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ABSTRACT

Introduction. Emission sources of volatile organic compounds (VOCs) are numerous
and widespread. Concentrations of VOCs indoors typically exceed outdoor levels, and most
people spend nearly 90% of their time indoors. Thus, indoor exposures generally contribute
the majority of VOC exposures for most people. VOC exposure has been associated with a
wide range of acute and chronic health effects, e.g., asthma, liver and kidney dysfunction,
neurological impairment, and cancer. Although exposures to most VOCs for most persons
fall below health-based guidelines, a subset of individuals experience much higher exposures.

Thus, exposure to VOCs remains an important environmental health concern.

Important gaps remain in our understanding of VOC exposures. Generally,
concentration and especially exposure data are limited. Like much other environmental data,
VOC exposure data can show multiple modes, heavy tails, and sometimes a large portion of
data below method detection limits (MDLs). Field data also show considerable spatial or
inter-individual variability, and information on long-term exposure trends is lacking.
Additionally, typically exposure occurs as a mixture, and mixture components may jointly
contribute to adverse effects. However, most pollutant regulations, guidelines and studies
remained focused on single compounds, and thus may underestimate cumulative exposures
and risks. Finally, while many factors are known to affect VOC exposures, many personal,

environmental and socioeconomic determinants remain to be discovered.

To help answer these questions and overcome limitations of previous analyses, this
dissertation utilizes several novel and powerful statistical techniques with analyses focused on
two large datasets. The overall objective is to understand the nature and significance of
exposures to VOCs by identifying and characterizing exposure distributions (including
extreme values), exposure trends, exposures to mixtures (including dependencies), and

exposure determinants.
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Methods. VOC data were mainly drawn from two datasets: the Relationship between
Indoor, Outdoor and Personal Air study (RIOPA), the National Health and Nutrition
Examination Survey (NHANES). The RIOPA study collected outdoor, indoor and personal
measurements in three U.S. cities from 1999 to 2001. Approximately 100 non-smoking
households, adults and children in each city were sampled twice for 18 VOCs. More than 500
variables potentially associated with exposure were also collected. NHANES used a stratified,
multistage, probability-based sampling design to collect nationally representative samples.
Blood VOCs were measured for a subsample of adults for each cohort studied between 1988

and 2004, and personal VOC measurements were collected in 1999/2000.

To estimate extreme exposures, Gumbel and generalized extreme value (GEV)
distributions were fitted to the top 5 and 10% of VOC exposures. Health risks were also
estimated. Simulated extreme value datasets, following the fitted GEV, Gumbel and
lognormal distributions for VOCs, were compared to observations. Mixture distributions
using the traditional finite mixture of normal distributions and semi-parametric Dirichlet
process mixture (DPM) of normal distributions were also fitted, and goodness-of-fit was

evaluated using simulations.

VOC trends from 1988 through 2004 were evaluated using linear quantile regression (QR)
models, which are more robust than ordinary linear models and can indicate changes at
different quantiles. Linear QR models with adjustments for solvent-related occupations and

cotinine levels were fitted to VOCs at the 50", 75™ and 95" percentiles.

VOC mixtures in RIOPA were identified using positive matrix factorization (PMF) and
by toxicological mode of action. Dependency structures of mixture components were
examined using mixture fractions and copulas, which address correlations of multiple
variables across their entire distributions, and evaluated using simulation. Cumulative
cancer risks were calculated for mixtures, and results from copulas and multivariate
lognormal models were compared to observations. The fractions of exposure attributable to
the outdoor and home microenvironments were also estimated. Finally, exposure

determinants were identified using stepwise regressions and linear mixed-effect models.

Results. Extreme value exposures typically were best fitted by 3-parameter GEV

distributions, and sometimes by the 2-parameter Gumbel distributions. In contrast, lognormal
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distributions significantly underestimated both the level and likelihood of extrema. Among
the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) posed the greatest risk of
cancer, e.g., for the top 10% of exposures, the predicted lifetime excess cancer risk exceeded
10, which represents an upper bound estimate of 100 cancer cases if one million people were
exposed daily over their lifetime to the 90" percentile 1,4-DCB concentration. NHANES had
considerably higher concentrations of all VOCs with two exceptions (methyl tertiary-butyl
ether (MTBE) and 1,4-DCB). Considering the full distribution models, the finite mixture of
normals with two to four clusters, and DPM of normals had superior performance in
comparison to the lognormal models. DPM distributions provided slightly better fit than the

finite mixture of normals.

In NHANES, most VOCs showed decreasing trends at all quantiles, e.g., median
exposures declined by 2.5 (m,p-xylene) to 6.4% (tetrachloroethene, PERC) per year over the
15 year period. Trends varied by VOC and quantile, and were grouped into three patterns:
similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper
quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, PERC); and fastest
declines at central quantiles (1,4-DCB). These patterns reflect changes in exposure sources,
e.g., upper-percentile exposures may result mostly from occupational exposure, while lower
percentile exposures arise from general environmental sources. Trends of VOC emissions
and ambient concentrations are supportive of the exposure trends, although the data suggest the

importance of indoor sources and personal activities.

Four VOC mixtures in RIOPA were identified by PMF, which represented gasoline
vapor, vehicle exhaust, chlorinated solvents and disinfection by-products, and cleaning
products and odorants. Typically, mixture fractions were heterogeneous, e.g., the
compounds and fractions changed with the concentration of the mixture. Three mixtures
were identified by toxicological mode of action, representing VOCs associated with
hematopoietic, liver and renal tumors. Estimated lifetime cumulative cancer risks exceeded
107 for about 10% of RIOPA participants. This exceeds the range that is normally
considered to be acceptable (from 10 to 10™). The dependency structures of the VOC
mixtures fitted Gumbel and t copulas, both of which emphasize tail dependencies. The
copulas reproduced both risk predictions and exposure fractions with a high degree of

accuracy, and performed better than multivariate lognormal distributions.
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The analysis of VOC determinants showed that exposures were affected by indoor
concentrations, city, and some personal activities, household characteristics and
meteorological factors. Home concentrations accounted for an average of 63 (MTBE) to
75% (carbon tetrachloride) of total exposure. For gasoline-related VOCs (e.g., benzene,
MTBE), important determinants were city, attached garages, self-pumping of gas, wind speed,
and house air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB,
chloroform) were associated with city, AER, house size and family members showering.
Dry-cleaning and industry-related VOCs (e.g., PERC, trichloroethylene) were associated
with city, residence water supply type, and visits to dry-cleaners. These and other
relationships explained from 10 to 40% of the variation, and are consistent with known

emission sources and the literature.

Conclusions. Exposure data feature extreme values, multiple modes, temporal changes,
heterogeneous inter-pollutant dependency structures, and other complex characteristics.
Advanced statistical methods can improve estimates exposures and risks, and are needed to
develop control and management guidelines and policies. Both extreme value distributions
and mixture models provided excellent fits to single VOC compounds (univariate
distributions); copulas may be the method of choice for VOC mixtures (multivariate
distributions), especially for the highest exposures, which poorly fitted with parametric models
and may represent the greatest risk. Declining VOC exposures reflect the effectiveness of
emission controls, while more rapid decreases in ambient concentrations suggests the
importance of indoor sources, occupation, personal activities and other factors. The
identification of exposure determinants, including the influence of certain activities and
environments, provides information that can be used to manage and reduce exposures. These

results extend our understanding of and ability to model VOC exposures.
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CHAPTER 1

Introduction

This chapter presents background information for volatile organic compound (VOC)
exposures and the objectives of this dissertation. Section 1.1 discusses the motivation for the
research. Section 1.2 presents the findings, limitations, and unsolved issues in previous
studies related to VOC exposures. Section 1.3 lists four specific aims in this dissertation to

fill the research gaps. Section 1.4 shows the organization of this dissertation.
1.1 Motivation

Perhaps more so than for other air pollutants, emission sources of VOCs are numerous
and widespread in both indoor and outdoor environments (Finlayson-Pitts and Pitts Jr 2000).
Important outdoor sources include industrial emissions and other stationary sources, vehicles
and other mobile sources, gasoline service stations and dry cleaners considered as area sources
(MDE 2010; Ling et al. 2011). Indoor sources include many building materials, cleaning
products, cigarette smoke, adhesives, paint strippers, moth repellents, and water chlorination
byproducts (Wallace et al. 1987; Wallace et al. 1989; ATSDR 1997a; Brown 2002; Singer et al.
2006; Weschler 2011; US EPA 2012b). Inthe U.S. and in many other countries, indoor
concentrations of VOCs typically exceed outdoor levels (US EPA 2012b). Moreover, most
people spend nearly 90% of their time indoors (US EPA 1989). For these two reasons, indoor
exposures often constitute a large share, and often the dominant share, of VOC exposures for
most individuals, at least for the non-occupationally exposed population.' Decreased
smoking rates and restrictions on tobacco smoking, for example, may have lowered indoor
concentrations and exposures of some VOCs more than changes in outdoor concentrations.

Studies are needed to understand how outdoor and indoor sources contribute to personal

' The occupationally-exposed sector is not addressed in this dissertation. Workplace exposures to VOCs can be
high in many occupations, e.g., mechanics, machinists, off-set printing press workers, painters, service station
attendants, petro-chemical industry workers.



exposures of air pollutants, a major motivation of the Relationships of Indoor, Outdoor, and

Personal Air (RIOPA) study (Weisel et al. 2005a).

VOC exposure has been associated with a wide range of acute and chronic health effects,
including irritation, asthma exacerbation, allergy, respiratory diseases, liver and kidney
dysfunction, neurological impairment, and cancer (Lippy and Turner 1991; Mendell 2007,
Rumcheyv et al. 2007; Kim and Bernstein 2009; US EPA 2012a, b). Information regarding
toxicity, drawn largely from occupational and animal studies, is available for a number of
VOCs. Several elements of this dissertation use the RIOPA VOC measurements with
dose-response information, specifically, the unit risk factor (URF, also called slope factor) for
cancer risk, and the reference concentrations (RfC) for non-cancer endpoints.” For example,
lifetime individual excess cancer risks are estimated by multiplying the lifetime (70 year)
exposure by the URF specific to the VOC (US EPA 2009). The estimated risk was compared
to de minimis or acceptable values, which typically range from 10° to 10™. Previous work
based on the nationally representative 1999-2000 National Health and Nutrition Examination
Survey (NHANES) has shown that exposures of most VOCs for most persons fall below
current guidelines designed to be protective for both acute and chronic (cancer) effects (Jia et
al. 2008). However, a subset of individuals experience much higher exposures that do exceed
guidelines, e.g., the estimated lifetime cancer risk from benzene exceeded 10 for 10% of
adults, and 16% of adults exceeded the same risk level for chloroform. Information on
these high exposures is very limited. This topic is the focus of Sections 2.2.3 and 3.3 of this

dissertation, which examines and model extreme values of VOC exposures.
1.2 Literature Review

Emissions and ambient concentrations of VOCs. In the U.S., emissions of many VOCs

have declined in recent years, motivated by concerns regarding both the direct health effects of
VOC:s and their role in forming tropospheric ozone. Emissions have been lowered by
substituting low emitting materials and processes, using controls such as catalytic converters,
and shifting away from manufacturing jobs where solvent use was common. Based on the
U.S. National Emissions Inventory (NEI), VOC emissions have been reduced by 35% from

1990 to 2005, or 2.3% per year, mainly due to controls on industry and on-road mobile sources

* This information is used to estimate risks in Sections 2.2.3.1 and 2.2.7.2, and to select mixtures for analyses in
Section 2.2.6.2).



(US EPA 2010b). These and most other estimates of emission trends primarily use empirical

and engineering factors, not actual measurements.

Decreased emissions have lowered ambient concentrations. A comprehensive review of
air toxics data collected from 1990 to 2005 in the U.S. EPA’s Air Quality System (AQS)
showed that median levels of benzene, toluene, ethylbenzene, styrene, xylene and
tetrachloroethyelene (PERC) declined by about 5 to 7% per year; chloroform by 1 to 4% per
year; and 1,4-dichlorobenzene (1,4-DCB) by 0 to 9% per year, depending on the period
(McCarthy et al. 2007). Benzene trends have also been examined by Fortin et al. (2005), who
estimated an average decrease of 6.2% per year from 1993 to 2002 and 9.8% per year between
1994 and 1999, mainly using Photochemical Assessment Monitoring Stations (PAMS) data,
and by U.S. EPA (2003a; 2007; 2010d), which showed decreases in urban areas of 8% per year
from 1994 to 2000, 3% per year from 2000 to 2005, and 4% per year from 1994 to 2009.
PAMS data are collected in the warmest portion of the year (the "ozone season"), and do not
represent annual averages. Somewhat faster declines (9.8% per year) have been shown for
quarterly averages of benzene in California from 1990 to 1995 (Hammond, 1998), and by data
in the Urban Air Toxics Monitoring Program (UATMP), which has operated year-round since
1987, and which includes several sites located near busy roadways, commercial or industrial
facilities (US EPA2001). Ambient data are subject to variability from year-to-year changes in
emissions, meteorology and sampling methodology, although long term declines across a
number of periods are quite consistent and indicate the effectiveness of emission controls
(McCarthy et al., 2007). However, ambient monitoring only partially explains exposure
trends due to the little time most individuals spent outdoors and the strength of VOC sources in

building and commuting environments.

VOC monitoring and exposure assessment. Personal measurements of pollutant

concentrations, obtained using samplers carried by individuals, are generally believed to
provide the data most relevant for exposure purposes. The RIOPA and NHANES datasets
include such measurements. RIOPA also includes indoor (in participant homes) and
outdoor (outside of these homes) measurements, and the VOC samples in RIOPA represent
repeated measurements (sampled twice). Details on the data collected in RIOPA and

NHANES are given in Section 2.1.



Exposures to pollutants can be estimated in many ways, but biomarker measurements
often are considered the best exposure indicator since they account for multiple settings (e.g.,
indoor, outdoor and commuting environments), sources and exposure pathways (Ashley and
Prah 1997). In urine, concentrations of VOCs strongly correlate to indoor levels (Wang et al.
2007). Inblood, VOC concentrations have been associated with airborne levels, smoking and
other activities, as well as individual characteristics such as gender and body mass index (Lin
et al. 2008). Biomarkers have limitations, e.g., VOCs with rapid clearance (short biological
half-lives) will reflect only recent exposures, thus observed relationships between airborne and
biomarker concentrations depend on the variability of airborne levels, the duration of exposure
and sampling periods, and clearance rates (Kwok and Atkinson 1995; Sexton et al. 2005; Lin et
al. 2008). To date, quantitative and nationally representative trends using biomarkers have
not been reported. Such analyses require the use of consistent methodologies, representative
and large samples, and long study periods. NHANES, which has collected biological
samples over several decades, can provide a good estimate of trends in VOC exposures for

the U.S. population. This topic is the focus of Section 2.2.5.

VOC monitoring programs in the U.S. and elsewhere, including RIOPA and NHANES,
measure only a subset of VOCs. Monitoring often focuses on 1-ring aromatic VOCs (e.g.,
benzene, toluene, xylene), smaller aliphatic compounds (n-hexane, heptane), and a few
chlorinated compounds, e.g., trichloroethylene (TCE) and carbon tetrachloride (CTC). The
RIOPA study, discussed below, includes several aromatic and chlorinated compounds, as well
as d-limonene, a-pinene, B-pinene and methyl tert-butyl ether (MTBE). In general, little
information is available regarding levels of and exposures to very volatile VOCs, more polar
compounds, and lower volatility VOCs. This dissertation focuses only those VOCs

measured in RIOPA and NHANES.

High exposures. As noted, the highest exposures may be most significant in terms of

their potential to cause adverse health effects. The assumption of lognormality has been
widely applied in the analysis of concentration and exposure data. However, lognormal
distributions may inadequately characterize the highest observations in a dataset. For
example, VOC distributions can have "heavy" right-hand tails, which clearly neither fit normal
nor lognormal distributions (Su et al. 2012). In these cases, parametric models will

underestimate the highest exposures and risks.



One approach to characterize such extreme values in a dataset uses extreme value theory
(EVT), which describes the probability and magnitude of events with low probability and high
consequence events (Lenox and Haimes 1996). A variety of EVT models have been
developed, including the Gumbel distribution (Gumbel 1958), the Fréchet distribution (Fisher
and Tippett 1928), and the Weibull distribution (Weibull 1951; Ang and Tang 1975). These
three distributions, respectively called type I, II and III extreme value distributions, belong to
the broad class of generalized extreme value (GEV) distributions, which use shape, location
and scale parameters to fit the tails of a distribution (Jenkinson 1955). EVT distributions are
univariate models (e.g., applying to one VOC) and not full distribution models (applying only
to a tail of the distribution). Despite these limitations, EVT distributions have many

applications, as described next.

EVT has been widely applied in engineering (McCormick 1981), finance (Embrechts et al.
1997), and hydrology (Katz et al. 2002; Engeland et al. 2004) and other fields. Some, but not
many, environmental application have been published, e.g., estimating the likelihood of
meteorological conditions (Hiisler 1983; Sneyer 1983), exceedances of thresholds relevant to
dietary intake of pesticides and heavy metals (Tressou et al. 2004; Paulo et al. 2006),
concentrations of metals Mn and Pb in blood (Batterman et al. 2011), deposition of pollutants
in surface soils (Huang and Batterman 2003), and risks of leakage due to pipe corrosion (HSE
2002). Additional application for air pollutants include the exceedance of air quality
standards (Surman et al. 1987; Hopke and Paatero 1994), exposures to ambient air pollutants
(Kassomenos et al. 2010), indoor concentrations of radon (Tuia and Kanevski 2008), and VOC

exposures in the NHANES subset mentioned earlier (Jia et al. 2008).

Sections 2.2.3 and 3.3 apply EVT theory to the VOC exposure data in the RIOPA dataset,
and provide a critique of the approach.” The analysis of extreme values is further extended in
Sections 2.2.7 and 3.7, which uses copulas to model dependencies among mixture components.
This analysis also looks at tail behavior, the region of the distribution that may be critical for
health effects assessment and for which simple models and assumptions, such as the lognormal

models discussed above, may be ill suited.

? Portions of this work have recently been published: Su FC, Jia C, Batterman S. 2012. Extreme value analyses of
VOC exposures and risks: A comparison of RIOPA and NHANES datasets. Atmospheric Environment 62: 97-106.



Mixture distributions of VOC exposures. Environmental exposures of many VOCs (and

other pollutants) at the population level, say across the U.S., can be viewed as mixtures of
distributions.” A (typically small) fraction of the population experiences high concentrations
due to specific exposure events, while a (typically large) fraction of the population encounters
much lower concentrations (Jia et al. 2008; Batterman et al. 2011; Su et al. 2012). For the
lower concentrations, often measurements fall below method detection limits (MDLs). These
“non-detects,” which represent left-censored data, can be treated by substitution, single or
multiple imputation, regression on order statistics (modeling using probability plots of known
distributions to estimate summary statistics), and laboratory-generated data (using the original
data without replacement) (Antweiler and Taylor 2008). The extent of data below MDLs can
significantly affect the quality of the results (Lubin et al. 2004; Antweiler and Taylor 2008).
The statistical issues associated with analysis of data with MDL issues are well known (Taylor

et al. 2001; Krishnamoorthy et al. 2009).

Due to the variation in source emissions, differences in the settings and environmental
factors where exposures occur, and the measurement issues just noted, distributions of VOC
concentrations can have multiple modes, heavy tails, and significant portions of data falling
below the MDL that are replaced by a single value. These issues, which can be encountered in
exposure and other types of data sets, challenge standard parametric distribution models.
While the GEV distributions discussed above can fit the upper portions of distributions, they
do not represent the full distribution of the data. Information on the full distributions of
exposure levels is needed to establish exposure/risk guidelines and to estimate risks across a
population (Su et al. 2012), to estimate health risks and uncertainty estimates, and to facilitate

probabilistic analyses (Hammonds et al. 1994).

Mixtures of distributions, which extend parametric families of distributions to fit datasets
that are not adequately fit by a single common distribution, provide a flexible and powerful

approach of representing the distribution of a random variable (Titterington et al. 1985;

* Note that mixture distributions (the subject addressed her and in more detail in Sections 2.2.4 and 3.4) are to be
distinguished from VOC mixtures (addressed in Sections 2.2.6, 2.2.7, 3.6 and 3.7): the former applies to the
nature of the distribution for a particular VOC; the latter applies to a combination of VOCs collectively observed
as an exposure or concentration in a specific environment (e.g., residence).  Some further subtleties in the
nomenclature can arise in cumulative risk assessment, which deals with the potential toxicity of chemical or
environmental mixtures, i.e., essentially simultaneous exposures to multiple chemicals (discussed in Section
2.2.6).



McLachlan and Basford 1988; McLachlan and Peel 2000). As examples, the finite mixture of
normal distributions applies a set of “mixing weights” to a specified and finite number of
component distributions, while the nonparametric Dirichlet process mixture (DPM) of normal
distributions relaxes the need to pre-specify the number of component distributions and is
potentially advantageous in terms of handling smoothing, modality and uncertainty (Escobar
1994; Mueller and Quintana 2004). Mixture of normals distributions have been extensively
used in a variety of important and practical situations, although environmental applications
have been very limited (Burmaster and Wilson 2000; Razzaghi and Kodell 2000; Taylor et al.
2001; Chu et al. 2005). This is the subject of Sections 2.2.4 and 3.4 of this dissertation.

Exposure assessment to VOC mixtures. Environmental mixtures have been defined as

the combination of two or more chemical components, regardless of the sources or the spatial
or temporal proximity where exposures occur (US EPA 1986). Environmental exposures
typically involve mixtures of pollutants that occur either simultaneously or sequentially, and
over both short and long periods. While there is growing interest and concern regarding the
cumulative effects of mixtures, most pollutant standards, regulations and guidelines
historically and for the most part remain focused on single pollutants compounds rather than
mixtures of pollutants. There are several notable exceptions. For example, environmental
regulations control airborne exposures to particulate matter and diesel exhaust (US EPA
2012a, d); occupational exposure limits exist for gasoline vapor (as well as its several of its
components, e.g., benzene) (ACGIH 2012); and drinking water regulations collectively limit
the four trihalomethanes (THMs) (US EPA 2013).

As noted earlier, if mixture components can interact or jointly contribute to adverse
effects, then estimates of adverse effects and risks based on single compounds -- rather than
the mixture -- may be underestimated. Effects of mixture exposures can be directly
assessed using empirical data from the actual mixture of concern, or estimated based on data
collected from similar mixtures (ATSDR 2004). However, the most common method is to
use interaction or additive assumptions among the mixture components. Following the
methods recommended to analyze cumulative risks of mixtures (US EPA 2000b, 2003;
ATSDR 2004), mixture components can be considered to have independent toxicities,
meaning that each chemicals has a different mode of action and that the overall response is

obtained by adding responses of each component, which is called response addition (Bliss



1939). For example, cumulative risks of cancer have been estimated using response
addition across 13 VOCs (e.g., benzene, 1,3-butadiene, chloroform, formaldehyde, styrene,
acetaldehyde, etc), and 6 metals (chromium VI, nickel, arsenic, lead, cadmium, and beryllium)
(Sax et al. 2006). If mixture components have similar toxicity effects or mechanisms, then
doses can be added, called dose addition. An example of dose addition is the use of toxic
equivalency factors for polycyclic aromatic hydrocarbons, which relate the relative potency
of compounds in the mixture to a reference compound, e.g., benzo(a)pyrene, which are used
as weights in summing doses or concentrations in an estimate of the mixture's toxicity (US
EPA 1993). U.S. EPA (1986) suggests that if interaction information is unavailable, then the
additive assumption should be adopted. Sections 2.2.7.2 and 3.7.3 in this dissertation use

such methods.

The understanding and analysis of environmental mixtures can be aided by several
additional definitions. Three classes of mixtures have been defined (ATSDR 2004): (1)
generated mixtures composed of compounds which are generated concurrently from the same
process, e.g., by-products of fuel combustion or cigarette smoke; (2) intentional mixtures
composed of related compounds typically used to manufacture commercial products, e.g.,
gasoline; and (3) coincidental mixtures of unrelated compounds that are disposed or stored
and reach the same target population, e.g., metals, solvents and semivolatile wastes at
Superfund sites. Generated and intentional mixtures may be common in some settings, for
example, in workplaces and homes. However, exposure to multiple air pollutants emitted
from different outdoor sources, e.g., CO, PM, s and benzene from vehicles, and SO, from
power plants is very common and can be considered a coincidental mixture. Risk
evaluations sometimes define simple and complex mixtures (Feron et al. 1998). Simple
mixtures contain a relatively small number (< 10) of components. Often, such mixture have
been identified and their components well quantified, e.g., medicines and pesticides. In
contrast, complex mixtures include many more components, and are usually incompletely

quantified and highly variable, e.g., gasoline vapor and tobacco smoke.

Dependencies in VOC mixtures and copulas. The compositions of mixtures, including

the relative concentrations of mixture components, can vary considerably. Dependencies
among components of exposure mixtures refer to the statistical relationships among the

concentrations of each component in the mixture, and potentially to the composition of the



mixture. In general, the most common indicator of dependencies between two variables uses
correlation measures. These include Pearson correlation coefficients (r), which assume that
variables are normally distributed (Rodgers and Nicewander 1988), and non-parametric
correlation measures of dependence, most commonly rank correlation measures using
Spearman’s rho and Kendall’s tau, which are robust with respect to outliers and can describe
some non-linear relationships. As noted above, environmental exposures often are not
normally distributed, but can contain extreme values and can remain right-skewed even after
log-transformation (Jia et al. 2008). Thus, parametric correlation measures can have
significant limitations. Both types of correlation measures show only pair-wise dependencies,
e.g., not those involving three or more variables, and may not be reliable indicators in the

presence of non-linear associations (Schmidt 2006; Staudt 2010).

Copulas represent a powerful technique for representing dependencies that can overcome
shortcomings of conventional correlation measures. Introduced in 1959 by Sklar, a copula
represents the dependency structure of two or more variables across the entire distribution
(Sklar 1959; Frees and Valdez 1998). Copulas separate the dependency structure(s) from the
variables' marginal distributions, a major advantage, and thus are unconstrained by marginal
distributions. While unrestricted, the choice of the marginal distributions affects the location

and scale structure of copulas (Frees and Valdez 1998).

While there have been few environmental applications, copulas have been widely applied
in the finance world, especially for derivative pricing and financial risk management, in order
to deal with market, credit and operational risks where classical approaches to describe market
and other fluctuations (i.e., using multivariate normal distributions) have been shown lacking
(Cherubini et al. 2004; Jean-Frédéric et al. 2004). As noted earlier, given that environmental
exposures also involve non-normal distributions and extreme values (Jia et al. 2008; Su et al.
2012), copulas could be a good tool to explore dependency structures of multivariate exposures.
In earlier work, we showed that several types of copulas, specifically the product, Gumbel,
Clayton, Frank and Gaussian forms, fit bivariate dependency structures of VOC exposures for
data taken from the NHANES. The VOCs measured in NHANES showed several types of
marginal distributions (e.g., lognormal, Pareto and Weibull) (Jia et al. 2010). Few other
environmental applications have been identified. The application of copulas to the RIOPA

VOC dataset is addressed in Sections 2.2.7 and 3.7 of this dissertation.



Determinants of VOC exposures. The phrase determinants of disease has been defined

as “any factor or variable that can affect the frequency with which a disease occurs in a
population" (Putt et al. 1987). Determinants affecting health at individual and community
levels can be classified into three groups: social/economic environment, the physical
environment, and a person’s individual characteristics and behaviors (WHO 2012). In this
dissertation, parallels are drawn from these definitions by considering determinants of
exposures, that is, factors affecting concentrations and exposures. Like health determinants,
exposure determinants can be grouped into socioeconomic factors (e.g., income level and
socioeconomic position), factors related to the physical environment (e.g., meteorology and
house age), and lastly into personal factors (e.g., race/ethnicity, and behavior). While not
entirely exclusive, these groupings provide a structure that may help the understanding and

analysis of factors affecting exposure.

VOC exposures can vary tremendously among individuals. This variation appears to be
driven largely by house-to-house variability, as compared to seasonal, neighborhood or
measurement variability (Jia et al. 2011). In addition to this interpersonal or spatial
variability, temporal variability may be large, at both short and long time scales. Long term
variability includes the actions taken over the past few decades that have reduced emissions of
many VOC emissions, €.g., emission controls and process changes on both stationary and
mobile sources (US EPA 2010b), which partially explains the decline in VOC exposures (Su et
al. 2011). Simultaneously, indoor VOC concentrations have fallen in many buildings, a result
of reduced or eliminated tobacco smoking, low VOC paints, and other indoor air quality
improvements. Short-term variability can include effects of weather, season, personal
activities and other factors, and relevant time frames can range from perhaps seconds to days.
While these general effects are known, the identification of the factors causing VOC exposures,
that is, exposure determinants, remains unclear. This is the subject examined in Sections 2.2.9
and 3.9 in this dissertation using the RIOPA dataset, which collected a more complete set of

potential determinants than most or possibly all other VOC studies.

A review of 12 studies that examined VOC determinants is summarized in Table 1.
(This review emphasized general, i.e., non-occupationally-exposed, populations.) The
number of determinants is large and includes many environmental determinants. Elevated

exposures have been associated with low ventilation rates and closed windows (Sexton et al.
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2007; D'Souza et al. 2009; Riederer et al. 2009; Symanski et al. 2009; Wang et al. 2009), house
type (apartment and mobile homes have higher benzene and chloroform levels than single
family houses) (Riederer et al. 2009; Byun et al. 2010), fewer years lived in home or newer
houses (associated with higher BTEX exposure (D'Souza et al. 2009), and the existence of a
fireplace (elevated styrene exposure) (Delgado-Saborit et al. 2009). Also, since chlorine is
widely used as a disinfectant to treat public water supplies, households using public supplies
often experience higher chloroform exposure than households using well water (D'Souza et al.
2009). In Korea, children had higher exposure to traffic-related VOCs, e.g., toluene,
ethylbenzene, and m,p-xylene in the city with narrower streets and mixed walkways and

driveways that increased proximity to traffic (Byun et al. 2010).

A modest number of personal determinants have been identified. VOC exposure has
been related to ethnicity, e.g., Hispanics had higher exposure to benzene, toluene,
ethylbenzene, xylene (BTEX), MTBE, and 1,4-DCB, Blacks had higher exposure to 1,4-DCB,
PERC and chloroform (Riederer et al. 2009; Wang et al. 2009), and Mexicans had higher
exposure to benzene and 1,4-DCB (Wang et al. 2009). Occupation clearly affects exposure,
e.g., BTEX exposure has been linked to service station and vehicle repair jobs (Jo and Song
2001), and pinene, limonene, toluene, ethylbenzene and styrene have been associated with
cleaning jobs (Wolkoff et al. 1998). However, effects of occupation on VOC exposures for
the general public have rarely been observed. Machine-related jobs have been linked to
BTEX exposure (D'Souza et al. 2009), and time at work/school has been associated with
benzene, ethylbenzene, xylene and PERC exposure (Wang et al. 2009).

VOC exposures clearly are affected by an individual's activities, as shown by many
studies (Table 1). As examples, smoking and environmental tobacco smoke elevates BTEX
and styrene exposures (Wallace et al. 1989; Edwards et al. 2001; Wallace 2001; Kim et al. 2002;
D'Souza et al. 2009; Delgado-Saborit et al. 2009), as does being near vehicles (Wallace et al.
1989; Kim et al. 2002; Hinwood et al. 2007; Delgado-Saborit et al. 2009). Pumping gas or
being near gasoline increases BTEX and MTBE exposures (Hinwood et al. 2007; D'Souza et al.
2009; Symanski et al. 2009), and living in a home with an attached garage increases exposures
to the same gasoline-related VOCs (Sexton et al. 2007; D'Souza et al. 2009; Delgado-Saborit et
al. 2009; Symanski et al. 2009; Wang et al. 2009). The use of paint strippers and thinners also
has been associated with BTEX exposure (D'Souza et al. 2009; Delgado-Saborit et al. 2009;
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Symanski et al. 2009). The use of gas heating and gas stoves was associated with increased
exposure to aromatic VOCs and a gasoline additive, MTBE (Kim et al. 2002; Delgado-Saborit
et al. 2009). The MTBE associated with the source is unexpected and suggests confounding.
Participation in arts and crafts hobbies increased exposure to toluene, ethylbenzene and xylene
(Hinwood et al. 2007), while cooking increased exposure to benzene and toluene in children
(Byun et al. 2010). Deodorizer and mothball use increased exposure of 1,4-DCB (Wallace et
al. 1989; Wallace 2001; D'Souza et al. 2009) and naphthalene (Batterman et al. 2012).
Visiting a dry-cleaner or being near dry-cleaned clothes elevated PERC exposure (Wallace et al.
1989; Wallace 2001; D'Souza et al. 2009). Finally, contact with chlorinated water through
drinking tap water, showering/bathing, swimming, washing dishes/clothes has been shown
increase in exposure to chloroform (Wallace et al. 1989; Wallace 2001; Sexton et al. 2007;

D'Souza et al. 2009).

Few socioeconomic determinants have been identified. Education and income has been
negatively associated with exposures of benzene, 1,4-DCB, PERC and chloroform (Wang et al.
2009). This might suggest that persons of higher socioeconomic position experience fewer
high-exposure activities, e.g., house cleaning, reside in cleaner homes and neighborhoods (e.g.,
distant from traffic), and/or commute and work in cleaner environments. In the NHANES
VOC dataset, Hispanic and Black adults had higher levels of BTEX, MTBE and 1,4-DCB after
controlling for a environmental and personal covariates, suggesting possible cultural
differences (D'Souza et al. 2009). In broad terms, many socioeconomic factors are expected
to be correlated with yet to be identified environmental factors, which may be considered more
direct determinants of concentrations or exposures. Thus, the identification of socioeconomic
determinants may lead to increased understanding of VOC exposures, and may raise factors

and hypotheses that can help to explain exposures.

While many exposure determinants have been identified, the underlying studies have
several limitations, the significance and applicability of the determinants are uncertain, and
many determinants likely remain undiscovered. First, many of the studies used small
samples, e.g., the Birmingham study enrolled only 12 adults (Kim et al. 2002), the New York
City study had 46 high school students (P Kinney et al. 2002), and the Minneapolis—St. Paul
study enrolled 70 adults (Sexton et al. 2007). Observational studies, especially

cross-sectional studies, require large sample sizes to disentangle contributions of personal
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activities and indoor and outdoor environments. Second, the studies had important data
gaps. For example, although the NHANES sample was large (personal VOC concentrations
measured for 646 individuals) and designed to be nationally representative (NCHS 2012b),
outdoor and indoor concentrations, time activity, and other information was not collected.
However, as mentioned, the RIOPA (Weisel et al. 2005a) collected outdoor, indoor and
personal VOC measurements, along with considerable other information, and it provides a

good opportunity to characterize determinants of VOC exposure.
1.3. Research Objectives

The overall objective of this dissertation is to understand the nature and significance of
exposures to VOCs though identifying and characterizing exposure distributions, exposure
trends, exposures to pollutant mixtures, inter-pollutant dependencies, and exposure
determinants. As discussed in Section 1.1 and 1.2, this objective is motivated by gaps in our
understanding of exposures and current needs in exposure science and risk assessment. The
work provides new analyses of the RIOPA and NHANES datasets with the objectives. There

are four main aims, each with specific hypotheses, as described below.

Aim 1 addresses the characterization of full and extreme value distributions, with the
hypothesis that a combination of standard and extreme value distributions can best characterize
the distribution of pollutant exposures. Work included fitting univariate full distributions for
outdoor, indoor, and personal VOC observations, fitting extreme value distributions to the
highest 5 and 10% of measurements for each VOC, and estimating risks of extreme value
exposures. The results include a comparison of distributions fitting for the RIOPA and
NHANES studies. Additionally, mixture distribution models were developed that
represented full distributions -- ranging from the lowest to the highest exposures. These take
into account values below detection limits, extreme values, and values in the middle of the

distribution into account.

Aim 2 examines changes over time in VOC exposures, based on VOC measurements in
blood from 1988 through 2004 among a nationally representative sample in NHANES.
Long-term trends have rarely been examined. The hypothesis is that exposures of most VOCs
have declined over the past two decades due to product substitution and better emission

controls.
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Aim 3 provides an analysis of exposure mixtures with the goal of increasing
understanding of exposures to multiple pollutants, especially for highly exposed individuals.
We hypothesize that copulas and other advanced techniques that represent multivariate
exposure distributions can allow accurate and efficient modeling of mixtures, joint
distributions and dependency structures. This task focuses on identifying common/priority
mixtures of different pollutants and evaluating their effects and significance. Exposure
mixtures were selected on the basis of emission sources and toxicity followed by estimating

the joint distributions and dependency structures of the mixtures.

Aim 4 investigates exposure determinants of VOC exposures, with the goal of
investigating effects of indoor sources (e.g., smoking, attached garages, use of moth repellents),
time activity information (e.g., time spent in outdoors, traffic), socioeconomic, demographic,
meteorological and other factors. The hypotheses here are that indoor levels, environmental
factors and personal activities can significant affect personal exposures, and that new
relationships will be revealed using the RIOPA dataset. Linear mixed-effect models (LMMs)
were used to identify sources and determinants of repeatedly indoor, outdoor and personal
measurements. While QR models were originally proposed, we believed that linear
mixed-effect models are more effective in identifying exposure determinants given the

repeated measurements available in the RIOPA study.
1.4. Organization of This Dissertation

This dissertation is organized into four chapters: Chapter 1 (this chapter) summarizes
the literature, defines specific terms, and states objectives of this research and its significance.
Chapter 2 describes the data sources and statistical methods applied for each research aim.
Chapter 3 presents the results and discussion for the four aims. Chapter 4 integrates the main
findings of each research objective, and discusses implications. It also lists recommendations

for further research.

Much of this work presented in this dissertation has been published in peer-reviewed
journals. Primarily related to Objective 1, extreme value analysis (see Sections 2.2.3 and 3.3)
has been published in Atmospheric Environment in 2012 (Su FC, Jia C, Batterman S. 2012.
Extreme value analyses of VOC exposures and risks: A comparison of RIOPA and NHANES
datasets. Atmospheric Environment 62(0): 97-106). In Objective 2, an analysis of VOC
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trends (see Sections 2.2.5 and 3.5) has been published in Atmospheric Environment in 2011 (Su
FC, Mukherjee B, Batterman S. 2011. Trends of VOC exposures among a nationally
representative sample: Analysis of the NHANES 1988 through 2004 data sets. Atmospheric
Environment 45(28): 4858-4867).

The rest of this work in the dissertation has been submitted to peer-reviewed journals. In
Objective 1, an analysis of mixture distributions (see Sections 2.2.4 and 3.4) has been
submitted to Atmospheric Environment in November 2012 (Li S, Batterman S, Su FC,
Mukherjee B. 2013. Addressing extrema and censoring in pollutant and exposure data using
mixture of normal distributions. Atmospheric Environment). In Objective 3, an analysis of
VOC mixtures (see Sections 2.2.6, 2.2.7, 3.6 and 3.7) has been submitted to Environment
International in February 2013 (Su FC, Mukherjee B, Batterman S. 2013. Modeling and
analysis of personal exposures to VOC mixtures using copulas. Environment International).
In Objective 4, an analysis of VOC determinants (see Sections 2.2.8, 2.2.9, 3.8 and 3.9) has
been submitted to Environmental Research in February 2013 (Su FC, Mukherjee B, Batterman
S. 2013. Determinants of personal, indoor and outdoor VOC concentrations: An analysis of

the RIOPA data. Environmental Research).
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CHAPTER 2
Material and Methods

This chapter describes the materials and methods used in this research. Section 2.1
introduces the two main datasets used, as well as several others. Section 2.2 describes the

statistical approaches in the order of the four specific objectives (see Section 1.3).
2.1 Data Sources
2.1.1 Relationship between Indoor, Outdoor and Personal Air study

The RIOPA study contrasted three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA)
that were expected to have different contributions from mobile and industrial emissions
(Weisel et al. 2005b). Approximately 100 non-smoking households and non-smoking adults
and children living in households in each city were recruited and studied from summer 1999 to
spring 2001. Each of the household and participants was sampled twice about three months
apart. Outdoor, indoor and personal air samples were collected using 48-hr sampling periods.
VOCs were collected using passive samplers (OVM3500, 3M Company, St. Paul, MN, USA)
and analyzed by gas chromatography—mass spectrometry for 18 compounds (benzene,
toluene, ethylbenzene, m,p-xylene, o-xylene, MTBE, styrene, 1,4-DCB, methylene chloride
(MC), TCE, PERC, chloroform, CTC, d-limonene, a-pinene, B-pinene, 1,3-butadiene and
chloroprene). Data for 1,3-butadiene and chloroprene were not reported due to low recovery.
We excluded the MC measurements due to measurement issues (inconsistent blank
contributions) (Weisel et al. 2005b). Styrene has higher uncertainty due to biased
inter-laboratory consistency (Weisel et al. 2005c). A new variable, TVOC (total volatile
organic compounds), was defined as the sum of the remaining 15 VOCs. MDLs ranged from
0.21 (o-pinene and PERC) to 7.1 (toluene) pg m™, and detection frequencies for the outdoor
measurements ranged from 6.3 (B-pinene) to 96.8% (CTC), for indoor measurements ranged
from 25.8 (TCE) to 95.5% (CTC), and personal measurements ranged from 22.5 (TCE) to
96.7% (CTC) (Weisel et al. 2005b). Measurements below the MDLs were replaced with
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one-half of this value. Further details of RIOPA and its design are provided elsewhere (Weisel
et al. 2005a).

RIOPA participants were administered three questionnaires, from over 500 variables
were derived. A baseline questionnaire addressed demographics and lifestyle factors (e.g.,
ethnicity, employment, opening windows, and use of deodorizer or fresheners); a technician
walk-through questionnaire collected neighborhood and household characteristics (e.g.,
industrial emissions in neighborhood, household air exchange rates (AERs), type of building,
and existence of attached garage); and a third questionnaire collected time activity
information, e.g., time spent indoors at school/work, pumping gas, bathing or showering, and
gardening (Weisel et al. 2005a). Geographic and meteorological information (e.g., city,
outdoor temperature, wind speed, and relative humidity) was also obtained for each

household.
2.1.2 National Health and Nutrition Examination Survey

For biological VOC samples, data were obtained from two cohorts of NHANES III
(1988-1991, 1991-1994), and three cohorts of "continuous NHANES" (1999/2000, 2001/2002
and 2003/2004). Initially, NHANES focused on health and nutrition issues and did not
include contaminant measurements. Participants were selected to be nationally representative
using a stratified, multistage, probability-based sampling design, e.g., elderly and minorities
were over-sampled. VOCs were measured for a subsample of adults aged 20-59 years for
each cohort studied between 1988 and 2004, with sample sizes from 605 to 1489 as shown in
Appendices A and B, (NCHS 2000, 2010d). To obtain nationally representative results and
allow comparability between cohorts, each cohort used the same sampling and weighting
scheme (NCHS 2006). There are several differences between cohorts. NHANES III used a
6 year survey cycle, 81 primary sampling units (PSUs) from 1988 to 1994 (randomly divided
into two groups for 1988-1991 and 1991-1994), and about 15,000 participants per cohort.
Continuous NHANES used a 2 year survey cycle, 12 PSUs in 1999/2000 (3 PSUs were
omitted due to delays in data collection), 15 PSUs in both 2001/2002 and 2003/2004 cycles,
and approximately 10,000 participants per cohort (NCHS 2010a, 2010b, 2010c). Thus,
continuous NHANES encompassed fewer PSUs and obtained smaller samples, and

consequently, standard errors may be larger than those in NHANES III (NCHS 2006).
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NHANES III and continuous NHANES used similar procedures to collect and analyze
blood samples (NCHS 2000, 2011). Participants arrived at a central location and designated
time, and were then shepherded through four air conditioned trailers that comprised the mobile
examination center (MEC) in visits that could require up to 4 hr (NCHS 2009). Blood
samples were drawn in the third trailer. Whole blood samples were analyzed for 15
compounds: benzene, toluene, ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform,
bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform, 1,4-DCB,
PERC, MTBE, CTC, and TCE. Analyses used purge-and-trap extraction or headspace
solid-phase microextraction (SPME), and capillary gas chromatography/mass spectrometry.

Consistent quality control and quality assurance protocols were maintained (NCHS 2010e).

For airborne personal VOCs, the 1999/2000 cohort of the NHANES, which included
personal VOC measurements for 851 participants (NCHS 2012a), was used to compare with
the RIOPA study. The RIOPA and NHANES studies shared ten VOCs in common (benzene,
toluene, ethylbenzene, m,p-xylene, o-xylene, MTBE, 1,4-DCB, TCE, PERC and chloroform).
While the recruitment strategy and study purposes differed, NHANES and RIOPA used similar
sampling methods and periods (48 to 72 hr for NHANES) as well as study periods. In
NHANES, four observations were deleted (two cases, participant ID = 468 and 578, that had
excessively long sampling periods, and two cases, participant ID = 3852 and 4076, with
extremely high concentrations of benzene, xylenes or toluene), also described by Jia et al. (Jia

et al. 2008).
2.1.3 Other Datasets

Several datasets were reviewed to derive trends in nationwide emissions and ambient
concentrations to compare to the NHANES measurements. Emission data were taken from
the National-Scale Air Toxics Assessment (NATA), an ongoing program used to derive
pollutant emissions and risks (US EPA 1996, 1999a, 2002). Trend analyses using emission
inventory must account for changes in inventory methods, e.g., NATA included additional
source types in 1999 (US EPA 1999a). We also used NATA's dispersion model predictions for
1996, 1999 and 2002, which are based on the NATA emission data but which reflect effects of
dispersion. NATA significantly underpredicts concentrations of many VOCs, due to missing

and underestimated emission sources, among other reasons (US EPA 2010a). However, our
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analysis stressed relative changes, which may be less sensitive to these biases. Several
ambient monitoring datasets were also reviewed, including the 1993 to 2004 aromatic
concentrations in the PAMS (US EPA 2011a), the 2001 to 2004 data from UATMP (US EPA
2001), and the 1990 to 2004 data from AQS (US EPA 2011a). PAMS and AQS data cover or
nearly cover the period spanned by the five NHANES cohorts. Site annual averages from the
AQS were downloaded and national level annual averages were calculated. To obtain reliable
and representative averages, only sites collecting 24-hr samples were used, each site had to
collect at least 24 measurements per year, and at least 20 sites meeting these criteria were
required to compute the annual average. Trends were plotted and percent changes per year

were calculated using simple linear regressions.
2.2 Statistical Methods and Data Analysis
2.2.1 Descriptive Analyses

The detection frequency (DF), defined as the percentage of measurements exceeding the
MDLs, excluding missing values, was calculated for each VOC in both RIOPA and NHANES
datasets (see Supplemental Table S1 and S2).

2.2.1.1 RIOPA Data

Descriptive statistics were calculated for all VOCs, including sample size, mean, standard
deviation (SD), geometric mean (GM), geometric standard deviation (GSD), minimum, 25"
50™ 75™ 95" percentiles, and maximum; these were calculated for all measurements (outdoor,
indoor, and personal), and also stratified by city. Spearman rank correlations were also

calculated for the VOC variables.
2.2.1.2 NHANES Data

Descriptive analyses followed the NHANES analytic guidelines (NCHS 2006) and used
weights to account for NHANES' hierarchical clustered sampling strategy. VOCs with very
low (<5%) DFs across the five cohorts were excluded from further analyses. MTBE was only
measured in continuous NHANES, and was excluded from certain analyses. To ensure a
sufficient sample size, at least 300 observations per VOC per cohort were generally required.
New variables formed to examine related groups of VOCs included BTEX (the sum of

benzene, toluene, ethylbenzene, m,p- and o-xylene concentrations) and total THMs (XTHM,
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the sum of chloroform, BDCM, DBCM and bromoform). Spearman rank correlation
coefficients were used to test associations among blood VOCs and among the air and blood
measurements for the 1999/2000 cohort. Group differences in key demographic variables
(age, gender, race, education levels, and income) among the cohorts were tested using ANOVA

and Chi-square tests for continuous and categorical variables, respectively.
2.2.2 Full Distribution Fitting

Maximum likelihood estimates (MLEs) were used to fit the full distribution of each VOC,
and goodness-of-fit (GOF) was examined using Anderson-Darling (A-D) tests (Haas 1997)
with the following candidate distributions: beta general, chi-square, Erlang, exponential,
extreme value, gamma, inverse Gaussian, logistic, log logistic, lognormal, normal, Pareto,
Pearson type 5, Rayleigh, Student, triangular, uniform, and Weibull. The null hypothesis for
the A-D test is that VOC observations come from a specific distribution. The A-D test, a
modification of the Kolmogorov-Smirnov (K-S) test, emphasizes tail behavior (Stephens
1974), so it is more appropriate for evaluating environmental exposure data which are usually
right-skewed distributions. Graphical examinations also provided insight. For each VOC
measurement type (outdoor, indoor, adult personal, child personal), all observations (i.e. both
first and second visit samples) before and after log transformation were used for full

distribution fitting.

Full distribution fitting for VOC observations were performed using @Risk and the
Decision Tools for Excel (Palisade Corporation, Ithaca, NY).

2.2.3 Extreme Value Analyses
2.2.3.1 Risk Evaluation for Extreme Value Exposures

Screening-level estimates of cancer risks were estimated using standard approaches.
The URFs for the VOCs were taken from the US EPA Integrated Risk Information System (US
EPA 2012a), the Office of Environmental Health Hazard Assessment’s Air Toxics Hot Spots
Program Risk Assessment Guidelines (OEHHA 2005), or EPA’s Cumulative Exposure Project
(Caldwell et al. 1998). Each URF and its basis are shown in Table 2, along with the reference
concentration (RfC) and toxic endpoints. URFs are not available for toluene, m,p-xylene,

o-xylene, d-limonene, a-pinene and B-pinene. The two visit measurements for each adult in
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RIOPA were averaged as an estimate of the long-term exposure concentration. The excess

individual lifetime cancer risk for a specific VOC 1 was calculated as:
R;=C; URF; (1)

where R; = excess individual lifetime cancer risk (probability), C; = concentration (g m™), and

URF;= unit risk factor (cancer cases per pg m>).

Following guidance for mixtures (US EPA 2000a), risks were calculated by response
addition for those VOCs that cause the same toxic effect on same target organ. In this case,
results of eq. (1) were summed for each participant for the several chemicals in the mixture.
Three mixtures were considered: VOCs associated with blood cancers (lymphomas and
leukemia), which included benzene, MTBE, 1,4-DCB, TCE and PERC; VOCs associated with
liver and renal tumors, which included ethylbenzene, MTBE, 1,4-DCB, TCE, PERC,
chloroform and CTC; and TVOC (Borgert et al. 2004; IARC 2012). TVOC also serves as a
general indicator of VOC exposure, and can be used to identify the dominant contributors to
VOC risks. The cumulative risk of mixture exposure was computed for each subject by
summing the risks of components in the mixture, and extreme values of the cumulative risk

were taken as the top 5% and top 10% of this sum over all persons.
2.2.3.2 Gumbel Distribution Fitting

Gumbel distributions were first used to estimate extreme value distributions for the top 5
and 10% of all observations and all measurement types. The sample size for the child
personal samples was smaller (n=209) than the other measurement types (indoor, outdoor and
adult-person measurements had a typical n=550), thus only the top 10% of the observations
were considered as extrema for child personal exposures. A probability plot method was used
to fit the Gumbel distributions as follows (Barnett 1975). First, extrema were ranked in
descending order. Then, each observation was plotted against -In[-In(Pv)], where Pv was

computed as:
Pv=(r-0.44)/(n+0.12) (2)

where r = reverse rank of VOC concentrations, and n = sample size. This method allows GOF
to be visualized as agreement to a regression line, and quantitative agreement is noted by the

regression's R” statistic.
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2.2.3.3 Generalized Extreme Value Distribution Fitting

To focus on health risk of the highest VOC exposures, further extreme value analyses
were applied to personal VOC observations in RIOPA and the results were compared with the
NHANES dataset. A broader class of extreme value distribution, the GEV distribution
(Jenkinson 1955), was fitted to each extrema dataset (5 and 10% cut-ofts for VOC exposures).
The GEV probability density function is expressed as:

e 1, o(X) = (1H(EE-R)/6)) " )/0) exp(-(1+(E(x-p)/6) ™) ifE#£0 3)

where £ = shape parameter, i = location parameter, ¢ = scale parameter, and x = data
observation. If &> 0, the GEV distribution belongs to Fréchet family; if £ <0, the GEV
distribution belongs to Weibull family (Jenkinson 1955); and if § = 0, the GEV distribution
belongs to the Gumbel family, which permits simplification of eq. (3):

fo, u, o(X) = (€ “°)/0) exp(-e M) (4)

The three parameters of the GEV distribution were determined by MLE, and GOF was
examined using A-D tests with the null hypothesis that data subset comes from the GEV
distribution. The A-D test, a modification of the K-S test, emphasizes tail behavior (Stephens
1974), so it is the most appropriate for evaluating extreme value distributions. Empirical A-D
test p-values were calculated for the repeated (bootstrap) samples in the NHANES weighted

dataset.

For GEV distribution fitting, only adult personal measurements were estimated because
they should be the most representative of exposure. We selected adult subjects due to the
larger sample size, namely, 544 measurements for 305 participants (299 and 245
measurements in first and second visits, respectively, of which 239 adults had valid samples in
both visits). Child exposures were not used due to the smaller sample size and because
several households included measurements from several children (only one adult was sampled
in a household), which would cause a cluster effect. Since risk of the long-term exposure was
the most concerned (concentrations were too low for acute effects), the averaged
measurements over the two visits were used. We next identified outliers, which initially were
defined as a value twice that of the next highest observation, and also influential observations,

identified as observations which clearly altered statistical results. Observations identified as
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being both outliers and influential were excluded in subsequent analyses; these very few
observations are noted. The sample sizes of the final top 5% and the top 10% of observed

concentrations were 12 and 24, respectively.
2.2.3.4 Extreme Value Simulation

For further evaluation, simulated extreme value datasets (n=10,000) were generated for
each personal adult VOC that followed the fitted GEV, Gumbel and lognormal distributions.
Because lognormal distributions are commonly employed for exposure data, these
distributions were fit to the full datasets by MLE, and the evaluation focused on extrema, again
defined as the top 5% and top 10% of the full distribution. Simulated datasets were generated
for the GEV and Gumbel distributions that matched the top 5% and top 10% of observations.
Simulated data (n=10,000) were also generated for the lognormal distributions that matched
the full distribution of observations. The simulated data were then compared to observations
using K-S tests and graphical analyses, and p-values were estimated. Finally, in a risk
assessment-oriented application, we compared the fraction of persons with cancer risks
exceeding 10,107, 10, 107, and 10 cut-offs for the three sets of distributions to observed

fractions. These analyses were conducted for both individual VOCs and mixtures.

Distribution fitting, simulations of GEV, Gumbel and lognormal distribution used gev,
rgev, rgumbel, fitdistr and rlnorm in R version 2.13.1 (R Development Core Team, Vienna,

Austria) and Excel (Microsoft, Redmond, WA).
2.2.4 Mixture of Normal Distribution Fitting

Three VOCs (chloroform, 1,4-DCB and styrene) were selected to evaluate mixture
distributions. These VOCs differ in terms of their distributions, detection frequencies and
other properties. Personal samples for adults were selected, primarily because the sample size
for the adult cohort (n = 544 for each VOC) was largest, and because the personal samples
should best reflect exposure. The two laboratories used to analyze samples had different
MDLs. Since the use of two laboratories is somewhat unusual, all data under MDLs were
replaced with a single value using 0.5 X the higher MDL. Because the VOC data in RIOPA
had many extreme values (Su et al. 2012), the density estimation methods were implemented

using logarithms of the concentration value, as described next.
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2.2.4.1 Finite Mixture of Normal Distributions

Finite mixture distributions are commonly used to identify and model sub-populations
within an overall population. Rather than identifying the sub-population that an individual
observation belongs to, these models assume that the observed data randomly arise from
distributions with certain probabilities. Let Y = (Yy, ...,Y,) be a random sample of size n
from the overall population with the probability density function of Y; given as f(y;). Y is
assumed to have arisen from a mixture of an initially specified number of distributions. A

K-component mixture of distributions supposes that the density of Y; can be written as

f(y:) = Xk=1 Mefre (V) (5)
where f;, is the component density of the k-th cluster, and A, is the corresponding weight
with the constraint that 0 < A, < 1 and >X_, A, = 1. In many applications, component
densities fj, are assumed to be standard parametric families, such as normal distribution

N(u,, o), then

f(y:) = Xi=1 ka(Hk: 6k ?) (6)

The finite mixture of normals represented by (6) is a potential choice for handling
concentration and exposure data that can have multiple modes and heavy tails. Such normal
mixtures are popular choices with attractive properties (Titterington et al. 1985). Since the
mixtures are constructed as a linear combination of normal distributions, they are
computationally and analytically tractable, well behaved in the limiting case, and scalable to

higher dimensions.

Mixture distributions can be fitted using many techniques, e.g., graphical methods, the
method of moments, MLE and Bayesian approaches (Redner and Walker 1984; Titterington et
al. 1985; McLachlan and Peel 2000). Since closed forms of MLEs of (5) are not available,
mixture distributions are commonly fitted using expectation maximization (EM) type
algorithms (Dempster et al. 1977; Meng and Pedlow 1992; McLachlan and Krishnan 1997).
We used the EM algorithm and considered a constrained maximum likelihood method to
estimate (6) with a further constraint that the location of the first cluster (generally the lowest)

is under the MDL, i.e., u, < MDL. This constraint ensures that a fitted cluster covers the
Hy

MDL, which allows it to be interpreted as the subpopulation of the data below the MDL.
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An important issue in fitting finite mixture distributions is selection of the number of
components K. Criteria based on penalized likelihood, such as the Akaike information
criterion (AIC), have been applied successfully to mixture distributions (McLachlan and Peel
2000). While this criterion generally favors larger K, there is considerable practical support
for its use due to simplicity (Fraley and Raftery 1998). The Bayesian information criterion
(BIC) appears attractive due to their statistical properties as well as the simplicity of
implementation. Though the BIC always leads to a smaller (or equal) number of components
than AIC, the BIC can also lead to an overestimate of the number of clusters regardless the
clusters’ separation (Biernacki et al. 2000). In general, with limited amount of data, a
corrected version of AIC such as AICc (Hurvich and Tsai 1989) may be preferable. For these
finite mixture distributions, we fitted model (6) with K=2 to 5 clusters, and selected the

optimal model based on AICc. This analysis was conducted for each of the three VOCs.

As a benchmark for comparison, we also fitted the traditional normal distribution, which
is a special case of mixture of normals with K=1. (As noted earlier, log-transformed VOC

data were used in all cases.)

The finite mixture of normals were implemented using the mixtools package (Benaglia et
al. 2009) in R (R Foundation for Statistical Computing, Vienna, Austria). This package fits

the finite mixture of normals using EM algorithms through the function normalmixEM.
2.2.4.2 Dirichlet Process Mixture of Normal Distributions

Bayesian density estimation methods using Dirichlet process mixture (DPM) of normal
densities have several practical advantages, including optimally trading off local versus global
smoothing, assessing modality, and propagating uncertainty on inferences regarding the
number of components and thus uncertainty about the density estimate (Ferguson 1983;
Escobar 1994; Mueller and Quintana 2004). Instead of pre-specifying the number of clusters,
these models allow the number of clusters to be chosen in a data-adaptive way. Let Y; ~ N(“i'
aiz) and let (ui, 0?) = 0;. The DPM of normal distributions assumes that these normal
parameters 0; follow a random distribution G generated from Dirichlet process (Ferguson

1973), which can be represented as:

0,|G ~ G iid. and G]|a Gy~ DP(aGo) (7)
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DP(a Ggy) is a Dirichlet process with concentration parameter o and base distribution G,
which is also known as the prior expectation of G. The precision parameter o determines the
concentration of the prior for G around G,. Blackwell and Macqueen provided the following

representation for the leave-one-out conditional distributions (Blackwell and MacQueen

1973):

0; 10, e, 0521, 0411, e, 0~ ——Go + —— X7 Iy, () (®)

n n—-1+a n—-1+a

In this approach, 6 = (6, ...,0,) will be reduced to certain K distinct values (K < n) with
positive probability. From (8), two well-known extreme cases of the DPM can be derived.
As a — oo, the DPM reduces to a parametric model, namely 6; - G, independent and
identically distributed (n clusters), whereas « — 0 implies a common parametric model,
namely 0; = -+ = 0,=0" with 0" — G, (1 cluster). The baseline distribution G, is chosen
to be the conjugate normal-inverse-gamma distribution. Hyperpriors could be used on this

normal-inverse-gamma distribution to complete the model specification.

The DPM of normals does not require specification of the number of clusters as needed
for parametric mixture distributions, such as the finite mixture of normals discussed previously.
In practice, suitable values of K will typically be small relative to the sample size n. The
implicit prior distribution on K is stochastically increasing with o and is related to the prior
distribution on @ (Antoniak 1974). For moderately large n, E(K |a,n) = @ log (1 + n/a)
(Antoniak 1974). A formal assessment of uncertainty regarding the number of components K
can be obtained through generated draws from the posterior distribution of K as a part of the

Bayesian computation scheme.

For the VOC data, the precision parameter o was chosen to follow a Gamma prior
distribution, and a sensitivity analysis was conducted with respect to choice of the Gamma
parameters. Given the sample size in the test dataset (n=544), for prior information,

a ~ Gamma(0.3,0.4) favors K=1-3 clusters; a ~ Gamma(1.2,2.5) favors 1-5 clusters;
o ~ Gamma(2,1.5) favors 2-10 clusters; and o ~ Gamma(5,2) favors 5-20 clusters. A

sensitivity analysis was conducted on these prior specifications.

Computational methods were followed that allowed the evaluation of posterior

distributions for all model parameters and the number of components, and also the resulting
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predictive distributions (Escobar and West 1995). Density estimation using DPM was
implemented using the DP package (Jara 2007; Jara et al. 2011) in R (R Foundation for
Statistical Computing, Vienna, Austria), which provides posterior draws of all model

parameters under a DPM using Markov chain Monte Carlo methods.
2.2.43 Goodness of fit Criteria

Goodness of fit for the density estimation methods was determined by comparing the
estimated cumulative distribution function (CDF) F,g, to the empirical CDF F'emp based on
the observed data. Although all observed/generated data were used to estimate the CDF by
each method, goodness of fit was evaluated using only the data above the MDL. Both the
mean squared error (MSE = Y, . supy [ﬁ'emp (yy) — Fose (y)1? / 2 1(y; > MDL)), and the
mean absolute error MAE = ;o sypy, |ﬁ'emp (v:) — Fose 7|/ X 1(y; > MDL) were

considered. The estimated proportion of observations above the MDL, which is often

termed the detection frequency, for empirical and estimated distributions was compared.
2.2.4.4 Simulation Study

For further evaluation of the mixture distributions, several forms of underlying true
distributions and varying amounts of left censored data (below MDL) were considered as true
generation models. Three methods were compared: a single normal distribution; a finite
mixture of normals; and DPM of normals. Two underlying distributions with features similar
to the three VOC samples from the RIOPA study were selected: a normal(0,22) and a
mixture specified as 1/2 Gamma(3,1.5) + 1/2 Uniform(—3,8). The former is
symmetric and the latter is right-skewed with heavy tails, and both have multiple modes
when data under MDL were replaced by 0.5 MDL. The proportion of data below the MDL,
Py, was set to 15%, 30% and 50% in separate simulations. Goodness of fit measures (MSE
and MAE described above) were calculated for each method, target distribution, and choice
of Py. A dataset of size n=1000 was generated for each simulation under each setting. The

average values of MSE and MAE across 500 simulations are reported.

For the finite mixture of normals, the number of components K was based on the smallest
AlICc. A convergence problem was encountered when P, was high (in the range of 30 to

50%), possibly because the censored data were set to a single value (0.5 MDL), which resulted
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in a very small variance of the first (lowest) cluster. Additionally, the MLE method for finite
mixture models is susceptible to other problems, e.g., nonunique solutions (Redner and Walker
1984; Titterington et al. 1985; McLachlan and Peel 2000). Thus, data below the MDL was
replaced by uniformly generated pseudo-data from U(0, MDL) if the finite mixture of normals
did not converge. In contrast, all of the single normal and DPM method simulations

converged.
2.2.5 Trend Analyses of VOC Exposures

Concentration trends were examined using quantile regression (QR) models, which
estimate changes in conditional quantiles of a response variable with changes in VOC levels
(Koenker and Bassett 1978). This semiparametric method makes no parametric distribution
assumptions for random errors. Model coefficients are estimated by optimizing an objective
function and the accompanying standard errors are derived using either parametric
assumptions on the model coefficients or via resampling techniques, e.g., bootstrap analysis
(Cade and Noon 2003). Compared to ordinary regression models, QR models are more robust,
e.g., resistant to effects of outliers, a special concern for skewed distributions, which have been
observed even after log-transformation of VOC data, following the NHANES guidelines (Jia
et al. 2008; NCHS 2010g). Moreover, QR models indicate changes at different quantiles, e.g.,
allowing comparison of trends at median and upper percentiles, and exploration of exposure
patterns. Linear QR models were fitted for 0.5, 0.75 and 0.95 quantiles (50", 75th and 95™
percentile concentrations). In a sensitivity analysis to allow changes in trend over the long
interval (1994-1999) between the NHANES III and continuous NHANES cohorts, piecewise
QR models were used with knots (locations where the slope changes) at several locations (e.g.,

1991-1994, 1999/2000).

To facilitate interpretation, annual average percentage changes in untransformed (raw)
concentrations were computed for each VOC and quantile, e.g., the change across the 15 year
study period is 1/15 (Cs - C;)/C; 100%, where C; and Cs are concentrations for a specific VOC
and quantile in the first and fifth cohorts, respectively. Annual relative changes were

calculated similarly for emissions and ambient concentrations.

Cigarette smoking is an important source of benzene and other aromatic compounds (L

Wallace et al. 1987), and cotinine is a reliable biomarker of tobacco smoke (Benowitz 1999).
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Correlations between serum cotinine levels and blood VOCs were determined, and the QR

models were adjusted for this parameter.

Results of trend analyses might be affected by shifts in the occupational mix, e.g., the
declining number of workers in industries where solvent use may be common. To account for
such effects, we identified occupational groups associated with VOC concentrations, and
adjusted QR models using indicator variables for these groups. Because many of the 41
occupational groups in NHANES had small sample numbers, groups were consolidated into
eight categories (managerial and professional specialty occupations; professional specialty
occupations; technical, sales and administrative support occupations; service occupations;
farming, forestry and fishing occupations; precision production, craft, and repair occupations;
operators, fabricators, and laborers; military occupations) based on 1990 Census Industrial &
Occupational Classification Codes. Due to the small number of military personnel (n = 7),
this category was dropped. ANOVAs were used to test whether VOC levels were associated
with these occupational categories, using the managerial and professional specialty category as

a reference group.

While the QR models used cohort-specific weights to obtain population-weighted results,
these models cannot account for NHANES' cluster sampling. As a sensitivity analysis to
evaluate the effect of clustering, trends in the mean were estimated using linear and piecewise
models with the appropriate weights, and compared to regression results with and without

adjustments for strata and clusters.

SAS 9.2 (SAS Institute, Cary, North Carolina, USA) was used for statistical testing and
model development. Weighted analyses used Surveymeans and Surveyreg, and QRs used

Quantreg. Other analyses were calculated using Excel (Microsoft, Redmond, WA).
2.2.6 Identification of Mixtures
2.2.6.1 Positive Matrix Factorization Analyses

VOC mixtures in the RIOPA dataset were selected using two approaches. The first
approach identified common VOC mixtures using positive matrix factorization (PMF), a
multivariate analysis that is similar to factor analysis, but with the ability to incorporate

uncertainties on each measurement that potentially reflect sampling errors and MDLs (Paatero
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and Tapper 1994; Anderson et al. 2001). Based on the uncertainty, variables are modeled as
weak or strong, i.e., variables with high uncertainties are assigned weak influence, and
variables with low uncertainties are assigned strong influence). Each VOC was given an
uncertainty equal to the measurement precision estimated as the pooled coefficient of variation
for duplicate samples (Weisel et al. 2005¢). Styrene and TVOC were designated as “weak”
given its higher uncertainty. Measurements below MDLs were retained, but assigned large

uncertainties to reduce their influence (US EPA 2008a).

PMF decomposes two matrices from the sample data: a matrix of factor profiles, which
represent the mass and percentage of each species apportioned to the factor, and a matrix of
factor relative contributions, which gives the contribution of each factor to the total
concentration of each observation (US EPA 2008a). Because there is no optimal or a prior
manner for selecting the number of factors, multiple PMF analyses were conducted using with
3,4 and 5 factors. Each was tested using GOF indicators, specifically, scaled residuals and
Q values. The latter is the sum of squares of the residuals divided by the uncertainties for the

concentrations of individual compounds (Anderson et al. 2001; US EPA 2008a).

To address seasonal variation, non-averaged VOC observations were grouped into warm
(April to September) and cold (October to March) seasons, and PMF analyses were run
separately for all groups. PMF analyses were run in various groups, and the final group
(presented in this dissertation) separated indoor VOCs; outdoor VOCs, and combined adult
and child personal VOCs. The logic for this arrangement was that different emission
sources would dominate indoor, outdoor and personal measurements, although the same
source types would affect personal measurements of adults and children, but in different
amounts. Combining child and adult groups also increased sample size. ~Apportionments
for adults and children could be separated after the analysis in order to resolve differences,
e.g., children would not be expected to have occupational exposures. In addition, to avoid
potential biases involved in repeated measurements (i.e., cluster effects) in further analysis
(e.g., copula analysis), PMF analysis applied to the personal adult measurements collected at
the first visit. The PMF analyses used PMF 3.0, a peer-reviewed receptor modeling tool
developed by the Environmental Protection Agency's Office of Research and Development

(US EPA 2008a).
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To help understand the personal, behavioral and environmental variables associated with
high exposure mixtures, a limited analysis using bivariate logistic regression models was
undertaken. VOC mixtures identified using PMF were divided into high and low groups,
using a cutoff of the 75" percentile of the mixture's total concentration (sum of each
component). Candidate variables for the logistic regressions, based on earlier work that
identified determinants of VOC exposure (Su et al. 2013), included city, ethnicity,
employment status, the presence of attached garage, self-service pumping gas, open doors or
windows, other family members taking showers, the use of fresheners, and household AERs.
The logistic regression models used proc logistic in SAS 9.2 (SAS Institute, Cary, North
Carolina, USA).

2.2.6.2 Toxicological Mode of Action

The second approach for selecting exposure mixtures used the toxicological mode of
action, which considers the biochemical pathways and outcomes that may be affected by
pollutant exposure (Borgert et al. 2004). Two mixtures were considered that had common
cancer endpoints: (1) VOCs associated with hematopoietic cancers (lymphomas and
leukemia), which include benzene, MTBE, 1,4-DCB, TCE and PERC; and (2) VOCs
associated with liver and renal tumors, which include ethylbenzene, MTBE, 1,4-DCB, TCE,
PERC, chloroform and CTC (Borgert et al. 2004; IARC 2011). The two mode of action
mixtures contained 5 and 7 components, respectively. It should be noted that selecting a
mixture based on mode of action is a completely different approach from those determined
using PMF or other correlation-based measures, which are driven exclusively by the pattern of

occurrence.

To reduce the number and complexity of analyses in mixtures containing a larger number
of components, highly correlated VOCs were grouped together based on their likely emission
sources or chemical characteristics. For example, the seven VOCs in the mixture associated
with liver and renal tumors were trimmed to a group of gasoline-related compounds
(ethylbenzene and MTBE), and chlorinated hydrocarbons (1,4-DCB, TCE, PERC, chloroform
and CTC). The analysis then proceeded with these groups.

2.2.7 Dependency Structures of Mixtures

2.2.7.1 Copula Analysis
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Dependency structures of the identified mixtures (using personal adult measurements at
the first visits) were fitted to copulas using MLEs and five candidate copulas (Gaussian, t,
Gumbel, Clayton, and Frank). GOF tests were conducted using Akaike and Bayesian
information criterion, and the copula with the lowest criterion was chosen as the best-fit
dependency structure. Copulas transform the marginal distributions of each variable into a
uniform distribution over the interval [0,1]. After this transformation, the dependency
structure is described following reference distributions. Once the dependency structure and

marginal distributions are known (or estimated), the joint distribution function is:
C(ui, uy, ..., up) =Prob(U; <uy, Uy <uy, ..., Uy <up) 9

where C is a copula function, U, i=1,..p are uniformly transformed random variables
corresponding to the marginal distribution functions Fi(x;), and p is the number of variables.

The joint distribution function can also be expressed as:
C[F](X]), Fz(Xz), ceey Fp(Xp) ] = F(X], X2y evny Xp) (10)

According to Sklar’s theorem (1959), if F; is continuous and x; is over [-c0, o], then C is

unique.

Copulas allow dependency structures to be weighted in different manners, and thus can be
symmetric or asymmetric (Staudt 2010). The several families and many types of copulas
have different origins and properties. The family of elliptical copulas is derived from
distributions, e.g., the Gaussian copula is from the multivariate normal distribution, and the t
copula from the multivariate Student t distribution. Given the same correlation coefficient, t
copulas provide a better fit to distributions that include extreme values than Gaussian copulas,
i.e., the t copula more accurately models tail dependencies (Schmidt 2006). Among
Archimedean copulas, which are stated directly and not derived from distributions, Gumbel
copulas emphasize upper tail dependency, Clayton copulas emphasize lower tail dependency,
while Frank copulas have no emphasis on tail dependency, i.e., symmetrical dependencies on
both tails (Schmidt 2006). The product copula, the simplest copula, indicates independence

between random variables (Trivedi and Zimmer 2007).

After choosing the best-fit copulas, we generated two sets of objects necessary for

simulating joint distributions (discussed in the next section), namely, uniform [0,1] random
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variables for each component of the mixture that followed the copula-identifying correlations,
and copula parameters that were estimated using MLE. The Gaussian copula parameter was
the covariance matrix. The t copula used the same matrix plus the number of degrees of

freedom. The Gumbel, Clayton and Frank copulas each used a correlation parameter.
2.2.7.2 Simulated Joint Distributions

Simulations tested the GOF of the fitted copulas. These used the uniform random
variables and fitted parameters for each copula (described above), as well as marginal
distributions fitted for each VOC. A large number (n = 1,000) of pseudo-observations were
generated for each mixture. Using the pseudo-observations, the probabilities that all
components in the mixture exceeded 50", 75™, 90™ and 95™ percentile cutoffs were
calculated and compared to observations. For comparison, we also calculated probability
assuming independence among mixture components, €.g., the probability of a three
component mixture in which each component exceeded the 90™ percentile concentration is
0.001 (p=0.1°). Because styrene and TCE had low detection frequencies (49 and 31%,
respectively), probabilities that all mixture components exceeded the 50™ percentile cannot be

calculated.

To examine the influence of each mixture component and any trends that might be
associated with concentration, mixture fractions, which were defined as a component’s
fractional contribution to the total concentration of the mixture, were calculated for both
observed and simulated data, and results were summarized using the median fraction in
several bins (50 - 75", 75 - 90™, 90 - 95", 95 - 100™ percentile) for each mixture. Changes
in the mixture fraction associated with the total mixture concentration show trends and help
reveal the mixture's source, e.g., fractions for generated or intentional mixtures should be
constant. Mixtures with consistent mixture fractions across a population or over time are
considered "homogeneous," and may represent generated mixtures. In contrast, highly

variable or "heterogeneous" mixture fractions may reflect coincidental mixtures.

For VOC mixtures based on mode of action, cumulative cancer risks were estimated
assuming response addition following EPA guidance (US EPA 2000a). We also computed
the fraction of individuals with cumulative risks exceeding thresholds of 10, 10°, 10, 107

and 102, and compared results obtained using the observations, copula simulations, and
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multivariate lognormal distributions using the observed means and variance/covariance matrix.
Cumulative probability plots were used to visualize differences between observations and

simulations.

Copula fitting and simulations were performed using ModelRisk 5 Industrial edition
(Vose Software BVBA, Gent, Belgium). Simulations of multivariate lognormal distributions
used RLNORM.RPLUS in R version 2.13.1 (R Development Core Team, Vienna, Austria) and
Excel (Microsoft, Redmond, WA).

2.2.8 Time and Exposure Fractions

The sampling time and time spent in different locations (outdoors in neighborhood,
outdoors out of neighborhood, indoors at home, indoors at school/work, other indoors,
transportation, and unknown) were calculated for each participant. Participants who had
missing-time fractions Fi miss, €xceeding 0.25 (n = 50), were excluded. The mixing time

fraction was calculated as:

Ft,miss = (Ttotal - Toutdoor - Tindoor - Ttransit)/Ttotal (1 1)

where Ty = total time spent (min), Toudoor = time spent outdoors (min), Tingoor = time spent

indoors (min), and Tyansit = time spent in transit (min).

An individual's total, cumulative or potential exposure is often represented as the sum of
the concentration-time product across all compartments or microenvironments in a given time
period. From the RIOPA dataset, the fraction of exposure attributable to the outdoor

microenvironments was calculated for each participant as

Foutdoor = (Coutdoor Tneighborhood)/ (Cpersonal Ttotal) (12)

where Foudoor = fraction of personal exposure originating outdoors in participant's
neighborhood, Couaeor = residential outdoor VOC concentration (pug m™), Theighborhood = time
spent outdoors in neighborhood (min), and Cpersonal = personal VOC exposure (ug m>).

Similarly, the indoor exposure fraction is

Fhome = (Chome Thome)/(cpersonal Ttotal) (13)

where Fpome = fraction of personal exposure originating indoors at home for each VOC, Chome =

indoor VOC concentration (ug m™) at home, and Thome = time (min) spent indoors at home.
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These exposure fractions, which consider only two types of locations (indoors and outdoors),
were computed for each VOC and participant. They assume that VOC measurements were
representative of the location and error-free, and that the time-activity data were complete

(Fimiss= 0) and error-free.
With the (strong) assumptions just stated,
1= Foutdoor + Findoor + Fother (14)

where Fomer = is the exposure fraction in all other compartments, e.g., commuting and
workplace. If some time is unaccounted for (e.g.,Fimiss>0), then Foutdoor + Frome < 1. As
discussed later, Foudoor Was generally very small. However, Fingoor >1 for 11 to 20% of the
observations (n= 52 to 98, depending on the VOC), Fpome >1.25 for 5 to 11% of the data (n=
25 to 53), and Fiome >1.5 for 2 to 8% of the observations (n= 11 to 39). Clearly, these cases
did not satisfy the assumptions stated, i.e., the indoor time-concentration product exceeded
the total personal exposure. Violation of any of the assumptions could cause such results.
Considering the VOC measurement errors alone, most sampling programs set performance
criteria at about 25%, and it is reasonable that roughly 10% of the measurements had greater
errors. Given the importance of the indoor environment to VOC exposure, sampling error
alone might explain a good fraction of the divergence from the assumptions. While cases
where Frome >1 might be excluded, it seems likely that indoor exposure was important and
dominant, and thus might be reasonable to assume that Fiydoor = 1 and Foytgoor = 0 in such cases.

In the following analysis, we excluded Fpome > 1.25.

A second approach to apportion exposures to measure residual compartments might

estimate the total exposure Eio (Ug m> min) as:

Etotal ~ Coutdoor Toutdoor + Cindoor Tindoor + Cother Tother (15)

and then use this approximate value (rather than Cpersonal Ttota1) @s the denominator in egs. (12)
and (13). This remains an approximate and downward-biased estimate since Cgher Was not
measured, however, if the Comer Totmer product is small, errors should be small, moreover, all
fractions are sure to be less than 1. Fyome calculated using eq. (15) was very near one, e.g.,
means and medians ranged from 0.96 to 1 for all VOCs, and the 75" percentile exposure

fractions were 1 for all VOCs, again showing the dominance of indoor exposures. Thus, the
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former method (eq. 13) was used.

Exposure fractions were stratified by city and by warm (May to October) and cool
(November to April) seasons. The significance of differences was evaluated using

Kruskal-Wallis (K-W) tests.
2.2.9 Identification of Determinants
2.2.9.1 Variable Selection

As an initial step to identify possible exposure determinants, each of the 527 RIOPA
variables was used in univariate regression models with outdoor, indoor and personal VOC
measurements as dependent variables. These models used six VOCs (benzene, toluene,
MTBE, 1,4-DCB, PERC and chloroform), which were selected to represent a range of VOCs
and potential emission sources. Next, variables that attained statistical significance (p <
0.05) were used in forward stepwise multivariate regression models with selection based on
the Schwarz Bayesian Information Criterion. While this reduced the number of variables,
the resulting parameter estimates are approximate since these models do not account for
possible correlations due to clustering and nesting, e.g., two seasonal samples for most

participants.
2.2.9.2 Linear Mixed-Effect Models

LMMs that incorporated fixed and random effects and repeated measures (Krueger and
Tian 2004) were estimated for outdoor, indoor and personal measurements using the
variables selected by the stepwise models. These models also incorporated several
variables with strong theoretical support or of special interest (e.g., city, ethnicity, and presence
of an attached garage). Two-way interactions among variables were evaluated. However,
few significant interactions between determinants of VOC exposures were found. Thus,
interaction terms were not retained in the final models. Using log-transformed VOC
concentrations, random intercepts, nested effects for city, and interactions, the LMMs are

expressed as:
IOg(Cti) = (ﬁo + b()i) + B] ViSitt + Bz City +...+ f)n Xn + Eti (16)

where C; = VOC concentration (ig m™) at time t for individual i, p = model coefficients for

fixed effects, b = random deviation from the overall fixed effects, Visit, = sample collected at
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time t, X = other covariates, and &; = random error of the VOC concentrations from the
predicted line at time t for individual i. Since the LMMs used log-transformed VOC:s, the

effect size for each explanatory variable was calculated as follows,
Effect size = ¢*V (17)

where e = exponential, U = 1 for categorical variables, and U = interquartile range (IQR) for

continuous variables.

To maintain a sufficient sample size, variables with fewer than 400 observations were not
included in the final LMMs. Separate LMMs were developed for the 15 VOCs, and grouped
into three categories based on common determinants: gasoline-related VOCs (BTEX,
MTBE and styrene); odorant and cleaning-related VOCs (1,4-DCB, chloroform, d-limonene,
a-pinene and B-pinene); and dry-cleaning and industry-related VOCs (TCE, PERC and
CTC).

2.2.9.3 Model Assessment

Steps taken to help verify model results included the following: Partial residual plots
were examined to assess linearity and fit of continuous variables, e.g., wind speed and
household AERs. Transformations (e.g., log-transformation or reciprocal) were tested for
variables showing non-linear relationships. Because the reduction in residual variance (R?)
attributable to fixed effect variables cannot be directly obtained from the SAS procedure, R?

was estimated as:
2
R = (aiznt' afzull) /aiznt (18)

where o7, = variance of the intercept only model, and afzu” = variance of full model.

Here, R” indicates the difference of variance between reduced (i.e., intercept-only) and full

(i.e., with predictor variables) models.
2.2.9.4 Missing Data

Candidate variables in the LMMs typically had 50 to 100 missing observations. The
effect of missing data was evaluated using multiple imputation (MI), and results were
compared to the original dataset (with missing data). Three models for each sample type were

selected for this comparison: models with the least missing data (e.g., 3% missing for
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personal measurements of styrene), models with a modest amount of missing data (e.g., 20%
missing for benzene), and models with a high amount of missing data (e.g., 28% missing for
d-limonene). Differences between the original and MI datasets were computed as the relative
change in model estimates of B. The results of this comparison (Supplemental Tables S3 to S5)
demonstrated that while models using imputed data tended to have smaller (more statistically
significant) p-values, changes were not large. Also, the model parameters themselves did not
show obvious biases. Differences tended to increase with the fraction of missing data,
although changes were generally small, and among the nine models tested, only one (outdoor
benzene) had three parameters change by more than 30%. Because missing data did not

greatly affect the LMM results, subsequent results do not use MI.

Most analyses used SAS 9.2 (SAS Institute, Cary, North Carolina, USA). Variable
selection used proc glmselect, LMMs used proc mixed, and MI analyses used proc mi and proc
mianalyze. Partial residual plots were drawn in R version 2.13.1 (R Development Core Team,

Vienna, Austria). Relative changes were calculated using Excel (Microsoft, Redmond, WA).
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CHAPTER 3

Results and Discussion

The results of the statistical analyses described in Chapter 2 are presented in this chapter.
It includes nine sections in the order of the research objectives (Section 1.3). Section 3.1
provides descriptive statistics for the RIOPA and NHANES datasets. Section 3.2 shows the
full distributions of the observed VOC data. Section 3.3 presents extreme value analyses
for the VOC exposures. Section 3.4 addresses the mixture distributions for the exposures.
Section 3.5 presents the trends of VOC exposure from 1988 to 2004.  Section 3.6 shows the
VOC mixtures identified by PMF analysis. Section 3.7 describes the dependencies and
joint distributions of VOC mixtures. Section 3.8 presents time fractions and VOC exposure
fractions. Section 3.9 addresses potential determinants of personal, home and outdoor
VOCs. Each section (except Sections 3.1 and 3.2) also compares results with previous

studies, and discusses the strengths and limitations of the analyses.
3.1 Descriptive Statistics
3.1.1 RIOPA Study

Descriptive statistics for RIOPA VOCs are shown in Table 3 to 10, and Spearman rank
correlations between pollutants are shown in Table 11 to 14. Findings from these initial

analyses include:

e  Detection frequencies varied widely and depended on the compound. For VOC:s,
detection frequencies ranged from 6 to 97% for outdoor measurements; from 25 to 95%
for indoor measurements; from 31 to 96% for personal adult measurements; and from 23
to 97% for personal child measurements). For PM; s, all of the measurements were

above the MDL. One-half of the MDL was substituted for measurements below MDLs.

e  For most VOCs, mean concentrations were ranked as roughly: indoor = personal >

outdoor. However, for 1,4-DCB, the maximum indoor concentration (4051 pg m™) was
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twice that of the highest personal concentration. The highest mean outdoor, indoor,
personal adult, and personal child VOC concentrations occurred in Los Angeles, Houston,

Houston and Elizabeth, respectively.

e  The correlation coefficients among outdoor VOCs were generally higher and more
commonly statistically significant than among indoor and personal VOCs, and there were

more statistically significant pairs among the outdoor measurements.
3.1.2 NHANES III and 1999-2004

Table 15 breaks out descriptive summary statistics for the NHANES III (1988-1994) and
continuous NHANES (1999-2004) cohorts. (Supplemental Tables S6 gives cohort-specific
statistics.) CTC and TCE had very low DFs (5.5 and 4.8%, respectively), and were excluded
from further analyses. In NHANES III, 1,4-DCB had the highest mean level (1.11 +0.12 pg
L") among the 12 VOCs, over twice that seen for the next highest compound, toluene, while
BDCM had the lowest mean (0.008 + 0.001 pg L™) with 86% of measurements fell below the
MDL. In continuous NHANES, 1,4-DCB levels decreased (0.87 + 0.10 ug L™), although it
remained the single highest VOC. Again, DBCM had the lowest concentration (0.002 +
0.000 pug L") with 43% of measurements below the MDL (which also decreased). VOC
levels decreased over these two periods, and differences in high-end exposures were
particularly striking (Table 15). Again examining 1,4-DCB, the maximum was 52 ug L™ and
the 1988-1994 95™ percentile concentration was 11 pg L™, well above any other VOC. As
discussed later, products containing 1,4-DCB have been widely used indoors, and possible
occupational exposure and low clearance rates for this VOC may increase exposures and

concentrations in blood.

As expected, related VOCs were correlated. The five BTEX compounds in blood had
Spearman rank correlation coefficients from 0.14 (benzene and m,p-xylene) to 0.81
(ethylbenzene and o-xylene) in NHANES III, and from 0.38 (benzene and m,p-xylene) to 0.89
(ethylbenzene and o-xylene) in continuous NHANES (Table 16). The THM compounds were
significantly correlated, except for chloroform and bromoform in NHANES III. In general,
correlation coefficients were lower in the 1988-1994 cohorts, in part due to the higher MDLs
obtained during this period.

Correlation coefficients between blood and personal air measurements in the 1999/2000
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cohort were statistically significant for the nine VOCs available, and ranged from 0.24 to 0.38
for the BTEX compounds, to 0.62 for PERC and 0.65 for 1,4-DCB (Table 17). Thus, the
personal air measurements explained a modest portion of the blood measurements. The
NHANES study design likely lowered these correlations since sequential, rather than
simultaneous, measurements were utilized, i.e., higher agreement likely would have occurred
if blood was sampled when the personal air samplers were returned. Also, correlations are
lowered by clearance rates that differ among VOCs, exposure pathways other than inhalation
(e.g., consumption of chlorinated water), and experimental errors. Nonetheless, the positive
and significant correlation suggests that the blood measurements provide useful exposure

information.

Due to relatively rapid clearance, VOCs measurements in blood reflect exposures over
only the immediate period preceding the blood draw (e.g., 2 or 3 half-lives). If sampling was
random, blood measurements can reflect chronic exposures, although some attenuation is
expected since blood draws would not immediately follow high exposure events due to time
needed for travel and processing in the MEC. Consequently, the sample variability may not

reflect the true variability of chronic exposures.

The 1988-1991 cohort had an excessive fraction (63%) of values reported as "extreme or
illogical values" for toluene, ethylbenzene, o-xylene, styrene, bromoform and PERC, which
left fewer than 200 valid measurements. Also, compared to subsequent cohorts, available
data for these VOCs and cohort tended to have lower correlation among related compounds,
and means (and medians) appeared inconsistent (Supplemental Tables S6). For example,
m,p-xylene measurements in this cohort were very low and inconsistent with data in
subsequent cohorts. Measurements of these seven VOCs in the 1988/1991 cohort were not
considered to be reliable, and thus were omitted from subsequent analyses, along with the
derived BTEX and XTHM variables. Other assessments of VOC data quality in the NHANES

documentation or general literature have not been identified.
3.2 Full Distributions for VOC Observations

Table 18 shows the distribution types providing the highest GOF, based on A-D tests, by
VOC measurement type (outdoor, indoor, adult personal, child personal) in RIOPA. Data

were right skewed, as expected, and the most common distribution for the RIOPA VOCs was
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the Pearson type 5 (right-skewed).

The nature of the VOC distributions in RIOPA can also be visualized in Figures 1 to 4 for
four VOC:s that often represent different sources: benzene, 1,4-DCB, PERC, and chloroform.
The left-hand panels of each figure show histograms and fitted distributions; the right-hand
panels show log-transformed data and distributions fitted to the transformed data. This
analysis shows several features. In addition to the right skew of the data, log-transformed data
show departures from normality, primarily due to two features at either end of the distribution.
First, each of the VOCs show a large number of low concentration measurements, a result of
setting concentrations below the MDL, which are typically addressed by setting values to
one-half MDL or some similar value. As presented in Section 3.1.1, outdoor VOCs, including
styrene, 1,4-DCB, MC, TCE, chloroform, d-limonene, a-pinene, and -pinene, and indoor MC
and TCE, and child measures of TCE, all had especially low detection frequencies (< 30%, i.e.,
most values were below MDLs). This characteristic, an artifact in the sense that it is a result
of the VOC sampling and analysis method employed in RIOPA, can influence distribution
fitting and data interpretation.

Figures 1 to 4 also point out show positive skew after log transformation and (remaining
high) outliers that cause deviations among the upper tails of the distributions. This was
especially apparent for outdoor 1,4-DCB, indoor 1,4-DCB and d-limonene, adult 1,4-DCB,
chloroform, d-limonene, and PERC, and child 1,4-DCB and d-limonene. In this research, the

highest values are of key interest given that these portray the highest exposures.

The full range distributions of VOCs in RIOPA and NHANES shared some similarities.
Distributions were right-skewed, and the top ranked distributions for the NHANES VOCs
were usually lognormal (except for MTBE, 1,4-DCB and TCE). In contrast, of the RIOPA
VOC:s, the top ranked distribution was lognormal for only two VOCs (PERC and chloroform).
Of course, several distributions can provide quite similar fits. As examples, Figure 5 contrasts
observed and modeled distributions for benzene, 1,4-DCB, PERC, and chloroform, which can
be compared to the personal adult distributions shown earlier in Figures 1 to 4. This analysis
showed a number of differences. First, as can be seen on the figures, the NHANES data
tended not to show a mode that was attributable to measurements below MDLs. Second,

measures of central tendency and other properties tended to vary. For example, NHANES
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and RIOPA had median concentrations of only one VOC, PERC, that were not different
(Mann-Whitney tests, p < 0.05); average concentrations were not different for only three

compounds (1,4-DCB, PERC and chloroform, t test, p < 0.05).
3.3 Extreme Value Analyses for VOC Exposures
3.3.1 Predicted Health Risks for Extreme VOC Exposures in RIOPA

Estimates of individual excess lifetime cancer risks for the median, 90" and 95™
percentile concentrations are shown in Table 19 (Additional statistics are shown in
Supplemental Table S7). Using median concentrations, chloroform, 1,4-DCB and benzene
presented the highest (and very similar) risks, 2.0 to 2.9 x 107, respectively; risks for other
VOCs were below 107,  For the 95" percentile concentrations, the same three VOCs also
presented the highest risks, 1.5 x 10™, 3.6 x 10” and 7.7 x 107, respectively; risks above 107
are also caused by ethylbenzene, MTBE, styrene, PERC and CTC. Among the RIOPA VOC:s,
1,4-DCB presented the greatest risks, e.g., for the top 10% extrema, all individuals had risks
exceeding 10, 88% exceeded 107, and 13% exceeded 107, a high level. Additionally,
1,4-DCB’s share of the total carcinogenic risk (the sum of risks across individual VOCs)
increased greatly at higher percentiles, e.g., 1,4-DCB represented 17% of the total risk using
median concentrations, 81% using 90" percentile concentrations, and 98% using 95™
percentile concentrations. As discussed later, the dominance of 1,4-DCB is partly a function

of the specific VOCs measured.

Predicted risks for the three VOC mixtures also are shown in Table 19. For
hematopoietic toxicity, the median and 95" percentile risks were 7.6 x 107 and 3.7 x 107,
respectively, most of which was due to benzene and 1,4-DCB among the five VOCs (benzene,
MTBE, 1,4-DCB, TCE and PERC) in this mixture. For liver and renal toxicity, the median
and 95" percentile risks were 1.1 x 10™ and 3.7 x 107, respectively, mostly contributed by
1,4-DCB and chloroform among the seven VOCs (ethylbenzene, MTBE, 1,4-DCB, TCE,
PERC, chloroform and CTC) in this mixture.

These risks and hazard quotients represent preliminary screening-level predictions and
have several limitations. They include only a subset of VOCs among those known or
suspected to be toxicants, e.g., RIOPA did not include naphthalene, which is associated with

anemia (ATSDR 2005b), or include reliable measurements of 1,3-butadiene, which is
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associated with blood and lymphatic system cancers (ATSDR 2009). The two personal
exposure measurements averaged together for each RIOPA participant may not be a robust
measure of lifetime average exposure. The uncertainty in the RfC and URF is considerable,
and the values used are believed to be conservative. Finally, the exposure measurements
represent multiday averages; shorter term exposures (1-24 hr) can be higher and could

possibly exceed RfC or other guidance levels for acute effects.
3.3.2 Gumbel Distributions for the RIOPA and NHANES Data

Figures 6 to 9 display model fits to the data for indoor, outdoor and personal
concentrations for the same four VOCs in RIOPA discussed earlier. Table 20 summarizes

results for all VOCs and sample types.

e Inall cases, Gumbel distributions provided a higher fit to extrema when defined as values
above the 95™ percentile as compared to above the 90th percentile, suggesting that this is

a more appropriate cut-off. Thus, the remainder of this analysis uses this higher cut-off.

e  Higher fits (R2 > (.85) were seen for outdoor measurements of benzene, toluene, MTBE,
d-limonene and a-pinene; indoor measurements of BTEX compounds, MTBE, styrene,
1,4-DCB, chloroform, a-pinene and B-pinene; personal adult measurements of
ethylbenzene, m,p-xylene, o-xylene, styrene, 1,4-DCB and B-pinene; and personal child

measurements of styrene, 1,4-DCB, a-pinene and B-pinene.

e Lower fits (R* < 0.6) were seen for many outdoor measurements of ethylbenzene,

o-xylene, styrene, 1,4-DCB, MC, TCE, PERC, chloroform, CTC, a-pinene and -pinene.

e  Offten, child personal measurements had lower fits, possibly a result of lower sample sizes

which did not capture many “true” outliers.

e  High fits were seen for indoor and personal measurements for several VOCs, including

the BTEX compounds, styrene, 1,4-DCB, chloroform and B-pinene.
e Several VOCs did not show high fits for any sample types, e.g., MC, PERC and CTC.

e Inanumber of cases, an even higher cut-off might be appropriate when fitting

Gumbel-type distributions, and sometimes results are driven by a few outliers.

These results suggest that simple parametric distributions do not fit the entire range of
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observations in the RIOPA VOC dataset, that extreme value distributions often can provide
good fits the highest values, e.g., the top 5% of measurements, and that some additional work

to explore the sensitivity to cut-offs could be useful.

Although the extreme value analysis is descriptive and cannot suggest underlying causes,
it does suggests that extreme values are more likely for certain VOCs and certain types of
exposure measures, €.g., high personal exposures to BTEX may be associated with vehicle
refueling events, high indoor levels of pinene may be associated with cleaning events, etc.
For some VOCs and certain exposure compartments, outliers are unlikely, e.g., CTC is a long
lived VOC with few localized sources, and other solvents and some other VOCs also have few

strong and localized outdoor sources likely to produce extrema.

RIOPA and NHANES show the contrast between extreme value distributions. Most
VOCs in NHANES showed better fits (higher R?) to the maximum Gumbel distribution than
the RIOPA data, although BTEX compounds showed high R* values in both data sets.
Chlorinated hydrocarbons (TCE, PERC and chloroform) had better fits in NHANES, the
opposite for 1,4-DCB. Several large differences were seen in maxima in that RIOPA had
higher maximum concentrations, sometimes by very large amounts, e.g., PERC and
chloroform maxima in RIOPA were 2,618 and 1,224 ng m>, respectively, compared to 659 and
54 pg m” in NHANES. Like other compounds, maximum Gumbel distributions provided a
better fit to these two VOCs in the NHANES dataset than obtained for RIOPA.

Different sampling designs and sample bias likely explain some of the differences
between RIOPA and NHANES. Designed as a nationally representative sample, NHANES
should reflect population heterogeneity, and if this applies to VOCs and their extrema, then
NHANES should better represent the true extreme value distributions than the more stratified
sampling design used in RIOPA. A second reason is protocol differences. In NHANES,
staging was extensive, and included two trips by participants, in most cases by private vehicle,
to a centrally-located MEC, which consisted of multiple trailers in a parking lot used for
surveys, blood collection, VOC sampler deployment, and other purposes. RIOPA used
in-home measurements and did not require common staging and the associated trips. This
might have produced greater uniformity in the NHANES data, among other differences. We
have noted discrepancies in some of the NHANES blood VOC data in earlier cohorts and only
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modest correlation between VOC measurements in blood and personal air in a subset of the
1999-2000 NHANES cohort (Su et al. 2011), however, these issues are not expected to

adversely affect the comparability of the air samples.
3.3.3 Generalized Extreme Value Distributions for the RIOPA Data

Table 21 shows parameters of GEV distributions fitted to the VOC data, and
goodness-of-fit statistics. Figure 10 shows cumulative distributions of cancer risks for four
VOC:s for simulated data matching GEV, Gumbel and lognormal distributions, as well as the
observed data. Separate plots are shown for the top 5 and 10% extrema. The GEV
distributions closely fitted both the top 5 and 10% of observations of all VOCs based on A-D
tests (Table 21), and comparisons of simulated and observed distributions matched based on
K-S tests, with the exception of the top 10% of B-pinene (Table 22). With the exception of the
top 5% of benzene concentrations, the shape parameters of the GEV distribution were close to
or larger than 0, indicating Gumbel or Fréchet distributions, and the location and scale
parameters reflected the high percentile concentrations shown earlier (Table 21). While the
GEV distributions closely fitted the extrema, including both individual VOCs and the three
VOC mixtures, simulations sometimes produced extremely high values that greatly
overpredicted maxima, e.g., concentrations > 20,000 pg m >. This occurred for the top 10%
of ethylbenzene, styrene, 1,4-DCB, TCE and PERC concentrations, and the top 5% of
ethylbenzene, MTBE, styrene, 1,4-DCB, TCE and chloroform concentrations. These
problems were limited to the extreme right-hand tails, e.g., values above the 98" or 99™

percentile.

Gumbel distributions fitted several of the VOCs (e.g., top 5 and 10% of benzene,
ethylbenzene, MTBE, styrene, 1,4-DCB, PERC and chloroform concentrations), based on K-S
tests (Table 22). Sometimes the lowest values (i.e., the left tail) were lower than observations,
and some values even went negative (The plots in Figure 10 are truncated and do not make this

visible.)

Lognormal distributions fitted extrema for several VOCs (e.g., top 10% of benzene and
ethylbenzene observations, the top 5 and 10% of MTBE, PERC and chloroform, and the top
5% of CTC, shown in Table 22. However, these distributions typically diverged from

observations, and the “fat” right-hand tails were greatly unrepresented (Figure 10). We note
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that the lognormal distributions were fitted for the full dataset, not just the top 5 and 10% used
for the GEV and Gumbel distributions.

The observed and predicted fraction of individuals with risks that exceed 106,107, 107,
107 and 1072, risk cut-offs that might be considered “bright lines”, are examined in Table 23.
This analysis is performed for the top 5% and 10% of the data, and the three distributions.
GEV and Gumbel predictions were very close to observed frequencies, and differences were
usually within a few percent. As an example, for the top 10% of the benzene data, the
observed, GEV, Gumbel and lognormal simulations showed risk levels exceeding 107 for 29%,
26%, 31% and 18% of the population, respectively. As a second example, using the top 5% of
1,4-DCB values, the corresponding frequencies were 25%, 27%, 24% and 10%. As noted
earlier, GEV simulations sometimes overpredicted the very highest upper percentiles (seen at
the 10" risk level for ethylbenzene, MTBE, styrene, TCE, PERC, chloroform and CTC), and
such risks were not seen in the data. However, such cases were rare, comprising less than about
1% of the entire dataset. Gumbel distributions also overpredicted extrema (although maxima
were lower), and also underpredicted lower risks, in part due to its unbounded nature that can
generate small and negative values. For example, all (100%) observed individuals had risks
exceeding 10°° for MTBE, styrene, 1,4-DCB, TCE, PERC and CTC, but Gumbel predictions
ranged from 77% (TCE) to 99% (MTBE). As noted above, lognormal predictions did not
match observations, and the differences could be large, e.g., for the top 5% of PERC risks, 33%
of the observations exceeded the 10~ risk level, but the lognormal predictions showed
percentages less than half of this level. Similar results were seen for benzene, styrene, TCE

and other VOCs.

Overall, these evaluations show that GEV distributions provided a good fit to pollutant
and risk extrema for the VOCs and VOC mixtures measured in RIOPA. Occasionally, GEV
distributions overpredicted some concentrations and risks, but this was limited to the very
highest values. The 3-parameter GEV distributions provided better fit than the 2-parameter

Gumbel distribution. In contrast, lognormal distributions provided poor fits to extrema.
3.3.4 Generalized Extreme Value Distributions for the NHANES Data

In most cases, the top 5% and top 10% of the NHANES data did not match GEV

distributions fitted to either the larger dataset, which used sample weights to specify repeat
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frequencies, or to the smaller (equal size) datasets that used bootstrap methods and repeated
sampling (Table 24 and Table 25). Using the latter approach, for example, GEV distributions
matched only the top 5% of 1,4-DCB and TCE (marginally significant) based on the A-D tests,
but not the K-S test. Possibly the two approaches used to incorporate the sampling weights
did not decrease the “staircase” nature of the weighted datasets, which caused these tests to
reject the hypothesis that the original and fitted distributions did not differ. Another possible
explanation is that the repeated observations violated the assumption that extreme values
should be drawn from a set of independent, identically distributed samples (Fisher and Tippett
1928). We tried a third approach, fitting GEV distributions to the unweighted NHANES data,
which did match on basis of A-D and K-S tests (Table 26). These results suggest that the
fitting or possibly the evaluation approaches used for the GEV distributions are inappropriate

for weighted datasets.
3.3.5 Limitations

This work has several limitations. GEV and Gumbel distributions describe only one tail
of a distribution, and cannot be used for the remainder of the distribution. Cancer risk
estimates require long-term exposure estimates, and averaging the two visits in the RIOPA
dataset may not be representative of long-term exposure. Additionally, individuals lacking
either data from either visit were excluded, which reduced the sample size. Extrema were
defined using two cut-offs (90 and 95th percentiles). The use of a higher cut-off, e.g., the 98th
percentile, was not feasible due to sample size issues. The results for RIOPA are limited to
personal exposure measurements of 15 VOCs made in three large cities in the USA. Because
RIOPA included only non-smoking households, and for other reasons noted earlier, its results
are not generalizable to other cities. We did not evaluate extreme value distributions for other
VOCs (e.g., formaldehyde) or other pollutants (e.g., PM,s). There may be additional
explanations for the differences between the RIOPA and NHANES results beyond those noted

(i.e., different sampling designs, staging, demographics, and presence of smokers).
3.4 Mixture of Normal Distributions for VOC Observations in RIOPA
3.4.1 Single Normal Distributions

For chloroform, which is roughly lognormally distributed except that 17% of the data is

under the MDL, the single normal distribution model fits about as well as the finite mixture of
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normals and DPM of normals (described below) on the basis of MSE and MAE values, and
gives a 21% probability of being below the MDL, similar to that observed (Table 27).
However, for 1,4-DCB and styrene, which have more data under the MDL as well as heavy
tails, the fit of the single normal distribution model is inferior compared to those of the
mixture models. For example, the predicted probability of being below MDL is 28% and
56% for 1,4-DCB and styrene, respectively, compared to 34% and 66% observed, and 33%
and 64% estimated by the mixture models. The single normal distribution overestimated the

mean of these VOCs since it underestimated the non-detection frequency.
3.4.2 Finite Mixture of Normals

Fitted density plots (and component clusters) are shown in Figures 11B, 12B and 13B for
chloroform, 1,4-DCB and styrene, respectively. The fitted parameters (weight A, location
u, and dispersion o, 2) of each cluster K for the mixture of normals are given in Table 28.
The optimal Ks (based on the AICc) were 2, 4 and 3 for chloroform, 1,4-DCB and styrene,
respectively. These choices of K clearly reflected the multi-modality and right skewness of
the VOC data, and the resulting mixture of normals closely fitted the observed distributions.
For example, Figure 12B represents the four clusters that fitted the 1,4-DCB data: the first
(red) cluster captured the left censoring due to the MDL, the second and third (green and blue)
clusters reflected the majority of the data and the skewness, and the fourth (blue) cluster

modeled the heavy tail.
3.4.3 Nonparametric DPM of Normals

Fitted densities using DPM of normals for the three VOCs are shown in Figures 11C, 12C
and 13C. This method clearly captures the censoring, right-skewness, and potential
multi-modality of the exposure data. Interms of MSE and MAE, the DPM approach attained

slightly lower values than the finite mixture of normals (Table 27).

Panel D on Figures 11 to 13 show results of the sensitivity analysis with the four different
gamma distributions used as priors for precision parameter o. As noted before, K
stochastically increases with @ as E(K |, n) = alog (1 + n/a) for moderately large n
(Antoniak 1974). The four prior distributions were informative and formed up to 20 clusters
that reflected more specific subject matter information. Estimated densities obtained using

the four priors nearly overlapped and showed very similar MSE and MAE for each of the
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VOCs, although the corresponding posterior distribution of the number of clusters K varied
(Table 29). The posterior mean of K under all prior settings of a (Table 29) slightly
exceeded the K selected using the AICc (Table 28). The higher K in the DPM is due to the
prior information of a, and does not introduce any additional complexity or more model
parameters. The initial prior variance of a critically influences the extent of smoothing
(Escobar and West 1995). Given K distinct values among the elements of 0, a larger variance
leads to increased dispersion among the K group means, which increases the likelihood of
multiple modes and decreased smoothness in the resulting predictive distribution (Escobar and

West 1995).

No convergence issues using the DPM method were encountered, and density estimation
results were robust given the moderate sample size (n = 544). Another advantage of the DPM
method is that a constraint to ensure a cluster below MDL is not required since the sampling
scheme (8) is data driven.  As shown in (8), the DPM can handle values under the MDL that
are represented as a point mass, because a newly sampled value has equal probability

1/(n—1+ a) to be drawn from the observed set of values.

The nonparametric DPM of normal distributions assume that observed data randomly
arise from sub-distributions with certain probabilities as the finite mixture of distribution
models. (Again, sub-populations that an individual observation belongs are not identified.)
Compared to the finite mixture models, DPM distributions have advantages in providing a
formal assessment of uncertainty for all model parameters, including the number of
components K, through generated draws from the posterior distribution. With a suitable
Dirichlet process prior structure (Escobar and West 1995), these models produce predictive
distributions qualitatively similar to kernel techniques, and they allow for differing degrees of
smoothing by the choice on priors for precision parameter a. The density estimation results

were robust given a moderate sample size (n = 544) without any convergence issues noted.
3.4.4 Simulations

Simulation results, summarized in Table 30, show similar patterns for the MSE and
MAE criteria. Both finite mixture and DPM of normals provided much better fits than a
single normal distribution, except that the former two methods are only slightly better under

distribution 1 with Py = 0.15. For both distributions, as the fraction P, of data below the
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MDL increased, there is evidence of increasing trend of lack of fit for a single normal
distribution, while the finite mixture and DPM of normals fitted considerable better and
without such trend. The DPM of normals shows advantage of robustness regarding P,. It
fits equally well, or even better, as Py increased. For distribution 1, the finite mixture of
normals provided a slightly better fit than the DPM of normals, but this trend can be offset
since the prior variance of o can be decreased to promote smoothness. In this regard, DPM
1s much more flexible than the finite mixture of normal. Here, we have used

a ~ Gamma(1.2,2.5) which favors 1-5 clusters given our sample size (as the prior
information of K). For distribution 2 which is right skewed and with a heavy tail, the DPM

of normals provided a much better fit than finite mixture of normals under all settings.

Both types of mixture models are well suited to the RIOPA VOC data containing a large
fraction of censored data due to MDLs, fat tails, and multiple modes. They offer clear
advantages over parametric full distribution models and extreme value models, and also appear
appropriate for many other types of environmental data, such as concentrations or doses of
persistent and/or emerging compounds and biomarkers. The use of mixture models has the
potential to improve the accuracy and realism of models used in a variety of exposure and risk

applications, and further environmental applications are warranted.
3.5 VOC Trends from 1988 to 2004

Potential covariates were identified before evaluating VOC trends in NHANES cohorts.
Several occupational groups were associated with VOC levels, although none achieved
statistical significance in ANOVA tests, possibly because effects were small or diluted due to
the broad occupational categories used. Nevertheless, trend analyses were adjusted for
groups that seemed likely to have VOC exposure: service occupations (associated with
elevated 1,4-DCB levels); precision production, craft and repair occupations (BTEX); and
operators, fabricators, and laborers (BTEX). A variable combining these groups was used as a
covariate in QR models. Additionally, all VOCs except PERC were associated with serum
cotinine levels, which dropped from an average of 107 to 70 ng mL™" over the 1988-2004
period. Initially, all QR models were adjusted using log-transformed cotinine levels.
However, this variable was not statistically significant for non-aromatic VOCs and parameter

estimates changed little, thus cotinine was maintained in the final QR models for only aromatic
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VOCs. Among demographic variables, only age and education differed significantly between
NHANES cohorts, and both age and college attainment increased with time. QR models
including these variables showed insignificant changes in parameter estimates, and thus the

demographic variables were not included in the final models.

The trend analysis focused on concentration quantiles exceeding 0.5 (50" percentile).
Often, lower quantiles were at or near MDL concentrations. Linear QR models representing
the entire study period (1988 to 2004) and adjusted for solvent-related occupations and
cotinine levels (aromatic VOCs) showed statistically significant trends at 0.5, 0.75 and 0.95
quantiles for all VOCs except for PERC at the 0.5 quantile, and styrene and 1,4-DCB at the
0.95 quantile (Table 31). For most VOCs, these changes corresponded to an average decrease
of 2.5 to 6.4% per year (Table 32). Graphical interpretations of results for benzene, 1,4-DCB
and PERC are presented in Figures 14 to 16. Panel A of each figure shows box plots for the
five cohorts, superimposed with the estimated linear QR trend lines; panel B shows quantile
plots of the linear QR estimate at 0.25, 0.5, 0.75 and 0.95 quantiles, along with 95% confidence
intervals. Due to low DFs, the 0.25 quantile (left-most point) is not meaningful for 1,4-DCB
and PERC, and only somewhat meaningful for benzene. These plots suggest that the rate of
decline can depend on the quantile, and three patterns were discerned across the VOCs.
Pattern 1 has similar decreases at all quantiles, shown by benzene (Figure 14B). This pattern
suggests uniform emission and/or exposure reductions from the sources that dominate
population exposures, e.g., reduced exhaust and evaporative emissions from vehicles, the
largest benzene exposure source. Pattern 2 shows more rapid decreases at upper quantiles and
slower decreases at lower quantiles, as seen for PERC (Figure 16B). In this case, the most
exposed cohort might have a unique exposure source, which has been controlled, or that other
measures have been taken to limit high exposures, while lower level exposures continue
largely unabated among the general population, possibly due to other sources that have not
been controlled as much. This pattern could be explained by controls on the leading
occupational exposure sources of PERC, e.g., dry cleaning and metal-degreasing operations.
Pattern 3 is a rapid decrease at central quantiles that exceeds upper quantiles decreases, as seen
for 1,4-DCB (Figure 15B). This may result from controls on sources that affect indoor and/or
outdoor concentrations, without a commensurate reduction in high exposure cases. For

1,4-DCB, this might be explained by reduced use of mothballs and air fresheners, the major
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exposure sources for the general population, while the most exposed individuals either
continue to experience a separate exposure source, e.g., industrial production of repellents,
insecticides, resins, etc., or they remain intensive users of this chemical. Patterns and possible

sources for individual VOCs are discussed in the next section.

The trend analysis also raised questions regarding the veracity of the 1999/2000 VOC
data, which had the highest levels of benzene (average of 0.184+0.015 pug L™) and chloroform
(0.058+0.005 pg L) across five NHANES cohorts. Moreover, using the 1999/2000 data as a
baseline, subsequent cohorts showed very rapid declines (>15% per year to 2003/2004) in
median and higher percentile concentrations of benzene, toluene and chloroform, far faster
than earlier years (Table 32). As noted, previous discussions of the comparability of this or
other cohorts in the VOC dataset have not been seen. To investigate the sensitivity of results
to the 1999/2000 cohort, linear QR models were rerun without these data. While this lessened
the rate of decrease, differences were generally small, e.g., slopes changed by less than 30% for
all VOCs and quartiles except benzene and toluene (0.75 quantile), BTEX (0.5 quantile),
styrene (0.75 and 0.95 quantiles), chloroform and Y THM (0.95 quantile), and few coefficients
differed statistically (based on Wald tests assuming nil covariance between the two slopes)
except benzene, toluene, o-xylene, and BTEX (0.5 quantile), benzene, toluene, bromoform,
and PERC (0.75 quantile) (Supplemental Table S8). Bromoform and PERC at the 0.5
quantile also showed differences, but these were attributable to low DFs and are not
meaningful. In summary, long-term trends were not strongly dependent on the 1999/2000

data, and thus these data were kept in subsequent analyses.

A second sensitivity analysis was undertaken that used piecewise linear QR models
allowing changes in trend over the study period. As before, models were adjusted for
solvent-related occupations and cotinine. QR model results using a knot at 1999/2000 are
shown in Supplemental Table S9. (Knots at other locations provided poor fits.) This
analysis indicates that for most VOCs, declines from 1988 through 2000 were either not
statistically significant or considerably smaller than declines from 1999/2000 through 2004,
and that several VOC increased over the 1988-2000 period (including benzene and chloroform
at the 0.5 quantile, benzene, toluene, styrene and chloroform at the 0.75 quantile, and benzene,
m,p-xylene, styrene, and chloroform at the 0.95 quantile). Declines in the second period

(shown as Slope2 in Supplemental Table S9) were reasonably consistent for the aromatic
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VOCs and chloroform, and faster than those from the linear QR models that spanned the entire
period (Table 31). Overall, the piecewise QR models are similar to results in Table 32, and
likewise suggest that reductions in blood VOC levels were largely accomplished from
1999/2000 onward. However, the piecewise models are less robust than the linear QR model
since slopes for each time period use only three cohorts (or time points), and sometimes only
two in the first period (1988-2000) since portions of the 1988-1991 data were omitted, and
since they depend strongly on the 1999/2000 cohort data, which have several anomalies as
noted previously. Moreover, trends in ambient concentrations for most VOCs do not support

this steeper decline, as discussed below.

The third sensitivity analysis compared both linear and piecewise regression models with
and without adjustments for strata and clusters. This showed only small differences in most
cases: standard errors were larger for most VOCs, however, differences were significant for
only BTEX among the linear models, and for DBCM, bromoform and PERC among the
piecewise models. Although we cannot account for NHANES’ cluster sampling protocol in

the QR models, these results suggest that the QR model results are reliable.

In summary, VOC levels in the NHANES blood samples substantially declined over the
15 year period. While piecewise models suggest that exposures to some VOCs did not
decrease in the 1990's and then rapidly declined in the early 2000's, this may be driven by
anomalies in the NHANES data, as discussed below.

3.5.1 Interpretation and Reliability of Trends

Many factors can affect the interpretation and representativeness of the NHANES data.
First, while each cohort was designed to be nationally representative, biases might result from
unknowingly over-sampling populations that are more exposed, genetically special (e.g.,
unable to rapidly clear VOCs), or otherwise not representative. As noted earlier, only minor
group differences were seen among the demographic variables, literature discussing biases has
not been identified, and while genetic differences can affect results, the biomarker
documentation does not specify any such factor that affects the interpretation of VOC
measurements in blood (ACGIH 2001). Second, statistical variation is inherent in any
sampling program and some cohorts had smaller PSU and sample sizes, but considering the

NHANES sample sizes, this should not cause systematic biases. Third, whether the
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NHANES blood measurements represent valid exposure measures could be questioned, and
indeed the approximate nature of these biomarkers was indicated by only modest correlation
with air samples and the rapid clearance in the blood (discussed earlier). In this case, however,
a bias towards the null (no trend) would be the likely outcome, which was not seen. Fourth,
changes in protocols, including the air sampling conducted in the 1999/2000 cohort, the shift
from NHANES III to continuous NHANES, or some other unknown study element, could
affect results. We did identify NHANES data that appears suspect, and either excluded it or
used sensitivity analyses to obtain confirm interpretations. Nothing emerged that could

explain observed patterns.

Several independent findings support the long-term VOC exposure trends derived from
NHANES. First, the NATA emission inventory, while including only a few of the VOCs in
measured in NHANES, reports that emissions of several VOCs increased in the 1990's, e.g.,
benzene increased from 337,000 to 410,000 tons/year from 1996 to 2002, and chloroform
increased very markedly from 3,310 to 15,139 tons/year from 1996 to 1999; Table 33).
Annual average ambient concentrations predicted by NATA, spatially averaged, show
negligible movement from 1996 to 1999 for benzene, chloroform, PERC and 1,4-DCB, and
decreases of 3.9 to 18% per year for benzene, toluene, xylene and PERC from 1999 to 2002.
These data support some of the piecewise trends, and also the high levels of benzene and
chloroform seen in NHANES in 1999/2000, however, exposure analyses using emission

inventories have limitations, as discussed in the Introduction.

Ambient air monitoring provides a more direct exposure measure. PAMS data are
summarized in Table 34. For the 2001-4 period, annual mean concentrations of benzene,
toluene, ethylbenzene and o-xylene in the UATMP network decreased by 11 to 20% per year,
and by 7 to 11% per year in PAMS. Thus, recent UATMP and PAMS trends are roughly
similar, though UATMP concentrations are lower. Considering the older (1993-1999) PAMS
data, annual mean concentrations of aromatic VOCs decreased from 4.4% per year (toluene) to
11% per year (styrene), and for five of the six VOCs measured, the rate was half that seen in the
1999-2004 period. Issues regarding the spatial and temporal coverage of PAMS data were
discussed in the Introduction. The AQS data may be more revealing, and annual means of the
nine VOCs common to NHANES are tabulated and plotted in Table 35. Regression analyses

show approximately linear decreases of 5 to 7% per year for benzene, toluene, ethylbenzene
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and styrene from about 1990 to 2004. Trend plots show comparable long-term decreases and
hints of somewhat accelerated trends since 2000 for m,p-xylene, o-xylene and 1,4-DCB.
Chloroform shows a dramatic 21% per year decrease from 1990 to 1994, which then shows a
flat trend. PERC levels decrease by 6.7% per year, although the trend is erratic. While
ambient measurements too have limitations as exposure indicators, the national-level data
show that ambient concentrations of many VOCs have declined in a linearly over 15 years, and
the rate appears slightly faster than those based on the NHANES exposure data. For several
VOCs, some evidence suggests swifter declines after 2000, however, the ambient data does not

reflect the high levels of benzene and chloroform in the 1999/2000 NHANES blood data.

In summary, ambient and emission data for most VOCs show strong downward trends
from about 1990 through 2004. Regarding indoor exposures, national-level corroborating
evidence is unavailable, however, there is linkage with ambient data in that outdoor
concentrations represent a "floor" for indoor levels, and because the emission controls on
fuels and vehicles that lower ambient VOC concentrations will also reduce exposures while
commuting and in buildings with attached garages (Batterman et al., 2006). We next

examine trends of individual VOC:s.
3.5.2 Benzene

Over the 15 year study period, benzene exposures in NHANES declined by 3.3 to 4.3%
per year, depending on the quantile. As noted, benzene trends matched pattern 1, with
relatively consistent decreases at all quantiles, which parallel some of the emission and
airborne concentration trends. Benzene was listed as a hazardous air pollutant by U.S. EPA in
1977 and as a carcinogen in 1986, and many emissions have been inventoried and regulated.
U.S. emissions fell from 493,000 to 386,000 T yr™' tons between 1990-1993 and 2005 (US EPA
2009b), representing a 1.5% per year decrease. On-road vehicle emissions, the single largest
source category, declined faster, from 312,000 to 143,000 T yr'1 or 3.6% per year. Further
restrictions of benzene content in gasoline were issued in 2007, and additional reductions in
mobile source air toxics emissions (including benzene) are anticipated (US EPA 2010c).
Benzene is metabolized fairly rapidly with a half-life in blood of about 8 hr (Brugnone et al.
1992).

Inhalation exposure to benzene has been extensively reviewed (ATSDR 2007a).

56



Ambient measurements declined by 4.5 to 4.9% per year from 1994 to 2008; medians dropped
from 2.10 to 0.79 pg m™; and 90th percentile levels fell from 5.03 to 1.59 pg m™ (US EPA
2009a). Urban concentrations fell faster, e.g., PAMS data show 8.4%, 7.2%, and 6.9% per
year declines at 0.5, 0.75, and 0.95 quantiles from 1993 to 2004 and AQS data (Table 34).
Since few indoor sources exist other than smoking, benzene concentrations in outdoor, indoor
and personal air can be similar (PL Kinney et al. 2002), however, an attached garage can
elevate residential levels (Batterman et al. 2006). Differences in biomarker and ambient
trends are reflected by the relatively low correlation between blood and personal airborne
levels (r=0.24, Table 17). Occupational exposures in many settings have substantially
declined, e.g., median personal concentrations of laboratory technicians at a refinery dropped
from 319 to <32 pg m™ from 1977 to 2005 (Panko et al. 2009), however, national statistics on
occupational exposures are unavailable. As mentioned, tobacco smoke is an important
exposure source (L Wallace et al. 1987), and about 50% of benzene exposure in the U.S. has
been apportioned to active and passive smoking (ATSDR 2007a). However, NHANES data
continued to show declines in each quantile after cotinine adjustment. Overall, the trends
suggest that reductions in population exposure, as reflected in NHANES, have been driven

largely by reductions in gasoline- and vehicle-related emissions.
3.5.3 Toluene

Over the 1988 to 2004 period, toluene exposures decreased by 4.7 to 5.7% per year,
depending on the quantile. Like benzene, toluene reductions fit pattern 1 (consistent
decreases across quantiles), which indicates improved control of general exposures, e.g.,
vehicle exhaust, as well as high-concentration exposures, e.g., architectural paints, which are
now limited in VOC contents to 250 and 500 g L™ for flat coatings and graphic arts paints,
respectively (US EPA 1998). Toluene is one of the more prevalent components associated
with vehicles and, unlike benzene, many household products contain and emit toluene. NATA
emissions decreased from 996,443 to 884,066 T yr™' between 1999 and 2002, or 3.8% per year,
on-road emissions decreased from 460,240 to 428,672 T yr”', or 2.3% per year (Table 33) (US
EPA 1999a, 2002), and average ambient predictions declined from 3.0 to 2.5 pg m™, or 5.2%
per year (Table 36). Ambient concentration at PAMS sites decreased by 6.4-8.5% per year,
depending on quantile (Table 34), while annual means in the AQS data declined by 5.7% per

year (Table 35). Like benzene, blood and airborne levels had only modest correlation (r=0.26,
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Table 17). Toluene's half-life in blood is short, about 4.5 hr (Brugnone et al. 1986), thus blood

levels tend to reflect current exposures.
3.54 Other BTEX Compounds

QR results for the remaining BTEX compounds for the 1988-2004 period showed
significantly downward trends that tended to fit pattern 2 (rapid decreases at upper quantiles),
even after adjustment for cotinine (Tables 31 and 32). Ethylbenzene, m,p-xylene, o-xylene,
and styrene concentrations in blood decreased by 2.5 to 5.6% per year at each quantile. The
composite BTEX exposure showed consistent decreases across quantiles in the same period;
benzene and toluene contribute disproportionately to this indicator. The half-life of
ethylbenzene in blood is very short (<1 hr) (Adams et al. 2005; ATSDR 2007b); xylenes are
reported to have biphasic half-lives: 0.5-1 hr initially, followed by 20-30 hr (US EPA 2003b);
and styrene has biphasic half-lives of 0.58 and 13 hr in blood (ATSDR 2007c). Thus, blood
tends represent only recent exposures. Correlation coefficients between personal air and
blood for ethylbenzene, m,p-xylene and o-xylene in the 1999/2000 NHANES cohort were 0.35,
0.38, and 0.36, respectively, higher than seen for benzene and toluene (Table 17).

In the NATA database, nationwide emissions of o- and m,p-xylene fell from 712,084 to
595,241 T yr”' between 1999 and 2002 (Table 33), or 5.5% per year, and on-road vehicle
emissions decreased from 269,500 to 247,765 T yr™', only 2.7% per year (US EPA 1999a,
2002). Ambient measurements fell faster, e.g., median levels of aromatic VOCs in PAMS fell
by about 9% per year from 1993 to 2004 (Table 34), and AQS means fell by 5.8 to 6.4% per
year, with faster declines after 2000 (Table 35). Thus, ambient levels fell more rapidly that the
roughly 4% per year seen for NHANES blood VOC levels from 1988-2004 (Table 32), but less
rapidly than the more recent (1999-2004) blood VOC data. The divergence suggests that

reductions of indoor VOC sources trailed outdoor reductions by perhaps a decade.
3.55 THMs

Chloroform was the most prevalent THM. With the 1999/2000 data included, levels
declined rapidly at upper quantiles (pattern 2), while comparable reductions of about 4% per
year were seen across quantiles when comparing starting and ending cohorts (Table 31 and 32).
BDCM, DBCM and bromoform showed rapidly decreases at central quantiles over the study

period. Due to low DFs, trends at lower percentiles could not be evaluated (Supplemental
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Table S2). Over the 15 year study period, concentrations decreased by 5.0 to 7.9% per year
for the median, and by 3.0 to 7.5% per year for upper quantiles.

Exposures of individual THMs, including chloroform, are likely to be highly correlated,
although this was not consistently shown in the NHANES blood measurements (Table 16).
This can be explained, in part, by the rapid clearance of THMs from blood, e.g., half-lives of
about 0.5 hr (Ashley and Prah 1997), and a biphasic clearance pattern is reported for
chloroform with half-lives of 9 to 21 min and then 86 to 96 hr (ATSDR 1997a). Given these
rates, the blood data represent only recent exposures. Chloroform showed a moderate but

significant correlation (r=0.38) between blood and personal air concentrations (Table 17).

NATA emissions of chloroform jumped from 3,310 to 15,139 T ylr‘1 from 1996 to 1999, or
119% per year, followed by a decline in 2002 to 6,805 T yr', or 18% per year (Table 33) (US
EPA 1996, 1999a, 2002). The dramatic increase from 1996 to 1999 is likely due to changes in
inventory procedures (US EPA 1999a). Predicted ambient concentrations increased by 0.9%
per year from 1996 to 1999, and then decreased by 1.7% per year (Table 36). Interestingly but
perhaps serendipitously, the period of highest chloroform emissions (1999) corresponded to
the highest blood measurements in NHANES (Supplemental Table S6). In the mid-1990s,
Maximum Achievable Control Technology standards limited emissions of halogenated
solvents at industrial and waste treatment facilities (US EPA 2000c). About the same time,
maximum contaminant levels on THMs in drinking water were imposed, which is probably the
largest exposure source (both ingestion and inhalation) of THMs for the general population.
(NATA estimates do not account for THM emissions in to drinking water, but the NHANES
blood data does account for the ingestion pathway.) Lowering THMs in drinking water is
expected to decrease levels at all quantiles (pattern 1). Ambient concentrations of chloroform
show a trend unique among the VOCs: early decreases of nearly 21% per year for the
1990-1994 period, followed by a flat trend from 1995 onward (Table 35). Exposures of the
brominated THMs had inconsistent trends, which is attributed to analytical uncertainties

resulting from low concentrations (generally 10 times lower than chloroform).
3.5.6 Other VOCs

Styrene exposures significantly decreased at 0.5 and 0.75 quantiles, e.g., median levels

fell by 3.8% per year over the study period (Table 32), but much faster (18% per year) from
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1999 to 2004. Serum cotinine and blood styrene levels in NHANES were correlated (r=0.49),
but QR models adjusted for cotinine levels continued to showed a declining trend (Table 31).
(NATA only included styrene data in 2002.) Ambient concentrations of styrene in PAMS
declined by about 8% per year, depending on quantile, over the 1993-2004 period, while AQS
means declined by 5.5% per year, though the data showed considerable scatter (Appendices H
and I). Styrene is used in reinforced plastics manufacturing, and indoor emissions can occur
from building materials and tobacco smoke (ATSDR 2007c). It has biphasic half-lives of 0.58
and 13 hr in blood (ATSDR 2007c).

1,4-DCB decreased by 3.5% per year over the 15 year study period (Table 32).
Decreases were more rapid at median quantiles, (pattern 3), and the 0.95 quantile result was
not significant (Table 31). 1,4-DCB is widely used in mothballs, other pest repellents and
toilet-deodorizer blocks, and airborne levels in occupational settings occasionally reach very
high levels, e.g., 4,350 mg m> in a mono- and dichlorobenzene manufacturing plant (IARC
1982). Inthe US, mean and median indoor 1,4-DCB concentrations were 24 ug and 1.7 pg
m”, respectively (ATSDR 2006b); the large difference reflects the highly skewed distribution
of this VOC. A Japanese study found high indoor levels (mean = 114 ug m>), far above
outdoor levels (3.4 pg m™) (Azuma et al. 2007). 1,4-DCB's half-life is estimated to be 7.1-8.1
hours in rats (no human data are available (Hissink et al. 1997; Boutonnet et al. 2004). NATA
emission estimates of 1,4-DCB fell from 12,794 to 7,244 T yr'l between 1999 and 2002, or
15% per year (Table 33) (US EPA 1999a, 2002). Ambient concentrations are low, and median
concentrations among 11 sites declined by 5.0% per year from 1995 to 2005, and by 10% per
year among 32 sites from 2000 to 2005 (McCarthy et al. 2007). Among the AQS VOCs,
1,4-DCB showed the strongest decrease after 2000 (Table 35). As noted, 1,4-DCB had the
highest air-to-blood correlation coefficient among the NHANES VOCs (r=0.65, Table 17),

thus exposures tend to reflect personal air concentrations.

PERC exposures declined by 3.2 to 6.4% per year, depending on quantile, over the 15
year study period, and decreases at upper quantiles were faster (pattern 2) (Table 31 to 32).
PERC's half-life in blood, 12 to 16 hr (ATSDR 1997b), is the longest among the VOCs, and its
air-blood correlation was relatively high (r=0.62, Table 17). NATA emissions increased by
2.0% per year, from 44,100 to 46,793 T yr™', between 1996 and 1999, followed by a 8% per
year decrease to 35,613 T yr”' in 2002 (Table 33) (US EPA 1996, 1999a, 2002). However,
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predicted ambient concentrations decreased slightly, 1.5% per year, between 1996 and 1999,
and then by 18% per year between 1999 and 2002 (Table 36). Nationwide emission data
before 1993 are not available. MACT standards for dry cleaners, perhaps the major urban
source of PERC (US EPA 2010c), were initiated in 1993. Although the AQS means show
considerable variation (Table 35), the long term decline of ambient concentrations nearly

exactly corresponds to the rate seen in blood.
3.6 Selected VOC Mixtures in RIOPA based on PMF

VOC sources are identified on the basis of the VOC composition using PMF analyses.
In cases, several source types can contribute to a factor, or sources may have collinear
emission profiles (source compositions) and thus cannot necessarily be distinguished. The

following show the possible VOC composition on the basis of emission sources by sampling
types.
3.6.1 Outdoor VOCs

Outdoors, apportionments were dominated by gasoline-related sources, and seasonal
variation was observed. Results of sources apportionment of VOCs in RIOPA study are
presented in Table 37. In warm season, four categories were shown: the dominant
component in mixture 1 was MTBE, indicating gasoline vapor; mixture 2 mainly included
BTEX & B-pinene, representing vehicle exhaust and biogenic sources; mixture 3 was
dominated by d-limonene, representing some odorants; mixture 4 contained TCE, PERC and
a-pinene which may be from industrial emissions and biogenic sources. In cold season, there
were four groups: mixture 1 mainly contained BTEX compounds, indicating vehicle exhaust;
mixture 2, like mixture 1 in warm season, was dominated by MTBE, representing gasoline
vapor; a lot of VOCs were included in mixture 3, e.g., 1,4-DCB, TCE, CTC, d-limonene,
a-pinene and B-pinene, which may come from industrial emissions; PERC, the dominant VOC
in mixture 4, was used in dry cleaning industry. Gasoline-related sources (more than 60% of

the contributions) were prevailing for outdoor VOCs in both seasons.

Figure 17 presents the median ratios of four common VOC groups, including aromatics,
MTBE, chlorocarbons, and terpenes, by quintiles of TVOC concentrations to show VOC
composition at different levels. For all outdoor VOC observations, aromatics, including

benzene, toluene, ethylbenzene, m,p-xylene, o-xylene and styrene, were less abundant in the
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2" and 3" quintiles, and MTBE was more abundant in middle and highest quintiles. The
gasoline-related VOCs showed more abundance by quintiles. In contrast, chlorocarbons,
including 1,4-DCB, MC, TCE, PERC, CTC, and chloroform, and terpenes, including
d-limonene, a-pinene, and B-pinene, showed less abundance in higher quintiles. In the first
quintile, 15% of TVOC was terpenes, and then the abundance dropped to 5% in the last
quintile. Outdoor terpenes were emitted from biogenic sources, representing relatively stable
background levels. Higher concentrations of TVOC may mainly attribute to other VOCs
from anthropogenic sources. Thus, terpenes’ abundance decreased in high quintile due to
increases of other VOC concentrations. VOC measurements in different cities and seasons
showed similar abundance with overall measurements, except for samples in Houston, which

have more abundance of MTBE in higher quintiles.

3.6.2 Indoor VOCs

Indoor apportionments in warm and cold seasons were similar, and cleaning products
and odorants were the major sources. There were four common factors for indoor VOCs in
both seasons (Table 37): mixture 1 was dominated by 1,4-DCB, indicating moth repellents
and odorants; mixture 2 contained d-limonene, a-pinene and B-pinene, representing cleaning
products and air fresheners; mixture 3 mainly contained aromatics, TCE, PERC, chloroform
and CTC, which may come from vehicle exhaust and chlorinated solvents using for degreasing;
MTBE was the dominant compound in mixture 4, and indicated gasoline vapor. Cleaning
products and odorants were the leading emission sources for indoor VOCs in both warm

(73% of the contributions) and cold (66% of the contribution) seasons.

Aromatics and MTBE showed less abundance in higher quintiles for indoor VOCs
(Figure 18). Abundance of gasoline-related VOCs in the 5™ quintile was about 16%
comparing to 44% in the 1% quintile, and there was no difference between warm and cold
seasons. Indoor gasoline-related VOCs are mainly generated by outdoor sources, and
affected by transportation and penetration process. Other VOCs, e.g., 1,4-DCB and
d-limonene, generated by indoor sources, have extreme values to lead to large proportion of
abundance in the higher quintiles. For example, the average concentration of 1,4-DCB in
4™ quintile of TVOC was 10 pg m>, indicating 1.8% of median abundance, and the average

in 5™ quintile was 327 ug m>, indicating 27% of median abundance. ~Similar pattern was
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observed for d-limonene in higher quintiles. Variations of VOC abundance were shown
among cities, especially in Houston. In Houston, a quarter of 1,4-DCB samples in 5"
quintile were above 1000 pg m™ (only one 1,4-DCB sample was above 1000 pg m™ in Los
Angeles and Elizabeth).

3.6.3  Personal VOCs Consisting of Adult and Child Measurements

Dominant VOC sources for personal exposures were cleaning products and odorants, and
seasonal effects were also observed (Table 37). In warm season, four groups of VOCs were
shown: mixture 1, including d-limonene, a-pinene and B-pinene, indicated the use of cleaning
products and odorants; ethylbenzene, m,p-xylene and o-xylene in mixture 2 represented motor
sources; benzene and MTBE contained in mixture 3 indicated gasoline vapor; mixture 4
containing 1,4-DCB, TCE, PERC, chloroform and CTC suggested exposures to moth
repellents and chlorinated solvents. In cold season, VOC apportionments were still
dominated by cleaning products and odorants, like d-limonene, a-pinene and B-pinene (more
than 40% of the contributions in both seasons). The other three VOC groups included:
mixture 2 (benzene, toluene, MTBE, styrene, 1,4-DCB, TCE, chloroform and CTC) indicating
gasoline, chlorinated solvents, and cleaning products, mixture 3 (ethylbenzene, m,p-xylene

and o-xylene) representing vehicle exhaust, and mixture 4 (PERC) from dry cleaning solvent.

Like indoor VOCs, gasoline-related VOCs were less abundant in higher quintiles with
variations between cities (Figure 19). Personal samples showed more abundance of
chlorocarbons in the highest quintile than indoor samples, suggesting that people contacted
the emission source, e.g., moth repellents, directly or extensively. For example, the median
concentrations of 1,4-DCB in the highest quintiles were 65 pg m™ for indoor samples, and 95
pg m> for personal samples. No significant differences of abundance between seasons were
found. However, large variations were observed among cities, especially in Houston.
Chlorocarbons were the majority (85%) in highest quintile in Houston, and other VOC
groups were less than 10%. On the other hand, aromatics and terpenes were dominant in
the highest quintiles in Los Angeles and Elizabeth. It was because most extreme values of
1,4-DCB were measured in Houston.  Eighteen out of 66 1,4-DCB measurements were
above 1000 pg m™ in Houston, but there were only two measurements in Elizabeth over that

value, and none in Los Angeles. Thus, extreme values of chlorocarbons in the highest
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quintiles resulted in less abundance of other VOC groups in Houston.

3.6.4

Personal Adult VOCs at the First Visits

Based on the PMF analysis, four VOC mixtures were identified (and designated as

mixtures Al to A4 in Table 38 and Figure 20):

Mixture Al contained benzene (average contribution = 1.4 pg m>) and MTBE (11.2 pg
m™), and is identified as "gasoline vapor". These VOCs are highly volatile and
components of gasoline during the sampling era. The RIOPA samples, collected from
1999 to 2001, reflect the gasoline composition from a decade ago when benzene levels
were higher (benzene content is now limited to 0.62% of the fuel (US EPA 2007a). Also,
MTBE was used in California, New Jersey, and Texas (US EPA 2008b), but has been
phased out (starting in 2000, fully in 2006) (US EPA 2012c).

Mixture A2 is designated as "vehicle exhaust" due to contributions from toluene (4.9 pg
m’), ethylbenzene (1.9 pg m™), m,p-xylene (5.5 pg m™), o-xylene (1.7 pg m™) and
styrene (0.2 pg m™). These VOCs are also highly volatile components of gasoline and
diesel fuels as well as exhaust emissions from gasoline- and diesel-powered vehicles

(ATSDR 2007, 2010b, a).

Mixture A3 included several common indoor contaminants, including a moth repellent
(1,4-DCB at 0.9 pg m™), chlorinated solvents (TCE at 0.2 pg m>, PERC at 1.7 pg m”,
CTC at 0.5 pg m™), and a water disinfection by-product (chloroform at 0.8 pg m™).
These VOCs are fairly specific to these sources, e.g., 1,4-DCB is a the major ingredient of
mothballs (ATSDR 2006a) (although similar repellents often use naphthalene). PERC is
a widely used dry cleaning solvent (ATSDR 1997b). Chloroform is a by-product of
water disinfection using chlorine dioxide (ATSDR 1997a). TCE and CTC are used in
industry as degreasers, chemical intermediates, and pesticides (ATSDR 1997c, 2005a).

Mixture A4 contained d-limonene (20.5 ug m>), a-pinene (1.5 pg m™) and p-pinene (2.7
g m”), which are fragrances and solvents indicative of "cleaning products and odorants".
Both d-limonene and pinene are widely used flavors and fragrance additives in cleaning
products, fresheners, other consumer products, and even in foods and beverages (IARC

1993; US EPA 2012b).
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These four mixtures respectively explained 20.5, 20.9, 16.3 and 42.3% of the variation in
2VOC levels in the RIOPA dataset (Table 38). PMF is often used for source apportions,
usually for ambient particulate matter, and these factors and apportionments are one of the final
results of these approaches. Similar source profiles (gasoline vapor, vehicle exhaust,
deodorizer and shower, and dry cleaning) were observed in a study using PMF and the
NHANES dataset, although NHANES did not measured d-limonene, a-pinene and B-pinene,
and the dominant mixtures were gasoline vapor and the vehicle exhaust (Jia et al. 2010).
Mixture A4, cleaning products and odorants, explained the largest portion (42.3%) of the
total VOC exposure. This large fraction is a result of the VOCs included in RIOPA, the
large fraction (87% on average) most people spend indoors (Klepeis et al. 2001), the wide
use of the VOC:s in this mixture, and their high concentrations (relative to other VOCs
measured in RIOPA). Because many of the RIOPA participants were older (average age =
45 years old; 24% were > 60 years old) and predominantly female (75%), we suspected that
indoor residential fraction would be especially important. Indoor time fractions calculated
for the RIOPA participants, which included indoor at home, school, work, and "other" indoor
locations, indicated that RIOPA participants spent an average of 91% of time indoors --
higher than the national data. (The indoor time fraction varied by city, e.g., 89, 92 and 92%
for participants in Los Angeles, Elizabeth and Houston, respectively, p < 0.0001.) In
summary, the source strength of the A4 mixture and the large amount of time spent indoors

explains the dominance of this mixture in terms of its large share of TVOC.

Identifying the emission source(s) is a key determinant of exposures, and an essential step
prior to implementing any exposure reduction strategy. PMF provides a concentration-based
approach that can identify generated mixtures, discussed earlier as those that arise from a
common or correlated emission source. However, VOC levels also may reflect common
contaminant transport and fate factors (e.g., building AERs), as well as common behavioral
patterns (e.g., a tendency to use or tolerate certain types of cleaning products), thus mixtures
identified by PMF (or other correlation-based methods) may not be uniquely generated
mixtures, but rather a combination of generated, intentional and possibly coincidental mixtures.
It should also be noted that unlike the mixtures based on the mode of actions, the PMF-based

mixtures should be orthogonal, that is, uncorrelated.
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3.6.5

High Exposure Mixtures

The analysis of high exposure mixtures, which were identified in Section 3.6.4,

suggested several variables associated with high exposures (Table 39). When comparing the

top quartile to the remainder of the data, the following variables were significant (95 percent

confidence interval excluding 1, except as noted):

City effect: Participants in Los Angeles and Elizabeth had lower odds of high exposure
(> 75" percentile) than Houston participants for all mixtures (ORs from 0.18 to 0.63),

except mixture A3 for the Elizabeth participants.

Race/ethnicity: Mexicans had increased odds of high exposure to mixtures Al (benzene
and MTBE), A3 (1,4-DCB, TCE, PERC, chloroform and CTC), and A4 ( d-limonene,
a-pinene and B-pinene) compared to Whites (ORs from 2.03 to 3.97). Hispanics had
higher odds of high exposure to mixture A3 than Whites (OR =1.78, 95% CI = 1.09-2.92).
Asians, Blacks and Indians were less likely to have high exposure to mixture A2 (toluene,

ethylbenzene, xylene, and styrene) than Whites (OR = 0.47, 95% CI = 0.24-0.92).

Employment: Employed participants had lower odds of high exposure to mixture A4
(OR =0.40, 95% CI = 0.27-0.61)

AERs: Higher log transformed AERs decreased odds of high exposure to all VOC
mixtures, especially for mixtures associated with strong indoor sources, e.g., d-limonene

and pinene (mixture A4); (ORs from 0.38 to 0.69).

Open doors or windows: Participants reporting opening doors or windows during the

sampling periods had lower odds of high exposure for all mixtures than individuals not
opened doors or windows (ORs from 0.32 to 0.40 with 95% CIs not including 1, except
for mixture Al). As seen for AERs, this effect of opening doors or windows was more

pronounced for mixture A4 (d-limonene and pinene).

Attached garages: Participants living in houses with attached garages had increased
odds of high exposure to mixtures Al (gasoline vapor) and A2 (vehicle exhaust) mixtures

(ORs =2.27 and 1.95, 95% CIs = 1.45-3.56 and 1.25-3.05, respectively).

Participant activities: Participants who self-pumped gas during the sampling period had

increased odds of high exposure to the gasoline mixture A1 (OR = 2.10, 95% CI =
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1.35-3.52). Participants who used fresheners had higher odds of having high exposure to
the d-limonene, a-pinene and B-pinene mixture A4 (OR =2.20, 95% CI = 1.17-4.14).

e  Activities of family members: Family members showering during the sampling period
had increased odds of high exposures to mixtures A3 (moth repellents, chlorinated
solvents and water disinfection by-product mixture, OR =2.06, 95% CI = 1.20-3.56) and
A4 (cleaning and odorant mixtures, OR = 2.45, 95% CI = 1.42-4.23).

Notably, city, ethnicity, and AERs were significantly associated with all VOC mixtures.
In addition, several factors identified for gasoline and vehicle exhaust mixtures for the
RIOPA participants also have been shown for the personal exposures measurements in
NHANES, e.g., the presence of attached garages and self-pumped gas were related to
benzene, toluene and MTBE exposures (Jia et al. 2010). However, statistically significant
factors have not been identified for 1,4-DCB and chloroform in the NHANES dataset.
Factors associated with this mixture may have been identified in RIOPA due to demographic
differences between NHANES and RIOPA, specifically, RIOPA participants were more
likely to be older, female, unemployed, and at home more often (Su et al. 2012), all of which
may increase the importance of indoor sources of 1,4-DCB and chloroform for these

participants.

The logistic regression models used do not require normality of the response variables.
Thus, even variables with right-skewed distributions do not significantly affect the robustness

of the models.

As noted earlier, the main objective of the PMF analysis was to identify mixtures. A
more detailed analysis of factors associated with exposure to individual VOCs, that is, the
determinants of exposure, and that accounts for repeated measures and interactions, is

provided in Section 3.9 using LMMs.
3.6.6 The Robustness of PMF Results

We investigated the robustness of PMF results using the bootstrap method. This
method is a re-sampling technique in which “new” datasets are drawn in by randomly
selecting observations, and results of the analysis (using PMF) are compared to those

obtained using the original data (US EPA 2008a). The variability of the results using the
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bootstrap samples shows the stability of original results. We used 500 runs, the original
sample size, random sampling with replacement, and the personal VOC exposures. Figure
21 represents the variability for each species of the profiles using box plots. The original
results are shown (as a blue box) for reference. Although 2 to 4 of the VOCs in each factor
have large variability, e.g., m,p-xylene, MTBE and PERC in the odorant profile, the
variability of the VOCs selected to represent the source type in each factor is small, and the
original results are consistent with the medians of the bootstrap model results. Thus, source

apportionment results using PMF method provided quite robust results.
3.7 Dependency Structures and Joint Distributions of VOC Mixtures in RIOPA
3.71  Copulas

The selected copula types are listed in Table 40. (Parameters of the marginal
distributions, GOF statistics and copula parameters are in Table 41 to 43.) AICs and BICs for
the different copulas were fairly similar for mixtures A1 (benzene, MTBE), A3/B3 (1,4-DCB,
TCE, PERC, chloroform, CTC), A4 (d-limonene, a-pinene, B-pinene) and B1 (ethylbenzene,
MTBE), however, AICs and BICs for mixtures A2 (toluene, ethylbenzene, xylene, styrene)
and B2 (benzene, MTBE, 1,4-DCB, TCE, PERC) were much lower for Gaussian and t copulas,
suggesting that these copulas differ in their ability to describe the dependency structures.
Gumbel copulas best fitted mixtures Al and B1, both of which included two VOCs, while t
copulas best fitted mixtures A2, A3, A4 and B2, each of which contained four or more VOCs.
We previously noted that the VOC exposures in RIOPA tended to have extreme value
distributions (Su et al. 2012), and both Gumbel and t copulas better represent extreme values
than other copulas (Schmidt 2006). Fitting results also might have been affected by the
detection frequency. Since data below the MDLs were assigned a single value (0.5 MDL),
these single values formed "ties" in the distribution. Scatter plots for any two variables that
contain many ties display a star shape, which fit the t copula. In contrast, mixtures Al
(benzene and MTBE) and B1 (ethylbenzene and MTBE) contained at least one VOC with very
high detection frequencies (e.g., 96% for MTBE), and joint distributions did not show this star
shape. Among other mixtures containing at least two VOCs with many non-detects, joint
distributions formed star shapes. To explore this explanation, a mixture of two VOCs with

low detection frequencies (styrene at 49% and a-pinene at 66%) was modeled. In this case,
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the t copula showed the best fit, suggesting that copula fits are not influenced by the number of
mixture components, but that mixtures containing components with low detection frequencies

are better fitted by the t copula.

Table 40 contrasts the probability of exceeding various percentile cut-offs for observed
data and that predicted using the copula simulations. Differences were generally small. For
the binary mixtures A1 and B1, differences ranged from 0.001 (A1 at the 90" percentile and B1
at 50", 75™ and 95" percentiles) to 0.02 (B1 at the 75" percentile). For mixtures with three or
more components, differences ranged from 0.001 (B2 at the 95" percentile) to 0.12 (A4 at the
50™ percentile). These results suggest that copulas have better predictive ability for bivariate

distributions than higher order distributions.

Table 40 also shows crossing probabilities, assuming the mixture components are
uncorrelated (independent). As expected, these estimates fell far below observations,
especially at higher percentiles, e.g., for the odorant mixture A4 (d-limonene, a-pinene and
B-pinene), the observed 90™ percentile probability was 0.023, but only 0.001 if the components
are assumed to be uncorrelated. Such large differences demonstrate the need to account for

dependencies in mixtures.

Gumbel and Gaussian copulas were shown to best fit VOCs in NHANES that were highly
correlated (Jia et al. 2010). However, the earlier study examined only bivariate mixtures, and
did not consider t copulas that best fitted much of the RIOPA data. The present study did find
the same dependency structure as in NHANES for the benzene and MTBE mixture (Gumbel

copulas).
3.7.2  Mixture Fractions

Median mixture fractions are shown in Table 44. The copula simulations matched the
mixture fraction for the dominant components observed in all mixtures at all levels, with one
exception (mixture B2 at the 75 to 90" percentile level). Often, a single compound dominated
the mixture, e.g., MTBE accounted for 78 to 94% of the exposure in mixtures Al and B1
considering both observations and copula simulations. VOCs with strong indoor sources, e.g.,
1,4-DCB and d-limonene, dominated mixtures A3 and A4, respectively, and their fraction
increased with percentile. For example, the median fractions of 1,4-DCB in mixture A3

(1,4-DCB, TCE, PERC, chloroform, CTC) for 50-75" percentile observations and simulations
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were 0.33 and 0.45, respectively; these increased to 0.99 and 0.99, respectively, at the 95-100™
percentile. These results reflect the extreme values previously found for 1,4-DCB and
d-limonene (Su et al. 2012). In contrast, mixture fractions varied little for mixtures Al, A2
and B1, e.g., toluene was the dominant component in mixture A2 (toluene, ethylbenzene,
xylenes and styrene) with mixture fractions of 0.58 and 0.56 for observations and simulations,
respectively, at the 50-75™ percentile level, and 0.57 and 0.53, respectively, at the 90-95™
percentile. Consistent mixture fractions may suggest generated mixtures as compared to
other types where compositions are more varying. Mixture B2 shifted composition at upper
percentiles, e.g., the MTBE mixture fractions were 0.61 and 0.55 at the 50-75™ percentile
levels for observations and simulations, respectively, but 1,4-DCB was dominant at the
95-100" percentiles with mixture fractions of 0.98 and 0.94, respectively. These results show
that mixtures such as B2 may be very heterogeneous with compositions that differ by exposure
level. This mixture was selected based on the similar mode-of-action for the component
VOCs (and not on the basis of common sources or high correlations). Mixture B2 may be

considered an "incidental" mixture as it likely combined VOCs from different sources.

Mixtures A3/B3 and B2 were selected to investigate whether the mixture fractions
estimated by the copulas were driven by copula type or by the marginal distribution of the
components in the mixture. Both mixtures were simulated for five types of copulas, all using
the same set of marginal distributions. (For these simulations, marginal distributions are
shown in Table 41, and mixture fractions in Table 45.) For mixture A3/B3, the analysis
revealed only small changes in median fractions, e.g., 1,4-DCB remained the dominant
component at high exposure levels, and its mixture fraction increased with percentile.
Mixture B2 showed larger differences between median fractions for the (best-fit) t and other
copulas, and the dominant VOC at the 90 to 95" percentile level differed among copulas, e.g.,
the dominant VOCs were 1,4-DCB for the t and Clayton copulas, but MTBE for the Gaussian,
Gumbel and Frank copulas. Even though t and Clayton copulas identified 1,4-DCB, its
mixture fraction varied from 0.47 to 0.70 in the two copulas. This highlights the importance

of the type of copula, not just the marginal distributions of the VOC components.
3.7.3  Estimated Cancer Risks

Estimated cancer risks for the mode-of-action mixtures B1 to B3 are shown in Table 46.
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Based on the observed data, VOC mixtures can present rather high cancer risks, e.g., about
10% of RIOPA participants had exposures of mixtures B2 and B3 associated with a 10” or
higher lifetime cancer risk. Mixture B1 (ethylbenzene and MTBE) posed lower risks, e.g., a
25% chance of exceeding a risk of 10°, and 1% chance of exceeding 10™.  For mixture B2
(benzene, MTBE, 1,4-DCB, TCE and PERC), 3% of participants exceeded a very high risk
level, 102, Similar results were seen for mixture B3 (1,4-DCB, TCE, PERC, chloroform and
CTC).

For each mixture, the copula simulations gave risk predictions that were generally similar
to observations, although there is notable divergence at the highest levels, particularly for
mixture B3 (Table 46, Figure 22). The highest risks (> 10°) were underestimated by both the
copulas and the lognormal simulations, although copulas had smaller errors. For mixture B1,
the lognormal simulations slightly overestimated the chance of exceeding a risk of 10, but
underpredicted higher risks. For example, moving vertically on the figure at the risk level of
107, the observed data, copula simulations, and lognormal simulations respectively predicted
25, 27 and 32% of individuals in excess of this risk level. At a risk of 10, predictions for
observed data, copula simulations, and lognormal simulations were 1, 0.6, and 0%,
respectively. For mixture B2, lognormal simulations again overestimated low to moderate
risks (10 to 10™*), and both copula and lognormal simulations underestimated the highest risks
(10 to 107). For mixture B3, the lognormal simulations significantly underestimated the
highest cancer risks (107?). The cumulative probability plot (Figure 22) shows that the
copulas sometimes overpredicted the highest values, information not seen in Table 46, e.g., the
highest observed risk for mixture B3 was 3.0x107 while the highest copula simulation was

8.1x107%. However, such cases were rare (< 1% of the cases).

This analysis suggests that lognormal distributions are a poor choice to represent extreme
values, as has been noted earlier (Su et al. 2012). It also highlights several important
differences between predictions using lognormal distributions and copulas. Copulas can use
any marginal distribution for each mixture component, and the simulations used the best-fit
marginal distribution (both type and parameters) for each VOC. This increases the flexibility
and can improve fit marginal distributions. However, the copula simulations propagate any
mismatches in the marginal distributions, which may explain the underprediction of the higher

risk levels. Second, copulas permit asymmetric dependency structures that can emphasize
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extreme values or other portions of the distribution that display “local” dependencies, e.g.,
mixture B1 fit the Gumbel copula which emphasizes upper tail dependencies. Lastly, copulas
performed better than multivariate lognormal models in all cases, although copulas predictions

also diverged from the very highest observations, e.g., above the 95" percentile.
3.7.4 Strengths and Limitations

This is the first study to estimate dependency structures of personal exposures to
multivariate VOC mixtures using copulas, a powerful technique that is unrestricted with
respect to the marginal distributions of the underlying mixture components. Since VOC
exposures were right-skewed even after log-transformation, traditional methods do not
properly capture the tail behavior of the VOC distributions. Using the RIOPA data, two sets
of VOC mixtures were identified, namely, those based on correlative measures (using PMF
analyses), and those based on toxicological mode-of-action. In the former group, the RIOPA
data revealed four common mixtures, which were easily identified and considered to be
"generated" or "intentional" mixtures. The second group of mixtures, which potentially cause
similar health effects, were associated with high lifetime cancer risks, at least for the more
exposed individuals. Copulas can improve the precision of exposure estimates, and decrease
the bias of risk estimates. Like the cumulative cancer risks predicted in this study, exposures
to VOC mixtures should be modeled appropriately to obtain accurate risk estimates. Another
application concerns the population attributable fraction (PAF), which quantifies the
contribution of various risk factors to a disease, i.e., the number of cases that would not occur if
the risk factor did not exist (WHO 2013). In this case, the proportion of population exceeding
certain exposure levels, e.g., an exposure threshold, could be estimated to obtain the correct

PAF.

The study has several limitations. First, to avoid the effect of repeated measurements,
only the first-visit data from RIOPA were used. This decreased the sample size and did not
permit the analysis of possible seasonal effects. Second, because PMF does not indicate the
optimal number of factors, there is some arbitrariness in this analysis. However, the VOC
components in each factor were quite consistent, and the factors often resembled in other
studies. The analysis tested only two families of copulas (elliptical and Archimedean) due to

the limitations of the software for copula simulations. However, these are best known and
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most commonly used copulas. The RIOPA data have some limitations. Only 18 VOCs
were measured, and MDLs for some compounds were higher than desirable. Low detection
frequencies may affect results of PMF, copula and risk evaluations. While the PMF
analysis incorporated uncertainty, distribution and copula selection and fitting assumed that
the measurements were error-free. Of course, exposure measurements can involve many
types of errors, and both the lowest and highest measurements may be especially prone to
errors. The RIOPA sample is not population-based, and results may not be generalizable to
the population as a whole. Finally, the RIOPA dataset is over ten years old, and changes in
product formulation and other factors may have altered both the concentrations and

compositions of VOC exposures.
3.8 Time and VOC Fractions in RIOPA
3.8.1 Time Fractions

Figure 23 displays the average time fractions spent outdoors, indoors and in transit for the
RIOPA participants. Indoor time fractions averaged 89, 92, and 92% in Los Angeles,
Elizabeth, and Houston, respectively, p < 0.001), and participants in Los Angeles spent the
least time at home (71, 80, and 80% for the three cities, p < 0.001), likely explained in part by
the lower unemployment rate in Los Angeles. Little time was spent outdoors, including time
within and out of their neighborhoods (fractions averaging 5.1, 4.5, and 4.3% in Los Angeles,
Elizabeth, and Houston, respectively, p = 0.650). Similarly, time spent in transit was small

(5.5, 3.6 and 3.6 in the three cities, respectively, p < 0.001).

Figure 23 compares the RIOPA time budgets to a nationally representative sample using
the National Human Activity Pattern Survey (NHAPS), a probability-based telephone
interview survey conducted from 1992 to 1994 that collected 24-h time-activity information,
demographics, and exposure-related questions from 9,196 respondents (Klepeis et al. 2001).
NHAPS respondents spent more time outdoors (7.6%) than the RIOPA participants (4.6%), but
less time indoors (87%) and at home (69%). This difference may result from the RIOPA’s
predominating female (75% vs. 54% in NHAPS) rate and older participants (18% of RIOPA
participants over 64 years old vs. 14% in NHAPS). Also, the unemployment rate (53%) was
high in RIOPA. These older, female and unemployed participants may spend most of their

time at home or other indoor places. Indeed, the data from NHAPS shows somewhat more
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time in transit and less time at school/work. Both RIOPA and NHAPS reflect the well know

pattern that most individuals spend the overwhelming fraction of time at home.
3.8.2  Outdoor and Indoor Exposure Fractions

The home environment dominated personal VOC exposures, e.g., median and mean
Fhome values ranged from 0.63 (MTBE) to 0.78 for a-pinene (Figure 24A, Table 47). The
95™ percentile values, which approached to 1 for all VOCs, show an even stronger influence
ofthe home. Fpop differed by season for two VOCs (benzene and MTBE), and by city for
most VOCs (except toluene, o-xylene, 1,4-DCB, PERC, d-limonene and B-pinene). The
median Fyome was highest in Houston (68% to 81%) for most VOCs (except benzene, styrene,
PERC, and d-limonene). The importance of the home environment is unsurprising since
RIOPA participants spent most (median of 77%) of their time at home, and since indoor

concentrations of most VOCs were much higher than outdoors levels.

Outdoor contributions to personal exposure, shown in Figure 24B, were very small, e.g.,
median values of Foyoor ranged from 0.02% (d-limonene) to 1% (CTC). Thus, the outdoor
environment typically accounted for below 1% of personal exposure, and even less for those
VOCs with strong indoor sources, e.g., 1,4-DCB and chloroform. Even the 95t percentile
values of Foutdoor fell below 15%.  Fouuoor differed (p < 0.05) by season for all VOCs and by
city for over half of the VOCs (benzene, toluene, m,p-xylene, o-xylene, MTBE, TCE, PERC
and CTC). (Differences by city and season are shown in Table 48.) Outdoor contributions
were small, a result of both the little time spent outdoors and the low outdoor VOC
concentrations. Because many of VOCs (toluene, styrene, 1,4-DCB, TCE, chloroform,
d-limonene, a-pinene, B-pinene) had low detection frequencies (< 60%), the outdoor

exposure fractions are approximate.

The two VOC fractions (Fhome and Foutdoor) €stimated in the study do not represent the
whole “exposure profile” contributed by various microenvironments, but this analysis does
highlight the most significant contributor of VOC exposures, the home environment. Since
this study population mainly comprised older, female, and unemployed participants, who

spent most of time at home, the effect of other microenvironments may less important.

The literature is consistent regarding the dominance of the indoor microenvironment for

VOC exposure (Lioy et al. 1991; P Kinney et al. 2002; Adgate et al. 2004; Phillips et al. 2005;
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Sexton et al. 2007). For example, the home exposures of toluene, styrene, 1,4-DCB, PERC
and chloroform dominated exposure for a group of school children (n = 73) in Minneapolis,
Minnesota (Adgate et al. 2004). These children spent an average of 65% of their time at
home. Time-weighted indoor concentrations were positively associated with personal
exposure for these VOC, while time-weighted outdoor concentrations did not have

significant associations. In another Minneapolis/St. Paul study, nonsmoking adults (n = 70)
showed similar results, with > 50% of VOC exposure occurring at home and 71% oftime spent

at home (Sexton et al. 2007).

In the present study, indoor VOC levels did not vary seasonally, but city effects were
significant, a likely result of differences in emission sources, meteorology and household
characteristics (e.g., presence of attached garage) among the three cities studied, as discussed
later. Seasonal effects on indoor levels of VOCs in RIOPA may be affected and potentially
diminished by lifestyle factors, e.g., opening windows, and using air conditioners. Other
important factors affecting indoor concentrations were household characteristics such as the

existence of attached garages (Batterman et al. 2007) (also see Section 3.9.5).
3.9 Determinants of Personal, Home, and Outdoor VOC Concentrations in RIOPA
3.9.1 Gasoline-related VOCs

BTEX, MTBE and styrene, all components of gasoline and vehicle exhaust, shared
several exposure determinants (Table 49 and Supplemental Table S10). Increased exposures
were associated with living in Houston, homes with attached garages, and self-pumped gas;
decreased exposures were associated with higher wind speeds and house AERs. Interestingly,
lower exposures of toluene, ethylbenzene and o-xylene were found for participants reporting
cooking activities during the sampling period, possibly because these individuals drove less for
food related activities. Indeed, participants reporting cooking activities spent less time in cars
with closed windows (mean time spent = 71 min) than those not reporting cooking activities
(mean time spent = 88 min, p-value of't test = 0.038). (No differences were seen for time in

cars with open windows or for total travel time.)

The literature supports these findings for BTEX, MTBE and styrene (Table 1). In
Houston, important VOC sources included petrochemical facilities and vehicles (Weisel et al.

2005b). Attached garages are known sources of gasoline-related aromatics in homes
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(Batterman et al. 2007; Sexton et al. 2007; D'Souza et al. 2009; Delgado-Saborit et al. 2009;
Symanski et al. 2009; Wang et al. 2009). Gasoline pumping has been shown to elevate
personal exposures to BTEX in cold weather in Alaska (Backer et al. 1997). The effects of
both attached garages and pumping gas on gasoline-related VOCs were also seen in NHANES
(Symanski et al. 2009). Concentrations arising from outdoor sources, e.g., vehicle exhaust,
are diluted by wind (US EPA 2010b), so higher wind speeds may lower exposures. The AER,
which accounts for infiltration and ventilation and which depends on wind speed (US EPA
2011b), influences indoor concentrations and thus personal exposures for those pollutants
arising from indoor sources. Cooking-related activities have been shown to increase indoor
and personal concentrations of several VOCs, e.g., benzene and toluene (Clobes et al. 1992;
Byun et al. 2010). However, in RIOPA, negative associations were seen between cooking and
personal exposures to toluene, ethylbenzene and o-xylene. This inconsistency could be
explained by statistical chance, although the explanation offered above -- that participants
without cooking activity traveled more to dine out during which time they were exposed to
gasoline-related VOCs -- appears reasonable. The RIOPA data does not allow further analysis,
but we speculate that visits to "drive-though" fast-food facilities where vehicles are queued up

and idling may be a particularly important source of VOC exposure.
3.9.2 Odorant and Cleaning-related VOCs

Four determinants were found for the group of odorant and cleaning-related VOCs
(1,4-DCB, chloroform, d-limonene, a-pinene and B-pinene) (Table 50 and Supplemental
Table S11). Like the gasoline-related VOCs, Houston participants had higher exposures to
these VOCs. AERs were negatively associated with VOC exposures, reflecting the dilution
effects affecting indoor sources. Participants in larger houses (more rooms) tended to have
lower exposure to 1,4-DCB, chloroform, d-limonene and a-pinene. Interestingly, the
behavior of other household members was associated with personal exposure, e.g.,
non-participants showering during the sampling period was associated with higher exposures

of chloroform, d-limonene, a-pinene and B-pinene.

The odorant and cleaning-related VOCs are primarily released by indoor sources, such
as mothballs, air fresheners, cleansers and chlorinated water (ATSDR 1997a, 2006a; Chin et
al. 2012; US EPA 2012a). Thus, the use and storage of these products can affect exposure.
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Also, since these VOCs arise mainly from indoor sources, AER is expected to be a
determinant (Mudarri 2010). The identification of the number of rooms, a suggestion of
house size, as a determinant may reflect additional mixing in large houses that lowers
concentrations compared to approximately the same product use in smaller houses. We
have previously noted that in low income households, which are usually smaller and
sometimes crowded, there may be a tendency to try to mask odors using heavier applications
of cleaners and fragrances that would increase concentrations (Chin et al. 2013). In RIOPA,
the number of rooms in a household was positively associated with household income (f =
0.79, p-value < 0.001), and thus socioeconomic factors may be an indirect or interacting
factor associated with high exposures of odorant and cleaning-related VOCs. However, no
association with household income and VOC exposures were found. The effect of
employment on d-limonene exposure might result as unemployed participants spent more
time at home (2,278 and 2,000 min for unemployed and employed participants, respectively;
p-value < 0.001), and possibly engaged in chores that increased their contact with cleaners

and odorants.

Chloroform is a byproduct produced when chlorine is used as a water disinfectant, thus
drinking water, contacting water (e.g., bathing) and inhaling water vapor can increase
exposure (ATSDR 1997a). Elevated chloroform concentrations in a room adjoining a study
bathroom during showering has been noted and called “secondary shower exposure” (Gordon
et al. 2006). Such secondary exposure is consistent with findings that chloroform exposure
in RIOPA increased when other family member showered. However, bathing or showering
by the RIOPA participants themselves did not affect their exposure. ~Similar (negative)
results with showering were found for the 1999-2000 NHANES dataset, possibly due to a lack
of variance in showering-related variables since most (85%) participants showered during the
sampling period (Riederer et al. 2009). The same explanation may apply to the present study
since 87% of participants showered during the sampling period. Additionally, participants
were instructed not to get the samplers wet, and they may have removed them outside of the

shower and bathroom (Weisel et al. 2005b).

The effect of city can be attributable to several factors, including differences in outdoor
emission sources, e.g., industry and traffic (Weisel et al. 2005b), meteorological factors that

affect both dispersion and emissions of outdoor pollutants, systematic differences in building
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AERs, demographic and cultural factors. For example, outdoor temperatures were
considerably warmer in Houston during the sampling period, compared to Los Angeles and
Elizabeth (respectively averaging 22.3 + 7.5, 18.6 + 4.7 and 14.6 £ 8.6 °C, p-value < 0.001).
Higher temperatures increase vapor pressures, permeation rates, and evaporation rates,
potentially producing higher concentrations. Since a fraction of odorant and
cleaning-related VOCs arise from volatilization and sublimation from indoor sources, indoor
temperatures are also important. Indoor temperatures showed less variation and differences
were not significant (respectively averaging 23.3 +2.6, 23.9 £ 2.6°C and 24.0 + 3.4 in Los
Angeles, Elizabeth, and Houston, p-value = 0.052).

3.9.3 Dry-cleaning and Industry-related VOCs

The dry-cleaning and industrial emissions group had three VOCs (TCE, PERC and CTC)
which were affected by city and household water source (Table 51 and Supplemental Table
S12). Elizabeth and Los Angeles participants had the highest TCE and PERC exposures,
but Houston participants had the highest CTC exposure. Public water supplies were

associated with lower TCE exposure, but higher CTC exposure.

As expected, PERC exposures increased by visiting a dry cleaner (Table 51 and
Supplemental Table S12). This solvent has been widely used for dry cleaning clothes, and
exposures occur when visiting dry cleaning establishments, and storing dry cleaned clothes at
home, whether or not clothes are wrapped in plastic (Sherlach et al. 2011), as noted in Table 1.
PERC exposures were higher among employed participants. Since PERC has been widely
used in industry as a degreaser and also has been added into products such as adhesives and
paint removers (ATSDR 1997b), employed participants may have more chances to contact it.
The city effect may be related to population density: Los Angeles and Elizabeth have higher
densities (Weisel et al. 2005b), which may lead to more dry cleaners and elevated ambient
concentrations. The outdoor PERC levels were higher in Los Angeles and Elizabeth than in

Houston (median were 1.29, 0.74, and 0.11 ug m”, respectively, p-value < 0.001).

TCE has been used extensively as a degreaser, paint remover, adhesive, and chemical
intermediate (ATSDR 1997c). Exposure may increase if TCE-containing consumer or
home products are present, e.g., vinyl siding, glue and car stain removers (US EPA 2007b).

Additionally, TCE is sometimes found in contaminated soils and groundwater, and
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participants in households near to subsurface or surface contaminated soils may be exposed
indoors through soil vapor intrusion and water consumption, if a local well (especially a
private well without water monitoring or treatment) provides the water source. In the
RIOPA dataset, the TCE detection frequency was only 31%, thus, the only the higher levels

were quantified. In consequence, TCE results may not be robust.

Most commercial uses of CTC were phased out by 1986 due to this chemical's toxicity
and persistence, and industrial emissions also have been limited under the Clean Air Act
Amendments of 1990 (ATSDR 2005a). (Previously, CTC had been used in medical
treatment and as a component in fire extinguishers, fumigants and pesticides.) Currently,
CTC use is permitted only in a few industrial processes for which there are no effective
substitutes. CTC is globally distributed at generally low levels with spatial little variation,
except near contaminated source areas where levels increase. The variation among CTC
exposures among the RIOPA participants is limited, and little variance can be explained by

the available variables.
3.9.4 Summary of Key Exposure Determinants

The most common and significant determinants of personal VOC exposures were city,
inverse wind speed, log-transformed AER, number of rooms, presence of an attached garage,
and self-pumping gas. Inverse wind speed was positively associated with log-transformed
benzene, ethylbenzene, m,p-xylene, o-xylene, MTBE, and PERC. Log-transformed AER
was negatively associated with log-transformed toluene, ethylbenzene, m,p-xylene, o-xylene,
PERC, chloroform, d-limonene, a-pinene and B-pinene. Participants living in larger houses
(more rooms) had lower exposures of benzene, styrene, 1,4-DCB, chloroform, d-limonene,
and o-pinene; those in houses with attached garages had higher levels of benzene, toluene,
ethylbenzene, m,p-xylene, o-xylene, and MTBE. Participants who self-pumped gas had
higher exposures of benzene, ethylbenzene, m,p-xylene, o-xylene, and MTBE. While the
effects varied, participants in Houston usually had higher exposures than participants in Los
Angeles and Elizabeth. The effect of employment lowered d-limonene exposure but
increased PERC exposure (Tables 50 and 51). These effects were significant and based on
linear mixed models, which controlled for clustering and repeated measures. As discussed

later, the LMMs explained for 0.003 (CTC) to 0.4 (B-pinene) of the variance in personal
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exposure.
3.9.5 Determinants of Indoor VOC Concentrations

An analysis parallel to that performed for personal samples, i.e., using LMMs, was
conducted for the indoor VOC measurements. Given the correlation between indoor and
personal exposure measurements, it is not surprising that many of the same factors were
identified as determinants (Tables 52 to 54). Most of the VOCs were affected by city and
several household characteristics. Among household characteristics, AER was negatively
associated with indoor levels of toluene, m,p-xylene, o-xylene, styrene, TCE, PERC,
chloroform, d-limonene, a-pinene and B-pinene. Larger houses (more rooms) was
associated with decreased concentrations of benzene, toluene, m,p-xylene, o-xylene, styrene,
1,4-DCB, d-limonene and a-pinene. BTEX (except for toluene) and MTBE increased with
the presence of attached garages. Again, city effect varied by VOC, although Houston had
the highest levels of VOCs except for MTBE, TCE, and PERC. (These were highest in
Elizabeth).

Two meteorological factors were negatively associated with indoor VOC levels:
ambient relative humidity with toluene, ethylbenzene, m,p-xylene, o-xylene, styrene,
chloroform and B-pinene, and wind speed with ethylbenzene, m,p-xylene, o-xylene, MTBE,
styrene and PERC. Wind speed is expected to dilute outdoor concentrations from local
sources, and to affect AERs as noted earlier. Outdoor relative humidity may be a surrogate
for seasonal affects and weather, e.g., precipitation, possibly representing effect of fronts or
low pressure systems with good dispersion or effective cleansing. Another meteorological
factor, indoor temperature, showed opposite effects on two indoor VOCs, benzene and
chloroform. Higher indoor temperatures were associated with lower benzene, but higher

chloroform, which may be due to the high volatilization rates.
3.9.6 Determinants of Outdoor VOC Concentrations

Outdoor concentrations were affected by city and three meteorological variables (Tables
55to 57). Ambient relative humidity was negatively associated with concentrations of
benzene, ethylbenzene, m,p-xylene, o-xylene, MTBE, styrene, and B-pinene levels. Wind
speed was negatively associated with concentrations of benzene, toluene, ethylbenzene,

m,p-xylene, o-xylene, MTBE, styrene, TCE, PERC, and a-pinene. Effects of city and
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outdoor temperature depended on the VOC. For example, Houston had the highest
concentrations for benzene, m,p-xylene and B-pinene, which may be due to the crowed

petrochemical industry (Weisel et al. 2005b).
3.9.7 Common Determinants of Personal, Indoor and Outdoor Concentrations

Two factors affected personal, indoor and outdoor levels: city and wind speed. Three
factors affected both personal and indoor levels: AER, number of rooms, and attached
garage. That five common factors affected concentrations of most personal and indoor
VOC measurements suggests that the critical influence of indoor sources (or levels) on
personal exposures. In contrast, outdoor levels had only minor impacts on personal
exposure, although they may influence indoor levels (Sexton et al. 2007).  As in many other
studies, RIOPA participants spent most of their time indoors, and outdoor concentrations

were low.
3.9.8 Assumption of Linearity

The assumption of linearity for the continuous covariates in the LMMs (wind speed,
ambient relative humidity, indoor temperature, AER, and time spent indoors at home) was
evaluated using partial residual plots, which account for effects of all other covariates. Plots
for wind speed and AER suggested some non-linearities with log-transformed VOC
concentrations (Figures 25A, C, and E). Several transformations of these variables were
attempted, and near-linear relationships were achieved using the reciprocal of wind speed and
the logarithm of AER (Figures 25B, D, and F). Inverse wind speed can be supported based on
dilution or mass balance principles (applying to sources with emission rates that are
independent of the wind speed). For buildings with internal emission sources, the AER is
proportional to the air flow through the building, so again the reciprocal of the AER is expected
be linearly related to indoor concentrations. However, indoor concentrations are affected by
many factors, and AERs are measured with error. The log AER, rather than 1/AER, would
tend to diminish the effect of both very large and very small AERs, and the fit with this
transformation suggests that the measured AER may have had some outliers and possibly some
bias or errors. Still, the expected relationship was seen, i.e., indoor concentrations of VOCs
with strong indoor sources (e.g., chloroform and d-limonene) decreased as AERs increased

(Table 53).
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3.9.9 Model Validation

The estimated fraction of variance (R?) attributable to fixed-effect variables in the LMMs
for each VOC and each sample type (personal, indoor, outdoor) is shown in Table 58. For
personal exposures, R* ranged from 0.003 (CTC) to 0.40 (B-pinene); for indoor measurements,
the R* ranged from 0.09 (toluene) to 0.42 (PERC); and for outdoor concentrations, the R*
values were from 0.17 (1,4-DCB) to 0.65 (PERC). Generally, more variance was explained
for the outdoor measurements. VOCs with specific emission sources, e.g., PERC (dry
cleaners) and a-pinene (cleaning products and freshener), had the largest R* among 15 VOCs;
this applied to all three sample types. In contrast, VOCs used in many commercial products
and that were also components of exhaust and other sources, e.g., toluene, had small R? across
the three sample types. The LMMs explained only a portion of the variance in the dataset.
While some of the variance is random and some is due to errors in measurement and model
specifications, it is likely that the LMMs are incomplete models in the sense that other
(unknown) variables and other (also unknown) interactions among the variables affect
exposure. However, low R values do not invalidate the identification or significance of the

determinants.
3.9.10 Strengths and Limitations

The analysis of the extended and comprehensive RIOPA dataset, which includes outdoor,
indoor and personal measurements of 15 VOCs along with over 500 other variables used as
candidate factors, advances the understanding of VOC exposure and exposure determinants.
The relationship of outdoor and home VOC levels to personal exposures were evaluated, using
time and VOC fractions, and many factors were shared among outdoor, indoor and personal
measurements. Strengths of analysis include the use of LMMs, the repeated measurements
for available participants, and the nested analysis, which allowed estimation of individual
differences from average levels for specific variables (Krueger and Tian, 2004; Wu, 1996).
The time fractions help to understand the participants’ activity pattern, and to estimate the
contribution of VOC sources to exposures. Many of our results are consistent with previous
studies, e.g., the significance of strong indoor VOC sources (Sexton et al., 2007), the presence
of attached garages (D'Souza et al., 2009; Delgado-Saborit et al., 2009; Sexton et al., 2007;
Symanski et al., 2009; Wang et al., 2009), and activities such as visiting dry cleaners (D'Souza
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et al., 2009; Wallace, 1989; Wallace, 2001; Wang et al., 2009). Several new determinants
were discovered, including a strong effect due to city, other family member showering, and

residence size.

The limitations of the dataset include missing data, which decrease sample size and
statistical power. Two methods were used to address this issue. First, variables with sample
sizes less than 400 (>150 missing cases) were excluded from LMMs. This excluded several
potentially significant variables, e.g., land use data. Fortunately, land use data were highly
correlated with city, which was utilized in every model. Second, the use of multiple
imputations was evaluated, and results showed that for the models tested, the impacts of
missing data would not be substantial. We also noted that models for personal exposures
explained less variance (lower R?) than outdoor and indoor models, probably due to the
number and complexity of factors (especially behaviors) that affect an individual’s exposure.
A final limitation of the study is the representativeness of the study sample. RIOPA data was
collected in three U.S. cities, which have specific emission sources (Weisel et al. 2005b). A
convenience sample was used, which led to a number of demographic and other differences, as
discussed. Since the study period, VOC sources and levels may have changed somewhat.
Thus, study results may not reflect the U.S. population or current period. However, most
findings correspond to other studies that using regional or national data, thus, most of the

results appear relevant.
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Table 1. Determinants of VOC exposures in previous and present studies.

Determinants Benzene Toluene  Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 1,4-DCB TCE PERC Chloroform CTC d-Limonene a-Pinene B-Pinene

Personal activities
Contact with chlorinated water m A, C,M M M M
Cooking L L,m m m L
Cycling/ walking E E E E
Keep pets m m
Near vehicle or engines D,E, G D A, D,E A, D,E A, D,E D A
Polish/wax furniture j j M
Pump gas/near gasoline E,K,M J,K E,J, K, M E,J, K, M E,J, K, M M
Renovate house M M
Smoke or near ETS A, B,C,D,G,Hk B,D,e,H B,D,H B,D,H B,D,H A, B,D
Stay in/ presence of attached garages F,G,H,J, KM FHIJM FGHIJKMFHILKM FHILKM HM H
Time spent at home m m
Time spent in closed cars M
Undertake arts and crafts E E E E
Use air cleaning devices M M M
Use deodorizers and mothballs A, C H m
Use gas heating/gas stove D,G,M D,j D D
Use paint and other solvents H H, K G, H,K,M H,J,K.M H,J, K K
Use perfume m
Visit dry-cleaner/near dry-cleaned clothes A, C, H,K,M
Socioeconomic factors
Age i, k
City/ region* I, m 1 I, m I, m m m m m m m m m m m
Education/parental education k
Non-Hispanic White h, k h h h
Male K K K
Machine-related jobs/ work in a factory H H G, H H
Ownership of the house m
Unemployed m M
Environmental factors
AER m m m m m m m m m
Ambient RH m m m
Furniture refinisher in neighborhood M
Existence of a fireplace G M
Existence of a swim pool H I M
Existence of a well/ use well water M h m
Indoor temperature m m
Live in an apartment/mobile home L I
Near commerical street/ highway H H H
Number of floors m m
Number of rooms m m m m m m
Open windows/ doors f,h,j, k f,hj, k f,h f,h f,h, m f f,m f,m f,h f,h i,k f f f
Restaurants or bakery in neighborhood M m
Vinyl, asbestos or other siding M
Wind speed m m m m m m
Years lived in home h h h h h

o
o
o
£

T A= =

A, Wallace et al. 1989; b, Edwards et al. 2001; c, Wallace 2001; d, Kim et al. 2002; e, Hinwood et al. 2007; f, Sexton et al. 2007; g, Delgado-Saborit et al. 2009; h,
D'Souza et al. 2009; i, Riederer et al. 2009; j, Symanski et al. 2009; k, Wang et al. 2009; 1, Byun et al. 2010; m, the present study.
Capital letters indicate increased exposure, and lower case indicates decreased exposure; *, no increasing or decreasing trends.
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Table 2. Toxicity standards/guidelines for personal VOC exposures.

Cancer Non-cancer
Chronic Acute
VOCs IRIS IARC (“giﬂ)_l Source Health effect RfC Source MRL Source
3 -
(ngm®) (ngm®)
Benzene A 1 7.8x10° IRIS, 2011 Leukemia (occupational) 30 IRIS, 2011 29 ATSDR, 2010
Toluene D 3 NA RIS, 2011 eurological effects (occupational); color vision impairment 5000 IRIS, 2011 3766  ATSDR, 2010
(occupational) and respiratory irritation (human volunteer)
Ethylbenzene D 2B 2.5x 10 OEHHA, 2005 Lung, liver, and renal adenomas and carcinomas (animal) 1000 IRIS, 2011 21696  ATSDR, 2010
Xylenes D 3 NA IRIS, 2011 Impaired motor coordination (animal) 100 IRIS, 2011 8679  ATSDR, 2010
MTBE D 3  26x107 OEHHA,2005 Lymphomas,leukaemias, hepatocellular adenomas, and renal 3000 IRIS, 2011 7206  ATSDR, 2010
tubular and testicular tumours (animal)
Styrene ND 2B 20x10° ‘gzlld“{‘;lég Pulmonary adenomas (animal) 1000 IRIS,2011 21286 ATSDR, 2010
1,4-DCB ND 2B 1.1x10° OEHHA, 2005 Liver and kidney tumor, and mononuclear-cell leukemia (animal) 800 IRIS, 2011 12019  ATSDR, 2010
TCE ND 2A  20x10° OEHHA,2005 L-iverand biliary tract cancer, and lymphoma (human); liver, 40  EPA,2001 10741  ATSDR, 2010
renal-cell, lung and testicular tumours, and lymphomas (animal)
Oesophageal and cervical cancer, and non-Hodgkin's lymphoma
PERC ND 2A  59x10° OEHHA, 2005 (human); hepatocellular carcinomas and mononuclear-cell 16 EPA, 2010 1356 ATSDR, 2010
leukaemia (animal)

Chloroform B2 2B 23x10° IRIS, 2011 Renal tubule and hepatocellular tumours (animal) NA 488 ATSDR, 2010

CTC B2 2B 1.5x10° IRIS, 2011 Liver and mammary neoplasms (animal) 100 IRIS, 2011 NA

d-Limonene ND ND NA NA NA

a-Pinene ND ND NA NA NA

B-Pinene ND ND NA NA NA

IRIS, Integrated Risk Information System; TARC, International Agency for Research on Cancer; URF, unit risk factor; RfC, reference concentration; MRL, minimal
risk level; NA, not available; ND, no data.
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Table 3. Statistics of outdoor VOC (nug m™) concentrations in RIOPA.

Outdoor n Mean SD GM GSD Min  25% 50" 75M 95" Max

Benzene 555 2.15 2.11 1.57 219 027  0.69 1.68  2.67 5.16  20.92
CTC 555 0.72 1.31 0.63 1.50 0.14 055 064 0.75 1.00  31.23
Chloroform 555  0.37 1.43 0.22 1.87 0.14 0.14 0.2l 0.21 0.79 2472
1,4-DCB 555 215 1716 057 269 022 046 046  0.64 3.66 355.05
Ethylbenzene 555 1.28 1.87 088 229 0.11 037 093 1.67 3.04 36.24
d-Limonene 555 1.97 634 078 265 035 035 0.64 0.64 6.54 74.20
MC 555 1.06  2.23 0.63 2.73 0.15 0.15 1.05 1.05 246  39.86
MTBE 555 8.1 9.99 504 279 019 284 532 9.72  22.09 105.17
a-Pinene 555 1.3l 416  0.71 2.53 0.14  0.46 1.02 1.02 223  63.17
B-Pinene 555 094 215 0.72 1.69  0.51 0.51 0.51 1.05 1.26  46.17
Styrene 555  0.58 2.06  0.39 194 017 0.17 042 042 1.29  47.00
Toluene 555  6.83 6.54 5.26 1.91 3.35 3.35 3.56 871 19.63 64.97
TCE 555 0.34 .30 0.22 192 012 0.12 022 022 080 30.07
PERC 555 1.02 217  0.51 3.16  0.11 0.21 0.61 1.21 3.17  41.82
m,p-Xylene 555 3.56 416 244 236 033 149 249 426 10.02 51.21
0-Xylene 555 1.46 390 092 231 0.15 0.43 0.96 1.58 3.23  80.98

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum,;
max, maximum.
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Table 4. Statistics of outdoor VOC concentrations (pg m?) stratified by city in RIOPA.

Los Angeles, CA Elizabeth, NJ Houston, TX

Outdoor (n=175) (n=182) (n=198)
Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95 Mean SD GM GSD 50" 95th
Benzene  2.50 237 1.76 236 198 6.10 145 156 1.09 2.03 122 330 248 2.17 198 193 194 5.69
CTC 0.68 023 0.64 145 0.63 1.00 0.84 228 063 1.78 0.69 1.04 0.63 0.15 0.62 121 0.62 0.80
Chloroform  0.40 0.77 028 1.88 021 126 047 193 025 1.87 021 097 026 134 0.16 1.56 0.14 0.35
14-DCB 132 213 0.78 234 046 5.05 3.58 2697 0.64 2.63 0.46 695 1.57 12.38 038 2.71 022 2.45
Ethylbenzene 1.61 1.53 1.15 230 130 4.50 1.34 275 0.86 2.31 0.99 293 094 0.80 0.72 2.12 0.79 2.49
d-Limonene 333 9.17 1.30 2.95 0.64 1230 1.99 5.65 0.88 234 0.64 10.90 0.74 2.53 044 186 035 136
MC 1.59 3.18 1.22 1.62 1.05 325 146 2.07 1.19 157 1.05 3.09 023 0.16 0.19 1.68 0.15 0.59
MTBE  10.79 11.43 7.26 2.61 831 26.81 5.77 534 3.77 2.75 432 19.16 7.89 11.31 4.78 2.72 4.52 257‘6
a-Pinene 230 6.52 1.27 201 1.02 652 134 3.10 1.09 143 1.02 1.02 041 071 029 2.13 030 0.84
B-Pinene  0.86 1.43 0.62 1.79 0.51 222 0.89 3.46 0.56 1.64 0.51 123 1.08 0.46 1.06 1.15 1.05 1.05
Styrene  0.71 0.94 0.53 1.81 042 252 0.72 3.46 045 1.52 042 0.82 034 036 025 1.98 0.17 1.09
Toluene  8.69 8.82 6.32 2.10 3.35 24.14 6.80 5.68 529 1.93 3.35 18.06 521 4.04 445 1.62 3.56 1‘2‘3
TCE 029 030 025 1.52 022 059 0.60 222 036 198 022 1.05 0.14 0.09 0.13 136 0.12 0.30
PERC 1.85 1.90 1.28 243 130 440 1.10 3.09 0.72 2.12 0.74 2.19 022 020 0.17 1.89 0.11 0.69
mp-Xylene 4.91 525 3.19 2.62 3.56 12.97 321 431 225 224 234 875 2.69 2.18 2.07 2.10 223 7.52
o-Xylene 178 1.66 126 231 140 445 1.67 6.54 0.88 2.17 094 2.61 099 0.84 0.73 2.25 0.80 2.45

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 5. Statistics of indoor VOC (ng m™) concentrations in RIOPA.

Indoor n Mean SD GM GSD Min 250 500 75" g5t Max

Benzene 554 350 515 219 250  0.55 1.27 219 3.85 10.03 46.07
CTC 554 071 097 0.61 1.1 0.14 052 062 0.75 1.10 18.07
Chloroform 554 186 297 093 320 0.14 037 092 216 6.34 40.18
1,4-DCB 554 68.84 303.76 2.61 894 022 046 140 7.85 343.88 4050.73
Ethylbenzene 554 2.52 474 149 252 029 089 146 247 7.62 68.37
d-Limonene 554 3098 107.06 9.27 481 035 3.16 9.67 27.99 102.75 2101.31
MC 554 240 10.61 091 3.00 0.15 067 1.05 1.05 7.50  187.64
MTBE 554 11.79 2729 560 326 0.19 3.10 598 10.68 36.00 348.04
a-Pinene 554 7.04 1460 3.03 324 040 1.02 260 7.17 2549 174.67
B-Pinene 554 485 1095 1.77 3.63 051 0.51 1.21 446 2045 123.14
Styrene 554 147 424 068 258 0.17 042 042 1.07  5.13 59.37
Toluene 554 1526 2448 983 237 335 356 1041 17.10 39.79 323.95
TCE 554 097 719 027 258 0.12 0.12 022 0.28 1.73  132.32
PERC 554 1.84 447 080 340 0.11 035 0.84 1.71 6.01 78.05
m,p-Xylene 554 7.32 1587 4.01 268 033 228 4.07 691 2218 231.22
0-Xylene 554 247 4778 146 251 015 088 146 244 724 66.88

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum,;
max, maximum.
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Table 6. Statistics of indoor VOC concentrations (g m™) stratified by city in RIOPA.

Los Angeles, CA Elizabeth, NJ Houston, TX

Indoor (n=174) (n=182) (n=198)
Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95th
Benzene  3.00 5.00 194 236 205 653 251 397 153 249 1.65 7.33 485 593 338 219 3.06 12.23
CTC 0.80 1.69 0.60 1.73 0.58 1.09 0.66 030 0.58 1.73 0.63 1.18 0.68 028 0.65 135 0.62 1.12
Chloroform  1.57 2.13 0.88 296 092 516 1.65 346 074 325 074 651 231 3.07 122 321 132 9.11
1,4-DCB 3881 3156 1.61 5.16 1.18 31.06 29.20 121.1 240 6.66 1.39 137.1 131.7 389.6 432 15.01 2.02 1017
Ethylbenzene 245 3.51 1.51 253 145 799 230 571 121 269 129 7.02 278 472 177 226 1.68 7.62
d-Limonene 21.87 45.00 6.96 4.76 7.31 92.25 14.66 24.53 541 4.46 6.71 62.56 53.99 170.3 19.58 3.87 20.79 166.8
MC 1.86 2.77 133 185 1.05 6.67 177 4.17 124 1.73 105 371 344 17.08 049 436 0.37 11.80
MTBE 13.16 33.09 6.38 3.31 7.44 2692 7.35 9.56 398 3.31 496 25.02 14.67 31.88 6.84 297 5.82 55.08
o-Pinene  6.82 14.62 2.57 335 1.02 32.60 3.97 10.83 1.92 2.58 1.02 14.34 10.06 16.88 5.35 3.01 5.53 34.90
B-Pinene  3.04 920 1.14 3.09 0.51 10.50 3.32 11.15 1.07 3.14 051 9.90 7.84 11.57 4.13 3.02 4.03 24.96
Styrene 130 2.04 071 249 042 645 150 4.05 0.64 252 042 660 158 564 0.68 271 0.67 3.04
Toluene  16.29 33.73 9.72 2.45 10.71 34.60 12.75 11.58 9.31 2.19 9.74 34.80 16.66 23.47 1042 2.46 10.51 47.65
TCE 0.51 252 026 178 022 0.62 097 250 047 262 022 2.79 138 1155 0.16 2.50 0.12 0.85
PERC 332 7.06 1.71 283 1.66 13.80 132 1.98 094 2.14 090 3.38 1.02 242 035 343 030 5.14
m,p-Xylene 6.88 933 4.01 282 4.16 2522 6.50 18.99 3.23 271 3.18 1585 847 1723 490 242 455 25.02
o-Xylene 244 3.14 158 244 164 771 213 532 1.19 252 1.18 638 280 540 1.64 249 153 898

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 7. Statistics of personal adult VOC (pug m™) concentrations in RIOPA.

Adult n Mean SD GM GSD Min 25" 50"  75% o5t Max

Benzene 544 364 531 237 241 0.27 145 239 409 10.74 8537
CTC 544 080 244 0.61 1.6 0.14 0353 0.62 0.74 1.08 42.27
Chloroform 544 425 5249 1.05 3.17 0.14 049 1.04 220 6.58 1223.56
1,4-DCB 544 56.83 22937 298 810 022 046 1.88 830 314.50 2153.45
Ethylbenzene 544 2.78  5.13 1.5 254 011 097 1.68 269 748 64.55
d-Limonene 544 41.14 23890 1090 458 035 485 11.77 29.42 112.21 5113.77
MC 544 311 17.14 099 3.05 0.15 093 1.05 1.05 740  329.85
MTBE 544 1477 42,67 698 323 0.19 383 7.4 1399 42.67 843.74
a-Pinene 543 686 1626 3.20 3.03  0.55 1.02 288 695 23.62 23148
B-Pinene 544 553 13.07 192 372 051 0.51 1.52 449 2243 133.16
Styrene 544 1.55 431 073 256 017 042 042 1.10  5.52 59.52
Toluene 544 19.12 3731 11.60 248 335 438 1242 1994 5025 641.47
TCE 544 144 1074 029 290 0.12 0.12 022 047 238 200.31
PERC 544 7.17 11235 094 354 0.11 041 089 200 724 2617.79
m,p-Xylene 544 8.07 1549 463 263 070 271 442 785 2273 219.05
0-Xylene 544 287 559 174 242 042 1.o6 172 277 8.16 79.56

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum,;
max, maximum.

90



Table 8. Statistics of personal adult VOC concentrations (g m™) stratified by city in RIOPA.

Los Angeles, CA Elizabeth, NJ Houston, TX

Adult (n=174) n=171) (n=199)
Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95th
Benzene  3.10 6.53 2.08 225 226 622 280 4.19 1.70 251 1.76 10.09 482 476 3.55 2.10 3.13 14.78
CTC 0.86 3.16 0.60 1.66 0.58 099 0.88 296 0.7 199 064 123 067 023 065 128 0.62 1.06
Chloroform  8.52 92.67 0.92 3.14 0.87 5.19 220 4.83 095 338 085 7.02 227 295 128 295 133 865
1,4-DCB 1495 6336 1.70 4.74 123 60.10 26.49 113.7 2.59 6.04 1.85 86.76 119.5 3513 549 12.66 3.42 9459
Ethylbenzene 233 3.60 1.50 246 1.66 5.55 291 6.89 142 286 140 804 3.06 445 203 225 183 11.22
d-Limonene 48.17 3882 7.41 443 7.62 87.71 1791 32.12 6.72 4.58 839 59.67 54.97 152.6 23.16 3.43 22.40 1543
MC 3.84 2502 141 215 105 840 1.81 379 123 178 1.05 425 3.60 1563 0.59 439 045 12.46
MTBE 12.23 13.48 8.09 2.69 8.52 3520 14.63 65.43 5.06 3.61 549 38.02 17.12 33.88 8.08 321 732 66.77
o-Pinene  4.83 8.12 233 292 1.02 2659 506 1644 225 273 1.02 15.89 10.17 20.44 572 2.68 583 27.49
B-Pinene  2.80 855 1.06 295 0.51 10.09 5.14 16.19 132 3.61 051 3034 825 12.86 445 294 416 2553
Styrene 1.19 190 0.67 239 042 607 184 556 0.69 276 042 1040 1.61 459 0.81 251 084 3.09
Toluene  18.79 49.32 11.17 2.44 12.71 48.60 20.74 38.63 11.33 2.67 11.33 56.71 18.01 20.17 1225 2.36 13.09 49.91
TCE 072 331 030 220 022 156 239 1563 0.53 3.03 050 480 126 9.79 0.17 2.62 0.12 122
PERC 379 959 1.86 2.69 175 9.82 17.36 200.1 1.11 298 1.00 494 138 475 044 341 036 6.40
m,p-Xylene 7.07 9.76 445 2.64 454 18.89 791 2034 3.84 289 4.04 2551 9.07 1475 5.64 232 510 32.12
o-Xylene 253 342 176 229 1.84 6.01 3.04 806 148 271 156 9.16 3.02 440 198 224 1.80 9.52

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 9. Statistics of personal child VOC (ug m™) concentrations in RIOPA.

Child n Mean SD GM GSD Min 25" 50"  75% 95t Max

Benzene 209 416 557 284 229 055 1.75 279 455 11.95 54.68
CTC 209 057 016 0.54 141 014 047 056  0.67 0.83 1.22
Chloroform 209 2.03 3.63 1.10 282 0.14 0.53 1.14  2.12 7.47 38.59
1,4-DCB 209 121.56 313.58 6.83 11.39 0.22 1.05 4.18 25.88 978.59 1783.50
Ethylbenzene 209 334 635 2.00 244 0.11 1.22 1.95  3.07 10.28 60.24
d-Limonene 209 32.11 49.75 1648 356 0.64 802 1736 37.99 11149 577.74
MC 209 1.70 650 062 331 015 0.15 0.88 1.05 5.25 88.88
MTBE 209 11.69 2206 673 287 019 3.8 7.03 1346 30.16 224.83
a-Pinene 209 569 575 3.63 263 0.75 1.50 3.57 8.14 16.61 36.03
B-Pinene 209 5.33 621 279 329 051 1.05 285 8.06 18.22 35.29
Styrene 209 1.70 436 078 265 0.17 042 0.65 1.23 6.89 39.70
Toluene 209 1830 27.82 11.72 238 335 7.64 1234 1949 57.17  238.39
TCE 209 035 089 020 217 012 0.12 012 0.22 0.95 9.62
PERC 209 282 1591 067 352 0.11 029  0.57 1.40 7.34 211.10
m,p-Xylene 209 887 16.74 531 247 070 3.14 515 855 28.17  205.41
o-Xylene 209 291 4.88 1.89 233 0.15 1.22 1.96  2.89 7.97 59.65

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum,;
max, maximum.
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Table 10. Statistics of personal child VOC concentrations (pug m?) stratified by city in
RIOPA.

Los Angeles, CA Elizabeth, NJ Houston, TX
(n=33) (n=41) (n=135)
Child

Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95" Mean SD GM GSD 50" 95th

Benzene 220 139 176 207 221 548 275 4.00 180 237 197 6.54 507 637 3.68 2.08 396 13.64
CTC 049 0.17 046 157 051 077 0.62 022 057 1.62 063 094 057 0.12 056 125 056 0.80
Chloroform 093 097 0.61 251 071 3.78 262 6.16 099 357 1.06 9.07 212 292 132 253 141 1140
1,4-DCB 133 191 0.79 245 046 6.51 3640 1593 275 6.76 1.46 137.1 176.8 369.1 1526 11.23 10.19 1086
Ethylbenzene 1.87 1.14 1.51 2.04 1.69 441 341 924 156 280 153 6.61 3.67 6.0l 231 237 208 11.17
d-Limonene 9.96 845 6.25 3.17 7.55 31.81 19.86 23.56 9.03 4.68 14.49 52.51 41.24 58.39 25.07 2.66 24.46 126.1
MC 144 133 122 1.57 1.05 516 222 325 144 211 1.05 1098 1.61 7.87 041 340 036 4.53
MTBE 834 6.86 594 252 587 2544 923 1052 484 392 6.63 3749 13.25 26.54 7.67 2.60 7.19 31.80
a-Pinene 433 8.17 192 289 1.02 31.89 4.01 4.15 253 259 218 1519 653 531 473 231 485 17.32
B-Pinene 124 127 088 216 051 493 325 570 142 327 123 1953 697 646 455 2.63 446 19.88
Styrene 122 174 070 251 042 6.68 222 473 0.85 3.07 042 1694 1.65 4.69 0.78 257 0.78 3.14
Toluene 15.17 1524 1032 2.45 11.10 50.54 26.39 49.34 13.25 2.77 11.27 209.1 16.61 19.85 11.64 2.25 12.58 46.95
TCE 028 0.16 025 145 022 069 101 185 052 269 052 7.08 0.16 0.13 0.14 154 0.12 0.40
PERC 5.00 1525 1.82 3.03 1.55 3395 1.65 295 1.03 234 097 575 2.65 1826 046 341 039 576
m,p-Xylene 4.63 3.04 3.55 230 4.13 11.59 10.69 3149 480 2.71 3.90 1990 936 1145 6.05 2.38 553 38.98

o-Xylene 1.77 089 151 1.89 1.72 334 326 9.12 157 258 148 6.65 3.08 340 2.12 233 201 10.07

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 11. Spearman rank correlation coefficients among outdoor VOC measurements in RIOPA.

Outdoor Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE a-Pinene B-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene

Benzene 1
CTC 0.337 1
Chloroform  0.282 0.722 1

1,4-DCB  0.025 0.125 0.369 1
Ethylbenzene 0.657 0.804  0.629 0.153 1
d-Limonene 0.182 0.261  0.481 0.39 0.345 1
MC 0.408 0.204 0.16 0.023 0.393 0.082 1
MTBE 0.623 0.061 0.145 -0.017 0.38 0.263 0.288 1
a-Pinene  0.174 0.431  0.533 0.116 0.419 0.468  0.101 0.251 1
B-Pinene  0.363 0.886 0.795 0.181 0.747 0.483  0.219 0.132 0.488 1
Styrene 043 095 0.753 0.135 0.866 0.313  0.276 0.179 0.483  0.891 1
Toluene 0.493 0.137 0.214 0.054 0.405 0.41 0.378 0.547 0.285 0.206 0.216 1
TCE 0.312 0.967 0.708 0.154 0.796 0.258  0.213 0.047 0.415 0.861 0.938 0.152 1
PERC 0.516 0.809 0.613 0.115 0.837 0.348 0.464 0.263 0.421 0.758 0.843 036 0804 1
m,p-Xylene 0.757 0.504  0.442 0.079 0.815 0.354 0.548 0.63 0.345 0.521 0.625 0.599 0.51 0.733 1
o-Xylene  0.324 0.399 0.356 0.079 0.51 0.295 0.219 0.232 0.227 0.374 0.441 0.296 0.453 0.432  0.566 1

Bold type indicates statistically significant (p<0.05).
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Table 12. Spearman rank correlation coefficients among indoor VOC measurements in RIOPA.

Indoor  Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE a-Pinene B-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene

Benzene 1
CTC 0.483 1
Chloroform  0.201 0.201 1

1,4-DCB  0.258 0417 0.073 1
Ethylbenzene 0.229 0.181 0.063 0.127 1
d-Limonene 0.065 0.072  0.11 0.053 0.002 1
MC -0.007 0.062  0.004 -0.018 0.023 0.019 1
MTBE 0.546 0.603 0.204 0.18 0.279 0.042  -0.008 1
a-Pinene 0.233 0.409 0.22 0.218 0.095 0.258  0.081 0.284 1
B-Pinene 0.282 0.262 0.239 0.097 0.044 0.172  0.072 0.256 0.577 1
Styrene 0.092 0.009  0.04 0.139 0.218 0.01 0.435 0.043  0.07 0.081 1
Toluene 0.492 0.723 0.218 0.3 0.357 0.081  0.238 0.633 0.407 0309 0.217 1
TCE -0.004 0.036  0.047 0.024 0 0.048  0.022 0.004 0.051 0.014 -0.01 0.044 1
PERC 0.157 0.29  0.096 0.084 0.135 -0.015  0.012 0.229 0.107 0.031 0.038 0.306 -0.008 1
m,p-Xylene 022 0.175  0.043 0.125 0.966 0.006 0.03 0.272 0.091 0.046 0.227 0.369 0.003 0.092 1
o-Xylene  0.263 0.232  0.06 0.151 0.955 0.009  0.024 0.329 0.116 0.065 0.228 0.408 0.005 0.116 0.98 1

Bold type indicates statistically significant (p<0.05).
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Table 13. Spearman rank correlation coefficients among personal adult VOC measurements in RIOPA.

Adult Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE a-Pinene B-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene

Benzene 1
CTC 0.554 1
Chloroform  0.667 0.747 1

1,4-DCB  0.077 0.002  0.012 1
Ethylbenzene 0.424 0.309  0.248 0.05 1
d-Limonene  0.62 0.666  0.912 0.024 0.22 1
MC 0.007 0.009 0.015 -0.022 -0.004 0.019 1
MTBE 0.432 0.116 0.119 0.019 0.52 0.114 -0.01 1
a-Pinene 0.122 0.158  0.138 0.07 0.056 0.202 0.03 0.017 1
B-Pinene 0.181 0.071  0.018 0.083 0.024 0.138  0.002 0.037 0.635 1
Styrene 0.092 0.12  -0.005 0.153 0.228 -0.008  0.134 0.044 0.042 0.058 1
Toluene 0.607 0.535 0.717 0.079 0.544 0.657  0.075 0.366 0.112 0.026 0.108 1
TCE 0.034 0.139  0.067 -0.016 0.021 0.061 0.004 -0.002 0.049 0.017 0.011 0.039 1
PERC 0.015 0.033  0.035 -0.011 -0.007 0.026  -0.004 -0.003 0.024 -0.007 -0.008 0.013 0.797 1
m,p-Xylene 0.408 0.269  0.267 0.048 0.961 0.239  0.004 0.446 0.048 0.012 0.234 0.567 0.013 O 1
o-Xylene  0.465 0311 0.281 0.037 0.952 0.252 0 0.649 0.063 0.034 0.212 0.592 0025 O 0.944 1

Bold type indicates statistically significant (p<0.05).
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Table 14. Spearman rank correlation coefficients among personal child VOC measurements in RIOPA.

Child Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE o-Pinene -Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene

Benzene 1
CTC 0.031 1

Chloroform  0.035 0.228 1

1,4-DCB  0.225 0.074  0.134 1
Ethylbenzene 0.073 0.089  0.016 0.071 1
d-Limonene 0.043 0.051  0.104 0.16 -0.018 1
MC -0.039 -0.029 -0.043 -0.06 -0.027 -0.021 1
MTBE 0.205 0.158  0.069 -0.013 0.195 -0.022  -0.021 1
a-Pinene 0.016 0.139 0.15 0.134 -0.004 0.2890  0.065 0.124 1
B-Pinene 0.156 0.109  0.104 0.249 -0.044 0.344  0.035 -0.022 0.5 1
Styrene 0.046 -0.061 -0.012 0.244 0.174 0.022  0.426 -0.003 0.199 0.163 1
Toluene 0.041 0.137  0.081 0.105 0.379 0.138  0.165 0.192 0.069 -0.013 0.202 1
TCE -0.066 0.075 0.07 -0.035 0.034 -0.066  0.016 0.054 0.064 -0.081 -0.013 0.105 1
PERC -0.026 0.035  -0.028 -0.042 -0.02 -0.046  0.026 -0.011 -0.015 0.037 0.003 0.03 -0.002 1
m,p-Xylene 0.071 0.119  0.004 0.132 0.826 -0.019  -0.011 0.226 0.047 -0.026 0.262 0.497 0.054 -0.01 1
0-Xylene  0.086 0.139 0.01 0.154 0.761 -0.008  0.031 0.276 0.099 0 0.299 0.527 0.057 -0.006  0.972 1

Bold type indicates statistically significant (p<0.05)
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Table 15. Statistics of VOC concentrations (ug L) in blood measured for NHANES III and continuous NHANES.
ng

NHANES III: 1988-1994

Continuous NHANES: 1999-2004

VOCs
n DF  Mean SE 50™ 90™ 95 n DF  Mean SE 50 90" 95t
Aromatics

Benzene 796 66 0.132  0.008 0.062 0323  0.476 2482 62 0.091 0.006 0.032 0.190  0.320
Toluene 575 56 0.596  0.008 0281 1.081 1478 2587 95 0278 0.014 0.120 0.578  0.880
Ethylbenzene 606 56 0.125  0.004 0.061 0.183  0.245 2439 68 0.049 0.002 0.031 0.089  0.133
m,p-Xylene 1018 62 0246  0.033 0.117 0414  0.607 2602 97 0206 0.012 0140 0374 0.512
o-Xylene 628 59 0.153  0.004 0.101  0.198  0.267 2654 41 0.054 0.002 0.035 0.087 0.116
BTEX 1018 NA  0.845 0.101 0463 1.642 2380 2703 NA  0.645 0.030 0363 1.293 1.842
Styrene 624 54 0.094  0.001 0.041 0.129 0.177 2476 52 0.068 0.012 0.021 0.110 0.158

THMs
Chloroform 876 47 0.042  0.002 0.023 0.072 0.118 2216 95 0.027 0.003 0.014 0.053 0.079
BDCM 937 13 0.008  0.001  0.006 0.011 0.019 2461 86  0.003  0.000 0.002 0.007 0.011
DBCM 919 11 0.010  0.000 0.009 0015 0.022 2464 64 0.002 0.000 0.001 0.005 0.008
Bromoform 579 45  0.021 0.000 0.019 0.019 0.034 2413 60 0.003 0.001 0.001 0.005 0.010
Y THM 1016 NA  0.065 0.003 0.049 0.107 0.147 2513  NA  0.032 0.002 0.018 0.066 0.100

Others
1,4-DCB 915 86 1.112 0122 0322 4658  11.03 2409 57 0.872  0.102  0.140 1.900  5.300
PERC 566 41 0219  0.005 0061 0347 0617 2577 29 0.081 0.007 0.034 0.090 0.180
MTBE NA  NA NA NA NA NA NA 2263 85 0.041 0.005 0013 0.110 0.159

Sample size n includes measurements below MDL, which were replaced by 1/2 MDLs.

Statistical analyses only accounted for detectable measurements and measurements below MDLs, which were replaced by 1/2 MDLs.

DF, detection frequency (%); SE, standard error; NA, not available.



Table 16. Spearman rank correlation coefficients for blood BTEX and THM compounds in NHANES III (top) and continuous
NHANES (bottom).

1(?18:8_11 3?39%* Benzene Toluene  Ethylbenzene m,p-Xylene o-Xylene BTEX  Chloroform DBCM BDCM  Bromoform Y THM
Benzene 1.0

Toluene 0.42 1.00
Ethylbenzene 0.23 0.59 1.00

m,p-Xylene 0.14 0.46 0.62 1.00

o-Xylene 0.08 0.38 0.81 0.49 1.00

BTEX 0.42 0.88 0.79 0.77 0.63 1.00

Chloroform 0.09 -0.01 0.20 0.44 0.28 0.25 1.00

DBCM -0.01 -0.03 -0.04 -0.05 0.02 -0.03 0.09 1.00

BDCM 0.04 -0.06 -0.05 -0.04 -0.01 -0.06 0.27 0.37 1.00

Bromoform -0.03 -0.10 -0.06 -0.06 -0.04 -0.08 -0.02 0.14 0.36 1.00

> THM -0.02 -0.01 0.19 0.44 0.28 0.25 0.99 0.05 0.04 0.04 1.00
1999-2004

(n=3789)

Benzene 1.00

Toluene 0.76 1.00
Ethylbenzene 0.68 0.74 1.00

m,p-Xylene 0.38 0.49 0.70 1.00

o-Xylene 0.62 0.73 0.89 0.71 1.00

BTEX 0.76 0.92 0.87 0.62 0.89 1.00

Chloroform 0.11 0.11 0.04 0.04 0.11 0.11 1.00

DBCM 0.04 0.03 0.06 0.06 0.05 0.03 0.11 1.00

BDCM -0.01 0.02 0.00 0.01 0.02 0.00 0.48 0.70 1.00

Bromoform -0.05 -0.10 0.03 0.10 -0.01 -0.06 -0.08 0.46 0.19 1.00

> THM 0.01 0.02 -0.01 0.01 0.05 0.02 0.90 0.36 0.59 0.22 1.00

* excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ) THM and PERC.

Bold type means statistically significant (p<0.05).
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Table 17. Spearman rank correlations between blood and personal airborne VOCs in
NHANES 1999/2000.

Blood Benzene Toluene Ethylbenzene m,p-Xylene o- Xylene BTEX Chloroform 1,4-DCB PERC
Air
Benzene 0.24 0.25 0.26 0.29 0.25 0.24 -0.17 -0.06 -0.04
Toluene 0.15 0.26 0.23 0.24 0.24 0.21 -0.15 -0.01 0.02
Ethylbenzene 0.15 0.23 0.35 0.35 0.33 0.27 -0.05 -0.04 0.04
m,p-Xylene 0.16 0.25 0.36 0.38 0.35 0.28 -0.04 0.01 0.11
o-Xylene 0.17 0.25 0.36 0.38 0.36 0.28 -0.05 0.02 0.16
BTEX 0.20 0.31 0.34 0.37 0.34 0.31 -0.08 0.01 0.04
Chloroform -0.11 -0.08 -0.11 -0.06 -0.05 -0.13 0.38 0.18 0.21
1,4-DCB -0.08 -0.01 -0.03 0.04 0.01 -0.03 0.16 0.65 0.18
PERC -0.27 -0.22 -0.13 -0.13 -0.07 -0.22 0.22 0.17 0.62

Shaded values show correlations for same compounds.
Bold type means statistically significant (p<0.05).
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Table 18. Identification of best-fit distributions (first rank) for VOCs in RIOPA by sample type.

Best-fit distribution

VOCs Untransformed Log-transformed
Outdoor Indoor Adult Adult NH Child Outdoor Indoor Adult Child
Benzene Gamma ExtValue Pearson5  Lognormal  Pearson5 Normal Logistic Logistic Logistic
Toluene Logistic ExtValue Pearson5  Lognormal  Pearson5 Logistic Normal Logistic Logistic
Ethylbenzene Gamma Pearson5 Pearson5  Lognormal LogLogistic Weibull Logistic Logistic Logistic
m,p-Xylene Lognormal  Pearson5 Pearson5  Lognormal LogLogistic Logistic Logistic Logistic =~ LogLogistic
o-Xylene Lognormal LogLogistic = Pearson5  Lognormal LogLogistic Normal Logistic Logistic Logistic
MTBE Pearson5 Pearson5 Pearson5 Weibull  LogLogistic Logistic Logistic Logistic Logistic
Styrene Pearson5 Pearson5 Pearson5 NA Pearson5 Normal  LogLogistic = Pearson5  LogLogistic
1,4-DCB Pearson5 Student Student Pareto Logistic ExtValue InvGauss InvGauss Weibull
MC LoglLogistic  Pearson5 Pearson5 NA Student Normal Logistic Student Normal
TCE Student Student Student Pareto Student Logistic ExtValue ExtValue Logistic
PERC Pearson5  Exponential Lognormal Lognormal InvGauss Normal Logistic Logistic ~ LogLogistic
Chloroform Student Lognormal Lognormal Lognormal  Pearson5 ExtValue Normal Normal Logistic
CTC LogLogistic LogLogistic LogLogistic NA LogLogistic Logistic Logistic Logistic Logistic
d-Limonene Student Pearson5 Pearson5 NA Pearson5 ExtValue Logistic Logistic Logistic
a-Pinene LogLogistic Lognormal Lognormal NA LogLogistic Normal Weibull Logistic =~ BetaGeneral
B-Pinene ChiSq ExtValue ExtValue NA ExtValue Normal Logistic Logistic Normal

NA, not available; adult NH, personal airborne exposures in the 1999/2000 NHANES database.
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Table 19. Predicted excess cancer risks for adult participants in RIOPA (n = 239).

Predicted excess cancer cases per million population

VOCs bt .

Mean SD  Min 25th 50th 75th 90th 95th 98th Max
Benzene 7.8x10° 28.4 259 4.3# 13.5 20.4 32.7 53.0 76.6 134.2 172.6
Ethylbenzene 25x10° 7.1 9.9 09# 3.0 4.4 7.6 13.0 19.0 43.2 82.9
MTBE 26x107 35 46 0.1# 1.2 2.1 4.1 6.6 11.6 17.5 37.2
Styrene 20x10° 32 69 03# 0.8# 1.5 2.6 5.8 12.9 23.9 59.9
1,4-DCB 1.1x10° 626.5 2223 2.4#  10.0# 24.5 126.0 908.9 3620.7 9518.1 19167
TCE 20x10° 1.4 41 02# 0.2# 0.4# 0.93 2.2 4.6 16.1 40.9
PERC 59x10° 129 259 0.7# 2.5# 5.9 11.8 24.1 47.1 97.5 2423
Chloroform 23x10° 47.0 622 3.2# 14.5 28.9 52.6 97.1 147.5 248.8 537.6
CTC 1.5x10° 9.8 29 2.0# 8.2 9.3 10.7 12.9 15.0 17.1 27.8
Hematopoietic mixture NA  680.2 2240 12.78 44.89 76.4 180.22 965.4 3651.5 9695.8 19196
Liver and kidney toxicant mixture NA  714.8 2247 20.80 61.25 111.1 265.03 1102.2 3683.6 9723.1 19223
Total VOCs NA 7458 2254 34.1 83.9 141.1 2933 1125.0 3710.1 9780.5 19250

NA, not available; SD, standard deviation.

#, concentrations were based on MDLs.

Hematopoietic mixture includes benzene, MTBE, 1,4-DCB, TCE and PERC; liver and kidney toxicant mixture includes ethylbenzene, MTBE, 1,4-DCB, TCE,

PERC, chloroform and CTC.
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Table 20. Goodness of fit measures (R”) for the maximum Gumbel distribution fits for 90th and 95th percentile groups in RIOPA by

sample type.

Outdoor Indoor Adult Adult NH Child

Voo 90th%, n=56 95th%, n=28  90th%, n=56 95th%, n=28  90th%, n=54 95th%, n=27 90th%, n=67 95th%, n=33  90th%, n=21
Benzene 0.795 0.928 0.788 0.873 0.701 0.788 0.79 0.85 0.772
Toluene 0.834 0.894 0.706 0.884 0.668 0.841 0.61 0.87 0.805
Ethylbenzene 0.494 0.639 0.745 0.916 0.785 0.953 0.38 0.59 0.774
m,p-Xylene 0.703 0.850 0.755 0.908 0.776 0.929 0.85 0.95 0.661
o-Xylene 0.407 0.619 0.742 0.884 0.753 0.908 0.78 0.91 0.682
MTBE 0.790 0.922 0.769 0.915 0.546 0.718 0.65 0.70 0.651
Styrene 0.358 0.510 0.791 0.941 0.808 0.935 NA NA 0.911
1,4-DCB 0.430 0.647 0.884 0.965 0.912 0.950 0.70 0.79 0.991
MC 0.570 0.819 0.586 0.760 0.554 0.758 NA NA 0.546
TCE 0.284 0.442 0.477 0.715 0.539 0.785 0.62 0.88 0.702
PERC 0.512 0.681 0.683 0.793 0.231 0.394 0.45 0.70 0.560
Chloroform 0.524 0.755 0.785 0.883 0.227 0.386 0.89 0.94 0.839
CTC 0.227 0.381 0.407 0.613 0.344 0.546 NA NA 0.808
d-Limonene 0.837 0.958 0.508 0.670 0.407 0.607 NA NA 0.587
a-Pinene 0.545 0.867 0.870 0.977 0.647 0.802 NA NA 0.948
B-Pinene 0.396 0.686 0.851 0.962 0.874 0.972 NA NA 0.964

n, sample size; NA, not available; adult NH, personal airborne exposures in the 1999/2000 NHANES database.
R? < 0.6 shows in red, and > 0.85 shows in blue (bold type).
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Table 21. GEV parameters and goodness-of-fit for average VOC exposures in RIOPA.

Top 10% (n = 24) Top 5% (n=12)
VOCs
Shape Location Scale p-value Shape Location Scale p-value

Benzene 0.4 9.1 24 0.876 -0.2 13.6 3.6 0.684
Toluene 1.6 35.8 7.3 0.672 0.6 63.6 19.2 0.829
Ethylbenzene 1.2 6.3 1.7 0.951 0.8 10.6 3.9 0.943
m,p-Xylene 0.8 19.9 6.6 0.963 1.2 28.7 6.9 0.905
o-Xylene 0.9 6.8 2.1 0.900 1.8 10.0 1.3 0.915
MTBE 0.6 36.3 12.5 0.988 0.9 53.0 11.4 0.958
Styrene 1.3 3.9 1.6 0.676 0.9 8.4 2.8 0.895
1,4-DCB 0.5 258.0 188.0 0.991 0.5 516.0 234.9 0.953
TCE 1.1 1.7 0.8 0.987 1.7 2.8 1.0 0.909
PERC 1.0 5.9 2.6 0.882 0.7 11.4 4.2 0.988
Chloroform 0.7 5.5 1.6 0.954 1.1 7.6 1.7 0.943
CTC 0.7 0.9 0.1 0.854 0.7 1.1 0.1 0.991
d-Limonene 0.6 85.8 20.0 0.725 0.4 124.8 19.7 0.890
a-Pinene 1.1 18.0 4.0 0.959 1.7 23.4 6.0 0.797
B-Pinene 0.9 18.2 6.5 0.897 0.1 35.2 13.8 0.905

p-values shown for Anderson-Darling tests.
p-value > 0.05 indicating that observations fit to generalized extreme value distributions.
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Table 22. Comparison of adult VOC distributions between observed data and GEV, Gumbel

and lognormal simulation in RIOPA using Kolmogorov-Smirnov tests.

GEV simulation

Gumbel simulation

Lognormal simulation

VOCs Top 10% Top 5% Top 10% Top 5% Top 10% Top 5%

Statistics p-value Statistics p-value SPUSC o ialue Statsimc pvalue SEUSHC o olve Statsimc p-value

Benzene 0.13 0823 024 0482 017 0.527 023 0.549 020 0313 040 0.037
Ethylbenzene 0.08 0.996 0.14 0979 021 0.228 0.17 0.899 022 0204 044 0.014
MTBE 0.09 0987 0.14 0975 0.27 0.065 0.36 0.083 0.17 0533 026 0.355
Styrene 0.18 0450 0.15 0949 0.18 0423 023 0.528 041 0.001 0.76 <0.001
1,4-DCB 0.10 0976 0.14 0970 0.15 0.667 0.15 0.943 0.51 <0.001 0.64 <0.001
TCE 0.10 0967 0.18 0822 044 <0.001 046 0.014 038 0.003 0.65 <0.001
PERC 0.11 0939 0.11 0998 0.16 0.603 0.18 0.855 0.18 0417 036 0.067
Chloroform  0.09 0983 0.17 0900 0.17 0467 0.19 0.789 0.13 0.833 0.26 0.357
CTC 0.14 0747 0.15 0954 047 <0.001 052 0.003 033 0.011 0.17 0.816

Sample size of observed data is 239; sample size of simulated data is 10,000.
p-value < 0.05 shown in bold type; p-value > 0.05 indicating that there is no significance difference between two

distributions.
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Table 23. Evaluation of simulated VOC concentrations above the 90™ and 95" percentiles in
RIOPA fit to GEV, Gumbel and lognormal distributions.

Predicted cancer risks

VOCs % exceeding Above the 90th percentile of exposure Above the 95th percentile of exposure

1x10°1x10°1x10*1x10°1x10% 1x10°1x10°1x10*1x10° 1x 107

Observed measurements 100 100 29 0 0 100 100 58 0 0

Benzene GEV sitpulatiqn 100 100 26 0 0 100 100 71 0 0
Gumbel simulation 100 100 31 0 0 100 100 67 0 0

Lognormal simulation 100 100 18 0 0 100 100 35 0 0

Observed measurements 100 100 0 0 0 100 100 0 0 0
Ethylbenzene GEV sitpulatiqn 100 100 7 1 0 100 100 8 0 0
Gumbel simulation 100 91 0 0 0 100 98 1 0 0

Lognormal simulation 100 100 0 0 0 100 100 0 0 0

Observed measurements 100 63 0 0 0 100 100 0 0 0

MTBE GEV sitpulatiqn 100 57 1 0 0 100 100 3 0 0
Gumbel simulation 98 74 0 0 0 99 87 0 0 0

Lognormal simulation 100 53 0 0 0 100 100 0 0 0

Observed measurements 100 54 0 0 0 100 100 0 0 0

Styrene GEV sitpulatiqn 100 46 6 1 0 100 100 5 0 0
Gumbel simulation 96 69 0 0 0 100 93 0 0 0

Lognormal simulation 100 28 0 0 0 100 55 0 0 0

Observed measurements 100 100 100 88 13 100 100 100 100 25
1.4-DCB GEV sitpulatiqn 100 100 100 96 13 100 100 100 100 27
? Gumbel simulation 96 96 95 89 7 100 100 100 99 24
Lognormal simulation 100 100 100 65 5 100 100 100 100 10

Observed measurements 100 21 0 0 0 100 42 0 0 0

TCE GEV simulation 100 18 2 0 0 100 33 7 2 0
Gumbel simulation 77 61 1 0 0 83 74 9 0 0

Lognormal simulation 100 2 0 0 0 100 3 0 0 0

Observed measurements 100 100 17 0 0 100 100 33 0 0

PERC GEV sitpulatiqn 100 100 18 2 0 100 100 32 1 0
Gumbel simulation 99 96 16 0 0 100 100 44 0 0

Lognormal simulation 100 100 8 0 0 100 100 16 0 0

Observed measurements 100 100 88 0 0 100 100 100 0 0

Chloroform GEV sitpulatiqn 100 100 93 2 0 100 100 100 6 1
Gumbel simulation 100 100 86 0 0 100 100 98 0 0

Lognormal simulation 100 100 93 0 0 100 100 100 0 0

Observed measurements 100 100 0 0 0 100 100 0 0 0

CTC GEV simulation 100 100 0 0 0 100 100 1 0 0
Gumbel simulation 96 81 0 0 0 89 78 4 0 0

Lognormal simulation 100 100 0 0 0 100 100 0 0 0

Observed measurements 100 100 100 96 17 100 100 100 100 33
Hematopoietic GEV simulation 100 100 100 97 14 100 100 100 100 27
mixture Gumbel simulation 97 97 96 90 10 100 100 100 99 30
Lognormal simulation 100 100 100 79 2 100 100 100 100 4

Liver and  Observed measurements 100 100 100 100 17 100 100 100 100 33
kidney GEV simulation 100 100 100 97 14 100 100 100 100 26
toxicant Gumbel simulation 97 97 97 91 10 100 100 100 99 31
mixture Lognormal simulation 100 100 100 88 1 100 100 100 100 3
Observed measurements 100 100 100 100 17 100 100 100 100 33
Total VOCs GEV sitpulatiqn 100 100 100 98 13 100 100 100 100 27
Gumbel simulation 97 97 96 92 11 100 100 100 100 32

Lognormal simulation 100 100 100 97 1 100 100 100 100 1
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Table 24. GEV parameters and goodness-of-fit for the originally weighted personal VOC
exposures in NHANES 1999/2000.

VOCs Top 10% (n = 1442 - 1467) Top 5% (n =726 - 775)

3
Hg m p-value for p-value for p-value for p-value for

Shape Location Scale A-D test K-S test Shape Location Scale A-D test K-S test

Benzene 0.42 17 43 <0.05 <0.05 0.41 23.4 43 <0.05 0.24
Toluene 0.82 894 353 <0.05 <0.05 1.29 1258 51.8 <0.05 <0.05
Ethylbenzene 0.94 21.1 9 <0.05 <0.05 1.07 356 151 <0.05 <0.05
m,p-Xylene 0.74 62.6 30.1 <0.05 <0.05 0.54 1175 464 <0.05 <0.05
o-Xylene  0.56 23.2 9.7 <0.05 <0.05 0.68 36 11.9  <0.05 <0.05
MTBE 0.81 16.7 7.3 <0.05 <0.05 0.99  27.6 9.6 <0.05 <0.05
1,4-DCB 0.87 883 698 <0.05 <0.05 0.56 2341 962 <0.05 <0.05
TCE 1.35 4.4 5.1 <0.05 <0.05 1.02 17.1 13 <0.05 <0.05
PERC 1.13 12 7.7 <0.05 <0.05 094 282 124 <0.05 <0.05

Chloroform  0.35 9.7 3.8 <0.05 <0.05 0.53 14.5 3 <0.05 <0.05

A-D tests were the goodness-of-fit tests for GEV distribution fitting.

K-S tests were used to compare the observations (the whole weighted sample without ties, n = 14,320 to 14,524)
with simulated data based on the GEV parameters.

p-value > 0.05 indicating that observations fit to GEV distributions or indicating that the observational
measurements were not different from GEV simulations.
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Table 25. GEV parameters and goodness-of-fit for the weighted personal VOC exposures that
used bootstrap methods and repeated sampling in NHANES 1999/2000.

0 = Y =
VOCs Top 10% (n = 64) Top 5% (n =32)

p-value for p-value for p-value for p-value for
A-Dtest K-S test A-Dtest K-S test

Benzene 048 1687 4.18 <0.05 <0.05 0.53 23.0 4.0 <0.05 <0.05

g m*

Shape Location Scale Shape Location Scale

Toluene 1.07 91.66 42.12 <0.05 <0.05 1.80  151.2 111.6 <0.05 <0.05
Ethylbenzene 1.02  20.65 8.83 <0.05 <0.05 1.26 36.0 17.6  <0.05 <0.05
m,p-Xylene 0.88  62.11 27.51 <0.05 <0.05 0.54 1204 456 <0.05 <0.05
o-Xylene  0.69 2286 8.85 <0.05 <0.05 0.77 364 109 <0.05 <0.05
MTBE 092 1622 676 <0.05 <0.05 1.06 273 9.6 <0.05 <0.05
1,4-DCB 099 9137 73.84 <0.05 <0.05 0.73 2337 106.7 >0.05 <0.05
TCE 1.54 449 528 <0.05 <0.05 1.22 16.9 13.5 >0.05 <0.05
PERC 1.08 1237 8.01 <0.05 <0.05 1.05 28.1 132 <0.05 <0.05
Chloroform  0.48 942 343 <0.05 <0.05 0.56 14.6 3.0 <0.05 <0.05

A-D tests were the goodness-of-fit tests for GEV distribution fitting using the repeated datasets (n = 635 to 648,
300 times) randomly selected from the weighted samples; values of parameters were averages of 300 results.
K-S tests were used to compare the observations (the whole weighted sample without ties, n = 14,320 to 14,524)
with simulated data based on the GEV parameters, which were estimated from the 300 random samples.
p-values were estimated from empirical distributions of statistics, i.e., comparing the observational statistics with
the statistics of random samples (repeatedly sampling 300 times); p-value > 0.05 indicating that observations fit to
GEYV distributions or indicating that the observational measurements were not different from GEV simulations.
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Table 26. GEV parameters and goodness-of-fit for the unweighted personal VOC exposures
in NHANES 1999/2000.

VOCs Top 10% (n = 64) Top 5% (n =32)
hg m” Shape Location Scale p-value for p-value for Shape Location Scale p-value for p-value for
A-Dtest K-S test A-Dtest K-S test
Benzene 0.69 15.5 3.7 0.82 0.70 0.64  21.8 4.4 0.99 0.90
Toluene 1.1 78.5 334 0.92 0.82 1.76  119.5 435 0.75 0.56
Ethylbenzene 0.93 17.9 8.6 0.90 0.94 0.87 329 142 1.00 1.00
m,p-Xylene 1.18 477  20.2 0.45 0.53 0.57 101.7 47.1 0.81 0.71
0-Xylene 1.08 17.3 7.4 0.42 0.41 0.84 325 124 0.76 0.35
MTBE 0.86 203 8.9 0.90 0.98 094 347 119 0.91 0.94
1,4-DCB 0.69 1994 111.6 1.00 1.00 1 3503 122.1 0.85 0.85
TCE 1.65 5.2 7.1 0.63 0.81 1.11 223 206 0.89 0.92
PERC 1.29 11 6.4 0.49 0.43 1.16 252 10 0.98 0.97
Chloroform  0.67 8.9 3 0.63 0.31 0.73 13.7 3 0.96 0.96

A-D tests were the goodness-of-fit tests for GEV distribution fitting.

K-S tests were used to compare the observations (the whole unweighted sample) with simulated data
based on the GEV parameters.

p-value > 0.05 indicating that observations fit to GEV distributions or indicating that the observational
measurements were not different from GEV simulations.
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Table 27. Goodness of fit statistics of each density estimation method for chloroform,
1,4-DCB and styrene sample data from the RIOPA study.

(estimated) Proportion below MDL MSE MAE
VOCs Observe  Norma DPM Norma DPM Norma DPM
d o MNTy o MNy o MNy
Chlorofor 0.17 021 %2 o3 007 %0 008 AL A
m 3 7 9
1,4-DCB 0.34 0.28 Oé3 0.33 31.81 Oéo 0.04 167.05 7(')0 5.30
Styrene 0.66 0.56 046 0.64 32.61 0&0 0.04 160.47 6(')1 4.27

MSE, mean squared error; MAE, mean absolute error; MN, mixture of normals; DPMN, Dirichlet process

mixture of normals.
MSE and MAE are multiplied by a scalar of 1,000 to reflect the significant figure.

Table 28. Fitted weight, location and dispersion parameters under the finite mixture of
normals for chloroform, 1,4-DCB and styrene sample data from the RIOPA study.
Chloroform 1,4-DCB Styrene
Weight Mean SD Weight Mean SD Weight Mean SD
K=2 AlICc=1774 AICc=2403 AICc=1735
cluster 1 0.11 -1.78 1.31 0.16  -1.05 0.96 0.40 -1.12 1.86
cluster 2 0.89 0.19 1.06 0.84 1.35 2.23 0.60 -0.40 0.62
K=3 AICc=1778 AICc=2330 AICc=1716
cluster 1 0.12  -1.78 1.23 0.12  -1.05 1.58 041 -1.12 1.31
cluster 2 0.60 0.08 0.90 0.63 031 1.14 0.51 -0.35 0.54
cluster 3 0.28 0.55 1.20 0.25 3.84 193 0.08 1.82 1.01
K=4 AICc=1781 AICc=2328 AICc=1714
cluster 1 0.11 -1.78  1.27 0.14 -1.05 1.54 0.39 -1.12 1.33
cluster 2 0.07 -0.52 0.25 0.60 0.27 1.08 049 -0.37 0.60
cluster 3 0.05 0.61 0.15 0.23 3.29 1.55 0.04 -0.29 0.08
cluster 4 0.78 0.24 1.09 0.04 6.64 0.67 0.07 1.90 0.97
K=5 AICc= 1785 AICc=2329 AICc=1722
cluster 1 0.11 -1.78  1.26 0.14  -1.05 1.52 0.33 -1.12 1.32
cluster 2 0.17 -039 043 0.05 -0.24 0.16 0.05 -1.51  1.28
cluster 3 0.10 0.60 0.21 0.62 0.48 1.21 0.04 -0.29 0.08
cluster 4 0.58 022 121 0.04 6.66 0.66 0.51 -0.37 0.60
cluster 5 0.04 1.31 0.12 0.16 386 1.27 0.08 1.86  0.99

SD, standard deviation.
The smallest AIC shown in bold type.
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Table 29. Posterior distribution of the number of clusters K based on various prior settings of
o as a sensitivity analysis.
Posterior distribution of K
Prior Chloroform 1,4-DCB Styrene
mean median SD mean median  SD mean median  SD
Setting 1 2.8 2 1.4 32.8 34 20.2 10.9 5 10.8
Setting 2 3.9 3 2.4 5.6 5 2.5 4.6 4 2.8
Setting 3 4.1 4 2.2 7.1 7 3.4 7.9 7 4.4
Setting 4 10.5 9 6.0 15.3 14 6.5 13.1 12 6.0

SD, standard deviation.

Setting 1: o ~ Gamma(0.3,0.4); Setting 2: o~ Gamma(1.2,2.5);

Setting 3: o ~ Gamma(2, 1.5); Setting 4: o ~ Gamma(5, 2).

Table 30. Summary of goodness of fit statistics of each density estimation method in the
simulation study.
Proportion MSE MAE
belowMDL  Normal MN DPMN  Normal MN DPMN
0.15 0.09 0.03 0.08 7.65 4.64 7.11
Distribution 1 0.30 0.19 0.04 0.08 11.19 4.80 7.29
0.50 0.43 0.05 0.05 16.77 5.26 5.69
0.15 1.55 0.10 0.02 32.58 8.19 3.57
Distribution 2 0.30 2.53 0.10 0.02 43.69 8.59 3.29
0.50 2.62 0.12 0.02 46.52 8.22 3.28

MSE, mean squared error; MAE, mean absolute error; MN, mixture of normals; DPMN, Dirichlet process

mixture of normals.

MSE and MAE are multiplied by a scalar of 1000 to reflect the significant figure.
Distribution 1: Normal(0, 22) ; Distribution 2: ~Gamma(3,1.5) + = Uniform(—3,8).

Prior distribution on o is Gamma(1.2,2.5).
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Table 31. Linear quantile regressions of log-transformed blood VOC concentrations for the
NHANES 1988 to 2004 period.*

0.5 Quantile 0.75 Quantile 0.95 Quantile
VOCs

Slope SE Slope SE Slope SE

Aromatics

Benzene -0.054  0.003 -0.078  0.009 -0.043  0.025
Toluene -0.099  0.009 -0.144  0.017 -0.118  0.024
Ethylbenzene -0.060  0.005 -0.066  0.008 -0.103  0.023
m,p-Xylene -0.033  0.006 -0.057  0.008 -0.117  0.042
0-Xylene -0.069  0.004 -0.097  0.007 -0.122  0.028
BTEX -0.066 0.006 -0.080  0.010 -0.071  0.027
Styrene  -0.036  0.004 -0.039  0.009 -0.061  0.033

THMs
Chloroform  -0.065  0.005 -0.064  0.006 -0.103  0.025
BDCM  -0.097  0.007 -0.043  0.003 -0.034  0.012
DBCM -0.202 0.014 -0.149  0.005 -0.077  0.007
Bromoform -0.241  0.001 -0.201  0.000 -0.128  0.022
>THM -0.115 0.007 -0.101  0.009 -0.115  0.030

Others
1,4-DCB  -0.063  0.001 -0.045  0.009 -0.032  0.025
PERC 0.001  0.001 -0.166  0.006 -0.177  0.042

* excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, XTHM
and PERC.

Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs
were adjusted for solvent-related occupations only.

SE, standard error.

Bold type means statistically significant (p < 0.05); benzene at 0.95 quantile is borderline significant.
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Table 32. Relative changes (%) per year in untransformed blood VOC concentrations in
NHANES at various quantiles.*

1988-1991 vs. 2003/2004  1988-1991 vs. 1999/2000  1999/2000 vs. 2003/2004

VOCs
0.5 0.75  0.95 0.5 075 095 0.5 0.75 095
Aromatics
Benzene -3.8 -4.3 -3.3 5.2 -1.2 0.1 -182 -14.8 -124
Toluene -5.6 -5.7 -4.7 -1.9 -2.9 -1.3 -15.3  -14.8 -12.9
Ethylbenzene -4.2 -4.9 -4.9 -4.2 -4.2 -3.2 -6.5 94 -11.1
m,p-Xylene -2.5 -3.5 -4.5 -0.8 -1.8 -2.4 -6.3 -7.9  -10.8
0-Xylene -5.5 -5.5 -5.6 -7.9 -6.8 -5.3 2.1 -6.4  -10.9
BTEX -4.4 -4.6 -4.2 -2.1 -1.6 -0.8 -10.8 -12.0 -119
Styrene -3.9 -2.7 -3.1 0.5 0.1 0.6 -123 8.2  -10.1
THMs
Chloroform -3.9 -3.6 -3.9 3.5 6.3 2.5 -17.5  -181 -17.0
BDCM -5.0 -5.6 -3.4 -6.5 -3.5 -3.0 -3.1 -2.6 -6.8
DBCM -6.3 -3.0 -4.8 -8.1 -6.6 -5.8 -13.5 -108 -5.9
Bromoform -7.9 -7.5 -7.0 -119  -11.2  -10.6 2.8 -1.0 1.1
>THM -5.9 -5.4 -3.8 -5.4 2.1 2.7 -12.2 -144  -13.9
Others
1,4-DCB -3.5 -3.7 -3.7 -2.3 -2.5 -4.8 -9.0 -9.8 -0.8
PERC -3.2 -6.2 -6.4 -2.7 -4.8 -5.1 53 -148 -154

* excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, XTHM
and PERC.

Relative changes of VOC levels per year between study period at each percentile.

Bold type means statistically significant trend (p<0.05).
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Table 33. Total emissions and relative changes per year of VOCs in NATA.

Total emissions (T yr") Relative change per year (%)
VOCs
1996 1999 2002 1996 vs. 1999 1999 vs. 2002
Aromatics
Benzene 337,000 350,776 410,219 1.4 5.6
Toluene NA 996,443 884,066 NA -3.8
Ethylbenzene NA NA 127,742 NA NA
o,m,p-Xylene NA 712,084 595,241 NA -5.5
Styrene NA NA 49,795 NA NA
THMs
Chloroform 3,310 15,139 6,805 119.1 -18.3
Bromoform NA NA 22 NA NA
Others
1,4-DCB NA 12,794 7,244 NA -14.5
PERC 44,100 46,793 35,613 2.0 -8.0

NA, not available.
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Table 34. Ambient concentrations and change per year of aromatics for various concentration quantiles in PAMS.

Ambient concentrations (ppb)

Relative change per year (%)

VOcs 1993 1994 1999 2000 2001 2002 2003 2004 1993-1999 1999-2004 1993-2004
Aromatics Mean
Benzene 3.43 4.18 2.33 1.96 0.99 0.86 0.74 0.70 -5.3 -14.0 -7.2
Toluene 8.12 9.85 5.99 4.85 2.89 2.52 2.33 2.30 4.4 -12.3 -6.5
Ethylbenzene 2.07 1.87 1.13 0.96 0.49 0.46 0.38 0.34 -7.5 -14.1 -7.6
m,p-Xylene 5.36 5.37 3.34 2.57 1.33 1.17 0.93 0.80 -6.3 -15.2 -1.7
o0-Xylene 2.48 2.18 1.34 1.08 0.56 0.53 0.43 0.38 -1.7 -14.4 -1.7
Styrene 1.77 1.17 0.57 0.58 0.26 0.27 0.31 0.41 -11.3 -5.7 -7.0
Aromatics 0. 5 Quantile
Benzene 1.80 2.21 1.18 1.00 0.47 0.41 0.23 0.14 -5.7 -17.6 -8.4
Toluene 4.10 4.77 2.82 2.27 0.87 0.67 0.35 0.26 -5.2 -18.2 -8.5
Ethylbenzene 0.90 0.97 0.59 0.48 0.15 0.10 0.05 0.03 -5.7 -19.1 -8.8
m,p-Xylene 2.70 2.65 1.46 1.06 0.31 0.25 0.10 0.05 -1.7 -19.3 -8.9
o0-Xylene 1.10 1.10 0.64 0.50 0.17 0.12 0.05 0.03 -6.9 -19.2 -8.9
Styrene 0.60 0.56 0.33 0.30 0.11 0.10 0.10 0.04 -7.6 -17.8 -8.5
Aromatics 0.75 Quantile
Benzene 3.70 4.40 2.23 2.00 1.26 1.08 0.90 0.75 -6.6 -13.3 -7.2
Toluene 9.29 10.70 6.06 5.09 3.32 2.70 2.40 1.82 -5.8 -14.0 -7.3
Ethylbenzene 1.90 2.00 1.20 1.01 0.60 0.51 0.43 0.36 -6.1 -14.0 -7.4
m,p-Xylene 6.00 5.86 3.36 2.59 1.47 1.17 0.94 0.74 -7.3 -15.6 -8.0
o0-Xylene 2.41 2.40 1.40 1.10 0.66 0.58 0.47 0.39 -7.0 -14.4 -7.6
Styrene 1.81 1.27 0.58 0.56 0.33 0.32 0.34 0.32 -11.3 -9.0 -7.5
Aromatics 0.95 Quantile
Benzene 11.58 14.80 7.31 6.30 3.62 3.20 3.00 2.84 -6.1 -12.2 -6.9
Toluene 31.39 35.50 20.69 17.06 11.90 10.44 10.71 9.30 -5.7 -11.0 -6.4
Ethylbenzene 6.20 6.65 3.70 3.36 2.02 1.87 1.69 1.51 -6.7 -11.8 -6.9
m,p-Xylene 20.50 19.64 11.66 9.81 5.68 4.88 4.30 3.80 -7.2 -13.5 -7.4
0-Xylene 7.90 7.89 4.50 4.15 2.30 2.20 2.00 1.74 -7.2 -12.3 -7.1
Styrene 8.04 3.21 1.66 1.70 0.90 1.02 1.07 1.55 -13.2 -1.3 -7.3
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Table 35. Site-weighted average of average concentrations (ppb) of ambient VOCs in AQS datasets.*

Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Styrene Chloroform 1,4-DCB PERC
Year n mean n mean n mean n mean n mean n mean n mean n mean n mean
1990 590 7.92 530 2327 NA NA NA NA NA NA NA NA 614  0.727 NA NA NA NA
1991 754 6.65 582 18.09 NA NA NA NA NA NA NA NA 779  0.670 NA NA 773 0.55

1992 1066  5.54 751 13.82  NA NA NA NA NA NA NA NA 1189  0.399 NA NA 1184  0.37
1993 1318  6.21 1087 14.53 888  3.208 NA NA 824 3.23 915 1.47 1581 0.179 NA NA 1578  0.37
1994 1600  6.37 1367 1343 1164 3.197 949 7.83 1103 2.73 1229 2.47 1839 0.153 NA NA 1844  0.39
1995 1981  5.51 1673 1191 1413 2201 1399 6.13 1351 220 1465 2.05 2050 0.110 919 0.53 2043  0.30
1996 2224 414 1908 1250 1672 1.568 1692  5.61 1642 1.75 1722 4.00 2367 0.051 976 0.55 2357 0.21
1997 2491  4.68 2164 12.02 1923 1957 1918 5.48 1863 235 2007 149 2727 0.053 943 0.83 2763 042
1998 2991 399 2502 870 2380 1.701 2381 541 2197 1.77 2202 093 3004 0.058 560 0.61 2995 0.26
1999 3586 399 3171 8.00 3029 1.252 3050 5.16 2965 1.75 3010 0.73 3529 0.054 1069 0.38 3535 0.11
2000 4407  3.61 3976  7.52 3845 1434 3769 6.17 3622 218 3568 138 4630 0.055 1850 0.80 4787  0.11
2001 5307 4.00 5005 7.87 4637 1.227 4603 438 4446 1.56 4456  0.81 5689 0.048 2704 0.69 5805 0.12
2002 6860  3.11 6509 6.55 6044 1.077 6075 3.46 5973 143 6015 0.60 6962 0.059 3988 0.56 7041  0.15
2003 8106 298 7674 554 7717 0973 7643  2.62 7581 1.05 7283 2.66 8230 0.063 5009 046 8264 0.17
2004 9507 259 9054 451 9155 0.828 8648 2.10 8864 0.85 8504 0.54 9791 0.069 6254 0.38 9894  0.18
% change' -4.8 -5.8 -6.7 -7.3 -6.7 -5.7 -19.7, -4.2 -3.2 -5.2

% change’ -4.7 -5.7 7.1 -6.4 -5.8 -5.5 -21.1, NA 2.8 -6.7

*, AQS data used 24 h sampling, 24 or more measurements per site-year in EPA Region 1-10.

n, number of observations; NA, not available.

BTEX observations in Site 42 (Edinburg), Region 6 in 1997 were excluded due to extremely high values.

% change', relative change per year from the beginning year to 2004. For benzene and toluene, the beginning year is 1990; for ethylbenzene, o-xylene, and styrene,
the beginning year is 1993; for m,p-xylene, the beginning year is 1994; for 1,4-DCB, the beginning year is 1995; for PERC, the beginning year is 1991. The
relative changes per year for chloroform were calculated from 1990 to 1994 (-19.7%) and 1995 to 2004 (-4.2%).

% change’, relative change per year were estimated by regression models from the beginning year to 2004. For example, the estimated relative change for benzene
is (((benzeneyyyy- benzene gqq)/ benzene,go0)* 100%)/(2004-1990). Since the estimated chloroform levels in 1995-2004 were negative, the relative change did not
be calculated.
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Table 36. Modeled ambient concentrations and relative changes per year of VOCs for mean
and two quantiles in NATA.

Modeled ambient concentrations (ug m™) Relative change per year (%)

VOCs Mean 0.5 0.95 Mean 0.5 0.95

1996 vs. 1999 vs. 1996 vs. 1996 vs.
1999 2002 1999 1999

1996 1999 2002 1996 1999 1996 1999

Aromatics
Benzene 139 137 121 121 1.16 284 3.12 05 -39 -1.4 3.3
Toluene ~ NA 3.02 254 NA 221 NA 861 NA  -52 NA NA
Ethylbenzene NA NA 028 NA NA NA NA NA  NA NA NA
O’m’péxyle“ NA 223 125 NA 160 NA 660 NA -147 NA NA
Styrene NA NA 005 NA NA NA NA NA NA NA NA
THMs
Chloroform  0.09 0.09 0.09 0.08 0.07 0.11 021 09  -1.7 5.5 32.4
Bromoform NA NA 000 NA NA NA NA NA  NA NA NA
Others
1,4DCB NA 0.06 006 NA 003 NA 021 NA 0.1 NA NA
PERC 032 031 0.5 024 0.19 078 1.14 -1.5 -17.5  -7.9 15.4

NA, not available.
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Table 37. Sources and apportionments of outdoor, indoor, and personal VOCs (non-averaged measurements) in RIOPA by sample type
and seasons, based on PMF results.

Type Season  Factor Source Category Included VOCs Aoppornonmen_t}

% pg m

1 Gasoline MTBE 32 8.9

Warm 2 Vehicle exhaust and industrial sources Aromatics, TCE, chloroform, CTC and B-pinene 32 8.9

3 Cleaning products and odorants 1,4-DCB and D-limonene 18 5.1

4 Industrial and biogenic sources Styrene, 1,4-DCB, TCE, PERC, chloroform, CTC and a-pinene 18 4.9
Outdoor 1 Vehicle exhaust BTEX 34 11.7
2 Gasoline MTBE and toluene 27 9.2

Cold 3 Cleaning products, odorants and industrial sources Styrene, 1,4-DCB, TCE, chloroform, CTC, a-pinene, f-pinene and 22 7.6

D-limonene
4 Industrial and biogenic sources Styrene, PERC and a-pinene 17 5.9
1 Moth repellents and odorants 1,4-DCB 52 85.3
2 Cleaning products and odorants D-limonene, a-pinene and B-pinene 21 35.1
Warm 3 ;ZlgsifseXhauSt’ chlorinated solvents, and cleaning Aromatics, TCE, PERC, chloroform, CTC, a-pinene and B-pinene 14 23.8
Indoor 4 Gasoline Benzene and MTBE 13 21
1 Moth repellents and odorants 1,4-DCB 39 52.5
2 Cleaning products and odorants D-limonene, a-pinene and B-pinene 26 353
Cold 3 ;ZlgsifseXhauSt’ chlorinated solvents, and cleaning Aromatics, TCE, PERC, chloroform, CTC, a-pinene and B-pinene 21 27.6
4 Gasoline MTBE 14 18
1 Cleaning products and odorants D-limonene, a-pinene and B-pinene 42 423
Warm 2 Vehicle exhaust Ethylbenzene, m,p-xylene and o-xylene 22 22.6
3 Gasoline Benzene and MTBE 20 19.8
4 Moth repellents and chlorinated solvents 1,4-DCB, TCE, PERC, chloroform and CTC 15 15.3
Personal 1 Cleaning products and odorants D-limonene, a-pinene and B-pinene 44 45.1
2 Gasoline, chlorinated solvents, and cleaning Benzene, toluene, MTBE, styrene, 1,4-DCB, TCE, chloroform and CTC 27 27.2
Cold products

3 Vehicle exhaust Ethylbenzene, m,p-xylene and o-xylene 20 19.9

4 Dry cleaning solvent PERC 7.7 7.8

Personal measurements include adult and child exposure data.

Warm season indicates April to September, and cold season indicates October to March.
Apportionment indicates source contributions to the total VOCs by the percentages and concentrations.
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Table 38. Sources and apportionments of mixtures of VOCs derived using PMF and the
first-visit measurements in RIOPA.

Fraction of TVOC
Mixture ID Suggested Source Categories VOC Components

% pg m>

Al Gasoline Benzene and MTBE 20.5 19.9

A2 Vehicle exhaust Toluene, ethylbenzene, xylenes, 209 203

and styrene
A3 Moth repellents, chlorinated solvents 1,4-DCB, TCE, PERC, 163 15.9
and disinfection by-products chloroform, and CTC ' '
A4 Cleaning products and odorants d-Limonene, o-pinene, and 42.3 41.1

B-pinene
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Table 39. Results of bivariate logistic regression models for VOC mixtures identified by PMF

analyses in RIOPA.

Mixtures
Potential factor Toluene, 1,4-DCB, TCE, d-Limonene,
Benzene and MTBE ethylbenzene, PERC, chloroform, a-pinene, and
xylenes, and styrene and CTC B-pinene
Categorical Group OR  95%CI  OR  95%CI OR  95%CI  OR  95%CI
variables
CA 0.56 0.35-090 045 0.28-0.73 0.49 0.30-0.79 0.18 0.11-0.30
City NJ 0.39 0.24-0.63 0.51 0.31-0.82 0.63 0.39-1.03 0.21 0.12-0.34
X Reference Reference Reference Reference
Mexican  2.03 1.19-3.47 1.57 0.92-2.67 3.21 1.87-5.54 3.97 2.29-6.87
Hispanic 1.07 0.66-1.75 1.35 0.82-2.20 1.78 1.09-2.92 0.98 0.60-1.61
Ethnicity
Other 0.58 0.30-1.12 0.47 0.24-0.92 1.66 0.86-3.21 0.86 0.45-1.66
White Reference Reference Reference Reference
Yes 0.95 0.63-1.42 0.98 0.65-1.47 1.02 0.68-1.52 0.40 0.27-0.61
Employment
No Reference Reference Reference Reference
Yes 2.27 1.45-3.56 1.95 1.25-3.05
Attached garage
No Reference Reference
Open doors or Yes 0.79 0.52-1.18 0.40 0.26-0.61 0.36 0.24-0.55 0.32 0.21-0.49
windows No Reference Reference Reference Reference
Selfservicepump ~ YeS 210 125352 162 097270
gas No Reference Reference
Other family Yes 2.06 1.20-3.56 245 1.42-4.23
members take
showers No Reference Reference
Yes 1.37 0.73-2.57 220 1.17-4.14
Use fresheners
No Reference Reference
Cont.lnuous Unit
variables
Log-transformed 0.69 0.54-0.89 045 0.35-0.58 0.49 0.38-0.63 0.38  0.29-0.49

AERs

OR, odds ratio; CI, confidence interval.

Statistically significant ORs are shown in bold type.
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Table 40. Observed and estimated probability of high concentration mixtures in RIOPA.

Probability
Mixture :
D VOCs Copula Percentile Observed Uncorrelated Copula
(n =299) (n = 1,000)
50th 0.3545 0.2500 0.3470
Benzene and 75th 0.1371 0.0625 0.1550
Al MTBE Gumbel
90th 0.0502 0.0100 0.0510
95th 0.0201 0.0025 0.0250
50th NC 0.0625 0.1950
Toluene,
A2 ethylbenzene, . 75th 0.0635 0.0039 0.0500
xylenes, and 90th 0.0134 0.0001 0.0110
styrene*
95th 0.0033 0 0.0040
50th NC 0.0313 0.0820
1,4-DCB,
3.3 TCEX PERC, t 75th 0.0067 0.0010 0.0040
’ chloroform, 90th 0.0033 0 0
and CTC
95th 0 0 0
50th 0.3244 0.1250 0.2070
d-Limonene, 75th 0.1171 0.0156 0.0480
A4 a-pinene, and t
B-pinene 90th 0.0234 0.0010 0.0060
95th 0.0100 0.0001 0.0030
50th 0.3478 0.0625 0.3490
Ethylbenzene 75th 0.1438 0.0039 0.1430
B1 Gumbel
and MTBE 90th 0.0435 0.0001 0.0510
95th 0.0234 0.0000 0.0240
50th NC 0.0313 0.0630
Benzene,
MTBE, 75th 0.0067 0.0010 0.0060
B2 1,4-DCB, t
TCE*, and 90th 0.0033 0 0
PERC 95th 0 0 0

Mixture ID:  A: mixture identified by PMF; B: mixture identified by toxicological mode of action.
NC, not calculated as styrene and TCE had detection frequencies <50%.
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Table 41. Distribution type and parameters fitted to individual VOCs (first-visit
measurements) in RIOPA.

VOC Distribution Parameters
Benzene Pearson5 (1.7416, 3.0237)
Toluene Pareto (0.80165, 3.3500)

Ethylbenzene Lognormal (2.3804, 3.4359)
Xylenes Loglogistic (0.74464, 4.8664, 1.5276)
MTBE LogLogistic (-0.068879, 6.9726, 1.5498)
Styrene Pearson5 (1.4394, 0.62596)
1,4-DCB Lognormal (51.195, 1100.2)

TCE Pareto (1.0292, 0.12000)

PERC Loglogistic (-134.65, 136.13, 55.589)

Chloroform Pearson5 (1.1756, 0.92852)

CTC Loglogistic (-0.089049, 0.70987, 5.0349)

d-Limonene Pearson5 (1.2177, 11.984)
a-Pinene Pearson5 (0.80312, 0.93957)
B-Pinene Pareto (0.77374, 0.50500)

Parameters for Pearson 5 are a, ; parameters for Pareto are 0, a; parameters for lognormal are |, o; parameters for
loglogistic are vy, B, o.
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Table 42. Goodness-of-fit statistics of fitted copulas for RIOPA mixtures.

Mixture ID Copula -BIC -AIC
Gaussian 113.66 117.34
t 117.67 125.03
Al Gumbel 123.99 131.35
Clayton 112.76 120.12
Frank 102.30 109.66
"""""""""""""""""" Gaussian 60797 62988
t 655.80 681.32
A2 Gumbel 327.11 330.80
Clayton 227.24 230.93
Frank 381.40 385.09
"""""""""""""""""" Gaussian 7767 11391
t 86.12 125.91
A3,B3 Gumbel 59.92 63.60
Clayton 44.30 47.98
Frank 54.34 58.03
""""""""""""""""" Gaussian 28149 20251
t 319.30 333.96
A4 Gumbel 310.60 314.28
Clayton 264.28 267.97
Frank 321.34 325.02
""""""""""""""""""" Gaussian 8359 8727
t 94.59 101.95
Bl Gumbel 99.17 106.53
Clayton 94.78 102.14
Frank 81.80 89.16
""""""""""""""""""" Gaussian 14072 17697
t 156.22 196.01
B2 Gumbel 36.37 40.05
Clayton 33.11 36.80
Frank 27.53 31.21

BIC, Bayesian information criterion; AIC, Akaike information criterion.
The lowest value of the information criterion was the best-fit copula, which was shown in bold type.
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Table 43. Parameters and correlation matrixes of the fitted copulas for VOC mixtures in

RIOPA.
Mixture ID Parameter
Al 06=1.67
Bl 6=1.57

Mixture A2 (df =4)

Toluene Ethylbenzene Xylenes Styrene
Toluene 1.00 0.64 0.65 0.12
Ethylbenzene 0.64 1.00 1.00 0.17
Xylenes 0.65 1.00 1.00 0.17
Styrene 0.12 0.17 0.17 1.00

Mixture A3 (df = 5)

1,4-DCB TCE PERC Chloroform CTC

Benzene 1.000 -0.022 -0.015 0.011 0.004
MTBE -0.022 1.000 0.849 0.069 0.147
1,4-DCB -0.015 0.849 1.000 0.033 0.031
TCE 0.011 0.069 0.033 1.000 0.748
PERC 0.004 0.147 0.031 0.748 1.000

Mixture A4 (df =2)

d-Limonene a-Pinene B-Pinene

d-Limonene 1.00 0.39 0.17

a-Pinene 0.39 1.00 0.42

B-Pinene 0.17 0.42 1.00

Mixture B2 (df = 5)

Benzene MTBE 1,4-DCB TCE PERC
Benzene 1.000 0.471 0.054 0.046 0.017
MTBE 0.471 1.000 0.034 -0.010 -0.006
1,4-DCB 0.054 0.034 1.000 -0.022 -0.015
TCE 0.046 -0.010 -0.022 1.000 0.849
PERC 0.017 -0.006 -0.015 0.849 1.000

df, degree of freedom.
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Table 44. Median mixture fractions based on observations and copula simulations in RIOPA.

Mixture fractions* for indicated percentile

Mixture ID VOCs Observed (n = 299) Best-fit copula (n = 1,000)

50 - 75" 75-90™ 90-95" 95-100" 50-75" 75-90" 90-95" 95- 100"

Benzene 0.222  0.150  0.169 0.099 0.179  0.177  0.137 0.173

Al MTBE 0.778 0.850  0.831 0.901 0.821  0.823  0.863 0.827
Toluene 0.578 0.555  0.571 0.484 0.557 0.572  0.533 0.547
Ethylbenzene 0.072  0.071 0.085 0.083 0.073  0.072  0.080 0.074

A2 Xylenes 0.300 0316  0.328 0.368 0.303  0.280  0.298 0.291
Styrene 0.024  0.020  0.019 0.012 0.038  0.040  0.037 0.038

1,4-DCB 0.333 0.842  0.972 0.993 0.447  0.786  0.968 0.994

TCE 0.026  0.009  0.001 0.000 0.031 0.010  0.002 0.000

A3,B3 PERC 0.165  0.032  0.005 0.001 0.128  0.031  0.009 0.001
Chloroform  0.180  0.053  0.015 0.003 0.134  0.052  0.013 0.001

CTC 0.065  0.023  0.005 0.001 0.069  0.024  0.006 0.001

d-Limonene  0.667  0.661  0.754 0.765 0.720  0.751  0.825 0.850

A4 a-Pinene 0.204  0.149  0.100 0.080 0.176 ~ 0.127  0.102 0.041
B-Pinene 0.078  0.099  0.143 0.120 0.061 0.055  0.026 0.029
Ethylbenzene 0.156  0.125  0.106 0.062 0.154  0.117  0.106 0.083

o MTBE 0.844 0.875  0.894 0.938 0.846  0.883  0.894 0.917
Benzene 0.118  0.062  0.019 0.004 0.093  0.068  0.022 0.004

MTBE 0.606 0347  0.054 0.009 0.552  0.515  0.159 0.023

B2 1,4-DCB 0.134 0411  0.857 0.982 0.127  0.170  0.484 0.943
TCE 0.010  0.005  0.001 0.000 0.009  0.005  0.003 0.001

PERC 0.054  0.019  0.004 0.001 0.031 0.016  0.012 0.001

Mixture ID: A indicates mixtures indentified by PMF; B indicates mixtures identified by toxicological mode of
action.

* median fractions. They may not sum to 1.

Dominant mixture fraction shown in bold.

Copula simulations use fitted marginal distributions shown in Table 41, and best-fit copula type in Table 42.
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Table 45.

Comparison of mixture fractions for mixture A3/B3 and B2 in RIOPA for different
copulas types.

Median fractions* at different percentiles of cumulative exposure

Copula Components 50th-75th 75th-90th 90th-95th 95th-100th
1.4-DCB 0.447 0.786 0.968 0.994
TCE 0.031 0.010 0.002 0.000
PERC 0.128 0.031 0.009 0.001
Chloroform 0.134 0.052 0.013 0.001
t CTC 0.069 0.024 0.006 0.001
Benzene 0.093 0.068 0.022 0.004
MTBE 0.552 0.515 0.159 0.023
1,4-DCB 0.127 0.170 0.484 0.943
TCE 0.009 0.005 0.003 0.001
PERC 0.031 0.016 0.012 0.001
1.4-DCB 0.466 0.681 0.962 0.993
TCE 0.028 0.009 0.002 0.001
PERC 0.107 0.041 0.009 0.002
Chloroform 0.130 0.063 0.013 0.002
Gaussian CTC 0.059 0.025 0.007 0.001
Benzene 0.092 0.065 0.040 0.013
MTBE 0.448 0.399 0.346 0.063
1,4-DCB 0.180 0.202 0.190 0.852
TCE 0.010 0.005 0.003 0.001
PERC 0.043 0.022 0.011 0.003
1.4-DCB 0.449 0.754 0.937 0.989
TCE 0.026 0.011 0.003 0.001
PERC 0.132 0.055 0.011 0.004
Chloroform 0.131 0.055 0.025 0.003
Gumbel CTC 0.063 0.023 0.008 0.001
Benzene 0.086 0.060 0.033 0.012
MTBE 0.496 0.396 0.343 0.069
1,4-DCB 0.163 0.189 0.332 0.829
TCE 0.011 0.006 0.005 0.001
PERC 0.043 0.023 0.015 0.007
1.4-DCB 0.418 0.774 0.946 0.990
TCE 0.025 0.010 0.003 0.001
PERC 0.123 0.040 0.013 0.002
Chloroform 0.134 0.051 0.013 0.002
_— CTC 0.056 0.021 0.007 0.002
Benzene 0.089 0.047 0.028 0.006
MTBE 0.425 0.439 0.128 0.045
1,4-DCB 0.226 0.237 0.699 0.906
TCE 0.010 0.005 0.003 0.001
PERC 0.040 0.026 0.013 0.005
1.4-DCB 0.402 0.663 0.928 0.991
TCE 0.027 0.008 0.003 0.000
PERC 0.120 0.046 0.012 0.001
Chloroform 0.130 0.080 0.019 0.003
Frank CTC 0.055 0.021 0.006 0.001
Benzene 0.088 0.054 0.037 0.014
MTBE 0.428 0.361 0.499 0.070
1,4-DCB 0.160 0.229 0.199 0.874
TCE 0.009 0.007 0.004 0.001
PERC 0.041 0.030 0.019 0.006

* median fractions. They may not sum to 1.

Dominant mixture fraction shown in bold.
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Table 46. Percentage of individuals exceeding individual lifetime cancer risk thresholds for

VOC mixtures in RIOPA: comparison of observations, simulations using copulas,
and simulations using multivariate lognormal distribution.

Mixture ID

VOC Type

Percentage exceeding indicated cancer risks

1x10° 1x10° 1x10* 1x10° 1x107

Observations 100.0 25.4 1.0 0.0 0.0

Ethylbenzene and . .
B1 MTBE Copula simulations 97.5 271 0.6 0.0 0.0
Lognormal simulations ~ 96.9 32.0 0.0 0.0 0.0
Observations 100.0 100.0 34.8 9.7 3.0

Benzene, MTBE,
B2 1,4-DCB, TCE and Copula simulations 100.0 99.5 359 6.6 1.6
PERC

Lognormal simulations ~ 100.0 99.2 40.1 5.6 0.7
Observations 100.0 100.0 44.5 11.0 33

1,4-DCB, TCE, PERC, . .
B3 ehloroform and CTC Copula simulations 100.0 99.8 44.8 9.5 1.9
Lognormal simulations ~ 100.0 99.7 53.6 6.7 0.2

127



Table 47. Fractions of personal VOCs originating indoors (at home) in RIOPA.

Median fraction

p-value for K-W test

Fhome All CA NJ X Hot Cool ' A;Iir;ioer;g A;Iir;ioer;g Between Between Between

(n= (n= (n= (n= (n= (n= City in hot in cool Season seasons seasons seasons
427-455) 139-156) 106-128) 164-179) 246-268) 178-195) season season in CA in NJ in TX
Benzene 0.72 0.64 0.76 0.73 0.70 0.74 0.001 0.053 0.007 0.014 0.337 0.118 0.039
Toluene 0.66 0.63 0.67 0.68 0.66 0.66 0.138 0.415 0.258 0.950 0.908 0.603 0.695
Ethylbenzene  0.69 0.64 0.68 0.73 0.67 0.72 0.028 0.017 0.487 0.110 0.021 0.614 0.772
m,p-Xylene 0.68 0.64 0.67 0.75 0.67 0.70 0.013 0.041 0.234 0.412 0.552 0.371 0.948
0-Xylene 0.69 0.65 0.67 0.71 0.69 0.68 0.072 0.041 0.808 0.597 0.371 0.427 0.463
MTBE 0.66 0.63 0.58 0.72 0.61 0.73 0.004 0.006 0.555 0.001 0.009 0.098 0.157
Styrene 0.74 0.72 0.79 0.72 0.75 0.72 0.039 0.008 0.780 0.068 0.377 0.032 0.847
1,4-DCB 0.72 0.67 0.73 0.76 0.72 0.74 0.255 0.151 0.810 0.467 0.075 0.772 0.940
TCE 0.74 0.66 0.74 0.80 0.73 0.77 0.000 0.052 0.003 0.798 0.276 0.554 0.468
PERC 0.71 0.69 0.75 0.71 0.70 0.72 0.329 0.534 0.642 0.358 0.456 0.604 0.563
Chloroform 0.74 0.74 0.70 0.81 0.74 0.74 0.001 0.006 0.138 0.280 0.439 0.404 0.921
CTC 0.75 0.72 0.74 0.79 0.76 0.75 0.000 0.003 0.001 0.526 0.980 0.024 0.454
d-Limonene 0.71 0.72 0.67 0.71 0.71 0.70 0.053 0.259 0.096 0.827 0.272 0.454 0.767
a-Pinene 0.78 0.79 0.74 0.81 0.79 0.77 0.017 0.063 0.220 0.629 0.840 0.920 0.423
B-Pinene 0.76 0.76 0.73 0.78 0.74 0.78 0.175 0.663 0.183 0.302 0.504 0.844 0.232

Frome, fraction of personal VOCs originating indoors at home; CA, Los Angeles in California; NJ, Elizabeth in New Jersey; TX, Houston in Texas; hot, hot season
from May to October; cool, cool season from November to April; K-W test, Kruskal-Wallis test; n, sample size, which excluded participants with missing time

fractions > 0.25 or < 0, as well as Fygpne > 1.25.

p-value < 0.05 which indicates there is evidence that at least one of the group medians is different from the others was shown in bold type.



Table 48. Fractions of personal VOCs originating outdoors (in neighborhood) in RIOPA.

Median fraction

p-value for K-W test

Among

Among

Foutdoor All CA NJ TX Hot Cool ' cities cities Between Between Between

(n= (n = 164) (n= (n=181) (n= (n= City in hot in cool Season seasons seasons seasons
480-481) 135-136) 279-280) 200-201) season season in CA in NJ in TX
Benzene 0.007 0.000 0.006 0.009 0.009 0.002 0.021 0.406 0.005 0.011 0.053 0.016 0.701
Toluene 0.003 0.000 0.002 0.007 0.006 0.002 0.017 0.462 0.004 0.008 0.038 0.032 0.572
Ethylbenzene 0.004 0.000 0.003 0.005 0.005 0.001 0.125 0.676 0.030 0.007 0.062 0.026 0.476
m,p-Xylene  0.004 0.000 0.005 0.005 0.006 0.002 0.049 0.492 0.022 0.009 0.060 0.047 0.377
0-Xylene 0.004 0.000 0.005 0.006 0.006 0.001 0.029 0.433 0.014 0.010 0.056 0.042 0.395
MTBE 0.005 0.000 0.003 0.008 0.008 0.002 0.006 0.316 0.002 0.013 0.064 0.013 0.661
Styrene 0.004 0.000 0.007 0.005 0.007 0.001 0.196 0.313 0.056 0.002 0.050 0.005 0.490
1,4-DCB 0.000 0.000 0.000 0.000 0.001 0.000 0.409 0.816 0.072 0.004 0.051 0.010 0.509
TCE 0.006 0.000 0.003 0.012 0.010 0.002 0.000 0.039 0.001 0.004 0.061 0.013 0.240
PERC 0.004 0.000 0.007 0.006 0.007 0.002 0.016 0.274 0.010 0.006 0.046 0.020 0.527
Chloroform  0.001 0.000 0.001 0.002 0.002 0.000 0.108 0.376 0.023 0.021 0.084 0.019 0.970
CTC 0.010 0.000 0.011 0.017 0.014 0.004 0.001 0.063 0.001 0.007 0.059 0.004 0.618
d-Limonene  0.000 0.000 0.000 0.000 0.000 0.000 0.721 0.145 0.292 0.002 0.012 0.015 0.476
a-Pinene 0.001 0.000 0.003 0.001 0.001 0.000 0.076 0.006 0.532 0.004 0.040 0.003 0.910
B-Pinene 0.002 0.000 0.001 0.003 0.003 0.001 0.108 0.547 0.005 0.018 0.063 0.006 0.721

Foutaoor, fraction of personal VOCs originating outdoors in neighborhood; CA, Los Angeles in California; NJ, Elizabeth in New Jersey; TX, Houston in Texas; hot,
hot season from May to October; cool, cool season from November to April; K-W test, Kruskal-Wallis test; n, sample size, which excluded participants with

missing time fractions > 0.25 or <0, as well as Foutdoor > 1.25.

p-value < 0.05 which indicates there is evidence that at least one of the group medians is different from the others was shown in bold type.
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Table 49. Results of linear mixed-effect models for personal exposure to gasoline-related VOCs in RIOPA.

. . Benzene Toluene Ethylbenzene m,p-Xylene 0-Xylene MTBE Styrene
Variable Group/unit B SE B SE B SE B SE B SE B SE B SE
Intercept 221 041 3.74 0.37 1.41 0.42 223 037 078 029 1.82 032 1.09 0.33
Visit 1 -0.03  0.07 0.12 0.09 -0.14 0.08 -0.08 008 -0.07 0.07 006 0.10 0.07 0.08
2 Reference Reference Reference Reference Reference Reference Reference
Los Angeles -0.83  0.12 0.08 0.11 -0.37 0.14 -029 0.14 -0.06 0.13 -035 0.16 -0.23 0.11
City Elizabeth -0.37 0.14 0.06 0.13 -0.16 0.18 -025 0.19 -0.17 0.17 007 020 -0.11 0.10
Houston Reference Reference Reference Reference Reference Reference Reference
Attached garage No -0.19 0.09 -0.72 0.25 -0.36 0.12 -036 0.12 -035 0.11 -036 0.12 -042 0.25
Cooking No 022 009 017 008 015 009 020 0.08
Lessthan HS 0.15  0.12
Education High school  -0.08 0.10
> College Reference
White -0.13 0.15 -023 0.16 -021 0.14
Ethnicity Mexican 0.19 0.19 0.07 0.19 0.12 0.17
Hispanic 0.30 0.19 027 020 035 0.18
Other Reference Reference Reference
Electricity 0.20 0.18
Heating fuel Gas 0.42 0.16
Oil and wood Reference
Indoor temperature °C -0.04 0.01
Inverse wind speed knot™ 420 0.53 3.16 0.69 2.84 0.71 2.54 0.62 5.86 0.84
Log-transformed AER hr! -0.30 0.05 -0.17 0.06 -0.21 0.06 -0.14 0.05 -0.09 0.07
Number of floors -0.15  0.04 -0.20 0.06
Number of rooms -0.10 0.03 -0.09 0.02
Open doors or windows No 0.22 0.10 0.20 0.09
Pumping gas No -0.16 0.08 -0.24 0.11 -022 0.11 -0.28 0.10 -0.34 0.13
Renovation in the past year No -0.30 0.10
Time spent in home min -0.0002 0.0001 -0.0002 0.0001 -0.0003 0.0001
Unemployed No 0.23 0.12
Using air cleaning devices No -0.27 0.18 -042 0.18 -0.38 0.16 -0.35 0.20
Using nail polish remover No -0.29 0.17 -0.39 0.16 -0.33 0.17
Wore powder, spray or perfume No 0.41 0.12

AER, air exchange rate; HS, high school.
For dichotomous variables, the reference group is “Yes”; n = 400 to 530 depending on models.

p-value < 0.05 shown in bold type.
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Table 50. Results of linear mixed-effect models for personal exposure to odorant-related VOCs in RIOPA.

Variable Group/unit 1,4-DCB Chloroform d-Limonene a-Pinene B-Pinene
B SE B SE B SE B SE B SE
Intercept 3.50 0.78 1.34 0.47 3.62 0.39 2.42 0.25 1.57 0.44
Visit 1 0.33 0.14 0.15 0.09 0.10 0.15 0.18 0.07 0.08 0.10
2 Reference Reference Reference Reference Reference
Los Angeles -1.10 030 -045 0.16 -0.82 0.19 -0.71 0.13 -1.16 0.15
City Elizabeth -0.81 031 -0.06 017 -112 022 -0.59 0.14 -1.06 0.17
Houston Reference Reference Reference Reference Reference
Air conditioning No 0.54 0.23 -0.51 0.10 -0.20  0.13
Ambient relative humidity % -0.010 0.005 -0.011  0.005
Furniture refinisher in neighborhood No -1.30 0.50
Waxing or polishing furniture No -0.81 0.33
Keeping dogs or cats No 0.15 0.10 0.29 0.11
Log-transformed AER hr -0.41 0.06 -0.33 0.08 -040 0.05 -0.31 0.07
Not using fresheners or candles No 0.32 0.18
Number of rooms -0.14  0.07 -0.12 0.04 -0.13 0.04 -0.10 0.03
Open doors or windows No 0.42 0.20 0.22 0.12
Other family members took showers No -0.39 015 -0.80 0.18 -0.41 012 -0.35 0.14
Outdoor swimming pool or hot tub No -0.31 0.13
<64 °F 0.76 0.26
Using heating at 64 to 70 °F -0.03 0.24
> 70 °F Reference
Ownership of the house No 0.30 0.14
Pets indoors No 0.32 0.12
Renovation in the past year No -0.45 0.15
Restaurants or bakery in neighborhood No -0.63 0.27
Unemployed No -0.35  0.16
Using a clothes washer No 0.53 0.19
Using dishwashers No -0.25 0.13
Using other heaters (non-CHS) No 0.55 0.27

AER, air exchange rate; CHS, central heating system.
For dichotomous variables, the reference group is “Yes”; n = 393 to 433 depending on models.

p-value < 0.05 shown in bold type.
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Table 51. Results of linear mixed-effect models for personal exposure to dry-cleaning and
Industrial-related VOCs in RIOPA.

Variable Group/unit e PERC cre
SE B SE B SE
Intercept -0.79 0.42 -0.48 0.49 -0.64 0.23
1 0.18 0.07 0.19 0.10 -0.01 0.03
Visit 2 Reference Reference Reference
Los Angeles  0.66 0.14 0.58 0.18 -0.17 0.07
City Elizabeth 1.23 0.14 0.54 0.24 -0.11 0.07
Houston Reference Reference Reference
Ambient relative humidity % -0.01 0.01
White -0.12 0.19
Ethnicity Mexican -0.48 0.23
Hispanic 0.06 0.24
Other Reference
Having a fireplace No -0.13 0.07
Indoor temperature °C -0.03 0.01 0.01 0.01
Inverse wind speed knot™! 4.87 0.83
Log-transformed AER hr -0.20 0.07
Not using fresheners or candles No -0.20 0.08
mmmabhn N e o
Source of household water Public -0.58 0.27 0.50 0.14
Sweeping indoors No 0.19 0.12
Time spent at closed cars min 0.0018  0.0005
Unemployed No 0.42 0.13
Using air cleaning devices No -0.19 0.08
Vinyl, asbestos or other siding No -0.25 0.13
Visited dry cleaners during past No 0.63 0.15

week

AER, air exchange rate.

For dichotomous variables, the reference group is “Yes”; n = 400 to 446 depending on models.

p-value < 0.05 shown in bold type.
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Table 52. Results of linear mixed-effect models for indoor levels of gasoline-related VOCs in RIOPA.

. . Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene
Variable Group/unit
B SE p-value J SE p-value J SE p-value B SE p-value B SE p-value J SE p-value J SE p-value
Intercept 2.57 040 <.0001 3.88 0.52 <.0001 0.58 0.48 022 2.65 049 <0001 147 045 0.00 146 037 0.00 1.10 045 0.02
Visi 1 -0.22 0.08 0.010 026 0.08 0.00 -0.09 0.09 030 0.07 0.09 047 0.11 0.08 0.18 -0.10 0.10 034 0.12 0.09 0.18
isit 2 Reference Reference Reference Reference Reference Reference Reference
CA -0.52 0.12 <.0001 -0.18 0.13 0.16 -049 0.15 0.00 -022 0.16 0.17 -0.03 0.14 0.85 -022 0.16 0.17 -028 0.13 0.03
City NJ -0.81 0.13 <.0001 -0.09 0.13 049 -030 0.19 0.12 -022 021 029 -021 0.19 027 0.18 024 045 -0.01 0.14 092
X Reference Reference Reference Reference Reference Reference Reference
Ambient relative humidity % -0.01 0.00 0.02 -0.01 0.00 0.09 -0.01 0.00 0.08 -0.01 0.00 0.04 -0.02 0.00 <.0001
Attached garage No -0.23 0.09 0.014 -0.38 0.12  0.00 -0.37 0.11 0.00 -039 0.10 0.00 -0.62 0.13 <0001 0.28 0.12 0.03
Cement and other flooring No 0.22 0.11 0.05
Central heat No -0.12 0.09 0.20
LessthanHS 0.34 0.13 0.010
Education High school 0.03 0.10 0.735
> College Reference
White -0.23 0.1 0.13 -0.19 0.17 026 -0.14 0.15 035 -0.04 0.18 0.85
Ethnicity M‘exica‘n 0.19 0.18 031 0.19 020 034 024 0.18 0.19 053 021 0.01
Hispanic 0.06 0.19 077 0.16 021 044 027 0.19 0.15 021 022 034
Other Reference Reference Reference Reference
Electricity 047 022 0.03
Heating fuel Gas 048 020 0.02
Oil and wood Reference
Indoor temperature °C -0.04 0.01 0.005 -0.02 0.01 0.07
Inverse wind speed knot"! 321 0.70 <.0001 3.06 0.75 <.0001 2.92 0.69 <.0001 6.13 0.82 <.0001 2.74 0.71 0.00
Logtransformed AERs hr! -0.34 0.05 <.0001 -0.19 0.06 0.00 -0.18 0.06 0.00 -0.20 0.06  0.00
Number of floors -0.13 0.05 0.01
Number of rooms -0.10 0.03 0.000 -0.06 0.03 0.03 -0.08 0.03 0.01 -0.09 0.03 0.00 -0.09 0.03 0.00
Open doors or windows No 0.20 0.11 0.07 0.23 0.10 0.03 0.18 0.11 0.08
Professional cleaning No 0.19 0.11 0.077 020 0.12 0.10
Time spent indoors at home min 0.00 0.00 0.18 0.00 0.00 0.04
Single family 015 015 030
home
Type of building Mobile home -0.31 025 0.21
ﬁ)%:;t}iir;z Reference
Unemployed No 0.17 0.10 0.084 0.27 0.10 0.01
Use of candles or incense No -0.25 0.10 0.01 -0.22 0.09 0.01
Using air cleaning devices No -041 0.17 0.02 -0.61 0.19 0.00 -0.50 0.17 0.00 -040 021 0.06

AER, air exchange rate; HS, high school.
For dichotomous variables, the reference group is “Yes”; n = 387 to 455 depending on models.
p-value < 0.05 shown in bold type.
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Table 53. Results of linear mixed-effect models for indoor levels of odorant-related VOCs in RIOPA.

. . 1,4-DCB Chloroform d-Limonene o-Pinene B-Pinene
Variable Group/unit
SE  p-value B SE  p-value B SE  p-value B SE  p-value B SE  p-value
Intercept 4215 0903 <.0001 -0.41 0.54 0.45 3.57 0.39 <.0001 248 021  <.0001 1.59 0.43 0.00
. 0.320 0.152  0.037 -0.04 0.10 0.71 -0.11 0.15 0.44 0.12 0.07 0.09 0.12 0.09 0.21
Visit 2 Reference Reference Reference Reference Reference
CA -0.972 0309 0.002 -0.26 0.15 0.08 -0.46 0.19 0.01 -0.47 0.12 0.00 -1.01 0.15  <.0001
City NJ -0.612 0413  0.140 -0.22 0.16 0.17 -0.53 0.29 0.07 -0.62 0.13  <.0001 -1.20 0.16 <.0001
X Reference Reference Reference Reference Reference
Ambient relative humidity % -0.01 0.00 0.02 -0.01 0.00 0.01
White -0.417 0395 0.293 0.19 0.23 0.41
L Mexican 0441 0460  0.340 0.78 0.27 0.01
Ethnicity Hispanic ~ 0.287 0452  0.526 006 030  0.85
Other Reference Reference
Furniture or floor was waxed or polished No -0.906 0.342  0.009
Furniture refinisher in neighborhood No -1.392  0.531  0.010
Indoor temperature °C 0.05 0.02 0.01
Keeping dogs or cats No 0.35 0.11 0.00
Logtransformed AERs hr! -0.54 0.06 <.0001 -0.43 0.09 <.0001 -0.46 0.05 <.0001 -0.34 0.06 <.0001
Not using fresheners No 0.37 0.18 0.04
Number of rooms -0.141  0.073  0.055 -0.13 0.04 0.01 -0.07 0.03 0.01
Open doors or windows No 0.16 0.12 0.19 0.18 0.12 0.15
Other family members took showers No -0.40 0.13 0.00 -0.76 0.19 <.0001 -0.55 0.11 <.0001 -0.34 0.14 0.02
<64 °F 0.526  0.288  0.070
Outdoor temperature when heating starts 64 to 70 °F  -0.043  0.255  0.866
>70 °F Reference
Ownership of the house No 0.59 0.12  <.0001
Pets indoors No 0.30 0.11 0.01
Renovation in the past year No -0.34 0.15 0.03
Spending awake time at 1st floor Yes -0.39 0.12 0.00
Using a clothes washer No 0.684  0.208  0.001
Using central air conditioning No -0.44 0.17 0.01 -0.62 0.11 <.0001 -0.27 0.12 0.03
Using cleaning solutions No -0.20 0.10 0.05
Using dishwashers No -0.34 0.12 0.01
Using mothballs No -0.404 0.314  0.201

AER, air exchange rate.

For dichotomous variables, the reference group is “Yes”; n = 409 to 494 depending on models.

p-value < 0.05 shown in bold type.
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Table 54. Results of linear mixed-effect models for indoor levels of dry-cleaning and
industrial-related VOCs in RIOPA.

Variable ' TCE PERC CTC
Group/unit SE p-value B SE p-value B SE p-value
Intercept -0.877 0.292 0.003 -1.99 0.25 <.0001 -0.70 0.10 <.0001
o 1 0.191 0.066 0.004 0.05 0.09 059 0.05 0.05 0.30
Visit 2 Reference Reference Reference
CA 0.707 0.128 <.0001 098 0.17 <.0001 -0.06 0.05 0.24
City NJ 1.098 0.125 <.0001 1.20 0.16 <.0001 -0.11 0.06 0.08
X Reference Reference Reference
Cooking No 0.20 0.09 0.03
Having a fireplace No 0.11  0.05 0.04
Inverse wind speed knot™! 4.00 0.78 <.0001
Logtransformed AERs hr -0.17  0.05 0.001 -0.30 0.06 <.0001
Professional cleaning No -0.28 0.13  0.03
Source of household — p piie 049 023 0.039
water
Sweeping indoors No 0.16 0.10 0.13
Unemployed No 024 0.12  0.04
Uii(‘)‘fd‘i’gﬁgﬂgir No 011 005 0.3
Using other heaters No -0.34  0.14 0.020 0.15 0.08 0.07
Using nail polish No  -031 015 0.038
Vacuuming No 0.26 0.10 0.01 0.12 0.04 0.01
Vinyl, asbestos or No 022 011 0052 038 013 0.0

other siding
Visited dry cleaners No -0.34  0.14  0.02

AER, air exchange rate.
For dichotomous variables, the reference group is “Yes”; n = 400 to 472 depending on models.
p-value < 0.05 shown in bold type.
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Table 55. Results of linear mixed-effect models for outdoor levels of gasoline-related VOCs in RIOPA.

Variable Group/unit Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene
B SE p-value B SE p-value B SE p-value B SE p-value B SE p-value B SE p-value B SE p-value
Intercept 0.39 039 0321 1.17 0.16 <.0001 -0.13 041 0.754 -0.04 044 0931 -0.05 031 0.859 2.13 0.44 <.0001 -1.237 0.224 <.0001
Visit 1 -0.03 0.06 0.593 0.26 0.06 <.0001 -0.03 0.07 0.643 0.06 0.07 0403 0.09 0.07 0.207 -0.06 0.09 0.534 -0.027 0.052 0.602
2 Reference Reference Reference Reference Reference Reference Reference
CA -0.56 0.10 <.0001 0.06 0.09 0.517 0.01 0.10 0.947 -0.25 0.13 0.049 -0.03 0.11 0.765 0.02 0.14 0.874 0.558 0.079 <.0001
City NJ -0.76 0.13 <.0001 -0.16 0.10 0.099 0.05 0.14 0.699 -0.19 0.15 0209 -0.05 0.14 0.724 -0.09 0.18 0.624 0.735 0.108 <.0001
X Reference Reference Reference Reference Reference Reference Reference
Ambient relative humidity % -0.01 0.00 <.0001 -0.02 0.00 <.0001 -0.01 0.00 <.0001 -0.02 0.00 <.0001 -0.02 0.00 0.000 -0.01 0.00 0.000
Attached garage No -0.15 0.07 0.042
Cooking No -0.09 0.05 0.047
Crawl space No -0.17 0.09 0.044
White  -0.20 0.11 0.069 -0.21 0.11 0.068 -0.16 0.13 0.221 -0.14 0.11 0.208 -0.14 0.15 0.337 -0.03 0.08 0.686
Ethnicity M‘exica‘n 0.10 0.13 0.443 0.24 0.13 0.069 0.09 0.15 0.540 0.15 0.13 0256 043 0.17 0.016 0.27 0.10 0.007
Hispanic -0.02 0.13 0.871 0.08 0.14 0.539 0.03 0.15 0.845 0.08 0.14 0.576 -0.02 0.18 0.927 -0.07 0.10 0.506
Other Reference Reference Reference Reference Reference Reference
Foundation of slab No 0.15 0.06 0.016
Gardening No 0.17 0.08 0.037
House volume m3 0.00 0.00 0.014 0.00 0.00 0.040
Inverse wind speed knot™ 4.18 0.50 <.0001 1.91 0.49 0.000 4.69 0.54 <.0001 5.65 0.58 <.0001 5.50 0.54 <.0001 5.63 0.74 <.0001 3.10 0.40 <.0001
Near diesel vehicles No -0.20 0.06 0.002
No pets No -0.27 0.07 0.000
Number of floors -0.08 0.03 0.031
Number of rooms -0.10 0.02 <.0001
Open doors or windows No -0.14 0.06 0.015
Other family members took showers No -0.38 0.08 <.0001
Q1 0.39 0.09 <.0001 0.26 0.09 0.003 022 0.10 0.026 029 0.10 0.005 023 0.10 0.020 -0.03 0.13 0.839
Outdoor temperature Q2 0.33 0.09 0.000 0.27 0.08 0.001 0.26 0.09 0.007 022 0.10 0.029 022 0.09 0.022 024 0.13 0.069
Q3 -0.01 0.09 0.909 -0.10 0.08 0.247 0.08 0.09 0.378 0.02 0.10 0.868 -0.02 0.09 0.803 0.01 0.13 0.941
Q4 Reference Reference Reference Reference Reference Reference
Ownership of the house No 0.21 0.09 0.018 023 0.08 0.005
Pets indoors No 0.14 0.08 0.074 0.15 0.07 0.033
Professional cleaning No 0.14 0.08 0.079
Tobacco products smoked in home No 0.66 0.26 0.012 0.64 0.27 0.019 0.79 0.29 0.008
Single
family -0.08 0.06 0.210
home
Type of building Mobile 019 0.10 0056
home
ﬁs}::hrﬁir;z Reference
Unvented appliances in basement No -0.46 0.20 0.025

For dichotomous variables, the reference group is “Yes”; n = 439 to 457 depending on models.
p-value < 0.05 shown in bold type.
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Table 56. Results of linear mixed-effect models for outdoor levels of odorant-related VOCs in RIOPA.

. . 1,4-DCB Chloroform d-Limonene o-Pinene B-Pinene
Variable Group/unit
B SE  p-value B SE  p-value B SE  p-value B SE  p-value B SE  p-value
Intercept -0.503 0.233 0.032 -1.6286 0.1561 <.0001 -0.05043 0.2266 0.824 -1.2703 0.18 <.0001 0.2626 0.1449 0.071
Visit 1 0.026  0.090 0.775 0.05289 0.05428 0.331 0.1084 0.08358 0.197 0.01116 0.07082 0.875 -0.00363 0.03871 0.925
2 Reference Reference Reference Reference Reference
CA 0.798 0.116 <.0001 0.4407 0.08141 <.0001 0.9777 0.1205 <.0001 1.4284 0.1013 <.0001 -0.5964 0.04991 <.0001
City NJ 0.632 0.151 <.0001 0.3717 0.1102 0.001 0.5528 0.143  0.000 1.3766 0.1137 <.0001 -0.7679 0.06444 <.0001
X Reference Reference Reference Reference Reference
Air conditioning No 035 0.10 0.001
Ambient relative humidity % 0.00 0.00  0.020
Attached garage No -0.20 0.07  0.005
Cement and other flooring No 0.16 0.07  0.014
Detached garage or carport No 0.08 0.04  0.039
White 0.12 0.09 0.152
Ethnicity Mexican 0.27 0.10  0.008
Hispanic 0.08 0.11  0.447
Other Reference
Furniture refinisher in neighborhood No -0.77 021  0.000
Inverse wind speed knot! 1.56  0.54  0.005
No pets No -0.17 0.06  0.009 -0.20 0.10  0.059 -0.09 0.04  0.044
Not using fresheners No -0.17 0.09 0.056 -0.28 0.14  0.048
Number of floors 0.08 0.02  0.001 0.09 0.04  0.033
Q1 -0.36 0.13  0.005 -0.21 0.07  0.005 -0.47 0.12 <.0001 -0.23 0.10  0.016
Outdoor temperature Q2 -0.32  0.12 0.011 -0.17 0.07  0.019 -0.52 0.11 <.0001 -0.29 0.09  0.002
Q3 0.03 0.12 0.804 -0.10 0.07 0.146  -0.21 0.11  0.067 -0.13 0.09 0.146
Q4 Reference Reference Reference Reference
Outdoor temperature °C 0.01 0.00  0.033
Professional cleaning No -0.31 0.11  0.008 -0.20 0.09  0.024
Single family home -0.12 0.08  0.136
Type of building Mobile home 0.11 0.12  0.365
Apartment/
townhouse Reference
Using mothballs No 0.15 0.09 0.117
Using cloth dryers No 0.13 0.07  0.055
Wore any powder/hair spray/perfume No 0.07 0.04  0.062

For dichotomous variables, the reference group is “Yes”; n = 437 to 470 depending on models.

p-value < 0.05 shown in bold type.
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Table 57. Results of linear mixed-effect models for indoor levels of dry-cleaning and
industrial-related VOCs in RIOPA.

Variable Group/unit e PERC cre
§ SE p-value B SE p-value B SE p-value
Intercept -1.86 0.14 <.0001 -2.26 0.20 <.0001 -0.29 0.08 0.00
o 1.00 0.14 0.04 0.00 -0.03 0.08 0.70 0.06 0.03 0.08
Visit 2.00 Reference Reference Reference
CA 046 0.06 <.0001 1.40 0.11 <.0001 -0.01 0.05 0.82
City NJ 0.80 0.07 <.0001 1.20 0.12 <.0001 -0.08 0.06 0.15
X Reference Reference Reference
?g;ﬁgi?ﬁgi&“ No 0.16 0.08  0.05
Inverse wind speed knot™! 0.74 033 0.03 4.63 0.59 <.0001
No pets No -0.12 0.05 0.01 -0.22 0.09 0.01
Not using fresheners No -0.15 0.06 0.01
Number of carpeted 20.05 002 0.05
rooms
Number of floors -0.03 0.02 0.07
Open doors or No -0.08 0.05 0.08 0.06 0.04 0.08
windows
Q1 0.13 0.06 0.04 0.15 0.11 0.16
Q2 0.17 0.06 0.00 0.33 0.10 0.00
Outdoor temperature
Q3 0.03 0.06 0.59 0.00 0.10 0.99
Q4 Reference Reference
Single family home -0.12  0.04 0.01
Type of building Mobile home -0.12  0.06  0.07
Apartmente/ townhous Reference
Unvented appliances No 023 0.09 0.01
in basement
Vacuuming No 0.16 0.07 0.02

For dichotomous variables, the reference group is “Yes”; n = 402 to 461 depending on models.
p-value < 0.05 shown in bold type.
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Table 58. The reduction in residual variance (R?) attributable to fixed-effect variables in
linear mixed-effect models for RIOPA VOCs.

R2
VOCs

Outdoor Indoor Personal
Benzene 0.37 0.25 0.29
Toluene 0.23 0.09 0.10
Ethylbenzene 0.37 0.13 0.15
m,p-Xylene 0.31 0.12 0.13
o-Xylene 0.41 0.16 0.19
MTBE 0.23 0.21 0.25
Styrene 0.44 0.15 0.06
1,4-DCB 0.17 0.12 0.16
TCE 0.62 0.25 0.22
PERC 0.65 0.42 0.32
Chloroform 0.33 0.32 0.16
CTC 0.35 0.13 0.003
d-Limonene 0.29 0.27 0.26
a-Pinene 0.54 0.40 0.36
B-Pinene 0.48 0.39 0.40
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Figure 1. Observed (histograms in blue bars) and fitted distributions (red line) of benzene
concentrations in RIOPA by sample type.

Left panels (A-D) are untransformed data; right panels (E-H) use natural log
transform.
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Figure 2. Observed (histograms in blue bars) and fitted distributions (red line) of 1,4-DCB
concentrations in RIOPA by sample type.

Left panels (A-D) are untransformed data; right panels (E-H) use natural log
transform. Plots omit the following: 1,4-DCB concentrations > 5 pg m> (n=23),
150 pg m> (n=41), 150 pg m” (n=38) and 1000 pg m> (n=10) in 2A, 2B, 2C and

2D, respectively.
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Figure 3. Observed (histograms in blue bars) and fitted distributions (red line) of PERC
concentrations in RIOPA by sample type.

Left panels (A-D) are untransformed data; right panels (E-H) use natural log
transform. Plots omit the following: PERC concentrations > 3 pg m”~ (n=32), 30
pgm> (n=1), 40 pg m> (n=6) and 20 pg m> (n=2) in 3A, 3B, 3C and 3D,
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concentrations in RIOPA by sample type.

Left panels (A-D) are untransformed data; right panels (E-H) use natural log
transform. One extreme value of 1224 pg m™ was not showed in 4C.
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Figure 6. Top 10% (red cross and dashed line) and 5% (blue circle and solid line) of benzene
concentrations in RIOPA fitted to maximum extreme distributions by sample type.

Pv =(r- 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the

extreme values (Barnett, 1975).
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Pv =(r- 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the

extreme values (Barnett, 1975).
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concentrations in RIOPA fitted to maximum extreme distributions by sample type.

Pv =(r- 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the
extreme values (Barnett, 1975).
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Pv =(r- 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the
extreme values (Barnett, 1975).
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Figure 11. The fitted density plots for chloroform (log scale) in RIOPA using normal, mixture
of normal and Dirichlet process mixture of normal model.
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Figure 12. The fitted density plots for 1,4-DCB (log scale) in RIOPA using normal, mixture
of normal and Dirichlet process mixture of normal model.
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Figure 17. Outdoor VOC composition at quintiles of total VOC concentrations in RIOPA.

Warm season indicates April to September, and cold season indicates October to

March.
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Supplemental Table S 1. Method detection limits and detection frequencies of VOCs concentrations in RIOPA.

MDL (ug m”) Outdoor Indoor Adult Child

Voo NJ & CA TX & CA n % below MDL n % below MDL n % below MDL n % below MDL
Benzene 1.1 0.54 555 24.5 554 17.9 544 14.5 209 8.1
CTC 0.27 0.34 555 3.2 554 4.5 544 4.6 209 3.3
Chloroform 0.42 0.28 555 87.2 554 233 544 17.3 209 11.5
1,4-DCB 0.91 0.43 555 71.5 554 35.1 544 28.5 209 19.6
Ethylbenzene 0.74 0.22 555 24.5 554 15.2 544 14.2 209 6.2
d-Limonene 1.27 0.74 555 79.6 554 13.4 544 11.6 209 6.2
MC 2.1 0.29 555 85 554 70.6 544 67.7 209 58.4
MTBE 0.68 0.38 555 3.6 554 6.1 544 3.9 209 3.8
a-Pinene 2.04 0.28 555 75.7 554 37.4 544 33.7 209 19.1
B-Pinene 1.01 2.09 555 93.7 554 47.8 544 43.8 209 30.6
Styrene 0.84 0.34 555 83.5 554 543 544 515 209 31.6
Toluene 6.7 7.12 555 66.1 554 30 544 25 209 22.5
TCE 0.44 0.24 555 80 554 74.2 544 68.6 209 77.5
PERC 0.42 0.22 555 31.9 554 18.6 544 12.5 209 14.8
m,p-Xylene 1.4 0.65 555 15.3 554 10.3 544 8.5 209 3.8
0-Xylene 0.85 0.29 555 26.7 554 18.2 544 12.9 209 7.2

MDL, method detection limit; n, sample size.
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Supplemental Table S 2. Method detection limits and detection frequencies of VOC concentrations in blood by NHANES cohort.

NHANES 1988-1991 NHANES 1991-1994 NHANES 1999/2000 NHANES 2001/2002 NHANES 2003/2004
VOCs

MDL n Extre DF MDL n Extre DF MDL n Extre DF MDL n Extre DF MDL n Extre DF

Aromatics

Benzene 0.0300 552 134 62 0.0300 466 88 71 0.0323 300 O 100 0.0170 837 0 53 0.0170 1345 0 59

Toluene 0.0920 552 362 34 0.0920 466 81 82 0.0231 304 6 97 0.0177 954 1 95 0.0177 1336 0 95
Ethylbenzene  0.0200 552 352 35 0.0200 466 60 81  0.0101 262 1 90 0.0170 879 0 61 0.0170 1299 0 68
m,p-Xylene 0.0330 552 0 37 0.0330 466 O 91 0.0358 296 2 96 0.0240 962 0 96 0.0240 1346 0 98

0-Xylene 0.0400 552 353 36 0.0400 466 37 87 0.0210 309 1 58 0.0346 981 0 40 0.0346 1365 0 37

Styrene 0.0190 552 352 34 0.0190 466 42 77 0.0066 284 1 94 0.0212 950 2 54 0.0212 1245 0 41
THMs
Chloroform  0.0210 552 109 45 0.0210 466 33 50 0.0064 255 2 99 0.0017 744 3 96 0.0015 1222 0 93
BDCM 0.0090 552 41 13  0.0090 466 40 12 0.0002 354 0 95 0.0002 785 0 99 0.0004 1322 0 76
DBCM 0.0130 552 62 13  0.0130 466 37 84 0.0002 350 0 87 0.0002 781 0 80 0.0004 1333 0 49
Bromoform 0.0270 552 362 1.4 0.0270 466 77 82 0.0004 330 O 76 0.0004 774 0 8  0.0011 1310 1 42
Others
1,4-DCB 0.0730 552 35 91 0.0730 466 68 80  0.0412 304 17 83 0.0849 807 5 51 0.0849 1322 2 54

PERC 0.0300 552 355 30 0.0300 466 97 55 0.0144 286 3 76  0.0339 978 1 33 0.0339 1317 O 17

MDL, method detection limit (ug L™); n, sample size (all measurements, including "extreme or illogical" values); Extre, numbers of "extreme or illogical" values.;
DF, detection frequency (%).
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Supplemental Table S 3. Results of linear mixed-effect models for outdoor VOCs in RIOPA using multiply imputed datasets (n =

2,775).
Benzene 1,4-DCB PERC
Variable Group B SE p-value % change Variable Group B SE p-value % change Variable Group B SE p-value % change
Intercept 0.51 034 0.138 30.4 Intercept -0.55 0.21 0.011 8.8 Intercept -2.34 0.18 <.0001 3.4
. -0.08 0.05 0.141 126.9 . 1 0.03 0.07 0.693 11.7 . 1 -0.07 0.06 0.255 127.0
Visit Visit Visit
Reference 2 Reference 2 Reference
CA -0.56 0.10 <.0001 -0.8 CA 0.78 0.11 <.0001 2.4 CA 145 0.10 <.0001 33
City NI -0.62 0.09 <.0001 -18.7 City NJ  0.59 0.13 <.0001 -6.5 City NJ 1.36  0.09 <.0001 13.2
X Reference X Reference X Reference
Inverse wind 4 1 418 046 <0001 0.1 Number of 0.10 0.04 0.009 32 Inverse wind 4 1 461 051 <0001 0.4
speed floors speed
Ambient
relative % -0.01 0.00 <.0001 -17.0 Q1 -0.44 0.12 0.000 20.0 No -0.15 0.08 0.062 -29.2
humidit No pets
umidity Outdoor
Q1 0.40 0.08 <.0001 2.7 temperature Q2 -0.27 0.11 0.017 -13.3 Yes Reference
Outdoor Q2 0.31 0.08 <.0001 -5.0 Q3 -0.03 0.11 0.800 -195.8 v . No 0.18 0.06 0.004 13.2
acuumin;
temperature Q3 -0.01 0.08 0926  -22.3 Q4 Reference CUuming e Reference
Q4 Reference r;_:l;itllﬁgein No -0.68 0.20 0.001 -11.5 Dry cleaners in No -0.12 0.07 0.076 -25.8
Near diesel O -0.20 0.06 0.000 -1.0 neighborhood Yes Reference neighborhood  Yes Reference
vehicles Yes Reference ... . No 031 009 0001 -13.2 Number of 0.05 0.02 0.010 8.3
Airconditioning carpeted rooms
Gardenin No 0.16 0.08 0.047 -5.1 Yes Reference Q1 0.11 0.09 0.242 -28.6
g Yes Reference Using No 0.16 0.09 0.087 9.4 Outdoor Q2 036 0.09 <.0001 8.9
deordorizers or
Crawl space No -0.15 0.08 0.078 -16.5 fresheners Yes Reference temperature Q3 0.03 0.09 0.700  2099.0
Yes Reference Q4 Reference
Tobacco No 0.39 0.21 0.062 -40.8
products
smoked in Yes Reference
home
White -0.19 0.10 0.067 -4.9
Ethnicit Mexican 0.06 0.12 0.635 -41.8
nici
aty Hispanic -0.16 0.11 0.156 659.7
Other Reference
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Supplemental Table S 4. Results of linear mixed-effect models for indoor VOCs in RIOPA using multiply imputed datasets (n = 2,770).

Benzene PERC o-Pinene
0,
Variable Group B SE  p-value cha/rulge Variable Group B SE p-value % change Variable Group B SE  p-value % change
Intercept 2.67 036 <.0001 4.0 Intercept -1.71 0.22 <.0001 -13.9 Intercept 2.50 020 <.0001 0.9
. -0.17 0.07  0.008 -19.3 . -0.02 0.07 0.752 -141.5 . 1 0.09 0.06 0.143 -21.9
Visit Visit Visit
Reference Reference 2 Reference
CA -0.56 0.12 <.0001 7.4 CA 1.05 0.15 <.0001 7.6 CA -047 0.12 <0001 1.0
City NI -0.77 0.10 <.0001 -5.1 City NJ 1.11 0.12 <.0001 -1.4 City NJ -0.60 0.13 <.0001 2.5
X Reference X Reference X Reference
Number of 008 002 0000 -12.5 mvesewind 309 063 <0001 -22.7  Number of rooms 0.07 0.03 0011  -5.7
rooms speed
No 0.10 0.09 0.298 -41.7 Visited dry No -0.33 0.13 0.012 -1.1 Other members of No  -0.54 0.11 <.0001 2.5
Unemployed Y Refe cleaners during Y Refe the household took Refe
es eference past week es eference showers es eference
Les;;han 0.27 0.12 0.024 -22.7 Sweeping No 0.15 0.09 0.088 -6.2 USng central air No -0.67 0.10 <.0001 7.6
Education Highschool 0.04 0.10 0.719 3.8 indoors Yes Reference conditioning o0 Reference
College or Logtransformed 1
above Reference Cooking inside No 0.18 0.08 0.027 -13.6 AER hr -0.44 0.05 <.0001 4.4
Professional  No 017 010 008§ -11.7  Orouside yeg Reference Spendingawake g 039 011 0001 -1l
cleaning Yes Reference No 0.21 0.08 0.013 -21.1 time at Others  Reference
Indoor °C 004 001 0000 120 vocuwuming o Reference
temperature
Attached No -0.19 0.09 0.029 -16.9 VinyL asbestos No 0.27 0.11 0.015 -30.2
garage Yes Reference or other siding Yes Reference
Professional No -0.14 0.13 0.292 -50.0
cleaning Yes Reference
Logtransforme -1
d AER hr -0.25 0.05 <.0001 -16.6
No 020 0.11 0.057 -15.7
Unemployed
Yes Reference
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Supplemental Table S 5. Results of linear mixed-effect models for personal VOCs in RIOPA using multiply imputed datasets (n =

2,720).
Benzene Styrene d-Limonene
Variable Group B SE p-value % change Variable Group B SE p-value % change Variable Group f SE  p-value % change
Intercept 2.51 038 <.0001 13.7 Intercept 1.00 0.34 0.003 -8.2 Intercept 3.34 036 <.0001 -7.8
. 1 -0.07 0.06 0.282 119.3 .. 1 0.07 0.08 0.331 2.1 . -0.01 0.11  0.898 -115.0
Visit Visit Visit
2 Reference 2 Reference Reference
CA -0.80 0.11 <.0001 3.8 CA -0.21 0.11 0.060 1.2 CA -0.77 0.18 <.0001 -5.9
City NJ -0.37 0.12  0.002 0.8 City NJ  -0.10 0.10 0.320 -8.1 City NJ -096 0.17 <.0001 -14.3
X Reference X Reference X Reference
Inverse wind et 360 053 <0001 -143  Number of rooms 0.09 002 0000 -7.0  Numberof 0.09 0.04 0011  -294
speed rooms
Number of 010 002 <0001 -09  Lmespentindoors .60 00 0004 @ -56 Othermembers o474 017 <0001 -6.8
rooms at home of the
Number of 0.13 003 0.000 -16.2 No 022 009 0014 132 Douseholdtook o b ence
floors Open doors or showers
Electricity 0.10 0.17 0.558  -47.7 windows Yes Reference LogtraA‘Egrm‘*d hr' -0.34 0.08 <0001 3.8
Heating fuel Gas 0.31 0.15 0.038 -25.7 Spe_ntat le_astlS No -0.41 025 0.100 -1.5 Renovation to No -0.32 0.15 0.043 -30.1
Oil and minutes in an the house in the
d Reference enclosed garage  Yes Reference ast vear Yes Reference
WOO! with a parked car past ¥
Indoor °C 0.05 0.01 <0001 11.8 No -0.40 0.14 0.005 152
temperature
Less than Unemployed
HS 0.13 0.12 0.288 -12.8 Yes Reference
Education High school -0.04 0.11 0.696 -48.8 Using other No 0.53 025 0.035 34
heaters (no
> College Reference central heating  Yeg Reference
system)
Attached No -0.18 0.09 0.050 4.3
garage Yes 0.00 .
p . No -0.17 0.08 0.044 4.3
mping ga
UMpINg gas Yes Reference
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Supplemental Table S 6. Statistics of VOC concentrations (ug L™) in blood measured for each NHANES cohort.

VOCs

NHANES 1988-1991

NHANES 1991-1994

NHANES 1999/2000

NHANES 2001/2002

NHANES 2003/2004

n

Mean SE

5 Oth

n

Mean

SE

5 Oth

n

Mean

SE 50"

n

Mean

SE

5 Oth

n

Mean

SE

5 Oth

Aromatics
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
BTEX
Styrene
THMs
Chloroform
BDCM
DBCM
Bromoform
> THM
Others
1,4-DCB
PERC

418
190
200
552
199
552
200

443
511
490
190
551

517
197

0.147 0.003

0.510 0.012
0.111 0.002
0.195 0.103
0.122 0.001
0.525 0.150
0.158 0.001
0.045 0.004
0.008 0.000
0.011 0.001
0.021 0.000
0.059 0.007
1.145 0.098

0.142 0.004

0.065
0.291
0.054
0.023
0.099
0.161
0.042

0.024
0.006
0.009
0.019
0.049

0.294
0.075

378
385
406
466
429
466
424

433
426
429
389
465

398

0.117
0.628
0.131
0.302
0.165
1.193
0.070

0.040
0.008
0.010
0.021
0.072

1.071

0.010
0.089
0.016
0.011
0.012
0.112
0.006

0.005
0.000
0.000
0.000
0.006

0.192

0.061
0.275
0.063
0.185
0.102
0.680
0.040

0.023
0.006
0.009
0.019
0.050

0.374

300
298
261
294
308
320
283

253
354
350
330
356

287

369 0.255 0.025 0.055 283

0.184
0.420
0.074
0.256
0.070
0.922
0.067

0.058
0.004
0.003
0.002
0.047

0.875
0.110

0.015 0.103

0.023 0.234
0.007 0.042
0.013 0.174
0.008 0.038
0.054 0.563
0.004 0.042
0.005 0.033
0.000 0.002
0.000 0.001
0.000 0.001
0.005 0.028
0.230 0.219

0.014 0.043

837
953
879
962
981
1015
948

741
785
781
774
820

802
977

0.082
0.291
0.046
0.225
0.057
0.652
0.092

0.026
0.004
0.002
0.004
0.033

0.935
0.070

0.021
0.054
0.008
0.053
0.008
0.117
0.009

0.004
0.001
0.000
0.001
0.003

0.305
0.004

0.027
0.152
0.029
0.150
0.035
0.390
0.024

0.017
0.002
0.001
0.001
0.025

0.087
0.034

1345
1336
1299
1346
1365
1368
1245

1222
1322
1333
1309
1337

1320
1317

0.069
0.216
0.044
0.168
0.045
0.535
0.043

0.020
0.003
0.002
0.004
0.026

0.827
0.081

0.004
0.018
0.001
0.008
0.002
0.029
0.003

0.005
0.000
0.000
0.001
0.004

0.142
0.011

0.028
0.091
0.031
0.130
0.035
0.320
0.021

0.010
0.002
0.000
0.001
0.014

0.140
0.034

Sample size n including valid measurements; values below MDL measurements were replaced by 1/2 MDL.
SE, standard error.
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Supplemental Table S 7. Predicted excess cancer risk for RIOPA adult participants (n = 239).

Unit risk Predicted excess cancer cases per million population

voes (ngm™)" Mean SD Min 25th 75th 98th Max

Benzene 7.8 x 107 28.4 25.9 434 13.5 32.7 134.2 172.6

Ethylbenzene 2.5x10° 7.1 9.9 0.9% 3.0 7.6 43.2 82.9

MTBE 2.6x 107 3.5 4.6 0.1# 1.2 4.1 17.5 37.2

Styrene 2.0x10° 3.2 6.9 0.3# 0.8%# 2.6 23.9 59.9
1,4-DCB 1.1x10° 626.5 2223.0 2.44 10.0# 126.0 9518.1 19167.0

TCE 2.0x10° 1.4 4.1 0.2# 0.2# 0.93 16.1 40.9

PERC 59x10° 12.9 25.9 0.7# 2.5# 11.8 97.5 2423

Chloroform 23x10° 47.0 62.2 3.2 14.5 52.6 248.8 537.6

CTC 1.5x10° 9.8 2.9 2.0# 8.2 10.7 17.1 27.8
Hematopoietic mixture NA 680.2 2239.7 12.78 44.89 180.22 9695.8 19195.8
Liver anﬁ;‘iﬁz’ toxicant NA 714.8 22474 20.80 61.25 265.03 9723.1 19222.9
Total VOC NA 745.8 2253.9 34.1 83.9 293.3 9780.5 19250.0

NA, not available; SD, standard deviation; min, minimum; max, maximum.

#, concentrations were based on MDLs.

Hematopoietic mixture includes benzene, MTBE, 1,4-DCB, TCE and PERC; liver and kidney toxicant mixture includes ethylbenzene, MTBE, 1,4-DCB, TCE,
PERC, chloroform and CTC.
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Supplemental Table S 8. Linear quantile regressions of log-transformed blood VOC concentrations for NHANES 1988-1994 and
2001-2004 (without 1999/2000).*

VOCs Quantile 0.5 Quantile 0.75 Quantile 0.95
B SE % change B SE % change B SE % change
Aromatics
Benzene -0.043 0.003 -20.1# -0.038 0.004 -51.9# -0.023 0.014 NA
Toluene -0.071 0.005 -27.7# -0.089 0.012 -38.1# -0.089 0.012 -12.9
Ethylbenzene -0.054 0.006 -9.2 -0.055 0.006 -15.7 -0.095 0.027 -19.4
m,p-Xylene -0.024 0.006 -28.4 -0.055 0.008 -4.5 -0.136 0.049 16.0
o-Xylene -0.082 0.000 18.5# -0.098 0.007 0.7 -0.129 0.035 5.4
BTEX -0.043 0.005 -35.3# -0.059 0.008 -26.6 -0.083 0.029 17.5
Styrene -0.029 0.004 -18.7 -0.025 0.006 -35.0 -0.096 0.039 56.7
THMs
Chloroform -0.059 0.004 9.3 -0.054 0.006 -15.2 -0.059 0.015 -42.4
BDCM -0.102 0.007 5.4 -0.040 0.001 -6.5 -0.034 0.010 1.2
DBCM -0.202 0.018 0.0 -0.142 0.004 -4.6 -0.077 0.007 0.0
Bromoform -0.241 0.000 0.0 -0.196 0.001 -2.4% -0.161 0.028 25.9
> THM -0.112 0.006 2.4 -0.092 0.005 -8.8 -0.052 0.020 -55.1
Others
1,4-DCB -0.061 0.001 -2.6 -0.040 0.009 -11.0 -0.031 0.022 NA
PERC NA NA NA -0.149 0.003 -10.3# -0.144 0.038 -18.5

* excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ) THM and PERC.

Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs were adjusted for solvent-related occupations
only.

SE=standard error; NA=not available.

% change=(((Bwithout1999/2000-Bwith1999/2000)/Bwith1999/2000)100%), which was calculated only when both fwith1999/2000 and Bwithout1999/2000 were
significant.

Bold type means statistically significant (p<0.05) in QR models; # means differences between Bwith1999/2000 and PBwithout1999/2000 were statistically significant
examined by approximately Wald tests.
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Supplemental Table S 9. Piecewise quantile regressions using knot at 1999/2000 for log-transformed blood VOC concentrations in the

1988 to 2004 period.*
0.5 Quantile 0.75 Quantile 0.95 Quantile
VOCs
Slopel (SE) Slope2 (SE) Slopel (SE) Slope2 (SE) Slopel (SE) Slope2 (SE)
Aromatics

Benzene 0.061 (0.009) -0.244 (0.011) 0.082 (0.008) -0.260 (0.010) 0.067 (0.022) -0.204 (0.030)
Toluene 0.018 (0.011) -0.207 (0.012) 0.052 (0.018) -0.238 (0.016) -0.040 (0.042) -0.176 (0.040)
Ethylbenzene -0.059 (0.013) -0.060 (0.014) -0.032 (0.012) -0.090 (0.015) -0.051 (0.057) -0.135 (0.029)
m,p-Xylene 0.008 (0.012) -0.069 (0.012) 0.016 (0.011) -0.116 (0.012) 0.107 (0.025) -0.263 (0.030)
0-Xylene -0.148 (0.005) -0.006 (0.002) -0.067 (0.013) -0.127 (0.016) -0.039 (0.053) -0.163 (0.032)
BTEX 0.009 (0.011) -0.126 (0.009) 0.020 (0.014) -0.154 (0.013) 0.010 (0.037) -0.124 (0.030)
Styrene -0.001 (0.006) -0.067 (0.006) 0.051 (0.012) -0.134 (0.014) 0.113 (0.036) -0.168 (0.030)

THMs
Chloroform 0.062 (0.013) -0.294 (0.017) 0.084 (0.011) -0.301 (0.018) 0.039 (0.018) -0.273 (0.024)
BDCM -0.084 (0.009) -0.124 (0.021) -0.011 (0.012) -0.094 (0.010) -0.013 (0.021) 0.076 (0.033)
DBCM -0.168 (0.013) -0.268 (0.021) -0.116 (0.015) -0.205 (0.027) -0.077 (0.021) -0.076 (0.036)
Bromoform -0.403 (0.000) -0.014 (0.000) -0.306 (0.005) -0.032 (0.037) -0.200 (0.049) -0.028 (0.060)
>THM -0.054 (0.013) -0.184 (0.014) -0.003 (0.011) -0.215 (0.013) 0.044 (0.031) -0.195 (0.027)

Others
1,4-DCB -0.067 (0.007) -0.056 (0.012) -0.024 (0.020) -0.072 (0.027) 0.012 (0.042) -0.123 (0.075)
PERC -0.121 (0.000) 0.000 (0.000) -0.110 (0.025) -0.191 (0.004) -0.109 (0.077) -0.207 (0.057)

* excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ) THM and PERC.

Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs were adjusted for solvent-related occupations.
Slopel=slope of regression line connecting 1988-1991 and 1999/2000; slope2=slope of regression line connecting 1999/2000 and 2003/2004.

SE=standard error; NA=not available.
Bold type means statistically significant (p<0.05).
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Supplemental Table S 10.

Effect sizes* of linear mixed-effect models for personal exposure to gasoline-related VOCs in RIOPA.

Variable Group/unit Benzene Toluene Ethylbenzene m,p-Xylene 0-Xylene MTBE Styrene
Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI
Intercept 9.13 2.21 42.16 2.05 4.10 2.27 9.32 2.06 2.18 1.78 6.18 1.85 2.98 1.93
Visit 1 1.031  1.136 1.13 1.19 -1.15 1.17 -1.09 1.18 -1.07 1.16 1.06 1.22 1.08 1.16
2 Reference Reference Reference Reference Reference Reference Reference
Los Angeles  -2.29 1.26 1.09 1.24 -1.45 1.31 -1.34 1.32 -1.06 1.30 -1.41 1.38 -1.26 1.25
City Elizabeth -1.44 1.32 1.07 1.29 -1.17 1.43 -1.29 1.45 -1.19 1.39 1.07 1.48 -1.12 1.23
Houston Reference Reference Reference Reference Reference Reference Reference
Attached garage No -1.21 1.19 -2.06 1.63 -1.44 1.26 -1.43 1.27 -1.42 1.23 -1.43 1.27 -1.51 1.63
Cooking No 1.24 1.19 1.19 1.18 1.17 1.19 1.22 1.16
Lessthan HS  1.16 1.27
Education High school ~ -1.09 1.22
> College Reference
White -1.14 1.35 -1.25 1.37 -1.23 1.32
Ethnicity M_exica_n 1.21 1.44 1.07 1.46 1.12 1.40
Hispanic 1.35 1.45 1.31 1.48 1.42 1.41
Other Reference Reference Reference
Electricity 1.22 1.42
Heating fuel Gas 1.52 1.37
Oil and wood Reference
Indoor temperature °C -1.17 1.08
Inverse wind speed knot™ 1.52 1.11 1.37 1.14 1.33 1.15 1.29 1.13 1.80 1.18
Log-transformed AER hr! -1.39 1.12 -1.20 1.13 -1.26 1.13 -1.17 1.12 -1.10 1.15
Number of floors -1.35 1.16 -1.48 1.26
Number of rooms -1.21 1.10 -1.21 1.10
Open doors or windows No 1.25 1.20 1.22 1.20
Pumping gas No -1.18 1.18 -1.27 1.25 -1.24 1.25 -1.32 1.22 -1.40 1.30
Renovation in the past year No -1.35 1.22
Time spent in home min -1.18 1.16 -1.15 1.16 -1.22 1.13
Unemployed No 1.26 1.27
Using air cleaning devices No -1.31 1.42 -1.52 1.43 -1.46 1.37 -1.42 1.49
Using nail polish remover No -1.34 1.39 -1.48 1.38 -1.38 1.40
Wore powder, spray or perfume No 1.50 1.26

*for continuous variables, the effect size (ug m™) is equal to the change in exposure for one inter-quartile range of the determinant.

AER, air exchange rate; HS, high school.
For dichotomous variables, the reference group is “Yes”.
p-value < 0.05 shown in bold type.



Supplemental Table S 11.

Effect sizes* of linear mixed-effect models for personal exposure to odorant-related VOCs in RIOPA.

Variable Group/unit 1,4-DCB Chloroform d-Limonene a-Pinene B-Pinene
Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI
Intercept 33.23 4.60 3.83 2.53 37.39 2.14 11.27 1.62 480 236
Visit 1 1.40 1.33 1.17 1.19 1.10 1.34 1.19 1.16 1.08 1.21
2 Reference Reference Reference Reference Reference
Los Angeles -3.00 1.79 -1.56 1.36 -2.27 1.44 -2.04 1.28 -3.18 1.34
City Elizabeth -2.25 1.82 -1.06 1.40 -3.07 1.54 -1.81 131 -2.88 1.39
Houston Reference Reference Reference Reference Reference
Air conditioning No 1.71 1.56 -1.67 1.23 -1.22  1.28
Ambient relative humidity % -1.14 1.12 -1.14 1.12
Furniture refinisher in neighborhood No -3.66 2.65
Waxing or polishing furniture No -2.24 1.90
Keeping dogs or cats No 1.17 .22 134 1.24
Log-transformed AER hr -1.56 1.15 -1.43 1.19 -1.54 112  -140 1.15
Not using fresheners or candles No 1.37 1.42
Number of rooms -1.32 1.30 -1.26 1.18 -1.29 1.18 -1.21 1.13
Open doors or windows No 1.52 1.47 .24 1.27
Other family members took showers No -1.47 1.34 -2.22 1.43 -1.51 1.27  -142 132
Outdoor swimming pool or hot tub No -1.37 1.28
<64 °F 2.14 1.68
Using heating at 64 to 70 °F -1.03 1.59
> 70 °F Reference
Ownership of the house No 1.34 1.33
Pets indoors No 1.37 1.26
Renovation in the past year No -1.57 1.34
Restaurants or bakery in neighborhood No -1.87 1.70
Unemployed No -1.42 1.36
Using a clothes washer No 1.70 1.46
Using dishwashers No -1.29 1.30
Using other heaters (non-CHS) No 1.73 1.68

* for continuous variables, the effect size (ug m’
AER, air exchange rate; HS, high school.

For dichotomous variables, the reference group is “Yes”.

p-value < 0.05 shown in bold type.
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Supplemental Table S 12. Effect sizes* of linear mixed-effect models for personal exposure to dry-cleaning and industrial-related

VOCs in RIOPA.

. . TCE PERC CTC
Variable Group/unit Estimate 95% CI Estimate 95% CI Estimate 95% CI
Intercept -2.21 2.29 -1.62 2.64 -1.89 1.58
Visit 1 1.20 1.15 1.21 1.21 -1.01 1.07
2 Reference Reference Reference
Los Angeles 1.94 1.33 1.78 1.42 -1.19 1.15
City Elizabeth 3.42 1.33 1.71 1.60 -1.12 1.16
Houston Reference Reference Reference
Ambient relative humidity % -1.13 1.13
White -1.13 1.45
Ethnicity Mexica.n -1.62 1.57
Hispanic 1.06 1.60
Other Reference
Having a fireplace No -1.14 1.14
Indoor temperature °C -1.10 1.10 1.04 1.04
Inverse wind speed knot™! 1.63 1.18
Log-transformed AER hr -1.24 1.15
Not using fresheners or candles No -1.22 1.16
Restaurants or bakery in neighborhood No 1.30 1.30
Source of household water Public -1.78 1.69 1.65 1.32
Sweeping indoors No 1.21 1.26
Time spent at closed cars min 1.25 1.12
Unemployed No 1.52 1.28
Using air cleaning devices No -1.21 1.18
Vinyl, asbestos or other siding No -1.28 1.29
Visited dry cleaners during past week No -1.88 1.34

*for continuous variables, the effect size (ug m™) is equal to the change in exposure for one inter-quartile range of the determinant.

AER, air exchange rate; HS, high school.

For dichotomous variables, the reference group is “Yes”.

p-value < 0.05 shown in bold type.
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CHAPTER 4

Conclusions

This dissertation draws on the outdoor, indoor, personal and biological VOC
measurements from two large datasets, RIOPA and NHANES, and utilizes several novel and
powerful statistical modeling and analysis techniques. It identifies and characterizes
exposure distributions, risks, trends, mixtures, dependencies of the components in mixtures,
and exposure determinants. The conclusions are presented in this chapter. Section 4.1
summarizes the main findings for each objective (see Section 1.3). Section 4.2 addresses
the relevance of the findings to public health and environmental concerns. ~Section 4.3
suggests possible applications of the advanced statistical methods used in this research, and

identifies unsolved scientific issues for further investigation.
4.1 Main Findings
4.1.1 [Extreme Value Analyses

The results of the extreme value analyses (Section 3.3) showed that the highest
exposures in RIOPA, which can be the most significant in terms of health risks, closely fitted
generalized extreme value (GEV) distributions and, in many cases, Gumbel distributions, a
reduced form of the GEV distribution. In contrast, lognormal distributions, the usual
"default" distributional assumption, underestimated concentrations and risks from extrema.
Despite the importance of extreme value exposures, few studies have fitted distributions or
otherwise characterized such extrema. Better ways to accurately characterize pollutant
distributions and predict the numbers of individuals that exceed risk-based exposure guidelines
or other criteria are needed. GEV distributions will be useful in impact and policy analyses to

describe concentrations, exposures and risks.
4.1.2  Mixture of Normal Distributions

Although GEV distributions can represent tail behavior of exposure and risk distributions,
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they do not fit the full distribution of most environmental data, which can have multiple modes,
heavy tails, left-censoring, and other features. Compared to parametric distributions, the
finite mixture of normals and Dirichlet process mixture (DPM) of normals were shown
(Section 3.4) to have superior performance in fitting VOC exposure data with heavy tails or
with a large fraction of data below the method detection limits (MDLs). The optimal
number of distributions (k) needed for the finite mixture of normals models ranged from 2 to 4,
depending on VOCs. Distributions from the DPMs provided slightly better fits than the
finite mixture of normals. This model has advantages by characterizing uncertainty around
the number of components, and by providing a formal assessment of uncertainty for all model
parameters through the posterior distribution. The method adapts to a spectrum of departures
from standard model assumptions and provides robust estimates of the exposure density, even

under left censoring (due to the MDL)).
4.1.3 Trend Analyses

In Section 3.5, VOC exposure trends from 1988 to 2004 were examine using
concentrations measurements in blood drawn from five cohorts of NHANES, a large and
nationally representative sample of U.S. adults. There is no question that VOC exposures
decreased over this period, however, the rate of decrease depends on the both the VOC and the
quantile. Using quantile regression (QR) models, three patterns were discerned: exposures
of benzene, toluene, BTEX and, with less confidence, XTHMs and chloroform, had similar
decreases at all quantiles (pattern 1); ethylbenzene, m,p-xylene, o-xylene, styrene and PERC
levels decreased fastest at upper quantiles (pattern 2); and 1,4-DCB declined faster at central
quantiles (pattern 3). Because the sample included participants with a wide range of
occupations and exposures, upper quantile exposures may reflect occupational exposure,
while lower quantiles arise from general environmental sources. There is less certainty
regarding the nature of the exposure trends. Linear models yielded reductions of 2.5 to 6.4%
per year for most VOCs, a robust result that is consistent with ambient trends, described below.
Shorter term trends, evaluated using piecewise models and other analyses, suggest that several
VOCs had smaller changes through the 1990's, followed by swifter reductions in subsequent
years; however, these trends may be driven by previously unreported anomalies in the

NHANES data that affected the 1988 through 2000 cohorts.
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VOC emissions and ambient concentrations were compared to the biomonitoring data.
For most VOCs, reported emissions decreased more slowly (e.g., 4-6% per year for toluene
and xylene from 1999 to 2004) than median exposures. However, for most VOCs, long
term trends of ambient concentrations decreased more rapidly than the NHANES exposure
data. Exposure, emission and concentration trends may diverge, especially for VOCs with
strong indoor sources, e.g., chloroform and 1,4-DCB. These differences suggest the
importance of indoor emission sources, smoking, occupation, personal activities and other

factors on exposure, in addition to emissions and ambient concentrations.

Internal checks on the validity of the NHANES measurements were made by comparing
blood and personal sampling measurements collected in the 1999/2000 cohort, and by
comparing results across cohorts. The low to moderate correlation found can be explained by
NHANE's experimental design, the rapid clearance of most VOCs from blood, and other
factors. It should be noted that data were insufficient to estimate trends for BDCM, DBCM
and bromoform, and also that portions of the 1988-1991 through 1999/2000 VOC data appear
unreliable. Still, the NHANES measurements are unique and valuable in providing a 15 year

history of population exposure to VOCs in the U.S.
4.1.4 Identification of Mixtures

Many VOCs have similar emission sources and/or toxicological effects, highlighting the
need to understand and evaluate exposures to mixtures. VOC mixtures in the RIOPA dataset
were identified using positive matrix factorization (PMF) analyses and the toxicological mode
of action (Sections 2.2.6.2 and 3.6). The VOC emission sources identified using PMF
included gasoline vapor (mixture A1), vehicle exhaust (mixture A2), moth repellents,
chlorinated solvents and water disinfection by-products (mixture A3), and cleaning products
and odorants (mixture A4). These four mixtures were affected by city, ethnicity and air
exchange rates. The influence of environmental factors and personal activities was also
shown for certain mixtures, e.g., mixture Al was associated with attached garages and
self-service pumping gas. Three additional mixtures based on cancer endpoints were
identified, which respectively can cause liver and renal tumors (mixtures B1 and A3/B3), and

hematopoietic cancers (mixture B2).
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4.1.5 Dependencies of Components in Mixtures

Dependencies between mixture components were described using copulas (Section 3.7),
which showed a high degree of accuracy and flexibility, including the ability to represent
asymmetrical dependency structures. The dependency structures of four mixtures in RIOPA
were best described by the t copula, while two other mixtures best fitted Gumbel copulas,
which better capture dependency structures of distributions containing extreme values. In all
cases, the copulas clearly provided better fits than multivariate lognormal distributions.
Copulas can provide accurate estimates and simulations for the joint distribution of pollutants
across the full range of concentrations, and they faithfully represent the correlation in the tails
of the distributions. Thus, copulas may be the method of choice for estimating cumulative
risks of exposure to mixtures, particularly for the highest exposures or extreme events, which

poorly fit lognormal distributions, and which may represent the greatest risk.
4.1.6  Exposure Determinants

LMMs were used to identify determinants of VOC exposures in RIOPA (Section 3.9).
The determinants included city, personal activities (e.g., pumping gas and visiting dry
cleaners), household characteristics (e.g., AERs, number of rooms, attached garages), and
meteorology (e.g., wind speed). Most of these factors were associated with indoor
concentrations in the participant's home, which contributed a large share exposure (average
exposure fractions ranged from 63% for MTBE to 75% for CTC). Gasoline-, odorant and
cleaning-, and dry-cleaning and industry-related VOCs were associated with a number of
individual and environmental determinants, consistent with previous studies, e.g.,
gasoline-related VOCs were higher in homes with attached garages, and dry cleaning-related
VOCs were higher in participants who visited dry cleaners. Several new determinants were
identified, including effects of city, other family member showering, and residence size.
Outdoor VOC concentrations provided small contributions to VOC exposure (exposure
fractions averaged from 0.032 to 0.006). To extend and generalize results, further

investigation using a more representative population and a wider suite of VOCs is suggested.
4.2 Implications of Findings

This dissertation highlights several critical issues in exposure science relevant to public

health that have received relatively little attention. These issues were addressed using several
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advanced statistical approaches and the RIOPA and NHANES VOC datasets. These methods

performed well, and they deserve more widespread consideration and application.

First, the highest exposure events do not fit “default” distributional assumptions, i.e.,
lognormal distributions, but they can be described using extreme value analyses. Since the
highest exposures may be the ones most relevant to health risks, they frequently become the
determinants or "drivers" of environmental decisions and policies. We suggest the need to
more accurately characterize and model these high concentrations and exposures, potentially
using the extreme value theory, and that the use of this enhanced information and methods for

estimating population risks and establishing exposure and risk guidelines.

Second, single (parametric) distributions may not accurately fit exposure data, which
contains features such as multiple modes, heavy tails, and left censoring. The suggested
mixture models, finite mixture of normals and DPM of normals, provided much better fits to
the RIOPA VOC dataset than lognormal distributions. These full distribution models offer
several advantages over parametric distribution models, and they appear appropriate for other
types of environmental data (e.g., persistent and/or emerging compounds). The use of
mixture models can improve the accuracy and realism of models used in a variety of exposure

and risk applications.

Third, trends of VOC exposures were evaluated using QR models and 1988 to 2004
NHANES data. This analysis reveals changes in blood VOC levels in the U.S. population (20
to 59 year old) over past decades. The trends were examined at various percentiles (one of the
greatest advantages of using QR models), and showed different patterns, which may reflect
changes in exposure sources. Additionally, exposure trends were compared to trends of
emissions and ambient VOCs. The results reflect declining trends in emissions and ambient
VOC levels, but also suggest the importance of indoor sources and personal activities on VOC

cXposures.

Fourth, copulas were used to estimate dependency structures in mixtures of VOCs. The
RIOPA dataset showed complex dependencies, e.g., the dominant VOC in a mixture often
changed as the mixture concentration increased. Copula methods have many strengths: they
overcome shortcomings of traditional methods that address only pair-wise correlations (e.g.,

correlation coefficients); allow the use of any marginal distribution; permit asymmetrical
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dependency structures; and they decouple the dependency structure from the marginal
distribution. These are essential considerations for cumulative exposure and cumulative risk
assessment, and copulas provide a powerful tool in this application, especially for high

concentration mixtures that may pose the greatest risks.

Lastly, the analysis of exposure determinants in this dissertation suggests several
interventions that can help prevent or reduce VOC exposures. Since people spent over 90%
of their time at home, and since exposure at home contributes an average of 60% of an
individual's total VOC exposure, minimizing indoor VOC sources/levels will decrease
exposure. In addition, VOC exposures can be reduced by modifying activities that
contribute significantly contribute to VOC exposure, e.g., pumping gasoline and visiting dry
cleaners, and by addressing environmental factors that influence VOC exposures, e.g.,

attached garages, and outdoor VOC sources.
4.3 Recommendations for Further Study

This dissertation used data drawn from RIOPA and NHANES, much of which was
collected over a decade ago. Updated data are needed to explore and understand current
exposure situations. For example, the most recent blood VOC data in NHANES was from the
2005/2006 cohort (latest release). Since this time, the survey has been expanded to include
younger participants (from 12 year old). Further research could examine more recent trends

of VOC exposures, and separate children and adult populations.

This dissertation has applied several advanced statistical methods, but these methods
rarely have been applied in other environmental studies. Further applications of these
methods are warranted. For example, considering the tail dependencies of VOC mixtures and
the extreme value distributions of VOCs, future studies should apply extreme-value copulas
(including Galambos and Husler-Reiss copulas, as well as Gumbel copulas), which combine
the copula technique and the extreme value theory. Such approaches can predict the risk of
exposure to extreme values of VOCs. In addition, dependency structures in VOC mixtures
may change over time due to different emission sources or activity patterns, so the longitudinal
NHANES data can be used with copulas to explore temporal joint distributions of VOC
exposures. Also, copulas are recommended to estimate the dependency structures of other

class of pollutants or across different types of pollutants.
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Another possible application is the use of QR models for determining exposure factors.
Determinants of VOC exposures may vary as a function of exposure levels, i.e., high- and
low-exposed populations may be affected by different factors; further research could help

explore exposure determinants at different percentiles using QR models.

Since people are typically exposed to mixtures, there will be a continuing need to
estimate the determinants of such exposures. In this case, the associations between multiple
correlated response variables (e.g., VOC mixtures), and covariates (e.g., potential

determinants), can be estimated using copula regression models.

Finally, the general recommendation is that the statistical approaches used in these
analyses are needed when investigating other pollutants like particulate matter, other settings
such as other countries and other populations, especially sensitive populations, e.g., children
and elders. This more comprehensive interpretation provides an improved foundation on

which to base policy decisions.
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