm) 

2.34* -0.08 -1.23 -0.80 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

-0.61 -1.04 -2.44* -0.16 

Proportion of grade repeaters (prepeat) -0.08 -0.20 -0.03 -0.44 
Proportion of problem behaviors reported 
(pqbhprb) 

0.32 0.27 -1.07 -1.22 

Proportion of students in ESL (everESL) 1.65 -0.70 0.34 0.02 
 Imputed Data Set 4    

Class Variables     

Class SES composite (uclses) -0.17 0.60 0.18 0.83 

Proportion Male (uclmale) 1.52 -0.98 0.01 -0.12 

Proportion Caucasian (uclwhit) -0.60 -0.53 -1.51 -0.65 

Proportion African American (uclblk) -0.99 0.80 0.32 0.32 

Proportion Hispanic (uclhisp) 0.61 -0.33 1.27 -0.04 

Proportion Asian (uclasn) 0.86 0.03 -1.50 -0.26 

Proportion American Indian (uclamrn) -0.04 0.71 -0.67 -0.11 

Proportion other ethnicity (ucloeth) 1.80† -0.47 1.39 1.29 

Graduate Degree (ugrddgr) 1.33 0.64 0.83 -0.22 

Standard certificate (utq165a) 0.48 -0.18 0.49 1.01 

Percent LEP/ESL students (utq25a) 1.13 0.18 0.13 0.16 
Percent learning disabled students 
(utq25c) 

1.18 1.50 1.51 1.03 

Measure of content knowledge for 
teaching (uckt4eb) 

2.13* 1.20 -0.64 -0.39 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

0.45 0.36 0.78 0.81 

First principal component course taking 
(uPCcrs) 

2.15* -1.65 1.92† 1.29 

First principal component years 
experience (uPCyexp) 

1.57 0.09 0.09 -0.06 

First principal component professional 
development (uPCpd) 

0.32 -1.43 0.93 1.39 

Undergraduate degree in education 
(uunded) 

-0.07 0.73 -1.28 -0.82 

Male teacher (umalet) 0.64 0.95 0.10 0.29 

Caucasian teacher (uwhitet) 0.68 -0.44 0.12 0.55 

African American teacher (ublktch) -0.17 0.96 0.63 0.28 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

School Variables     

Enrollment (enroll1) -1.40 -0.68 0.95 0.35 

Length of day (dylngt1) -2.58* 1.31 -2.49* -0.37 

America's Choice school (Amer) -1.43 -1.08 -0.39 0.91 

Accelerated Schools (Accel) 0.30 0.54 -0.93 -0.15 

Success for All school (SFA) -0.30 0.80 2.28* 0.23 

Comparison school (Comp) 1.61 -0.22 -0.91 -0.85 

NSF math curriculum in use (nsf_cur) 1.16 -0.50 -1.29 1.06 

Percent African American (prctbl1) -0.71 0.61 -0.19 -0.06 
Proportion single parent families 
(snglpmn) 

-0.38 0.62 1.06 0.49 

Proportion of families without sufficient 
clothes (kidclmn) 

-1.08 -1.36 0.79 0.58 

Proportion of families that emphasize 
counting money (cntmny) 

-1.13 -0.01 -1.24 -0.60 

Average number of books in home 
(nobooks) 

0.68 0.13 -0.60 0.76 

Families reads often (oftnrd) -0.21 -0.24 -0.28 0.17 
Families emphasize percent & 
multiplication skills (prctmlt) 

0.63 0.07 1.44 1.15 

Socioeconomic status composite 
(sesmean) 

0.43 0.37 -0.71 0.04 

Teacher average content knowledge for 
teaching (ckt4ebm) 

2.34* -0.08 -1.23 -0.80 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

-0.61 -1.04 -2.44* -0.16 

Proportion of grade repeaters (prepeat) -0.08 -0.20 -0.03 -0.44 
Proportion of problem behaviors reported 
(pqbhprb) 

0.32 0.27 -1.07 -1.22 

Proportion of students in ESL (everESL) 1.65 -0.70 0.34 0.02 
 Imputed Data Set 5    

Class Variables     

Class SES composite (uclses) -0.17 0.60 -0.02 0.73 

Proportion Male (uclmale) 1.52 -0.98 0.01 -0.12 

Proportion Caucasian (uclwhit) -0.60 -0.53 -1.51 -0.65 

Proportion African American (uclblk) -0.99 0.80 0.32 0.32 

Proportion Hispanic (uclhisp) 0.61 -0.33 1.27 -0.04 

Proportion Asian (uclasn) 0.86 0.03 -1.50 -0.26 

Proportion American Indian (uclamrn) -0.04 0.71 -0.67 -0.11 

Proportion other ethnicity (ucloeth) 1.80† -0.47 1.39 1.29 

Graduate Degree (ugrddgr) 1.77† 1.32 1.42 0.35 

Standard certificate (utq165a) -0.17 -0.83 0.21 0.80 

Percent LEP/ESL students (utq25a) 1.53 0.88 0.69 0.85 
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Grade 2 

Variables 

Grade 3 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Percent learning disabled students (utq25c) 1.09 1.30 0.84 -0.03 
Measure of content knowledge for 
teaching (uckt4eb) 

1.16 0.36 -0.59 -0.68 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

0.83 0.36 0.78 0.81 

First principal component course taking 
(uPCcrs) 

2.34* -1.39 1.06 0.39 

First principal component years 
experience (uPCyexp) 

1.66† 0.29 0.28 0.26 

First principal component professional 
development (uPCpd) 

-0.58 -2.68** 1.17 1.76t 

Undergraduate degree in education 
(uunded) 

-0.74 0.12 -1.17 -0.94 

Male teacher (umalet) 0.92 1.13 0.65 0.89 

Caucasian teacher (uwhitet) 0.34 -0.94 -0.28 -0.05 

African American teacher (ublktch) 0.14 1.03 1.18 1.11 

School Variables     

Enrollment (enroll1) -1.40 -0.68 1.13 0.54 

Length of day (dylngt1) -2.58* 1.31 -2.43* -0.31 

America's Choice school (Amer) -1.43 -1.08 -0.39 0.91 

Accelerated Schools (Accel) 0.30 0.54 -0.93 -0.15 

Success for All school (SFA) -0.30 0.80 2.28* 0.23 

Comparison school (Comp) 1.61 -0.22 -0.91 -0.85 

NSF math curriculum in use (nsf_cur) 1.16 -0.50 -1.11 1.14 

Percent African American (prctbl1) -0.71 0.61 -0.25 -0.11 
Proportion single parent families 
(snglpmn) 

-0.38 0.62 1.06 0.49 

Proportion of families without sufficient 
clothes (kidclmn) 

-1.08 -1.36 0.79 0.58 

Proportion of families that emphasize 
counting money (cntmny) 

-1.13 -0.01 -1.24 -0.60 

Average number of books in home 
(nobooks) 

0.68 0.13 -0.60 0.76 

Families reads often (oftnrd) -0.21 -0.24 -0.28 0.17 
Families emphasize percent & 
multiplication skills (prctmlt) 

0.63 0.07 1.44 1.15 

Socioeconomic status composite (sesmean) 0.43 0.37 -0.71 0.04 
Teacher average content knowledge for 
teaching (ckt4ebm) 

2.34* -0.08 -1.23 -0.80 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

-0.61 -1.04 -2.44* -0.16 

Proportion of grade repeaters (prepeat) -0.08 -0.20 -0.03 -0.44 
Proportion of problem behaviors reported 
(pqbhprb) 

0.32 0.27 -1.07 -1.22 

Proportion of students in ESL (everESL) 1.65 -0.70 0.34 0.02 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

 Imputed Data Set 1    

Class Variables     

Class SES composite (uclses) -0.01 -0.30 0.32 0.26 

Proportion Male (uclmale) 1.58 -0.79 1.30 -0.15 

Proportion Caucasian (uclwhit) -0.71 -0.61 -0.38 0.91 

Proportion African American (uclblk) -0.74 -0.55 -1.77† 0.31 

Proportion Hispanic (uclhisp) 0.22 0.51 2.38* -0.84 

Proportion Asian (uclasn) 1.82† 0.94 0.65 -0.57 

Proportion American Indian (uclamrn) -1.89† -0.52 0.15 0.96 

Proportion other ethnicity (ucloeth) 0.17 0.41 0.06 -0.42 

Graduate Degree (ugrddgr) 0.62 0.72 0.90 0.19 

Standard certificate (utq165a) 0.28 1.09 1.29 -0.44 

Percent LEP/ESL students (utq25a) 1.06 0.76 0.65 -0.63 
Percent learning disabled students 
(utq25c) 

0.21 0.38 1.46 0.86 

Measure of content knowledge for 
teaching (uckt4eb) 

-0.54 0.27 2.09* -0.54 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

-0.52 -0.01 1.01 -0.05 

First principal component course taking 
(uPCcrs) 

-0.21 0.98 1.01 0.62 

First principal component years 
experience (uPCyexp) 

1.17 1.61 0.17 -0.61 

First principal component professional 
development (uPCpd) 

-0.07 0.11 1.35 1.43 

Undergraduate degree in education 
(uunded) 

-0.91 -1.27 -0.49 -0.48 

Male teacher (umalet) 1.82† -0.27 0.54 0.23 

Caucasian teacher (uwhitet) -2.55* 1.14 0.56 0.69 

African American teacher (ublktch) 0.81 -1.35 -1.37 -0.49 

School Variables     

Enrollment (enroll1) 0.75 -0.04 1.13 -0.05 

Length of day (dylngt1) -0.26 -0.60 -0.26 0.03 

America's Choice school (Amer) 1.12 -0.19 0.01 0.45 

ccelerated Schools (Accel) -1.88† -1.25 0.68 0.16 

Success for All school (SFA) 0.33 -0.41 -0.78 0.17 

Comparison school (Comp) 0.37 1.78† 0.03 -0.73 

NSF math curriculum in use (nsf_cur) 1.46 -0.11 0.62 0.52 

Percent African American (prctbl1) -0.72 -0.97 -1.03 0.34 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Proportion single parent families 
(snglpmn) 

-0.54 -0.01 -0.82 0.67 

Proportion of families without sufficient 
clothes (kidclmn) 

0.41 0.66 1.82† -1.24 

Proportion of families that emphasize 
counting money (cntmny) 

0.25 -0.22 -1.75† 0.20 

Average number of books in home 
(nobooks) 

0.88 0.24 -0.58 0.71 

Families reads often (oftnrd) 1.45 -0.42 -1.46 0.19 
Families emphasize percent & 
multiplication skills (prctmlt) 

1.57 1.33 -0.61 0.11 

Socioeconomic status composite 
(sesmean) 

0.35 -0.19 -0.25 0.00 

Teacher average content knowledge for 
teaching (ckt4ebm) 

-0.05 0.33 0.16 -0.25 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

0.67 0.13 0.05 0.11 

Proportion of grade repeaters (prepeat) -0.24 0.36 -1.58 0.83 
Proportion of problem behaviors reported 
(pqbhprb) 

-1.59 0.43 -0.06 0.27 

Proportion of students in ESL (everESL) 0.81 1.51 1.11 -0.34 
 Imputed Data Set 2    

Class Variables     

Class SES composite (uclses) 0.01 -0.29 0.33 0.26 

Proportion Male (uclmale) 1.58 -0.79 1.30 -0.15 

Proportion Caucasian (uclwhit) -0.71 -0.61 -0.38 0.91 

Proportion African American (uclblk) -0.74 -0.55 -1.77† 0.31 

Proportion Hispanic (uclhisp) 0.22 0.51 2.38* -0.84 

Proportion Asian (uclasn) 1.82† 0.94 0.65 -0.57 

Proportion American Indian (uclamrn) -1.89† -0.52 0.15 0.96 

Proportion other ethnicity (ucloeth) 0.17 0.41 0.06 -0.42 

Graduate Degree (ugrddgr) 0.33 -0.12 0.85 0.01 

Standard certificate (utq165a) -0.70 -0.03 1.02 -1.10 

Percent LEP/ESL students (utq25a) 0.82 0.74 0.63 -0.60 
Percent learning disabled students 
(utq25c) 

0.92 0.63 1.71† 1.23 

Measure of content knowledge for 
teaching (uckt4eb) 

-0.64 -0.35 1.77† -0.80 

First principal component of average 
math, LA, & reading achievement (uPCfach) 

-0.65 -0.06 1.73† 0.63 

First principal component course taking 
(uPCcrs) 

0.29 0.74 0.72 0.57 

First principal component years 
experience (uPCyexp) 

1.06 1.46 0.34 -0.33 

First principal component professional 
development (uPCpd) 

0.06 0.18 1.02 1.22 



  
 

229 
 

 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Undergraduate degree in education 
(uunded) 

-0.81 -0.92 -0.08 -0.07 

Male teacher (umalet) 1.56 -0.39 0.22 -0.33 

Caucasian teacher (uwhitet) -2.67** 1.07 0.60 0.99 

African American teacher (ublktch) 0.92 -1.28 -1.31 -0.77 

School Variables     

Enrollment (enroll1) 0.75 -0.04 1.13 -0.05 

Length of day (dylngt1) -0.26 -0.60 -0.26 0.03 

America's Choice school (Amer) 1.12 -0.19 0.01 0.45 

Accelerated Schools (Accel) -1.88† -1.25 0.68 0.16 

Success for All school (SFA) 0.33 -0.41 -0.78 0.17 

Comparison school (Comp) 0.37 1.78† 0.03 -0.73 

NSF math curriculum in use (nsf_cur) 1.46 -0.11 0.62 0.52 

Percent African American (prctbl1) -0.72 -0.97 -1.03 0.34 
Proportion single parent families 
(snglpmn) 

-0.54 -0.01 -0.82 0.67 

Proportion of families without sufficient 
clothes (kidclmn) 

0.41 0.66 1.82† -1.24 

Proportion of families that emphasize 
counting money (cntmny) 

0.25 -0.22 -1.75† 0.20 

Average number of books in home 
(nobooks) 

0.88 0.24 -0.58 0.71 

Families reads often (oftnrd) 1.45 -0.42 -1.46 0.19 
Families emphasize percent & 
multiplication skills (prctmlt) 

1.57 1.33 -0.61 0.11 

Socioeconomic status composite(sesmean)  0.35 -0.19 -0.25 0.00 
Teacher average content knowledge for 
teaching (ckt4ebm) 

-0.05 0.33 0.16 -0.25 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

0.67 0.13 0.05 0.11 

Proportion of grade repeaters (prepeat) -0.24 0.36 -1.58 0.83 
Proportion of problem behaviors reported 
(pqbhprb) 

-1.59 0.43 -0.06 0.27 

Proportion of students in ESL (everESL) 0.81 1.51 1.11 -0.34 
 Imputed Data Set 3    

Class Variables     

Class SES composite (uclses) -0.01 -0.30 0.33 0.26 

Proportion Male (uclmale) 1.58 -0.79 1.30 -0.15 

Proportion Caucasian (uclwhit) -0.71 -0.61 -0.38 0.91 

Proportion African American (uclblk) -0.74 -0.55 -1.77† 0.31 

Proportion Hispanic (uclhisp) 0.22 0.51 2.38* -0.84 

Proportion Asian (uclasn) 1.82† 0.94 0.65 -0.57 

Proportion American Indian (uclamrn) -1.89† -0.52 0.15 0.96 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Proportion other ethnicity (ucloeth) 0.17 0.41 0.06 -0.42 

Graduate Degree (ugrddgr) 0.02 0.19 0.58 -0.46 

Standard certificate (utq165a) 0.23 1.23 1.50 -0.60 

Percent LEP/ESL students (utq25a) 1.14 0.85 0.66 -0.67 
Percent learning disabled students 
(utq25c) 

0.32 0.26 1.37 0.94 

Measure of content knowledge for 
teaching (uckt4eb) 

-0.87 -0.52 2.39* 0.45 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

-0.62 -0.05 0.22 -0.57 

First principal component course taking 
(uPCcrs) 

0.09 1.81† 0.66 0.28 

First principal component years 
experience (uPCyexp) 

1.14 1.58 0.38 -0.46 

First principal component professional 
development (uPCpd) 

0.20 0.00 1.21 1.40 

Undergraduate degree in education 
(uunded) 

-0.92 -1.20 -0.12 -0.32 

Male teacher (umalet) 1.78† -0.31 0.66 0.27 

Caucasian teacher (uwhitet) -2.14* 1.51 0.59 0.69 

African American teacher (ublktch) 0.41 -1.74† -1.41 -0.63 

School Variables     

Enrollment (enroll1) 0.75 -0.04 1.13 -0.05 

Length of day (dylngt1) -0.26 -0.60 -0.26 0.03 

America's Choice school (Amer) 1.12 -0.19 0.01 0.45 

Accelerated Schools (Accel) -1.88† -1.25 0.68 0.16 

Success for All school (SFA) 0.33 -0.41 -0.78 0.17 

Comparison school (Comp) 0.37 1.78† 0.03 -0.73 

NSF math curriculum in use (nsf_cur) 1.46 -0.11 0.62 0.52 

Percent African American (prctbl1) -0.72 -0.97 -1.03 0.34 
Proportion single parent families 
(snglpmn) 

-0.54 -0.01 -0.82 0.67 

Proportion of families without sufficient 
clothes (kidclmn) 

0.41 0.66 1.82† -1.24 

Proportion of families that emphasize 
counting money (cntmny) 

0.25 -0.22 -1.75† 0.20 

Average number of books in home 
(nobooks) 

0.88 0.24 -0.58 0.71 

Families reads often (oftnrd) 1.45 -0.42 -1.46 0.19 
Families emphasize percent & 
multiplication skills (prctmlt) 

1.57 1.33 -0.61 0.11 

Socioeconomic status composite 
(sesmean) 

0.35 -0.19 -0.25 0.00 

Teacher average content knowledge for 
teaching (ckt4ebm) 

-0.05 0.33 0.16 -0.25 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

0.67 0.13 0.05 0.11 

Proportion of grade repeaters (prepeat) -0.24 0.36 -1.58 0.83 
Proportion of problem behaviors reported 
(pqbhprb) 

-1.59 0.43 -0.06 0.27 

Proportion of students in ESL (everESL) 0.81 1.51 1.11 -0.34 
 Imputed Data Set 4    

Class Variables     

Class SES composite (uclses) 0.01 -0.28 0.32 0.26 

Proportion Male (uclmale) 1.58 -0.79 1.30 -0.15 

Proportion Caucasian (uclwhit) -0.71 -0.61 -0.38 0.91 

Proportion African American (uclblk) -0.74 -0.55 -1.77† 0.31 

Proportion Hispanic (uclhisp) 0.22 0.51 2.38* -0.84 

Proportion Asian (uclasn) 1.82† 0.94 0.65 -0.57 

Proportion American Indian (uclamrn) -1.89† -0.52 0.15 0.96 

Proportion other ethnicity (ucloeth) 0.17 0.41 0.06 -0.42 

Graduate Degree (ugrddgr) 0.77 0.83 1.07 0.54 

Standard certificate (utq165a) -0.02 0.78 1.10 -0.74 

Percent LEP/ESL students (utq25a) 0.98 0.95 0.67 -0.91 
Percent learning disabled students 
(utq25c) 

1.20 1.33 1.71† 0.98 

Measure of content knowledge for 
teaching (uckt4eb) 

-0.63 -0.21 2.27* -0.22 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

-0.54 -0.01 -0.70 -1.24 

First principal component course taking 
(uPCcrs) 

0.56 1.88† 0.54 0.26 

First principal component years 
experience (uPCyexp) 

1.22 1.40 -0.19 -1.02 

First principal component professional 
development (uPCpd) 

-0.75 -0.41 0.44 0.48 

Undergraduate degree in education 
(uunded) 

-0.89 -0.90 -0.40 -0.82 

Male teacher (umalet) 1.66† -0.16 0.47 0.19 

Caucasian teacher (uwhitet) -2.12* 1.56 0.65 0.86 

African American teacher (ublktch) 0.45 -1.72† -1.47 -0.63 

School Variables     

Enrollment (enroll1) 0.75 -0.04 1.13 -0.05 

Length of day (dylngt1) -0.26 -0.60 -0.26 0.03 

America's Choice school (Amer) 1.12 -0.19 0.01 0.45 

Accelerated Schools (Accel) -1.88† -1.25 0.68 0.16 

Success for All school (SFA) 0.33 -0.41 -0.78 0.17 

Comparison school (Comp) 0.37 1.78† 0.03 -0.73 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

NSF math curriculum in use (nsf_cur) 1.46 -0.11 0.62 0.52 

Percent African American (prctbl1) -0.72 -0.97 -1.03 0.34 
Proportion single parent families 
(snglpmn) 

-0.54 -0.01 -0.82 0.67 

Proportion of families without sufficient 
clothes (kidclmn) 

0.41 0.66 1.82† -1.24 

Proportion of families that emphasize 
counting money (cntmny) 

0.25 -0.22 -1.75† 0.20 

Average number of books in home 
(nobooks) 

0.88 0.24 -0.58 0.71 

Families reads often (oftnrd) 1.45 -0.42 -1.46 0.19 
Families emphasize percent & 
multiplication skills (prctmlt) 

1.57 1.33 -0.61 0.11 

Socioeconomic status composite 
(sesmean) 

0.35 -0.19 -0.25 0.00 

Teacher average content knowledge for 
teaching (ckt4ebm) 

-0.05 0.33 0.16 -0.25 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

0.67 0.13 0.05 0.11 

Proportion of grade repeaters (prepeat) -0.24 0.36 -1.58 0.83 
Proportion of problem behaviors reported 
(pqbhprb) 

-1.59 0.43 -0.06 0.27 

Proportion of students in ESL (everESL) 0.81 1.51 1.11 -0.34 
 Imputed Data Set 5    

Class Variables     

Class SES composite (uclses) -0.02 -0.30 0.33 0.26 

Proportion Male (uclmale) 1.58 -0.79 1.30 -0.15 

Proportion Caucasian (uclwhit) -0.71 -0.61 -0.38 0.91 

Proportion African American (uclblk) -0.74 -0.55 -1.77† 0.31 

Proportion Hispanic (uclhisp) 0.22 0.51 2.38* -0.84 

Proportion Asian (uclasn) 1.82† 0.94 0.65 -0.57 

Proportion American Indian (uclamrn) -1.89† -0.52 0.15 0.96 

Proportion other ethnicity (ucloeth) 0.17 0.41 0.06 -0.42 

Graduate Degree (ugrddgr) 0.37 0.55 0.70 -0.24 

Standard certificate (utq165a) 0.14 1.16 1.14 -1.21 

Percent LEP/ESL students (utq25a) 0.80 0.66 1.02 -0.35 
Percent learning disabled students 
(utq25c) 

0.85 1.24 1.43 0.91 

Measure of content knowledge for 
teaching (uckt4eb) 

-0.53 0.09 1.89† -0.85 

First principal component of average 
math, LA, & reading achievement 
(uPCfach) 

-0.51 0.01 0.93 -0.90 

First principal component course taking 
(uPCcrs) 

-0.66 0.80 0.54 0.06 
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 Grade 4 

Variables 

Grade 5 
Uncond. t 
Statisticb 

Cond. t 
Statistic 

Uncond. t 
Statisticb 

Cond. t 
Statistic 

First principal component years 
experience (uPCyexp) 

1.07 1.51 0.59 -0.36 

First principal component professional 
development (uPCpd) 

-0.12 0.19 1.03 0.88 

Undergraduate degree in education 
(uunded) 

-0.98 -1.54 -0.29 -0.68 

Male teacher (umalet) 1.86† -0.03 0.31 -0.13 

Caucasian teacher (uwhitet) -2.27* 1.34 0.72 0.80 

African American teacher (ublktch) 0.60 -1.54 -1.47 -0.63 

School Variables     

Enrollment (enroll1) 0.75 -0.04 1.13 -0.05 

Length of day (dylngt1) -0.26 -0.60 -0.26 0.03 

America's Choice school (Amer) 1.12 -0.19 0.01 0.45 

Accelerated Schools (Accel) -1.88† -1.25 0.68 0.16 

Success for All school (SFA) 0.33 -0.41 -0.78 0.17 

Comparison school (Comp) 0.37 1.78† 0.03 -0.73 

NSF math curriculum in use (nsf_cur) 1.46 -0.11 0.62 0.52 

Percent African American (prctbl1) -0.72 -0.97 -1.03 0.34 
Proportion single parent families 
(snglpmn) 

-0.54 -0.01 -0.82 0.67 

Proportion of families without sufficient 
clothes (kidclmn) 

0.41 0.66 1.82† -1.24 

Proportion of families that emphasize 
counting money (cntmny) 

0.25 -0.22 -1.75† 0.20 

Average number of books in home 
(nobooks) 

0.88 0.24 -0.58 0.71 

Families reads often (oftnrd) 1.45 -0.42 -1.46 0.19 
Families emphasize percent & 
multiplication skills (prctmlt) 

1.57 1.33 -0.61 0.11 

Socioeconomic status composite 
(sesmean) 

0.35 -0.19 -0.25 0.00 

Teacher average content knowledge for 
teaching (ckt4ebm) 

-0.05 0.33 0.16 -0.25 

Average Woodcock Johnson mathematics 
score from kindergarten school (wj_mat1) 

0.67 0.13 0.05 0.11 

Proportion of grade repeaters (prepeat) -0.24 0.36 -1.58 0.83 
Proportion of problem behaviors reported 
(pqbhprb) 

-1.59 0.43 -0.06 0.27 

Proportion of students in ESL (everESL) 0.81 1.51 1.11 -0.34 
a Results from t-test comparing associations between pre-treatment covariates and 
receiving common instructional approach versus blended instructional approach from 2 
Level HLM models: results for unconditional models and conditional models controlling 
for 5 strata 

b t statistic reported for equal variances assumed. 
c Binary variable with Pearson Chi-Square statistic reported. 
†p < .1, *p < .05, **p < .01, ***p < .001. 
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