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ABSTRACT

FAILURE MODE INTERACTION IN FIBER REINFORCED LAMINATED
COMPOSITES

by

Pavana Prabhakar

Chair: Anthony M Waas

A novel computational modeling framework to predict the compressive strength of

fiber reinforced polymer matrix composite (FRPC) laminates has been presented.

The model development has been motivated by a set of experimental results on the

compression response of two different FRPCs. The model accounts for failure mode

interaction between kink-banding and interface fracture (or delamination), which are

observed in the experimental results. To reduce the size of the computational model,

those interfaces that are most susceptible to delamination are first determined through

a free-edge stress analysis. Furthermore, off-axis layers, which are passive in the

failure process are represented through an equivalent homogenized model, but the

microstructural features of the on-axis layers (zero plies) are retained in the compu-

tational model. The predictions of the model matched well with the experimental

observations, and they were found to accurately account for failure mechanism inter-

actions. Therefore, this model has the potential to replace the need to carry out large

numbers of tests to obtain the compressive strength allowable for FRPC laminates,

the latter allowable being an essential element in the design of lightweight FRPC

xvii



aerostructures.

Furthermore, the thesis presents a new computational model to predict fiber-

matrix splitting failure, a failure mode that is frequently observed in in-plane tensile

failure of FRPC’s. By considering a single lamina, this failure mechanism was seam-

lessly modeled through the development of a continuum-decohesive finite element

(CDFE). The CDFE was motivated by the variational multiscale cohesive method

(VMCM) presented earlier by Rudraraju et al. (2010) at the University of Michigan.

In the CDFE, the transition from a continuum to a non-continuum is modeled directly

(physically) without resorting to enrichment of the shape functions of the element.

Thus, the CDFE is a natural merger between cohesive elements and continuum el-

ements. The predictions of the CDFE method were also found to be in very good

agreement with corresponding experimental observations.
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CHAPTER I

Introduction

Composite materials are “hybrid” material systems which consist of two or more

monolithic constituent materials that retain their individual identities, but result

in a material with improved physical properties compared to the properties of the

individual constituents. The constituent materials do not diffuse completely into

each other, but instead retain their chemical, physical and mechanical properties.

This is different from the composition of metallic alloys. Composite materials used in

the aerospace industry are superior to bulk materials because of their high strength

and stiffness to weight ratio [Blockley and Shyy (2010)]. This is because an aerospace

grade composite material generally consists of a reinforcing phase that improves the

strength and stiffness, and a matrix phase (the binder) which is relatively less stiff.

In many applications, a fiber or a particulate is used as a reinforcement, resulting

in fiber composites or particulate composites. Due to processing difficulties of uni-

formly dispersing the particulate reinforcement, particulate composites contain less

reinforcement as compared to fiber composites, and therefore are weaker and less stiff

than fiber composites.

Fiber composites can be broadly classified into two types : continuous fiber com-

posites with fibers that are relatively long (compared to their cross-sectional dimen-

sion) and discontinuous composites with fibers that are short and discontinuous with
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(a) (b)

(c)

Figure 1.1: Types of fiber reinforced composites; (a) Particulate composite, (b) Dis-
continuous fiber composite, (c) Continuous fiber composite

small aspect ratios (the length to fiber diameter ratio). Continuous fiber composites

usually have a preferred direction, whereas discontinuous fiber composites typically

have random orientation of fibers. Fig. 1.1 shows some examples of particle, discon-

tinuous and continuous fiber composites.

As mentioned earlier, in continuous fiber composites, the fibers impart a spe-

cific direction or orientation to the resulting fiber/matrix material system, forming

a lamina. These individual lamina are stacked on top of each other with a specific

direction, and consolidated together to form multidirectional laminates. If all the

individual lamina have the same orientation, then the resulting laminate is called

a unidirectional laminate, and they are referred to as multidirectional laminates if

the individual lamina have different orientations. Fig. 1.2(a) and Fig. 1.2(b) show

unidirectional and multidirectional laminates, respectively.

In the current work, multidirectional continuous fiber composites with carbon fiber

reinforcements and polymer matrix material are considered. They are also known as
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(a) (b)

Figure 1.2: (a) Unidirectional laminate and (b) Multidirectional laminate

fiber reinforced polymer matrix composites (FRPC). In a real laminate (as opposed

to the idealization shown in Fig. 1.2(a) and Fig. 1.2(b)), a resin rich region forms

at the interface between the lamina. This is shown in Fig. 1.3, where for most of

the lamina thickness, the fibers are densely packed, however, as the lamina stacking

changes, a finite but non-negligible resin rich layer is seen to emerge. As indicated in

Fig. 1.3, a typical lamina thickness ≈ 188 µm, while the resin rich region is ≈ 24 µm

.

Figure 1.3: Multidirectional laminate with matrix rich layer between lamina

Some of the common failure mechanisms observed in FRPC as relevant to this
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thesis are discussed in Section1.1.

1.1 Common Failure Mechanisms in Fiber-reinforced Lami-

nates

Due to the presence of fiber and matrix in a FRPC, different failure mechanisms

characteristic of the constituents are observed when the FRPC is subjected to different

types of load profiles. Some common failure mechanisms observed when a laminate

is subjected to compressive loading are kink band formation in the lamina that are

aligned with the loading direction, matrix micro-cracking and delamination between

laminae. Kink band formation (Fig. 1.4) is an instability caused by the axial loading

on the “zero” fibers in a lamina. In addition, a mismatch in the properties of adjacent

layers causes stress concentration between laminae, resulting in the interface matrix

rich region to damage and create new surfaces by releasing energy. This type of failure

is referred to as delamination (Fig. 1.5) failure. A combination of both kinking and

delamination is observed at failure, as shown in Fig. 1.6.

Figure 1.4: An image of a kink band that shows a band of fibers that have locally
rotated with respect to other fibers that are aligned with the loading
direction (with permission from Paul Davidson)
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Figure 1.5: Delamination

Figure 1.6: Kink band with delamination (with permission from Paul Davidson)

Under a combination of transverse and/or shear loading, matrix damage occurs

within a lamina resulting in transverse cracks (Fig. 1.7), or also called matrix cracks.

The crack paths are influenced by the presence of fibers in a lamina, and the cracks

propagate rapidly to reach the free surface of the ply. Many small matrix cracks

coalesce to form a large macroscopic matrix crack.
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Figure 1.7: Matrix micro-cracking (with permission from Amit Salvi [Ng et al.
(2010)])

1.2 Compressive Strength Allowable in Laminated Compos-

ites

The failure mechanisms mentioned above influence the load carrying capacity (also

called “strength allowable”) of the composites. These strength allowables are critical

in designing structural components made of FRPC. Compressive strength allowables

are one of the most significant design parameters in aerospace structures. The higher

the compressive strength, the better the FRPC component is for aerospace structural

components.

Fiber kink banding has been identified as a compressive strength limiting mecha-

nism in FRPC’s that are finding increasing use in lightweight aerostructures, [Schulthe-

isz and Waas (1996) and Waas and Schultheisz (1996)]. While early studies deter-

mined that the compressive strength can be determined by a knowledge of the shear

nonlinearity (the shear response, in the 1-2 plane of a lamina, where ‘1’ denotes the

fiber direction) in the stress-strain response of a lamina in tandem with a knowledge

of initial fiber misalignment [Budiansky and Fleck (1993) and Schapery (1995)], it

was later determined through a combination of experiments and numerical modeling

6



that kink band formation is an evolutionary process, which is governed by the local

stress state (including stress multi-axiality), details of the material constitutive re-

sponse and the fiber misalignment angles, as explained in the studies by Sun and Jun

(1994), Kyriakides et al. (1995), Lee and Waas (1999), Vogler et al. (2001), Yerra-

malli and Waas (2003), Yerramalli and Waas (2004a), Basu et al. (2006), Pimenta

et al. (2009a,b), Feld et al. (2011). As loading proceeds, regions of fiber misalign-

ment in the composite undergo deformation due to combined compression, tension

and shear loading in general. This region is surrounded by other material whose

deformation characteristics, in general, are different. The progressively increasing

local fiber misalignment coupled with shear behavior that exhibits a progressively

decreasing tangent shear modulus, perpetuates a local limit-load type instability that

initiates a rapid formation of a kink band. During this formation, the external trac-

tions required to support the structure, in general, decrease, indicating an instability.

The regions within the band undergo large straining, while material outside the band

relaxes and unloads. Consequently, the mechanics of this process are related to the

local microstructural details, geometry and volumes of materials that are within the

band and that are outside the band.

Lee and Waas (1999), Lee et al. (2000), Vogler et al. (2001), and Pimenta et al.

(2009a,b), have shown that kink-band formation can also involve splitting in com-

bination or in isolation of the band formation. Lee and Waas (1999) studied the

effect of fiber volume fraction on the compressive failure mode, while Yerramalli and

Waas (2003) studied the effect of fiber type and load multi-axiality on failure. In

both of these studies, energy released by splitting failure in combination with kinking

was identified as contributing to the failure mechanism. Since the strains within the

band can become in excess of the tolerable strain limits of the matrix and/or the

fiber/matrix interface, it is conceivable that energy released by splitting is another

mechanism by which energy is dissipated in the process of kink-band formation, in
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addition to the nonlinear volumetric energy released by the matrix.

The formation of kink banding as an energy release mechanism in limiting the

compressive strength of laminates with cut-outs has previously been addressed by

Waas et al. (1990), Ahn and Waas (1999), Ahn and Waas (2002), and Berbinau

et al. (1999), while the influence of fiber waviness on compressive failure of unidi-

rectional laminates has been studied by Wisnom (1994). Micromechanical models

to predict the compressive strength of composites have been proposed by Naik and

Kumar (1999), and Xu and Reifsnider (1993), while the high strain rate response in

compression has been addressed in Guedes et al. (2008), Ochola et al. (2004), Pintado

et al. (2001) and Hosur et al. (2001).

A large part of this thesis is concerned with the interaction between delamination

and kink-banding in the compressive failure of multidirectional composites, studied

using a finite element model representation of the composite. FRPCs, when subjected

to compression, exhibit different types of failure mechanisms, namely, microbuckling

leading to kinking, delamination, and matrix damage. These modes of failure occur

either separately or simultaneously depending on the loading, and they affect the

global response of the laminate. Therefore, it is of importance to study the interaction

among these different types of failure mechanisms and to understand the influence of

different layer stacking on limiting compressive strength.

Multidirectional carbon fiber reinforced polymer (CFRP) matrix laminates are

considered in this thesis, and the effects of the microstructure of the different laminae

are embedded in a semi-homogenized representation of the laminate. Compressive

strength prediction, and the study of the influence of failure mechanisms on the com-

pressive strength, are major focuses of this thesis. Two of the main failure mechanisms

observed through experiments are considered for modeling, namely kinking and de-

lamination. While delamination is governed by the fracture properties of the matrix

and/or fiber matrix interface, the kink banding is governed by the nonlinear response
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of the matrix material in a misaligned fiber composite, Yerramalli and Waas (2004b).

The effect of the stacking sequence on the compressive strength of multidirectional

laminates is first studied through a set of experiments, and the experimental results

are used to motivate the model development. A semi-homogenized laminate model

accounting for kinking and delamination modes of failure is investigated. In order to

allow for delamination in the computational model, interface elements are introduced

in the inter-laminar regions.

1.3 Splitting Failure in Laminates

Splitting is a failure mechanism observed in laminates, and to distinguish it from

delamination, the word “splitting” refers to failure in the matrix within a lamina and

parallel to the fiber direction. Due to the presence of fibers in a lamina, the matrix

between the fibers often undergo damage, and cracks can easily propagate though

the matrix along the fiber. A novel continuum-decohesive finite element (CDFE)

method is formulated to model fiber-matrix splitting failure in fiber-reinforced com-

posite materials. Several methods have been proposed previously to model failure

in the post-peak regime. For failure by fracture, if the crack path is known a-priori,

cohesive zone models have shown promising results. These elements adopt a non-

linear traction separation law across the crack faces [Pietruszczak and Mroz (1981);

Ungsuwarungsri and Knauss (1987); Song and Waas (1993); Schellekens and DeBorst

(1993); Xu and Needleman (1994); Camacho and Ortiz (1996); Xie and Waas (2006);

Xie et al. (2006)], and have zero thickness. They are added along the pre-ordained

direction of crack propagation. In order to overcome this limitation, element en-

riched finite elements [Armero and Garikipati (1996); Garikipati and Hughes (1998);

Jirasek (2000)] and nodal enriched finite elements [Moes et al. (1999); Moes and Be-

lytschko (2002)] have gained popularity, where discontinuities are embedded in the

finite elements through shape functions. The Variational Multiscale Cohesive Method
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(VMCM) is an element enrichment method where the cohesive law is embedded into

continuum elements through discontinuous shape functions. This method has been

successfully demonstrated previously by Rudraraju et al. (2010).

The current CDFE formulation is motivated by the VMCM, but the element

fracturing, modeled as a sharp discontinuity, is carried out directly (physically) as

opposed to enriching through the shape functions. In the CDFE approach, the fine

scale is seen to emerge upon satisfaction of a failure initiation criterion, which is the

onset of departure from a continuum description. The formulation is such that any

additional degrees of freedom associated with the fine scale in the CDFE are con-

densed out, so that the equivalent stiffness matrix and force vector corresponding

to the original nodal displacements of the element are maintained, providing com-

putational efficiency. Thus, in the CDFE, the global degrees of freedom are fixed,

regardless of the number of cracks (in a multiple cracking situation), much like the

VMCM, but the method still captures mesh objective failure due to sharp cracks.

The two sub-elements of a fractured element communicate through a traction-law

that embeds the fracture properties of the newly created fracture surfaces. Because

of this, the CDFE is unlike the crack-band model, Bazant and Oh (1983), and is also

different from the smeared crack approach [Rots et al. (1985); Heinrich and Waas

(2012)].

The CDFE method is demonstrated in this thesis by modeling an open hole tension

test of a unidirectional lamina. Laminae, with fibers oriented at different angles to

the loading direction (0,45,90) and containing a central circular hole are subjected to

remote tensile loading. The ensuing deformation response, which includes the emer-

gence of a sharp crack along the weak matrix layers between the fibers, is captured.

The predictions are seen to agree with the corresponding experimental results.
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1.4 Main Contributions and Organization of the Thesis

In this thesis, novel computational models to predict the compressive strength

of FRPCs have been presented. The model development was motivated by a set of

experimental results on two types of FRPC laminates. The model predictions are

found to agree with experimental observations and account for failure mechanism in-

teractions. Therefore, the model has potential to replace the need to carry out a large

number of tests to obtain the compressive strength allowable for FRPC laminates,

an essential requirement in the design of lightweight FRPC aerostructures. Further-

more, fiber-matrix splitting, a failure mode that is frequently observed in in-plane

tensile failure of FRPCs was seamlessly modeled through the development of a novel

continuum-decohesive finite element (CDFE) method, which was motivated by the

variational multiscale cohesive method (VMCM) presented earlier by Rudraraju et al.

(2010). The predictions of the CDFE method were also seen to be in good agreement

with experimental observations. Fundamental material and fracture parameters that

are needed to implement the model were measured for the FRPC material system,

which was used throughout the thesis studies.

The dissertation is organized as follows; Chapter II provides a detailed description

of the semi-homogenizing technique for the lamina in a laminate. Next, in Chapter III,

a finite element method formulation to determine the delamination prone interfaces

in a laminate is described. In order to model the interfaces in a multidirectional

laminate, interface elements (DCZM) are introduced in Chapter IV, and the coupon

level tests that are required to determine the input properties for implementing the

element are described. Chapter V presents the results for the compressive response

of two laminates with different stacking sequences. The computational model pre-

dictions are seen to match well with experimentally observed failure mechanisms and

compressive strengths. Preliminary work conducted towards interactive failure be-

tween kinking and splitting in unidirectional laminate is presented in Appendix B.
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In Chapter VI, the continuum-decohesive finite element (CDFE) method to capture

splitting in fiber-reinforced lamina is formulated, and predictive results are presented

along with corresponding experimental results. Then, the dissertation concludes with

Chapter VII, which provides a summary of the main findings and suggestions for fu-

ture work.
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CHAPTER II

Homogenizing Technique to Determine the

Compressive Strength of Laminated Composites

2.1 Introduction

In this chapter, a homogenizing technique is introduced for laminates. Multidi-

rectional carbon fiber reinforced polymer (CFRP) matrix laminates are considered

here, and the effects of the microstructure are embedded in the homogenized off-axis

laminae of the laminate. This chapter is concerned with the effects of homogenizing

the laminae on the compressive kink-banding instability, investigated by comparing a

micro-mechanics based 3D finite element model representation of the composite with

the semi-homogenized model. While delamination is governed by the fracture prop-

erties of the matrix and/or fiber matrix interface, the kink banding is governed by

the nonlinear response of the matrix material in a misaligned fiber composite, Yerra-

malli and Waas (2004b). Here, the inter-laminar delamination is not accounted for.

Instead the focus is the effect of homogenizing laminae on the predicted compressive

strength, limited by the kink-banding instability. This semi-homogenized model will

be used in conjunction with interface elements to include delamination prediction

capability in the model, as shown later in Chapter V.
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2.2 Discrete Fiber-matrix Model

An 8-layered 3-D finite element micro-mechanical model of a CFRP laminate is

created with a layup of [−45/+ 45/90/0]s. This 8 layer stack is a repeat unit that is

representative of a bigger laminate. Each lamina is a hexagonally packed transversely

isotropic layer having three rows of fibers. The fiber diameter and the volume fraction

are 6 µm and 0.49, respectively. These laminae are scaled layers that capture these

two features but do not have the same thickness as the laminae in an actual laminate.

Fig. 2.1 shows the scale model simplification of the laminate, where red, cream, blue

and green regions are fibers in -45, +45, 90 and 0 degrees, and the rest is the matrix

material.

Figure 2.1: 8-layered 3-D finite element model of the laminate with discrete fibers
and matrix

The fibers are modeled as elastic transversely isotropic material, and the cor-

responding properties are given in Table 2.1 (Lee and Waas (1999)). The matrix
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is modeled as an elastic-plastic isotropic material, and the equivalent stress-strain

response is as shown in Fig. 2.2 (Ng et al. (2010)).

Table 2.1: Fiber properties (Lee and Waas (1999))
E11(GPa) E22(GPa) E33(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ν13 ν23

276 8.76 8.76 12.0 12.0 3.244 0.35 0.35 0.35
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Figure 2.2: Equivalent stress-strain response of the matrix Ng et al. (2010)

A schematic of the model, shown in Fig. 2.3 is further used to describe the bound-

ary conditions and the loading on the model. The edge AE of the model is prevented

from motion in the z-direction, and the corner E is fixed against moving in the global

x, y and z-directions. The face BFGC is subjected to compression along the negative

x-direction in a displacement control manner. The faces ABCD and EFGH are held

flat but are allowed to expand or contract in the y-direction. Also, the faces ABCD

and EFGH deform exactly the same way in the x and z-directions. This enables the

use of one representative unit cell in the y-direction, along with preserving a constant

initial stiffness of the laminate, regardless of the width of the model.
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Figure 2.3: A schematic of the laminate model to describe boundary conditions and
loading

The Riks method option available in ABAQUS v6.10, which is an arc-length so-

lution scheme, is adopted to conduct the compressive response analysis. As shown in

previous studies (Beghini et al. (2006)), this method captures unstable equilibrium

paths (path in the load vs. loaded edge displacement graph that may show snap-back

response) that can occur at limit points, as will be discussed later.

The model is meshed with 3-D tetrahedral and hexahedral elements (C3D4 and

C3D8 in ABAQUS v6.10). A slight imperfection is imparted to the model to account

for fiber misalignment. Previous work (Yurgartis (1987)) has shown that initial mis-

alignment angles of 1 to 2 degrees of the zero laminae bound the distribution of fiber

misalignment that is typical of carbon fiber reinforced pre-preg aerospace laminates.

The first buckling mode of the laminate is determined by a linear perturbation anal-

ysis. Due to the boundary conditions prescribed, the buckling occurs only in the x-z

plane, and any buckling in the x-y plane is suppressed. The buckling analysis gives a

mode shape with a value of angle of imperfection defined as θ, where θ = δ
L

, as shown

in Fig. 2.4. This shape is scaled to make θ equal to a required angle of imperfection.

The initial state in the compression analysis is stress free. The model is seeded

with fiber misalignment angles (θ) of 10, 1.50 and 20, and subjected to compression.
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Figure 2.4: Laminate model to describe angle of imperfection

The macroscopic compressive stress-strain response for each case is plotted in Fig. 2.5.

Here, macroscopic stress is defined as the total resultant x-direction reaction force on

the face BFGC divided by the product of the width BF and thickness BC, while the

macroscopic strain is defined as the total contraction (change in length between the

faces BFGC and AEHD) divided by the initial length AB (refer to Fig. 2.3).
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Figure 2.5: Global compressive stress-strain response of the discrete fiber-matrix
model
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Initially, the micro-laminate response is linear until close to a maximum stress

(limit stress) at which the non-linearity of the matrix becomes dominant, and a slight

snap-back in the response is observed for small imperfection angles. As the misalign-

ment angle increases, this snap back decreases and the peak stress also diminishes.

The peak stress corresponding to the misalignment range, 10-20 (practical range of

misalignment of the zero layers in laminates) is in the range of 515-677 MPa (compa-

rable to compressive strengths obtained from experiments, and reported in Prabhakar

and Waas (2012a)). The initial (linear) stiffness of the response shown in Fig. 2.5 is

approximately 48.5 ± 0.2 GPa.

2.3 Mathematical Formulation of the Upscaling Technique

The concentric cylinder model (CCM) approach is used to homogenize the fiber

- matrix system in a lamina of a laminate. The inner cylinder is the fiber and the

outer cylinder is the matrix, as shown in Fig. 2.6.

Figure 2.6: A sketch of the concentric cylinder model

The homogenized elastic properties of the lamina are determined by using the

well established equations of the concentric cylinder model, given in Appendix A.
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Beyond the elastic regime, the homogenized lamina material is represented using

Hill’s anisotropic potential (refer to Lubliner (2008)) given by,

f = F (σ22−σ33)2 +G(σ33−σ11)2 +H(σ11−σ22)2 +2Lτ 2
23 +2Mτ 2

31 +2Nτ 2
12 = constant

(2.1)

where F, G, H, L, M and N are the relative ease/difficulty of yielding in different

directions due to anisotropy in laminates created by the presence of orthotropic fibers

in an isotropic matrix. These constants are defined as,
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where, Rij=(σ′ij)/σ0 for i=j=1,2,3 and Rij=(τ ′ij)/τ0 for i 6=j=1,2,3. Here, σ′11 , σ′22

, σ′33 , τ ′12 , τ ′13 , τ ′23 are the yield strengths due to corresponding uniaxial loading,

and σ0 and τ0 are reference yield normal and shear stresses. In order to obtain the

constants of Hill’s potential, the stress-strain responses corresponding to different

uniaxial strain histories of the homogenized lamina are needed. This will provide

the corresponding yield strengths. To homogenize the lamina beyond the elastic

regime, the same equations corresponding to the elastic regime are extended into

the inelastic regime using a series of values of secant moduli of the pure matrix

material as opposed to a single value of elastic modulus. That is, ′E ′m of the matrix

is not a single value, but a series of values ′E ′s, where Es is the secant modulus of

the pure matrix as shown in Fig. 2.2. By substituting this series of values of ′E ′s in

expressions for E11, E22,G12,G23 obtained from the CCM, we obtain the corresponding

series of values for these constants as a function of stress (or strain), based on the
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assumption of stress based or strain based formulation of the CCM methodology.

Here, E11(fiber dominated) is strain based, and E22,G12 and G23(matrix dominated)

are stress based calculations. This implies that matrix dominated properties are

expressed as a function of stress, while fiber dominated properties are expressed as a

function of strain. The stress-strain response corresponding to the above properties

are then constructed. From these stress-strain responses, the yield strength in tension

and shear along each direction and each plane, respectively, are obtained. The 2-

direction is taken to be the reference direction. Therefore, σ0 = σ′22. The constants

F, G, H, N, M and L defined above are determined, and used in Hill’s plasticity

potential available in ABAQUS (ABAQUS (6.10)). It should be noted that plasticity

is one of the many ways to approximate nonlinearity of the matrix material, and is

chosen in the present study.

2.4 Upscaled Laminate Model

The upscaled homogenized model consists of 8-layers of laminae (see Fig. 2.7),

where the off-axis layers i.e. -450,450,900 layers are homogenized using the technique

mentioned in the previous section. Here, the red, cream and blue regions are the

homogenized -45, +45 and 90 degree laminae. Micro-mechanics is maintained in the 00

layers, as they are the load bearing layers and are responsible for kink band formation

in multidirectional laminates. Therefore, the regions in green are the 0 degree fibers,

and regions in grey are the matrix in 0 degree lamina. The imperfections imparted,

boundary conditions and loading applied are identical to the discrete fiber-matrix

model explained before.

The homogenized elastic lamina properties of the off-axis laminae corresponding

to a volume fraction of 0.49 and the constituent material properties (Table 2.1 and

Fig. 2.2), are given in Table 2.2. The constants Rij required to calculate the potential

constants of Hill’s plasticity are tabulated in Table 2.3 (note that R11 is chosen to
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Figure 2.7: 8-layered 3-D finite element model of the laminate with homogenized off-
axis laminae

be an arbitrarily high value since the 1-direction of the lamina is assumed to be

elastic throughout due to very high E11 of the fibers, and hence does not possess a

finite yield strength). These properties are applied to off-axis laminae in their rotated

coordinates accounting for their ply orientations.

Table 2.2: Elastic homogenized lamina properties
E11(GPa) E22(GPa) E33(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ν13 ν23

136.8 5.4 5.4 2.5 2.5 1.7 0.42 0.42 0.57

Table 2.3: Values of Rij for calculating Hill’s potential constants

R11 R22 R33 R12 R13 R23

18876.5 1.0 1.0 0.95 0.95 1.15

With the values of Hill’s potential constants and lamina elastic properties deter-

mined, a plot showing the axial, transverse, and shear responses of a homogenized ply
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Figure 2.8: Stress-strain responses of a homogenized ply

is shown in Fig. 2.8. It is observed that the response in the axial direction is linear

since it depends on the axial stiffness of the fibers, which is very high compared to

the stiffness of matrix. The transverse and shear responses are non-linear due to the

elasto-plasticity of the matrix.

An imperfection sensitivity analysis similar to that of the discrete fiber-matrix

model is carried out here. The stress-strain response of the laminate subjected to

compressive loading corresponding to imperfection angles of 10, 1.50 and 20 are plotted

in Fig. 2.9. The initial stiffness is approximately 48.3 ± 0.2 GPa and the peak stresses

are in a range 536-687 MPa.

2.5 Comparison of Discrete Fiber-matrix Model with the

Upscaled Semi-homogenized Model

The deformation plots of both the discrete fiber-matrix model and the upscaled

semi-homogenized model are plotted in Fig. 2.11 and Fig. 2.12, with an initial imper-

fection angle of 1.00, at different loading stages. The contours represent the equivalent
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Figure 2.9: Global compressive stress-strain response of the semi-homogenized model

stress (defined as
√

3
2
S : S, where S is the deviatoric stress tensor) in the laminates.

In order to compare the global stress-strain response more closely, the global stress-

strain responses of both the models corresponding to an imperfection of 10 are shown

in Fig. 2.10. It is observed that the initial linear stiffnesses match well, and the peak

stresses are comparable. The percentage difference in peak stress values vary between

2-4 % for different imperfections.

A further discussion on the kink band formation in the two models is presented

here. In Fig. 2.11, the model appears to form a kink band at and after the peak

load, along with micro-buckling of the 00 fibers. In Fig. 2.12, micro-buckling of 00

fibers is also observed in 00 layers, as they are the primary load bearing laminae. In

either case, failure by kinking is captured, though the post peak snap back behavior

in the fiber-matrix model is more gradual than in the semi-homogenized model. This

can be attributed to the homogenized off-axis layers, which impart relatively more
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Figure 2.10: Global stress-strain response of both discrete fiber-matrix and upscaled
models with an initial imperfection of 10

Figure 2.11: Global stress-strain response with deformation plots at different loading
stages of the discrete fiber matrix model
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Figure 2.12: Global stress-strain response with deformation plots at different loading
stages of the semi-homogenized model

constraint on the 0 degree layers making the kink-bank width more localized than in

the discrete fiber matrix model(refer to Fig. 2.11 and Fig. 2.12). Hence, this shows

that the upscaling method introduced here leads to a practical engineering approach

to predict the compressive strength allowable, that is traditionally obtained by tests

(discussed in detail in Chapter V), and predicted here using basic material response

data and the fiber volume fraction.

Also, contour plots of equivalent plastic strains in the two models are plotted

in Fig. 2.13 and Fig. 2.14. From the two figures, it is observed that significant

plastic strain appears in the two model after the peak stress is reached. Therefore,

nonlinearity in the two models occur in the post peak regime only. This implies that

the approximation of nonlinearity of the matrix and off-axis layers using plasticity is

valid for predicting the compressive strength of laminates.
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2.6 Conclusions

An upscaled semi-homogenizing method was formulated and presented in this

chapter using deformation plasticity theory along with the Hill’s anisotropic plas-

ticity model to establish a model to predict the compressive strength allowable for

composite laminates, dominated by kink banding failure. This model, as mentioned

above, will be used in Chapter V to study failure mode interaction between kink band

formation and delamination by introducing delamination capability to the model.

The inputs to this method are the elastic properties of fiber and matrix, along with

the nonlinear elastic-plastic shear response of the matrix. An 8-layer laminate was

semi-homogenized (homogenizing off-axis layers, while retaining micro-mechanics of

the 00 layers) using the method, and was compared against a discrete fiber-matrix

rendition of the laminate. It was observed that the semi-homogenizing method pre-

dicts the initial linear stiffness accurately, and the predicted compressive strengths

fall in the range of that predicted by the discrete fiber-matrix model. The snap back

behavior in the global stress-strain response, which is characteristic of a kink banding

driven failure, was also captured fairly accurately by the semi homogenized model for

smaller imperfection angles imparted to the model. Therefore, this method is useful

for modeling larger laminates, without having to account for the individual fibers

in the off-axis laminae, yet being able to obtain the compressive response within a

satisfactory limit.
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Figure 2.13: Equivalent plastic strains at different loading stages of the discrete fiber
matrix model 27



Figure 2.14: Equivalent plastic strains at different loading stages of the semi-
homogenized model 28



CHAPTER III

Interface Analysis of Multidirectional Laminates

3.1 Introduction

Free edge effects are dominant in multidirectional laminates, and lead to a very

high inter-laminar stresses causing pre-mature failure. Therefore, the determination

of the interfaces with very large inter-laminar stresses a-priori is very important for

delamination driven failure. By doing so, the interfaces most susceptible to delam-

ination are determined, and the model can be allowed to delaminate along those

interfaces only, thereby reducing the complexity of the model as compared to the one

with delamination capability along each interface in the laminate.

So, what are free edge effects, and how are they experimentally observed?

Fig. 3.1 shows a free edge in a specimen subjected to loading. Due to drastic

changes in the material properties depending on the orientation of fibers in different

lamina, significant stress concentrations appear at these free edges. This can be

observed as Moire fringe patterns on the surface of free edges through the thickness

of the laminate. These fringes display drastic change in the fringe pattern implying

high strain gradients, which indicate high stresses at the interfaces. Fig. 3.2 shows

an example of high strain gradients in laminates with +θ/− θ stacking.

After developing the upscaled laminate model given in Chapter II, the interface

within the laminate most susceptible to delamination needs to be determined in order
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Figure 3.1: Illustration of free edge

Figure 3.2: Moire fringes of free edge in multidirectional laminates (Herakovich
(1998))

to add interface elements along that interface. Towards this end, a generalized 2-D

formulation in the FEM framework is derived as explained in the following section.

3.2 Mathematical Formulation

Based on the formulation given in Pipes and Pagano (1970), and Martin et al.

(2012), a laminate of length 2L, width of 2b and lamina thickness equal to h is
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considered. The geometry of the laminate along with its boundaries is shown in

Fig. 3.3. The layers in the laminate are in the x1-x2 plane. A compressive load is

applied at the edges Σ+L and Σ−L along the x1 direction. Edges Σ0 and Σ2b are the

free edges in the x2 direction.

Figure 3.3: 3-D laminate

A cross-section of the laminate at A-A is shown in Fig. 3.4 that has N layers

through the thickness. The pth interface between the laminae is represented by Γp. At

a region considerably far from the loading edges, the stress components are assumed

to be independent of x1. That is, the axial strain ε11 is assumed to be uniform along

the x1-direction within the laminate. This behavior was reported in Pipes and Daniel

(1971) through Moire fringe patterns on the surfaces in the x1-x2 plane of different

laminates, as shown in Fig. 3.5.

Figure 3.4: Cross-section of the 3-D laminate
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Figure 3.5: Moire fringe pattern on the surface of a 16-ply graphite-epoxy laminate
(Pipes and Daniel (1971))

Thus, the displacement field assumes the following form,

U1(x1, x2, x3) = Ũ1(x2, x3) + ε11x1

U2(x1, x2, x3) = Ũ2(x2, x3)

U3(x1, x2, x3) = Ũ3(x2, x3)

(3.1)

Here, ε11 is the applied uniform axial strain in the laminate in the x1-direction.

The strains are determined as,

εij =
1

2
(
∂Ui
∂xj

+
∂Uj
∂xi

) (3.2)

for i = 1, 2, 3.
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Therefore, the corresponding strain field is given by,

ε11 =
1

2
(
∂U1

∂x1

+
∂U1

∂x1

) =⇒ ε11 = ε11

ε22 =
1

2
(
∂U2

∂x2

+
∂U2

∂x2

) =⇒ ε22 =
∂Ũ2

∂x2

ε33 =
1

2
(
∂U3

∂x3

+
∂U3

∂x3

) =⇒ ε33 =
∂Ũ3

∂x3

ε12 =
1

2
(
∂U1

∂x2

+
∂U2

∂x1

) =⇒ 2ε12 =
∂Ũ1

∂x2

+
∂Ũ2

∂x1

=⇒ γ12 =
∂Ũ1

∂x2

ε13 =
1

2
(
∂U1

∂x3

+
∂U3

∂x1

) =⇒ 2ε13 =
∂Ũ1

∂x3

+
∂Ũ3

∂x1

=⇒ γ13 =
∂Ũ1

∂x3

ε23 =
1

2
(
∂U2

∂x3

+
∂U3

∂x2

) =⇒ 2ε23 =
∂Ũ2

∂x3

+
∂Ũ3

∂x2

=⇒ γ23 =
∂Ũ2

∂x3

+
∂Ũ3

∂x2

(3.3)

It is noted that the strain field is independent of x1. The constitutive law for each

linear elastic lamina (3-D), in tensorial form, yields the corresponding stress field :

σij = aijklεkl (3.4)

where, i,j=1,2,3 within the laminate. Here, aijkl, is the fourth order linear elasticity

tensor for a general anisotropic material. At the interface, we must ensure displace-

ment and traction continuity, which are given by,

Displacement Continuity : [[Ui]] = 0

Traction Continuity : [[σijnj]] = 0 on the interface Γk
(3.5)

At the traction free edges we have,

σijnj = 0 ∀ i, j = 1, 2, 3 on Σ0 and Σ2b (3.6)
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and the boundary conditions at the loading edges are,

σijnj = −Fi on Σ+L

σijnj = Fi on Σ−L

(3.7)

The derivation of the weak form in the FEM framework follows. Let V be a

kinematically admissible displacement field for the equilibrium equations, given by,

V =


V1(x2, x3)

V2(x2, x3)

V3(x2, x3)

 (3.8)

The weighted average of the equilibrium equations to determine the weak form

are, ∫
Ω

∂σij
∂xj

VidΩ = 0, ∀Vi for i, j = 1, 2, 3 (3.9)

Applying divergence theorem to the above equation yields,

∫
Ω

σij
∂Vi
∂xj

dΩ−
∫

ΣL

σijnjdS = 0

=⇒
∫
Ω

σij
∂Vi
∂xj

dΩ−
∫

Σ+L

FiVidS +

∫
Σ−L

FiVidS = 0

=⇒
∫
Ω

σij
∂Vi
∂xj

dΩ = 0, ∀Vi for i, j = 1, 2, 3

(3.10)

From the assumption of admissible displacement field of V , i.e. since V does not

depend on x1, we have V = f(x2, x3) =⇒ ∂Vi
∂x1

= 0. Therefore,

∫
Ω

σiα
∂Vi
∂xα

dΩ = 0, ∀Vi for i = 1, 2, 3;α = 2, 3 (3.11)
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Substituting the constitutive relation(3.4) into the above equation gives,

=⇒
∫
Ω

aiαkh
∂Uk
∂xh

∂Vi
∂xα

dΩ = 0, ∀Vi for i, k, h = 1, 2, 3;α = 2, 3 (3.12)

Using the displacement field assumption given in Equation 3.1, we have,

=⇒
∫
Ω

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dΩ + ε11

∫
Ω

aiα11
∂Vi
∂xα

dΩ = 0, ∀Vi for i, k, h = 1, 2, 3;α = 2, 3

(3.13)

where ε11 is the global strain applied in the x1 direction.

Dividing the volume integral into two integrals, one along the x1-direction, and

the other in the plane of the cross-section (x2-x3), we have,

=⇒
+L∫
−L

∫
S

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dx1dx2dx3 + ε11

+L∫
−L

∫
S

aiα11
∂Vi
∂xα

dx1d
¯
x2dx3 = 0

=⇒
+L∫
−L

dx1

∫
S

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dx2dx3 + ε11

+L∫
−L

dx1

∫
S

aiα11
∂Vi
∂xα

dx2dx3 = 0

(3.14)

Carrying out the integral along the x1-direction,

2L[

∫
S

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dx2dx3 + ε11

∫
S

aiα11
∂Vi
∂xα

dx2dx3] = 0 (3.15)

Rearranging the terms in the above equation gives,

∫
S

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dx2dx3 = −ε11

∫
S

aiα11
∂Vi
∂xα

dx2dx3 (3.16)

Applying the divergence theorem to the R.H.S. of the above equation yields,

∫
S

aiαkh
∂Ũk
∂xh

∂Vi
∂xα

dx2dx3 = −ε11

∫
∂S

aiα11Vinαds (3.17)
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where, “s” represents a coordinate that denotes the boundary ∂S, starting at

the origin of the x2-x3 axes for the region S, and traversing in an anti-clockwise

direction. Therefore, “s” is either “x2” or “x3” depending on the portion of the

boundary being traversed. The above equation is modified to account for layers with

different orientation in a multidirectional laminate as given below,

N∑
p=1

∫
Sp

apiαkh
∂Ũp

k

∂xh

∂V p
i

∂xα
dx2dx3 = −ε11

N∑
p=1

∫
∂Sp

apiα11V
p
i n

p
αds (3.18)

Equation 3.18 is a generalized 2-D formulation which has displacement fields along

the x1, x2 and x3 directions, but in a 2-D (x2-x3 plane) domain. The input to the

above formulation is the 4th order elasticity tensor of each layer of the laminate for a

linear elastic material and the applied external strain. The equivalent loads calculated

for a laminate are applied to the 2-D generalized representation of the laminate in

the FEM model given in the next section.

3.3 Implementation of the Generalized 2-D Formulation

The above formulation can be implemented in several ways using the finite element

method. The method used here is to modify a thin slice of a 3-D model to behave like

a generalized 2-D model. The coordinate system used in ABAQUS is a x-y-z cartesian

coordinate system which corresponds to the x1-x2-x3 coordinate system used in the

previous section. A 3-D model with a small thickness in the x-direction is considered

as shown in Fig. 3.6.

The model is restricted from any expansion in the x-direction using multi-point

constraints. This satisfies the requirement that the displacement fields are indepen-

dent of the x-direction. This gives us the left hand side of equation (3.18). The

external loads given by the right hand side of equation (3.18) are applied to the

model on the edges in the y-z plane and the interfaces between the layers.
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Figure 3.6: 3-D slice of a laminate

3.4 Determination of Delamination Prone Interfaces in Lam-

inates

The current formulation is validated against two laminates with different ply stack-

ing, and subjected to an axial (x-direction) strain. The first laminate is a [00/900]s

laminate from Zhang et al. (2006) and the second is a [+100/ − 100]s laminate from

Martin et al. (2012). The current implementation is compared against the results

presented by Zhang et al. (2006) and Martin et al. (2012), and the stresses along the

interfaces are found to match well. The comparison of the current implementation

with Martin et al. (2012) is shown in Fig. 3.7.

Further, the above formulation is also implemented for an 8-ply laminate with

a stacking of [-45/+45/90/0]s (half of the laminate is used as shown in Fig. 3.8) to

determine the weak interfaces.

Fig. 3.9 shows the strains ε33, ε13 and ε23 along the -45/+45 (Interface 1), +45/90

(Interface 2) and 90/0 (Interface 3) interfaces.

It is observed in Fig. 3.9 that ε13 is very high at Interface 1 as compared to the

strains at the other interfaces. Therefore, Interface 1 is considered to be the interface

that is most susceptible to delaminate. This information will be used in constructing

the computational model of the laminate, i.e., the cohesive elements will be added
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(a)

(b)

Figure 3.7: Interface stresses along +10/-10 interface in a (±10)s laminate from (a)
current implementation, (b) Martin et al. (2012)

Figure 3.8: Symmetric model representing an 8-ply laminate with a stacking of
[−45/+ 45/90/0]s
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Figure 3.9: Strains at the interfaces of an 8-ply laminate model

along Interface 1 to allow for delamination at -45/+45 interfaces.

3.5 Conclusions

In this chapter, a generalized 2-D formulation to determine delamination prone

interfaces in multidirectional laminates was presented. The formulation was imple-

mented in the FEM framework using a commercially available FEM software, and

validated against published results in the literature. Further, this method was used

to determine the delamination prone interfaces in an 8-ply laminate with a stacking

of [-45/+45/90/0]s. This result will be used in Chapter V to study the interactive

failure between kinking and delamination in multidirectional laminates.
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CHAPTER IV

Interface Elements : Discrete Cohesive Zone

Method (DCZM) Elements

4.1 Introduction

In this chapter, interface elements to model delamination in laminates are in-

troduced. These interface elements are added at the boundaries between different

layers in the laminate. The formulation of these elements is motivated by the cohe-

sive zone models, which can be traced back to the Barenblatt-Dugdale [Barenblatt

(1962); Dugdale (1960)] model. The interface is treated as a discrete non-linear bed

of 1-D elements, which are attached between adjacent node pairs of the decohering

surfaces. Therefore, these elements are added between interfacial node pairs to model

cohesive interactions between surfaces instead of using continuum type elements along

the crack path. Further, these elements are scalable according to the mesh size, mak-

ing the formulation mesh independent even in the presence of softening stiffness in

the cohesive law.

4.2 DCZM Element Formulation and FEM Implementation

The discrete cohesive zone method (DCZM) element in 3D is an 8-node element

connecting two free surfaces through a traction-separation law (cohesive law), repre-
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sented schematically in Fig. 4.1. This interface element has zero thickness.

Figure 4.1: Schematic of 8-noded DCZM element in 3D

For illustration purposes, the formulation of a 4-noded DCZM element in 2D is

presented here (details are given in Gustafson (2008)). The 3D formulation is merely

an extension of the 2D formulation. The 2D DCZM element is shown in Fig. 4.2.

The stiffness matrix of the element is given by,
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Figure 4.2: 4-noded DCZM element in 2D

Kel =



K14x 0 0 0 0 0 −K14x 0

0 K14y 0 0 0 0 0 −K14y

0 0 K23x 0 −K23x 0 0 0

0 0 0 K23y 0 −K23y 0 0

0 0 −K23x 0 K23x 0 0 0

0 0 0 −K23y 0 K23y 0 0

−K14x 0 0 0 0 0 K14x 0

0 −K14y 0 0 0 0 0 K14y


The corresponding force vector for an element is,

Fel =

[
−F14x −F14y −F23x −F23y F23x F23y F14x F14y

]T
The nodal displacements are,

uel =

[
u1x u1y u2x u2y u3x u3y u4x u4y

]T
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The contribution of a DCZM element to the global system of equations is,

[Kel][uel] = [Fel] (4.1)

Here, Kijk are components of the DCZM stiffness matrix along k direction between

nodes i and j. Similarly, Fijk are the components of reaction force acting along the k

direction between nodal pair i and j. The nodal pair relative displacements are,

δijk = ujk − uik (4.2)

That is, the relative displacement between nodal pair 1-4 along y-direction is

δ14y = u4y − u1y and along x-direction is δ14x = u4x − u1x.

The traction on the DCZM element is a function of the relative displacement

between nodal pairs mentioned above. Therefore, the nodal force for opening and

sliding modes are given by the traction-separation cohesive law. The traction acting

between the two faces is assumed to have a triangular shape as shown in Fig. 4.3.

(a) (b)

Figure 4.3: (a) Mode-I triangular cohesive law (b) Mode-II triangular cohesive law

Two traction - separation laws are used, one each for mode-I (opening) and mode-

II (sliding). The mode-I cohesive law, which signifies displacement jumps perpendic-
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ular to the fracture surface, in the local coordinate system is,

T1 =
σIC
δIC

δy if 0 < δy <= δIC

T1 = σIC

[
1− δy

δIm

]
if δIC < δy <= δIm,∆δy >= 0

T1 = k̄Iδy if δy > 0,∆δy < 0 where, k̄I =
σ?I
δ?I

T1 = σIC

[
δy
δIm

]
∗ (factor) if δy <= 0

(4.3)

where, “factor” is a number chosen to be three orders of magnitude larger than

the largest stiffness parameter to simulate no interpenetration of the two surfaces.

Similarly, the mode-II cohesive law, which signifies tangential displacement jumps, in

the local coordinate system is given by,

T2 =
σIIC
δIIC

δx if 0 < δx <= δIIC

T2 = σIIC

[
1− δx

δIIm

]
if δIIC < δx <= δIIm,∆δx >= 0

T2 = k̄IIδx if δx > 0,∆δx < 0 where, k̄II =
σ?II
δ?II

T2 =
σIIC
δIIC

δx if − δIIC < δx <= 0

T2 = −σIIC
[
1− | δx

δIIm
|
]

if − δIIC <= δx <= 0,∆δx < 0

T2 = k̄IIδx if δx <= 0,∆δx > 0 where, k̄II =
−σ?II
−δ?II

(4.4)

where, δy and δx are the relative displacements in mode-I and mode-II between the

nodal pair of the DCZM element, and ∆δy and ∆δx are the corresponding change in

the relative displacements between load increments in FEM. It should be noted that

the initial stiffness σIC
δIC

and σIIC
δIIC

are chosen to be three orders of magnitude larger

than the material stiffness of the continuum element, since, ideally no separation is

allowed between the nodes until the tractions exceed the critical cohesive strength
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of the DCZM. The traction-separation law has two inputs in each mode, that is,

the fracture toughness and the cohesive strength in mode-I, mode-II and mode-III.

These are the input material properties that are determined through experiments on

coupons. The next section will give details of the experiments conducted in order to

determine these input properties.

4.3 Methods to Determine Input Fracture Properties

Input fracture properties are determined through experiments aided with simu-

lations. Mode-I fracture toughness is determined through double cantilever beam

(DCB) test [ASTM(D5528) (2007)] and mode-II fracture toughness through end

notch flexure (ENF) test [Davidson and Sun (2006)]. Mode-I cohesive strength is

inversely determined by simulating the DCB test. Similarly, Single lap joint (SLJ)

test [ASTM(D3165) (2007)] along with the simulation of the test is used to determine

the mode-II cohesive strength. It should be noted that mode-III fracture properties

are assumed to be equal to mode-II fracture properties, though this may not be true

for these composite materials.

4.3.1 Mode-I Fracture Toughness : Double Cantilever Beam (DCB) Test

The DCB test is a common test conducted to determine the mode-I fracture

toughness in materials. This test is used here in the case of a multidirectional laminate

to determine the fracture toughness of the interface between adjacent layers of a

laminate. ASTM(D5528) (2007) is the standard for the test method to determine

mode-I interlaminar fracture toughness of fiber-reinforced polymer matrix composites.

Coupons of a 16-ply laminate with stacking of [−452/+ 452/902/02]s were tested.

The dimensions of the coupon are L = 150 mm, W = 25 mm and H = 2.5 mm. An

initial horizontal slit of length a0 = 70 mm is created at one of the faces as shown in

Fig. 4.4. Blocks of aluminum of length (S) = 20 mm, width = 25 mm and height = 20
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Figure 4.4: Sketch of a DCB test specimen

mm are glued to the top surface of the upper arm and the bottom surface of the lower

arm of the specimen as shown in Fig. 4.4. The specimen is loaded by mounting the

blocks of aluminum in the grips of the loading machine. As a displacement control

load is applied, the specimen deforms in mode-I (opening mode) due to the initial

slit of length a0. As the loading is continued, the delamination grows beyond the

initial length and propagates until a complete separation of the two arms is achieved.

The delamination growth is measured by recording the crack tip movement at certain

intervals during the test, through the inspection of a series of images.

Figure 4.5: DCB test fixture

The mode-I fracture toughness is calculated using the following three methods;

(1) modified beam theory (MBT), (2) compliance calibration method (CC) and (3)

modified compliance calibration method (MCC). Further, fracture toughness values

46



obtained from a set of closed form expressions, given in Nimmer et al. (1996), matched

well with the values determined from the ASTM standard.

4.3.1.1 Modified Beam Theory (MBT) Method

The expression for the mode-I fracture toughness (also known as strain energy

release rate) for a perfectly built-in double cantilever beam using the Modified Beam

Theory (MBT) Method is as follows :

GIC =
3Pδ

2Wa
(4.5)

where, P = load, δ = load point displacement, W = specimen width and a = delam-

ination length.

4.3.1.2 Compliance Calibration (CC) Method

A least squares plot is generated by plotting the log ( δi
Pi

) versus log(ai), where δi

and Pi are the incremental load point displacement and the corresponding load, and

ai is the corresponding delamination growth of the initial slit in the specimen. ai is

measured from the images taken incrementally during the experiment by tracking the

original crack tip evolution during loading. A straight line is drawn through the data

points resulting in a best least-square fit. The slope (n =
∆(

δi
Pi

)

∆(log(ai))
) of this straight

line is determined. Mode-I interlaminar fracture toughness is calculated as follows:

GIC =
nPδ

2Wa
(4.6)

4.3.1.3 Modified Compliance Calibration (MCC) Method

Similar to the previous section, a least squares plot of the delamination length nor-

malized by the specimen thickness, a/h, is plotted as a function of the cube root of the

compliance, C1/3, using the values of the delamination propagation explained above.
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The slope of this line is A1. Mode-I interlaminar fracture toughness is calculated as

follows :

GIC =
3P 2C2/3

2A1Wh
(4.7)

The fracture toughness was determined from all of the above three methods, cor-

responding to 4 DCB tests, and the average is calculated. A plot of the average

fracture toughness versus crack (delamination) length from each of the above meth-

ods is plotted in Fig. 4.6. The value of the mode-I fracture toughness was determined

to be 0.67 ± 0.07 N/mm.
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Figure 4.6: Fracture toughness versus crack length

4.3.2 Mode-I Cohesive Strength : Double Cantilever Beam (DCB) Test

with Simulation

The DCB test mentioned in the previous section was simulated using the finite

element method. A 2-D plane strain model of the DCB test configuration was con-
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structed using 2-D bilinear quadrilateral finite elements. The aluminum blocks were

modeled with perfect bonding between the blocks and the upper and the lower arms.

A displacement control load was applied as shown in Fig. 4.4. The DCZM elements

were added along the plane of symmetry in the model. That is, along the interface

between the upper and the lower arms in a 16-ply laminate between the 0-0 plies.

It is assumed that the fracture properties between all the interfaces in the laminate

are comparable. The mode-I fracture toughness was fixed at 0.67 N/mm, and the

mode-II and mode-III fracture properties were held fixed at very high values. The

influence of mode-II and mode-III properties is minimal on the load-deflection curve

due to pure mode-I fracture in a DCB test for a symmetric laminate.
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Figure 4.7: Load -deflection responses of DCB tests with simulation

The experiment was virtually carried out in ABAQUS, for a range of input values

for the mode-I cohesive strength σIC (refer to Fig. 4.3(a)). The value of σIC for

which the load-displacement response from the simulation matches the average load-

displacement response from the DCB tests was chosen to be the mode-I cohesive

strength. A plot of experimental load-displacement responses from the DCB tests,
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along with the one obtained from the simulation corresponding to a σIC value of 15

MPa, are shown in Fig. 4.7. The load-displacement responses match well, and the

σIC value is estimated to be equal to 15 MPa. The finite element model of the DCB

specimen at an initial loading stage and at a delamination propagated stage is shown

in Fig. 4.8 and Fig. 4.9, respectively.

Figure 4.8: Undeformed DCB simulation

Figure 4.9: Deformed DCB simulation with opened DCZM elements

4.3.3 Mode-II Fracture Toughness : End Notch Flexure (ENF) Test

ENF tests were conducted on the 16-ply laminate to determine the mode-II cohe-

sive strength following the procedure given in Davidson and Sun (2006)(since, ASTM

standard for ENF test of composites does not exist). The dimensions of the ENF test

specimens are as follows : length = 160 mm, width = 25 mm, height = 2.5 mm, and

an initial delamination length = 30 mm.
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Figure 4.10: Sketch of a ENF test specimen

The ENF test is a 3-point bend test as shown in Fig. 4.11. The specimen is

supported on rollers on the bottom surface, and a central vertical load is applied on

the top surface. The length between the roller supports is 120 mm. An experimental

setup is shown in Fig. 4.11.

Figure 4.11: ENF test fixture

The applied load - central load point displacement responses obtained from the

ENF tests conducted on 16-ply laminate are plotted in Fig. 4.12.

The specimen undergoes bending, and fails catastrophically at the peak load, with

rapid crack growth along the interface, following the initial delamination path. The

mode-II fracture toughness is obtained from the area under the load-displacement

relation given in Fig. 4.12. The interfacial mode-II fracture toughness for these lam-

inates was determined to be 1.67 ± 0.1 N/mm.
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Figure 4.12: Load-load point displacement responses for ENF tests

4.3.4 Mode-II Cohesive Strength : Single Lap Joint (SLJ) Test

The fourth parameter to be determined is the mode-II cohesive strength (τc) of the

laminate, which is determined through a single lap joint (SLJ) test [ASTM(D3165)

(2007)]. The concept is borrowed from the SLJ test on adhesively bonded joints.

Here, the laminate specimen is modified to behave like a single lap joint. The sketch

of the SLJ test specimen is shown in Fig. 4.13.

Figure 4.13: Sketch of a ENF test specimen
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A slit is cut into each of the top and bottom surfaces of the coupon up to the

centerline of the laminate as shown in Fig 4.13. This creates an area of pure ma-

trix between the 0-0 layers in the laminate carrying the load. Though, the interface

cohesive strength may vary between different interfaces, it is extremely difficult to

determined those properties between the off-axis layers. The dimensions of the spec-

imen are as follows : length = 190 mm, width = 17.75 mm, thickness = 4.47 mm,

distance between the notches = 12.7 mm. The specimen is subjected to a tensile load

as shown in Fig. 4.14.

Figure 4.14: SLJ test fixture

When the SLJ specimen is subjected to tensile loading, the area between the

notches carries most of the load, and at the peak load, the matrix layer between the

slits ruptures creating two parts. Further, the SLJ configuration is studied using a

3-D finite element model in ABAQUS. The individual layers are modeled as homog-

enized elastic layers using 3-D 8-noded hexahedral elements as shown in Fig. 4.15.

The DCZM elements are added at the plane between the notches along the plane of

symmetry (i.e. at the interface which ruptured during the experiment) in the plane

of the exposed matrix material shown in Fig. 4.15.

Further, by fixing the fracture properties already determined, i.e. GIC , GIIC and

σc, the average peak load from the SLJ simulations are matched to the experimental
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Figure 4.15: A finite element model of the SLJ test specimen

result by varying the value of τc in the FEM model.
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Figure 4.16: Peak load vs. mode-II cohesive strength from SLJ test simulations

The value of τc is varied between 15 - 40 MPa. The peak loads obtained from
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the simulations are plotted against τc values in Fig. 4.16. The experimental range of

peak loads for 4 SLJ tests correspond to a τc value of 28 ± 2 MPa, and are shown in

Fig. 4.16.

4.4 Conclusions

In this chapter, an overview of the formulation of the DCZM elements was pre-

sented. The inputs required for these interface elements were identified as the fracture

properties of the interface matrix material in the laminates. These fracture properties,

which serve as inputs to the DCZM elements were determined through a combina-

tion of experiments and simulations. Therefore, the in-situ interface matrix behavior

was characterized in this chapter. The DCZM elements along with the determined

fracture properties will be used to model delamination in Chapter V.
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CHAPTER V

Interactive Failure in Multidirectional Laminates

5.1 Introduction

In this chapter, interaction between kinking and delamination failure modes in

multidirectional laminates is investigated using a set of experimental results and as-

sociated modeling studies. Two types of laminates with different stacking sequence

are studied here. The first type of laminate, namely, Type A laminates, have a stack-

ing sequence of [−45/+ 45/90/0]s, [−452/+ 452/902/02]s and [−454/+ 454/904/04]s

with totals of 8, 16 and 32 layers, respectively. The second laminate is referred to

as Type B laminate, with a stacking sequence of [(−45/ + 45/90/0)6]s, with 48 lay-

ers. It should be noted that the zero degree layers are grouped together along the

centerline in Type A laminate, whereas they are distributed in the Type B laminate.

Upscaled homogenized laminate models are constructed for both types of laminates

using the upscaled semi-homogenized modeling method explained in Prabhakar and

Waas (2012b) and Chapter II. Recall that, in these models, each 0 degree lamina has

hexagonally packed fibers maintaining the micro-mechanics, and the off-axis layers

are homogenized using a deformation theory implementation of Hill’s anisotropic plas-

ticity theory. Interface elements formulated using the discrete cohesive zone method

(DCZM) [Gustafson and Waas (2009)], are added at the interface between -45/+45

layers, which was in Chapter III as the delamination prone interface in the laminate,
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via a simplified 2-D analysis of the laminate. Finally, the laminate model is sub-

jected to compression in the axial direction, using displacement control, to predict

the compressive strength and failure modes.

5.2 Type of Laminates Investigated

The two types of laminates investigated are shown in Fig. 5.1 and Fig. 5.2. Differ-

ent layers are seen in the figures through contrasting colors in the images. The Type

A laminate shown in Fig. 5.1 contains 16 layers, and the Type B laminate in Fig. 5.2

contains 48 layers. Both laminates are symmetric about the centerline.

Figure 5.1: Type A laminate Figure 5.2: Type B laminate

5.3 Compression Tests

Compression tests were conducted on Type A and Type B laminates to under-

stand the mechanisms of failure that are unique to the different type of laminates.

The influence of two important types of failure mechanisms, namely delamination and

kinking, and their interaction on the compression strength is the main focus. In the

following sections, details about the experimental set-up, stacking sequences (also re-

ferred to as layups) of different specimens and results of the compression experiments

are presented.
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5.3.1 Test Fixture

(a) (b)

Figure 5.3: Wyoming Combined Loading Compression (WCLC) test fixture

The Wyoming Combined Loading Compression (WCLC) test fixture, shown in

Fig. 5.3(a), was used to carry out the compressive response studies in association

with a MTS loading frame. Specimens in the form of strips of laminates with nom-

inal dimensions of 12.7 mm x 133.35 mm x “t” mm, where, “t” is variable, are

sandwiched between the large metal blocks of the fixture, and the ends of the fixture

are compressed between the flat loading platens of a MTS testing frame as shown in

Fig. 5.3(a) and Fig. 5.3(b). The blocks act as anti-buckling guides during loading,

supporting a large portion of the specimen length, and providing a length of 0.25 inch

as the gage length. This results in the measured compressive strength to be as close

as possible to the actual compressive strength of the material, with minimal tendency

towards flexural buckling.
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5.3.2 Specimens

Specimens of three layups of type A laminates, with varying thickness, and Type

B laminates were tested under compression. The Type A specimens were also used

to study the effects of scaling, by grouping families of lamina, on the compressive

strength of the laminates. As indicated in Table 5.1, the thicknesses of the layups

are scaled up by stacking multiple layers of the same orientation. All the laminates

shown in Table 5.1 have the same in-plane extensional stiffnesses. All the specimens

are of nominal size 12.7 mm x 133.35 mm which results in a nominal gage length of

6.35 mm when placed in the WCLC fixture as shown in Fig. 5.3(b).

Table 5.1: Types of laminates

Type of Laminates L(mm) W(mm) t(mm)

Type A (8 plies): [−45/+ 45/90/0]s 6.35 12.7 1.24

Type A (16 plies): [−452/+ 452/902/02]s 6.35 12.7 2.38

Type A (32 plies): [−454/+ 454/904/04]s 6.35 12.7 4.47

Type B (48 plies): [(−45/+ 45/90/0)6]s 6.35 12.7 6.35

Typical images of the laminates mentioned above are shown in Fig. 5.4(a) and

Fig. 5.4(b), where Fig. 5.4(a) displays the image of a failed Type A 16-ply laminate,

and Fig. 5.4(b) displays a close-up image of the failed region of the corresponding

specimen. It is observed that the failed specimen shows extensive delamination oc-

curring at the interface of the laminae, and kinking in the 0 degree ply. As will be

discussed later, the strain fields that persist upto and beyond failure indicate that

there is a fairly uniform deformation corresponding to an initial linear relation be-

tween applied load and strain. At a critical value of the applied end displacement, a

sudden transition in the stability of the specimen occurs and this leads to catastrophic

failure with a significant reduction in the measured load. Fig. 5.5(b) shows a failed

Type B specimen. We observe kink band formation in 0 layers, and small delami-

nated regions around the kink band are observed. There is no extensive delamination
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(a) (b)

Figure 5.4: Failed specimen : 16 − ply Type A laminate

(a) (b)

Figure 5.5: (a)Pristine and (b)Failed specimen : 48 − ply Type B laminate

observed in Type B laminates as in the case of Type A laminates.
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5.3.3 Compressive Strength Measurements

The compressive response studies are carried out at an external displacement con-

trol loading rate of 0.0004 in/sec in a MTS hydraulic test frame. The “macroscopic”

stress is calculated as the total load obtained from a load cell that is placed in-line

with the specimen, divided by the initial undeformed cross sectional area of the spec-

imen. The “macroscopic” strain is determined using strain gages on either faces of

the specimens. The global stress-strain responses of Type A laminates are shown in

Fig. 5.6. The initial stiffness of the laminates is 48.5 ± 2 GPa, and the compressive

strengths are in the range of 590 ± 30 MPa.
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Figure 5.6: Global stress-strain response of the Type A laminates determined exper-
imentally

The results imply that the scaling of lamina thickness in the laminate has no

significant influence on either the initial stiffness or the strength of the Type A lami-

nates. The Type B laminates displayed a similar trend with an initial stiffness of 49.3
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± 0.5 GPa, and the compressive strengths are in the range of 615 ± 20 MPa.

5.3.4 Strain Analysis of Laminates Using Digital Image Correlation (DIC)

The digital image correlation (DIC) method was used to analyze the strain distri-

bution on the side face of the laminates. ARAMIS, a commercially available software

package, is used to perform the DIC analysis. ARAMIS is a non-contact and material

independent displacement measuring system that gives displacements, strains and ve-

locities as a function of time [ARAMIS (6.3.0)]. The side surface of the specimen

(through the thickness), which is to be imaged, has a speckle pattern with random

black dots over a white background, created using an air-brush. The side surface

that is imaged is the surface with a normal in the z - direction, where the axes are

as indicated in Fig. 5.3(b). A series of images are taken during the experiment, and

these images are analyzed using ARAMIS to calculate the displacement and strain

fields.

Figure 5.7: (a) Unloaded ; (b) Peak load ; (c) Failed

Fig. 5.7a, Fig. 5.7b and Fig. 5.7c show three of the series of images of a Type

A 16-ply specimen as a function of macroscopic stress state. The first image, a

reference image that is used for the DIC calculations, corresponds to the unloaded

state, while the next two images correspond to an instance near the peak load and

immediately thereafter. In the second image, a delamination crack is already visible

and is identified as the first event that may trigger the catastrophic failure, which,
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as seen in the third image, also induces kinking in the zero lamina in the post-peak

regime. This type of process, which initiates the catastrophic failure, was visible

in all the Type A laminates, regardless of the thickness scaling, and is also further

supported by the DIC strain field analysis which will be discussed below.

(a) (b) (c)

Figure 5.8: Transverse strain distribution on the side surface for Type-A 16-ply lam-
inate (a) Linear stage (b) Prior peak load (c) At peak load

(a) (b)

(c)

Figure 5.9: Transverse strain distribution across the side surface for Type-A 16-ply
laminate (a) Linear stage (b) Prior peak load (c) At peak load
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(a) (b)

(c)

Figure 5.10: Shear strain distribution across the side surface for Type-A 16-ply lam-
inate (a) Linear stage (b) Prior peak load (c) At peak load

The DIC images of the side surface of a typical 16-ply Type A specimen are

shown in Fig. 5.8a, Fig. 5.8b and Fig. 5.8c. The specimen is loaded in the global

y-direction. Fig. 5.8a, b and c display the strain distribution on the side face of

the specimen along the global x-direction corresponding to the linear region, a point

prior to peak load and at the peak load of the loaded specimen. It can be observed

that the distribution is banded along the thickness. This is due to the different

layers present in the specimens. We also observe that, as the loading is increased, the

positive strain between the layers +45 and -45 increases rapidly, and subsequently, the

specimen delaminates at that interface as clearly shown in Fig. 5.8c. To corroborate

the above statement, the strain distributions εxx and εxy along a line on the side face

are also plotted. It is clear from Fig. 5.9b and Fig. 5.10b that as the load is increased

(progressing from (a) to (b) to (c)), the transverse strain (εxx) and the shear strain

64



(εxy) attain maximum values at the interface between +45 and -45 layers. Upon

further loading, the transverse and shear strains tend to very large values as the

specimen delaminates at the interface on the right (refer to Fig. 5.9c and Fig. 5.10c).

In summary, the specimens appear to initiate failure by delamination followed by

kink band occurring in the post-peak regime.

Similarly, the DIC analysis of the Type B 48-ply laminate is carried out. The

DIC images of the side face of a Type B specimen are shown in Fig. 5.11a, Fig. 5.11b

and Fig. 5.11c. Fig. 5.11a, b and c display the strain distribution on the side face

along the global x-direction. Here, distinct strain bands representing each layer in

the laminate do not exist, as opposed to Type A laminates. This maybe due to a lack

of a sufficiently fine speckle pattern on the side face, and also perhaps the inability of

ARAMIS to capture changes between each thin lamina with different fiber orientation

in the 48 - ply laminate. This is in contrast to Type A laminates where relatively thick

clustered layers with the same fiber orientation exist. The strain distributions εxx and

εxy along a line on the side face are also plotted. We also observe that as the loading

is increased, the average strain level along the side face increases, but ARAMIS

measurement is unable to capture the behavior of different layers individually. Upon

further loading, the transverse and shear strains attain very large values at the center

of the specimen as seen in Fig. 5.12c and Fig. 5.13c. In summary, assertive conclusions

cannot be made based on purely the DIC analysis of Type B specimens regarding the

role of interfaces in the failure of these specimens. Since the stacking sequence leads

to a rapidly alternating set of layers, each of relatively small thickness, the field of

view used to take images for DIC and the image size does not lead to a sufficiently

adequate resolution of the strain field present in these laminates.
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(a) (b) (c)

Figure 5.11: Transverse strain distribution on the side surface for Type-B 48-ply lam-
inate (a) Linear stage (b) Prior peak load (c) At peak load

(a) (b)

(c)

Figure 5.12: Transverse strain distribution across the side surface for Type-B 48-ply
laminate (a) Linear stage (b) Prior peak load (c) At peak load

5.4 Upscaled Laminate Model

The upscaled homogenized model for Type A laminate consisting of 8-layers of

lamina (see Fig. 5.14) was constructed. The off-axis layers (i.e., -450,450,900 layers)
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(a) (b)

(c)

Figure 5.13: Shear strain distribution across the side surface for Type-B 48-ply lam-
inate (a) Linear stage (b) Prior peak load (c) At peak load

were homogenized using the technique mentioned in Chapter II [see also, Prabhakar

and Waas (2012b)]. Here, the red, cream and blue regions are the homogenized -

45, +45 and 90 degree lamina. Micro-mechanics is maintained in the 00 layers, as

they are the load bearing layers and are responsible for kink band formation in the

multidirectional laminates considered. Therefore, the regions in green are the 0 degree

fibers, and regions in grey are the matrix material in the 0 degree lamina.

The homogenized elastic lamina properties of the off-axis laminae correspond to a

volume fraction of 0.49, are given in Table 5.3. The constants Rij required to calculate

the plastic potential of Hill’s plasticity model are tabulated in Table 5.4 (note that

R11 is chosen to be an arbitrarily high value since the 1-direction of the lamina is

assumed to be elastic throughout, and hence does not possess a finite yield strength).

These properties are applied to off-axis laminae in their rotated principal material
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Figure 5.14: 8-layered upscaled model of Type A laminate with homogenized off-axis
layers

coordinate axes, accounting for different lamina orientations.

Table 5.2: Fiber properties

E11(GPa) E22(GPa) E33(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ν13 ν23

276 8.76 8.76 12.0 12.0 3.244 0.35 0.35 0.35

Table 5.3: Elastic homogenized lamina properties

E11(GPa) E22(GPa) E33(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ν13 ν23

136.8 5.4 5.4 2.5 2.5 1.7 0.42 0.42 0.57

Table 5.4: Values of Rij for calculating Hill’s potential constants

R11 R22 R33 R12 R13 R23

18876.5 1.0 1.0 0.95 0.95 1.15
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Figure 5.15: Equivalent stress-strain response for the in-situ matrix

A schematic of the model shown in Fig. 5.16 is further used to describe the bound-

ary conditions and loading on the model. The edge AE of the model is prevented

from motion in the z-direction, and the corner E is fixed against moving in the global

x, y and z-directions. The face BFGC is subjected to compression along the negative

x-direction in a displacement control manner. The faces ABCD and EFGH are held

flat but are allowed to expand or contract in the y-direction. Also, the faces ABCD

and EFGH deform exactly the same way in the x and z-directions. This enables the

use of one representative unit cell in the y-direction, along with preserving a constant

initial stiffness of the laminate, regardless of the width of the model.

The Riks method option available in ABAQUS [ABAQUS (6.10)], which is an arc-

length solution scheme, is adopted to conduct the compressive response analysis. As

shown in previous studies, [Lee and Waas (1999); Beghini et al. (2006)], this method

captures unstable equilibrium paths (path in the load vs. loaded edge displacement
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Figure 5.16: A schematic of the laminate model to describe boundary conditions and
loading

graph that may show snap-back response) that can occur at limit points.

The model is meshed with 3-D hexahedral elements (C3D8 in ABAQUS v6.10).

A slight imperfection is imparted to the model to account for fiber misalignment.

Previous work by Yurgartis (1987) has shown that initial misalignment angles of 0.5

to 2 degrees of the zero laminae bound the distribution of fiber misalignment that

is typical of carbon fiber reinforced pre-preg aerospace laminates. The first buckling

mode of the laminate is determined, and is used to impart an imperfection to the

model with an effective fiber misalignment angle, (θ), where θ = δ
L

, is defined as

shown in Fig. 5.17.

The initial, unloaded state in the compression analysis is assumed to be stress

free. The model is seeded with fiber misalignment angle of 10, and subjected to

displacement controlled compression. Here, macroscopic stress is defined as the total

resultant of the x-direction reaction force on the face BFGC divided by the product

of the width BF and thickness BC, while the macroscopic strain is defined as the
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Figure 5.17: Laminate model to describe angle of imperfection

total contraction (change in length between the faces BFGC and AEHD) divided by

the initial length AB (refer to Fig. 5.16).

5.5 DCZM Elements at Interfaces

Based on the interface analysis carried out in Chapter III, DCZM elements (ex-

plained in Chapter IV) are added at the interfaces of the laminate to model delam-

ination. The DCZM elements adopt a 1D traction law capable of simulating crack

formation and propagation, i.e. delamination. The element features the ability to

predict delamination initiation based on a traction law that captures the cohesive

strength and the fracture toughness in each fracture mode (mode I, mode II and

mode-III in the current model). The DCZM elements used in this chapter have been

successfully employed in other studies involving crack propagation as presented in

Gustafson and Waas (2009). A triangular traction separation law is used here. The

inputs to the law are cohesive strengths in mode-I and mode-II (σc and τc), and frac-

ture toughness in mode-I and mode-II (GIC and GIIC). The critical GIC and GIIC

values are determined from the standard double cantilever beam (DCB) and edge
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notch flexure (ENF) tests respectively [refer to ASTM(D5528) (2007) and Davidson

and Sun (2006)]. The mode-I cohesive strength is backed out from a DCB finite ele-

ment virtual test, using experimentally determined mode-I fracture toughness as the

input, and by varying the value of σc until the load-deflection response matches the

one determined experimentally. The mode-II cohesive strength is determined through

a single lap joint test[ASTM(D3165) (2007)]. The details of the above methods to

determine the input fracture properties for the materials studied in this thesis are

explained in detail in Section 4.3. The fracture properties for the laminate are given

in Table 5.5.

Table 5.5: Fracture properties of interfaces in the laminate

GIC 0.67 ± 0.07 N/mm

GIIC 1.67 ± 0.08 N/mm

σc 15 ± 2.5 MPa

τc 28 ± 2 MPa

It should be noted here that the fracture properties determined are between 0

degree layers in a laminate. Each interlaminar interface between laminae of different

orientation should have different fracture properties, especially in mode-II. But, here,

the fracture properties between all the interfaces in the laminate are assumed to be

the same.

5.6 Effects of Stacking on Compressive Strength and Failure

Mode

In order to study the effect of stacking sequence on the compressive strength and

failure mode in Type A and Type B laminates, the upscaled homogenized model

described above is implemented with interface elements (DCZM) added along the

weak interfaces determined a priori from the 2-D reduction analysis. Keeping the
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fracture toughnesses fixed at 0.67 N/mm and 1.67 N/mm in mode-I and mode-II, the

cohesive strengths are varied, and the corresponding global stress-strain responses are

determined.

5.6.1 Type A Laminates

A plot of the global stress-strain responses of Type A 8-ply laminate model with

a stacking sequence of [−45/+ 45/90/0]s are shown in Fig. 5.18.
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Figure 5.18: Global stress-strain response of upscaled model with DCZM added at
-45/+45 interface

In Fig. 5.18, it is observed that the peak stress increases as the cohesive strengths

are increased, and finally approaches the value of the model with “perfect” interfaces.

Some of the responses shown in Fig. 5.18 have a complete post-peak response until

a plateau is reached, whereas the RIKS solver fails to converge beyond the peak
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Figure 5.19: Global stress-strain response along with deformed shapes of upscaled
model with DCZM added at -45/+45 interface. σc=12.5 MPa and τc=15
MPa

in other cases. But, all the responses still show the peak stress clearly in order to

determine the compressive strength values. For a σc value equal to 15 MPa and τc

of 17.5 MPa, the peak stress is 577 MPa. This is slightly lower than the compressive

strength determined experimentally, as seen in Fig. 5.6. If the upper bounds of the

fracture toughness values are used, i.e. GIC = 0.77N/mm and GIIC = 1.76N/mm

(from Table5.5), and σc and τc values equal to 15 MPa and 17.5 MPa respectively, it

is found that the peak stress is unaltered. Thus, within the bounds of the fracture

toughness values obtained experimentally (shown in Table 5.5), and for fixed values

of σc and τc, the predicted compressive strengths remain unaltered, corresponding to

a fiber misalignment angle of 1 degree. Other parametric studies were carried out by

changing one of the fracture properties and the other three properties held fixed. It
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was observed that the peak stress is sensitive to the τc value. Keeping the values of

GIC , GIIC and σc fixed at 0.77 N/mm, 1.76 N/mm and 15 MPa respectively, the value

of τc was varied between 17.5 MPa and 30 MPa, and the peak stress was observed

to increase from 577 MPa to 620 MPa. Therefore, it is seen that τc is an important

factor in influencing the compressive strength of multidirectional laminates, and thus

a good estimate of τc is needed for a good prediction of the compressive strength of

these laminates.

For illustration purposes, the stress-strain response corresponding toGIC = 0.67N/mm,

GIIC = 1.67N/mm, σc=12.5 MPa and τc=15 MPa, along with deformed shapes of

the model are shown in Fig. 5.19. Here, at the peak stress, i.e. at loading step corre-

sponding to C, sliding between the interfaces of -45 and +45 layers is observed, and in

the softening region, i.e., loading step D, formation of a kink band is observed along

with delamination at the -45/+45 interface. This implies that the failure strength is

influenced by fracture properties of the laminate, and so is the failure mode. Here, a

combination of kinking and delamination is observed in the post-peak regime, with

the compressive strength affected by cohesive strengths of the delaminating interfaces.

Similarly, a Type A 16-ply laminate was also constructed with interface elements

placed along those interfaces that are susceptible to delamination. A similar trend was

observed in the behavior of 16-ply laminates, implying that there is an insignificant

effect of scaling lamina thickness on the compressive strength of these laminates (not

shown here).

5.6.2 Comparison of Type A and Type B Laminates

A comparative investigation of Type A and Type B laminates is carried out in

this section. The objective is to investigate the influence of stacking sequence on

the compressive strength and failure mode in laminates. Therefore, the compressive

response of the two different models was studied. The smallest model that represents
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the Type B 48 layer laminate is a 16 ply laminate with zero layers distributed through

the thickness with a stacking sequence of [(−45/+ 45/90/0)2]s. Type A 16-ply lami-

nate is constructed by scaling the thickness of the individual layers in Type A 8-ply

laminate from the previous section. 16-ply Type A and Type B laminate models are

shown in Fig. 5.20 and Fig. 5.21.

Figure 5.20: Type A 16-ply laminate model

Here, the same color coding as in the case of Type A 8-ply laminate models

is followed. The imperfection imparted here is closer to experimentally observed

behavior, i.e., only the center zero layers are seeded with an imperfection of θ = δ/L

as shown in Fig. 5.22. This is because, during the manufacturing process, the pressure
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Figure 5.21: Type B 16-ply laminate model

and temperature applied on the top of the laminate causes noticeable undulations

in the 0 fibers, as opposed to off-axis layers. This is different from the type of

imperfection imparted in the previous cases, where, the imperfection was imparted

to the entire laminate model. It was observed that the difference in compressive

strength based on the two types of imperfections was 2-3 %, and therefore, a model

with imperfection imparted only to the 0 layers is considered henceforth.

The compressive strengths are determined for the two laminates corresponding to

mode-II cohesive strengths in the range of 20 - 40 MPa with an imperfection angle of

1 degree. The compressive strengths are plotted against mode-II cohesive strengths in
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Figure 5.22: Schematic of imperfection imparted to Type B 16-ply laminate model

Fig. 5.23. Here, we observe that the compressive strengths of both the laminates in-

crease with increasing mode-II cohesive strengths. Further, the compressive strength

of Type B laminate increases faster as compared to that of Type A laminate with an

increase in mode-II cohesive strength. This indicates that, due to distributed 0 degree

layers in the Type B laminate, the kink band failure in these laminates is influenced

more by the interface fracture properties as compared to the Type A laminate. Hav-

ing said that, the distributed nature of the 0 layers in Type B laminates also makes

the loading on the model more uniform as compared to Type A laminate, where the

off-axis layers are subjected to higher stresses compared to the 0 layers. This leads

to a nearly 10 % increase in the compressive strength in Type B laminates.

Next, the influence of the imperfection angle on the compressive strength is stud-

ied. For a fixed value of mode-II cohesive strength, the imperfection angle is varied

from 1 degree to 1.5 degrees, which is within the range of imperfection angles mea-

sured in aerospace grade laminates. As expected, the compressive strength reduces

with an increase in the imperfection angle. The sensitivity of compressive strength

to changes in imperfection angle was similar in both Type A and Type B laminates

as seen in Fig. 5.24.

The deformation shapes of the two laminate models with the same material and

fracture input properties are shown in Fig. 5.25, Fig. 5.26 and Fig. 5.27 corresponding
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Figure 5.23: Variation of compressive strength of Type A and Type B laminates with
varying mode-II cohesive strength of the interfaces

to the initial linear stage, at peak load and in the post-peak regime of the stress-strain

response respectively.

It is noticed that, in both the laminates, delamination is accompanied by kink

band formation. But, the kink band in the Type B laminate is restricted to a smaller

zone compared to the Type A laminate. This implies that, even though the compres-

sive strength is influenced by interface fracture properties in both the laminates, the

growth or extent of delamination in Type B laminates is less compared to Type A

laminates. This observation is consistent with experimental observations, where it is

noted that Type A laminates fail in a catastrophic manner, whereas Type B lami-

nates, after kink banding and delamination, remain intact post-experiment (as shown
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Figure 5.24: Imperfection sensitivity of Type A and Type B laminate models

(a) (b)

Figure 5.25: Deformation shapes of (a) Type A and (b) Type B laminate in the initial
linear regime of the global stress-strain response

in Fig. 5.4(b) and Fig. 5.5(b), respectively). This suggests that Type B laminates are

favored over Type A laminates for structural applications. Indeed, standard laminate

design practices limit the number of adjacent plies having the same angle.
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(a) (b)

Figure 5.26: Deformation shapes of (a) Type A and (b) Type B laminate at the peak
load of the global stress-strain response

(a) (b)

Figure 5.27: Deformation shapes of (a) Type A and (b) Type B laminate in the post-
peak regime of the global stress-strain response

5.7 Strength Allowable of Laminates

An Allowable is a mechanical property having a level of statistical assurance,

whereas, a design value is a mechanical property value of the allowable from a specific

case. Due to the statistical nature of material properties, a design value is not of much

importance to the designers. Instead, certain bases are followed in the design process,

namely, A-Basis and B-Basis allowable. These two tolerance bounds are critical in

reducing risk in structural designs, and to ensure the structural integrity of the final

product. The A-Basis allowable corresponds to a value, such that at least 99 %

of the material values are equal or greater than the value with 95 % confidence.

Whereas, the B-Basis allowable corresponds to a value such that at least 90 % of

the material values are equal or greater than the value with 95 % confidence. It is

very time consuming and expensive in terms of material resources to determine these

allowables by testing. Therefore, virtual testing could replace the need for many tests
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to determine compressive strength allowables. The model developed in this thesis

has the potential to be used as a virtual testing model for determining compressive

strength of laminates, by adding statistical nature to the materials involved. That

is, the matrix and fiber material properties and the interface fracture properties are

possible avenues to add statistics to the model. Therefore, the A-Basis and B-Basis

allowables could be determined by including statistics to the model presented here.

5.8 Conclusions

Compressive response of two types of laminates were investigated in this chapter.

Computational models to predict the compressive strength were constructed based

on failure mechanisms observed in experiments. The model facilitates delamination

to occur along the interfaces prone to delamination by adding the cohesive (DCZM)

interface elements along the selected interfaces. These interfaces were determined

a-priori from the knowledge of the laminate stacking sequence and the geometry of

the layers. The interfaces determined as the delamination prone interfaces match

well with the experimentally observed delaminating interfaces. The properties of

the DCZM elements were based on the interlaminar fracture properties that were

determined experimentally. The predicted compressive strengths, when compared

against the set of experimental results, were found to agree well, both in terms of

the maximum load and the failure modes. The mode of failure is determined by the

number and the orientation of the lamina in a laminate, the material shear nonlinear-

ity (dictated by the matrix properties) and the interlaminar fracture properties. The

methodology outlined in this chapter can be used to quickly assess the compressive

strength of laminates, within engineering limits, with a knowledge of the fundamen-

tal material properties as inputs. Also, this method can be used in the design cycle

of the fiber reinforced laminated composites. That is, the compressive strength of

the laminates with different combinations of layup orientations, layer thicknesses and
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material properties can be investigated virtually. Further, only a handful of different

types of laminates need to be manufactured and tested to decide on the final laminate

to be used. This could result in the significant reduction of manufacturing and testing

related costs.
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CHAPTER VI

Continuum - Decohesive Finite Element for

Modeling Splitting in Fiber-Reinforced Laminates

6.1 Introduction

A new finite element to model fiber-matrix in-plane fracture of fiber reinforced

laminated composites is formulated. The formulation is motivated by the virtual

multiscale cohesive method (VMCM) as described in Rudraraju et al. (2010), where

the displacement field is additively decomposed into a coarse and fine scale. Subse-

quently, by using the principle of virtual work (PVW), the governing equations for the

two scales are obtained. In VMCM, both the fine scale and coarse scale are captured

through the incorporation of new shape functions that facilitate the capturing of sharp

gradients across discontinities. In the CDFE formulation, the discontinuity is mod-

eled as a physical separation (fracture) within an element, as opposed to a two-scale

enrichment of the shape functions. The two sub-elements of a fractured element are

connected through a traction-law that embeds the fracture properties of the discon-

tinuity, and its evolution. The two sub-elements are modeled as standard continuum

elements, however the discontinuity is captured through an assumed traction-law.

Thus, the CDFE is seen as a natural merger between continuum elements and the

discrete cohesive zone elements (DCZM), Xie and Waas (2006).
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This chapter is organized as follows; Section 6.3 provides the mathematical formu-

lation for the CDFE, along with a discussion regarding the input material properties

required; continuum to non-continuum transition criteria are discussed in Section 6.4;

the details of the finite element implementation are given in Section 6.5, followed by

examples of open hole tension predictions of 90, 45 and 0 degree lamina.

It is well known that the regular finite element formulation can be used as long as

the material constitutive law has a positive tangent modulus throughout the loading

considered, Bazant and Cedolin (1991). But, when fracture emerges, the local tangent

modulus ceases to be positive definite as shown in Fig. 6.1. Incorporating constitutive

laws that display a negative tangent stiffness in a regular finite element setting leads

to pathologically mesh dependent solutions. That is, the solution to the boundary

value problem becomes ill-posed, with the solution being dependent on element size.

Several remedies to this situation have been discussed, and successfully implemented

as demonstrated in, for example, Bazant and Cedolin (1991).

Figure 6.1: Complete stress-strain relation of a material up to failure

Fig. 6.2(a) shows a 1-D bar subjected to tensile loading. The material constitutive

response of the bar contains a negative tangent modulus beyond an initial linear part.

As the mesh size is decreased, the response of the bar (Fig. 6.2(b)) changes with

change in mesh size with no sign of convergence, thereby demonstrating pathological

mesh dependency [Jirasek (2000)]. In order to overcome such mesh dependency, and
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(a) (b)

Figure 6.2: (a) 1-D bar (b) Load-displacement responses of 1-D bar

to be able to model splitting failure, the CDFE is formulated here.

6.2 Summary of Related Prior Work

Several methods have been formulated to model two-piece failure (characterized

through a material constitutive law consisting of a softening region). If the crack

path in a model is known a-priori, discrete cohesive zone method (DCZM) elements

can be placed between potential surfaces along the crack path (Xie and Waas (2006),

Gustafson and Waas (2009)). These elements follow a traction-separation law be-

tween them, where the traction on the new surfaces is a function of the separation

between the surfaces. The DCZM elements have a very high initial stiffness, which

results in almost perfect adhesion between the surfaces. Then, as the element reaches

the cohesive strength of the material, the element begins to unload following the

traction-separation law. A smeared crack band approach was developed by Bazant

and Oh (1983), which introduced a characteristic element length into the post-peak

softening damage evolution formulation. The softening part of the stress-strain re-

lation was scaled by a characteristic length of the material to ensure that the total

energy released due to failure is equal to the fracture toughness of the material, re-

gardless of the element size. Further developments of this approach to account for
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Figure 6.3: Prior methods formulated to model “two-piece” failure

mixed-mode failure was carried out by de Borst and Nauta (1985), Rots and de Borst

(1987), Camanho et al. (2007) and Heinrich and Waas (2012).

Other methods available fall under the category of enrichment methods, where the

shape functions are modified to account for discontinuities within the elements. Nodal

enrichment methods, such as the extended FEM (XFEM) presented in Sukumar and

Belytschko (2000), Belytschko et al. (2001), and element enrichment methods, such

as the variational multiscale cohesive method (VMCM) presented in Garikipati and

Hughes (1998), Garikipati (2002) and Rudraraju et al. (2010), model discontinuities

in a continuum by embedding fine scale fields into a coarse scale field in the finite

element formulation. The fine scale fields evolve following a cohesive law in the form

of a traction - separation law, resulting in mesh objectivity. Since, the elements are

embedded with a discontinuity (or multiple discontinuities) within them, the crack

path(s) evolution need not be known a-priori. A comparison of enrichment methods

is reported in Oliver et al. (2006).

The current CDFE method is motivated by the VMCM Method, where the crack

path traverses through the element, in the form of discontinuity. The basic difference
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between the VMCM and the CDFE is that the discontinuity is modeled physically

in an element in CDFE, as opposed to shape function enhancement as in the case of

VMCM. The regular shape functions in VMCM are enhanced with a discontinuous

shape function to account for the discontinuity in the medium. The discontinuity in

CDFE is inserted by fracturing the element into two parts, and the newly created

interface tractions are governed by a cohesive traction-separation law. Therefore,

the CDFE method results in a straight-forward formulation and implementation as

compared to the VMCM. It also finds ready insertion into available FE codes, since

standard shape functions are used throughput.

6.3 Mathematical formulation - PVW

In the CDFE formulation, a fractured body (non-continuum) is treated differently

from a continuum that has no crack. That is, the PVW for a continuum body,

occupying the domain Ω, and limited to the infinitesimal theory of elasticity (refer to

Fig. 6.4(a)), is given by,

∫
Ω

∇w : σdV =

∫
Ω

wfdV +

∫
Γh

wTdS (6.1)

where Γh is the traction boundary, w is the virtual displacement field, f is the body

force field, T is the prescribed external traction, σ is the Cauchy stress tensor (σ =

D : sym(∇u)), where D is the elasticity tensor, and u is the displacement field of the

domain.

Next, consider the same body, but containing, within its domain, a surface across

which the displacement field is discontinuous. Applying the PVW for a cracked body

(refer to Fig. 6.4(b)) results in,

88



(a) (b)

Figure 6.4: (a) Continuum domain (b) Fractured domain

∫
Ω1

∇w : σ dV +

∫
Ω2

∇w : σ dV −
∫
Γ3

w T ([[u]])dS =

∫
Ω1

w f dV +

∫
Γh1

w T dS +

∫
Ω2

w f dV +

∫
Γh2

w T dS
(6.2)

where, the interface Γ3 separates the domain Ω into two domains, Ω1 and Ω2. The

traction across the two new surfaces of the two separated domains is related to the

jump displacements (the displacement discontinuity) through a traction-separation

law. That is, the traction is a function of the jump displacements given by T ([[u]]),

where [[u]] denotes the displacement jump. The tractions do work over the jump

displacements as the body separates into two pieces. Fig. 6.5(a) and Fig. 6.5(b)

show traction laws, where the jump displacement can reverse sign. A 2-D cohesive

traction separation law is used that defines the fracture process in departure from

a continuum. Two traction-separation laws are used; one each for mode-I (opening)

and mode-II (sliding). The mode-I cohesive law, which signifies displacement jumps

perpendicular to the fracture surface, in the local coordinate system is,
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T1 = σIC

[
1− δI

δIm

]
if δI > 0,∆δI >= 0

T1 = k̄IδI if δI > 0,∆δI < 0 where, k̄I =
σ?I
δ?I

(6.3)

Figure 6.5: (a) Mode-I cohesive law (b) Mode-II cohesive law

Similarly, the mode-II cohesive law, which signifies tangential displacement jumps,

in the local coordinate system is given by,

T2 = σIIC

[
1− δII

δIIm

]
if δII > 0,∆δII >= 0

T2 = k̄IIδII if δII > 0,∆δII < 0 where, k̄II =
σ?II
δ?II

T2 = −σIIC
[
1− |δII |

δIIm

]
if δII <= 0,∆δII < 0

T2 = k̄IIδII if δII <= 0,∆δII > 0 where, k̄II =
−σ?II
−δ?II

(6.4)

where, δI and δII are the jump displacements in mode-I and mode-II between the de-

cohered surfaces of the fractured continuum, and ∆δI and ∆δII are the corresponding

change in the jump displacements between load increments in FEM. Though a tri-

angular traction - separation law is used here, it should be noted that no restrictions

on the nature of the traction law are imposed in CDFE.

90



It is noted that, just as in the VMCM and unlike in other cohesive zone imple-

mentations, the emergence of the traction - separation law is at a finite value of the

traction. In classical cohesive zone implementations, the traction - separation law

emerges from the origin, since such elements are used from the inception of loading,

whereas, the emergence of fracture at a finite traction, which is physically correct,

is captured in the VMCM and CDFE. Other cohesive zone models thus require a

“penalty stiffness”, which defines the initial portion of the traction - separation law.

This aspect has also been pointed out in earlier work by Jin and Sun (2005). Thus,

in the CDFE, the process of fracture is captured through the traction-jump displace-

ment law. In classical fracture mechanics, the process of fracture is not captured in

a continuous manner, instead two fractured states, which correspond to two different

crack lengths, are treated as isolated states of equilibrium.

Using Equation 6.1 for the intact continuum, and Equation 6.2 for a fractured

continuum, the corresponding finite element equations are derived in the following

sections.

The material properties required for the CDFE method are discussed below. Since,

fiber reinforced lamina is the focus, a transversely isotropic material system is consid-

ered. The corresponding transversely isotropic linear elastic material inputs are E1,

E2, ν12 and G12 in a plane stress setting. The fiber orientation angle in a lamina is

θ, which imparts directionality to the lamina. The cohesive input properties are the

in-plane fracture toughnesses and the cohesive strengths (GIC , GIIC , σIC , σIIC).

6.4 Transition from a Continuum to a Non-Continuum

The transition criterion required to signal the emergence of a displacement jump

is discussed next. A stress based criterion is adopted here. The evolution of the

failure/fracture of the continuum is based on a mixed mode energy release criterion.

In fiber reinforced lamina, the failure orientation is influenced significantly by the
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presence of fibers. That is, since the fibers have strengths that are two orders of

magnitude larger compared to the matrix material, the failure direction is dominated

by the direction of the fiber. In the present study, both fracture perpendicular and

parallel to the fibers, are considered.

For fracture perpendicular to the fiber direction (θ), as shown in Fig. 6.4, the

fracture initiation condition is, (
σ11

σfC

)
≥ 1 (6.5)

where, σ11 is the tensile stress along the fiber direction, and σfC is the cohesive strength

of the fiber.

(a) (b) (c)

Figure 6.6: (a) Mode-I fracture perpendicular to the fiber direction (b) Mode-I frac-
ture parallel to the fiber direction (c) Mode-II fracture parallel to the fiber
direction

For fracture parallel to the fiber direction (θ), as shown in Fig. 6.6, the following

transition condition is used,

(
σ22

σmC

)2

+

(
σ12

τmC

)2

≥ 1 (6.6)

where, σ22 and σ12 are the transverse and shear stresses in the rotated coordinate

system, and 1 is along the fiber direction. σmC and τmC are the cohesive strengths in

mode-I and mode-II in the matrix. Since the cohesive strength of the fibers is usually

very high compared to that of the matrix material, the matrix failure occurs prior to
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fiber failure in a lamina, usually in the presence of multi-axial loading.

In the non-continuum state, fracture evolution is assumed to be governed by a

mixed mode energy release criterion given by:

GI

GIC

+
GII

GIIC

≥ 1 (6.7)

where, δI is separation perpendicular to the fracture path (Mode-I or opening mode),

δII is the separation along the fracture path (Mode-II or sliding mode), GI is the

fracture energy dissipated corresponding to δI from Mode-I cohesive law, GII is the

fracture energy dissipated corresponding to δII from Mode-II cohesive law, GIC is

the fracture toughness of Mode-I cohesive law and GIIC is the fracture toughness of

Mode-II cohesive law.

6.5 Finite Element Formulation

The equations resulting from the application of the PVW to a continuum and

a fracturing continuum are descritized to obtain the corresponding finite element

equations. In the continuum (Ω), the domain is divided into a finite number of

elements. The presentation of the formulation is restricted to two dimensional tri-

angular elements, for illustrative purpose, whose nodal displacements are given by,

U e = [u1 u2 u3 u4 u5 u6]T (refer to Fig. 6.7(a)). It is noted that the method introduced

here is independent of the choice of element type.

The displacement field {ue} and the virtual displacement field {we} of each ele-

ment, in terms of nodal displacements are given by,

{ue} = [N ](1,6) {U e}(6,1)

{we} = [N ](1,6) {W e}(6,1)

(6.8)

Substituting Equation 6.8 into Equation 6.1, the residual ({r}) of the finite ele-
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Figure 6.7: Triangular element: (a) Continuum element, (b) Element with disconti-
nuity (c) Fractured element with discontinuity and interface tractions

ment equations for an uncracked body (Ω) is derived as,

{r} =

∫
Ω

BT D : Bu dV −
∫
Ω

Nf dV −
∫
Γh

N T dS (6.9)

where B is the strain-displacement relation. After linearizing, the above equations

are solved to determine the nodal displacements. The corresponding stresses in each

element are determined, and checked for transition.

When a transition criterion is met in an element, the element fractures in accor-

dance with the specified traction laws, as shown in Fig. 6.7(b). The black nodes in

Fig. 6.7(b) are the original nodes of the element, and the white nodes are two new

nodes that emerge due to element fracture. The crack path is parallel or perpendicular
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to the fiber direction and cuts across the integration point of the continuum element.

To develop the reduced stiffness matrix, consider the additional (dummy) nodes along

the fracture path. The interface tractions follow a cohesive traction-separation law

as shown in Fig. 6.5(a) or Fig. 6.5(b). Equation 6.4(b) can be rearranged as follows:

∫
Ω1

∇w : σ dV +

∫
Ω2

∇w : σ dV +

∫
Γ3

w T1(δI)dS +

∫
Γ3

w T2(δII)dS =

∫
Ω1

w f dV +

∫
Γh1

w T dS +

∫
Ω2

w f dV +

∫
Γh2

w T dS
(6.10)

where, δI and δII are the mode-I and mode-II jump displacements of the interface in

a cracked element. Also, {σ} = [D]{ε} , where [D] is the constitutive material matrix

of the individual sub-elements, {ε} is strain vector ({ε}=f( δui
δxi

), i=1,2) in each of the

the two domains Ω1 and Ω2.

The enhanced residual can then be expressed as,

{R} =

∫
Ω1

∇w : σ dV +

∫
Ω2

∇w : σ dV −
∫
Γ3

w T1(δI)dS −
∫
Γ3

w T2(δII)dS

−
∫
Ω1

w f dV −
∫

Γh1

w T dS −
∫
Ω2

w f dV −
∫

Γh2

w T dS
(6.11)

In the cracked, but not completely decohered element, sub-element 1 has lo-

cal nodal displacements given by, {u} = [u1 u2 u3 u4 u7 u8 u9 u10]T and sub-

element 2 has local nodal displacements given by, {u} = [u11 u12 u13 u14 u5 u6]T

as shown in Fig. 6.7(c). The corresponding virtual nodal displacements are {we} =

[w1 w2 w3 w4 w7 w8 w9 w10]T and {w} = [w11 w12 w13 w14 w5 w6]T . The terms of

Equation 6.10 can be expressed in terms of the following displacement fields:
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∫
Ω1

∇w : σ dV = {w1}T(6,1)

∫
Ω1

BT
1 DB1 dV


(6,6)

{U1}(6,1)

∫
Ω2

∇w : σ dV = {w2}T(8,1)

∫
Ω2

BT
2 DB2 dV


(8,8)

{U2}(8,1)

∫
Γh1

w T dS +

∫
Ω1

w f dV = {w1}T(6,1)[F1](6,1)

∫
Γh2

w T dS +

∫
Ω2

w f dV = {w2}T(8,1)[F2](8,1)

∫
Γ3

w T1(δI)dS +

∫
Γ3

w T2(δII)dS = {w3}T(8,1) T (δI , δII)

(6.12)

where, B1 and B2 are strain-displacement relations of Ω1 and Ω2. δI and δII are

mode-I and mode-II jump displacements at the interface between Ω1 and Ω2.

Linearizing Equation 6.11 and rearranging the terms, we obtain an enhanced

system of equations corresponding to enhanced nodal displacement field given by,

Ue =

ue
ûe

 (6.13)

where, ue = [u1 u2 u3 u4 u5 u6]T , and ûe = [u7 u8 u9 u10 u11 u12 u13 u14]T .

The corresponding enhanced element stiffness matrix and force vector are given

by,

Ke =

Ke
11(6,6) Ke

12(6,8)

Ke
21(8,6) Ke

22(8,8)

 (6.14)

Fe =

Fe(6,1)

F̂e(8,1)

 (6.15)
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From static condensation, the equivalent stiffness matrix and the force vector of

the element can be derived as,

[Ke
11 −Ke

12K
e
22
−1Ke

21]{ue} = {F̄e} (6.16)

{F̄e} = {Fe} −Ke
12K

e
22
−1{F̂} (6.17)

Therefore, the equivalent stiffness of the cracked element is,

[Keq
e ] = [Ke

11 −Ke
12K

e
22
−1Ke

21] (6.18)

Thus, the contribution of the decohered element to the global system is through

the original nodal displacements of the continuum triangle element, and is given by,

[Keq
e ]{ue} = {F̄e} (6.19)

[Ke] has contributions from the two sub-elements (triangular element and quadri-

lateral element) and the interface tractions. The stiffness contributions of the triangu-

lar and quadrilateral elements are derived in the same way as any regular continuum

element.

The entire procedure for implementing the CDFE method is illustrated in Fig. 6.8

and Fig. 6.9.
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1. At increment ‘n’, d
¯n−1 is known.

(a) If ‘k’ is the current iteration:

(b) Residual : R
¯

(d
¯
k
n−1) = K

¯
d
¯
k
n−1 − f

¯
ext
n

(c) If R
¯

(d
¯
k
n−1) ≤ TOL =⇒ exit. d

¯n
= d

¯
k
n−1

Else : Carry out Newton-Raphson (N-R) Iterations until R
¯

(d
¯
k
n−1) ≤ TOL

=⇒ exit. d
¯n

= d
¯
k
n−1 + δd

¯
k
n−1

(d) Determine ~σ for each element. Rotate ~σ along fiber direction.

(e) Check for crack initiation in each element using failure criterion.

If the criterion is not satisfied within a certain percentage (1%), reduce the
increment size by a factor, go back to Step 1, and perform Steps a-e.

Else, if the transition criterion is satisfied within a certain percentage (1%)
=⇒ Separate the element along/perpendicular to fiber direction at the
centroid of the element. Determine the modified element stiffness and
force vector, and continue.

(f) With modified assembled stiffness K
¯

and force vector f
¯
, carry out N-R

iterations. Solve for d
¯n

.

(g) Check if the cohesive sub-element has met the failure criterion:
If GI

GIC
+ GII

GIIC
≥ 1 : Element has broken completely

Else, Element on the softening curve of the cohesive law

(h) Store all information of softening elements, and continue to next incre-
ment(Step 1)

Figure 6.8: Algorithm for the CDFE method
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Figure 6.9: A flowchart describing the procedure for the CDFE method
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6.6 Open Hole Tension Simulations : Fracture of Matrix Par-

allel to Fiber Direction

The above finite element formulation has been implemented in an in-house code

through a high-level technical computing language and interactive environment within

MATLAB. The method is demonstrated by modeling the open hole tension test of

90, 45 and 0 degree lamina, for which a set of experimental results is also available.

The lamina material properties are as follows: E11=136 GPa, E22=6.7 GPa, ν12=0.33,

G12=3.2 GPa; In addition, the mode I and mode II fracture toughness values are, 0.67

N/mm and 1.67 N/mm respectively, and the mode I and mode II cohesive strengths

are 60 MPa and 90 MPa, respectively.

Fig. 6.10 shows the schematic of an open hole specimen subjected to tension. The

fiber orientation angle θ is 90 degrees. The corresponding load-load-point extension

plots, which show the unstable failure paths for different mesh sizes, are given in

Fig. 6.11.

Figure 6.10: Schematic of a 90 degree lamina with a hole subjected to tension

Mesh refinement is carried out along the expected crack path to investigate the

influence of mesh size on the global response of the model, as shown in Fig. 6.12.

Similar mesh refinement is also carried out for the 45 degree and 0 degree lamina

tensile tests investigated further.

Fig. 6.13 shows the evolving displacements and subsequent cracking of a trans-
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Figure 6.11: Load - load-point extension plot of 90 degree plate with a hole

(a) (b)

Figure 6.12: Mesh refinement along the expected crack path; (a) Coarse and (b) Fine

versely loaded single ply. At a critical value of the far-field tension, fracture in mode-I

(opening mode), with a crack propagating along the fiber direction (parallel to the

fibers) is seen to emerge at the edge of the hole and propagates uninhibitedly, ren-

dering catastrophic failure.

Similarly, the tensile response of an open hole lamina with fiber orientation θ = 45

degrees with respect to the loading direction is also demonstrated. The load - load

point displacement responses are plotted for different mesh densities and compared

with experimental results in Fig. 6.15. It should be noted here that, the simulation

with 1114 elements does not have enough elements for the regular FEM to converge,

and therefore, it does not fall in the pathological mesh dependency case study.
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(a) (b) (c)

Figure 6.13: Displacement field from the simulation of a 90 degree lamina with a hole
in tension at different loading stages; (a) Initial region, (b) Peak load
and (c) Post-peak region

Figure 6.14: Schematic of a 45 degree lamina with a hole subjected to tension
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Figure 6.15: Load - load-point extension plot of 45 degree plate with a hole

Here, mixed mode fracture is observed. That is because, along the crack path,

both the shear tractions and normal tractions are found to be active. Since the crack

is constrained to grow along the fibers or perpendicular to the fibers, the crack tip
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stress state will involve a combination of stresses. It is observed that the lamina

fractures at an angle 45 degrees to the loading direction, as shown in Fig. 6.16.

(a) (b)

(c)

Figure 6.16: Displacement field from the simulation of a 45 degree lamina with a hole
in tension at different loading stages; (a) Initial region, (b) Peak load
and (c) Post-peak region

Tensile tests were conducted on open hole specimens with fibers orientated at 45

degrees to the loading direction. The face of the laminate was speckled with black

dots on a white surface. Images were recorded at fixed intervals during testing. The

speckle data was analyzed using digital image correlation method to obtain the strain

fields. The axial strain field, i.e. along the x-direction, is shown in Fig. 6.17(a) and

Fig. 6.17(b) at an initial loading stage and at the peak load, respectively. The pre-

dicted strain behavior of the 45 degree lamina, shown in Fig. 6.17(c) and Fig. 6.17(d),

corresponding to an initial loading stage and at the peak load, matches well with the

experiments.

Finally, a 0 degree lamina with a hole subjected to tension is studied. A schematic

of the model is shown in Fig. 6.18. The load - load point displacement responses

are plotted for different mesh densities and compared with experimental results in

Fig. 6.19. In the experimental load - load point displacement response, the lamina

slips out of the grips causing the load to drop after a peak load is reached. But,
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(a) (b)

(c) (d)

Figure 6.17: Axial strain field from DIC analysis of a 45 degree lamina with a hole in
tension at different loading stages; (a) Initial region and (b) Peak load,
and corresponding CDFE analysis in (c) and (d)

the grips in the simulation are intact, and therefore, the load continues to increase

beyond the peak load from the experiments, but the global stiffness of the response

is slightly reduced as compared to the initial part of the response. Similar behavior

for a notched 0 degree laminate has also been reported in Bogert et al. (2006), and

simulated using a crack band model in, Pineda and Waas (2012). The failure of

the 0 degree lamina open hole tension test is dominated by mode-II failure, and a

characteristic longitudinal crack, which emerges at the hole edge, is seen to propagate

away from the hole and along the fiber direction. The corresponding deformation plots

of the lamina are shown in Fig. 6.20(a), Fig. 6.20(b) and Fig. 6.20(c).

Figure 6.18: Schematic of a 0 degree lamina with a hole subjected to tension
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Figure 6.19: Load - load-point extension plot of 0 degree plate with a hole

(a) (b)

(c)

Figure 6.20: Displacement field from the simulation of a 0 degree lamina with a hole
in tension at different loading stages; (a) Initial region, (b) Peak load
and (c) Post-peak region

The experimentally obtained DIC strain fields of a 0 degree lamina was also ob-

tained as in the case of a 45 degree lamina. The splitting fracture occurs along the

fiber direction, and propagates through the length of the specimen, starting at the

hole edge. Experimental strain fields at an initial stage and at the peak load are

shown in Fig. 6.21(a) and Fig. 6.21(b), respectively. These shear strain fields ob-

tained from experiment closely match those corresponding to the predictions from

numerical simulations (shown in Fig. 6.21(c) and Fig. 6.21(d)).
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(a) (b)

(c) (d)

Figure 6.21: Shear strain field from DIC analysis of a 0 degree lamina with a hole in
tension at different loading stages; (a) Initial region and (b) Peak load,
and corresponding CDFE analysis in (c) and (d)

6.7 Discussion and Concluding Remarks

The CDFE method proposed has the potential to be used in predicting in-plane

failure by fracture in laminated composites, as demonstrated through the single lam-

ina examples that have been studied. The predictions converge to a single response

with mesh refinement. Therefore, pathological mesh dependency is not observed in

this method. Fracture by splitting can also be captured by a crack band model,

Pineda and Waas (2012) or smeared crack model, Heinrich and Waas (2012), which

are weak discontinuity implementations, whereas, the present CDFE and VMCM

methods are strong discontinuity methods allowing the crack path to be independent

of the element boundaries. The CDFE formulation has a few caveats. The triangle el-

ement can virtually decompose only into a triangle and a quadrilateral element. This

may render the problem ill-conditioned if the intended crack-path is very close to any

one of the nodes of the original triangular element. A method to circumvent this

issue is to allow the triangle to decompose into either two triangles, or one triangle

and one quadrilateral. Such a general implementation is ongoing.
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As with any post-peak, strain softening capturing numerical method, the pre-

dicted response in the post-peak regime is dependent on the characteristic length

scales, defined by, l1 = ExxGIC
σ2
C

and l2 = GxyGIIC
τ2C

in mode-I and mode-II, respectively,

Yerramalli and Waas (2004b). That is, stable crack path and response is observed

when the lengths l1 and l2 are sufficiently large, making the failure more “ductile”,

whereas, unstable response is observed when these lengths are small compared to the

current crack length, rendering the failure to be brittle. In the case of brittle failure,

the dynamic equations of motion will need to be considered, since an initiated crack

will propagate a finite distance prior to attaining an equilibrium state (if any exists)

For such cases, an explicit solution scheme is more suitable. Notwithstanding these

issues, the CDFE can be used for cases that are presently studied using standard co-

hesive zone methods and VMCM. Furthermore, the CDFE can be implemented in a

straight-forward manner, using existing element libraries without recourse to special

shape functions for enrichment.

The open hole lamina tension predictions carried out to demonstrate the CDFE

approach shows its efficiency in capturing transitions from continuum response to

fracture in a seamless manner. The predicted results compared well against experi-

mental results for laminae loaded remotely at different angles to the fiber direction.

107



CHAPTER VII

Conclusion and Original Contributions

In this thesis, a novel computational modeling framework to predict the compres-

sive strength of fiber reinforced polymer matrix composite (FRPC) laminates has

been presented. The model development was motivated by a set of experimental re-

sults on the compression response of two different FRPCs. The experimental results

showed that both failure mode and failure load were influenced by the laminate stack-

ing. Furthermore, the two dominant failure modes, kink-banding in the on-axis (zero

degree lamina) layers and delamination between differently oriented laminae, were

found to be present. Digital image correlation (DIC) measurements clearly showed

that prior to failure, the (+45/-45) interfaces delaminated prior to global failure in

one type of laminate (laminate with o degree layers clustered along the centerline),

while the two modes of kinking in zero plies and delamination appeared almost simul-

taneously in the other type of laminates (laminate with 0 degree layers distributed

through the thickness of the laminate).

The computational model that was presented included interface elements to cap-

ture delamination and a micromechanical approach to capture kink-banding. Further-

more, a homogenization procedure to reduce micromechanical considerations of the

off-axis layers was introduced. To reduce the size of the computational model, those

interfaces that are most susceptible to delamination were first determined through
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a free-edge stress analysis. The inputs to implement the model, which consist of

fracture properties of interfaces and the nonlinear shear response of the matrix ma-

terial, were measured for the composite material system studied in this thesis. The

predictions of the model matched well with the experimental observations, and were

found to accurately account for failure mechanism interactions. Therefore, this model

can replace the need to carry out large numbers of tests to obtain the compressive

strength allowable for FRPC laminates. This allowable is an essential element in the

design of lightweight FRPC aerostructures. Furthermore, in the spirit of the inte-

grated computational materials engineering (ICME) national thrust, Committee on

Integrated Computational Materials Engineering (2008), the model that is presented

here can easily be extended to account for the autoclave manufacturing process of

the laminates, by introducing residual stresses due to cure shrinkage of the matrix.

In the latter part of the thesis, a new computational model to predict fiber-matrix

splitting failure, a failure mode that is frequently observed in in-plane tensile failure of

FRPC’s, was also presented. By considering a single lamina, this failure mechanism

was seamlessly modeled through the development of a continuum-decohesive finite

element (CDFE). The CDFE was motivated by the variational multiscale cohesive

method (VMCM) presented earlier by Rudraraju et al. (2010) at the University of

Michigan. In the CDFE, the transition from a continuum to a non-continuum is

modeled directly (physically) without resorting to enriching the shape functions of

the element. Thus, the CDFE is a natural merger between cohesive elements and

continuum elements. The predictions of the CDFE method were also found to be in

very good agreement with corresponding experimental observations.

Provided below are suggestions for future studies:

• The details of in-situ degradation in a lamina are due to formation of matrix

cracks (microcracks) within the fibers as shown by [Ng et al. (2010)]. This

mechanism can be modeled directly and would aid in the elimination of a off-
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axis (+45/-45) test to characterize the in-situ shear response of the matrix

material. Thus, the upscaling procedure developed here can be combined with

the micromechanics model to develop a virtual method that uses only fiber and

matrix properties

• When kink bands are observed, the band boundary shows a line of broken fibers.

Thus, fiber breaking an be incorporated in the computational model through

a CDFE approach (presented in this thesis) or a smeared crack approach (pre-

sented in Heinrich and Waas (2012)).

• Both the micromechanics models and the upscaled models can incorporate pro-

cessing induced thermal effects to predict manufacturing induced effects in the

laminates. This would fit in well within the broader ICME framework for FR-

PCs.

• Extend the CDFE formulation to incorporate the dynamics of failure. This

would necessitate using explicit solutions schemes of the resulting finite element

equations.
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APPENDIX A

Concentric Cylinder Model Equations

The homogenized lamina properties are obtained using a concentric cylinder model

(CCM) shown in Fig. A.1. The CCM equations for equivalent lamina properties

[Hashin and Rosen (1964), Hill (1964), Pankow (2010)] are as follows;

Figure A.1: A sketch of the concentric cylinder model with fiber volume fraction
Vf = a2

b2

Axial modulus :

E1 = Ef
1 (1 + γ)V f + Em(1 + δ)(1− V f ) (A.1)
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where,

γ =
2νf21E

m(1− νf23 − 2νf12ν
f
21)V f (νf12 − νm)

Ef
2 (1 + νm)(1 + V f (1− 2νm)) + Em(1− νf23 − 2νf12ν

f
21)(1− V f )

(A.2)

δ =
2Ef

2 ν
mV f (νm − νf12)

Ef
2 (1 + νm)(1 + V f (1− 2νm)) + Em(1− νf23 − 2νf12ν

f
21)(1− V f )

(A.3)

Transverse modulus :

E2 =
1

ηfV f

Ef
2

+
ηm(1− V f )

Em

(A.4)

E3 = E2 (A.5)

where,

ηf =
Ef

1V
f +

[
(1− νf12ν

f
21)Em + νmνf21E

f
1

]
(1− V f )

Ef
1V

f + Em(1− V f )
(A.6)

ηm =
[(1− νm2

)Ef
1 − (1− νmνf12)Em]V f + EmV m

Ef
1V

f + Em(1− V f )
(A.7)

Poisson’s ratio :

ν12 =
[(1− V f )(1− νf23 − 2νf12ν

f
21)]νmEm

((1− V f )(1− νf23 − 2νf12ν
f
21))Em + (1 + V f + (1− V f )νm − 2V fνm2)Ef

2

+
[νm + V f (2νf12 − νm) + (νm

2
(1− 2V fνf12 − V f ))]Ef

2

((1− V f )(1− νf23 − 2νf12ν
f
21))Em + (1 + V f + (1− V f )νm − 2V fνm2)Ef

2

Shear modulus :

G12 = Gm

[
(Gm +Gf

12)− V f (Gm −Gf
12)

(Gm +Gf
12) + V f (Gm −Gf

12)

]
(A.8)
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G13 = G12 (A.9)

G∗23 =
1

1

Gf
23

V f + η4
1

Gm (1− V f )

V f + η4(1− V f )

(A.10)

where,

η4 =
3− 4νm + Gm

Gf23

4(1− νm)
(A.11)

Subscripts f andm refer to the fiber and matrix phases. E represents the modulus,

G the shear modulus, V the volume fraction, ν poisson’s ratio. The 1 axis is in the

fiber direction as shown in Figure A.1.
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APPENDIX B

Interaction between Kinking and Splitting in the

Compressive Failure of Unidirectional Fiber

Reinforced Laminated Composites

This appendix is a paper that is published in Composites Structures [Prabhakar

and Waas (2012c)], and addresses the topic of interactive failure in unidirectional

laminates. Since, the focus of the thesis is on the interactive failure in multidirectional

laminates, the preliminary work carried out for unidirectional laminates is presented

here.

Introduction

Fiber kink banding has been identified as a compressive strength limiting mech-

anism in aligned fiber reinforced composite laminates that are finding increasing use

in lightweight aerostructures, (Schultheisz and Waas (1996) and Waas and Schulthe-

isz (1996)). While early studies determined that the compressive strength can be

determined by a knowledge of the shear nonlinearity in the stress-strain response of

a lamina in tandem with a knowledge of initial fiber misalignment (Budiansky and
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Fleck (1993) and Schapery (1995)), it was later determined through a combination of

experiments and numerical modeling that the kink band formation is an evolutionary

process, which is governed by local stress state (including stress multi-axiality), details

of the material constitutive model and the fiber misalignment angles as explained in

papers by Sun and Jun (1994), Kyriakides et al. (1995), Lee and Waas (1999), Vogler

et al. (2001), Yerramalli and Waas (2003), Yerramalli and Waas (2004a), Basu et al.

(2006), Pimenta et al. (2009a), Pimenta et al. (2009b), Feld et al. (2011). As loading

proceeds, regions of fiber misalignment in the composite undergo deformation due to

combined compression and shear loading. This region is surrounded by other ma-

terial whose deformation characteristics, in general, are different. The progressively

increasing local fiber misalignment coupled with a softening shear nonlinearity, per-

petuates a local limit-load type instability that initiates a rapid formation of a kink

band. During this formation, the external tractions required to support the structure,

in general, decrease, indicating an instability. The regions within the band undergo

large straining while material outside the band, relaxes and unloads. Consequently,

the mechanics of this process is related to the local microstructural details, geometry

and volumes of material that are occupied by the band and that are outside the band.

Lee and Waas (1999), Lee et al. (2000), Vogler et al. (2001), Pimenta et al. (2009a)

and Pimenta et al. (2009b), have shown that kink-band formation can also involve

splitting in combination or in isolation of the band formation. Lee and Waas (1999)

studied the effect of fiber volume fraction on the compressive failure mode, while Yer-

ramalli and Waas (2003) studied the effect of fiber type and load multi-axiality on

failure. In both these studies energy released by splitting failure in combination with

kinking was identified as contributing to the failure mechanism. Since the strains

within the band can become in excess of the tolerable strain limits of the matrix

and/or the fiber/matrix interface, it is conceivable that energy released by splitting

is another mechanism by which energy is dissipated in the process of kink-band for-
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mation, in addition to the nonlinear volumetric energy released by the matrix. The

formation of kink banding as an energy release mechanism in limiting the compres-

sive strength of laminates with cut-outs has previously been addressed by Waas et al.

(1990), Ahn and Waas (1999), Ahn and Waas (2002), and Berbinau et al. (1999),

while the influence of fiber waviness on compressive failure of unidirectional laminates

has been studied by Wisnom (1994). Micromechanical models to predict compressive

strengths have been proposed by Naik and Kumar (1999), and Xu and Reifsnider

(1993), while the high strain rate response in compression has been addressed in

Guedes et al. (2008), Ochola et al. (2004), Pintado et al. (2001) and Hosur et al.

(2001). Typical values of experimental compressive strength (XC) of modern fiber

reinforced lamina (00 degree plies) are tabulated in Table B.1.

Table B.1: Compressive strength of unidirectional fiber reinforced lamina
Material Description XC Reference

(MPa)

APC-2/AS4 Composite 1044-1156 Kyriakides et al. (1995)

Glass-Fiber composites, Vf=0.4-0.6 650-880 Lee and Waas (1999)

Carbon fiber HM-S/Epoxy, Vf=0.45-0.55 650-690 Lo and Chim (1992)

Carbon fiber HM-S/Epoxy, Vf=0.5-0.6 735-780 Hancox (1975)

Carbon fiber HM-S/Epoxy, Vf=0.45-0.5 580-585 Martinez et al. (1981)

Boron fiber/Epoxy, Vf=0.45 800 Lager and June (1969)

Carbon fiber HT-S/Epoxy, Vf=0.4-0.5 840-1030 Lo and Chim (1992)

Carbon fiber HT-S/Epoxy, Vf=0.4-0.5 910-1095 Hancox (1975)

T 300/5208, Vf=0.59 1228 Lo and Chim (1992)

This chapter is concerned with the interaction between splitting and kink-banding

in the compressive failure of composites, studied by using a micromechanics based 2D

finite element model representation of the composite. The details of the representative

volume element of a fiber matrix composite that is suitable for understanding and

delineating the most important aspects of determining the compressive strength is

also examined. While splitting is governed by the fracture properties of the matrix

and/or fiber matrix interface, the kink banding is governed by the nonlinear response
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of the matrix material in a misaligned fiber composite, (Prabhakar and Waas (2012b),

Yerramalli and Waas (2004b)). First, the minimum size of computational model

required to determine a converged value of compressive strength of the laminate is

established. This is followed by an interactive failure model that includes discrete

cohesive zone elements (DCZM) added along the interface between fibers and matrix,

allowing for kinking and splitting failure mechanisms to interact. Here, a parametric

study is carried out with different sets of values for the fracture properties, in order

to extract the compressive strength limiting mechanism.

Determining critical model size

Modeling overview

2-D finite element representative micromechanics models of carbon fiber reinforced

polymer (CFRP) matrix unidirectional laminates are examined in this chapter. Since,

one of the goals is to investigate the effects of model size on the compressive strength,

scaled micromechanics models preserving a fixed fiber volume fraction and aspect

ratio are considered. The fiber volume fraction and aspect ratio (length/cross-section

height of the model) are maintained at 50% and 2 respectively. It has been shown

by Yerramalli and Waas (2004a) that there is no significant difference in response

between 2-D models and 3-D models for composites with high fiber volume fraction

and low imperfection. That is, the difference in the response of 2-D model and 3-D

model increases with increase in imperfection angles. Since, aerospace grade laminates

have low imperfections (Yurgartis (1987)), 2-D models can be used as opposed to 3-D

models. Further, the response of 2-D model is in very good agreement with 3-D model

if the fibers are regularly spaced making the laminate periodic in the third dimension.

Therefore, 2-D models are adopted for computational expediency and because they

capture the essential details of the mechanisms associated with compressive response
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for fiber volume factions in excess of 50%. The smallest model consists of 6 fibers,

followed by 12, 24, 48 and 96 fibers. Since, the aspect ratio and fiber volume fractions

are held fixed in all the models, the global size of the models increase by a factor of

2 as compared to the previous size. Therefore, if the smallest model i.e. size 1 model

has a dimension of 0.12 mm x 0.06 mm, the size 2 model has dimensions of 0.24 mm

x 0.12 mm, and size 3 has dimensions of 0.48 mm x 0.24 mm (refer to Table B.2).

Table B.2: Dimensions and number of fibers in different size models
Number of fibers Length (mm) Width (mm)

Size 1 6 0.12 0.06

Size 2 12 0.24 0.12

Size 3 24 0.48 0.24

Size 4 48 0.96 0.48

Size 5 96 1.96 0.96

Figure B.1: a) 6 fiber model of a unidirectional composite; (b) Meshed model of the
laminate

A schematic of a 2-D unidirectional composite along with the boundary conditions

prescribed and subjected to compression is shown in Fig. B.1(a). A displacement

controlled uniform compressive loading is applied on edge BC as shown in Fig. B.1(a).

Also, a meshed model with boundary conditions applied is shown in Fig. B.1(b). The

fiber diameter is fixed at 0.005 mm, which is representative of carbon fibers in aero-

structural laminates. An initial ply misalignment of 1 degree is imparted to all the
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models, as seen in Fig. B.1(a) represented by an angle θ (=1) degrees. Previous work

by Yurgartis (1987) has shown that initial misalignment angles of 0.5 to 2 degrees

bound the distribution of fiber misalignment that is typical of carbon fiber reinforced

aero-structural laminates.

Table B.3: Fiber properties (Lee and Waas (1999))
E11 (GPa) E22 (GPa) E33 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ν13 ν23

276 8.76 8.76 12.0 12.0 3.244 0.35 0.35 0.35

Fibers are assumed to be orthotropic and linearly elastic. The orthotropic proper-

ties of the carbon fiber are given in Table B.3, taken from Lee and Waas (1999). The

degrading polymer matrix is modeled as an isotropic elastic-plastic governed by J2

incremental theory of plasticity, (Lubliner (2008)). It should be noted that plasticity

is one of the many ways to approximate nonlinearity of a material. But, plasticity is

adopted here as a way of modeling nonlinearity induced in the model due to matrix

nonlinearity. The equivalent stress-equivalent strain response of the in-situ matrix,

which corresponds to it’s uniaxial stress-strain response is shown in Fig. B.2.

To establish the baseline compression response, the scaled models are assumed to

have a perfect interface between fibers and matrix. This implies that the fibers are

restricted from splitting from the matrix. Four noded, bilinear quadrilateral elements

(CPE4 in the ABAQUS code) with a characteristic length of 0.0015 mm (i.e. at least

3 elements through the thickness of the fiber) and non-linear geometry are used for the

fibers and matrix in all 2D (plane strain) analyses reported in this chapter. Due to the

initial ply misalignment, and along with non-linear geometry used, the possibility of

an unstable snap-back response is accommodated by employing the arc-length based

Riks solver in the ABAQUS code, ABAQUS (6.10).
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Figure B.2: Uniaxial compressive stress-strain curve of the in-situ matrix

Results

Fig. B.3 shows a global compressive stress-strain curve along with a series of

deformed shapes of the size 3 model, corresponding to the loading history. Point A

corresponds to the initial linear path, point B corresponds to the peak stress, point

C lies in the snap back regime and point D represents the plateau region of the

macroscopic stress-strain response shown in Fig. B.3.

For all sizes of the model (given in Table B.2), corresponding global compressive

stress-strain curves are determined. In all the responses, an initial linear macroscopic

stress-strain response is terminated by a peak stress, followed by a progressively

decreasing stress-increasing strain branch or a snap-back branch as shown in Fig. B.4.

The snap-back branch becomes more prominent as the model size increases. It is

observed that the peak stress increases initially with an increase in model size, and

gradually asymptotes to a converged value (from 704 MPa to 730 MPa). It is also
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Figure B.3: Global stress-strain curve with deformation plots at different loading
stages

observed that the peak stress is fairly low for model size 1, and gradually converges

for sizes 3 and above as shown in Fig. B.5.

Typical deformation plots for Size 1 and Size 3 models are shown in Fig. B.6(a)

and Fig. B.6(b). A distinct difference in the deformation behavior of the two models

in the post-critical regime is observed. A compact kink band is observed in the Size

3 model and larger size models, but is absent in the Size 1 model. This difference is

manifested in the stress-strain curve of the models as well. Size 3 model displays a

snap-back response behavior whereas Size 1 does not. It can be concluded that the

Size 1 model geometry does not facilitate the formation of the kink band because
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Figure B.4: Global stress-strain curves for different model sizes
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Figure B.5: Peak stress for models with perfect interfaces
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Figure B.6: (a) Deformation of Size 1 model; (b) Deformation of Size 3 model

its overall width is insufficient to accommodate the kink band, and therefore adds

a geometrical constraint. This shows that the model size must not be restrictive in

allowing the “free” formation of the kink band in the post-peak stress-strain regime.

The percentage difference in peak stresses of the models of consecutive sizes are

determined. The percentage difference in peak stress between Size 3 and Size 4 models

(and between subsequent larger size models) is less than 1 percent. Therefore, the Size

3 model with 24 fibers is chosen as the baseline model for obtaining the compressive

strength. Also, Size 3 model captures the kink band well within its overall length

along the loading direction.
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Table B.4: Local strains in model without splitting capability

Load Step Local ε22 Local γ12

A 0.000915 0.00235

B 0.00725 0.06492

C 0.032 0.306

D 0.194 0.675

Observations

The local strains (ε22 and γ12) in the local coordinate system at the center of the

model (which also lies within the kink band at loading stages C and D) are tabulated

in Table B.4. It is observed that these strains attain very large values beyond the peak

stress, and exceed the failure strains of typical polymer matrix materials (Ng et al.

(2010)). These high strains suggest fiber/matrix splitting, which has been observed

in conjunction with the formation of kink banding (Yerramalli and Waas (2003),

Pimenta et al. (2009a), Pimenta et al. (2009b)).

In the next section, Size 3 (baseline) model is considered to investigate the me-

chanics of the splitting process during kink band formation, where discrete cohesive

zone method (DCZM) elements, (Gustafson and Waas (2009)) are added along the

interface between the matrix and fibers. These elements model splitting through ef-

fective traction laws. The details of these laws are associated with the energetics of

the splitting process. The following sections will explain the micromechanics based

model with DCZM elements and the corresponding results of the parametric study

that was conducted.

Interactive failure between splitting and kinking failure

DCZM elements are added along the fiber-matrix interfaces for allowing splitting

to occur in conjunction with or without the kink-band formation. Fig. B.7(a) shows
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a schematic of the DCZM elements added along the interface between the fibers and

matrix with a 6 fiber model, shown as red lines. A similar analysis as that carried out

without interface elements was conducted on models of different sizes with interface

elements. It was found that Size 3 model gives a converged value of compressive

strength even for the cases where interfaces separate. Therefore, subsequent analysis

results reported correspond to the size 3 model, which was established as the min-

imum size required for predicting a converged value of compressive strength. Even

though the DCZM elements are placed along the fiber-matrix interface, they repre-

sent approximately matrix cracks in the regions close to fibers which coalesce to form

splitting cracks within the matrix. The DCZM elements are explained in the next

section, followed by a parametric study for different sets of inputs to these elements.

Figure B.7: a) 6 fiber model with cohesive elements added at the interface between
fibers and matrix to accommodate splitting; (b) Triangular traction-
separation law for DCZM elements

Modeling with Discrete cohesive zone method (DCZM) elements

DCZM elements are interface elements that adopt a 1D traction law capable of

simulating crack formation and propagation, i.e. splitting. The element features the

ability to predict splitting initiation based on a traction law that captures the cohesive

strength and the fracture toughness, in each fracture mode (mode I and mode II in

the current model).
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The DCZM elements used in this chapter have been successfully employed in other

studies involving crack propagation as presented in Gustafson and Waas (2009). A

triangular cohesive law is adopted here, and is shown in Fig. B.7(b). The input

parameters to DCZM elements are fracture toughness (GIC and GIIC) and cohesive

strength (σc and τc). Several analyses are carried out for different combinations of

these input parameters. These combinations of parameters are in the range of cohesive

property values reported in the literature (For example, see Jimenez and Miravete

(2004), Jiang et al. (2007)). Six cases are considered and are explained in detail in

the following sections.

While buckling analysis is traditionally done using implicit codes with an arc-

length method, e.g. RIKs method (as used for models with perfect interfaces in the

previous sections), the inclusion of splitting in this study introduces convergence dif-

ficulties that is beyond the capabilities of implicit solvers to handle. Even though

implicit solvers are unconditionally stable, the presence of two unstable failure mech-

anisms require very small time steps for convergence, and solutions diverge at critical

points. Therefore, in this study, an explicit code (ABAQUS Explicit 6.10) with ex-

plicit user element subroutine for interface (DCZM) elements is used to generate the

computational results. In this study, even though the loading is quasi-static, kink-

banding, and splitting at the interfaces, are both dynamic events, which impart a large

amount of kinetic energy. Therefore, for these types of problems, explicit analysis is

used here. A comparison between RIKS and Explicit analysis is carried out for Size

3 model with only kinking capability (no splitting allowed) in the model. The global

stress-strain curves from the two analyses are shown in Fig. B.8, and are in good

agreement with each other. Therefore, the Explicit method is used with confidence

in the following analyses.
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Figure B.8: Global stress-strain curves for Size 3 model using RIKS method and
Explicit method for the case without splitting capability in the model

Parametric study

A parametric study is carried out to investigate the effect of varying magnitudes

of fracture properties on the global compressive strength and failure mode (splitting

or kinking) of the laminate. The different cases considered are shown in Table B.5.

In the first case, the fracture toughnesses in both mode-I and mode-II are held

fixed at 0.525kJ/m2 and 1.751kJ/m2 while the cohesive strengths are varied as shown

in Table B.5. In the second case, the fracture toughnesses in both mode-I and mode-II

and the cohesive strength in mode-II are held fixed at 0.525kJ/m2, 1.751kJ/m2 and

80MPa respectively, while the cohesive strength in mode-I is varied as shown in Table

B.5. In the third case, the fracture toughnesses in both mode-I and mode-II and the

cohesive strength in mode-I are held fixed at 0.525kJ/m2, 1.725kJ/m2 and 40MPa

respectively, while the cohesive strength in mode-II is varied. In the fourth case, the

fracture toughnesses in both mode-I and mode-II are reduced to 0.00525kJ/m2 and

0.01751kJ/m2 respectively, while the cohesive strengths are varied as in Case 1.
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Table B.5: Cases 1-4
σc GIC τc GIIC

(N/mm2) (kJ/m2) (N/mm2) (kJ/m2)

Case 1.1 2.5 0.525 5.0 1.751

Case 1.2 5.0 0.525 10.0 1.751

Case 1.3 10.0 0.525 20.0 1.751

Case 1.4 20.0 0.525 40.0 1.751

Case 2.1 2.5 0.525 80 1.751

Case 2.2 5.0 0.525 80 1.751

Case 2.3 10.0 0.525 80 1.751

Case 3.1 40 0.525 10 1.751

Case 3.2 40 0.525 20 1.751

Case 3.3 40 0.525 40 1.751

Case 4.1 2.5 0.00525 5.0 0.01751

Case 4.2 5.0 0.00525 10.0 0.01751

Case 4.3 10.0 0.00525 20.0 0.01751

Case 4.4 20.0 0.00525 40.0 0.01751

Results and discussion

The macroscopic stress-strain responses for all the above cases were determined. It

is observed that the compressive strengths are unaltered by varying either mode-I or

mode-II fracture toughness, when the cohesive strengths are fixed at large values (say

40 MPa and 80 MPa in mode-I and mode-II). This is because the cohesive strengths

in either case are fixed at relatively large values, which results in no separation in

the DCZM elements, and hence the model responds by a mechanism of kink band

formation with no energy released by splitting. As such, the fracture toughness of

the interface corresponding to high cohesive strengths of interfaces has no effect on

the compressive strength of the laminate.

In Case 1 where the cohesive strengths are systematically reduced in magnitude,

while keeping the fracture toughnesses fixed, the compressive strength reduces with
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a reduction in the cohesive strengths. Further, to determine the influence of mode-

I and mode-II cohesive strengths individually on the compressive strengths of the

laminate, the cohesive strengths in the two modes are reduced individually keeping

one at a relatively large value, as described in Case 2 and Case 3. Here, it is observed

that the compressive strength of the laminate is influenced by a variation in mode-

II cohesive strength, but not by a reduction in the mode-I cohesive strength of the

interface elements. This implies that the failure of the unidirectional laminate is by

mode-II splitting at the fiber-matrix interface, with little influence from the mode

I component. That is, in Case 3, as the mode-II cohesive strength of the DCZM

elements are reduced, the separation between the interface elements increases beyond

the critical separation corresponding to mode-II cohesive strength in the traction-

separation law, beyond which the the DCZM elements soften reducing their load

bearing capacity. This results in splitting of the interfaces, followed by a reduction

in the macroscopic compressive strength.

In case 4, again the compressive strength is seen to reduce with a reduction in

cohesive strength as observed in case 3, and the magnitudes in each case are unaltered

as compared to case 3. Therefore, the fracture toughness values with splitting inter-

faces do not influence the compressive strength of the laminate. The corresponding

global compressive stress-strain curves are plotted in Fig. B.9(a). As the mode-II

cohesive strength is increased, the compressive strength appears to converge to the

compressive strength of the model with no interface elements given in Fig. B.3.

The deformation plots representing displacement in global x1 - direction at differ-

ent loading stages (refer to Fig. B.9(b)) for the model without interface elements are

shown in Fig. B.10. Stage 3 represents the point corresponding to the compressive

strength of the laminate, and Stage 4 lies in the post-peak regime of the global stress-

strain curve. A distinct kink band is formed at Stage 4 showing kink band failure

mode.
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Figure B.9: (a) Global stress-strain curves for Case 4; (b) Global stress-strain curve
for Case 4.3 with (GI/GIC ,GII/GIIC) at different loading stages

Figure B.10: Deformation (U1) plots of the model showing failure by kinking (model
without interface elements)

Corresponding deformation plots for model with interface elements for Case 4.3 is

shown in Fig. B.11. Again, Stage 3 corresponds to compressive strength in the global

stress-strain curve, and it is observed that the interfaces begin to separate in mode-II

at this stage. That is, there is a relative displacement (shown by drastic change is
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Figure B.11: Deformation (U1) plots of the model failure by splitting (model with
interface elements)

color) in the loading direction between the top and bottom of the interface (mode-II

sliding). Stage 4 is a point in the post-peak regime, where the interface separation is

more evident, and at stage 5 the interface elements have opened through the length

of the model. Hence, the interfaces are completely broken. Therefore, it is deduced

that energy is dissipated through mode-II splitting, and there is no distinct kink band

formed in the post peak regime. The ratios of fracture energy released per surface

area with respect to the critical fracture toughness (GI/GIC and GII/GIIC) in mode-I

and mode-II at the center of the model are shown at different loading stages on the

global stress-strain curve plotted in Fig. B.9(b) for the case 4.3. It is observed that

the mode-II failure mode is dominant, since the ratio GII/GIIC is much greater than

GI/GIC near the global peak strength and beyond. A similar mode-II dominance is

observed in the rest of the cases.

For the same case, (case 4.3), the local strains ε22 and γ12 as a function of the

loading history are tabulated in Table B.6. These strains are now compared against

the corresponding strains for the case without the interface DCZM elements that was
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Table B.6: Local strains in model with DCZM
Load Step Local ε22 Local γ12

A 0.000811 0.00185

B 0.00566 0.0533

C 0.01357 0.0056

reported earlier in the chapter, Table B.4. Load steps A,B and C correspond to the

same loading stages as mentioned in Table B.4.

It is observed that the local strains in the two models are comparable prior to

the attainment of the peak strength. However, in the post-peak regime, the strains

drop in the model with the DCZM, in contrast to the model with non-separating

interfaces. This is because energy is released by splitting beyond the peak strength,

and the model does not experience extremely high local strains as before. This is

more realistic, since the lamina cannot bear such large strains as shown in Table

B.4. Therefore, adding the interface elements allows the model to dissipate energy

through splitting only, or in conjunction with kinking. From the above results, it can

also be deduced that a good knowledge of the mode-II cohesive strength of the fiber-

matrix interface in the laminate is necessary to determine the compressive strength

and failure mode of the unidirectional laminate accurately.

Conclusions

The mechanics of failure mode interaction in the compression response of fiber

composites has been studied by utilizing a micromechanics based finite element model

incorporating discrete cohesive zone elements. It is shown that the mode II cohesive

shear strength has a significant influence in affecting the magnitude of the composite

compressive strength. A minimum size of the representative fiber/matrix volume

element (RVE) was established to accurately capture the kink band failure mode.

Compressive strength predictions with smaller RVE sizes was found to be misleading.
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Models that included interface cohesive elements captured the interaction between

splitting and kink band formation for several of the different cases considered in this

study. It was determined that compressive failure by sliding splitting was dominant,

and the compressive strength is affected by the degree of mode-II cohesive strength of

the interface. The compression response of the composites was studied that highlights

the competition between splitting and kink banding. It was concluded that a model

should have splitting capability to determine the compressive response of a laminate,

and the compressive strength and mode of failure (splitting or kinking) are dependent

on the interface fracture properties.
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