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ABSTRACT

Predictive, Adaptive, and Time-Varying Control of Spacecraft Orbits and Attitude

by

Avishai Weiss

Chair: Ilya Kolmanovsky

This dissertation contributes several control strategies that provide advanced

capabilities in spacecraft applications. Specifically, we consider predictive,

adaptive, and time-varying control methods, and apply them to orbital and at-

titude control.

First, we develop a Model Predictive Control (MPC) approach with dy-

namically reconfigurable constraints for orbital rendezvous and docking. The

controller is designed to transition between MPC-based guidance during space-

craft rendezvous and MPC-based guidance during spacecraft docking, with

each phase having distinct requirements, constraints, and sampling rates. Ob-

stacle/debris avoidance is considered in the rendezvous phase and handled us-

ing a dynamically rotating hyperplane. A Line of Sight (LoS) cone constraint,

bandwidth constraints on the spacecraft attitude control system, and exhaust

plume direction constraints are addressed during the docking phase. The MPC

controller is demonstrated in simulation studies using a nonlinear model of

xvii



spacecraft orbital motion. An Extended Kalman Filter (EKF) is used to es-

timate spacecraft states based on relative angles and relative range measure-

ments.

Second, we consider spacecraft relative motion control based on the use

of safe positively invariant sets. In this approach, a connectivity graph is con-

structed between a set of forced equilibria, forming a virtual net that is centered

around a nominal orbital position. The connectivity between two equilibria is

determined based on safe positively invariant sets in order to guarantee that

transitions between equilibria can be effected while spacecraft actuator limits

are adhered to and debris collisions are avoided. A graph search algorithm is

implemented to find the shortest path around the debris. One of the advan-

tages this approach has over conventional open-loop trajectory optimization, is

the ability to incorporate bounded disturbances into relative motion planning,

while rigorously guaranteeing constraint enforcement. Disturbances may oc-

cur due to thrust errors, delays, air drag, solar pressure, or failed or leaking

components.

Third, for attitude control, we extend the continuous inertia-free control

law for spacecraft attitude tracking derived in prior work to handle magnetic

actuation, reaction wheels, and control momentum gyroscopes (CMGs). For

magnetic actuation, the spacecraft is assumed to be in low-Earth orbit and actu-

ated by only three orthogonal electromagnetic actuators. For reaction wheels,

we assume three axisymmetric wheels. For CMGs, we assume three fixed-

speed single-gimbal CMGs (SGCMGs) with spherical wheel. In all cases, the

actuators are mounted in a known and linearly independent, but not necessarily

orthogonal, configuration with an arbitrary and unknown orientation relative to

the unknown spacecraft principal axes. We demonstrate effective attitude con-

trol capability without relying on inertia matrix characterization.

xviii



Lastly, motivated by the time-varying dynamics of magnetic attitude con-

trol and relative motion control on elliptic orbits, we develop a forward-

propagating Riccati-based linear time-varying (LTV) feedback controller. We

show that if the closed-loop dynamics matrix is symmetric, then the Forward-

Propagating Riccati (FPR) controller is asymptotically stabilizing. We also

show, using averaging theory, that, in the case of periodically time-varying

systems, and under suitable assumptions, there exists a period below which the

dynamics of the closed-loop system are asymptotically stable. In other words,

closed-loop stability is guaranteed for systems with time-varying dynamics of

sufficiently high frequency. Additionally, we show that there is a separation of

estimator and FPR regulator dynamics and thus FPR control may be used in

an output feedback configuration. We apply the FPR controller to a magnet-

ically actuated spacecraft for both inertial and nadir pointing, as well as to a

maneuvering spacecraft in an elliptic orbit around the Earth.

xix



CHAPTER 1

Introduction

The unifying theme of this dissertation is the development of control methods that provide
advanced capabilities for spacecraft orbital and attitude control. This chapter provides an
overview and summarizes the contributions made in this dissertation.

1.1 Orbital Control

1.1.1 Rendezvous and Docking

Autonomous spacecraft rendezvous and docking maneuvers are among the most important
and difficult components of modern spacecraft missions [1]. Examples include transport
vehicle approach and docking to the International Space Station (ISS), capture and recovery
of tumbling satellites, and avoidance or flybys of space objects (i.e. debris). Traditionally,
relative motion maneuvers are performed using open-loop planning techniques [2]. Ad
hoc maneuver corrections may be employed to compensate for errors inherent in open-
loop control. Literature on spacecraft rendezvous control is extensive and includes, for
instance, [2–10], and references therein.

Recently, more interest has been emerging in closed-loop maneuvering, especially for
missions that involve formation flying or automated rendezvous, docking, and proximity
operations. The XSS-11 [11] spacecraft has been developed by the Air Force Research
Laboratory as a platform for demonstrating such relative motion capabilities. The robust-
ness, fuel efficiency, speed, safety, and reliability of spacecraft relative motion maneuvers
can be improved through the application of feedback control.

With this motivation, in [12–14] an approach to perform relative motion maneuvers
based on the application of linear quadratic Model Predictive Control (MPC) and dynami-
cally reconfigurable linear constraints was developed. This approach enables fuel efficient
maneuvers that, in real time, can be replanned to account for unconsidered disturbances,
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changing target conditions or objectives, and time-varying path constraints such as the
presence of obstacles or debris. The MPC controller uses a linearized relative motion
model and linear constraints that are generated online in order to compute the optimal con-
trol sequence over a finite horizon; it then applies the first element of this sequence to
the spacecraft and repeats the process at the next sampling instance. For maneuvers con-
fined to the orbital plane, References [12–14] demonstrated the capability to approach both
a non-rotating and rotating, or tumbling, platform, while avoiding an obstacle along the
spacecraft’s path. In addition, robustness to unmeasured disturbances through the mecha-
nism of systematic MPC feedback corrections was demonstrated. Finally, it was shown that
the linear quadratic MPC approach with dynamically reconfigurable constraints reduces to
an on-line solution of a quadratic programming (QP) problem, which is computationally
feasible on-board a spacecraft. Furthermore, if the spacecraft approaches a non-rotating
platform with a known Line of Sight (LoS) cone orientation, an explicit MPC approach
that does not require on-board optimization can be used and is based on storing an of-
fline pre-computed MPC law in the form of a piecewise affine control function (i.e., in the
form of look-up tables and if-then-else conditions). The main limitation of [12–14] is that
relative motion maneuvers are confined to the orbital plane of the target spacecraft.

Several other variants of the MPC framework for relative motion control have been
proposed in the literature. The approach employed by [3, 15] uses a variable length hori-
zon and requires the solution of a mixed-integer linear program at every control step. An
application of MPC to spacecraft guidance in proximity of a space station is considered
in [16], where an unconstrained MPC is proposed for guidance to the neighborhood of the
space station, while the LoS between the station and the spacecraft sensors is maintained
by a constrained spacecraft attitude controller and a control allocation scheme to operate
the thrusters. In a similar context, a receding horizon controller that uses the solutions of
non-convex quadratically constrained quadratic programs has been proposed in [17] for
passively safe proximity operations, where a statistical model of the uncertainty is used for
improving robustness with respect to position uncertainty.

1.1.2 Debris Avoidance

Orbital debris is an exponentially growing problem, with about 40% of ground-trackable
objects originating from explosions that now number approximately 5 per year [18]. Space-
craft maneuver planning procedures thus have to address debris avoidance requirements.
While obstacle avoidance is a standard problem in robotics [19, 20], the related spacecraft
problems have several unique features. In particular, the space environment is relatively
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uncluttered, thus permitting for a variety of maneuvers. Spacecraft dynamics are quite
different from those of typical robots. Maneuver efficiency with respect to time and fuel
consumption is a critical consideration. The states of the spacecraft and the debris can only
be estimated, often with a significant estimation error. Finally, computational algorithms
must be fast and optimized given moving objects and the limited computing power on-
board most spacecraft. These unique features of spacecraft maneuver planning problems
provide the motivation for the development of specialized algorithms.

Interest in spacecraft trajectory optimization with obstacle avoidance has increased in
recent years. An optimal control problem with path constraints constructed as ‘keep out’
zones to avoid obstacles was formulated in [21]. The Sparse Optimal Control Software
(SOCS) software was then used to solve the problem [22]. Another nonlinear optimal
control formulation was used in [23] to solve for minimum-fuel rendezvous between a
target and chaser, where collision avoidance requirements were incorporated as inequality
constraints. The method involved solving a sequence of unconstrained optimal control
problems, whose solution converges to the solution of the original problem. A 3-D static
optimization over final relative position and time-of-flight such that obstacles are avoided
and cost is optimized is presented in [24]. Feedback is incorporated by re-planning over
either constant or variable time intervals.

Debris avoidance strategies have also been defined utilizing collision avoidance prob-
abilities. Collision avoidance strategies based upon the number of evasive maneuvers, ex-
pected risk reduction, false alarm rate, required propellant consumption, and mass fraction
for an accepted collision probability are presented in [25].

Guidance based on artificial potential function is used in [24, 26] to determine a ren-
dezvous path free of obstacles. A potential function is developed with the intent that a
minimum occurs at a desired relative position and then a dynamic control law is used to
ensure the trajectory is obstacle free [26].

The spacecraft obstacle avoidance problem has also been treated using linear program-
ming techniques [27–30]. In [27], the minimum-fuel avoidance maneuver is formulated
with linear constraints and discrete dynamics modeled as an LTV system. In [28], the tra-
jectory optimization problem is formulated as a linear programming problem with the ca-
pability of including operational constraints and the optimal number of maneuvers is deter-
mined. In [29], a mixed-integer linear program results from combining collision avoidance,
trajectory optimization, and fleet assignment to obtain the optimal solution for spacecraft
maneuvers. A robust linear programming technique is proposed in [30]. The maneuver can
be constructed by solving a linear programming problem with no integer constraints and
guaranteeing collision avoidance with respect to bounded navigation uncertainty.
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1.2 Attitude Control

The development of a spacecraft attitude control system is often a labor-intensive process
due to the need for an accurate characterization of the spacecraft inertia. Determining and
predicting the mass properties of a spacecraft may be difficult, however, due to fuel usage,
deployment, structural articulation, and docking. To alleviate this requirement, the control
algorithms given in [31–33] are inertia-free in the sense that they require no prior modeling
of the mass distribution. An adaptive inertia-free attitude control law is given in [34] for
minimum-time maneuvers. Inertia-free control laws for motion-to-rest and tracking are
given in [31, 35, 36].

Attitude control laws use various parameterizations of the rotation Lie group SO(3).
Euler angles are conceptually the simplest, but cannot represent all angular velocities due
to gimbal lock. A related difficulty arises in the use of Rodrigues parameters and modified
Rodrigues parameters, which have singularities at 180-deg and 360-deg rotation angles,
respectively. The most common attitude representation is based on quaternions, which can
represent all attitudes and all angular velocities, but provide a double cover of SO(3), that
is, each physical attitude is represented by two elements of the 4-dimensional sphere S3. A
continuous controller designed on the set of Euler parameters can thus inadvertently com-
mand the spacecraft to needlessly rotate as much as 360 degrees to reach the commanded
attitude. This is known in the literature as the unwinding problem [37]. The inertia-free,
quaternion-based control laws in [31, 38, 39] exhibit unwinding.

There are several approaches to avoid unwinding. The traditional approach is to im-
plement a logic statement that confines the quaternions to a hemisphere of S 3 [40]. This
approach introduces a discontinuous control law, which can lead to chattering in the pres-
ence of noise. This issue and associated complications are addressed in [41].

The results of [32] are based on rotation matrices, which constitute a one-to-one repre-
sentation of physical attitude without attitude or angular-velocity singularities [42]. Since
SO(3) is a compact manifold, every continuous vector field on it necessarily possesses
more than one equilibrium, in fact, at least four. This means that global convergence on
SO(3) under continuous, time-invariant control is impossible. Consequently, the objective
of [32,43,44] is almost global stabilization, where the spurious equilibria are saddle points.
Although the derivation of the inertia-free controller in ref. [32] is based on rotation matri-
ces, the relevant attitude error given by the S -parameter (see (4.27)) can be computed from
any attitude parameterization, such as quaternions or modified rodrigues parameters, and
thus the continuous inertia-free controllers presented in [32] are not confined to rotation
matrices.
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1.2.1 Magnetic Attitude Control

Satellites in low-Earth orbit (LEO) can take advantage of the Earth’s magnetic field for
attitude control [45, 46]. In particular, magnetic actuation is an elegant and efficient way
to change the total angular momentum of a spacecraft without using mass ejection, such as
thrusters. Consequently, magnetic actuation can reduce or remove the need for fuel. For
small spacecraft, the benefits of magnetic actuation include reduced cost, power, weight,
and spatial efficiency.

The challenging aspect of magnetic actuation is that the torque produced on the space-
craft lies in the plane that is perpendicular to the local direction of Earth’s geomagnetic
field. The spacecraft is thus, at each moment in time, underactuated. Nevertheless, Earth’s
geomagnetic field is sufficiently varying in time and space that, for orbits not coinciding
with Earth’s magnetic equator (when using a nonrotating dipole model of the geomagnetic
field), the spacecraft is fully controllable [47].

Magnetic attitude control has been studied [48], and various techniques have been de-
veloped for both linear and nonlinear problem formulations. Periodic approximations of the
time-variation of the geomagnetic field are considered in refs. [49–51], a model predictive
controller is developed in ref. [48], and Lyapunov methods are applied in ref. [52].

An additional challenge in magnetic actuation, is the fact that the magnitude and direc-
tion of the local geomagnetic field may be uncertain. Although the geomagnetic field is
modeled and updated periodically [53], these models have limited accuracy, and forecasts
of the geomagnetic field may be erroneous due to unmodeled effects and unpredictable
disturbances [54]. Consequently, it is desirable to develop control techniques for magnetic
actuation that rely solely on current, on-board measurements of the geomagnetic field.

1.3 Contributions and Outline

Contributions of this research are:

• The development of an MPC controller for three dimensional constrained rendezvous
and docking maneuvers.

• The development of an on-board relative motion maneuver planning approach for
debris avoidance that can handle set bounded disturbances.

• The extension of inertia-free control laws to spacecraft actuated by reaction-wheels,
CMGs, and magnetic torquers.
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• The development of a novel stabilization technique for linear time-varying systems
and the application to both magnetically actuated spacecraft, and spacecraft ren-
dezvous maneuvers on elliptic orbits.

The dissertation is organized by method, with each section developing control strategy
and applying it to spacecraft orbital and/or attitude case studies. Derivations of the equa-
tions of motion used can be found in Appendix A, for orbital dynamics, and Appendix B,
for attitude dynamics of spacecraft with momentum exchange devices, where the derivation
is done carefully with clear and transparent account for all the relevant assumptions.

In Chapter 2, we present an extension of the approach developed in [12–14]. This
includes the treatment of three dimensional relative motion maneuvers with three dimen-
sional LoS cone constraints, the use of an MPC controller to prescribe ∆v impulsive veloc-
ity changes rather than piecewise constant thrust profiles as in [12–14], and the demonstra-
tion of the ability to transition between MPC guidance in the spacecraft rendezvous phase
and MPC guidance in the spacecraft docking phase, with requirements, constraints, and
sampling rates specific to each phase. To avoid the need for a long MPC control horizon or
long sampling periods in the rendezvous phase, a reference governor like approach, where
the desired equilibrium set-point is replaced by a virtual set-point [55], is employed. In
addition, bandwidth constraints on the spacecraft attitude control system are treated, while
thrust direction constraints are handled by introducing an appropriate penalty term in the
cost function and a relative-distance dependent constraint on the thrust vector. Also, three
dimensional obstacle avoidance is demonstrated using a dynamically reconfigurable hyper-
plane constraint. The obstacle is assumed to be changing in size, which corresponds to
changes in the estimates of its location. The MPC controller is validated on a full nonlinear
model of spacecraft orbital motion, and it is demonstrated that the MPC feedback can be
implemented with only measurements of relative angles and relative range. To accomplish
the latter, an Extended Kalman Filter (EKF) is utilized to provide state estimates for the
MPC controller. Simulation results based on a set of parameters representative of a small
spacecraft with limited thrust capability are shown.

In Chapter 3, we describe the development of an on-board maneuver planning approach
based on the use of constraint-admissible positively invariant sets [56]. The sets determine
connectivity between forced and unforced spacecraft equilibria in the Clohessy-Wiltshire-
Hill (CWH) relative motion frame [57]. The collection of equilibria form a virtual net in
the vicinity of the spacecraft. Two equilibria are connected if a choice of a Linear Quadratic
(LQ) feedback gain can be made that results in a transition between the equilibria which
avoids collision with a potentially moving debris/obstacle while satisfying limits on thrust.
A connectivity graph for all the equilibria in the net is constructed based on fast growth dis-
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tance computation between two ellipsoidal sets, while real-time graph search algorithms
are used to optimize an equilibria hopping sequence to avoid debris collisions. Unlike
trajectory optimization, the method does not rely on precise assignment of spacecraft posi-
tion along the trajectory, and is able to assure robustness to unmeasured (but set-bounded)
disturbances and uncertainties.

The inertia-free control laws in refs. [31–33] assume that 3-axis input torques can be
specified without on-board momentum storage, which implies implementation in terms of
thrusters. However, attitude control laws are often implemented with momentum exchange
devices, and thus the on-board stored momentum varies with time. To account for this
effect, in Chapter 4, we extend [32] to handle reaction wheel and CMG based actuation.
Additionally, we extend the control law to a magnetic actuation scheme. Like the inertia-
free control laws in refs. [31–33], the tuning of this control law requires no knowledge
of the mass properties of the spacecraft, and we specify the necessary assumptions and
modeling information concerning the actuators and their placement relative to the bus.

In Chapter 5 we develop a forward-propagating Riccati-based (FPR) linear time-varying
(LTV) feedback controller. FPR control is a technique for stabilizing LTV systems without
the need for knowing the dynamics in advance. We apply the FPR controller to spacecraft
magnetic actuation. As in ref. [49], the controller uses a linear time-varying model of the
dynamics, but makes no periodicity assumptions, which are accurate only to first order.
Since FPR feedback requires knowledge of only the current magnetic field, this approach
obviates the need for advance knowledge of the geomagnetic field and thus does not rely
on either geomagnetic approximations or forecasts. The controller given in ref. [52] also
has this feature, and similarly works based on a measurement of the geomagnetic field at
the current time. We show through simulations that the FPR controller is robust to real-
istic error sources, including the nonlinearities of attitude control that are not captured by
the linearized model, actuator saturation, and noisy magnetic measurements. We consider
an output feedback configuration, where angular rate measurements are not used. Ad-
ditionally, we use FPR control to address a class of relative motion control problems for
spacecraft on elliptic orbits, as the linearized equations of motion are time-varying. Elliptic
orbits are used to deploy a variety of spacecraft for communications and planet/star obser-
vation purposes. For instance, Molniya and Tundra orbits host communication satellites
launched from predominately northern latitudes [58]. Based on extensive simulations on a
nonlinear model that includes perturbation forces, the FPR controller stabilizes spacecraft
relative motion dynamics on elliptic orbits, and is robust to many error sources, including
severe thrust magnitude and direction deviations, and even intermittent thrust availability.

Finally, in Chapter 6, we provide concluding thoughts and ideas for future work.
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CHAPTER 2

Model Predictive Control for Spacecraft
Rendezvous and Docking

This chapter develops an MPC controller for performing 3-dimensional spacecraft ren-
dezvous and docking maneuvers. The equations of motion for spacecraft orbital dynamics
are reviewed in Appendix A. Our formulation of the MPC controller is geared towards
spacecraft of the XSS-11 type [11]. By applying ideas in this chapter to appropriately
modified cost and constraints, other relative motion, rendezvous, and proximity maneuver-
ing problems may be similarly handled.

2.1 Model Predictive Controller

MPC represents an attractive framework to deal with the multitude of state and control con-
straints in spacecraft relative motion problems. MPC generates control actions by applying
a moving horizon trajectory optimization to predictions based on a system model subject to
pointwise-in-time state and control constraints [59, 60]. The control is periodically recom-
puted with the current state estimate as an initial condition, thereby providing a feedback
action that improves robustness to uncertainties and disturbances. A special formulation of
the MPC optimization problem, where rendezvous is separated from docking, is necessary
to avoid a long control horizon and avoid solving a highly complex online optimization
problem. For instance, longer sampling periods are introduced in the rendezvous phase,
when the approaching spacecraft is further away from the target, versus the docking phase,
when the approaching spacecraft is closer to the target. Various other steps need to be
taken to convert the maneuver requirements into an MPC problem formulation that can be
handled efficiently by MPC solvers. In particular, and as in the planar case [12–14], we
seek formulations that can be treated by quadratic programming (QP) solvers and have low
computation overhead.
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2.1.1 Penalties and Constraints

During rendezvous and docking, the space vehicle must adhere to various constraints [12–
14] while executing the maneuver. See Figure 2.1 for a schematic of a docking maneuver
subject to constraints. Depending on the portion of the relative motion maneuver being

Figure 2.1: Schematic of a spacecraft docking maneuver subject to line of sight, overshoot,
and debris avoidance constraints.

completed, different constraints must be addressed pertaining to the vehicle and the path it
takes. For example, a space vehicle can not produce limitless thrust in any direction; there-
fore, thrust magnitude and direction must be limited during both rendezvous and docking.
However, the orientation of the vehicle is only constrained during the docking phase and
does not play a major role in the rendezvous phase. Certain constraints may be treated as
‘soft’ to enhance solution feasibility, and as such we implement them as penalties in the
MPC cost.

We consider the discrete-time spacecraft model (A.3) with the velocity impulses Uk =

∆vk = ∆[ẋk ẏk żk]T as the control signals. Impulse-based control of spacecraft is often
assumed in relative motion problems [4]. Maximum ∆v constraints

|Uk|∞ ≤ umax, (2.1)

are implemented during both rendezvous and docking to adhere to the finite thrusting ca-
pability of the vehicle, where umax = 10 m/sec. During the docking phase, thrust direction
limits are imposed so that the spacecraft does not fire its thrusters into the target. This
requirement is treated by imposing a time-varying control constraint. For example, consid-
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ering an in-orbital track target with an approach from +y, this constraint is given by

∆ẏk ≤ µe−βk, µ > 0, β > 0, (2.2)

that is, the thrust in the y-direction is progressively constrained as the spacecraft approaches
the target. We consider a spacecraft configuration that includes only one thruster. To enable
an attitude controller to keep up with commanded thrust direction changes, we augment the
MPC cost function with a term

N∑
k=0

(Uk −Uk−1)TRattitude(Uk −Uk−1), (2.3)

where Rattitude = RTattitude > 0. This term penalizes the rate of thrust vector changes and we
found it to be effective in dealing with attitude controller bandwidth and capability limits.
Rattitude is made to be a function of control magnitude so that it retains the same relative
weight in the cost function irrespective of the magnitude of Uk. The quadratic form of (2.3)
facilitates the application of QP-based MPC solvers.

Several path constraints are implemented to ensure a safe trajectory for the vehicle.
During the docking phase, the target vehicle’s sensors constrain the approaching space ve-
hicle. We implement this constraint using a Line of Sight (LoS) cone that emanates from
the docking port [15]. LoS cone constraints in three dimensions are quadratic. Since we
subsequently formulate the MPC problem as a quadratic program (QP) with affine con-
straints, we reformulate these constraints using an inner polyhedral approximation given
by

AconeX ≤ bcone. (2.4)

The code for calculating this approximation is given in Appendix C.1. We treat the LoS
constraint as soft by imposing a penalty for deviations outside the cone and augmenting
this penalty to the MPC cost function. This cost is given by

N∑
k=1

λ1T(AconeXk −bcone)+, (2.5)

where (·)+ denotes positive part (x+ = x if x > 0 and 0 otherwise; applied componentwise),
and λ is the weight. In order to avoid missing an in-track target, an overshoot constraint

yk ≥ 0, (2.6)
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is implemented. Constraints used in other docking approaches may be different but will
have similar functional form.

Obstacle/debris avoidance is a non-convex problem with several possible formulations
(e.g. Mixed Integer Programming [29]). For this work, as limited processing power is a
driving factor, obstacle/debris avoidance was formulated using linear dynamically recon-
figurable constraints. A hyperplane is chosen to separate the obstacle/debris from the space
vehicle. The constraint is given by

nT
k X ≥ nT

k rc,k, (2.7)

where nk is the normal vector to the hyperplane, rc,k is a point on the boundary of the uncer-
tainty ellipsoid associated with overbounding the obstacle/debris, and X is the position of
the vehicle. The hyperplane is rotated with a preselected rotation rate over the length of the
maneuver by varying nk and rc,k so that the hyperplane normal guides the target spacecraft
around the obstacle. The avoidance constraint (2.7) is capable of handling a ‘growing’ or
‘uncertain’ obstacle/debris by manipulating rc,k. Note that the hyperplane rotation direction
is dictated as a part of the problem formulation.

2.1.2 MPC Problem Formulation

By using linearized equations of motion, linear equality and inequality constraints, and
quadratic costs on the states and control actions, the MPC problem may be formulated as
a quadratic programming (QP) problem. QPs can be solved using any number of generic
solvers (MATLAB’s quadprog, CPLEX, PQP, etc.) [61]. Alternatively, using multiparamet-
ric programming, an explicit MPC approach that does not require on-board optimization
may be used [62, 63]. The downside of explicit solutions is that they are not straightfor-
ward to apply when dynamics of constraints are time-varying, the do not scale well to large
problems, and the execution times of look-up tables and logic may be longer than simply
solving the QP.

In this work, we solve the QP in real time using CVXGEN, which generates very ef-
ficient custom primal-dual interior-point solvers [64]. Unlike the generic solvers which
solve single problem instances, CVXGEN accepts high level descriptions (see Appendix
C.2) of QP families and turns them into highly efficient flat, library-free C code that solve
many problem instances. This strategy allows CVXGEN to exploit the structure (sparsity)
of the specific QP family for fast run-time execution. This is especially useful in an MPC
framework where the QP has structure and is repeatedly solved at each sampling instant.
The generated code does not branch, which allows for predictable run times, and is orders

13



of magnitude faster than generic solvers [64], both highly desirable features for embedded
applications with limited processing power such as on-board a spacecraft. The CVXGEN
generated custom solver can handle time-varying dynamics and constraints. For instance,
it is applicable to maneuvers on elliptic orbits.

Based on practical considerations, the problem is separated into distinct rendezvous and
docking phases. In the rendezvous phase, the spacecraft is a significant distance away from
the target. A sampling period of 120 sec is used and a ∆v magnitude constraint is enforced.
Since the thrust of the spacecraft is limited, to avoid the need for a long control horizon, a
reference governor like approach is introduced. In this approach, the desired equilibrium
set-point is dynamically modified. Instead of locating the set-point at the origin, the QP
determines forced equilibria between the approaching spacecraft and the target. We found
that if we do not include a reference governor, we are not able to attain closed-loop stability.
The prediction horizon is not long enough for the optimization problem to ‘see’ the target
and, thus, cannot recover from aggressive initial thrust. Introducing a dynamically modified
set-point moderates the control action. The rendezvous phase QP is given by

minimize
N−1∑
k=1

(Xk −Xs)T Q(Xk −Xs)

+

N−1∑
k=1

(Uk −Us)T R(Uk −Us)

+ (XN −Xs)T Qfinal(XN −Xs) + XT
s PXs

subject to Xk+1 = AXk + BUk

Xs = AXs + BUs

|Uk|∞ ≤ umax

nT
k rc,k −nT

k Xk ≤ 0

(2.8)

where N is the control and prediction horizon, Xk and Uk are the state and control variables
to be determined, Xs and Us are the forced equilibrium state and control determined as
part of the solution, Q and R are the weighting matrices, P is the weighting on the forced
equilibrium states, and Qfinal is the terminal state weighting matrix determined from the
solution of the Riccati equation for the unconstrained infinite horizon problem. The equal-
ity constraint Xk+1 = AXk + BUk comes from the discrete CWH model (Appendix A), and
|Uk|∞ ≤ umax is the maximum ∆v constraint (2.1). If obstacle/debris avoidance is not part
of the problem formulation, the constraint nT

k rc,k −nT
k Xk ≤ 0 is omitted.

When the approaching spacecraft enters a specified box around the target, the docking
phase begins. During this phase the reference governor type action is removed as it is no
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longer necessary; the origin, that is the true desired equilibrium can be reached over the
optimization horizon under the problem constraints. The sampling period is reduced to 20
sec to facilitate faster control updates. A LoS cone constraint is imposed and is treated as
soft via a polyhedral cost penalty. A thrust direction constraint (2.2) and an in-track target
overshoot constraint (2.6) are also imposed. Additionally, the rotation that the approaching
spacecraft must perform between thrust impulses is approximately penalized by imposing
a cost on change in control policy (2.3). The docking phase QP for constraints that are
configured for an in-track V-bar approach, is given by

minimize
N−1∑
k=1

XT
k QXk + UT

k RUk + XT
N Qfinal XN

+

N∑
k=1

λ1T(AconeXk −bcone)+

+

N∑
k=0

(Uk −Uk−1)TRattitude(Uk −Uk−1)

subject to Xk+1 = AXk + BUk

|Uk|∞ ≤ umax

∆ẏk ≤ µe−βk

yk ≥ 0

(2.9)

where Xk and Uk are the state and control variables to be determined, Q and R are the
weighting matrices, and Qfinal is the terminal state weighting matrix determined from the
solution of the Riccati equation. The LoS cone constraint and rotation rate constraint are
implemented as soft constraints in the cost function using Acone and bcone for LoS and
the weighting matrix Rattitude for the rotation rate. The equality constraint and the thrust
constraint are the same as the rendezvous phase.

2.1.3 Implementation using State Estimates

The MPC controller may be implemented using only the output measurements of relative
range and relative angles, given by
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Y1 =

√
x2 + y2 + z2 + ν1,

Y2 = atan2(x,y) + ν2,

Y3 = atan2
(
z,
√

x2 + y2
)
+ ν3,

where x, y and z are the relative x-position, y-position and z-position, respectively, atan2
denotes the four quadrant arc-tangent, and ν1, ν2, and ν3 are the measurement noise in each
output channel. An Extended Kalman Filter (EKF) based on the CWH equations is used
to estimate the spacecraft states given the measurements [65]. The output measurement
equations are nonlinear and hence the convergence of the EKF estimates is only expected
when the state estimate is initialized sufficiently close to the true state.

2.2 Stability Analysis

In the preceding section we presented an MPC problem formulation that we found to be ef-
fective in completing spacecraft rendezvous and docking maneuvers. In this section we
discuss additional steps we have considered beyond numerical simulations in ensuring
closed-loop stability.

2.2.1 Terminal State Constraint

In the classical MPC formulation, MPC stability is guaranteed when imposing a terminal
state constraint i.e. xN = 0, as it requires the state to be equal to the equilibrium at the end
of the horizon [59]. Imposing this constraint renders the MPC value function a Lyapunov
function.

A downside of the terminal state constraint is that it requires the horizon to be long
enough so that, subject to all the problem constraints, a maneuver is feasible. The domain
of attraction of the controller under this architecture is all states steerable to the equilibrium
in N steps, where N is the horizon. The terminal state constraint can be relaxed to a terminal
set constraint.

2.2.2 Terminal Penalty Based on LQR

Setting Qfinal = P, where P is the solution to the Discrete Algebraic Riccati Equation
(DARE), then, near the origin where constraints are inactive, the solution to the QP is
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an LQ controller. The maximum positively invariant set O∞ of the LQ controller under
constraints is a guaranteed domain of attraction for the MPC controller [59].

2.2.3 Simulation Study and Discussion

In our problem formulations we use the terminal penalty based on LQR. We compare the
difference in fuel consumption with and without a terminal state constraint for a rendezvous
phase simulation without reference governor action or obstacle avoidance constraints. Fig-
ure 2.2 provides maneuver comparisons for 2 initial conditions. Total ∆v for (a) 0.9051
m/s, (b) 0.9174 m/s, (c) 27.3419, (d) 31.6235.

The results suggest that when the horizon is long enough so that the optimization prob-
lem drives the spacecraft towards the desired equilibrium, as it is in our case, adding a
terminal penalty leads to a performance degradation in fuel without much trajectory pertur-
bation. We subsequently rely on only a terminal penalty based on LQR, which guarantees
local stability.

2.3 Case Studies

In subsections 2.3.1-2.3.4 we provide case studies that highlight various unique features
of our MPC solution. Subsection 2.3.5 provides three complete rendezvous and docking
maneuvers using only relative range and relative angle measurements.

2.3.1 Attitude Control Penalty

The effects of including the attitude control penalty Rattitude 6= 0 are apparent in Figure 2.3.
The average angle between consecutive velocity changes is smaller on average when in-
cluding the penalty, reducing the effort of the attitude control system to change the orien-
tation before the next thrust event.

2.3.2 Debris Avoidance

Fig. 2.4 shows the effect of hyperplane rotation rate on maneuvers for a growing obsta-
cle. The growing obstacle reflects the increasing amount of uncertainty about its relative
position.
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Figure 2.2: (a): No terminal state constraint. x0 = [0.1 0.1 0.1 0 0 0]T. (b): xN = 0,
x0 = [0.1 0.1 0.1 0 0 0]T. (c),(d): The same as (a),(b) but with x0 = [0 10 0 0 0 0]T and
the weighting on fuel R increased 1000 fold. (e),(f): The ∆v comparison for (c),(d).
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Figure 2.3: Spacecraft trajectory on x-y plane. Arrows indicate the direction and scaled
magnitude of ∆v’s induced by thrusting. (a) With Rattitude > 0; (b) With Rattitude = 0; (c)
Comparison of the angles between two consecutive velocity changes for the cases (a) and
(b).
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(a) Slower rotation rate (b) Faster rotation rate

Figure 2.4: Debris avoidance maneuvers using a rotating hyperplane constraint for two
different rotation rates. The obstacle is growing, reflecting increasing levels of uncertainty.

2.3.3 Robustness to Nonlinearity

Fig. 2.5 illustrates the robustness of the Model Predictive Control (MPC) controller com-
pared to that of an open-loop trajectory. Here, a 100 km in-track MPC maneuver that is
successfully completed in a linear simulation is simulated open-loop using the nonlinear
equations of motion (A.1) and compared to an MPC solution where the feedback is based
on the true state given by the nonlinear model. Due to the nonlinearities that the linearized
model does not capture, the open-loop maneuver does not result in successful rendezvous
with the target, whereas the maneuver that uses systematic feedback corrections based on
the true state does.

2.3.4 Domains of Attraction

The range of initial, non-zero velocity for which the MPC controller, under the specified
thrust constraints, successfully brings the approaching spacecraft to the origin is shown in
Fig. 2.6. The initial position of the spacecraft is [0 2 0]T km. For initial velocity in the
radial x direction of −10 to 20 m/s, the vehicle successfully reaches the target. Similarly,
the z direction ranged between −10 and 10 m/s. A variation twice that of the z direction was
successfully implemented in the y direction, which is expected given the natural stability
of the crosstrack axis.
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Figure 2.5: Spacecraft trajectories on x-y plane for MPC based on a linear simulation,
with MPC based on nonlinear simulation, and with open-loop control based on a linear
simulation.

2.3.5 Rendezvous and Docking Maneuvers

Three complete maneuvers are now considered:

Case 1
A phasing maneuver with the approaching spacecraft in the same orbit but at a dif-
ferent true anomaly than the target. The LoS cone is oriented along the orbital track.
This maneuver is also known as as V-bar docking with initial spacecraft position
along V-bar. The initial position is [0.63 10 0]T km, and initial velocity is [0 0 0]T

km/s.

Case 2
The approaching spacecraft is in a lower orbit than the target. The LoS cone is
positioned for V-bar docking. This maneuver is also known as V-bar docking with
an initial spacecraft position along R-bar. The initial position is [−2 0.126 0]T km,
and initial velocity is [0 0 0]T km/s.

Case 3
Same as Case 2 but with the LoS cone positioned for R-bar docking, i.e., oriented
along the radial line.

The control horizon and the prediction horizon N is fixed at 30 steps. The sampling
period in the rendezvous phase is 2 min and is 20 sec in the docking phase. The switch
between the rendezvous and docking phases occurs when the estimated spacecraft position
enters a 2 km box around the target. The spacecraft is in a nominal circular orbit at an
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Figure 2.6: Spacecraft trajectories with varying nonzero initial velocities. Arrows indicate
the direction and scaled magnitude of ∆v’s induced by thrusting: (a) With nonzero initial
velocities from −10 m/s to 20 m/s in the x direction; (b) With nonzero initial velocities
from −20 m/s to 20 m/s is the y direction; (b) With nonzero initial velocities from −10 m/s
to 10 m/s is the z direction.
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altitude of 850 km above the Earth. The fuel expenditure for all cases is summarized in
Table 2.1.

2.3.5.1 Case 1: V-bar docking with initial spacecraft position along V-bar

The simulated MPC maneuver trajectories for V-bar docking with an initial spacecraft po-
sition along V-bar are shown in Figure 2.7. The simulation results are obtained based on
the nonlinear relative motion model (A.1). The MPC controller uses an EKF with the
linearized CWH model for prediction in order to estimate the spacecraft states based on
relative range and angle measurements. The initial estimated state is [−0.5 7 1.0 0 0 0]T.
The EKF estimates converge rapidly to the actual states. Note that the spacecraft mo-
tion is three dimensional even though the starting position is in the orbital plane. The out
of orbital plane motion is excited since there is a non-zero initial estimation error of the
spacecraft position in the z-direction that the MPC controller is trying to correct. Once the
docking phase is started, the LoS cone constraint is activated. The trajectory enters into
the LoS cone and proceeds towards the origin while satisfying the constraint. Large ve-
locity changes are applied initially and become smaller and more gradual as the spacecraft
approaches the origin; control activity increases immediately after entering the docking
phase and then decays. The time history of the velocity change direction indicates that the
thrust in the direction of the target is minimized as the spacecraft approaches the target.

A debris is introduced during the rendezvous phase at [−0.5 7 1.0]T km. Fig. 2.8 shows
the modified maneuver trajectories for a clockwise hyperplane rotation (Fig. 2.8b) and a
counterclockwise hyperplane rotation (Fig. 2.8c). The obstacle ‘grows’ or becomes more
uncertain as time progresses. The counterclockwise rotation of the hyperplane forces the
spacecraft radially outward, thus increasing the fuel expenditure (see Table 2.1).

2.3.5.2 Case 2: V-bar docking with initial spacecraft position along R-bar

Figure 2.9 demonstrates a typical maneuver with the LoS cone constraint positioned for a
V-bar approach [2]. The spacecraft, with initial position coordinates [−2 0.126 0]T and
initial position coordinate estimates [−2.8 − 0.01 0.1]T starts the motion as in the R-
bar approach. Once the docking phase is activated, the trajectory enters into the LoS cone
positioned for a V-bar approach and proceeds towards the origin while satisfying the LoS
cone constraint. The vehicle must use greater fuel at the beginning of the rendezvous phase
to thrust the vehicle to enter the docking phase under the required conditions. The same
increase in thrust demonstrated in the V-bar approach during the entry into the docking
phase is evident in this case as well. This increase in thrust is necessary to meet the required
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constraints of the docking phase.

2.3.5.3 Case 3: R-bar docking with initial spacecraft position along R-bar

Figure 2.10 demonstrates a maneuver similar to Case 2 but with the LoS cone constraint
positioned for an R-bar approach. The behavior is qualitatively similar to the one in Fig-
ure 2.9. The constraints and maneuver requirements are satisfied using the proposed MPC
approach.

Table 2.1: Total ∆v for all maneuvers.

Test case
1

2 3
No obstacle CW CCW

MPC .0368 km/s .0369 km/s .0414 km/s .0073 km/s .0145 km/s

2.3.6 Total ∆v vs Time to Rendezvous

To study fuel usage (measured in terms of total ∆v) relative to maneuver time, the relative
weights Q and R are varied, generating a trade-off curve. This curve, shown in Fig. 2.11,
demonstrates that shorter maneuver times may be achieved at the cost of increased fuel
consumption.
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Figure 2.7: Case 1. (a) Spacecraft trajectory on x-y plane with constraints configured for
V-bar docking. (b) Trajectory in 3D with rendezvous and docking phases and LoS cone
constraints shown. (c) The three components of ∆v showing control history through the
rendezvous and docking phases.

25



0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [km]
x

 [
k

m
]

o

(a)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

y [km]

x
 [

k
m

]

o

Obstacle

(b)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

y [km]

x
 [

k
m

]

o

Obstacle

(c)

4 4.5 5 5.5 6

1.3

1.4

1.5

1.6

1.7

1.8

1.9

y [km]

x
 [

k
m

]

Hyperplane at initial time

Hyperplane at final time

(d)

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

y [km]

x
 [

k
m

]

Hyperplane at final time

Hyperplane at initial time

(e)

Figure 2.8: Case 1. (a) Spacecraft trajectory on x-y plane without an obstacle. Initial
position is [0.63 10 0]T (b) Trajectory in x-y plane with obstacle located at [1.6 5 0]T and
a clockwise rotation of the hyperplane. (c) Trajectory in x-y plane with obstacle located
at [1.6 5 0]T and a counterclockwise rotation of the hyperplane (d) Clockwise rotation of
hyperplane. (e) Counterclockwise rotation of hyperplane.
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Figure 2.9: Case 2. (a) Spacecraft trajectory on x-y plane with initial position
[−2, 0.126, 0]T and the LoS cone pointed in the V-bar direction. (b) The three compo-
nents of ∆v.
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Figure 2.10: Case 3. (a) Spacecraft trajectory on x-y plane with initial position
[−2, 0.126, 0]T and the LoS cone pointed in the R-bar direction. (b) The three compo-
nents of ∆v.
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Figure 2.11: Trade-off curve demonstrating fuel usage of MPC controller with varying
weight on fuel. Total fuel usage is determined by taking the sum of the two-norm of the
control across time.
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CHAPTER 3

Safe Positively Invariant Sets for Spacecraft
Debris Avoidance

This chapter develops a chained invariant set method to avoid both static and moving debris
during spacecraft relative motion maneuvers. The equations of motion for spacecraft orbital
dynamics are reviewed in Appendix A. We use linearized equations of motion (A.3), where
continuous thrust actuation Uk = [Fx,k, Fy,k, Fz,k]T is assumed.

Our approach to debris avoidance is based on utilizing constraint-admissible positively
invariant sets [56, 66–68] centered around spacecraft forced and unforced equilibria. A fi-
nite set of these equilibria used for constructing debris avoidance maneuvers is referred to
as a virtual net. Given an estimate of the debris position, we build a connectivity graph
that identifies the equilibria in the virtual net between which the spacecraft can move, with
guaranteed collision-free motion and within the available thrust authority. We then employ
graph search to determine an efficient path between the equilibria that ensures debris avoid-
ance. One of the main reasons this framework is attractive compared to alternatives such
as open-loop trajectory planning, is the ability to incorporate bounded disturbances such as
thrust errors, air drag, and solar pressure.

3.1 Virtual Net

The virtual net comprises a finite set of equilibria, Xe(r), corresponding to a finite set of
prescribed spacecraft positions r ∈N = {r1,r2, . . . ,rn} ⊂ R3,

Xe(rk) =
[

rk 0
]T

=
[

rx,k ry,k rz,k 0 0 0
]T
, k = 1, · · · ,n, (3.1)

whose velocity states are zero, and where n is the number of equilibria in the virtual net.
See Figure 3.1. We assume that for all r ∈N , the corresponding values of control necessary
to support the specified equilibria in steady-state satisfy the imposed thrust limits.
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Debris

Figure 3.1: The virtual net for debris avoidance. Dots correspond to positions at equilibria,
Xe(r), on a virtual net. The ellipsoid represents the debris position and uncertainty.

3.2 LQ Controller with Gain Switching

A conventional Linear-Quadratic (LQ) feedback

U = K(X−Xe(r)) +Γr = KX + H(K)r, (3.2)

is used to control the spacecraft thrust to arrive at a commanded equilibrium (3.1), where

Γ =


−3n2mc 0 0

0 0 0
0 0 n2mc

 ,

H(K) = Γ−K

 I3

03

 ,
and where I3 denotes the 3×3 identity matrix while 03 denotes the 3×3 zero matrix. The
LQ controller provides an asymptotically stable closed-loop system but does not enforce
debris avoidance constraints.

To provide greater flexibility in handling constraints, a multimode controller archi-
tecture is employed [66]. Specifically, we assume that a finite set of LQ gains K ∈ K =

{K1, · · · ,Km} is available to control the spacecraft. By using a large control weight in the
LQ cost functional, motions with low fuel consumption yet large excursions can be gener-
ated; using a large control weight in the LQ cost, motions with short transition time can be
generated [69]. We assume that a preference ordering has been defined and the gains are
arranged in the order of descending preference, from K1 being the highest preference gain
to Km being the lowest preference gain.
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3.3 Positively Invariant Sets

The ellipsoidal set

C̄(r,K) = {X ∈ R6 :
1
2

(X−Xe(r))T P(K)(X−Xe(r)) ≤ 1} ⊂ R6, (3.3)

where

Ā(K)TPĀ(K)−P < 0, (3.4)

Ā(K) = (A + BK), and P = P(K) > 0 is positively invariant for the closed-loop dynam-
ics. Positive invariance implies that any trajectory of the closed-loop system that starts in
C̄(r,K) is guaranteed to stay in C̄(r,K) as long as the same LQ gain K is used and the set-
point command r is maintained. To achieve the positive invariance, the matrix P can be
obtained as the solution of the discrete-time Riccati equation in the LQ problem or as the
solution of the above Lyapunov equation for the closed-loop asymptotically stable system.
We note that, because the system is linear, the positive invariance of C̄(r,K) implies the
positive invariance of the scaled set

C(r,K,ρ) = {X ∈ R6 :
1
2

(X−Xe(r))T P(K)(X−Xe(r)) ≤ ρ2}, ρ ≥ 0.

Geometrically, the set C(r,K,ρ) corresponds to an ellipsoid scaled by the value of ρ and
centered around Xe(r), r ∈N .

3.4 Debris Representation

We use a set, O(z,Q), centered around the position z ∈ R3, to over-bound the position of the
debris, i.e.,

O(z,Q) = {X ∈ R6 : (S X− z)T Q(S X− z) ≤ 1}, (3.5)

where Q = QT > 0 and

S =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (3.6)

The set O(z,Q) can account for the debris and spacecraft physical sizes and also for the
uncertainties in the estimation of the debris/spacecraft position. Note that the set O(z,Q)
has an ellipsoidal shape in the position directions and it is unbounded in the velocity direc-
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tions. Ellipsoidal sets, rather than polyhedral sets, are used here to over-bound the debris,
since ellipsoidal bounds are typically produced by position estimation algorithms, such as
the Extended Kalman Filter (EKF).

3.5 Static Debris Avoidance Approach

Consider now ri ∈ N , representing a possible position on the net that the spacecraft can
move to as a part of the debris avoidance maneuver. Suppose that the current state of the
spacecraft is X(t0) at the time instant t0 ∈ Z+. If there exists a ρ ≥ 0 and K j ∈K such that

X(t0) ∈C(ri,K j,ρ) and O(z,Q)∩C(ri,K j,ρ) = ∅, (3.7)

the spacecraft can move to the position ri ∈ N by engaging the control law with r(t) = ri

and K(t) = K j, t ≥ t0, and without hitting the debris confined to O(z,Q). This idea underlies
our subsequent approach to debris avoidance, where we maintain the spacecraft within a
tube formed by positively invariant sets that do not intersect with debris.

3.5.1 Growth Distances

The minimum value of ρ ≥ 0 for which O(z,Q)
⋂

C(r,K,ρ) 6= ∅ is referred to as the growth

distance [70]. This growth distance can also be viewed as the least upper bound on the
values of ρ for which O(z,Q) and C(r,K,ρ) do not intersect. See Figure 3.2. We use
the notation ρg(r,K,Q,z) to reflect the dependence of the growth distance on the set-point
r ∈N , the control gain K ∈K and the obstacle parameters Q and z.

Note that the growth distance depends on the position of the debris which may be
unknown in advance. Consequently, growth distance computations have to be performed
online.

Since spacecraft have limited thrust, we additionally define a maximum value of ρ =

ρu(r,K) for which X ∈C(r,K,ρu(r,K)) implies that the thrust U = KX + H(K)r satisfies the
imposed thrust limits. We refer to ρu as the thrust limit on growth distance. Unlike ρg, the
value of ρu does not depend on the position or shape of the debris and can be pre-computed
off-line.

Finally, we define the thrust limited growth distance

ρ∗(r,K,Q,z) = min{ρg(r,K,Q,z),ρu(r,K)}. (3.8)

Note that X(t0) ∈ C(ri,K j,ρ
∗(ri,K j,z)) implies that the ensuing closed-loop spacecraft tra-
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Debris

z
O(z,Q)

ri

S C(ri ,K,���x

S �

Figure 3.2: The positively invariant set is grown till touching the debris. The spacecraft
can move from any of the equilibria on the virtual net inside the positively invariant set
C(r,K,ρ) to Xe(ri) marked by ’x’ without colliding with the debris.

jectory under the control (3.2), where r(t) = ri and K(t) = K j for t ≥ t0, satisfies the thrust
limits and avoids collisions with a debris confined to O(z,Q).

The above definitions were given for the case of a single stationary debris, O(z,Q). In
the case of multiple debris, the growth distance is replaced by the multi-growth distance,
which is the minimum growth distance to each of O(zl,Ql), l = 1, · · · ,nd.

3.5.2 Growth Distance Computations

Define X̄ = X − Xe(r) and α = 2ρ2. The problem of determining the growth distance
ρg(r,K,Q,z), reduces to the following constrained optimization problem:

min
α,X̄

α

subject to X̄TPX̄ ≤ α

((S (X̄ + Xe(r))− z)TQ((S (X̄ + Xe(r))− z) ≤ 1

(3.9)

To solve this optimization problem, we use the Karush-Kuhn-Tucker (KKT) conditions
[71, 72]. Note that standard linear independence constraint qualification conditions hold
given that P > 0. We define

L = α+λ1(X̄TPX̄−α) +λ2((S (X̄ + Xe(r))− z)TQ(S (X̄ + Xe(r))− z)−1),

where λ1 and λ2 are Lagrange multipliers. The stationarity of the Lagrangian (setting
partial derivative equal to zero) with respect to α yields λ1 = 1. The stationarity of the
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Lagrangian with respect to X̄ yields

X̄ = X̄(λ2,r,z) = −(P +λ2S TQS )−1S TQ(S Xe(r)− z)λ2, (3.10)

where the scalar λ2 ≥ 0 is to be determined. Note that P > 0, S TQS ≥ 0, λ2 ≥ 0 (as the
Lagrange multiplier corresponding to an inequality constraint) imply that (P +λ2S TQS ) is
invertible. The problem reduces to finding a nonnegative scalar λ2, which is the root of

F(λ2,r,z) = ((S X− z)TQ(S X− z)−1 = 0, (3.11)

where
X = X̄(λ2,r,z) + Xe(r).

The scalar root finding problem (3.11) has to be solved online multiple times for differ-
ent r ∈N , and in the case of avoiding a predicted debris path also for different z’s. To solve
this problem fast, while reusing previously found solutions as approximations, a dynamic
Newton-Raphson’s algorithm is used [72–74]. This algorithm uses predictor-corrector up-
dates to track the root as a function of z and r, and is given by

λk+1,+
2 = λk

2 + {
∂F
∂λ2

(λk
2,z

k,rk)}−1{−F(λk
2,z

k,rk)−
∂F
∂z

(λk
2,z

k,rk)(zk+1− zk)

−
∂F
∂r

(λk
2,z

k,rk)(rk+1− rk)},

λk+1
2 = max{0,λk+1,+

2 }.

To implement the algorithm, we take advantage of the known functional form for F and
explicitly compute the partial derivatives,

∂X̄
∂λ2

= (P +λ2S TQS )−1
{
−S TQ(S Xe(r)− z)−S TQS X̄

}
,

∂F
∂λ2

= 2(S X− z)TQ(S
∂X̄
∂λ2

),

∂X̄
∂r

= (P +λ2S TQS )−1
{
−S TQS Ω

}
λ2,

∂F
∂r

= 2(S X̄− z + r)TQ(S
∂X̄
∂r

+ I3),

∂X̄
∂z

= (P +λ2S TQS )−1S TQS Ωλ2,

∂F
∂z

= 2(S X̄− z + r)TQ(S
∂X̄
∂z
− I3), (3.12)
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where, Xe(r) = Ωr,

Ω =

 I3

0

 ,
and I3 denotes the 3×3 identity matrix. Note that S Ω = I3.

Figure 3.3 illustrates growth distance tracking. For the first 20 iterations, rk is held
constant to enable initial convergence of the algorithm. Then, rk varies through the virtual
net. One iteration of the Newton-Raphson algorithm per value of rk is used to update
the root, λk+1

2 . Figure 3.3b demonstrates that the growth distance tracking is accurate.
The growth distance is occasionally zero indicating an overlap between several rk and the
debris. Figure 3.3c illustrates the trajectory of rk in three dimensions.
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Figure 3.3: (a) Components of r, rx, ry and rz varying versus the iteration number. (b)
Growth distance versus iteration number computed by dynamic Newton-Raphson algo-
rithm. (c) The trajectory of r and the debris.
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3.5.3 Thrust Limit on Growth Distance Computations

Suppose that the thrust limits are expressed in the form ||LU || ≤ 1 for an appropriately
defined matrix L and norm || · ||. The computational procedures to determine ρu(r,K) involve
solving a bilevel optimization problem where ||L(KX + H(K)r)|| is maximized subject to
the constraint X ∈ C(r,K,α), and bisections are performed on the value of α so that the
maximum value is driven to 1. As we demonstrate in this section, in special cases this
computation can be greatly simplified.

Suppose that the thrust constraints are prescribed in terms of polyhedral norm bounds,
specifically

eT
i (KX + Hr) ≤ umax, i = 1,2, · · · ,m, (3.13)

where ei are the vertices of the unit norm polytope, and umax is the norm bound. The infinity
norm, for instance, has m = 6, and

e1 =


1
0
0

 e2 =


−1
0
0

 e3 =


0
1
0


e4 =


0
−1
0

 e5 =


0
0
1

 e6 =


0
0
−1

 . (3.14)

In the case of non-polyhedral norm bounds, such as the 2-norm, an approximation by a
polyhedral norm bound may be employed.

The thrust limit on the growth distance is then determined based on solving, for i =

1, · · · ,n, the optimization problems

maximize eT
i (KX + Hr)

subject to 1
2 (X−Xe(r))TP(X−Xe(r)) ≤ c.

(3.15)

If the value of c is found for which the solutions X∗i of (3.15) satisfy maxi{eT
i (KX∗i + Hr)} =

umax, then ρu(r,K) =
√

c.
The problem (3.15) can be solved by diagonalizing P, using an orthogonal matrix, V ,

P = VTΛV, Λ = diag[λ2
1, · · · ,λ

2
6],λi > 0.

By defining, z = X−Xe(r), and ζ so that

z = VTΛ−
1
2 ζ,
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it follows that

zTPz = ζTΛ−
1
2 VPVTΛ−

1
2 ζ

= ζTζ.

The problem (3.15) can now be re-written as

maximize hT
i ζ + eT

i Γr

subject to 1
2ζ

Tζ ≤ c,
(3.16)

where
hT

i = eT
i KVTΛ−

1
2 .

The solution to the constrained maximization problem (3.16) of maximizing the inner-
product of two vectors over a unit 2-norm ball is given by

ζi =
hi

||hi||

√
2c, (3.17)

where || · || denotes the vector 2-norm. The maximum value of the objective function in
(3.15) is given by

||hi||
√

2c + eT
i Γr.

Consequently, to satisfy (3.13), we let

c =


0, if ∃ i : umax ≤ eT

i Γr,

min
i

1
2

umax− eT
i Γr

||hi||

2

, otherwise.
(3.18)

Thus, the problem of finding the thrust limit on the growth distance for polyhedral norm
bounds has an explicit solution given by (3.18). Even though the computation of thrust
limits on the growth distance can be performed offline for the nominal operating conditions,
fast computational procedures are beneficial in case of thruster failures, degradations, and
restrictions on thrust directions (e.g., caused by the presence of other spacecraft nearby),
all of which can lead to changing constraints on thrust during spacecraft missions.

We note that the condition umax ≥ maxi{eT
i Γr} is satisfied if the available thrust can

maintain the equilibrium Xe(r) in steady-state. We also note, that, based on the form of Γ,
c is independent of ry, the in-track component of the equilibrium in the virtual net. Hence
the computations of ρu(r,K) need only be performed with ry = 0.

When a spacecraft does not have independent thrusters in x, y and z directions, a 2-norm
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thrust limit is more practical. Unfortunately, (3.15) is, in general, a non-convex problem.
In this case, the 2-norm bound can be approximated by a polyhedral norm bound (3.13),
with the vertices ei selected on the unit 2-norm ball in R3. We note that higher accuracy of
this approximation requires a higher number of vertices in (3.13), which thus, complicates
(3.18).

Finally, we note that when ∆v’s are treated as control inputs, the thrust limit on growth
distance is induced by the available ∆v. In this case, computing the thrust limited growth
distance is completely analogous to computing it in the case when the control input is the
thrust force or thrust acceleration.

3.5.4 Connectivity Graph and Graph Search

We now introduce a notion of connectivity between two vertices of the virtual net, ri ∈N
and r j ∈N . The vertex ri is connected to the vertex r j if there exists a gain K ∈K such that

Xe(ri) ∈ intC(r j,K,ρ∗(r j,K,z)), (3.19)

where int denotes the interior of a set. The connectivity implies that a spacecraft located
close to an equilibrium corresponding to ri can transition to an equilibrium Xe(r j) by using
limited thrust and avoiding collision with the debris. We note that if ri is connected to
r j this does not imply that, in turn, r j is connected to ri. We also note that connectivity
depends on the existence of an appropriate control gain from the set of gains K but the
condition (3.19) does not need to hold for all gains.

The on-line motion planning with debris avoidance is performed according to the fol-
lowing procedure (for simplicity, described here for the case of a single debris):

Step 1: Determine the debris location and shape (i.e., z and Q).

Step 2: By using fast growth distance computations, determine the thrust limited growth
distance based on (3.8), with ρg computed online and ρu precomputed offline.

Step 3: Construct a graph connectivity matrix between all ri,r j ∈N . In the graph con-
nectivity matrix, if two vertices are not connected, the corresponding matrix element
is zero; if they are connected the corresponding matrix element is 1. In parallel, build
the control gain selectivity matrix, which identifies the index of the highest prefer-
ence gain K for which ri and r j are connected. This gain will be applied if the edge
connecting ri and r j is traversed.
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Step 4: Perform graph search to determine a sequence of connected vertices r[k] ∈N
and control gains K[k] ∈K, k = 1, · · · , lp, such that r[1] satisfies the initial constraints,
r[lp] satisfies the final constraints, and the path length lp is minimized.

Per the above algorithm, graph search is utilized to determine the minimum number of
equilibrium hops around a piece of debris. After the path has been determined as a sequence
of the set-points and the corresponding control gains, the execution of the path proceeds
by checking if the current state, X(t) is in the safe positively invariant set corresponding to
the next reference r+ and next control gain K+ in the sequence; if it is, then the controller
switches to this reference and control gain:

X(t) ∈C(r+,K+,ρ∗(r+,K+,z))→ r(t) = r+, K(t) = K+. (3.20)

3.6 Cost Matrices

As described in the previous section, the connectivity graph matrix is comprised of ones and
zeros, and thus, graph search results in a minimum length path between desired ri,r j ∈N .

In order to produce time efficient and thrust efficient paths, offline we simulate tran-
sitions between all ri,r j ∈ N for each K ∈ K and record the time and fuel consumption
to reach a box of 1m around the target vertex. The results are merged into time and fuel
matrices that store the respective minimum value, while in parallel, the control selectivity
matrix identifies which gain K produced said minimum.

Step 3 in the motion planning procedure is augmented so that the graph connectivity
matrix is multiplied elementwise with a desired cost matrix. Vertices that are not connected
retain a corresponding matrix element of zero, while vertices that are connected now con-
tain a matrix element of time or fuel cost.

3.7 Moving Debris Avoidance Approach

To avoid a non-stationary debris, its path can be covered by a union of a finite number of
ellipsoidal sets,

D =

l=nd⋃
l=1

O(zl,Ql), (3.21)

where the center of the lth set is denoted by zl ∈ R3, and the lth set shape is defined by Ql =

QT
l > 0. Then, the debris avoidance condition for the closed-loop trajectory that emanates
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from X(0) with the set-point ri and gain K j is given by

X(0) ∈C(ri,K j,ρ) and O(zl,Ql)∩C(ri,K j,ρ) = ∅, for all l = 1, · · · ,nd. (3.22)

The same approach, with larger nd, can be used to handle multiple non-stationary debris.
Note, however, that this approach is conservative as it does not account for the debris
progressions along their paths versus time.

Hence, we introduce the notion of time into the problem; whereas a transition between
ri and r j might not be feasible at time t1, based on the motion of a debris, it might become
feasible at time t2. To accommodate moving debris, we introduce sets Ck(r,K,ρ), 0≤ k ≤ N,

defined by the following relation,

Ā(K)k
(
Ck(r,K,ρ)−{Xe(r)}

)
⊆

(
C(r,K,ρ)−{Xe(r)}

)
, (3.23)

Note that if X(0) ∈ Ck(r,K,ρ), then X(1) ∈ Ck−1(r,K,ρ), X(2) ∈ Ck−2(r,K,ρ), · · · ,X(k) ∈
C0(r,K,ρ) = C(r,K,ρ). The set Ck(r,K,ρ) can be much larger than C(r,K,ρ); any states
in Ck(r,K,ρ) contract to C(r,K,ρ) in k steps.

3.7.1 Connectivity Graph and Graph Search

We now define connectivity between two vertices of the virtual net, ri ∈ N and r j ∈ N at
a specified time t0. This notion is based on the fact that the time to transition from any
state in CN(r,K,ρ) to C(r,K,ρ) is less or equal than N steps. Suppose that the debris path
D(t0 : t0 + N ·H) has been predicted over the N ·H discrete steps from the time instant t0,
where

D(tk : tr) =

t=tr⋃
t=tk

O(z(t),Q(t)).

The node ri ∈N is connected to ri ∈N at the time instant tk = t0 + kN if there exists K ∈K
such that

D(tk : tk + N)∩C(ri,K,ρ) = ∅. (3.24)

The node ri ∈N is connected to node r j ∈N at time tk if there exists K ∈K such that

D(tk : tk + N)∩CN(r j,K,ρ) = ∅ (3.25)

and

C(ri,K,ρ) ⊂CN(r j,K,ρ). (3.26)
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The connectivity implies that a spacecraft located close to an equilibrium corresponding
to ri, Xe(ri), can transition close to an equilibrium Xe(r j) between the time instants tk and
tk + N while avoiding collision with the debris. We note that if ri is connected to r j this
does not imply that, in turn, r j is connected to ri. We also note that connectivity depends
on the existence of an appropriate control gain from the set of gains K but does not need to
hold for all gains. Furthermore, since connectivity depends on the predicted motion of the
debris, connectivity/non-connectivity can depend on time.

The on-line motion planning with debris avoidance is performed according to the fol-
lowing procedure:

Step 1: Determine the debris location, shape and predict the debris path D(t0 : t0 +N ·H)

Step 2: Construct graph connectivity matrices corresponding to tk,k = 0,1, · · · ,H. In
the graph connectivity matrix, if two vertices, ri and r j, are not connected at tk, the
corresponding matrix element is zero; if they are connected the corresponding matrix
element is 1. In parallel, build the control gain selectivity matrix, which identifies the
index of the highest preference gain K for which ri and r j are connected. This gain
will be applied if the edge connecting ri and r j is traversed.

Step 3: Perform graph search to determine a sequence r[tk] ∈ N and control gains
K[k] ∈K, k = 1, · · · , lp, such that r[t1] satisfies the initial constraints, r[lp] satisfies the
final constraints, and the path length lp (or another cost function such as the expected
fuel consumption or expected maneuver time) is minimized.

Per the above algorithm, a graph search is utilized to determine the minimum number
of equilibrium hops around a debris starting at t0.

Remark 1: The condition (3.25) is conservative. It can be replaced by a less conserva-
tive condition,

D(tk : tk + m)∩CN−m(r j,K,ρ) = {∅},

m = 0,1, · · · ,N,

at a price of more demanding computations.
Remark 2: The condition (3.25) is checked computationally using the fast growth

distance algorithm described in Section 3.5.3. The intersection is empty if CN can be
grown before it touches D(tk : tk + N). This fast growth distance algorithm is essential to be
able to rapidly construct the connectivity matrices.

Remark 3: In our simulations, the path search is performed using the standard Dijk-
stra’s algorithm. It is applied to a lifted graph with vertices being the pairs (ri, tk).
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3.8 Bounded Disturbances

We now discuss how the debris avoidance approach can be extended to handle bounded
disturbances. For simplicity, we consider the case of multiple stationary debris. Consider
the system

Xk+1 = AXk + BUk + Bw, (3.27)

where w ∈W, W is the convex hull of wi for i = 1, . . . ,nw, wi are the vertices of a disturbance
set, and nw is the number of vertices. Note that W is a compact set.

The positive invariance of C(r,K,γ), γ > 0, for W = {0} has already been established.
When W 6= {0}, it can be shown that there exists γmin such that the set is positively invariant
for γ > γmin. Note that γmin = γmin(K).

Since C(r,K,γmin(K)) is disturbance invariant, it contains the minimum invariant set
that is an attractor for closed-loop trajectories, as long as r and K are maintained at con-
stant values. Hence, in the case of bounded disturbances, connectivity can be redefined by
replacing Xe(ri) in (3.19) with C(ri,K,γmin(K)). Specifically, the vertex ri ∈N is connected
to the vertex r j ∈N if there exists K ∈K such that

C(ri,K,γmin(K)) ⊂ intC(r j,K,ρ∗(r j,K,z)), for all l = 1, . . . ,m. (3.28)

The condition (3.28) ensures that a switch from ri to r j may occur and that subsequent
dynamics will not lead to collision with the debris once X(t) ∈C(ri,K,γmin(K)).

3.8.1 Disturbance Set Calculations

To compute γmin under all possible w ∈W, it is sufficient to examine the flow at the vertices
wi of the disturbance set and demonstrate that if Xk ∈C(r,K,γ(K)) and w ∈ {wi, i = 1, . . . ,nw},
then Xk+1 ∈C(r,K,γ(K)). The value γmin is the minimum γ for which this condition holds.

To find γmin we use a bilevel optimization strategy where the inner loop solves nw

optimization problems numerically with respect to X,

maximize Fi(X) = 1
2 (AX + BU + Bwi)T P(K)

γ2
i

(AX + BU + Bwi),

subject to 1
2 (X−Xe(r))T P(K)(X−Xe(r)) ≤ γ2

i ,

(3.29)

and the outer loop performs bisections on each γi, so that all Fi(X∗(γi)), where X∗(γi)
denotes the inner-loop solution, are driven to 1. Thus, γmin = min(γi) for i = 1, . . . ,nw. Note
that γmin is independent of equilibrium r, and so this calculation may be done once offline
for each K ∈K and stored onboard for real time implementation.
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3.9 Simulation Results

Simulations are now provided that illustrate the debris avoidance approach. We consider
a nominal circular orbit of 850 km and discretize the HCW equations with a sampling
period, ∆T , of 30 seconds. We construct an approximately 2 km cubed virtual net. We
let K = {K1,K2,K3}, where K1,K2,K3 are the LQ gains associated with weight matrices
Q = diag(100,100,100,107,107,107), and R1 = 2×105I3, R2 = 2×107I3, and R3 = 2×109I3.
These gains are chosen to represent preferences for fuel considerations, maneuver time
considerations, and a compromise between them. We impose a maximum thrust constraint
of 10 N in each axis. In all simulations, Dijkstra’s algorithm is used to find the shortest cost
path from initial node to final node.

3.9.1 Static Debris

We consider an ellipsoidal set O(z1,Q1) over-bounding a debris centered at z1 = [0.3 0.4 0.5]T

km, where Q1 = 100I3. We use the technique of [75] where bisections are applied to (3.11)
to determine the growth distance to the debris from each node in the net. The spacecraft’s
initial condition is X(0) = Xe(r0), where r0 = [0.32 0 1.61]T km. The target equilibrium
node is Xe(0).

Figure 3.4 shows the path the spacecraft takes under closed-loop control in order to
avoid the debris. The spacecraft is able to complete the desired maneuver well within
maximum thrust constraints while successfully avoiding the debris. In Figure 3.5 we rerun
the simulation for a grid of initial conditions. The figure clearly demonstrates the initial
conditions for which the maneuver path is perturbed from that which the spacecraft would
have taken had there been no debris.

Next, we add a second debris O(z2,Q2) centered at z2 = [0.3 − 0.4 0.5]T, where Q2 =

100I3. In calculating the growth distance, we take the minimum distance to each of
O(zi,Qi), i = 1,2 . Figure 3.6 shows the path the spacecraft takes under closed-loop control
in order to avoid both debris.

3.9.2 Moving Debris

We consider the case of a non-stationary debris where we treat its motion as the union
of static debris along the path (3.21). A union of ellipsoidal sets over-bounds the debris’
motion, where the debris positions zi are generated by sampling the relative motion of the
debris with the initial condition [0 0.5 0 0 0.0006 0]T, and where Qi = 200I3, i = 1 . . .nd.
The spacecraft’s initial condition is X(0) = Xe(r0), where r0 = [0 1 0]T km. The target
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(a) Debris Avoidance Path.
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Figure 3.4: (a) Debris avoidance path for a single debris. The green x marks the initial node.
The blue x marks the final node. The red ellipsoid represents the debris. The blue line is
the path the spacecraft takes in order to avoid the debris. The blue ellipsoids represent the
invariant sets along the path. (b) The time history of thrust magnitude.

−0.5
0

0.5
1

−0.5
0

0.5
1

−2

−1

0

1

2

y (km)x (km)

z 
(k

m
)

Figure 3.5: Debris avoidance paths for many initial conditions. Each green x marks an
intial condition. The blue x marks the final node. The red ellipsoid represents the debris.
The blue lines are the paths that the spacecraft takes from each initial condition in order to
avoid the debris. We do not show the invariant set ellipsoids for visual clarity.
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(a) Debris Avoidance Path.
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Figure 3.6: (a) Debris avoidance path for 2 pieces of debris. The green x marks the initial
node. The blue x marks the final node. The red ellipsoids represents the 2 pieces of debris.
The blue line is the path the spacecraft takes in order to avoid the debris. The blue ellipsoids
represent the invariant sets along the path. (b) The time history of thrust magnitude.

equilibrium node is Xe(rd), where r0 = [0 − 1 0]T km. We use the single gain K2 and do
not include fuel or time cost matrices in the simulation, searching for a minimum length
path. Figure 3.7 demonstrates that the spacecraft is able to avoid the closed debris path by
‘hopping’ under it.

In Figure 3.8, we repeat the simulation for time efficient and thrust efficient paths and
allow all K ∈ K. Table 3.1 summarizes the total time, thrust and nodes traversed for the
three paths. Note that the minimum length path now ‘hops’ over the debris path instead
of under it, as now that it has access to K1 it finds a shorter path. Also note that the time
efficient path takes longer to complete than the minimum length path. While the cost ma-
trices described in Section 3.6 calculate time and thrust to travel between all vertices in the
virtual net, the execution of the path does not require the spacecraft to reach intermediate
vertices, rather, switching to the next reference once the current state enters the next refer-
ence’s invariant set (3.20). As such, the cost matrices only provide a heuristic for selecting
efficient paths. In Figure 3.9 we require the paths to travel through intermediate vertices to
show that, in this case, the cost matrices accurately determine efficient paths. The results
are summarized in Table 3.2.
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(a) Debris Avoidance Path.
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(c) Cumulative Thrust.

Figure 3.7: (a) Debris avoidance path for a non-stationary debris using the union method.
The green x marks the initial node. The blue x marks the final node. The red ellipsoids
represent the debris path. The blue line is the path the spacecraft takes in order to avoid the
debris. The blue ellipsoids represent the maximally grown invariant sets, C, along the path.
(b) The time history of thrust magnitude. (c) Cumulative thrust vs time.
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(a) Debris Avoidance Path.
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(b) Norm of Thrust Profile.
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(c) Cumulative Thrust.

Figure 3.8: (a) Multiple debris avoidance paths for a non-stationary debris using the union
method. (b) The time history of thrust magnitude. (c) Cumulative thrust vs time.

Table 3.1: Total Time, Thrust, and Nodes Traversed for all Maneuver Paths for a Union of
Static Debris.

Total Time Total Thrust Total # of Nodes Gains used
Minimum Length Path 2611.5 s 1472.85 N·s 6 K1

Time Efficient Path 2841 s 1264.95 N·s 6 K1,K2
Thrust Efficient Path 9177 s 671.297 N·s 11 K2,K3
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(a) Debris Avoidance Path.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12

14

Time, sec

T
h

ru
s
t,

 N

 

 

Shortest Path

Time Eff Path

Fuel Eff Path

(b) Norm of Thrust Profile.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Time, sec

T
o

ta
l 
T

h
ru

s
t,

 N
s

 

 

Shortest Path

Time Eff Path

Fuel Eff Path

(c) Cumulative Thrust.

Figure 3.9: (a) Multiple debris avoidance paths that travel through intermediate nodes for
a non-stationary debris using the union method. (b) The time history of thrust magnitude.
(c) Cumulative thrust vs time.

Table 3.2: Total Time, Thrust, and Nodes Traversed for all Maneuver Paths that Travel
Through Intermediate Nodes for a Union of Static Debris.

Total Time Total Thrust Total # of Nodes Gains used
Minimum Length Path 10457.5 s 3006.13 N·s 6 K1

Time Efficient Path 9862 s 2017.11 N·s 6 K1,K2
Thrust Efficient Path 32812.5 s 1083.58 N·s 11 K2,K3
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We now repeat the simulations taking into account the debris’ motion as a function
of time. We use the single gain K2 and do not include fuel or time cost matrices in the
simulation, searching for a minimum length path. Figure 3.10 shows that the graph search
algorithm is able to find a path which passes through the debris’ path but avoids collision
due to the debris’ location elsewhere at the specific time instant at which the spacecraft
path crosses the debris’ path. In Figure 3.11, we repeat the simulation for a thrust efficient
path. Table 3.3 summarizes the total time, thrust and nodes traversed for the two paths.
Note that the thrust efficient path uses more thrust than the minimum length path. In Figure
3.12 we require the paths to travel through intermediate vertices to show that, in this case,
the thrust cost matrix accurately determines an efficient path. The results are summarized
in Table 3.4.

Table 3.3: Total Time, Thrust, and Nodes Traversed for all Maneuver Paths using the Con-
tractive Set Approach.

Total Time Total Thrust Total # of Nodes
Minimum Length Path 4635.5 s 4635.5 N·s 7
Thrust Efficient Path 4703.5 s 781.407 N·s 7

Table 3.4: Total Time, Thrust, and Nodes Traversed for all Maneuver Paths that Travel
Through Intermediate Nodes using the Contractive Set Approach.

Total Time Total Thrust Total # of Nodes
Minimum Length Path 13388.5 s 2060.14 N·s 7
Thrust Efficient Path 12657.5 s 957.116 N·s 7

Finally, we run the simulation for the case of bounded disturbances. We consider W =

{w : ||w||∞ ≤ ε} for which nw = 8, that is, disturbances that fit in a box of magnitude ε.
In Figure 3.13 we consider a uniform distribution of disturbances, for ε = 0.1 N and ε =

0.2 N. The spacecraft is able to safely avoid the debris’ path despite being subjected to
disturbances.

50



(a) Debris Avoidance Path.
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(b) Norm of Thrust Profile.
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Figure 3.10: (a) Debris avoidance path for a non-stationary debris using the contractive set
approach. The green x marks the initial node. The blue x marks the final node. The red
ellipsoids represent the debris path. The blue line is the path the spacecraft takes in order
to avoid the debris. The blue ellipsoids represent the invariant sets, CN , along the path. (b)
The time history of thrust magnitude.
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(a) Debris Avoidance Path.
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Figure 3.11: (a) Multiple debris avoidance paths for a non-stationary debris using the con-
tractive set approach. The green x marks the initial node. The blue x marks the final node.
The red ellipsoids represent the debris path. The blue and pink lines are the path the space-
craft takes in order to avoid the debris for minimum length path and fuel efficient path,
respectively. The blue and pink ellipsoids represent the invariant sets, CN , along the paths.
(b) The time history of thrust magnitude. (c) Cumulative thrust vs time.
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(a) Debris Avoidance Path.
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Figure 3.12: (a) Multiple debris avoidance paths that travel through intermediate nodes
for a non-stationary debris using the contractive set approach. The green x marks the
initial node. The blue x marks the final node. The red ellipsoids represent the debris path.
The blue and pink lines are the path the spacecraft takes in order to avoid the debris for
minimum length path and fuel efficient path, respectively. The blue and pink ellipsoids
represent the invariant sets, CN , along the paths. (b) The time history of thrust magnitude.
(c) Cumulative thrust vs time.
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(a) Debris Avoidance Path. (b) Debris Avoidance Path.
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Figure 3.13: (a) Debris avoidance path for a non-stationary debris under uniform random
disturbance with ε = 0.1 N. The green x marks the initial node. The blue x marks the
final node. The red ellipsoids represent the debris path. The blue line is the path the
spacecraft takes in order to avoid the debris. The blue ellipsoids represent the maximally
grown invariant sets C(r,K,ρ∗(r,K,z)) along the path. The orange ellipsoids represent the
disturbance invariant sets C(r,K,γmin(K)), along the path. (b) Debris avoidance path for
a non-stationary debris under uniform random disturbance with ε = 0.2 N. (c), (d) Time
histories of thrust magnitude.
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CHAPTER 4

Inertia-Free Attitude Control

This chapter presents the extension of the inertia-free attitude controllers based on rotation
matrices developed in [32] to the cases of magnetic actuation, reaction wheels, and fixed-
speed SGCMGs.

The control laws that we consider are of two types. The first type comprises fixed-gain

attitude control laws (FGAC). These control laws take the form of PD control laws tailored
to the nonlinear characteristics of spacecraft dynamics. The second type of controller is
an extension of fixed-gain attitude control laws to include an on-line estimate of the space-
craft inertia. This type of control law, called estimation-based attitude control (EBAC), is
considered in [31] using quaternions and in [32] using rotation matrices.

To illustrate the control laws, we consider two basic scenarios, namely, motion-to-rest
(M2R) maneuvers and motion-to-spin (M2S) maneuvers, where “rest” and “spin” refer to
motion relative to an inertial frame. An M2R maneuver may begin from either rest or
an arbitrary angular velocity. Hence, M2R includes maneuvers commonly referred to as
slews, detumbling, and stabilization. The goal is to have the spacecraft come to rest with
a specified attitude in the sense that a specified body axis is pointing in a specified inertial
direction. If the M2R and M2S maneuvers begin from zero angular velocity, then we use
the terminology rest-to-rest (R2R) and rest-to-spin (R2S), respectively.

An M2S maneuver aims to bring the spacecraft from an arbitrary initial angular velocity
and attitude to a constant angular velocity relative to an inertial frame. Consequently,
the goal is to have the spacecraft rotate at a constant rate about a body-fixed axis whose
inertial direction is fixed. Specified spin maneuvers can be used, for example, to provide
momentum bias to the spacecraft, or to achieve nadir pointing along a circular orbit.

The equations of motion used in this chapter for spacecraft attitude dynamics with
reaction wheels is derived in Appendix B.
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4.1 Spacecraft Model, Assumptions, and Control Objec-
tives

As a spacecraft model, we consider a single rigid spacecraft bus controlled by magnetic
torquers, reaction wheels, or SGCMGs. The spacecraft’s angular momentum H, relative
to its center of mass with respect to the inertial frame resolved in the spacecraft frame,
depends on the type of torque actuation used and is detailed below for the aforementioned
cases. We consider only the rotational motion of the spacecraft and not the translational
motion of the spacecraft’s center of mass; therefore we consider only the torque τactuator

applied by the force or torque actuators. We assume that a body-fixed frame is defined for
the spacecraft, whose origin is chosen to be the center of mass, and that an inertial frame is
specified for determining the attitude of the spacecraft. The spacecraft equations of motion
are given by Euler’s equation and Poisson’s equation

Jscω̇ = H×ω+τactuator + zdist, (4.1)

Ṙ = Rω×, (4.2)

where ω ∈ R3 is the angular velocity of the spacecraft frame with respect to the inertial
frame resolved in the spacecraft frame, ω× is the cross-product matrix of ω, Jsc ∈ R3×3 is
the constant, positive-definite inertia matrix of the spacecraft including wheels if present,
that is, the inertia tensor of the spacecraft relative to the spacecraft center of mass resolved
in the spacecraft frame, and R = OIn/SC ∈ R3×3 is the rotation tensor that transforms the
inertial frame into the spacecraft frame resolved in the spacecraft frame, and where OIn/SC

is the orientation (direction cosine) matrix that transforms components of a vector resolved
in spacecraft frame into the components of the same vector resolved in inertial frame.

The components of the vector τactuator represent the torque inputs about each axis of
the spacecraft frame, which depends on the chosen torque actuation as detailed below. The
vector zdist represents disturbance torques, that is, all internal and external torques applied
to the spacecraft aside from control torques, which may be due to onboard components,
gravity gradients, solar pressure, atmospheric drag, or the ambient magnetic field. For
convenience in (4.1), (4.2) we omit the argument t, recognizing that ω, R, u, and zdist are
time-varying quantities.
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4.1.1 Measurement Sensors

Both rate (inertial) and attitude (noninertial) measurements are assumed to be available. For
simplicity, we assume that gyro measurements are available without noise and without bias.
In practice, bias can be corrected by using attitude measurements. Attitude is measured
indirectly through direction measurements using sensors such as star trackers. Attitude
estimation on SO(3) is considered in [76–78].

The objective of the attitude control problem is to determine control inputs such that
the spacecraft attitude given by R follows a commanded attitude trajectory given by the
possibly time-varying C1 rotation matrix Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)×, (4.3)

Rd(0) = Rd0, (4.4)

where ωd is the desired possibly time-varying angular velocity. The error between R(t) and
Rd(t) is given in terms of the attitude-error rotation matrix

R̃ 4= RT
d R, (4.5)

which satisfies the differential equation

˙̃R = R̃ω̃×, (4.6)

where the angular-velocity error ω̃ is defined by

ω̃
4
= ω− R̃Tωd.

4.1.2 Attitude Error

A scalar measure of attitude error is given by the eigenaxis attitude error, which is the
rotation angle θ(t) about the eigenaxis needed to rotate the spacecraft from its attitude R(t)
to the desired attitude Rd(t). This angle is given by [79]

θ(t) = cos−1(1
2 [tr R̃(t)−1]). (4.7)

4.1.3 Spacecraft Inertia

Since the control laws in this chapter require no inertia modeling, examples that span a
range of possible inertia matrices are considered. The inertia of a rigid body is determined
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by its principal moments of inertia, that is, the diagonal entries of the inertia tensor resolved
in a principal body-fixed frame, in which case the inertia matrix is a diagonal matrix. If
the inertia tensor is resolved in a non-principal body-fixed frame, then the diagonal entries
are the moments of inertia and the off-diagonal entries are the products of inertia. The
off-diagonal entries of the inertia matrix are thus a consequence of an unknown rotation
between a principal body-fixed frame and the chosen body-fixed frame.

Figure 4.1 shows the triangular region of feasible principal moments of inertia of a
rigid body. There are five cases that are highlighted for the principal moments of inertia
λ1 ≥ λ2 ≥ λ3 > 0, where λ1,λ2,λ3 satisfy the triangle inequality λ1 < λ2 +λ3. Let m denote
the mass of the rigid body. The point λ1 = λ2 = λ3 corresponds to a sphere of radius

λ1 

λ3 

λ1 = λ2 = 2λ3 
λ 2

=
λ 1

 

λ2 
λ1 

λ1 =
6

5
λ2 = 2λ3 

𝑆𝑝ℎ𝑒𝑟𝑒  
λ1 = λ2 = λ3 

𝑇ℎ𝑖𝑛 𝑑𝑖𝑠𝑘 
λ1 = 2λ2 = 2λ3 

𝑇ℎ𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 
λ1 = λ2, λ3 = 0 

Figure 4.1: Feasible region of the principal moments of inertia λ1,λ2,λ3 of a rigid body
satisfying 0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 +λ3. The shaded region shows all feasible values
of λ2 and λ3 in terms of the largest principal moment of inertia λ1. The open dots and dashed
line segment indicate nonphysical, limiting cases.

r =

√
5λ1
2m , a cube whose sides have length l =

√
6λ1
m , and a cylinder of length l and radius

r, where l/r =
√

3 and r =

√
2λ1
m . The point λ1 = λ2 = 2λ3 corresponds to a cylinder of
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length l and radius r, where l/r = 3 and r =

√
2λ1
m . The point λ1 = 6

5λ2 = 2λ3, located at
the centroid of the triangular region, corresponds to a solid rectangular body with sides

l1 =

√
8λ1
m > l2 =

√
4λ1
m > l3 =

√
2λ1
m .

The remaining cases in Figure 4.1 are nonphysical, limiting cases. The point λ1 = 2λ2 =

2λ3 corresponds to a thin disk of radius r =

√
2λ1
m and length l = 0. The point λ1 = λ2 and

λ3 = 0 corresponds to a thin cylinder of radius r = 0 and length l =

√
12λ1

m . Finally, each
point along the line segment λ1 = λ2 +λ3, where λ2 > λ3, corresponds to a thin rectangular

plate with sides of length l1 =

√
12λ2

m > l2 =

√
12λ3

m .

For all simulations of the inertia-free control laws, the principal axes are viewed as the
nominal body-fixed axes, and thus the nominal inertia matrix is a diagonal matrix whose
diagonal entries are the principal moments of inertia. To demonstrate robustness, the prin-
cipal moments as well as the orientation of the body-fixed frame relative to the principal
axes is varied. For convenience, λ1 is normalized to 10 kg-m2, and the inertia matrices
J1, J2, J3, J4, J5 are chosen to correspond to the points noted in Figure 4.1. These matrices,
which correspond to the sphere, cylinder with l/r = 3, centroid, thin disk, and thin cylinder,
respectively, are defined as

J1 = diag(10,10,10), J2 = diag(10,10,5), J3 = diag(10,25/3,5),

J4 = diag(10,5,5), J5 = diag(10,10,0.1). (4.8)

The inertia matrix J3 corresponding to the centroid of the inertia region serves as the
nominal inertia matrix, while the inertia matrices J1, J2, J4, J5 are used as perturbations
to demonstrate robustness of the control laws. A perturbation J(λ) of Ji in the direction of
J j thus has the form

J(λ) = (1−λ)Ji +λJ j, (4.9)

where λ ∈ [0,1]. Finally, in order to facilitate numerical integration of Euler’s equation,
note that J5 is chosen to be a nonsingular approximation of the limiting inertia of a thin
cylinder.

4.1.4 Magnetic Torquers

For a rigid spacecraft actuated by three magnetic torque devices, and without on-board
momentum storage, it follows that H = Jω, which, when substituted into (4.1), yields the
equations of motion for a spacecraft with magnetic torquers. For the case of M2R, these
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equations have the form

Jscω̇ = (Jscω)×ω+τmag + zdist, (4.10)

where the vector τmag ∈ R3 represents the torque on the spacecraft generated by the mag-
netic actuators. The vector can be written as [80]

τmag(t) = u(t)×b(t) = −b(t)×u(t), (4.11)

where u(t) is the magnetic dipole moment generated by the currents in the magnetic actua-
tors measured in ampere-square meters (A-m2), and where b(t) = [bx(t) by(t) bz(t)]T is
Earth’s geomagnetic field measured in teslas (T) and resolved in the body-fixed frame. For
a discussion on generating magnetic dipole moments from magnetic torquer rods, see [81].
Defining

B(t) 4= −b(t)×, (4.12)

we can rewrite (4.10) as,

Jscω̇ = (Jscω)×ω+ Bu + zdist. (4.13)

Note that we have dropped the argument t for convenience.

4.1.5 Reaction Wheels

The dynamics of a spacecraft actuated by three axisymmetric wheels which are presented
below are dervied in detail in Appendix B. The assumptions presented in Section B.1.2 are
not invoked.

The angular momentum of the spacecraft relative to its center of mass with respect to
the inertial frame is given by

H = Jscω+ Jαν, (4.14)

where Jαν represents the angular momentum of the reaction wheel assembly. Therefore,
(4.1) has the form

Jscω̇ = (Jscω+ Jαν)×ω+τRW +τdist, (4.15)

ν̇ = u, (4.16)
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where (4.20) is a kinematic relation describing the angular acceleration of the reaction
wheels. In practice, a servo loop is closed around each reaction wheel in order to produce
the desired angular acceleration. The reaction-wheel torque has the form

τRW = −Jαu. (4.17)

Therefore, defining

B 4= −Jα, (4.18)

the equations of motion for a spacecraft with reaction wheels have the form

Jscω̇ = (Jscω+ Jαν)×ω+ Bu +τdist, (4.19)

ν̇ = u. (4.20)

Compared to the case of thrusters treated in ref. [32], reaction-wheel actuation compli-
cates the dynamic equations due to the term Jαν in (4.19), as well as the integrators (4.20)
augmented to the system. The torque inputs applied to each reaction wheel are constrained
by current limitations on the electric motors and amplifiers as well as angular-velocity con-
straints on the wheels. These constraints are addressed indirectly in Section 4.3.2.

4.1.6 CMG’s

The dynamics of a spacecraft actuated by three fixed-speed SGCMGs which are presented
below are derived in detail in [82]. We provide a summary below.

Consider a spacecraft actuated by three orthogonal single-gimbal CMG’s with spherical
gyro wheels attached to a rigid bus. Each CMG is mounted so that its gimbal is free to
rotate about an axis passing through the center of mass of the gyro wheel. For simplicity,
the gimbals are assumed to be massless. However, we do not assume that each gimbal’s
axis of rotation passes through the center of mass of the bus, nor do we assume that the
CMG’s are balanced with respect to the bus in order to preserve the location of its center
of mass. Thus the center of mass of the spacecraft and the center of mass of the bus may
be distinct points.

Let the spacecraft be denoted by sc, and let c denote its center of mass. Although the
spacecraft is not a rigid body, the spherical symmetry of the gyro wheels implies that c is
fixed in both the bus and the spacecraft. Let ci denote the center of mass of the ith gyro
wheel. We assume a bus-fixed frame FB, three gimbal-fixed frames FGi whose y-axes are
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aligned with the rotation axes of their respective gimbals, three gyro-wheel-fixed frames
FWi whose x-axes are aligned with the rotation axes of their respective gyro wheels, and an
Earth-centered inertial frame FE. The angular momentum of the spacecraft relative to its
center of mass with respect to the inertial frame is given by

H = Jscω+

3∑
i=1

βiωWi . (4.21)

In this case (4.1) becomes

Jscω̇ =

Jscω+

3∑
i=1

βiωWi

×ω− Jβu̇ +τCMG + zdist, (4.22)

where

Jβ
4
=


β1 0 0

0 β2 0

0 0 β3

 , u 4=


u1

u2

u3

 ,
and the scalar control ui is the angular velocity of the ith gimbal. Furthermore, the CMG
actuator torque τCMG has the form

τCMG = Bu, (4.23)

where

B 4=
[
β1

(
ω×W1
−ω×

)
e1 β2

(
ω×W2
−ω×

)
e2 β3

(
ω×W3
−ω×

)
e3

]
. (4.24)

Note that the actuator matrix B given by (4.24) is state-dependent and thus time-varying.
Substituting (4.23) and (4.24) into (4.22) yields Euler’s equation for a spacecraft with

CMG’s given by

Jscω̇ =

Jscω+

3∑
i=1

βiωWi

×ω+ Bu + z′dist, (4.25)

where

z′dist
4
= zdist− Jβu̇. (4.26)
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Note that we consider u̇ as a component of the disturbance. This approach provides direct
control of the gimbal rates without an intermediary steering law as in [83].

4.2 Fixed-Gain Attitude Control (FGAC)

In this section we describe the FGAC control laws for each type of actuation. These control
laws involve gains that are, in most cases, constant, and must be chosen by the user based
on considerations of control authority and desired closed-loop response. Although the
response of the spacecraft depends on the actual inertia of the spacecraft, convergence
properties are guaranteed regardless of the spacecraft inertia, which need not be known.

The following preliminary results concerning rotation matrices are needed. Let I denote
the 3× 3 identity matrix, and let Mi j denote the i, j entry of the matrix M. The following
result provides some properties of a function of rotation matrices that is used to construct a
Lyapunov function.

Lemma 1. [32] Let A ∈ R3×3 be a diagonal positive-definite matrix and let R be a
rotation matrix. Then the following statements hold:

i) For all i, j = 1,2,3, Ri j ∈ [−1,1].

ii) tr (A−AR) ≥ 0.

iii) tr (A−AR) = 0 if and only if R = I.

Given a1,a2,a3 ∈ R, define the vector measure of attitude error

S 4=
3∑

i=1

ai(R̃Tei)× ei, (4.27)

where, for i = 1,2,3, ei denotes the ith column of the 3× 3 identity matrix. When attitude
measurements are given in terms of an alternative representation, such as quaternions, the
corresponding attitude-error R̃ defined by (4.5) can be computed, and thus (4.27) can be
evaluated and used by the controller given in Theorem 2 below. Consequently, S can be
computed from any attitude parameterization.

An inertia-free control law for a rigid spacecraft with three torque inputs is given by the
proportional-derivative-(PD)-type SO(3)/0 control law [32]

u = −B−1(KpS + Kvω), (4.28)
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where B is the torque-input matrix, and Kp and Kv are proportional (attitude) and derivative
(angular velocity) gains, respectively. When no disturbances are present, the this controller
achieves almost global stabilization of a constant desired attitude Rd, that is, a slew ma-
neuver that brings the spacecraft to rest. The initial conditions of the slew maneuver may
be arbitrary, that is, the spacecraft may have nonzero initial velocity. This controller is
inertia-free since knowledge of the spacecraft inertia J is not needed for implementation.
Consequently, this controller can be implemented for stabilization and slew maneuvers
without knowledge of the spacecraft’s mass distribution.

We now extend (4.28) to the cases of magnetic actuation, reaction wheels, and fixed-
speed SGCMGs.

4.2.1 FGAC for Magnetic Torquers

For magnetic torquing, a quaternion-based FGAC control law that relies solely on current,
on-board measurements of the geomagnetic field and requires knowledge of the spacecraft
inertia matrix is given by (13) of [84]. The proof of stability is based on averaging theory.
We modify this control law to use rotation matrices rather than quaternions and, inspired
by [85], to be inertia free. The proportional-derivative-(PD)-type control law is thus given
by

u = −
b×(t)
||b(t)||2

Γ̄−1(ε2KpS +εKvω), (4.29)

where

Γ̄
4
= lim

T→∞

∫ T

0
Γ(t)dt = lim

T→∞

∫ T

0
−

b×(t)b×(t)
||b(t)||2

,

and 0 < ε < ε∗ is a scaling of the proportional and derivative gains Kp and Kv, where ε∗

is the maximum scaling. As mentioned in [84], this condition guarantees that the control
action changes on the order of the natural time variation of Earth’s magnetic field.

4.2.2 FGAC for Reaction Wheels

Theorem 1. Let Kp be a positive number and let A = diag(a1,a2,a3) be a diagonal

positive-definite matrix. Then the function

V(ω, R̃) 4= 1
2ω

TJscω+ Kptr(A−AR̃), (4.30)

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω = 0 and R̃ = I.
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Proof. It follows from statement 2 of Lemma 1 that tr (A−AR̃) is nonnegative. Hence
V is nonnegative. Now suppose that V = 0. Then, ω = 0, and it follows from iii) of Lemma
1 that R̃ = I.

Theorem 2. Let Kp be a positive number, let Kv ∈R3×3 be a positive-definite matrix, let

A = diag(a1,a2,a3) be a diagonal positive-definite matrix with distinct diagonal entries, let

Rd be constant, define S as in (4.27), and define V as in Theorem 1. Consider the control

law

u = J−1
α (KpS + Kvω). (4.31)

Then,

V̇(ω, R̃) = −ωTKvω (4.32)

is negative semidefinite. Furthermore, the closed-loop system consisting of (4.19), (4.20),

(4.6), and (4.31) is almost globally asymptotically stable [86], and for all initial conditions

not in an embedded submanifold of R3×SO(3)×R6×R3 (see ref. [32]), ω→ 0 and R̃→ I

as t→∞.
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Proof. Noting that

d
dt

tr (A−AR̃) = −tr A ˙̃R

= −tr A(R̃ω×−ω×d R̃)

= −

3∑
i=1

aieT
i (R̃ω×−ω×d R̃)ei

= −

3∑
i=1

aieT
i R̃(ω×− R̃Tω×d R̃)ei

= −

3∑
i=1

aieT
i R̃(ω− R̃Tωd)×ei

=

3∑
i=1

aieT
i R̃e×i ω̃

=

− 3∑
i=1

aiei×R̃Tei


T

ω̃

=

 3∑
i=1

ai(R̃Tei)×ei


T

ω̃

= ω̃TS ,

then

V̇(ω, R̃) = ωTJscω̇+ Kpω
TS

= ωT [(Jscω+ Jαν)×ω− Jαu] + Kpω
TS

= ωT
(
−KpS −Kvω

)
+ Kpω

TS

= −ωTKvω.

The proof of the final statement follows from invariant set arguments that are similar to
those used in ref. [32].

Note that −Jα is substituted for the input matrix B used in the inertia-free control
law (38) of ref. [32], but otherwise the controller requires no modification for the case
of reaction-wheel actuation in order to achieve almost global stabilization of a constant
desired attitude Rd.
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4.2.3 FGAC for CMG’s

For the following development we assume that Jβ is constant, nonsingular, and known.
That is, the spacecraft has three orthogonal CMG’s with spherical gyro wheels with known
moments of inertia about their spin axes.

In addition, we assume that the gimbal accelerations u̇ are negligible. We thus ignore
the effect of u̇ in the derivation of the control law by considering it a part of the disturbance
zd. This treatment of u̇ is consistent with [87–89]. We do, however, include this effect in
simulations and show through numerical examples that this is a reasonable assumption.

A difficulty encountered with CMG’s is that the torque they can generate may be con-
fined to a plane perpendicular to the requested torque. When this condition occurs, the
CMG’s are considered to be in a singular state, and gimbal angular velocities that synthe-
size the requested torque do not exist. Much of the work on CMG’s has thus focused on
the development of steering laws that modify the requested torque to either avoid these
singular states or steer the controller through them [90–94].

While we do not use an explicit steering law to synthesize the desired torque, the ma-
trix B in the CMG case is state-dependent and sometimes singular. Borrowing ideas from
the steering-law literature, in the subsequent examples we employ practical, albeit approx-
imate, methods for inverting B. For example, the singularity-robust (SR) inverse [95, 96]
trades off between introducing torque errors in the vicinity of a singularity and the feasi-
bility of the solution, where feasibility indicates that the gimbal angular velocities remain
bounded, unlike the case of the Moore-Penrose inverse.

The SR inverse is derived from the optimization problem

minimize eTWe, (4.33)

where e = [τ−Yu u]T, τ is the desired torque in a steering-law formulation of the CMG
problem, and W = diag(W1,W2) is a block-diagonal weight matrix.

The SR inverse is thus given by

Y# = W−1
2 YT

(
YW2YT + W−1

1

)
. (4.34)

Note that different values of W1 and W2 yield different SR inverses, and that selecting
W1 = 0 and W2 = I yields the Moore-Penrose inverse.

We use the SR inverse in place of the inverse of B in a PD control law for CMG’s. Since
the SR inverse introduces error into the inversion, we test the ability of the control law to
compensate for this disturbance. The inertia-free control law for CMG’s is thus given by
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the PD-type control law

u = −Y#(KpS + Kvω). (4.35)

In the simulations below we do not modify the weight matrices W1 and W2 based on the dis-
tance of Y from singularity. Alternative methods, such as the singular-direction avoidance
(SDA) inverse [88], can also be applied.

4.3 FGAC Examples

4.3.1 FGAC Example Using Magnetic Torquers

We consider a spacecraft in a 450-km circular orbit above the Earth with an inclination of
87 deg. The International Geomagnetic Reference Field (IGRF) model is used to simulate
Earth’s geomagnetic field as a function of orbital position [53]. The spacecraft inertia
matrix J is given by J3, with the body-fixed frame assumed to be a principal frame.

We use the SO(3)/0 FGAC controller (4.29) for a M2R maneuver, where the objective
is to bring the spacecraft from the initial attitude R(0) = I3, with initial angular velocity
ω(0) = [0.025 0.025 −0.03]T rad/sec, to rest at the desired final orientation Rd = I3.

Let Kp = 75, Kv = 75, and ε = 0.0004. These values are chosen to give nominal mag-
netic dipole moments around 5 A-m2, and a settling time of around 8 orbits. We test the
controller in a nonlinear simulation of (4.1)-(4.2).

Figure 5.17 shows the eigenaxis attitude error, angular velocity, and magnetic dipole
moment for the simulation described above. The spacecraft comes to rest at the commanded
attitude within 8 orbits. The maximum magnetic dipole moment generated is less than 6
A-m2. This quantity can be further tuned by modifying the gains Kp and Kv.

4.3.2 FGAC Example Using Reaction Wheels

We now illustrate the effectiveness of the FGAC control law (4.31) for regulating the space-
craft attitude and angular velocity using reaction-wheel actuators. The following space-
craft parameters are assumed. The bus inertia matrix Jb is nominally given by J3, which
corresponds to the centroid of the inertia region shown in Figure 4.1 with the body-fixed
frame assumed to be a principal body-fixed frame. The quantity Jb is unknown to the
controller. The axes of rotation of the reaction wheels are aligned with the spacecraft body-
fixed frame unit vectors, and the wheel inertias are given by Jw1 = diag(α1,β1,β1) kg-m2,
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Figure 4.2: M2R maneuver for the FGAC control law (4.29) using magnetic torquers. (a)
Eigenaxis attitude error, (b) angular velocity components, and (c) magnetic dipole mo-
ments. The spacecraft comes to rest at the commanded attitude within 7 orbits, and the
maximum magnetic dipole moment required by the controller is less than 6 A-m2.

Jw2 = diag(β2,α2,β2) kg-m2, and Jw3 = diag(β3,β3,α3) kg-m2, where α1 = α2 = α3 = 0.5
and β1 = β2 = β3 = 0.375. The values of βi are unknown to the controller.

Let Kp be given by

Kp =
γ

tr A
, (4.36)

and, as in ref. [32], let Kv = Kv(ω) be given by

Kv = η


1

1+|ω1|
0 0

0 1
1+|ω2|

0

0 0 1
1+|ω3|

 . (4.37)
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Alternative choices of Kv are given in ref. [97].
Controller (4.31) is used for an aggressive slew maneuver, where the objective is to

bring the spacecraft from the initial attitude R0 = I3 and initial angular velocity

ω(0) =
[

1 −1 0.5
]T

rad/sec

to rest (ωd = 0) at the desired final orientation Rd = diag(1,−1,−1), which represents a
rotation of 180 deg about the x-axis. The reaction wheels are initially not spinning relative
to the spacecraft, that is,

ν(0) =
[

0 0 0
]T

rad/sec.

No disturbance is present, and the parameters γ = η = 5 are used in (4.36) and (4.37).
Figures 4.3(a)-(d) show, respectively, the attitude error, angular-velocity components,

angular rates of the wheels, and the control inputs, which are the angular accelerations of
the wheels. The spacecraft attitude and angular-velocity components reach the commanded
values in about 100 sec. The angular rates of the wheels approach constant values that are
consistent with the initial, nonzero angular momentum.

In practice, reaction wheels have a maximum instantaneous acceleration. Angular-
acceleration saturation is enforced in Figures 4.4 and 4.5, where convergence is slower
than in Figure 4.3, although stability is maintained.

Additionally, reaction wheels have a maximum rotational rate. Figure 4.6 shows the
effect of wheel-rate saturation at 25 rad/sec, corresponding to about 240 rpm. The reaction-
wheel rates are saturated for up to 25 seconds, although this does not impact the control
objective. Figure 4.7 shows plots for wheel-rate saturation at 20 rad/sec, or about 190 rpm.
Although this constraint on the rotation rate is too stringent to obtain zero steady-state
error for the desired maneuver, the performance of the controller degrades gracefully by
achieving zero spacecraft angular velocity at an offset attitude.

4.3.2.1 Inertia Robustness

To evaluate performance for slew maneuvers, define the settling-time metric

k0
4
= min

k>100
{k : for all i ∈ {1, . . . ,100}, θ((k− i)Ts) < 0.05rad}, (4.38)

where k is the simulation step, Ts is the integration step size, and θ(kTs) is the eigenaxis
attitude error (4.7) at the kth simulation step. The metric k0 is thus the minimum time such
that the eigenaxis attitude error is less than 0.05 rad during the 100 most recent simulation
steps.
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Figure 4.3: M2S maneuver for the FGAC control law (4.31) using reaction wheels and
without disturbance. (a) Top: Eigenaxis attitude error. Bottom: Norm of the S parameter,
(b) spacecraft angular velocity components, and (c) angular rates of the reaction wheels,
(d) angular accelerations of the reaction wheels.

To illustrate the inertia-free property of the control laws (4.31) and (4.51), the inertia of
the spacecraft is varied using

Jb(λ) = (1−λ)J3 +λJi, (4.39)

where λ ∈ [0,1] and i = 1,4,5. Figure 4.8 shows how the settling time depends on λ.
Next, the robustness to misalignment of the reaction wheels relative to the principal

axes is investigated. Here, the inertia matrix is rotated by an angle φ about one of the axes
of frame Fb. For a rotation about the x axis of Fb, the inertia of the spacecraft is varied
using

Jb(φ) = O1(φ)J3OT
1 (φ), (4.40)
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Figure 4.4: M2S maneuver for the FGAC control law (4.31) using reaction wheels and
without disturbance. The acceleration of the reaction wheels is saturated at 4 rad/sec2. (a)
Eigenaxis attitude error, (b) spacecraft angular velocity components, and (c) angular rates
of the reaction wheels, (d) angular accelerations of the reaction wheels.

where the proper orthogonal matrix O1(φ) rotates vectors about the x axis by the angle φ.
Similar relations exist for rotations about the y and z axes. Figure 4.9 shows how a thruster
misalignment angle φ affects the settling time, where φ is varied from −180 deg to +180
deg.

4.3.3 FGAC Example Using CMG’s

We now illustrate the FGAC control law (4.35) using CMG’s. The following spacecraft
parameters are assumed. The bus inertia matrix Jb is given by J3, which is unknown to the
controller. The axes of rotation of the CMG gimbals are aligned with the spacecraft body-
fixed frame unit vectors, and the wheel inertias are given by Jw1 = diag(β1,β1,β1) kg-m2,
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Figure 4.5: M2S maneuver for the FGAC control law (4.31) using reaction wheels and
without disturbance. The acceleration of the reaction wheels is saturated at 2 rad/sec2. (a)
Eigenaxis attitude error, (b) spacecraft angular velocity components, and (c) angular rates
of the reaction wheels, (d) angular accelerations of the reaction wheels.

Jw2 = diag(β2,β2,β2) kg-m2, and Jw3 = diag(β3,β3,β3) kg-m2, where β1 = β2 = β3 = 0.3.
Let Kp be given by

Kp = 100
γ

tr A
, (4.41)

and let Kv be given by

Kv = diag(100,100,100), (4.42)

where A = diag(1,2,3).
Controller (4.35) is used for an aggressive slew maneuver, where the objective is to

73



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

E
ig

e
n

a
x
is

 A
tt

it
u

d
e

 E
rr

o
r 

(r
a

d
)

(a)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

Time (sec)

A
n

g
u

la
r 

V
e

lo
c
it
y
 C

o
m

p
o

n
e

n
ts

 (
ra

d
/s

e
c
)

 

 
ω

1

ω
2

ω
3

(b)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

Time (sec)

W
h

e
e

l 
A

n
g

u
la

r 
V

e
lo

c
it
y
 C

o
m

p
o

n
e

n
ts

 (
ra

d
/s

e
c
)

 

 
ν

1

ν
2

ν
3

(c)

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

8

10

12

Time (sec)

A
n

g
u

la
r 

A
c
c
e

le
ra

ti
o

n
 C

o
m

p
o

n
e

n
ts

 (
ra

d
/s

e
c2

)

 

 
u

1

u
2

u
3

(d)

Figure 4.6: M2S maneuver for the FGAC control law (4.31) using reaction wheels and
without disturbance. The maximum rotation rate of each wheel is saturated at 25 rad/sec.
(a) Eigenaxis attitude error, (b) spacecraft angular velocity components, and (c) angular
rates of the reaction wheels, (d) angular accelerations of the reaction wheels.

bring the spacecraft from the initial attitude R0 = I3 and initial angular velocity ω(0) = [1 −
1 0.5]T rad/sec to rest at the desired final orientation Rd = diag(1,−1,−1), which represents
a rotation of 180 degrees about the x-axis. The reaction wheels are initially not spinning
relative to the spacecraft, that is, ν(0) = [0 0 0]T rad/sec. No disturbance is present.

Figure 4.10 shows the attitude error, angular-velocity components, gimbal angles, and
singular values of B. The spacecraft attitude and angular-velocity components reach the
commanded values in about 10 sec. The relative angular-velocity components of the re-
action wheels settle down to constant values that are consistent with the initial, nonzero
angular momentum.
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Figure 4.7: M2S maneuver for the FGAC control law (4.31) using reaction wheels and
without disturbance. The maximum rotation rate of each wheel is saturated at 20 rad/sec.
(a) Eigenaxis attitude error, (b) spacecraft angular velocity components, and (c) angular
rates of the reaction wheels, (d) angular accelerations of the reaction wheels.

4.4 Estimator-Based Attitude Control (EBAC)

The main difference between the EBAC control laws and the FGAC control laws is that the
latter exploit an estimate of the inertia matrix. These control laws are based on Lyapunov
analysis, which also provides disturbance rejection for harmonic disturbances with known
spectrum.

To develop an estimate of the spacecraft inertia, we introduce the notation

Jscω = L(ω)γ,
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Figure 4.8: Settling time as a function of λ for various combinations (4.9) of inertia matrices
resolved in principal frames. Convergence is achieved for (a) control law (4.31), and (b)
control law (4.51). Each controller is implemented in all cases with a single tuning. In all
cases, the bus inertia J3 is unknown.

where γ ∈ R6 is defined by

γ
4
=

[
J11 J22 J33 J23 J13 J12

]T

and

L(ω) 4=


ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

 .
Next, let Ĵsc ∈ R3×3 denote an estimate of Jsc, and define the inertia-estimation error

J̃sc
4
= Jsc− Ĵsc.

Letting γ̂, γ̃ ∈ R6 represent Ĵsc, J̃sc, respectively, it follows that

γ̃ = γ− γ̂.

Likewise, let ẑdist ∈ R3 denote an estimate of zdist, and define the disturbance-estimation
error

z̃dist
4
= zdist− ẑdist.

Assuming that the disturbance is harmonic, it follows that zdist can be modeled as the
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Figure 4.9: Settling time as a function of principal-frame/body-frame rotation angle φ for
rotations about each of the three principal axes of J3. Convergence is achieved for (a)
control law (4.31), and (b) control law (4.51).

output of an autonomous system of the form

ḋ = Add, (4.43)

zdist = Cdd, (4.44)

where Ad ∈Rnd×nd and Cd ∈R3×nd are known matrices and Ad is a Lyapunov-stable matrix.
In this model, d(0) is unknown, which is equivalent to the assumption that the amplitude
and phase of all harmonic components in the disturbance are unknown. The matrix Ad

is chosen to include eigenvalues of all frequency components that may be present in the
disturbance signal, where the zero eigenvalue corresponds to constant disturbances. In
effect, the controller provides infinite gain at the disturbance frequency, which results in
asymptotic rejection of harmonic disturbance components. In particular, an integral con-
troller provides infinite gain at DC in order to reject constant disturbances. In the case of
orbit-dependent disturbances, the frequencies can be estimated from the orbital parameters.
Likewise, in the case of disturbances originating from on-board devices, the spectral con-
tent of the disturbances may be known. In other cases, it may be possible to estimate the
spectrum of the disturbances through signal processing. Since zd is harmonic, Ad can be
chosen to be skew symmetric, which we do henceforth. Let d̂ ∈ Rnd denote an estimate of
d, and define the disturbance-state estimation error

d̃ 4= d− d̂.
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Figure 4.10: M2R maneuver for the FGAC control law (4.35) using CMGs and without
disturbance. (a) Eigenaxis error, (b) spacecraft angular velocity components, (c) gimbal
angles, and (d) singular values of B. the objective is to bring the spacecraft from the initial
attitude R(0) = I3 and initial angular velocity ω(0) = [1 − 1 0.5]T rad/sec to rest at the
desired final orientation Rd = diag(1,−1,−1), which represents a rotation of 180 degrees
about the x-axis.

4.4.1 EBAC for Reaction Wheels

Rewrite (4.19) in terms of ω̃ as

Jsc ˙̃ω = [Jsc(ω̃+ R̃Tωd) + Jαν]× (ω̃+ R̃Tωd) + Jsc(ω̃× R̃Tωd− R̃Tω̇d)− Jαu +τdist. (4.45)

The assumptions upon which the following development is based are now stated.
Assumption 1. Jsc is constant but unknown.
Assumption 2. Jα defined by (B.18) is constant, nonsingular, and known. That is, the
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spacecraft has three linearly independent, axisymmetric wheels, with known moments of
inertia about their spin axes and known configuration relative to the bus.

Assumption 3. Each component of τdist is a linear combination of constant and har-
monic signals, whose frequencies are known but whose amplitudes and phases are un-
known.

The attitude tracking controller in the presence of disturbances given in ref. [32] is
modified below for reaction-wheel actuators.

Theorem 3. Let Kp be a positive number, let K1 ∈ R3×3, let Q ∈ R6×6 and D ∈ Rnd×nd

be positive-definite matrices, let A = diag(a1,a2,a3) be a diagonal positive-definite matrix,

and define S as in (4.27). Then the function

V(ω̃, R̃, γ̃, d̃) 4= 1
2 (ω̃+ K1S )TJsc(ω̃+ K1S ) + Kptr (A−AR̃) + 1

2 γ̃
TQγ̃+ 1

2 d̃TDd̃ (4.46)

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω̃ = 0, R̃ = I, γ̃ = 0,
and d̃ = 0.

Proof. It follows from statement 2 of Lemma 1 that tr (A−AR̃) is nonnegative. Hence
V is nonnegative. Now suppose that V = 0. Then, ω̃+ K1S = 0, γ̃ = 0, and d̃ = 0, and it
follows from iii) of Lemma 1 that R̃ = I, and thus S = 0. Therefore, ω̃ = 0.

The following result concerns attitude tracking without knowledge of the spacecraft
inertia. This control law does not regulate the speed of the wheels. Consequently, the
function V defined by (4.46), which is used as a Lyapunov function in the proof of Theorem
4 below, is not a positive-definite function of the angular rates of the wheels relative to the
bus.

Theorem 4. Let Kp be a positive number, let Kv ∈ R3×3, K1 ∈ R3×3, Q ∈ R6×6, and

D ∈ Rnd×nd be positive-definite matrices, assume that AT
d D + DAd is negative semidefinite,

let A = diag(a1,a2,a3) be a diagonal positive-definite matrix with distinct diagonal entries,

define S and V as in Theorem 3, and let γ̂ and d̂ satisfy

˙̂γ = Q−1[LT(ω)ω×+ LT(K1Ṡ + ω̃×ω− R̃Tω̇d)](ω̃+ K1S ), (4.47)

where

Ṡ =

3∑
i=1

ai[(R̃Tei)× ω̃]× ei (4.48)
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and

˙̂d = Add̂ + D−1CT
d (ω̃+ K1S ), (4.49)

τ̂dist = Cdd̂, (4.50)

so that τ̂dist is the disturbance-torque estimate. Consider the control law

u = −J−1
α (v1 + v2 + v3), (4.51)

where

v1
4
= −(Ĵscω+ Jαν)×ω− Ĵsc(K1Ṡ + ω̃×ω− R̃Tω̇d), (4.52)

v2
4
= −τ̂dist, (4.53)

and

v3
4
= −Kv(ω̃+ K1S )−KpS . (4.54)

Then,

V̇(ω̃, R̃, γ̃, d̃) = −(ω̃+ K1S )TKv(ω̃+ K1S )−KpS TK1S + 1
2 d̃T(AT

d D + DAd)d̃ (4.55)

is negative semidefinite. Furthermore, the closed-loop system consisting of Eqs. (4.20),

(4.6), (4.45), and (4.51) is almost globally asymptotically stable, and for all initial condi-

tions not in an embedded submanifold of R3×SO(3)×R6×R3 (see ref. [32]), ω̃→ 0 and

R̃→ I as t→∞.
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Proof.

V̇(ω̃, R̃, γ̃, d̃) = (ω̃+ K1S )T(Jsc ˙̃ω+ JscK1Ṡ )−Kptr A ˙̃R− γ̃TQ ˙̂γ+ d̃TD ˙̃d

= (ω̃+ K1S )T[(Jscω+ Jαν)×ω+ Jsc(ω̃×ω− R̃Tω̇d)− Jαu +τdist + JscK1Ṡ ]

+ Kpω̃
TS − γ̃TQ ˙̂γ+ d̃TD ˙̃d

= (ω̃+ K1S )T[(Jscω+ Jαν)×ω+ Jsc(K1Ṡ + ω̃×ω− R̃Tω̇d)

+ v1 + v2 + v3 +τdist] + Kpω̃
TS − γ̃TQ ˙̂γ+ d̃TD ˙̃d

= (ω̃+ K1S )T[(J̃scω)×ω+ J̃sc(K1Ṡ + ω̃×ω− R̃Tω̇d)]

+ (ω̃+ K1S )Tτ̃dist− (ω̃+ K1S )TKv(ω̃+ K1S )−Kp(ω̃+ K1S )TS

+ Kpω̃
TS − γ̃TQ ˙̂γ+ d̃TD ˙̃d

= (ω̃+ K1S )T[L(ω)γ̃×ω+ L(K1Ṡ + ω̃×ω− R̃Tω̇d)γ̃]

− (ω̃+ K1S )TKv(ω̃+ K1S )−KpS TK1S − γ̃TQ ˙̂γ

+ d̃TCT
d (ω̃+ K1S ) + d̃TD[Add̃−D−1CT

d (ω̃+ K1S )]

= −(ω̃+ K1S )TKv(ω̃+ K1S )−KpS TK1S − γ̃TQ ˙̂γ

+ (ω̃+ K1S )T[−ω×L(ω) + L(K1Ṡ + ω̃×ω− R̃Tω̇d)]γ̃

+ 1
2 d̃T(AT

d D + DAd)d̃

= −(ω̃+ K1S )TKv(ω̃+ K1S )−KpS TK1S

+ γ̃T[−Q ˙̂γ+ (LT(ω)ω×+ LT(K1Ṡ + ω̃×ω− R̃Tω̇d))(ω̃+ K1S )]

+ 1
2 d̃T(AT

d D + DAd)d̃

= −(ω̃+ K1S )TKv(ω̃+ K1S )−KpS TK1S + 1
2 d̃T(AT

d D + DAd)d̃.

The closed-loop spacecraft attitude dynamics (4.45) and the control law (4.51)-(4.54)
can be expressed as

J ˙̃ω = [L(ω)γ̃]×ω+ L(ω̃× R̃Tωd−RTω̇d)γ̃−L(K1Ṡ )γ̂+ z̃d −Kv(ω̃+ K1S )−KpS . (4.56)

From Lemma 3 and Lemma 4 of ref. [32], the closed-loop system consisting of (4.47)-
(4.50) and (4.56) has four disjoint equilibrium manifolds. These equilibrium manifolds in
R3×SO(3)×R6×R3 are given by

Ei =
{
(ω̃, R̃, γ̃, d̃) ∈ R3×SO(3)×R6×R3 : R̃ = Ri, ω̃ ≡ 0, (γ̃, d̃) ∈Qi

}
, (4.57)
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where, for all i ∈ {0,1,2,3}, Qi is the closed subset of R6×R3 defined by

Qi
4
= {(γ̃, d̃) ∈ R6×R3 : [L(RT

i ωd)γ̃]×(RT
i ωd)−L(RT

i ω̇d)γ̃+Cdd̃ = 0, ˙̃γ = 0, ˙̃d = Add̃}.

Furthermore, the equilibrium manifold (ω̃, R̃, (γ̃, d̃)) = (0, I,Q0) of the closed-loop system
given by (4.47)-(4.50) and (4.56) is locally asymptotically stable, and the remaining equi-
librium manifolds given by (0,Ri,Qi) for i ∈ {1,2,3} are unstable. Finally, the set of all
initial conditions converging to these equilibrium manifolds forms a lower dimensional
submanifold of R3×SO(3)×R6×R3.

4.4.2 EBAC for CMG’s

As in the reaction-wheel case, we invoke the assumptions presented in Section 4.2.3. The
EBAC controller for CMG’s is given by [82]

u = B#(v1 + v2 + v3), (4.58)

where B# is the SR-inverse of B,

v1
4
= −(Ĵscω+

3∑
i=1

βiωWi)×ω− Ĵsc(K1Ṡ + ω̃×ω− R̃Tω̇d), (4.59)

and v2, v3 remain unchanged and are given by (4.53)-(4.54).

4.5 EBAC Examples

4.5.1 EBAC Examples Using Reaction Wheels

Consider the maneuver presented in Section 4.3.2 in the presence of an unknown constant
nonzero disturbance torque τdist = [0.7 − 0.3 0]T N-m. The EBAC controller (4.51) is
used in place of the FGAC controller (4.31) since (4.31) lacks an integrator and thus has
a constant steady-state error bias due to the persistent disturbance. The parameters of the
controller (4.51) are chosen to be K1 = I3, A = diag(1,2,3), γ = η = 1, D = I3, and Q = I6.

Figures 4.11(a)-(f) show, respectively, the attitude error, angular velocity components,
angular rates of the wheels, angular momentum, disturbance-estimate errors, and inertia-
estimate errors. The spacecraft attitude and angular velocity components reach the com-
manded values in about 80 sec. Figure 4.11c indicates that the reaction-wheel rotational
speed grows unbounded. Figure 4.11d shows that the total angular momentum of the space-
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craft increases, which is consistent with the constant disturbance torque acting on the space-
craft. In practice, the spacecraft needs a method to dump the stored angular momentum so
that the reaction wheel rates do not grow unbounded.

Figure 4.12 repeats the maneuver with maximum wheel saturation at 100 rad/sec, cor-
responding to roughly 1000 rpm. The controller brings the spacecraft to the desired orien-
tation in about 60 sec at which time one of the angular rates of the reaction wheels reaches
100 rad/sec, disturbance and inertia estimates diverge, and the system is destabilized.

Consider a spin maneuver with the spacecraft initially at rest and R(0) = I3. The desired
attitude is determined by Rd(0) = I3, and the commanded constant angular velocity is

ωd =
[

0.5 −0.5 −0.3
]T

rad/sec.

Assume no disturbance. Figures 4.13(a)-(f) show, respectively, the attitude errors, angular-
velocity components, angular rates of the wheels, the control inputs, which are the angular
accelerations of the wheels, angular momentum, and inertia-estimate errors. For this ma-
neuver, the spin command consists of a specified time history of rotation about a specified
body axis aligned in a specified inertial direction. The controller achieves the commanded
spin within about 100 sec.

4.5.2 EBAC Examples Using CMG’s

Consider the maneuver presented in Section 4.3.3 in the presence of an unknown constant
nonzero disturbance torque τdist = [0.35 − 0.015 0]T N-m. Note that the EBAC controller
(4.58) is used in place of the FGAC controller (4.35) since (4.35) lacks an integrator and
thus has a constant steady-state error bias due to the persistent disturbance. The parameters
of the controller (4.58) are chosen to be K1 = I3, A = diag(1,2,3), D = I3, and Q = I6.

Figures 4.14(a)-(e) show, respectively, the attitude error, angular-velocity components,
gimbal angles, inertia-estimate errors, and singular values of B. The spacecraft attitude and
angular velocity components reach the commanded values in about 35 sec. Figure 4.14c
indicates that the CMG gimbal angles grow unbounded.

Consider a spin maneuver with the spacecraft initially at rest and R(0) = I3. The desired
attitude is determined by Rd(0) = I3, and the commanded angular velocity is ωd = [0.005 −
0.005 − 0.003]T rad/sec. We assume that no disturbance is present. Figures 4.15(a)-(e)
show, respectively, the attitude error, angular-velocity components, gimbal angles, inertia-
estimate errors, and singular values of B. For this maneuver, the spin command consists of
a specified time history of rotation about a specified body axis aligned in a specified inertial
direction. The controller achieves the commanded motion within about 20 sec.
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Figure 4.11: M2R maneuver for the EBAC control law (4.51) using reaction wheels with
the unknown constant disturbance torque with respect to the bus-fixed frame τdist = [0.7 −
0.3 0]T N-m. (a) Eigenaxis attitude error, (b) spacecraft angular velocity components, (c)
wheel angular velocity components, (d) spacecraft angular momentum relative to its center
of mass with respect to the inertial frame resolved in the inertial frame, (e) disturbance
estimate errors, and (f) inertia estimate errors. The spin rate of the reaction wheels grows
unbounded, and the total angular momentum of the spacecraft is not conserved due to the
constant disturbance torque.
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Figure 4.12: M2R maneuver for the EBAC control law (4.51) using reaction wheels with
the unknown constant disturbance torque with respect to the bus-fixed frame τdist = [0.7 −
0.3 0]T N-m. The maximum rotation rate of each wheel is saturated at 100 rad/sec. (a)
Eigenaxis attitude error, (b) spacecraft angular velocity components, (c) wheel angular
velocity components, (d) wheel angular acceleration components, (e) disturbance estimate
errors, and (f) inertia estimate errors. The spacecraft achieves the desired orientation in
about 60 sec. Due to the constant disturbance, the angular rates of the reaction wheels
saturate and and the system is destabilized.
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Figure 4.13: M2S maneuver for the EBAC control law (4.51) using reaction wheels. The
desired attitude is Rd(0) = I3, and the commanded angular velocity isωd = [0.5 −0.5 −0.3]T

rad/sec. (a) Eigenaxis attitude error, (b) spacecraft angular velocity components, (c) wheel
angular velocity components, (d) wheel angular acceleration components, (e) spacecraft
angular momentum relative to its center of mass with respect to the inertial frame resolved
in the inertial frame, and (f) inertia estimate errors. No disturbance is present.
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Figure 4.14: M2R maneuver for the EBAC control law (4.58) using CMG’s with the un-
known constant disturbance torque τdist = [0.35 − 0.015 0]T N-m. (a) Eigenaxis attitude
error, (b) spacecraft angular velocity components, (c) gimbal angles, (d) inertia estimate
errors, and (e) singular values of B.
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Figure 4.15: M2S maneuver for the EBAC control law (4.58) using CMG’s. The de-
sired attitude is determined by Rd(0) = I3, and the commanded angular velocity is ωd =

[0.005 − 0.005 − 0.003]T rad/sec. (a) Eigenaxis attitude error, (b) spacecraft angular ve-
locity components, (c) gimbal angles, (d) inertia estimate errors, and (e) singular values of
B. No disturbance is present.
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CHAPTER 5

Forward-Propagating Riccati-Based Feedback
Control

In applications involving time-varying systems, the state dynamics matrix is often not
known in advance. To address this problem, this chapter investigates the effectiveness
of a forward-in-time Riccati-based control law.

5.1 Forward-Propagating Riccati Theory

A fundamental property of dynamic programming is that the optimal policies and paths are
determined by a backwards-in-time procedure. This procedure gives rise to the Bellman
equation, which in turn is related to the Hamilton-Jacobi-Bellman partial differential equa-
tion [98]. Within the context of optimal control, the Bellman equation provides optimal
control time histories over a specified control horizon. In the special case of the linear
system

ẋ(t) = A(t)x(t) + B(t)u(t) (5.1)

with the quadratic cost

J(u) =

∫ tf

0
xT(t)R1x(t) + uT(t)R2u(t)dt, (5.2)

the backwards nature of the optimal control law

u(t) = −R−1
2 BT(t)Pb(t)x(t) (5.3)
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is evident from the fact that the solution Pb(t) of the control Riccati equation

−Ṗb(t) = AT(t)Pb(t) + Pb(t)A(t)−Pb(t)B(t)R−1
2 BT(t)Pb(t) + R1 (5.4)

is obtained by integrating backwards from the boundary condition Pb(tf) ≥ 0 specified at
the final time tf . This procedure yields the closed-loop dynamics

ẋ(t) = Ac,b(t)x(t), (5.5)

where Ac,b(t) 4= A(t)−B(t)R−1
2 BT(t)Pb(t).

In practice, a backwards-in-time solution procedure has the significant drawback that
the dynamics of the system, that is, the matrices A(t) and B(t), must be known in advance.
However, in many applications, the system trajectory, and thus the linearized dynamics,
are not known in advance. Consequently, there is interest in forward-in-time solution
procedures, in particular, for applications of model predictive and receding horizon con-
trol [99–101].

The dual of the control problem is the state estimation problem involving the observed
dynamics

ẋ(t) = A(t)x(t) + w1(t), (5.6)

y(t) = C(t)x(t) + w2(t). (5.7)

For this problem, the estimator Riccati equation

Q̇(t) = A(t)Q(t) + Q(t)AT(t)−Q(t)CT(t)V−1
2 C(t)Q(t) + V1 (5.8)

is solved forward in time with the initial-time boundary condition Q(t0) ≥ 0 and is guaran-
teed to minimize the state estimation cost. The matrices V1 and V2 represent the covari-
ances of the process noise w1 and sensor noise w2, respectively. Under uniform complete
reconstructability conditions, the resulting closed-loop error system

ė(t) = Ae(t)e(t), (5.9)

where Ae(t) 4= A(t)−Q(t)CT(t)V−1
2 C(t), is exponentially stable [98]. Note that, unlike the

case of the control Riccati equation (5.4), implementation of the optimal state estimator in
terms of the estimator Riccati equation (5.8) does not require advance knowledge of the
dynamics matrices A(t) and C(t).
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It is, therefore, natural to ask whether a dual version of the forward-in-time estimator
Riccati equation (5.8) can provide a suboptimal, forward-in-time control law. In particular,
we consider the control law

u(t) = −R−1
2 BT(t)Pf(t)x(t), (5.10)

where Pf(t) is the solution to the forward-in-time control Riccati equation

Ṗf(t) = AT(t)Pf(t) + Pf(t)A(t)−Pf(t)B(t)R−1
2 BT(t)Pf(t) + R1, (5.11)

with the initial-time boundary condition Pf(t0) ≥ 0. Using this control law, the closed-loop
dynamics are given by

ẋ(t) = Ac,f(t)x(t), (5.12)

where Ac,f(t)
4
= A(t)−B(t)R−1

2 BT(t)Pf(t).Note that (5.11) differs from the standard backwards-
in-time Riccati equation (5.4) by the absence of the minus sign on the left-hand side; this
feature along with the specification of an initial-time boundary condition in place of a
final-time boundary condition, render it closer in spirit to the estimator Riccati equation
(5.8) than the backwards-in-time Riccati equation (5.4). In fact, (5.11) is equivalent to the
estimator Riccati equation with A(t), C(t), V1, and V2 replaced by the dual variables AT(t),
BT(t), R1, and R2. Furthermore, Ac,f(t) = AT

e (t) with the appropriate substitutions.
Thus, assuming that (5.9) is asymptotically stable, it remains to be determined whether

the transposed system

ė(t) = AT
e (t)e(t) (5.13)

is also asymptotically stable. We call (5.13) the quasi-dual of (5.9) to distinguish it from
the “true” dual (5.5) of (5.9). Variations of the backwards-in-time Riccati equation are
discussed in [102], although that paper does not consider the use of quasi-dual dynamics.

The above discussion reflects the development in [103, 104] of forward-Riccati-based
full-state-feedback control laws for time-varying systems. The approach taken in [103,
104] involves the definition of a state z(t) whose magnitude is inversely proportional to
the magnitude of x(t) and whose dynamics are obtained by a time-dependent similarity
transformation of the dynamics of x(t). Consequently, the forward-Riccati-based controller
for the system with state z(t) anti-stabilizes the dynamics of z(t); consequently, the original
dynamics involving x(t) are stabilized. This approach has the advantage over the backwards
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Riccati solution mentioned above, namely, the time-varying matrices A(t) and B(t) need not
be known in advance.

Since the dynamics for z(t) depend on a state-dependent transformation of the dynamics
of the state x(t), the controller derived in [103, 104] is confined to full-state feedback. The
development of our feedback law (5.10), (5.11) maintains a linear form without resorting
to nonlinear transformations. Therefore, one of the main contributions of this work is to
develop a forward-Riccati-based control law that does not require knowledge of the full
state and thus is applicable to output feedback. In particular, by removing the requirement
that the full state be known, we construct an observer-based compensator that uses the
(forward) Riccati equation of the full-state estimator (5.8), and use a separation principle
type result to guarantee closed-loop stability. In this way, we construct an output-feedback
control law for time-varying systems whose dynamics matrices are not known in advance.
This output feedback controller is described in Section 5.1.4.

Our goal is thus to investigate the applicability of the forward-in-time Riccati equation
(5.11) to time-varying systems in which A(t) and B(t) are not known in advance. Clearly,
the forward-in-time controller is stabilizing if the quasi-dual system (5.13) is asymptoti-
cally stable. In the time-invariant case, a matrix A is Hurwitz if and only if its transpose
AT is Hurwitz. Perhaps somewhat surprisingly, the same cannot be concluded in the time-
varying case. In other words, stability of a time-varying system does not guarantee stability
of the system with the transposed dynamics. As an illustrative example, consider

A(t) =

 −1 sin(t)−1

sin(t) + 1 cos(t)

 ,
and its transpose

AT(t) =

 −1 sin(t) + 1

sin(t)−1 cos(t)

 .
Since A(t) is periodic, stability depends on the characteristic multipliers, that is, the eigen-
values of the monodromy matrix Φ(T,0), where Φ denotes the state transition matrix. Fig-
ure 5.1 shows that while A(t) is stable as seen by its state trajectories and characteristic
multipliers, its transpose is not.

The main contribution of the present chapter is a collection of results under which the
forward Riccati-based controller (5.10), (5.11) is stabilizing. In particular, we demonstrate
that symmetry of the closed-loop dynamics is a sufficient condition for closed-loop stabil-
ity. This property is using demonstrated by the quasi-duality between the state estimator
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Figure 5.1: (a), (b): State trajectories and characteristic multipliers for A(t). (c), (d): State
trajectories and characteristic multipliers for AT(t).

and the forward-Riccati-based controller, and is also brought out through Lyapunov anal-
ysis. In addition, we show that some plants are stabilizable only when the time-varying
dynamics are of sufficiently high frequency. This property is demonstrated numerical ex-
amples and analysis using averaging theory. We also demonstrate using a separation prin-
ciple type result for linear time-varying systems, that stability is retained in the output
feedback case. Finally, experience with numerous numerical examples suggests that the
forward Riccati output feedback approach is stabilizing in a much broader set of situations.

The chapter is organized as follows. Section 5.1.1 uses Lyapunov analysis to show
stability with the forward-in-time controller when the closed-loop system has certain sym-
metric properties. In Section 5.1.2 we examine the properties of the state transition matrix
and present additional conditions under which the forward-in-time controller is stabilizing.
In Section 5.1.3 we demonstrate that the forward-in-time controller is stabilizing when the
frequency of the time variation is sufficiently high. In Section 5.1.4 we show that we have
separation of the regulator and estimator dynamics under output feedback. In Section 5.1.5
we provide illustrative numerical examples that highlight the effectiveness and desirabil-
ity of the forward-in-time control law. Section 5.1.6 presents an alternate forward-in-time
Riccati equation which results in a stabilizing controller for scarlar systems, and, in special
cases, for non-scalar systems.
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5.1.1 Lyapunov Analysis

We determine sufficient conditions for stability of the forward-in-time controller. We use
Lyapunov analysis to examine the stability of the closed-loop system (5.12).

However, since (5.12) is the quasi-dual of (5.9), we first look at the closed-loop esti-
mation system (5.9) to gain insight. Let Σ̄(t) = CT(t)V−1

2 C(t), Q(t0) > 0, and rewrite (5.8)
as

Q̇(t) = Ae(t)Q(t) + Q(t)AT
e (t) + Q(t)Σ̄(t)Q(t) + V1.

Let V(e, t) = eTQ−1(t)e as in [105]. Then,

V̇ = ėT Q−1(t)e + eT Q−1(t)ė + eT Q̇−1(t)e

= −eT
(
Σ̄(t) + Q−1(t)V1Q−1(t)

)
e < 0. (5.14)

Similarly, we let Σ(t) = B(t)R−1
2 BT(t), Pf(t0) > 0 and rewrite (5.11) as

Ṗf(t) = AT
c,f(t)Pf(t) + Pf(t)Ac,f(t) + Pf(t)Σ(t)Pf(t) + R1.

Let V(x, t) = xTP−1
f (t)x. Then,

V̇ = ẋT P−1
f (t)x + xT P−1

f (t)ẋ + xT Ṗ−1
f (t)x

= −xT
(
Σ(t) + P−1

f (t)R1P−1
f (t)

)
x + xT

(
P−1

f (t)
(
Ac,f(t)−AT

c,f(t)
)
+

(
AT

c,f(t)−Ac,f(t)
)
P−1

f (t)
)
x.

Note the extra term in this expression versus (14). Thus, a sufficient condition for asymp-
totic stability of (5.12) is that Ac,f(t) is symmetric. As an example, this condition holds if
A(t) is symmetric, B(t) = G(t)D(t), where G(t) is an orthogonal matrix, D(t) = f (t)I is a
constant matrix, and R1 = R2 = ρI.

5.1.2 State Transition Matrix Analysis

The state transition formula for the closed-loop system (5.12) is given by the Peano-Baker
series

Φ(t, t0) = I +

∫ t

t0
Ac,f(σ1)dσ1 +

∫ t

t0
Ac,f(σ1)

∫ σ1

t0
Ac,f(σ2)dσ2dσ1 . . . (5.15)

It follows from (5.15) that, if Ac,f(t) is symmetric, then the state transition matrix for Ac,f(t)
is equal to the state transition matrix for AT

c,f(t).
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Suppose next that Ac,f(t) and its integral commute, that is,

Ac,f(t)
∫ t

t0
Ac,f(σ)dσ =

∫ t

t0
Ac,f(σ)dσAc,f(t) ∀t, (5.16)

or equivalently [106], if

Ac,f(t1)Ac,f(t2) = Ac,f(t2)Ac,f(t1) ∀t1, t2. (5.17)

Then, the Peano-Baker series simplifies to

Φ(t, t0) = exp
[∫ t

t0
Ac,f(σ)dσ

]
, (5.18)

while

ΦT(t, t0) = exp
[∫ t

t0
AT

c,f(σ)dσ
]

(5.19)

is the state transition matrix for AT
c,f(t). In this case, stability of Ac,f(t) is equivalent to

stability of AT
c,f(t).

It thus follows that if either Ac,f(t) is symmetric for all t, or if Ac,f(t1) and Ac,f(t2)
commute for all t1 and t2, then, the stability of the closed-loop regulator sytem (5.12) is
equivalent to the stability of the closed-loop estimator error system (5.9). Therefore, in
either of these cases it follows that the forward-in-time controller (5.10) is guaranteed to
stabilize (5.1).

5.1.3 Averaging Analysis

We now analyze the stability of the closed-loop system with the forward-in-time controller
(5.10) at high frequencies. Specifically, we demonstrate that the forward-in-time controller
is stabilizing under sufficiently fast time variation in the closed-loop dynamics.

Define the time-invariant matrices Ā and B̄ by

Ā 4=
1
T

∫ T

0
A(ωt)dt, (5.20)

B̄B̄T 4=
1
T

∫ T

0
B(ωt)R−1

2 BT(ωt)dt. (5.21)

Theorem 1. Replace A(t) and B(t) in (5.1) by time-periodic A(ωt) and B(ωt) with period

T = 2π/ω, where ω is a frequency parameter. Apply the forward-in-time control (5.10)
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with Pf(t) as given in (5.11). Suppose (Ā, B̄) is stabilizable, (Ā,R1) is detectable, and

let Pf(0) ≥ 0. Then, there exists a frequency ω∗ such that, for all ω > ω∗, Pf(t) has an

exponentially stable periodic solution of period T in an O(ε) neighborhood of P∗, where

P∗ is a positive-semidefinite solution of the algebraic Riccati equation,

0 = ĀTP∗+ P∗Ā−P∗B̄R−1
2 B̄TP∗+ R1, (5.22)

and x(t)→ 0 as t→∞.

Proof. Define the scaled time τ 4=ωt, and small parameter ε 4= 1
ω . Rewrite (5.11) and (5.12)

as

d
dτ

Pf(τ) = ε
(
AT(τ)Pf(τ) + Pf(τ)A(τ)−Pf(τ)B(τ)R−1

2 BT(τ)Pf(τ) + R1
)
, (5.23)

d
dτ

x(τ) = ε(A(τ)−B(τ)R−1
2 BT(τ)Pf(τ))x(τ). (5.24)

Then, averaging equations (5.23) and (5.24), we obtain the time-invariant averaged system

˙̄P(t) = ĀTP̄(t) + P̄(t)Ā− P̄(t)B̄B̄TP̄(t) + R1, (5.25)

˙̄x(t) = (Ā− B̄B̄TP̄(t))x̄(t). (5.26)

Applying Theorems 4.11 and 3.7 in [98] to (5.25) and (5.26) with the appropriate dual
substitutions yields P̄(t)→ P∗ and x̄(t)→ 0 as t→∞. Furthermore, under the assumption
that the Hamiltonian matrix

H =

 Ā −B̄B̄T

−R1 −ĀT


has no eigenvalues on the imaginary axis, the convergence is exponential [107].

Then, applying Theorem 8.3 in [108] for ω > ω∗, where ω∗ is sufficiently large, ren-
ders the solution of the time-varying Riccati equation (5.11) exponentially convergent to a
periodic solution in an O(ε) neighborhood of P∗.

We complete the proof by noting that stability of (5.26) implies that there exists a
positive-definite matrix M such that

(Ā− B̄B̄TP∗)TM + M(Ā− B̄B̄TP∗) = −εI < 0.

For the original closed-loop system (5.12), assuming ω∗ sufficiently large, the same matrix
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M yields

(A(t)−B(t)R−1
2 BT(t)Pf(t))TM + M(A(t)−B(t)R−1

2 BT(t)Pf(t)) = −
ε

2
I < 0.

Therefore x(t)→ 0 as t→∞.

5.1.4 Output Feedback

We now consider the situation where the full-state measurement is not available. We pro-
pose the observer-based dynamic compensator

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + F(t)
(
y(t)−C(t)x̂(t)

)
, (5.27)

u(t) = −R−1
2 BT(t)Pf(t)x̂(t), (5.28)

where F(t) = Q(t)CT(t)V−1
2 is produced using the estimator Riccati equation (5.8). Note

that, unlike the standard LQG problem, the entire system of differential equations is solved
forward-in-time, and therefore (5.27), (5.28) can be implemented on a time-varying sys-
tem without full-state feedback and without knowing the dynamics A(t), B(t), and C(t) in
advance.

The closed loop system consisting of the observer-based dynamic compensator (5.28)
interconnected with the linear system (5.1) can be described by the linear system of dimen-
sion 2n  ẋ(t)

˙̂x(t)

 = Acl(t)

 x(t)

x̂(t)

 , (5.29)

where n is the dimension of the state x(t) and where

Acl(t)
4
=

 A(t) B(t)K(t)

F(t)C(t) A(t)−F(t)C(t) + B(t)K(t)

 ,
where K(t) = −R−1

2 BT(t)P f (t) and the Kalman gain F(t) is given in (5.27).
We now show, under appropriate assumptions, the closed-loop system (5.29) is uni-

formly exponentially stable if both the regulator and estimator dynamics are uniformly
exponentially stable.

First, we restate Theorem 4.9 of [98]. Suppose that A(t) is continuous and bounded,
B(t) is piecewise continuous and bounded, and that R1,R2 ≥ αI for α > 0. Let P f (t) be a
solution of the Riccati equation (5.11) with initial condition P f (t0) ≥ 0. Then, if the pair
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(
AT(t),BT(t)

)
is uniformly completely reconstructable, there exists a solution of the Riccati

equation (5.11) P̄ f (t) such that for any P f (t0)≥ 0, P f (t)− P̄ f (t)→ 0 as t→∞. Furthermore,
P̄ f (t) has an upper bound, and is nonnegative-definite for all t.

Now, the following mirrors Theorem 15.5 of [106].

Theorem 2. Let the assumptions of Theorem 4.9 of [98] as stated above hold, let the pair
(A(t),C(t)) be uniformly completely reconstructable, and define δ 4= ||R−1

2 ||. Additionally,

suppose there exist positive constants ε1, ε2,β1, and β2 such that

ε1I ≤ P f (t) ≤ ε2I,

and ∫ t

τ
||B(σ)||2dσ ≤ β1 +β2(t−τ).

Finally, assume that the forward-in-time controller (5.10) is exponentially stabilizing. Then,

the closed-loop system (5.29) is uniformly exponentially stable.

Proof. Applying the state transformation x(t)

e(t)

 =

 In 0n

In −In


 x(t)

x̂(t)

 (5.30)

yields  ẋ(t)

ė(t)

 = Ãcl

 x(t)

e(t)

 , (5.31)

where

Ãcl =

 A(t) + B(t)K(t) −B(t)K(t)

0n A(t)−F(t)C(t)

 .
Hence (5.29) is uniformly exponentially stable if and only if (5.31) is uniformly exponen-
tially stable. Let φ(t, τ) denote the transition matrix corresponding to (5.31), and let φx(t, τ)
and φe(t, τ) denote the n× n transition matrices for A(t) + B(t)K(t) and A(t)−F(t)C(t), re-
spectively. Then

φ(t, τ) =

 φx(t, τ) −
∫ t
τ
φx(t,σ)B(σ)K(σ)φx(σ,τ)dσ

0n φe(t, τ)

 .
98



Therefore,

||φ(t, τ)|| ≤ ||φx(t, τ)||+ ||φe(t, τ)||+ ||
∫ t

τ
φx(t,σ)B(σ)K(σ)φx(σ,τ)dσ||. (5.32)

Let α > 0 and η > 0. Then there exists γ > 0 such that

||φx(t, τ)||, ||φe(t, τ)|| ≤ γe−(α+η)(t−τ),

for all t, τ with t ≥ τ, based on the assumption that the forward-in-time controller (5.10) is
exponentially stabilizing and Theorem 4.10 of [98], respectively. Then,

||

∫ t

τ
φx(t,σ)B(σ)K(σ)φx(σ,τ)dσ||

≤ γ2e−(α+η)(t−τ)
∫ t

τ
||B(σ)|| ||K(σ)||dσ

≤ δε2γ
2e−(α+η)(t−τ)

∫ t

τ
||B(σ)||2dσ

≤ δε2γ
2e−(α+η)(t−τ) (β1 +β2(t−τ)) . (5.33)

Using the bound

te−ηt ≤
1
ηe
, t ≥ 0

in (5.33) it follows from (5.32) that

||φ(t, τ)|| ≤
(
2γ+δε2γ

2
(
β1 +

β2

ηe

))
e−α(t−τ), (5.34)

for all t, τ with t ≥ τ.

This result implies that we obtain separation of the regulator and estimator dynamics in
the sense that that if both the regulator and estimator dynamics are uniformly exponentially
stable, the closed-loop system (5.29) is uniformly exponentially stable.

5.1.5 Illustrative Examples

Consider a mass attached to a wall via a spring with variable stiffness k(t), as shown in Fig.
5.2.
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Figure 5.2: A mass constrained by a spring with time-varying stiffness.

The open-loop system is described by

x(t) =

 q

q̇

 , A(t) =

 0 1
−k(t)

m 0

 , B(t) =

 0

1
m

 ,
where k(t) is a time-varying stiffness that may assume positive or negative values. Let
k(t) = sin(t), m = 1 q(0) = 2, and q̇(0) = 1. Fig. 5.3 shows the open-loop response, which is
unstable. We wish to stabilize this system.
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Figure 5.3: Open-loop response.

First we assume that k(t) is known in advance. We apply the backwards-in-time optimal
control (5.3) over a finite interval of 10 seconds. Let R1 = R2 = I and Pb(10) = 0. Fig. 5.4a
shows the state trajectories and control action.

Next we assume that k(t) is not known ahead of time. Instead, a perfect measurement
of k(t) is available at time t. We let R1 = R2 = I, Pf(0) = 0, and apply the forward-in-time
control (5.10). Fig. 5.4b shows the state trajectories and control action. Both backwards-in-
time and forward-in-time control laws stabilize the system to the origin within 10 seconds.

Next we consider the case where the full-state measurement is not available. In this
case, we use dynamic output feedback (5.27), (5.28) to stabilize the system. Suppose that

C(t) =
[

1 0
]
,

so that only the position of the mass is measured. Let x̂(t) = 0, V1 = V2 = I, and Q(0) = 0.
Fig. 5.5 shows that the state estimates converge to the true values, and that the origin is
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Figure 5.4: Full-state feedback for the mass-spring example.

stabilized using time-varying output feedback.
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Figure 5.5: Output feedback for the mass-spring example using the forward-in-time con-
troller. Top: State trajectories and estimates. Bottom: Control action.

We now consider an example in which the forward-in-time controller with full state
measurement fails to achieve stabilization. Let

A =

 1 0

0 1

 , B =

 sin(ωt)

cos(ωt)

 ,
and ω = 1. As before, we first assume that B(t) is known in advance and we apply the
backwards-in-time optimal control (5.3) over a finite interval of 10 seconds. Let R1 = R2 = I

and Pb(10) = 0. Fig. 5.6a shows the state trajectories and control time history.
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Next we assume that B(t) is not known by the controller ahead of time. Instead, a
perfect measurement of B(t) is available at time t. We let R1 = R2 = I, Pf(0) = 0, and apply
the forward-in-time control (5.10). Fig. 5.6b shows the state trajectories and control action.
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Figure 5.6: Full-state feedback for ω = 1 rad/sec.

We note that, although the system is controllable and thus stabilized by the backward-
in-time optimal controller, the forward-in-time controller fails. However, if we increase ω
to 2π rad/sec and rerun the simulation, the forward-in-time control becomes stabilizing as
seen in Fig. 5.7. This phenomenon of stabilization via fast time variation is considered in
Section 5.1.3.
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Figure 5.7: Full-state feedback for ω = 2π rad/sec.
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Finally, we consider simultaneous stabilization of two uncoupled harmonic oscillators
given by

A =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


, B =



0

sin(ωt)

0

cos(ωt)


,

where ω = 2π rad/sec. We apply the forward-in-time control (5.10). Fig. 5.8 shows the
state trajectories and control action.
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Figure 5.8: Full-state feedback for the uncoupled harmonic oscillators using the forward-
in-time controller. Top: State trajectories. Bottom: Control action.

5.1.6 Nonstandard Riccati Equation

We analyze the scalar form of (5.1) in detail. Consider the system

ẋ(t) = a(t)x(t) + b(t)u(t), (5.35)

where a(t) and b(t) are bounded continuous scalar functions on [0,∞). Under these assump-
tions, the scalar version of forward-in-time control law (5.10) is asymptotically stabilizing
because the closed-loop scalar system is symmetric.

We now provide a self-contained, alternative proof of this result motivated by adaptive
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control with a slight modification and an explicit controllability condition. Define

β
4
= sup

t≥0
|b(t)| . (5.36)

We assume that b(t) is persistently exciting, that is, there exists T0 > 0 and ε > 0 such that,
for all t ≥ 0, ∫ t+T0

t
b2(τ)dτ > ε. (5.37)

Theorem 3. Let κ > 0, let α0 > max {0,a(t)} for all t, let p satisfy

ṗ(t) = 2α0 p(t)−2b2(t)κp2(t),

let p(0) > 0, and let T ≥max
{
T0,

1
2α0

ln (2κεp(0))
}
. Then, p(t) exists on [0,∞) and satisfies

0 < p(t) ≤ pmax, t ≥ 0,

where

pmax
4
=

1
2κεe−2α0T .

Proof. Let [0, tmax) denote the maximal interval of existence of p(t). Suppose that t1 ≤ tmax

is the first instance where p(t) = 0. Then, by continuity, there exists δ > 0 such that

0 < p(t) <
α0

β2κ
, t ∈ [t1−δ, t1) .

Note that for t ∈ [t1−δ, t1),

p(t)b2(t)κ < p(t)β2κ < α0,

which gives

p2(t)b2(t)κ < α0 p(t),

to yield

ṗ(t) = 2α0 p(t)−2p2(t)b2(t)κ > 0.
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Hence,

p(t1) = p(t1−δ) +

∫ t1

t1−δ
ṗ(τ)dτ

> p(t1−δ) > 0,

contradicting the assumption p(t1) = 0. Therefore t1 does not exist, that is, p(t) > 0 on
[0, tmax).

Now define

γ(t) 4=
1

p(t)
, t ∈ [0, tmax) .

Differentiating yields

γ̇(t) = −
1

p2(t)
ṗ(t)

= −γ2(t)
(
2α0

1
γ(t)
−2b2(t)κ

1
γ2(t)

)
= −2α0γ(t) + 2b2(t)κ,

Thus

γ(t) = e−2α0tγ(0) +

∫ t

0
e−2α0(t−τ)2κb2(τ)δτ

≥

∫ t

t−T
e−2α0(t−τ)2κb2(τ)δτ

≥ e−2α0T
∫ t

t−T
2κb2(τ)δτ

≥ 2e−2α0Tκε.

Therefore

p(t) ≤
1

2κεe−2α0T , t ∈ [0, tmax) .

Thus the maximal interval of existence is [0,∞).

Theorem 4. Let the assumptions of Theorem 3 hold. Then

V(x, t) 4=
1

2p(t)
x2 (5.38)

is positive definite; that is, V is nonnegative, and V = 0 if and only if x = 0.
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Proof. Since p(t) is bounded away from zero as shown in Theorem 3, (5.38) is positive
definite.

Theorem 5. Let the assumptions of Theorems 3 and 4 hold and let

u(t) = −κp(t)b(t)x(t).

Then, x(t)→ 0 exponentially as t→∞.

Proof. Taking the derivative of (5.38) yields

V̇ = ẋx
1
p
−

1
2

x2

p2 ṗ

= (a−b2(t)κp)
x2

p
−

1
2

x2

p2 ṗ

= (a−α0)
x2

p
= −2(α0−a)V,

which is negative definite and therefore V(x(t), t)→ 0 exponentially as t → ∞. Since p

is bounded away from zero as shown in Theorem 3, and given (5.38), we conclude that
x(t)→ 0 exponentially as t→∞.

We now present a numerical example that is related to control over an unreliable com-
munication channel. Let a = κ = p(0) = x(0) = 1, α0 = 2, b(t) = max {sin(10t),0}. Note that
the dynamics are unstable when b(t) = 0. Fig. 5.9 shows the state trajectory and control
action. The state of the closed-loop system converges to the origin exponentially.
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Figure 5.9: Scalar Simulation

The scalar controller can be generalized, under appropriate assumptions, to non-scalar
systems. This generalization leads to a nonstandard Riccati equation.
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Theorem 6. Let α > 0, let P(0) > 0, and let P satisfy

Ṗ(t) = (A(t) +αI) P(t) + P(t) (A(t) +αI)T−Σ(t)P2(t)−P2(t)Σ(t), (5.39)

where

Σ(t) = B(t)BT (t).

Suppose that P(t) exists on [0,∞) and satisfies

0 < εI ≤ P(t) ≤ Pmax, t ≥ 0.

Define the Lyapunov candidate

V(x(t), t) = xT (t)P−1(t)x(t)

and let

u(t) = −B(t)T P(t)x(t). (5.40)

Then x(t)→ 0 exponentially as t→∞.

Proof. Computing the time derivative of V , we obtain

V̇ = ẋTP−1x + xTP−1 ẋ + xTṖ−1x

= xT
[
(A−ΣP)T P−1 + P−1 (A−ΣP)−P−1 (A +αI)− (A +αI)T P−1 + P−1ΣP + PΣP−1

]
x

= −2αxT P−1x = −2αV

and therefore V(x(t), t)→ 0 exponentially as t → ∞. Since P(t) is positive definite and
bounded, we conclude that x(t)→ 0 exponentially as t→∞.

Remark 1. We note that in all of the above cases stability is uniform with respect to the

initial time.

In presenting the scalar controller and the controller for the multi-input/multi-state case
based on the nonstandard Riccati equation, we addressed the stabilizability of systems with
persistently exciting input matrices. Consider the system

ẋ = Ax + B(t)u, (5.41)
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where A ∈Rn×n is a constant unstable matrix, B(t) ∈Rn×m is a bounded continuous function
(and perhaps rank deficient). B(t) is assumed persistently exciting, that is, there exists T > 0,
and ε > 0, such that for all t ≥ 0, ∫ t+T

t
B(τ)BT(τ)δτ > εI. (5.42)

As discussed in [109], stabilizability of this system is an open problem. We answer this
question positively in the special cases defined by our assumptions for multi-input systems.
We note that [110] addresses the case of single-input systems using a ‘persistence filter’
that takes an equivalent form to the scalar Riccati equation presented here.

5.2 FPR Control of Magnetically Actuated Spacecraft

We apply the FPR controller (5.10)-(5.11) to a magnetically actuated spacecraft for the
cases of both inertial and nadir pointing. The spacecraft is assumed to be in low-Earth or-
bit and actuated by only three orthogonal electromagnetic actuators. The system model is
time-varying due to the time-varying nature of the magnetic field that the spacecraft experi-
ences as it moves through an orbit. We assume no advance knowledge of the magnetic field,
and thus make no periodicity assumptions, instead relying only on measurements that are
available at the current time. Even though the spacecraft model may not satisfy the suffi-
cient conditions presented in the previous section, we show through numerical experiments
that the controller is stabilizing and provides good performance. We simulate the spacecraft
attitude with actuator saturation, noisy magnetic measurements, and without rate feedback.
The simulations are based on the International Geomagnetic Reference Field model of the
magnetic field.

5.2.1 Linearized Spacecraft Model

In order to use the FPR controller we linearize the equations of motion (4.2) and (4.10)
about an equilibrium that, depending on the control objective, corresponds to either inertial
pointing or Earth (nadir) pointing. These linearizations yield the system

ẋ(t) = Ax(t) + B(t)u(t), (5.43)

where x(t) =
[
ζT(t) δωT(t)

]T
, ζ =

[
φ θ ψ

]T
∈ R3 represents the spacecraft’s 3-2-1

Euler angles relative to the inertial frame for inertial pointing and relative to the LVLH
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frame for nadir pointing; δω ∈ R3 is the angular velocity of the spacecraft relative to the
inertial frame for inertial pointing and relative to the LVLH frame for nadir pointing, that is,
for the inertial pointing linearization, δω = ω since the equilibrium point has zero angular
velocity, and, for the nadir pointing linearization, δω is a perturbation about the nominal
Earth-pointing angular velocity. Furthermore,

B(t) =

 0

−J−1b×(t)

 ∈ R6×3,

A = Ainertial for the inertial pointing linearization, and is given by the upper block-triangular
matrix

Ainertial =

 0 I3

0 0

 ∈ R6×6,

A = Anadir for the nadir pointing linearization, and is given by

Anadir =

 0 I3

0 Nv

 ∈ R6×6,

where

Nv =


0 0 n J2−J3

J1

0 0 0

n J1−J2
J3

0 0

 ∈ R3×3,

n is the mean motion, that is, the angular rate of the circular orbit, and J = diag(J1, J2, J3).
Note that for inertial pointing we do not assume that the body frame is aligned with the
spacecraft principal axes, that is, J is not necessarily diagonal; this is done in nadir pointing
only for simplicity.

5.2.2 Euler Angles from a Rotation Matrix

In order to implement the FPR controller in a nonlinear simulation of (4.2), (4.10) , we
convert the attitude-error rotation matrix R̃ into Euler angles. Algorithm 1 is a method to
resolve the singularities that arise from this mapping, and is adapted from ref. [111] for the
case of 3-2-1 Euler angles.

Note that there exist multiple solutions for the sequence of Euler angle rotations that
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Algorithm 1 Pseudocode for calculating 3-2-
1 Euler angles from the attitude-error rotation
matrix.

if R̃13 6= ±1 then
θ1 = −arcsin(R̃13)
ψ1 = atan2( R̃12

cos(θ1) ,
R̃11

cos(θ1) )

φ1 = atan2( R̃23
cos(θ1) ,

R̃33
cos(θ1) )

# Comment: second set of Euler angles
θ2 = π− θ1

ψ2 = atan2( R̃12
cos(θ2) ,

R̃11
cos(θ2) )

φ2 = atan2( R̃23
cos(θ2) ,

R̃33
cos(θ2) )

else
φ = anything; can set to 0
if R̃13 = −1 then

θ = π
2

ψ = φ+ atan2(R̃32, R̃31)
else

θ = −π2
ψ = −φ+ atan2(−R̃32,−R̃31)

end if
end if

represent a given attitude orientation. In our simulations we set ζ(t) =
[
φ1 θ1 ψ1

]T
if

R̃13(t) 6= ±1; otherwise we set φ = 0 and proceed according to Algorithm 1.

5.2.3 Numerical Studies

We consider a spacecraft in a 450-km circular orbit above the Earth with an inclination
of 87 degrees. The International Geomagnetic Reference Field (IGRF) model is used to
simulate Earth’s geomagnetic field as a function of orbital position [53]. The spacecraft
inertia matrix J is given by

J =


5 −0.1 −0.5
−0.1 2 1
−0.5 1 3.5

kg-m2, (5.44)

with principal moments of inertia equal to 1.4947, 3.7997, and 5.2056 kg-m2. We stress
that, although the FPR controller uses a linearized model, all closed-loop simulations are
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fully nonlinear.

5.2.4 Rest-to-Rest Maneuver

We use the FPR controller for a rest-to-rest (slew) maneuver, where the objective is to bring
the spacecraft from the initial attitude

R(0) =


0.097 0.349 −0.932
0.973 −0.230 0.015
−0.209 −0.908 −0.362

 , (5.45)

which corresponds to the 3-2-1 Euler angles

ζ(0) =
[

0.1 0.2 0.3
]T

rad,

with zero initial angular velocity ω(0) = δω(0) = 0, to rest at the desired final orientation
Rd = I3, ζ = 0. Let the parameters of the FPR controller (5.10)-(5.11) be given by R1 = I6,
R−1

2 = 0.0001, and P f (0) = I6. These values were tuned to give nominal magnetic dipole
moments around 2×10−3 A-m2, which is about an order of magnitude larger than the resid-
ual dipole moment of a typical nanosatellite [112], and a settling time of around 8 orbits.
We test the controller in a nonlinear simulation of (4.1)-(4.2).

Figure 5.17 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
netic dipole moment for the simulation described above. The spacecraft comes to rest at
the commanded attitude within 7 orbits. The maximum magnetic dipole moment generated
is less than 3×10−3 A-m2. This quantity can be further tuned by modifying the weights R1

and R2.

5.2.4.1 Actuator Saturation

We now illustrate actuator-saturation handling. Let umax = 2×10−4 A-m2 be the saturation
limit on the magnetic dipole moments, which is about an order of magnitude less than the
nominal controller tuning. If the controller specifies a magnetic dipole moment larger than
umax, we apply the saturation as the vector scaling

usat(t) = umax
u(t)
||u(t)||

. (5.46)

Figure 5.18 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
netic dipole moment. The spacecraft comes to rest at the commanded attitude within 12
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(d) Magnetic Dipole Moments

Figure 5.10: Full-state feedback for the rest-to-rest maneuver. (a) Eigenaxis Attitude Error,
(b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft
comes to rest at the commanded attitude within 7 orbits, and the maximum magnetic dipole
moment required by the controller is less than 3×10−3 A-m2.

orbits. The magnetic dipole moment is saturated at 2×10−4 A-m2.

5.2.4.2 Noisy Magnetic Field Measurement

We now consider the effects of noisy and biased magnetometer measurements. In the
controller (5.10)-(5.11), we replace −b×(t) with − (Rn(α)b(t) + m)×, where Rn(α) = eαn× is
a rotation matrix that rotates the magnetic field measurement by an angle α around axis n,
and m is random additive noise. Let α= 45◦, let n = [−0.868 0.420 0.266]T, and let m be
normally distributed with zero mean and standard deviation 10−5 T, which is roughly one
order of magnitude less than the nominal magnetic field strength. For a detailed discussion
on magnetometer bias determination and calibration see ref. [113].

Figure 5.19 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
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(d) Magnetic Dipole Moments

Figure 5.11: Full-state feedback with magnetic dipole moment saturation of 2×10−4 A-m2

for the rest-to-rest maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles, (c) Angular
Velocity, (d) Magnetic Dipole Moments. The spacecraft comes to rest at the commanded
attitude within 16 orbits, and the maximum magnetic dipole moment is less than 2× 10−4

A-m2.

netic dipole moment. The spacecraft comes to rest at the commanded attitude within 9
orbits, demonstrating that the controller is forgiving to large errors in the magnetic-field
measurement.

5.2.4.3 Output Feedback

We now consider the situation where the full-state measurement is not available. In partic-
ular, we assume that we have measurements of only the attitude, that is,

C(t) =
[

I3 0
]
∈ R3×6.
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(d) Magnetic Dipole Moments

Figure 5.12: Full-state feedback with noisy magnetic field measurements for the rest-to-rest
maneuver. The measurements are off by 45◦ and corrupted by gaussian noise. (a) Eigenaxis
Attitude Error (b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole Moments. The
spacecraft comes to rest at the commanded attitude within 9 orbits, and the maximum
magnetic dipole moment is less than 3×10−3 A-m2.

In this case, we use dynamic output feedback (5.27), (5.28) to stabilize the system. We let
V1 = I6, and V−1

2 = 10−14 in order to slow down the convergence of the estimated states so
that they are visible in the simulation.

Figure 5.20 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
netic dipole moment. The estimated states converge to the true state values, and the space-
craft comes to rest at the commanded attitude within 8 orbits. Note that if the convergence
of the estimated states is not slowed down, the spacecraft comes to rest faster.

5.2.4.4 Large-Angle Maneuver

We use the FPR controller (5.10)-(5.11) for a large slew maneuver, rotating 180 degrees
about the x-axis. The objective is to bring the spacecraft from the initial attitude R(0) =
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(d) Magnetic Dipole Moments

Figure 5.13: Output feedback without angular velocity measurements for the rest-to-rest
maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles, solid, and estimates, dashed,
(c) Angular Velocity, solid, and estimates, dashed, (c) Magnetic Dipole Moments. The
estimated states converge to the true values, the spacecraft comes to rest at the commanded
attitude within 8 orbits, and the maximum magnetic dipole moment is less than 4×10−3

A-m2.

diag(1,−1,−1), which corresponds to the 3-2-1 Euler angles

ζ(0) =
[
π 0 0

]T
rad,

with zero initial angular velocity, ω(0) = δω(0) = 0, to rest at the desired final orientation,
Rd = I3, ζ = 0.

Figure 5.14 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
netic dipole moment for the simulation described above. The spacecraft comes to rest at the
commanded attitude within 10 orbits. The maximum magnetic dipole moment generated
is less than 2×10−2 A-m2.
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Figure 5.14: Full-state feedback for the large-angle maneuver. (a) Eigenaxis Attitude Error
(b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft
comes to rest at the commanded attitude within 10 orbits, and the maximum magnetic
dipole moment is less than 2×10−2 A-m2.

5.2.5 Motion-to-Rest Maneuver

We now give the spacecraft the non-zero initial angular velocity

ω(0) = δω(0) =
[

0.025 0.025 −0.03
]T

rad/sec.

The parameters of the FPR controller are as given in the previous section.
Figure 5.15 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-

netic dipole moment for the motion-to-rest maneuver. The spacecraft now tumbles before
the magnetic actuators are able to regulate the attitude. Note that, as in the previous sim-
ulation, the controller is stabilizing for maneuvers outside the expected region of validity
of the linearized model. The spacecraft comes to rest at the commanded attitude within 10
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orbits. The maximum magnetic dipole moment generated is less than 1.5 A-m2.
Note that the parameters of the controller were tuned for a small rest-to-rest maneuver

and are now being applied to a motion-to-rest maneuver. If the spacecraft cannot generate
the requested magnetic dipole moments, they could either be saturated, or one could retune
the weight matrices R1 and R2 for the motion-to-rest maneuver. Also note that, since Algo-
rithm 1 maps the Euler angles to the range (−π,π), there are discontinuous jumps in Figure
5.15b.
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Figure 5.15: Full-state feedback for the motion-to-rest maneuver. (a) Eigenaxis Attitude
Error (b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft
comes to rest at the commanded attitude within 10 orbits, and the maximum magnetic
dipole moment is less than 1.5 A-m2.

5.2.6 Rest-to-Spin Maneuver (Nadir Pointing)

We now use the FPR controller (5.10)-(5.11) for a rest-to-spin maneuver, where the objec-
tive is to bring the spacecraft from rest, with initial attitude R(0) = I3, which corresponds
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to the 3-2-1 Euler angles ζ(0) = 0, and zero initial angular velocity ω(0) = 0, which corre-
sponds to δω(0) =

[
0 n 0

]T
rad/sec, to a nadir pointing configuration, with

ωd =
[

0 −n 0
]T

rad/sec, (δωd = 0)

where n = 0.0011, and Rd(0) = I3.
We rotate the spacecraft frame so that the inertia matrix J is now given by

J = diag(1.4947,5.2056,3.7997) kg-m2. This choice ensures that the spacecraft spins about
its major axis as it points at the Earth. Alternatively, we could have specified ωd to align
with the spacecraft’s major axis in the original coordinates. Note that we use A = Anadir.

Figure 5.16 shows the eigenaxis attitude error, Euler angles, angular velocity, and mag-
netic dipole moment for the nadir pointing maneuver. The spacecraft comes to rest at the
commanded attitude within 8 orbits. The maximum magnetic dipole moment generated is
less than 0.2 A-m2.

5.3 FPR Control for Spacecraft Rendezvous Maneuvers
on Elliptic Orbits

We apply the FPR controller to a maneuvering spacecraft in an elliptic orbit around the
Earth. The linearized equations of motion for a spacecraft on an elliptic orbit are time-
varying (Appendix A), thus impeding their treatment using most existing feedback control
techniques that assume time-invariant plant models. We simulate rendezvous maneuvers on
Molniya and Tundra orbits using a nonlinear model with perturbation forces. We demon-
strate that the controller performs well and is robust to many error sources including severe
thrust magnitude and direction deviations, and even intermittent thrust availability.

5.3.1 Numerical Studies

In the following simulations we consider spacecraft in both Molniya and Tundra orbits.
See Fig. 5.17 for a plot of a Molniya orbit. The orbital elements [57] used for the Molniya
orbit are given by

(a,e, i,Ω,ω,ν) = (26559km,0.704482,63.170◦,206.346◦,281.646◦,0◦),
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Figure 5.16: Full-state feedback for the nadir-pointing maneuver. (a) Eigenaxis Attitude
Error (b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole Moments. The space-
craft converges to the commanded spin within 8 orbits, and the maximum magnetic dipole
moment is less than 0.2 A-m2.

and for the Tundra orbit we use

(a,e, i,Ω,ω,ν) = (42164km,0.3,63.170◦,206.346◦,281.646◦,0◦),

These orbital elements give an initial position R0(0) and velocity v0(t) for the target space-
craft with which we wish to rendezvous. Note that since we let ν = 0, we start at orbital
perigee.

The mass of the chaser spacecraft is mc = 140 kg, and the parameters of the FPR con-
troller (5.10)-(5.11) are R1 = 0.001I6, R2 = 100000, and P f (0) = I6. These values were
tuned to give appropriate nominal response time and reasonable thrust usage over a set of
typical maneuvers that the spacecraft is expected to execute.

We test the controller in a high fidelity nonlinear simulation that includes both J2 and
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Figure 5.17: Molniya Orbit. The sphere represents the Earth.

air drag perturbations based on the Harris-Priester model [114]. The controller has no
knowledge of these perturbations although we assume that accurate position and velocity
information are available at the current time instant.

5.3.2 Multiple Initial Conditions

We use the FPR controller (5.10)-(5.11) for various chaser spacecraft initial conditions on
the Molniya orbit, where the objective is to rendezvous the chaser spacecraft with the target
spacecraft. Fig. 5.18a shows a 3D plot for initial conditions

[δx(0) δy(0) δz(0)] = ±[500 500 500]km,

while Fig. 5.18b shows a projection onto the orbital plane for various other initial condi-
tions in both v-bar and r-bar approaches.

These simulation results are based on a nonlinear model with J2 and air drag effects;
they demonstrate that the controller is stabilizing even for large deviations in the initial con-
ditions. Note that for open-loop maneuver planning, the applicability of (A.2) is generally
limited to 50 km maneuvers. Excellent maneuvers were also obtained when the nominal
orbital position is not at the perigee; the perigee location is most challenging on an ellip-
tic orbit due to faster motion and larger influence of disturbances such as air drag. All
subsequent simulations are performed at perigee.
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(a) 3D relative motion plot.
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(b) Orbital plane projection.

Figure 5.18: (a) 3D relative motion plot for initial conditions near perigee on a Molniya
orbit; (b) Orbital plane projection for multiple initial conditions near perigee on a Molniya
orbit.
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5.3.3 Thrust Saturation

Let umax = 10 N be the maximum thrust magnitude. If the controller specifies a thrust
command with norm greater than umax, we let

usat(t) = umax
u(t)
||u(t)||

. (5.47)

We use the FPR controller (5.10)-(5.11) for the rendezvous maneuver, where the objec-
tive is to bring the chaser spacecraft from the initial position

[δx(0) δy(0) δz(0)] = [250 250 250]km,

with zero initial relative velocity, to rest at the desired final position, [δx δy δz] =

[0 0 0].
Fig. 5.19a shows the maneuver projected onto the orbital plane for the Molniya orbit.

Fig. 5.19b gives the components of the thrust vector. Note that the thrust is saturated to 10
N. The spacecraft rendezvous with the target within 1.5 orbits. Fig. 5.20 shows the same
plots for the Tundra orbit.
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Figure 5.19: Rendezvous maneuver performed at perigee on a Molniya orbit with 10 N
saturated thrust. (a) Orbital plane projection; (b) Thrust vector components.

All subsequent simulations are performed with thrust saturation.

5.3.4 Thrust Aligned with the Ram Direction

We now consider the case where the spacecraft only thrusts in the tangential (ram) direction
(±y axis in Hill’s frame). This case is practically relevant if the spacecraft orientation
cannot be changed in order to point its thruster.
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Figure 5.20: Rendezvous maneuver performed at perigee on a Tundra orbit with 10 N
saturated thrust. (a) Orbital plane projection; (b) Thrust vector components.

We use the FPR controller (5.10)-(5.11) for the rendezvous maneuver, where the objec-
tive is to bring the chaser spacecraft from the initial position

[δx(0) δy(0) δz(0)] = [250 250 0]km,

with zero initial relative velocity, to rest at the desired final position, [δx δy δz] =

[0 0 0]. Let umax = 10 N.
Fig. 5.21a shows the maneuver projected onto the orbital plane for the Molniya orbit.

Fig. 5.21b gives the components of the thrust vector. Note that only the tangential thrust is
used and that it is saturated to 10 N. The spacecraft rendezvous with the target within 1.5
orbits. Fig. 5.22 shows the same plots for the Tundra orbit.

Finally, we note that we do not similarly consider radial-only thrust since the spacecraft
dynamics are uncontrollable in this case, even for circular orbits.

5.3.5 Intermittent Thrust Availability and Thrust Direction Errors

We now highlight the robustness of the FPR controller to intermittent thrust availability
and thrust direction errors. We assume that the thrusters are able to operate for 10 minutes
every 30 minutes in order to simulate the situation where occasional burns are used to
rendezvous with the target. Additionally, we assume that the attitude controller is not
capable of correctly pointing the thruster in the desired direction, so that the requested
thrust vector is rotated by 20◦ around a random body fixed vector.
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Figure 5.21: Rendezvous maneuver performed at perigee on a Molniya orbit with 10 N
saturated thrust that is aligned with the ram direction. (a) Orbital plane projection; (b)
Thrust vector components.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

o

y (km)

x

x 
(k

m
)

(a) Orbital plane projection

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Orbits

T
hr

us
t (

kN
)

(b) Thrust vector components

Figure 5.22: Rendezvous maneuver performed at perigee on a Tundra orbit with 10 N
saturated thrust that is aligned with the ram direction. (a) Orbital plane projection; (b)
Thrust vector components.
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The chaser spacecraft is initially at

[δx(0) δy(0) δz(0)] = [50 50 50]km,

with zero initial relative velocity, and the objective is to bring it to rest at the desired final
position, [δx δy δz] = [0 0 0]. Let umax = 10 N.

Fig. 5.23a shows the maneuver projected onto the orbital plane for the Molniya orbit.
Fig. 5.23b gives the components of the thrust vector. Note that the thrust is saturated to 10
N and only fires every 30 minutes. The spacecraft rendezvous at the target within 1.5 orbit.
Fig. 5.24 shows the same plots for the Tundra orbit.
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Figure 5.23: Rendezvous maneuver performed at perigee on a Molniya orbit with 10 N
saturated thrust that is only available for 10 minutes every 30 minutes and is rotated by
20 degrees about a random body vector. (a) Orbital plane projection; (b) Thrust vector
components.

5.3.6 Output Feedback

We now consider the case where the full-state measurement is not available. In particular,
we assume that we do not have measurements of the relative velocity, that is

C(t) ∈ R3×6 =
[

I3 0
]
.

In this case, we use dynamic output feedback (5.27), (5.28) to stabilize the system. We let
V1 = I6, and V−1

2 = 10−15 in order to slow down the convergence of the estimated states so
that they are clearly visible in the simulation.
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Figure 5.24: Rendezvous maneuver performed at perigee on a Tundra orbit with 10 N
saturated thrust that is only available for 10 minutes every 30 minutes and is rotated by
20 degrees about a random body vector. (a) Orbital plane projection; (b) Thrust vector
components.

The chaser spacecraft is initially at

[δx(0) δy(0) δz(0)] = [50 50 50]km,

with zero initial relative velocity, and the objective is to bring it to rest at the desired final
position, [δx δy δz] = [0 0 0]. Let umax = 10 N.

Fig. 5.25a shows the maneuver projected onto the orbital plane for the Molniya orbit.
Fig. 5.25c gives the components of the thrust vector. Note that the thrust is saturated to
10 N. Fig. 5.25e shows the relative velocity states and estimates. The estimated states
converge to the true state values and the spacecraft rendezvous with the target within 1.5
orbits. Fig. 5.25(b),(d),(f) show the same plots for the Tundra orbit.
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Figure 5.25: Output feedback rendezvous maneuver performed at perigee on Molniya (left)
and Tundra (right) orbits with 10 N saturated thrust. Only relative position data is assumed
to be available. (a),(b) Orbital plane projection; (c),(d) Thrust vector components; (e),(f)
Relative velocity components and estimated states.
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CHAPTER 6

Conclusions

The main conclusions are now summarized for each of the major topics addressed in this
dissertation. Directions for future work are discussed.

6.1 MPC

It was demonstrated through simulations on the full nonlinear model that the linear quadratic
MPC controller with dynamically reconfigurable constraints can successfully complete
three dimensional relative motion maneuvers when coupled to an EKF and while relying
only on relative angles and relative range measurements. Path constraints such as obsta-
cle avoidance were handled. The approach presented only requires that a conventional
quadratic program with linear inequality constraints be solved numerically. The details of
this MPC approach differ from [115] in that this approach is based on a QP (versus linear
programming (LP) in [115]), uses a reference governor style formulation of MPC cost for
the rendezvous phase, explicitly handles LoS cone and obstacle avoidance constraints, and
accounts for the capability of the attitude control system with an attitude penalty in the cost.

6.1.1 Future Work

Stability theory associated with the non-standard constraints, such as the time-varying hy-
perplane constraint, developed in this work remains a topic for future work.

Future work may consider the extension of MPC to formation control, where multiple
spacecraft that fly in a cluster or formation must avoid each other while also avoiding
debris. Other applications may include non-cooperative spacecraft docking and capture,
and self-assembling spacecraft, where the components of a large space structure such as a
telescope may be placed in orbit unassembled.
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6.2 Safe Positively Invariant Sets

We described a technique for spacecraft maneuver planning that uses positively-invariant
sets in order to avoid collisions with debris, while adhering to specified thrust limits. The
approach is based on hopping between neighborhoods of equilibria in a virtual net, and
maintaining the spacecraft trajectory within a tube formed by safe positively-invariant sets.
For the case where thrust limits can be specified as polyhedral norm bounds, we have
shown that the thrust limit on the growth distance can be easily computed; it is, in fact,
feasible to perform these computations onboard a spacecraft in order to account for thruster
failure or degradation. We described an extension in the presence of moving debris using
contractive constraint admissible sets in order to avoid collisions. Lastly, we illustrated that
the approach can be extended to include unmeasured bounded disturbances.

6.2.1 Future Work

Developing cost matrices that accurately capture the cost of maneuvers that do not travel
through intermediate nodes is a topic for future investigation.

The constraint-admissible positively invariant set method can be extended to attitude
control on SO(3) that is capable of handling inequality constraints associated with con-
trol authority limits and conical keep-out zones. The controller would use a supervisory
strategy with an inner-loop Lyapunov SO(3)-based controller, such as the inertia-free con-
trollers presented in this work, and an outer loop set-point guidance based on positively
invariant constraint admissible sets with real-time graph search. The combined methodol-
ogy would reduce the search space of possible attitude maneuver solutions and effectively
handle constraints.

Future work will also consider ways to apply the safe positively invariant set method to
non-spacecraft problems, such as ground and other autonomous vehicles.

6.3 Inertia-free Attitude Control Laws

Almost global stabilizability (that is, Lyapunov stability with almost global convergence)
of spacecraft tracking is feasible without inertia information and with continuous feedback
using magnetic actuation, reaction wheels, and CMGs. In addition, asymptotic rejection
of harmonic disturbances (including constant disturbances as a special case) is possible
with knowledge of the disturbance spectrum but without knowledge of either the amplitude
or phase. Under these assumptions, the inertia-free control laws provide an alternative to
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previous controllers that 1) require exact or approximate inertia information or 2) are based
on attitude parameterizations such as quaternions that require discontinuous control laws
or fail to be physically consistent (that is, specify different control torques for the same
physical orientation).

6.3.1 Future Work

Future work may also consider additional effects, including time-varying inertia due, for
example, to on-orbit deployment of structural components [116]; non-rigid motion due,
for example, to structural modes and fuel slosh; multibody spacecraft involving articulated
components; time delays in the feedback path that are possibly unknown and time vary-
ing; underactuation and undersensing possibly due to failed actuators and sensors; mixed
actuation architectures, such as magnetic torquers and reaction wheels; alternative control
devices, such as devices for atmospheric drag modification; and, finally, the interaction
between attitude and orbital dynamics.

6.4 FPR Control

We have presented forward-in-time Riccati-based controllers for linear time-varying sys-
tems. The controllers do not require advance knowledge of the system dynamics and
as such can be implemented in real time applications in which the system matrices are
known at the present time but not in advance. Further, we have improved upon the re-
sults of [103, 104] in that we do not require a state transformation nor knowledge of the
full state and, therefore, can utilize output-feedback. We have shown that if the closed-
loop dynamics of the quasi-dual system are symmetric, then the forward-in-time controller
is asymptotically stabilizing. We have also shown, using averaging theory, that there ex-
ists a sufficiently high frequency for which the dynamics of the closed-loop system become
asymptotically stable. Finally, we have proven that there is separation of estimator and FPR
regulator dynamics and thus FPR control may be used in an output feedback configuration.

The FPR controller was applied to the problem of spacecraft attitude regulation us-
ing only magnetic actuation. The FPR controller seems to be quite robust to many error
sources. We have shown that the FPR controller is stabilizing for inertially pointing the
spacecraft under actuator saturation, noisy magnetic-field measurements, and without us-
ing rate feedback. Additionally, we demonstrated nadir-pointing capabilities by spinning
the spacecraft up from rest. The above results have been demonstrated with simulations on
a fully nonlinear model.
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We have shown that the FPR controller is stabilizing for rendezvous maneuvers on el-
liptic orbits with large initial conditions and in the presence of thrust limitations, including
both saturation and intermittent thrust availability. This has been demonstrated with simu-
lations on a high fidelity nonlinear model with J2 and air drag perturbations.

6.4.1 Future Work

FPR control shows significant promise as a method for stabilization and robust control of
general LTV systems without knowledge of future dynamics. Completing FPR control
theory in the general case remains an open problem. Figure 6.1 provides a flow chart of
conditions that lead to FPR stabilization.

Initial work has been performed to develop FPR control in discrete time. The discrete
time FPR (DTFPR) equation is given by

Pk+1 = ATPkA−ATPkB(BTPkB+ R2)−1BTPkA + R1. (6.1)

As in continuous time, Ae = AT
c. f with appropriate substitutions. Therefore, the same anal-

ysis applies here. For example, in discrete time the state transition formula is given by

Φ(k, i) 4=


Ak−1Ak−2...Ai+1Ai, for k > i,

I, for k = i,

not defined, for k < i.

We can easily see that the state transition matrices for Ae and Ac, f are not transposes of
each other unless the Ai’s commute.

Initial work has also been performed on the extension of FPR control to constant set-
point tracking problems. Like linear quadratic integral control, the plant is augmented with
integrator states x̄(t), where ˙̄x(t) = y(t) = C(t)x(t). The augmented system is given by ẋ(t)

˙̄x(t)

 =

 A(t) 0
C(t) 0

  x(t)
x̄(t)

+

 B(t)
0

u(t),

y(t) =
[

C(t) 0
]  x(t)

x̄(t)

 .
Despite FPR control’s robustness to nonlinearities, an extension of the theory to a state-

dependent formulation so that it may used directly on nonlinear systems without lineariza-
tion is of interest. It would enable direct treatment of nonlinear applications as time-varying
without resorting to the standard frozen time assumption used in traditional state-dependent
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Riccati equations (SDRE).
Future work on spacecraft applications may consider nadir pointing on elliptic orbits,

uncertain spacecraft inertia, and mixed actuation architectures, such as magnetic torquers
and reaction wheels, for concurrent spacecraft attitude control and stored momentum man-
agement. Furthermore, FPR control might provide a new method to handle singularity
escape for SGCMGs.
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APPENDIX A

Spacecraft Relative Motion Orbital Dynamics

This chapter provides the necessary background on spacecraft relative motion orbital dy-
namics.

A.1 Relative Motion Model

In traditional relative motion problems, an approaching spacecraft is maneuvered close to
a target spacecraft in a nominal orbit. The target spacecraft is assumed to be at the origin
of Hill’s frame. See Fig A.1.

Figure A.1: Hill’s frame.

A.1.1 Nonlinear equations of motion

The relative position vector of the spacecraft with respect to a target location on an orbit is
expressed as

δ
⇀
r = xî + y ĵ + zk̂,
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where x, y and z are the components of the position vector of the spacecraft relative to the
target location and î, ĵ, k̂ are the unit vectors of the Hill’s frame. The Hill’s frame has its
x-axis along the orbital radius, y-axis orthogonal to the x-axis and in the orbital plane, and
z-axis orthogonal to orbital plane.

The position vector of the spacecraft with respect to the center of the Earth is given by
⇀
R =

⇀
R0 + δ

⇀
r , where

⇀
R0 is the nominal orbital position vector. The nonlinear equation of

motion for the spacecraft (relative to an inertial frame) is given by

⇀̈
R = −µ

⇀
R
R3 +

1
mc

⇀
F, (A.1)

where
⇀
F is the vector of external forces applied to the spacecraft, R = |

⇀
R|, mc is the mass of

the spacecraft, and µ is the gravitational constant.

A.1.2 Linearized equations on circular orbits

For δr << R, the linearized CWH equations [57] approximate the relative motion of the
spacecraft on a circular orbit as

ẍ−3n2x−2nẏ =
Fx

mc
,

ÿ + 2nẋ =
Fy

mc
,

z̈ + n2z =
Fz

mc
,

(A.2)

where Fx,Fy,Fz are components of the external force vector (excluding gravity) acting on
the spacecraft, and n =

√
µ

R3
0

denotes the mean motion of the nominal orbit. The linearized

dynamics account for differences in gravity between the spacecraft and nominal orbital
location, and for relative motion effects. The spacecraft relative motion dynamics in the
orbital plane (x and y) and in the out-of-orbital plane (z) are decoupled. The in-plane
dynamics are Lyapunov unstable (2 eigenvalues at the origin and 2 eigenvalues on the
imaginary axis at n), while the out-of-plane dynamics are Lyapunov stable (2 eigenvalues
on the imaginary axis at n). The in-plane dynamics are completely controllable from Fy

input but are not controllable from Fx input. The out-of-plane dynamics are controllable
from Fz input.

Assuming a sampling period of ∆T sec, we can convert the model (A.2) to a discrete-
time form

Xk+1 = AXk + BUk, (A.3)
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where Xk = [xk, yk, zk, ẋk, ẏk, żk]T is the state at time step k ∈ Z+, Uk = [Fx,k, Fy,k, Fz,k]T

is the control vector of thrust forces at the time step k ∈ Z+, and A = exp(Ac∆T ), B =∫ ∆T
0 exp(Ac(∆T − τ))dτBc are the discretized matrices obtained based on the continuous-

time system realization (Ac,Bc) in (A.2). Alternatively, the control vector U can represent
an instantaneous change in the velocity of the spacecraft, ∆v, induced by thrust, with an
appropriately re-defined B-matrix,

B∆v = eAc∆T



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


.

A.1.3 Linearized equations on elliptic orbits

For generic elliptic orbits of arbitrary eccentricity, the linearization of these equations is
described by linear time-varying equations [117],

Fx

mc
= δẍ−

 2µ
R3

0(t)
+

h2

R4
0(t)

δx +
2(v0(t) ·R0(t))h

R4
0(t)

δy

−2
h

R2
0(t)

δẏ,

Fy

mc
= δÿ +

 µ

R3
0(t)
−

h2

R4
0(t)

δy− 2(v0(t) ·R0(t))h
R4

0(t)
δx

+ 2
h

R2
0(t)

δẋ,

Fz

mc
= δz̈ +

µ

R3
0(t)

δz,

(A.4)

where δx, δy and δz are (relative) coordinates of the spacecraft in Hill’s frame, Fx,Fy,Fz

are components of the external force vector (excluding gravity) acting on the spacecraft, h

is the orbit angular momentum, R0(t) is the nominal time-varying orbital radius, and v0(t) is
the nominal time-varying orbital velocity. Equation (A.2) assumes that the target spacecraft
motion is in an ideal Keplerian orbit; if its motion is affected by perturbations, Fx,Fy,Fz

have to be modified to account for these perturbations [2]. In the subsequent development,
we assume that Fx,Fy,Fz are thrust forces that can be realized via on-board thruster on-off
time allocation and attitude control system commands [2].
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APPENDIX B

Spacecraft Attitude Dynamics

B.1 Spacecraft Model with Reaction Wheels

This section derives the equations of motion for a spacecraft with reaction wheels, while
highlighting the underlying assumptions on wheel geometry, inertia, and attachment to the
bus. Throughout this chapter, the vector

⇀
r q/p denotes the position of point q relative to

point p, the vector
⇀
v q/p/X =

X•
⇀
r q/p denotes the velocity of point q relative to point p with

respect to frame FX, and the vector
⇀
ωY/X denotes the angular velocity of frame FY relative

to frame FX. Note that
⇀
(·) denotes a coordinate-free (unresolved) vector. All frames are

orthogonal and right handed.
Def. 1. Let FX be a frame, let B be a collection of rigid bodies B1, . . . ,Bl, and let p be a

point. Then, the angular momentum of B relative to p with respect to FX is defined by

⇀
HB/p/X

4
=

l∑
i=1

⇀
HBi/p/X, (B.1)

where, for i = 1, . . . , l, the angular momentum
⇀
HBi/p/X of Bi relative to p with respect to FX

is defined by

⇀
HBi/p/X

4
=

∫
Bi

⇀
r dm/p×

⇀
v dm/p/X dm. (B.2)

The following properties of angular momentum are standard [118].
Lemma 1. Let B be a rigid body, let FX and FY be frames, and let p be a point. Then,

⇀
HB/p/X =

→

I B/p
⇀
ωY/X +

⇀
HB/p/Y, (B.3)
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where the positive-definite, coordinate-free inertia tensor
→

I B/p is defined by

→

I B/p
4
=

∫
B
|
⇀
r dm/p|

2→U −
⇀
r dm/p

⇀
r
′

dm/p dm, (B.4)

and where
→

U denotes the second-order identity tensor.
Lemma 2. Let B be a rigid body, let FX and FY be frames, let FY be a body-fixed frame,

and let p be a point that is fixed in B. Then,

⇀
HB/p/Y = 0 (B.5)

and

⇀
HB/p/X =

→

I B/p
⇀
ωY/X. (B.6)

Lemma 3. Let FX be a frame, let p be a point, let B be a rigid body with mass mB, and
let c be the center of mass of B. Then,

⇀
HB/p/X =

⇀
HB/c/X +

⇀
r c/p×mB

⇀
v c/p/X. (B.7)

Consider a spacecraft sc actuated by three axisymmetric wheels w1,w2,w3 attached to a
rigid bus b in a known and linearly independent, but not necessarily orthogonal, configura-
tion. Although the spacecraft is not a rigid body, the axial symmetry of the wheels implies
that the center of mass c of the spacecraft is fixed in both the bus and the spacecraft. Since
the inertia properties of the bus are assumed to be unknown, the principal axes of the bus
are unknown and thus the wheel configuration has an arbitrary and unknown orientation
relative to the principal axes of the bus. Each wheel is mounted so that it rotates about
one of its own principal axes passing through its own center of mass. It is not assumed
that the axis of rotation of each wheel passes through the center of mass of the bus, nor
is it assumed that the wheels are balanced with respect to the bus in order to preserve the
location of its center of mass. Thus the center of mass of the spacecraft and the center of
mass of the bus may be distinct points, both of which are unknown.

Assume a bus-fixed frame FB, three wheel-fixed frames FW1 ,FW2 ,FW3 , whose x-axes
are aligned with the rotation axes of w1,w2,w3, respectively, and an Earth-centered inertial
frame FE. The angular momentum of the spacecraft relative to its center of mass with

138



respect to the inertial frame is given by

⇀
Hsc/c/E =

⇀
Hb/c/E +

3∑
i=1

⇀
Hwi/c/E, (Def. 1) (B.8)

where the angular momentum
⇀
Hb/c/E of the bus relative to c with respect to FE is given by

⇀
Hb/c/E =

→

I b/c
⇀
ωB/E, (Lemma 2) (B.9)

where
→

I b/c is the positive-definite inertia tensor of the bus relative to the center of mass
of the spacecraft, and

⇀
ωB/E is the angular velocity of FB with respect to FE. The angular

momentum
⇀
Hwi/c/E of wheel i relative to the center of mass of the spacecraft with respect

to the inertial frame is given by

⇀
Hwi/c/E =

→

I wi/c
⇀
ωB/E +

⇀
Hwi/c/B (Lemma 1)

=
→

I wi/c
⇀
ωB/E +

⇀
Hwi/ci/B +

⇀
r ci/c×mwi

⇀
v ci/c/B (Lemma 3)

=
→

I wi/c
⇀
ωB/E +

→

I wi/ci

⇀
ωWi/B, (Lemma 2) (B.10)

where
→

I wi/c is the inertia tensor of wheel i relative to the center of mass of the spacecraft,
→

I wi/ci is the inertia tensor of wheel i relative to the center of mass ci of the ith wheel, and
⇀
ωWi/B is the angular velocity of wheel i relative to the bus. Thus (B.8) is given by

⇀
Hsc/c/E =

→I b/c +

3∑
i=1

→

I wi/c

⇀ωB/E +

3∑
i=1

→

I wi/ci

⇀
ωWi/B. (B.11)

Resolving
⇀
ωWi/B in FWi yields

⇀
ωWi/B

∣∣∣∣
Wi

= ψie1, (B.12)

where e1 = [1 0 0]T and ψi is the angular rate relative to FB of the ith wheel about the
x-axis of FWi . Since FWi is aligned with the principal axes of wheel i, it follows that

→

I wi/ci

∣∣∣∣∣
Wi

= diag(αi,βi,βi). (B.13)

Note that
⇀
ωWi/B is an eigenvector of

→

I wi/ci with eigenvalue αi, that is,
→

I wi/ci

⇀
ωWi/B =
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αi
⇀
ωWi/B.

B.1.1 Spacecraft Equations of Motion

The equations of motion for a spacecraft with reaction wheels as described above are now
derived. It follows from Newton’s second law for rotation that

⇀
Msc/c =

E•
⇀
Hsc/c/E

=

E•︷ ︸︸ ︷→I b/c +

3∑
i=1

→

I wi/c

⇀ωB/E +

E•︷ ︸︸ ︷
3∑

i=1

→

I wi/ci

⇀
ωWi/B

=

B•︷ ︸︸ ︷→I b/c +

3∑
i=1

→

I wi/c

⇀ωB/E +
⇀
ωB/E×

→I b/c +

3∑
i=1

→

I wi/c

⇀ωB/E

+

B•︷ ︸︸ ︷
3∑

i=1

→

I wi/ci

⇀
ωWi/B +

⇀
ωB/E×

3∑
i=1

→

I wi/ci

⇀
ωWi/B

=

→I b/c +

3∑
i=1

→

I wi/c

 B•
⇀
ωB/E +

3∑
i=1

αi

B•
⇀
ωWi/B

+
⇀
ωB/E×


→I b/c +

3∑
i=1

→

I wi/c

⇀ωB/E +

3∑
i=1

αi
⇀
ωWi/B

 . (B.14)
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To resolve (B.14) in FB, the following notation is used:

Jb
4
=
→

I b/c

∣∣∣∣∣
B
, Jwi

4
=
→

I wi/c

∣∣∣∣∣
B
,

Jw
4
=

3∑
i=1

→

I wi/c

∣∣∣∣∣∣∣
B

, Jsc
4
= Jb + Jw,

ω
4
=

⇀
ωB/E

∣∣∣∣
B
, ω̇

4
=

B•
⇀
ωB/E

∣∣∣∣∣∣∣∣
B

,

νi
4
=

⇀
ωWi/B

∣∣∣∣
B
, ν̇i

4
=

B•
⇀
ωWi/B

∣∣∣∣∣∣∣∣
B

,

τdist
4
=

⇀
Msc/c

∣∣∣∣∣
B
.

The vector τdist represents disturbance torques, that is, all external torques applied to the
spacecraft aside from control torques. Disturbance torques may be due to gravity gradients,
solar pressure, atmospheric drag, or the ambient magnetic field.

As in (B.12), the angular acceleration ν̇i of each wheel has one degree of freedom. In
FWi ,

B•
⇀
ωWi/B

∣∣∣∣∣∣∣∣
Wi

=

Wi•
⇀
ω Wi/B

∣∣∣∣∣∣∣∣
Wi

= ψ̇ie1. (B.15)

Thus,

ν̇i =

B•
⇀
ωWi/B

∣∣∣∣∣∣∣∣
B

= OB/Wi

B•
⇀
ωWi/B

∣∣∣∣∣∣∣∣
Wi

= OB/Wiψ̇ie1, (B.16)

where the proper orthogonal matrix OB/Wi ∈ R3×3 is the orientation matrix that transforms
components of a vector resolved in FWi into the components of the same vector resolved in
FB.
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With the above notation, resolving (B.14) in FB yields

τdist = (Jb + Jw) ω̇+

3∑
i=1

αiν̇i +ω×

(Jb + Jw)ω+

3∑
i=1

αiνi



= Jscω̇+

3∑
i=1

αiOB/W1ψ̇ie1 +ω×

Jscω+

3∑
i=1

αiOB/W1ψie1


= Jscω̇+ Jαν̇+ω× (Jscω+ Jαν) , (B.17)

where

Jα
4
=

[
α1OB/W1e1 α2OB/W2e1 α3OB/W3e1

]
, (B.18)

ν
4
= [ψ1 ψ2 ψ3]T, and ν̇ 4= [ψ̇1 ψ̇2 ψ̇3]T. Rearranging (B.17) and choosing the control

input u to be ν̇ yields the equations of motion for a spacecraft with reaction wheels, which
have the form

Jscω̇ = (Jscω+ Jαν)×ω− Jαu +τdist, (B.19)

ν̇ = u. (B.20)

In practice, a servo loop is closed around each reaction wheel in order to produce the desired
wheel angular accelerations given in (B.20).

Instead of commanding wheel angular accelerations by implementing servo loops, mo-
tor torque commands can be used. To determine the relationship between the desired angu-
lar acceleration and the required motor torque, the dynamic equations for each wheel must

142



be derived. It follows that

⇀
Mwi/ci =

E•
⇀
Hwi/ci/E

=

E•︷ ︸︸ ︷
→

I wi/ci

⇀
ωWi/E

=
→

I wi/ci

W•
⇀
ωWi/E +

⇀
ωWi/E×

→

I wi/ci

⇀
ωWi/E

=
→

I wi/ci

B•
⇀
ωB/E +

B•
⇀
ωWi/B − ωWi/B×ωB/E


+

(
⇀
ωB/E +

⇀
ωWi/B

)
×
→

I wi/ci

(
⇀
ωB/E +

⇀
ωWi/B

)
. (B.21)

Resolving (B.21) in FB and projecting it along each motor axis yields

τmotor,i = eT
i
[
Jwi/ci (ω̇+ ν̇i− νi×ω) + (ω+ νi)× Jwi/ci (ω+ νi)

]
, (B.22)

where Jwi/ci
4
=
→

I wi/ci

∣∣∣∣∣
B

. Although (B.22) can be used for torque control, the measurements

of ω,ω̇,νi, and ν̇i needed to implement it demonstrate why reaction wheels are typically
angular-acceleration commanded and feedback-controlled rather than torque-commanded.

B.1.2 Specialization: principal-axis alignment

As in ref. [119], the equations of motion (B.19), (B.20) are now specialized by assuming
that the principal axes of the bus are aligned with the rotational axes of the wheels, that the
wheels are mass-balanced relative to the center of mass of the bus so that the center of mass
of the spacecraft coincides with the center of mass of the bus, and, finally, that the moments
of inertia β1,β2,β3 of the wheels are lumped into the bus inertia Jb = diag(Jb1 , Jb2 , Jb3),
where Jb1

4
= Jb1 +β2 +β3, Jb2

4
= Jb2 +β1 +β3, and Jb3

4
= Jb3 +β1 +β2. In this configuration,

OB/W1e1 =


1

0

0

 , OB/W2e1 =


0

1

0

 , OB/W3e1 =


0

0

1

 . (B.23)
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Therefore, Jα = Jw = diag(α1,α2,α3). Rewriting the equations of motion (B.19), (B.20) as

Jbω̇ = ((Jb + Jα)ω+ Jαν)×ω+ u +τdist, (B.24)

−u = Jα(ω̇+ ν̇), (B.25)

and simplifying, yields

Jb1ω̇1 =
(
Jb2 − Jb3

)
ω2ω3 +α2ω3 (ω2 + ν2)−α3ω2 (ω3 + ν3) + u1 +τdist1 , (B.26)

Jb2ω̇2 =
(
Jb3 − Jb1

)
ω3ω1 +α3ω1 (ω3 + ν3)−α1ω3 (ω1 + ν1) + u2 +τdist2 , (B.27)

Jb3ω̇3 =
(
Jb1 − Jb2

)
ω1ω2 +α1ω2 (ω1 + ν1)−α2ω1 (ω2 + ν2) + u3 +τdist3 , (B.28)

−u1 = α1 (ω̇1 + ν̇1) , (B.29)

−u2 = α2 (ω̇2 + ν̇2) , (B.30)

−u3 = α3 (ω̇3 + ν̇3) , (B.31)

which are equations (7.59) and (7.60) of ref [119].
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APPENDIX C

Code

This chapter provides relevant code for the work presented in this dissertation.

C.1 Polyhedral Cone Approximation

The following code generates a polyhedral approximation of a cone.

function [Acone,bcone] = generateCone(gamma,N,normal,v)

% ++++++++++++++++++++++++++++++++++++++++++++++++++++++

% Generate a polyhedral approximation for a rotated and

% translated cone aligned with n-vector and vertex at v

% of x-y-z coordinate frame

% ++++++++++++++++++++++++++++++++++++++++++++++++++++++

if norm([0,1,0]'-normal)<1e-6,

[Acone, bcone] = generateBasicCone(gamma,N);

else,

axisOfRotation = cross([0,1,0],normal);

axisOfRotation = axisOfRotation/norm(axisOfRotation);

angleOfRotation = acos(dot(normal,[0,1,0])/norm(normal));

e = axisOfRotation;

S = [0, -e(3), e(2); e(3), 0, -e(1); -e(2), e(1), 0];

R = expm(-S*angleOfRotation);

[Acone, bcone] = generateBasicCone(gamma,N);

Acone = Acone*R;

end;
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bcone = bcone + Acone*v(:);

return

function [Acone,bcone] = generateBasicCone(gamma,N)

% ++++++++++++++++++++++++++++++++++++++++++++++++++++++

% Generate a polyhedral approximation for a base cone

% aligned with y-axis and vertex at the origin of x-y-z

% coordinate frame

% ++++++++++++++++++++++++++++++++++++++++++++++++++++++

% ++ generate a list of vectors

x = []; y = []; z = []; n = []; Acone = []; bcone = [];

for (i=1:1:N),

theta(i)= 2*pi/(N - 1)*(i - 1);

x(i) = tan(gamma)*cos(theta(i));

z(i) = tan(gamma)*sin(theta(i));

y(i) = 1;

if i>1,

n(:,i-1)=cross([x(i - 1),y(i - 1),z(i - 1)],

[x(i),y(i),z(i)])';

n(:,i-1)=n(:,i - 1)/norm(n(:,i - 1));

Acone=[Acone; n(:,i - 1)'];

bcone=[bcone; 0];

end;

end

return

C.2 CVXGEN Code for Rendezvous and Docking QPs

The rendezvous phase CVXGEN code is given by,

dimensions

m = 3 # inputs.

n = 6 # states.
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T = 25 # horizon.

end

parameters

A (n,n) # dynamics matrix.

B (n,m) # transfer matrix.

Q (n,n) psd diagonal # state cost.

Q_final (n,n) psd # final state cost.

R (m,m) psd diagonal # input cost.

P (n,n) psd diagonal

x[0] (n) # initial state.

u_max nonnegative # control limit.

normal[t] (m), t=1..T

center_of_debris[t] (m), t=1..T

epsilon nonnegative

end

variables

x[t] (n), t=1..T+1 # state.

u[t] (m), t=0..T # input.

xs (n)

us (m)

end

minimize

sum[t=0..T](quad(x[t]-xs, Q) + quad(u[t]-us, R))

+ quad(x[T+1]-xs, Q_final) + quad(xs, P)

subject to

x[t+1] == A*x[t] + B*u[t], t=0..T # dynamics constraints.

u[t] <= u_max, t=0..T # maximum input box constraint.

-u[t] <= u_max, t=0..T # maximum input box constraint.

xs == A*xs + B*us

normal[t][1]*(center_of_debris[t][1]-x[t][1])

+ normal[t][2]*(center_of_debris[t][2]-x[t][2])
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+ normal[t][3]*(center_of_debris[t][3]-x[t][3])

+ epsilon <= 0, t=1..T

end

The docking phase CVXGEN code is given by,

dimensions

m = 3 # inputs.

n = 6 # states.

T = 29 # horizon.

end

parameters

A (n,n) # dynamics matrix.

Acone1 (10)

Acone2 (10)

Acone3 (10)

B (n,m) # transfer matrix.

Q (n,n) psd diagonal # state cost.

Q_final (n,n) psd diagonal # final state cost.

R (m,m) psd diagonal # input cost.

Ra (m,m) psd diagonal

bcone (10)

x[0] (n) # initial state.

u_max nonnegative # control limit.

eps[t], t=0..T # input.

pos

un1 (m)

end

variables

x[t] (n), t=1..T+1 # state.

u[t] (m), t=0..T # input.

end

minimize

sum[t=0..T](quad(x[t], Q) + quad(u[t], R))

+ quad(x[T+1],Q_final) + quad((u[0] - un1), Ra)

+ sum[t=1..T]( 10*sum(pos(Acone1*x[t][1]
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+ Acone2*x[t][2]+Acone3*x[t][3]-bcone))

+ quad((u[t] - u[t-1]), Ra) )

subject to

x[t+1] == A*x[t] + B*u[t], t=0..T # dynamics constraints.

u[t] <= u_max, t=0..T # maximum input box constraint.

-u[t] <= u_max, t=0..T # maximum input box constraint.

u[t] <= eps[t], t=0..T-1

x[t+1] >= pos, t=0..T

end
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