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ABSTRACT 

 Introduction.  Emission sources of volatile organic compounds (VOCs) are numerous 

and widespread.  Concentrations of VOCs indoors typically exceed outdoor levels, and most 

people spend nearly 90% of their time indoors.  Thus, indoor exposures generally contribute 

the majority of VOC exposures for most people.  VOC exposure has been associated with a 

wide range of acute and chronic health effects, e.g., asthma, liver and kidney dysfunction, 

neurological impairment, and cancer.  Although exposures to most VOCs for most persons 

fall below health-based guidelines, a subset of individuals experience much higher exposures.  

Thus, exposure to VOCs remains an important environmental health concern.   

 Important gaps remain in our understanding of VOC exposures.  Generally, 

concentration and especially exposure data are limited.  Like much other environmental data, 

VOC exposure data can show multiple modes, heavy tails, and sometimes a large portion of 

data below method detection limits (MDLs).  Field data also show considerable spatial or 

inter-individual variability, and information on long-term exposure trends is lacking.  

Additionally, typically exposure occurs as a mixture, and mixture components may jointly 

contribute to adverse effects.  However, most pollutant regulations, guidelines and studies 

remained focused on single compounds, and thus may underestimate cumulative exposures 

and risks.  Finally, while many factors are known to affect VOC exposures, many personal, 

environmental and socioeconomic determinants remain to be discovered.   

 To help answer these questions and overcome limitations of previous analyses, this 

dissertation utilizes several novel and powerful statistical techniques with analyses focused on 

two large datasets.  The overall objective is to understand the nature and significance of 

exposures to VOCs by identifying and characterizing exposure distributions (including 

extreme values), exposure trends, exposures to mixtures (including dependencies), and 

exposure determinants. 
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 Methods.  VOC data were mainly drawn from two datasets: the Relationship between 

Indoor, Outdoor and Personal Air study (RIOPA), the National Health and Nutrition 

Examination Survey (NHANES).  The RIOPA study collected outdoor, indoor and personal 

measurements in three U.S. cities from 1999 to 2001.  Approximately 100 non-smoking 

households, adults and children in each city were sampled twice for 18 VOCs.  More than 500 

variables potentially associated with exposure were also collected.  NHANES used a stratified, 

multistage, probability-based sampling design to collect nationally representative samples.  

Blood VOCs were measured for a subsample of adults for each cohort studied between 1988 

and 2004, and personal VOC measurements were collected in 1999/2000. 

 To estimate extreme exposures, Gumbel and generalized extreme value (GEV) 

distributions were fitted to the top 5 and 10% of VOC exposures.  Health risks were also 

estimated.  Simulated extreme value datasets, following the fitted GEV, Gumbel and 

lognormal distributions for VOCs, were compared to observations.  Mixture distributions 

using the traditional finite mixture of normal distributions and semi-parametric Dirichlet 

process mixture (DPM) of normal distributions were also fitted, and goodness-of-fit was 

evaluated using simulations.    

 VOC trends from 1988 through 2004 were evaluated using linear quantile regression (QR) 

models, which are more robust than ordinary linear models and can indicate changes at 

different quantiles.  Linear QR models with adjustments for solvent-related occupations and 

cotinine levels were fitted to VOCs at the 50th, 75th and 95th percentiles. 

 VOC mixtures in RIOPA were identified using positive matrix factorization (PMF) and 

by toxicological mode of action.  Dependency structures of mixture components were 

examined using mixture fractions and copulas, which address correlations of multiple 

variables across their entire distributions, and evaluated using simulation.  Cumulative 

cancer risks were calculated for mixtures, and results from copulas and multivariate 

lognormal models were compared to observations.  The fractions of exposure attributable to 

the outdoor and home microenvironments were also estimated.  Finally, exposure 

determinants were identified using stepwise regressions and linear mixed-effect models. 

 Results.  Extreme value exposures typically were best fitted by 3-parameter GEV 

distributions, and sometimes by the 2-parameter Gumbel distributions.  In contrast, lognormal 
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distributions significantly underestimated both the level and likelihood of extrema.  Among 

the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) posed the greatest risk of 

cancer, e.g., for the top 10% of exposures, the predicted lifetime excess cancer risk exceeded 

10-4, which represents an upper bound estimate of 100 cancer cases if one million people were 

exposed daily over their lifetime to the 90th percentile 1,4-DCB concentration.  NHANES had 

considerably higher concentrations of all VOCs with two exceptions (methyl tertiary-butyl 

ether (MTBE) and 1,4-DCB).  Considering the full distribution models, the finite mixture of 

normals with two to four clusters, and DPM of normals had superior performance in 

comparison to the lognormal models.  DPM distributions provided slightly better fit than the 

finite mixture of normals.     

 In NHANES, most VOCs showed decreasing trends at all quantiles, e.g., median 

exposures declined by 2.5 (m,p-xylene) to 6.4% (tetrachloroethene, PERC) per year over the 

15 year period.  Trends varied by VOC and quantile, and were grouped into three patterns:  

similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper 

quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, PERC); and fastest 

declines at central quantiles (1,4-DCB).  These patterns reflect changes in exposure sources, 

e.g., upper-percentile exposures may result mostly from occupational exposure, while lower 

percentile exposures arise from general environmental sources.  Trends of VOC emissions 

and ambient concentrations are supportive of the exposure trends, although the data suggest the 

importance of indoor sources and personal activities. 

 Four VOC mixtures in RIOPA were identified by PMF, which represented gasoline 

vapor, vehicle exhaust, chlorinated solvents and disinfection by-products, and cleaning 

products and odorants.  Typically, mixture fractions were heterogeneous, e.g., the 

compounds and fractions changed with the concentration of the mixture.  Three mixtures 

were identified by toxicological mode of action, representing VOCs associated with 

hematopoietic, liver and renal tumors.  Estimated lifetime cumulative cancer risks exceeded 

10-3 for about 10% of RIOPA participants.  This exceeds the range that is normally 

considered to be acceptable (from 10-6 to 10-4).  The dependency structures of the VOC 

mixtures fitted Gumbel and t copulas, both of which emphasize tail dependencies.  The 

copulas reproduced both risk predictions and exposure fractions with a high degree of 

accuracy, and performed better than multivariate lognormal distributions. 
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 The analysis of VOC determinants showed that exposures were affected by indoor 

concentrations, city, and some personal activities, household characteristics and 

meteorological factors.  Home concentrations accounted for an average of 63 (MTBE) to 

75% (carbon tetrachloride) of total exposure.  For gasoline-related VOCs (e.g., benzene, 

MTBE), important determinants were city, attached garages, self-pumping of gas, wind speed, 

and house air exchange rate (AER).  Odorant and cleaning-related VOCs (e.g., 1,4-DCB, 

chloroform) were associated with city, AER, house size and family members showering.  

Dry-cleaning and industry-related VOCs (e.g., PERC, trichloroethylene) were associated 

with city, residence water supply type, and visits to dry-cleaners.  These and other 

relationships explained from 10 to 40% of the variation, and are consistent with known 

emission sources and the literature. 

 Conclusions.  Exposure data feature extreme values, multiple modes, temporal changes, 

heterogeneous inter-pollutant dependency structures, and other complex characteristics.  

Advanced statistical methods can improve estimates exposures and risks, and are needed to 

develop control and management guidelines and policies.  Both extreme value distributions 

and mixture models provided excellent fits to single VOC compounds (univariate 

distributions); copulas may be the method of choice for VOC mixtures (multivariate 

distributions), especially for the highest exposures, which poorly fitted with parametric models 

and may represent the greatest risk.  Declining VOC exposures reflect the effectiveness of 

emission controls, while more rapid decreases in ambient concentrations suggests the 

importance of indoor sources, occupation, personal activities and other factors.  The 

identification of exposure determinants, including the influence of certain activities and 

environments, provides information that can be used to manage and reduce exposures.  These 

results extend our understanding of and ability to model VOC exposures.   
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CHAPTER 1 

Introduction 

 This chapter presents background information for volatile organic compound (VOC) 

exposures and the objectives of this dissertation.  Section 1.1 discusses the motivation for the 

research.  Section 1.2 presents the findings, limitations, and unsolved issues in previous 

studies related to VOC exposures.  Section 1.3 lists four specific aims in this dissertation to 

fill the research gaps.  Section 1.4 shows the organization of this dissertation.  

1.1 Motivation 

 Perhaps more so than for other air pollutants, emission sources of VOCs are numerous 

and widespread in both indoor and outdoor environments (Finlayson-Pitts and Pitts Jr 2000).  

Important outdoor sources include industrial emissions and other stationary sources, vehicles 

and other mobile sources, gasoline service stations and dry cleaners considered as area sources 

(MDE 2010; Ling et al. 2011).  Indoor sources include many building materials, cleaning 

products, cigarette smoke, adhesives, paint strippers, moth repellents, and water chlorination 

byproducts (Wallace et al. 1987; Wallace et al. 1989; ATSDR 1997a; Brown 2002; Singer et al. 

2006; Weschler 2011; US EPA 2012b).  In the U.S. and in many other countries, indoor 

concentrations of VOCs typically exceed outdoor levels (US EPA 2012b).  Moreover, most 

people spend nearly 90% of their time indoors (US EPA 1989).  For these two reasons, indoor 

exposures often constitute a large share, and often the dominant share, of VOC exposures for 

most individuals, at least for the non-occupationally exposed population.1  Decreased 

smoking rates and restrictions on tobacco smoking, for example, may have lowered indoor 

concentrations and exposures of some VOCs more than changes in outdoor concentrations.  

Studies are needed to understand how outdoor and indoor sources contribute to personal 

                                                   
1 The occupationally-exposed sector is not addressed in this dissertation.  Workplace exposures to VOCs can be 
high in many occupations, e.g., mechanics, machinists, off-set printing press workers, painters, service station 
attendants, petro-chemical industry workers.  
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exposures of air pollutants, a major motivation of the Relationships of Indoor, Outdoor, and 

Personal Air (RIOPA) study (Weisel et al. 2005a). 

 VOC exposure has been associated with a wide range of acute and chronic health effects, 

including irritation, asthma exacerbation, allergy, respiratory diseases, liver and kidney 

dysfunction, neurological impairment, and cancer (Lippy and Turner 1991; Mendell 2007; 

Rumchev et al. 2007; Kim and Bernstein 2009; US EPA 2012a, b).  Information regarding 

toxicity, drawn largely from occupational and animal studies, is available for a number of 

VOCs.  Several elements of this dissertation use the RIOPA VOC measurements with 

dose-response information, specifically, the unit risk factor (URF, also called slope factor) for 

cancer risk, and the reference concentrations (RfC) for non-cancer endpoints.2  For example, 

lifetime individual excess cancer risks are estimated by multiplying the lifetime (70 year) 

exposure by the URF specific to the VOC (US EPA 2009).  The estimated risk was compared 

to de minimis or acceptable values, which typically range from 10-6 to 10-4.  Previous work 

based on the nationally representative 1999-2000 National Health and Nutrition Examination 

Survey (NHANES) has shown that exposures of most VOCs for most persons fall below 

current guidelines designed to be protective for both acute and chronic (cancer) effects (Jia et 

al. 2008).  However, a subset of individuals experience much higher exposures that do exceed 

guidelines, e.g., the estimated lifetime cancer risk from benzene exceeded 10-4 for 10% of 

adults, and 16% of adults exceeded the same risk level for chloroform.  Information on 

these high exposures is very limited.  This topic is the focus of Sections 2.2.3 and 3.3 of this 

dissertation, which examines and model extreme values of VOC exposures. 

1.2 Literature Review 

 Emissions and ambient concentrations of VOCs.  In the U.S., emissions of many VOCs 

have declined in recent years, motivated by concerns regarding both the direct health effects of 

VOCs and their role in forming tropospheric ozone.  Emissions have been lowered by 

substituting low emitting materials and processes, using controls such as catalytic converters, 

and shifting away from manufacturing jobs where solvent use was common.  Based on the 

U.S. National Emissions Inventory (NEI), VOC emissions have been reduced by 35% from 

1990 to 2005, or 2.3% per year, mainly due to controls on industry and on-road mobile sources 
                                                   
2 This information is used to estimate risks in Sections 2.2.3.1 and 2.2.7.2, and to select mixtures for analyses in 
Section 2.2.6.2).   
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(US EPA 2010b).  These and most other estimates of emission trends primarily use empirical 

and engineering factors, not actual measurements.   

 Decreased emissions have lowered ambient concentrations.  A comprehensive review of 

air toxics data collected from 1990 to 2005 in the U.S. EPA’s Air Quality System (AQS) 

showed that median levels of benzene, toluene, ethylbenzene, styrene, xylene and 

tetrachloroethyelene (PERC) declined by about 5 to 7% per year; chloroform by 1 to 4% per 

year; and 1,4-dichlorobenzene (1,4-DCB) by 0 to 9% per year, depending on the period 

(McCarthy et al. 2007).  Benzene trends have also been examined by Fortin et al. (2005), who 

estimated an average decrease of 6.2% per year from 1993 to 2002 and 9.8% per year between 

1994 and 1999, mainly using Photochemical Assessment Monitoring Stations (PAMS) data, 

and by U.S. EPA (2003a; 2007; 2010d), which showed decreases in urban areas of 8% per year 

from 1994 to 2000, 3% per year from 2000 to 2005, and 4% per year from 1994 to 2009.  

PAMS data are collected in the warmest portion of the year (the "ozone season"), and do not 

represent annual averages.  Somewhat faster declines (9.8% per year) have been shown for 

quarterly averages of benzene in California from 1990 to 1995 (Hammond, 1998), and by data 

in the Urban Air Toxics Monitoring Program (UATMP), which has operated year-round since 

1987, and which includes several sites located near busy roadways, commercial or industrial 

facilities (US EPA 2001).  Ambient data are subject to variability from year-to-year changes in 

emissions, meteorology and sampling methodology, although long term declines across a 

number of periods are quite consistent and indicate the effectiveness of emission controls 

(McCarthy et al., 2007).  However, ambient monitoring only partially explains exposure 

trends due to the little time most individuals spent outdoors and the strength of VOC sources in 

building and commuting environments. 

 VOC monitoring and exposure assessment.  Personal measurements of pollutant 

concentrations, obtained using samplers carried by individuals, are generally believed to 

provide the data most relevant for exposure purposes.  The RIOPA and NHANES datasets 

include such measurements.  RIOPA also includes indoor (in participant homes) and 

outdoor (outside of these homes) measurements, and the VOC samples in RIOPA represent 

repeated measurements (sampled twice).  Details on the data collected in RIOPA and 

NHANES are given in Section 2.1.  



 

4 

 Exposures to pollutants can be estimated in many ways, but biomarker measurements 

often are considered the best exposure indicator since they account for multiple settings (e.g., 

indoor, outdoor and commuting environments), sources and exposure pathways (Ashley and 

Prah 1997).  In urine, concentrations of VOCs strongly correlate to indoor levels (Wang et al. 

2007).  In blood, VOC concentrations have been associated with airborne levels, smoking and 

other activities, as well as individual characteristics such as gender and body mass index (Lin 

et al. 2008).  Biomarkers have limitations, e.g., VOCs with rapid clearance (short biological 

half-lives) will reflect only recent exposures, thus observed relationships between airborne and 

biomarker concentrations depend on the variability of airborne levels, the duration of exposure 

and sampling periods, and clearance rates (Kwok and Atkinson 1995; Sexton et al. 2005; Lin et 

al. 2008).  To date, quantitative and nationally representative trends using biomarkers have 

not been reported.  Such analyses require the use of consistent methodologies, representative 

and large samples, and long study periods.  NHANES, which has collected biological 

samples over several decades, can provide a good estimate of trends in VOC exposures for 

the U.S. population.  This topic is the focus of Section 2.2.5. 

 VOC monitoring programs in the U.S. and elsewhere, including RIOPA and NHANES, 

measure only a subset of VOCs.  Monitoring often focuses on 1-ring aromatic VOCs (e.g., 

benzene, toluene, xylene), smaller aliphatic compounds (n-hexane, heptane), and a few 

chlorinated compounds, e.g., trichloroethylene (TCE) and carbon tetrachloride (CTC).  The 

RIOPA study, discussed below, includes several aromatic and chlorinated compounds, as well 

as d-limonene, α-pinene, β-pinene and methyl tert-butyl ether (MTBE).  In general, little 

information is available regarding levels of and exposures to very volatile VOCs, more polar 

compounds, and lower volatility VOCs.  This dissertation focuses only those VOCs 

measured in RIOPA and NHANES. 

 High exposures.  As noted, the highest exposures may be most significant in terms of 

their potential to cause adverse health effects.  The assumption of lognormality has been 

widely applied in the analysis of concentration and exposure data.  However, lognormal 

distributions may inadequately characterize the highest observations in a dataset.  For 

example, VOC distributions can have "heavy" right-hand tails, which clearly neither fit normal 

nor lognormal distributions (Su et al. 2012).  In these cases, parametric models will 

underestimate the highest exposures and risks. 
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 One approach to characterize such extreme values in a dataset uses extreme value theory 

(EVT), which describes the probability and magnitude of events with low probability and high 

consequence events (Lenox and Haimes 1996).  A variety of EVT models have been 

developed, including the Gumbel distribution (Gumbel 1958), the Fréchet distribution (Fisher 

and Tippett 1928), and the Weibull distribution (Weibull 1951; Ang and Tang 1975).  These 

three distributions, respectively called type I, II and III extreme value distributions, belong to 

the broad class of generalized extreme value (GEV) distributions, which use shape, location 

and scale parameters to fit the tails of a distribution (Jenkinson 1955).  EVT distributions are 

univariate models (e.g., applying to one VOC) and not full distribution models (applying only 

to a tail of the distribution).  Despite these limitations, EVT distributions have many 

applications, as described next.  

 EVT has been widely applied in engineering (McCormick 1981), finance (Embrechts et al. 

1997), and hydrology (Katz et al. 2002; Engeland et al. 2004) and other fields.  Some, but not 

many, environmental application have been published, e.g., estimating the likelihood of 

meteorological conditions (Hüsler 1983; Sneyer 1983), exceedances of thresholds relevant to 

dietary intake of pesticides and heavy metals (Tressou et al. 2004; Paulo et al. 2006), 

concentrations of metals Mn and Pb in blood (Batterman et al. 2011), deposition of pollutants 

in surface soils (Huang and Batterman 2003), and risks of leakage due to pipe corrosion (HSE 

2002).  Additional application for air pollutants include the exceedance of air quality 

standards (Surman et al. 1987; Hopke and Paatero 1994), exposures to ambient air pollutants 

(Kassomenos et al. 2010), indoor concentrations of radon (Tuia and Kanevski 2008), and VOC 

exposures in the NHANES subset mentioned earlier (Jia et al. 2008).   

 Sections 2.2.3 and 3.3 apply EVT theory to the VOC exposure data in the RIOPA dataset, 

and provide a critique of the approach.3  The analysis of extreme values is further extended in 

Sections 2.2.7 and 3.7, which uses copulas to model dependencies among mixture components.  

This analysis also looks at tail behavior, the region of the distribution that may be critical for 

health effects assessment and for which simple models and assumptions, such as the lognormal 

models discussed above, may be ill suited. 

                                                   
3 Portions of this work have recently been published: Su FC, Jia C, Batterman S. 2012. Extreme value analyses of 
VOC exposures and risks: A comparison of RIOPA and NHANES datasets. Atmospheric Environment 62: 97-106. 
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 Mixture distributions of VOC exposures.  Environmental exposures of many VOCs (and 

other pollutants) at the population level, say across the U.S., can be viewed as mixtures of 

distributions.4  A (typically small) fraction of the population experiences high concentrations 

due to specific exposure events, while a (typically large) fraction of the population encounters 

much lower concentrations (Jia et al. 2008; Batterman et al. 2011; Su et al. 2012).  For the 

lower concentrations, often measurements fall below method detection limits (MDLs).  These 

“non-detects,” which represent left-censored data, can be treated by substitution, single or 

multiple imputation, regression on order statistics (modeling using probability plots of known 

distributions to estimate summary statistics), and laboratory-generated data (using the original 

data without replacement) (Antweiler and Taylor 2008).  The extent of data below MDLs can 

significantly affect the quality of the results (Lubin et al. 2004; Antweiler and Taylor 2008).  

The statistical issues associated with analysis of data with MDL issues are well known (Taylor 

et al. 2001; Krishnamoorthy et al. 2009). 

 Due to the variation in source emissions, differences in the settings and environmental 

factors where exposures occur, and the measurement issues just noted, distributions of VOC 

concentrations can have multiple modes, heavy tails, and significant portions of data falling 

below the MDL that are replaced by a single value.  These issues, which can be encountered in 

exposure and other types of data sets, challenge standard parametric distribution models.  

While the GEV distributions discussed above can fit the upper portions of distributions, they 

do not represent the full distribution of the data.  Information on the full distributions of 

exposure levels is needed to establish exposure/risk guidelines and to estimate risks across a 

population (Su et al. 2012), to estimate health risks and uncertainty estimates, and to facilitate 

probabilistic analyses (Hammonds et al. 1994). 

 Mixtures of distributions, which extend parametric families of distributions to fit datasets 

that are not adequately fit by a single common distribution, provide a flexible and powerful 

approach of representing the distribution of a random variable (Titterington et al. 1985; 

                                                   
4 Note that mixture distributions (the subject addressed her and in more detail in Sections 2.2.4 and 3.4) are to be 
distinguished from VOC mixtures (addressed in Sections 2.2.6, 2.2.7, 3.6 and 3.7):  the former applies to the 
nature of the distribution for a particular VOC; the latter applies to a combination of VOCs collectively observed 
as an exposure or concentration in a specific environment (e.g., residence).   Some further subtleties in the 
nomenclature can arise in cumulative risk assessment, which deals with the potential toxicity of chemical or 
environmental mixtures, i.e., essentially simultaneous exposures to multiple chemicals (discussed in Section 
2.2.6). 
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McLachlan and Basford 1988; McLachlan and Peel 2000).  As examples, the finite mixture of 

normal distributions applies a set of “mixing weights” to a specified and finite number of 

component distributions, while the nonparametric Dirichlet process mixture (DPM) of normal 

distributions relaxes the need to pre-specify the number of component distributions and is 

potentially advantageous in terms of handling smoothing, modality and uncertainty (Escobar 

1994; Mueller and Quintana 2004).  Mixture of normals distributions have been extensively 

used in a variety of important and practical situations, although environmental applications 

have been very limited (Burmaster and Wilson 2000; Razzaghi and Kodell 2000; Taylor et al. 

2001; Chu et al. 2005).  This is the subject of Sections 2.2.4 and 3.4 of this dissertation. 

 Exposure assessment to VOC mixtures.  Environmental mixtures have been defined as 

the combination of two or more chemical components, regardless of the sources or the spatial 

or temporal proximity where exposures occur (US EPA 1986).  Environmental exposures 

typically involve mixtures of pollutants that occur either simultaneously or sequentially, and 

over both short and long periods.  While there is growing interest and concern regarding the 

cumulative effects of mixtures, most pollutant standards, regulations and guidelines 

historically and for the most part remain focused on single pollutants compounds rather than 

mixtures of pollutants.  There are several notable exceptions.  For example, environmental 

regulations control airborne exposures to particulate matter and diesel exhaust (US EPA 

2012a, d); occupational exposure limits exist for gasoline vapor (as well as its several of its 

components, e.g., benzene) (ACGIH 2012); and drinking water regulations collectively limit 

the four trihalomethanes (THMs) (US EPA 2013).   

 As noted earlier, if mixture components can interact or jointly contribute to adverse 

effects, then estimates of adverse effects and risks based on single compounds -- rather than 

the mixture -- may be underestimated.  Effects of mixture exposures can be directly 

assessed using empirical data from the actual mixture of concern, or estimated based on data 

collected from similar mixtures (ATSDR 2004).  However, the most common method is to 

use interaction or additive assumptions among the mixture components.  Following the 

methods recommended to analyze cumulative risks of mixtures (US EPA 2000b, 2003; 

ATSDR 2004), mixture components can be considered to have independent toxicities, 

meaning that each chemicals has a different mode of action and that the overall response is 

obtained by adding responses of each component, which is called response addition (Bliss 
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1939).  For example, cumulative risks of cancer have been estimated using response 

addition across 13 VOCs (e.g., benzene, 1,3-butadiene, chloroform, formaldehyde, styrene, 

acetaldehyde, etc), and 6 metals (chromium VI, nickel, arsenic, lead, cadmium, and beryllium) 

(Sax et al. 2006).  If mixture components have similar toxicity effects or mechanisms, then 

doses can be added, called dose addition.  An example of dose addition is the use of toxic 

equivalency factors for polycyclic aromatic hydrocarbons, which relate the relative potency 

of compounds in the mixture to a reference compound, e.g., benzo(a)pyrene, which are used 

as weights in summing doses or concentrations in an estimate of the mixture's toxicity (US 

EPA 1993).  U.S. EPA (1986) suggests that if interaction information is unavailable, then the 

additive assumption should be adopted.  Sections 2.2.7.2 and 3.7.3 in this dissertation use 

such methods. 

 The understanding and analysis of environmental mixtures can be aided by several 

additional definitions.  Three classes of mixtures have been defined (ATSDR 2004):  (1) 

generated mixtures composed of compounds which are generated concurrently from the same 

process, e.g., by-products of fuel combustion or cigarette smoke; (2) intentional mixtures 

composed of related compounds typically used to manufacture commercial products, e.g., 

gasoline; and (3) coincidental mixtures of unrelated compounds that are disposed or stored 

and reach the same target population, e.g., metals, solvents and semivolatile wastes at 

Superfund sites.  Generated and intentional mixtures may be common in some settings, for 

example, in workplaces and homes.  However, exposure to multiple air pollutants emitted 

from different outdoor sources, e.g., CO, PM2.5 and benzene from vehicles, and SO2 from 

power plants is very common and can be considered a coincidental mixture.  Risk 

evaluations sometimes define simple and complex mixtures (Feron et al. 1998).  Simple 

mixtures contain a relatively small number (< 10) of components.  Often, such mixture have 

been identified and their components well quantified, e.g., medicines and pesticides.  In 

contrast, complex mixtures include many more components, and are usually incompletely 

quantified and highly variable, e.g., gasoline vapor and tobacco smoke. 

 Dependencies in VOC mixtures and copulas.  The compositions of mixtures, including 

the relative concentrations of mixture components, can vary considerably.  Dependencies 

among components of exposure mixtures refer to the statistical relationships among the 

concentrations of each component in the mixture, and potentially to the composition of the 
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mixture.  In general, the most common indicator of dependencies between two variables uses 

correlation measures.  These include Pearson correlation coefficients (r), which assume that 

variables are normally distributed (Rodgers and Nicewander 1988), and non-parametric 

correlation measures of dependence, most commonly rank correlation measures using 

Spearman’s rho and Kendall’s tau, which are robust with respect to outliers and can describe 

some non-linear relationships.  As noted above, environmental exposures often are not 

normally distributed, but can contain extreme values and can remain right-skewed even after 

log-transformation (Jia et al. 2008).  Thus, parametric correlation measures can have 

significant limitations.  Both types of correlation measures show only pair-wise dependencies, 

e.g., not those involving three or more variables, and may not be reliable indicators in the 

presence of non-linear associations (Schmidt 2006; Staudt 2010).   

 Copulas represent a powerful technique for representing dependencies that can overcome 

shortcomings of conventional correlation measures.  Introduced in 1959 by Sklar, a copula 

represents the dependency structure of two or more variables across the entire distribution 

(Sklar 1959; Frees and Valdez 1998).  Copulas separate the dependency structure(s) from the 

variables' marginal distributions, a major advantage, and thus are unconstrained by marginal 

distributions.  While unrestricted, the choice of the marginal distributions affects the location 

and scale structure of copulas (Frees and Valdez 1998).  

 While there have been few environmental applications, copulas have been widely applied 

in the finance world, especially for derivative pricing and financial risk management, in order 

to deal with market, credit and operational risks where classical approaches to describe market 

and other fluctuations (i.e., using multivariate normal distributions) have been shown lacking 

(Cherubini et al. 2004; Jean-Frédéric et al. 2004).  As noted earlier, given that environmental 

exposures also involve non-normal distributions and extreme values (Jia et al. 2008; Su et al. 

2012), copulas could be a good tool to explore dependency structures of multivariate exposures.  

In earlier work, we showed that several types of copulas, specifically the product, Gumbel, 

Clayton, Frank and Gaussian forms, fit bivariate dependency structures of VOC exposures for 

data taken from the NHANES.  The VOCs measured in NHANES showed several types of 

marginal distributions (e.g., lognormal, Pareto and Weibull) (Jia et al. 2010).  Few other 

environmental applications have been identified.  The application of copulas to the RIOPA 

VOC dataset is addressed in Sections 2.2.7 and 3.7 of this dissertation. 
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 Determinants of VOC exposures.  The phrase determinants of disease has been defined 

as “any factor or variable that can affect the frequency with which a disease occurs in a 

population" (Putt et al. 1987).  Determinants affecting health at individual and community 

levels can be classified into three groups:  social/economic environment, the physical 

environment, and a person’s individual characteristics and behaviors (WHO 2012).  In this 

dissertation, parallels are drawn from these definitions by considering determinants of 

exposures, that is, factors affecting concentrations and exposures.  Like health determinants, 

exposure determinants can be grouped into socioeconomic factors (e.g., income level and 

socioeconomic position), factors related to the physical environment (e.g., meteorology and 

house age), and lastly into personal factors (e.g., race/ethnicity, and behavior).  While not 

entirely exclusive, these groupings provide a structure that may help the understanding and 

analysis of factors affecting exposure. 

 VOC exposures can vary tremendously among individuals.  This variation appears to be 

driven largely by house-to-house variability, as compared to seasonal, neighborhood or 

measurement variability (Jia et al. 2011).  In addition to this interpersonal or spatial 

variability, temporal variability may be large, at both short and long time scales.  Long term 

variability includes the actions taken over the past few decades that have reduced emissions of 

many VOC emissions, e.g., emission controls and process changes on both stationary and 

mobile sources (US EPA 2010b), which partially explains the decline in VOC exposures (Su et 

al. 2011).  Simultaneously, indoor VOC concentrations have fallen in many buildings, a result 

of reduced or eliminated tobacco smoking, low VOC paints, and other indoor air quality 

improvements.  Short-term variability can include effects of weather, season, personal 

activities and other factors, and relevant time frames can range from perhaps seconds to days.  

While these general effects are known, the identification of the factors causing VOC exposures, 

that is, exposure determinants, remains unclear.  This is the subject examined in Sections 2.2.9 

and 3.9 in this dissertation using the RIOPA dataset, which collected a more complete set of 

potential determinants than most or possibly all other VOC studies. 

 A review of 12 studies that examined VOC determinants is summarized in Table 1.  

(This review emphasized general, i.e., non-occupationally-exposed, populations.)  The 

number of determinants is large and includes many environmental determinants.  Elevated 

exposures have been associated with low ventilation rates and closed windows (Sexton et al. 
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2007; D'Souza et al. 2009; Riederer et al. 2009; Symanski et al. 2009; Wang et al. 2009), house 

type (apartment and mobile homes have higher benzene and chloroform levels than single 

family houses) (Riederer et al. 2009; Byun et al. 2010), fewer years lived in home or newer 

houses (associated with higher BTEX exposure (D'Souza et al. 2009), and the existence of a 

fireplace (elevated styrene exposure) (Delgado-Saborit et al. 2009).  Also, since chlorine is 

widely used as a disinfectant to treat public water supplies, households using public supplies 

often experience higher chloroform exposure than households using well water (D'Souza et al. 

2009).  In Korea, children had higher exposure to traffic-related VOCs, e.g., toluene, 

ethylbenzene, and m,p-xylene in the city with narrower streets and mixed walkways and 

driveways that increased proximity to traffic (Byun et al. 2010).   

 A modest number of personal determinants have been identified.  VOC exposure has 

been related to ethnicity, e.g., Hispanics had higher exposure to benzene, toluene, 

ethylbenzene, xylene (BTEX), MTBE, and 1,4-DCB, Blacks had higher exposure to 1,4-DCB, 

PERC and chloroform (Riederer et al. 2009; Wang et al. 2009), and Mexicans had higher 

exposure to benzene and 1,4-DCB (Wang et al. 2009).  Occupation clearly affects exposure, 

e.g., BTEX exposure has been linked to service station and vehicle repair jobs (Jo and Song 

2001), and pinene, limonene, toluene, ethylbenzene and styrene have been associated with 

cleaning jobs (Wolkoff et al. 1998).  However, effects of occupation on VOC exposures for 

the general public have rarely been observed.  Machine-related jobs have been linked to 

BTEX exposure (D'Souza et al. 2009), and time at work/school has been associated with 

benzene, ethylbenzene, xylene and PERC exposure (Wang et al. 2009). 

 VOC exposures clearly are affected by an individual's activities, as shown by many 

studies (Table 1).  As examples, smoking and environmental tobacco smoke elevates BTEX 

and styrene exposures (Wallace et al. 1989; Edwards et al. 2001; Wallace 2001; Kim et al. 2002; 

D'Souza et al. 2009; Delgado-Saborit et al. 2009), as does being near vehicles (Wallace et al. 

1989; Kim et al. 2002; Hinwood et al. 2007; Delgado-Saborit et al. 2009).  Pumping gas or 

being near gasoline increases BTEX and MTBE exposures (Hinwood et al. 2007; D'Souza et al. 

2009; Symanski et al. 2009), and living in a home with an attached garage increases exposures 

to the same gasoline-related VOCs (Sexton et al. 2007; D'Souza et al. 2009; Delgado-Saborit et 

al. 2009; Symanski et al. 2009; Wang et al. 2009).  The use of paint strippers and thinners also 

has been associated with BTEX exposure (D'Souza et al. 2009; Delgado-Saborit et al. 2009; 
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Symanski et al. 2009).  The use of gas heating and gas stoves was associated with increased 

exposure to aromatic VOCs and a gasoline additive, MTBE (Kim et al. 2002; Delgado-Saborit 

et al. 2009).  The MTBE associated with the source is unexpected and suggests confounding.  

Participation in arts and crafts hobbies increased exposure to toluene, ethylbenzene and xylene 

(Hinwood et al. 2007), while cooking increased exposure to benzene and toluene in children 

(Byun et al. 2010).  Deodorizer and mothball use increased exposure of 1,4-DCB (Wallace et 

al. 1989; Wallace 2001; D'Souza et al. 2009) and naphthalene (Batterman et al. 2012).  

Visiting a dry-cleaner or being near dry-cleaned clothes elevated PERC exposure (Wallace et al. 

1989; Wallace 2001; D'Souza et al. 2009).  Finally, contact with chlorinated water through 

drinking tap water, showering/bathing, swimming, washing dishes/clothes has been shown 

increase in exposure to chloroform (Wallace et al. 1989; Wallace 2001; Sexton et al. 2007; 

D'Souza et al. 2009).   

 Few socioeconomic determinants have been identified.  Education and income has been 

negatively associated with exposures of benzene, 1,4-DCB, PERC and chloroform (Wang et al. 

2009).  This might suggest that persons of higher socioeconomic position experience fewer 

high-exposure activities, e.g., house cleaning, reside in cleaner homes and neighborhoods (e.g., 

distant from traffic), and/or commute and work in cleaner environments.  In the NHANES 

VOC dataset, Hispanic and Black adults had higher levels of BTEX, MTBE and 1,4-DCB after 

controlling for a environmental and personal covariates, suggesting possible cultural 

differences (D'Souza et al. 2009).  In broad terms, many socioeconomic factors are expected 

to be correlated with yet to be identified environmental factors, which may be considered more 

direct determinants of concentrations or exposures.  Thus, the identification of socioeconomic 

determinants may lead to increased understanding of VOC exposures, and may raise factors 

and hypotheses that can help to explain exposures.  

 While many exposure determinants have been identified, the underlying studies have 

several limitations, the significance and applicability of the determinants are uncertain, and 

many determinants likely remain undiscovered.  First, many of the studies used small 

samples, e.g., the Birmingham study enrolled only 12 adults (Kim et al. 2002), the New York 

City study had 46 high school students (P Kinney et al. 2002), and the Minneapolis–St. Paul 

study enrolled 70 adults (Sexton et al. 2007).  Observational studies, especially 

cross-sectional studies, require large sample sizes to disentangle contributions of personal 
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activities and indoor and outdoor environments.  Second, the studies had important data 

gaps.  For example, although the NHANES sample was large (personal VOC concentrations 

measured for 646 individuals) and designed to be nationally representative (NCHS 2012b), 

outdoor and indoor concentrations, time activity, and other information was not collected.  

However, as mentioned, the RIOPA (Weisel et al. 2005a) collected outdoor, indoor and 

personal VOC measurements, along with considerable other information, and it provides a 

good opportunity to characterize determinants of VOC exposure. 

1.3. Research Objectives 

 The overall objective of this dissertation is to understand the nature and significance of 

exposures to VOCs though identifying and characterizing exposure distributions, exposure 

trends, exposures to pollutant mixtures, inter-pollutant dependencies, and exposure 

determinants.  As discussed in Section 1.1 and 1.2, this objective is motivated by gaps in our 

understanding of exposures and current needs in exposure science and risk assessment.  The 

work provides new analyses of the RIOPA and NHANES datasets with the objectives.  There 

are four main aims, each with specific hypotheses, as described below. 

 Aim 1 addresses the characterization of full and extreme value distributions, with the 

hypothesis that a combination of standard and extreme value distributions can best characterize 

the distribution of pollutant exposures.  Work included fitting univariate full distributions for 

outdoor, indoor, and personal VOC observations, fitting extreme value distributions to the 

highest 5 and 10% of measurements for each VOC, and estimating risks of extreme value 

exposures.  The results include a comparison of distributions fitting for the RIOPA and 

NHANES studies.  Additionally, mixture distribution models were developed that 

represented full distributions -- ranging from the lowest to the highest exposures.  These take 

into account values below detection limits, extreme values, and values in the middle of the 

distribution into account. 

 Aim 2 examines changes over time in VOC exposures, based on VOC measurements in 

blood from 1988 through 2004 among a nationally representative sample in NHANES.  

Long-term trends have rarely been examined.  The hypothesis is that exposures of most VOCs 

have declined over the past two decades due to product substitution and better emission 

controls. 
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 Aim 3 provides an analysis of exposure mixtures with the goal of increasing 

understanding of exposures to multiple pollutants, especially for highly exposed individuals.  

We hypothesize that copulas and other advanced techniques that represent multivariate 

exposure distributions can allow accurate and efficient modeling of mixtures, joint 

distributions and dependency structures.  This task focuses on identifying common/priority 

mixtures of different pollutants and evaluating their effects and significance.  Exposure 

mixtures were selected on the basis of emission sources and toxicity followed by estimating 

the joint distributions and dependency structures of the mixtures.   

 Aim 4 investigates exposure determinants of VOC exposures, with the goal of 

investigating effects of indoor sources (e.g., smoking, attached garages, use of moth repellents), 

time activity information (e.g., time spent in outdoors, traffic), socioeconomic, demographic, 

meteorological and other factors.  The hypotheses here are that indoor levels, environmental 

factors and personal activities can significant affect personal exposures, and that new 

relationships will be revealed using the RIOPA dataset.  Linear mixed-effect models (LMMs) 

were used to identify sources and determinants of repeatedly indoor, outdoor and personal 

measurements.  While QR models were originally proposed, we believed that linear 

mixed-effect models are more effective in identifying exposure determinants given the 

repeated measurements available in the RIOPA study. 

1.4. Organization of This Dissertation 

 This dissertation is organized into four chapters:  Chapter 1 (this chapter) summarizes 

the literature, defines specific terms, and states objectives of this research and its significance.  

Chapter 2 describes the data sources and statistical methods applied for each research aim.  

Chapter 3 presents the results and discussion for the four aims.  Chapter 4 integrates the main 

findings of each research objective, and discusses implications.  It also lists recommendations 

for further research. 

 Much of this work presented in this dissertation has been published in peer-reviewed 

journals.  Primarily related to Objective 1, extreme value analysis (see Sections 2.2.3 and 3.3) 

has been published in Atmospheric Environment in 2012 (Su FC, Jia C, Batterman S. 2012. 

Extreme value analyses of VOC exposures and risks: A comparison of RIOPA and NHANES 

datasets. Atmospheric Environment 62(0): 97-106).  In Objective 2, an analysis of VOC 
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trends (see Sections 2.2.5 and 3.5) has been published in Atmospheric Environment in 2011 (Su 

FC, Mukherjee B, Batterman S. 2011. Trends of VOC exposures among a nationally 

representative sample: Analysis of the NHANES 1988 through 2004 data sets. Atmospheric 

Environment 45(28): 4858-4867).  

 The rest of this work in the dissertation has been submitted to peer-reviewed journals.  In 

Objective 1, an analysis of mixture distributions (see Sections 2.2.4 and 3.4) has been 

submitted to Atmospheric Environment in November 2012 (Li S, Batterman S, Su FC, 

Mukherjee B. 2013. Addressing extrema and censoring in pollutant and exposure data using 

mixture of normal distributions. Atmospheric Environment).  In Objective 3, an analysis of 

VOC mixtures (see Sections 2.2.6, 2.2.7, 3.6 and 3.7) has been submitted to Environment 

International in February 2013 (Su FC, Mukherjee B, Batterman S. 2013. Modeling and 

analysis of personal exposures to VOC mixtures using copulas. Environment International).  

In Objective 4, an analysis of VOC determinants (see Sections 2.2.8, 2.2.9, 3.8 and 3.9) has 

been submitted to Environmental Research in February 2013 (Su FC, Mukherjee B, Batterman 

S. 2013. Determinants of personal, indoor and outdoor VOC concentrations: An analysis of 

the RIOPA data. Environmental Research). 
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CHAPTER 2 

Material and Methods 

 This chapter describes the materials and methods used in this research.  Section 2.1 

introduces the two main datasets used, as well as several others.  Section 2.2 describes the 

statistical approaches in the order of the four specific objectives (see Section 1.3).   

2.1 Data Sources 

2.1.1 Relationship between Indoor, Outdoor and Personal Air study 

 The RIOPA study contrasted three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA) 

that were expected to have different contributions from mobile and industrial emissions 

(Weisel et al. 2005b).  Approximately 100 non-smoking households and non-smoking adults 

and children living in households in each city were recruited and studied from summer 1999 to 

spring 2001.  Each of the household and participants was sampled twice about three months 

apart.  Outdoor, indoor and personal air samples were collected using 48-hr sampling periods.  

VOCs were collected using passive samplers (OVM3500, 3M Company, St. Paul, MN, USA) 

and analyzed by gas chromatography–mass spectrometry for 18 compounds (benzene, 

toluene, ethylbenzene, m,p-xylene, o-xylene, MTBE, styrene, 1,4-DCB, methylene chloride 

(MC), TCE, PERC, chloroform, CTC, d-limonene, α-pinene, β-pinene, 1,3-butadiene and 

chloroprene).  Data for 1,3-butadiene and chloroprene were not reported due to low recovery.  

We excluded the MC measurements due to measurement issues (inconsistent blank 

contributions) (Weisel et al. 2005b).  Styrene has higher uncertainty due to biased 

inter-laboratory consistency (Weisel et al. 2005c).  A new variable, TVOC (total volatile 

organic compounds), was defined as the sum of the remaining 15 VOCs.  MDLs ranged from 

0.21 (α-pinene and PERC) to 7.1 (toluene) µg m-3, and detection frequencies for the outdoor 

measurements ranged from 6.3 (β-pinene) to 96.8% (CTC), for indoor measurements ranged 

from 25.8 (TCE) to 95.5% (CTC), and personal measurements ranged from 22.5 (TCE) to 

96.7% (CTC) (Weisel et al. 2005b).  Measurements below the MDLs were replaced with 
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one-half of this value.  Further details of RIOPA and its design are provided elsewhere (Weisel 

et al. 2005a). 

 RIOPA participants were administered three questionnaires, from over 500 variables 

were derived.  A baseline questionnaire addressed demographics and lifestyle factors (e.g., 

ethnicity, employment, opening windows, and use of deodorizer or fresheners); a technician 

walk-through questionnaire collected neighborhood and household characteristics (e.g., 

industrial emissions in neighborhood, household air exchange rates (AERs), type of building, 

and existence of attached garage); and a third questionnaire collected time activity 

information, e.g., time spent indoors at school/work, pumping gas, bathing or showering, and 

gardening (Weisel et al. 2005a).  Geographic and meteorological information (e.g., city, 

outdoor temperature, wind speed, and relative humidity) was also obtained for each 

household. 

2.1.2 National Health and Nutrition Examination Survey 

 For biological VOC samples, data were obtained from two cohorts of NHANES III 

(1988-1991, 1991-1994), and three cohorts of "continuous NHANES" (1999/2000, 2001/2002 

and 2003/2004).  Initially, NHANES focused on health and nutrition issues and did not 

include contaminant measurements.  Participants were selected to be nationally representative 

using a stratified, multistage, probability-based sampling design, e.g., elderly and minorities 

were over-sampled.  VOCs were measured for a subsample of adults aged 20-59 years for 

each cohort studied between 1988 and 2004, with sample sizes from 605 to 1489 as shown in 

Appendices A and B, (NCHS 2000, 2010d).  To obtain nationally representative results and 

allow comparability between cohorts, each cohort used the same sampling and weighting 

scheme (NCHS 2006).  There are several differences between cohorts.  NHANES III used a 

6 year survey cycle, 81 primary sampling units (PSUs) from 1988 to 1994 (randomly divided 

into two groups for 1988-1991 and 1991-1994), and about 15,000 participants per cohort.  

Continuous NHANES used a 2 year survey cycle, 12 PSUs in 1999/2000 (3 PSUs were 

omitted due to delays in data collection), 15 PSUs in both 2001/2002 and 2003/2004 cycles, 

and approximately 10,000 participants per cohort (NCHS 2010a, 2010b, 2010c).  Thus, 

continuous NHANES encompassed fewer PSUs and obtained smaller samples, and 

consequently, standard errors may be larger than those in NHANES III (NCHS 2006).   
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 NHANES III and continuous NHANES used similar procedures to collect and analyze 

blood samples (NCHS 2000, 2011).  Participants arrived at a central location and designated 

time, and were then shepherded through four air conditioned trailers that comprised the mobile 

examination center (MEC) in visits that could require up to 4 hr (NCHS 2009).  Blood 

samples were drawn in the third trailer.  Whole blood samples were analyzed for 15 

compounds: benzene, toluene, ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, 

bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform, 1,4-DCB, 

PERC, MTBE, CTC, and TCE.  Analyses used purge-and-trap extraction or headspace 

solid-phase microextraction (SPME), and capillary gas chromatography/mass spectrometry.  

Consistent quality control and quality assurance protocols were maintained (NCHS 2010e).   

 For airborne personal VOCs, the 1999/2000 cohort of the NHANES, which included 

personal VOC measurements for 851 participants (NCHS 2012a), was used to compare with 

the RIOPA study.  The RIOPA and NHANES studies shared ten VOCs in common (benzene, 

toluene, ethylbenzene, m,p-xylene, o-xylene, MTBE, 1,4-DCB, TCE, PERC and chloroform).  

While the recruitment strategy and study purposes differed, NHANES and RIOPA used similar 

sampling methods and periods (48 to 72 hr for NHANES) as well as study periods.  In 

NHANES, four observations were deleted (two cases, participant ID = 468 and 578, that had 

excessively long sampling periods, and two cases, participant ID = 3852 and 4076, with 

extremely high concentrations of benzene, xylenes or toluene), also described by Jia et al. (Jia 

et al. 2008). 

2.1.3 Other Datasets 

 Several datasets were reviewed to derive trends in nationwide emissions and ambient 

concentrations to compare to the NHANES measurements.  Emission data were taken from 

the National-Scale Air Toxics Assessment (NATA), an ongoing program used to derive 

pollutant emissions and risks (US EPA 1996, 1999a, 2002).  Trend analyses using emission 

inventory must account for changes in inventory methods, e.g., NATA included additional 

source types in 1999 (US EPA 1999a).  We also used NATA's dispersion model predictions for 

1996, 1999 and 2002, which are based on the NATA emission data but which reflect effects of 

dispersion.  NATA significantly underpredicts concentrations of many VOCs, due to missing 

and underestimated emission sources, among other reasons (US EPA 2010a).  However, our 
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analysis stressed relative changes, which may be less sensitive to these biases.  Several 

ambient monitoring datasets were also reviewed, including the 1993 to 2004 aromatic 

concentrations in the PAMS (US EPA 2011a), the 2001 to 2004 data from UATMP (US EPA 

2001), and the 1990 to 2004 data from AQS (US EPA 2011a).  PAMS and AQS data cover or 

nearly cover the period spanned by the five NHANES cohorts.  Site annual averages from the 

AQS were downloaded and national level annual averages were calculated.  To obtain reliable 

and representative averages, only sites collecting 24-hr samples were used, each site had to 

collect at least 24 measurements per year, and at least 20 sites meeting these criteria were 

required to compute the annual average.  Trends were plotted and percent changes per year 

were calculated using simple linear regressions. 

2.2 Statistical Methods and Data Analysis 

2.2.1 Descriptive Analyses 

 The detection frequency (DF), defined as the percentage of measurements exceeding the 

MDLs, excluding missing values, was calculated for each VOC in both RIOPA and NHANES 

datasets (see Supplemental Table S1 and S2).   

2.2.1.1 RIOPA Data 

 Descriptive statistics were calculated for all VOCs, including sample size, mean, standard 

deviation (SD), geometric mean (GM), geometric standard deviation (GSD), minimum, 25th, 

50th, 75th, 95th percentiles, and maximum; these were calculated for all measurements (outdoor, 

indoor, and personal), and also stratified by city.  Spearman rank correlations were also 

calculated for the VOC variables. 

2.2.1.2 NHANES Data 

 Descriptive analyses followed the NHANES analytic guidelines (NCHS 2006) and used 

weights to account for NHANES' hierarchical clustered sampling strategy.  VOCs with very 

low (<5%) DFs across the five cohorts were excluded from further analyses.  MTBE was only 

measured in continuous NHANES, and was excluded from certain analyses.  To ensure a 

sufficient sample size, at least 300 observations per VOC per cohort were generally required.  

New variables formed to examine related groups of VOCs included BTEX (the sum of 

benzene, toluene, ethylbenzene, m,p- and o-xylene concentrations) and total THMs (ΣTHM, 
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the sum of chloroform, BDCM, DBCM and bromoform).  Spearman rank correlation 

coefficients were used to test associations among blood VOCs and among the air and blood 

measurements for the 1999/2000 cohort.  Group differences in key demographic variables 

(age, gender, race, education levels, and income) among the cohorts were tested using ANOVA 

and Chi-square tests for continuous and categorical variables, respectively. 

2.2.2 Full Distribution Fitting 

 Maximum likelihood estimates (MLEs) were used to fit the full distribution of each VOC, 

and goodness-of-fit (GOF) was examined using Anderson-Darling (A-D) tests (Haas 1997) 

with the following candidate distributions: beta general, chi-square, Erlang, exponential, 

extreme value, gamma, inverse Gaussian, logistic, log logistic, lognormal, normal, Pareto, 

Pearson type 5, Rayleigh, Student, triangular, uniform, and Weibull.  The null hypothesis for 

the A-D test is that VOC observations come from a specific distribution.  The A-D test, a 

modification of the Kolmogorov-Smirnov (K-S) test, emphasizes tail behavior (Stephens 

1974), so it is more appropriate for evaluating environmental exposure data which are usually 

right-skewed distributions.  Graphical examinations also provided insight.  For each VOC 

measurement type (outdoor, indoor, adult personal, child personal), all observations (i.e. both 

first and second visit samples) before and after log transformation were used for full 

distribution fitting.   

 Full distribution fitting for VOC observations were performed using @Risk and the 

Decision Tools for Excel (Palisade Corporation, Ithaca, NY). 

2.2.3 Extreme Value Analyses 

2.2.3.1 Risk Evaluation for Extreme Value Exposures 

 Screening-level estimates of cancer risks were estimated using standard approaches.  

The URFs for the VOCs were taken from the US EPA Integrated Risk Information System (US 

EPA 2012a), the Office of Environmental Health Hazard Assessment’s Air Toxics Hot Spots 

Program Risk Assessment Guidelines (OEHHA 2005), or EPA’s Cumulative Exposure Project 

(Caldwell et al. 1998).  Each URF and its basis are shown in Table 2, along with the reference 

concentration (RfC) and toxic endpoints.  URFs are not available for toluene, m,p-xylene, 

o-xylene, d-limonene, α-pinene and β-pinene.  The two visit measurements for each adult in 
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RIOPA were averaged as an estimate of the long-term exposure concentration.  The excess 

individual lifetime cancer risk for a specific VOC i was calculated as: 

 Ri = Ci  URFi                                                                       (1) 

where Ri = excess individual lifetime cancer risk (probability), Ci = concentration (µg m-3), and 

URFi= unit risk factor (cancer cases per µg m-3). 

 Following guidance for mixtures (US EPA 2000a), risks were calculated by response 

addition for those VOCs that cause the same toxic effect on same target organ.  In this case, 

results of eq. (1) were summed for each participant for the several chemicals in the mixture.  

Three mixtures were considered:  VOCs associated with blood cancers (lymphomas and 

leukemia), which included benzene, MTBE, 1,4-DCB, TCE and PERC; VOCs associated with 

liver and renal tumors, which included ethylbenzene, MTBE, 1,4-DCB, TCE, PERC, 

chloroform and CTC; and TVOC (Borgert et al. 2004; IARC 2012).  TVOC also serves as a 

general indicator of VOC exposure, and can be used to identify the dominant contributors to 

VOC risks.  The cumulative risk of mixture exposure was computed for each subject by 

summing the risks of components in the mixture, and extreme values of the cumulative risk 

were taken as the top 5% and top 10% of this sum over all persons. 

2.2.3.2 Gumbel Distribution Fitting 

 Gumbel distributions were first used to estimate extreme value distributions for the top 5 

and 10% of all observations and all measurement types.  The sample size for the child 

personal samples was smaller (n=209) than the other measurement types (indoor, outdoor and 

adult-person measurements had a typical n=550), thus only the top 10% of the observations 

were considered as extrema for child personal exposures.  A probability plot method was used 

to fit the Gumbel distributions as follows (Barnett 1975).  First, extrema were ranked in 

descending order.  Then, each observation was plotted against -ln[-ln(Pv)], where Pv was 

computed as: 

 Pv = (r - 0.44)/(n + 0.12)                                                             (2) 

where r = reverse rank of VOC concentrations, and n = sample size.  This method allows GOF 

to be visualized as agreement to a regression line, and quantitative agreement is noted by the 

regression's R2 statistic. 
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2.2.3.3 Generalized Extreme Value Distribution Fitting 

 To focus on health risk of the highest VOC exposures, further extreme value analyses 

were applied to personal VOC observations in RIOPA and the results were compared with the 

NHANES dataset.  A broader class of extreme value distribution, the GEV distribution 

(Jenkinson 1955), was fitted to each extrema dataset (5 and 10% cut-offs for VOC exposures).  

The GEV probability density function is expressed as: 

 fξ, µ, σ(x) = (((1+(ξ(x-µ)/σ))-1-1/ξ)/σ) exp(-(1+(ξ(x-µ)/σ))-1/ξ)  if ξ ≠ 0              (3) 

where ξ = shape parameter, µ = location parameter, σ = scale parameter, and x = data 

observation.  If ξ > 0, the GEV distribution belongs to Fréchet family; if ξ < 0, the GEV 

distribution belongs to Weibull family (Jenkinson 1955); and if ξ = 0, the GEV distribution 

belongs to the Gumbel family, which permits simplification of eq. (3): 

 f0, µ, σ(x) = ((e-(x-µ)/σ)/σ) exp(-e-(x-µ)/σ)                                                  (4) 

 The three parameters of the GEV distribution were determined by MLE, and GOF was 

examined using A-D tests with the null hypothesis that data subset comes from the GEV 

distribution.  The A-D test, a modification of the K-S test, emphasizes tail behavior (Stephens 

1974), so it is the most appropriate for evaluating extreme value distributions.  Empirical A-D 

test p-values were calculated for the repeated (bootstrap) samples in the NHANES weighted 

dataset. 

 For GEV distribution fitting, only adult personal measurements were estimated because 

they should be the most representative of exposure.  We selected adult subjects due to the 

larger sample size, namely, 544 measurements for 305 participants (299 and 245 

measurements in first and second visits, respectively, of which 239 adults had valid samples in 

both visits).  Child exposures were not used due to the smaller sample size and because 

several households included measurements from several children (only one adult was sampled 

in a household), which would cause a cluster effect.  Since risk of the long-term exposure was 

the most concerned (concentrations were too low for acute effects), the averaged 

measurements over the two visits were used.  We next identified outliers, which initially were 

defined as a value twice that of the next highest observation, and also influential observations, 

identified as observations which clearly altered statistical results.  Observations identified as 
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being both outliers and influential were excluded in subsequent analyses; these very few 

observations are noted.  The sample sizes of the final top 5% and the top 10% of observed 

concentrations were 12 and 24, respectively. 

2.2.3.4 Extreme Value Simulation 

 For further evaluation, simulated extreme value datasets (n=10,000) were generated for 

each personal adult VOC that followed the fitted GEV, Gumbel and lognormal distributions.  

Because lognormal distributions are commonly employed for exposure data, these 

distributions were fit to the full datasets by MLE, and the evaluation focused on extrema, again 

defined as the top 5% and top 10% of the full distribution.  Simulated datasets were generated 

for the GEV and Gumbel distributions that matched the top 5% and top 10% of observations.  

Simulated data (n=10,000) were also generated for the lognormal distributions that matched 

the full distribution of observations.  The simulated data were then compared to observations 

using K-S tests and graphical analyses, and p-values were estimated.  Finally, in a risk 

assessment-oriented application, we compared the fraction of persons with cancer risks 

exceeding 10-6, 10-5, 10-4, 10-3, and 10-2 cut-offs for the three sets of distributions to observed 

fractions.  These analyses were conducted for both individual VOCs and mixtures.   

 Distribution fitting, simulations of GEV, Gumbel and lognormal distribution used gev, 

rgev, rgumbel, fitdistr and rlnorm in R version 2.13.1 (R Development Core Team, Vienna, 

Austria) and Excel (Microsoft, Redmond, WA). 

2.2.4 Mixture of Normal Distribution Fitting 

 Three VOCs (chloroform, 1,4-DCB and styrene) were selected to evaluate mixture 

distributions.  These VOCs differ in terms of their distributions, detection frequencies and 

other properties.  Personal samples for adults were selected, primarily because the sample size 

for the adult cohort (n = 544 for each VOC) was largest, and because the personal samples 

should best reflect exposure.  The two laboratories used to analyze samples had different 

MDLs.  Since the use of two laboratories is somewhat unusual, all data under MDLs were 

replaced with a single value using 0.5 × the higher MDL.  Because the VOC data in RIOPA 

had many extreme values (Su et al. 2012), the density estimation methods were implemented 

using logarithms of the concentration value, as described next. 
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2.2.4.1 Finite Mixture of Normal Distributions 

 Finite mixture distributions are commonly used to identify and model sub-populations 

within an overall population.  Rather than identifying the sub-population that an individual 

observation belongs to, these models assume that the observed data randomly arise from 

distributions with certain probabilities.  Let  Y = (Yଵ, … , Y௡) be a random sample of size n 

from the overall population with the probability density function of Y௜ given as f(y௜).  Y is 

assumed to have arisen from a mixture of an initially specified number of distributions.  A 

K-component mixture of distributions supposes that the density of Y௜ can be written as 

 f(y௜) = ∑ λ௞f௞(y௜)௄
௞ୀଵ                                                                 (5) 

where f௞  is the component density of the k-th cluster, and λ௞  is the corresponding weight 

with the constraint that 0 ≤ λ௞ ≤ 1 and ∑ λ௞
௄
௞ୀଵ = 1. In many applications, component 

densities f௞  are assumed to be standard parametric families, such as normal distribution 

ܰ(μ௞, ௞ߪ
ଶ), then 

 f(y௜) = ∑ λ௞ܰ൫μ௞ ,  σ௞
ଶ൯௄

௞ୀଵ                                                           (6) 

 The finite mixture of normals represented by (6) is a potential choice for handling 

concentration and exposure data that can have multiple modes and heavy tails.  Such normal 

mixtures are popular choices with attractive properties (Titterington et al. 1985).  Since the 

mixtures are constructed as a linear combination of normal distributions, they are 

computationally and analytically tractable, well behaved in the limiting case, and scalable to 

higher dimensions. 

 Mixture distributions can be fitted using many techniques, e.g., graphical methods, the 

method of moments, MLE and Bayesian approaches (Redner and Walker 1984; Titterington et 

al. 1985; McLachlan and Peel 2000).  Since closed forms of MLEs of (5) are not available, 

mixture distributions are commonly fitted using expectation maximization (EM) type 

algorithms (Dempster et al. 1977; Meng and Pedlow 1992; McLachlan and Krishnan 1997).  

We used the EM algorithm and considered a constrained maximum likelihood method to 

estimate (6) with a further constraint that the location of the first cluster (generally the lowest) 

is under the MDL, i.e., μଵ ≤ MDL. This constraint ensures that a fitted cluster covers the 

MDL, which allows it to be interpreted as the subpopulation of the data below the MDL.  
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 An important issue in fitting finite mixture distributions is selection of the number of 

components K.  Criteria based on penalized likelihood, such as the Akaike information 

criterion (AIC), have been applied successfully to mixture distributions (McLachlan and Peel 

2000).  While this criterion generally favors larger K, there is considerable practical support 

for its use due to simplicity (Fraley and Raftery 1998).  The Bayesian information criterion 

(BIC) appears attractive due to their statistical properties as well as the simplicity of 

implementation.  Though the BIC always leads to a smaller (or equal) number of components 

than AIC, the BIC can also lead to an overestimate of the number of clusters regardless the 

clusters’ separation (Biernacki et al. 2000).  In general, with limited amount of data, a 

corrected version of AIC such as AICc (Hurvich and Tsai 1989) may be preferable.  For these 

finite mixture distributions, we fitted model (6) with K=2 to 5 clusters, and selected the 

optimal model based on AICc.  This analysis was conducted for each of the three VOCs. 

 As a benchmark for comparison, we also fitted the traditional normal distribution, which 

is a special case of mixture of normals with K=1.  (As noted earlier, log-transformed VOC 

data were used in all cases.)  

 The finite mixture of normals were implemented using the mixtools package (Benaglia et 

al. 2009) in R (R Foundation for Statistical Computing, Vienna, Austria).  This package fits 

the finite mixture of normals using EM algorithms through the function normalmixEM.   

2.2.4.2 Dirichlet Process Mixture of Normal Distributions 

 Bayesian density estimation methods using Dirichlet process mixture (DPM) of normal 

densities have several practical advantages, including optimally trading off local versus global 

smoothing, assessing modality, and propagating uncertainty on inferences regarding the 

number of components and thus uncertainty about the density estimate (Ferguson 1983; 

Escobar 1994; Mueller and Quintana 2004).  Instead of pre-specifying the number of clusters, 

these models allow the number of clusters to be chosen in a data-adaptive way.  Let Y୧ ~ N൫μ୧,

௜ߪ
ଶ൯ and let (μ୧, ௜ߪ

ଶ) = θ୧.  The DPM of normal distributions assumes that these normal 

parameters θ୧ follow a random distribution G generated from Dirichlet process (Ferguson 

1973), which can be represented as: 

 θ୧ | G ∽ G i.i.d.  and  G | α, G଴ ∽ DP(α G଴)                                    (7) 
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DP(α G଴) is a Dirichlet process with concentration parameter α and base distribution ܩ଴, 

which is also known as the prior expectation of G.  The precision parameter α determines the 

concentration of the prior for G around ܩ଴. Blackwell and Macqueen provided the following 

representation for the leave-one-out conditional distributions (Blackwell and MacQueen 

1973): 

 θ୧ | θଵ, … , θ୧ିଵ, θ୧ାଵ, … , θ୬, ∽  ఈ
௡ିଵାఈ

଴ܩ +  ଵ
௡ିଵାఈ

∑ θౠܫ
௡
௝ஷ௜ (∙)                   (8) 

In this approach, θ = (θଵ, … , θ୬) will be reduced to certain K distinct values (K < ݊) with 

positive probability.  From (8), two well-known extreme cases of the DPM can be derived.  

As ߙ → ∞, the DPM reduces to a parametric model, namely θ୧ ∽  G଴ independent and 

identically distributed (n clusters), whereas ߙ → 0 implies a common parametric model, 

namely θଵ = ⋯ = θ୬=θ∗ with θ∗ ∽  G଴ (1 cluster).  The baseline distribution G଴ is chosen 

to be the conjugate normal-inverse-gamma distribution.  Hyperpriors could be used on this 

normal-inverse-gamma distribution to complete the model specification. 

 The DPM of normals does not require specification of the number of clusters as needed 

for parametric mixture distributions, such as the finite mixture of normals discussed previously.  

In practice, suitable values of K will typically be small relative to the sample size n.  The 

implicit prior distribution on K is stochastically increasing with α and is related to the prior 

distribution on ߙ (Antoniak 1974).  For moderately large n, E(K |ߙ, n) ≈ log (1 ߙ + n/ߙ) 

(Antoniak 1974).  A formal assessment of uncertainty regarding the number of components K 

can be obtained through generated draws from the posterior distribution of K as a part of the 

Bayesian computation scheme. 

 For the VOC data, the precision parameter α was chosen to follow a Gamma prior 

distribution, and a sensitivity analysis was conducted with respect to choice of the Gamma 

parameters.  Given the sample size in the test dataset (n=544), for prior information, 

α ~ Gamma(0.3, 0.4) favors K=1-3 clusters; α ~ Gamma(1.2, 2.5) favors 1-5 clusters; 

α ~ Gamma(2, 1.5) favors 2-10 clusters; and α ~ Gamma(5, 2) favors 5-20 clusters.  A 

sensitivity analysis was conducted on these prior specifications. 

 Computational methods were followed that allowed the evaluation of posterior 

distributions for all model parameters and the number of components, and also the resulting 
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predictive distributions (Escobar and West 1995).  Density estimation using DPM was 

implemented using the DP package (Jara 2007; Jara et al. 2011) in R (R Foundation for 

Statistical Computing, Vienna, Austria), which provides posterior draws of all model 

parameters under a DPM using Markov chain Monte Carlo methods. 

2.2.4.3 Goodness of fit Criteria 

 Goodness of fit for the density estimation methods was determined by comparing the 

estimated cumulative distribution function (CDF) ܨ෠௘௦௧ to the empirical CDF ܨ෠௘௠௣ based on 

the observed data.  Although all observed/generated data were used to estimate the CDF by 

each method, goodness of fit was evaluated using only the data above the MDL. Both the 

mean squared error (MSE = ∑ ෠௘௠௣(y௜)ܨ] − ෠௘௦௧(y௜)]ଶܨ
௜,୷೔வெ஽௅ / ∑ I(y௜ > ௜(ܮܦܯ ), and the 

mean absolute error MAE = ∑ ෠௘௠௣(y௜)ܨ| − ෠௘௦௧ (y௜)|௜,୷೔வெ஽௅ܨ / ∑ I(y௜ > ௜(ܮܦܯ  were 

considered.  The estimated proportion of observations above the MDL, which is often 

termed the detection frequency, for empirical and estimated distributions was compared. 

2.2.4.4 Simulation Study 

 For further evaluation of the mixture distributions, several forms of underlying true 

distributions and varying amounts of left censored data (below MDL) were considered as true 

generation models.  Three methods were compared:  a single normal distribution; a finite 

mixture of normals; and DPM of normals.  Two underlying distributions with features similar 

to the three VOC samples from the RIOPA study were selected:  a normal(0, 2ଶ) and a 

mixture specified as   1/2  Gamma(3, 1.5) + 1/2  Uniform(−3, 8).  The former is 

symmetric and the latter is right-skewed with heavy tails, and both have multiple modes 

when data under MDL were replaced by 0.5 MDL.  The proportion of data below the MDL, 

P଴, was set to 15%, 30% and 50% in separate simulations.  Goodness of fit measures (MSE 

and MAE described above) were calculated for each method, target distribution, and choice 

of P଴.  A dataset of size n=1000 was generated for each simulation under each setting. The 

average values of MSE and MAE across 500 simulations are reported. 

 For the finite mixture of normals, the number of components K was based on the smallest 

AICc.  A convergence problem was encountered when P଴ was high (in the range of 30 to 

50%), possibly because the censored data were set to a single value (0.5 MDL), which resulted 
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in a very small variance of the first (lowest) cluster.  Additionally, the MLE method for finite 

mixture models is susceptible to other problems, e.g., nonunique solutions (Redner and Walker 

1984; Titterington et al. 1985; McLachlan and Peel 2000). Thus, data below the MDL was 

replaced by uniformly generated pseudo-data from U(0, MDL) if the finite mixture of normals 

did not converge.  In contrast, all of the single normal and DPM method simulations 

converged. 

2.2.5 Trend Analyses of VOC Exposures 

 Concentration trends were examined using quantile regression (QR) models, which 

estimate changes in conditional quantiles of a response variable with changes in VOC levels 

(Koenker and Bassett 1978).  This semiparametric method makes no parametric distribution 

assumptions for random errors.  Model coefficients are estimated by optimizing an objective 

function and the accompanying standard errors are derived using either parametric 

assumptions on the model coefficients or via resampling techniques, e.g., bootstrap analysis 

(Cade and Noon 2003).  Compared to ordinary regression models, QR models are more robust, 

e.g., resistant to effects of outliers, a special concern for skewed distributions, which have been 

observed even after log-transformation of VOC data, following the NHANES guidelines (Jia 

et al. 2008; NCHS 2010g).  Moreover, QR models indicate changes at different quantiles, e.g., 

allowing comparison of trends at median and upper percentiles, and exploration of exposure 

patterns.  Linear QR models were fitted for 0.5, 0.75 and 0.95 quantiles (50th, 75th and 95th 

percentile concentrations).  In a sensitivity analysis to allow changes in trend over the long 

interval (1994-1999) between the NHANES III and continuous NHANES cohorts, piecewise 

QR models were used with knots (locations where the slope changes) at several locations (e.g., 

1991-1994, 1999/2000).   

 To facilitate interpretation, annual average percentage changes in untransformed (raw) 

concentrations were computed for each VOC and quantile, e.g., the change across the 15 year 

study period is 1/15 (C5 - C1)/C1 100%, where C1 and C5 are concentrations for a specific VOC 

and quantile in the first and fifth cohorts, respectively.  Annual relative changes were 

calculated similarly for emissions and ambient concentrations.  

 Cigarette smoking is an important source of benzene and other aromatic compounds (L 

Wallace et al. 1987), and cotinine is a reliable biomarker of tobacco smoke (Benowitz 1999).  
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Correlations between serum cotinine levels and blood VOCs were determined, and the QR 

models were adjusted for this parameter.  

 Results of trend analyses might be affected by shifts in the occupational mix, e.g., the 

declining number of workers in industries where solvent use may be common.  To account for 

such effects, we identified occupational groups associated with VOC concentrations, and 

adjusted QR models using indicator variables for these groups.  Because many of the 41 

occupational groups in NHANES had small sample numbers, groups were consolidated into 

eight categories (managerial and professional specialty occupations; professional specialty 

occupations; technical, sales and administrative support occupations; service occupations; 

farming, forestry and fishing occupations; precision production, craft, and repair occupations; 

operators, fabricators, and laborers; military occupations) based on 1990 Census Industrial & 

Occupational Classification Codes.  Due to the small number of military personnel (n = 7), 

this category was dropped.  ANOVAs were used to test whether VOC levels were associated 

with these occupational categories, using the managerial and professional specialty category as 

a reference group.   

 While the QR models used cohort-specific weights to obtain population-weighted results, 

these models cannot account for NHANES' cluster sampling.  As a sensitivity analysis to 

evaluate the effect of clustering, trends in the mean were estimated using linear and piecewise 

models with the appropriate weights, and compared to regression results with and without 

adjustments for strata and clusters.  

 SAS 9.2 (SAS Institute, Cary, North Carolina, USA) was used for statistical testing and 

model development.  Weighted analyses used Surveymeans and Surveyreg, and QRs used 

Quantreg.  Other analyses were calculated using Excel (Microsoft, Redmond, WA). 

2.2.6 Identification of Mixtures 

2.2.6.1 Positive Matrix Factorization Analyses 

 VOC mixtures in the RIOPA dataset were selected using two approaches.  The first 

approach identified common VOC mixtures using positive matrix factorization (PMF), a 

multivariate analysis that is similar to factor analysis, but with the ability to incorporate 

uncertainties on each measurement that potentially reflect sampling errors and MDLs (Paatero 
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and Tapper 1994; Anderson et al. 2001).  Based on the uncertainty, variables are modeled as 

weak or strong, i.e., variables with high uncertainties are assigned weak influence, and 

variables with low uncertainties are assigned strong influence).  Each VOC was given an 

uncertainty equal to the measurement precision estimated as the pooled coefficient of variation 

for duplicate samples (Weisel et al. 2005c).  Styrene and TVOC were designated as “weak” 

given its higher uncertainty.  Measurements below MDLs were retained, but assigned large 

uncertainties to reduce their influence (US EPA 2008a).   

 PMF decomposes two matrices from the sample data:  a matrix of factor profiles, which 

represent the mass and percentage of each species apportioned to the factor, and a matrix of 

factor relative contributions, which gives the contribution of each factor to the total 

concentration of each observation (US EPA 2008a).  Because there is no optimal or a prior 

manner for selecting the number of factors, multiple PMF analyses were conducted using with 

3, 4 and 5 factors.  Each was tested using GOF indicators, specifically, scaled residuals and 

Q values.  The latter is the sum of squares of the residuals divided by the uncertainties for the 

concentrations of individual compounds (Anderson et al. 2001; US EPA 2008a).   

 To address seasonal variation, non-averaged VOC observations were grouped into warm 

(April to September) and cold (October to March) seasons, and PMF analyses were run 

separately for all groups.  PMF analyses were run in various groups, and the final group 

(presented in this dissertation) separated indoor VOCs; outdoor VOCs, and combined adult 

and child personal VOCs.  The logic for this arrangement was that different emission 

sources would dominate indoor, outdoor and personal measurements, although the same 

source types would affect personal measurements of adults and children, but in different 

amounts.  Combining child and adult groups also increased sample size.  Apportionments 

for adults and children could be separated after the analysis in order to resolve differences, 

e.g., children would not be expected to have occupational exposures.  In addition, to avoid 

potential biases involved in repeated measurements (i.e., cluster effects) in further analysis 

(e.g., copula analysis), PMF analysis applied to the personal adult measurements collected at 

the first visit.  The PMF analyses used PMF 3.0, a peer-reviewed receptor modeling tool 

developed by the Environmental Protection Agency's Office of Research and Development 

(US EPA 2008a).   
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 To help understand the personal, behavioral and environmental variables associated with 

high exposure mixtures, a limited analysis using bivariate logistic regression models was 

undertaken.  VOC mixtures identified using PMF were divided into high and low groups, 

using a cutoff of the 75th percentile of the mixture's total concentration (sum of each 

component).  Candidate variables for the logistic regressions, based on earlier work that 

identified determinants of VOC exposure (Su et al. 2013), included city, ethnicity, 

employment status, the presence of attached garage, self-service pumping gas, open doors or 

windows, other family members taking showers, the use of fresheners, and household AERs.  

The logistic regression models used proc logistic in SAS 9.2 (SAS Institute, Cary, North 

Carolina, USA).  

2.2.6.2 Toxicological Mode of Action 

 The second approach for selecting exposure mixtures used the toxicological mode of 

action, which considers the biochemical pathways and outcomes that may be affected by 

pollutant exposure (Borgert et al. 2004).  Two mixtures were considered that had common 

cancer endpoints:  (1) VOCs associated with hematopoietic cancers (lymphomas and 

leukemia), which include benzene, MTBE, 1,4-DCB, TCE and PERC; and (2) VOCs 

associated with liver and renal tumors, which include ethylbenzene, MTBE, 1,4-DCB, TCE, 

PERC, chloroform and CTC (Borgert et al. 2004; IARC 2011).  The two mode of action 

mixtures contained 5 and 7 components, respectively.  It should be noted that selecting a 

mixture based on mode of action is a completely different approach from those determined 

using PMF or other correlation-based measures, which are driven exclusively by the pattern of 

occurrence.   

 To reduce the number and complexity of analyses in mixtures containing a larger number 

of components, highly correlated VOCs were grouped together based on their likely emission 

sources or chemical characteristics.  For example, the seven VOCs in the mixture associated 

with liver and renal tumors were trimmed to a group of gasoline-related compounds 

(ethylbenzene and MTBE), and chlorinated hydrocarbons (1,4-DCB, TCE, PERC, chloroform 

and CTC).  The analysis then proceeded with these groups. 

2.2.7 Dependency Structures of Mixtures 

2.2.7.1 Copula Analysis 
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 Dependency structures of the identified mixtures (using personal adult measurements at 

the first visits) were fitted to copulas using MLEs and five candidate copulas (Gaussian, t, 

Gumbel, Clayton, and Frank).  GOF tests were conducted using Akaike and Bayesian 

information criterion, and the copula with the lowest criterion was chosen as the best-fit 

dependency structure.  Copulas transform the marginal distributions of each variable into a 

uniform distribution over the interval [0,1].  After this transformation, the dependency 

structure is described following reference distributions.  Once the dependency structure and 

marginal distributions are known (or estimated), the joint distribution function is: 

 C(u1, u2, …, up) = Prob(U1 ≤ u1, U2 ≤ u2, …, Up ≤ up)                                  (9) 

where C is a copula function, Ui, i=1,..p are uniformly transformed random variables 

corresponding to the marginal distribution functions Fi(xi), and p is the number of variables.  

The joint distribution function can also be expressed as:  

 C[F1(x1), F2(x2), …, Fp(xp) ] = F(x1, x2, …, xp)                                       (10) 

According to Sklar’s theorem (1959), if Fi is continuous and xi is over [-∞, ∞], then C is 

unique. 

 Copulas allow dependency structures to be weighted in different manners, and thus can be 

symmetric or asymmetric (Staudt 2010).  The several families and many types of copulas 

have different origins and properties.  The family of elliptical copulas is derived from 

distributions, e.g., the Gaussian copula is from the multivariate normal distribution, and the t 

copula from the multivariate Student t distribution.  Given the same correlation coefficient, t 

copulas provide a better fit to distributions that include extreme values than Gaussian copulas, 

i.e., the t copula more accurately models tail dependencies (Schmidt 2006).  Among 

Archimedean copulas, which are stated directly and not derived from distributions, Gumbel 

copulas emphasize upper tail dependency, Clayton copulas emphasize lower tail dependency, 

while Frank copulas have no emphasis on tail dependency, i.e., symmetrical dependencies on 

both tails (Schmidt 2006).  The product copula, the simplest copula, indicates independence 

between random variables (Trivedi and Zimmer 2007).   

 After choosing the best-fit copulas, we generated two sets of objects necessary for 

simulating joint distributions (discussed in the next section), namely, uniform [0,1] random 
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variables for each component of the mixture that followed the copula-identifying correlations, 

and copula parameters that were estimated using MLE.  The Gaussian copula parameter was 

the covariance matrix.  The t copula used the same matrix plus the number of degrees of 

freedom.  The Gumbel, Clayton and Frank copulas each used a correlation parameter. 

2.2.7.2 Simulated Joint Distributions 

 Simulations tested the GOF of the fitted copulas.  These used the uniform random 

variables and fitted parameters for each copula (described above), as well as marginal 

distributions fitted for each VOC.  A large number (n = 1,000) of pseudo-observations were 

generated for each mixture.  Using the pseudo-observations, the probabilities that all 

components in the mixture exceeded 50th, 75th, 90th and 95th percentile cutoffs were 

calculated and compared to observations.  For comparison, we also calculated probability 

assuming independence among mixture components, e.g., the probability of a three 

component mixture in which each component exceeded the 90th percentile concentration is 

0.001 (p = 0.13).  Because styrene and TCE had low detection frequencies (49 and 31%, 

respectively), probabilities that all mixture components exceeded the 50th percentile cannot be 

calculated.   

 To examine the influence of each mixture component and any trends that might be 

associated with concentration, mixture fractions, which were defined as a component’s 

fractional contribution to the total concentration of the mixture, were calculated for both 

observed and simulated data, and results were summarized using the median fraction in 

several bins (50 - 75th, 75 - 90th, 90 - 95th, 95 - 100th percentile) for each mixture.  Changes 

in the mixture fraction associated with the total mixture concentration show trends and help 

reveal the mixture's source, e.g., fractions for generated or intentional mixtures should be 

constant.  Mixtures with consistent mixture fractions across a population or over time are 

considered "homogeneous," and may represent generated mixtures.  In contrast, highly 

variable or "heterogeneous" mixture fractions may reflect coincidental mixtures. 

 For VOC mixtures based on mode of action, cumulative cancer risks were estimated 

assuming response addition following EPA guidance (US EPA 2000a).  We also computed 

the fraction of individuals with cumulative risks exceeding thresholds of 10-6, 10-5, 10-4, 10-3 

and 10-2, and compared results obtained using the observations, copula simulations, and 
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multivariate lognormal distributions using the observed means and variance/covariance matrix.  

Cumulative probability plots were used to visualize differences between observations and 

simulations. 

 Copula fitting and simulations were performed using ModelRisk 5 Industrial edition 

(Vose Software BVBA, Gent, Belgium).  Simulations of multivariate lognormal distributions 

used RLNORM.RPLUS in R version 2.13.1 (R Development Core Team, Vienna, Austria) and 

Excel (Microsoft, Redmond, WA). 

2.2.8 Time and Exposure Fractions 

 The sampling time and time spent in different locations (outdoors in neighborhood, 

outdoors out of neighborhood, indoors at home, indoors at school/work, other indoors, 

transportation, and unknown) were calculated for each participant.  Participants who had 

missing-time fractions Ft,miss, exceeding 0.25 (n = 50), were excluded.  The mixing time 

fraction was calculated as:  

 Ft,miss = (Ttotal - Toutdoor - Tindoor - Ttransit)/Ttotal                                         (11) 

where Ttotal = total time spent (min), Toutdoor = time spent outdoors (min), Tindoor = time spent 

indoors (min), and Ttransit = time spent in transit (min). 

 An individual's total, cumulative or potential exposure is often represented as the sum of 

the concentration-time product across all compartments or microenvironments in a given time 

period.  From the RIOPA dataset, the fraction of exposure attributable to the outdoor 

microenvironments was calculated for each participant as 

 Foutdoor = (Coutdoor Tneighborhood)/(Cpersonal Ttotal)                                         (12) 

where Foutdoor = fraction of personal exposure originating outdoors in participant's 

neighborhood, Coutdoor = residential outdoor VOC concentration (µg m-3), Tneighborhood = time 

spent outdoors in neighborhood (min), and Cpersonal = personal VOC exposure (µg m-3).  

Similarly, the indoor exposure fraction is 

 Fhome = (Chome Thome)/(Cpersonal Ttotal)                                                 (13) 

where Fhome = fraction of personal exposure originating indoors at home for each VOC, Chome = 

indoor VOC concentration (µg m-3) at home, and Thome = time (min) spent indoors at home.  
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These exposure fractions, which consider only two types of locations (indoors and outdoors), 

were computed for each VOC and participant.  They assume that VOC measurements were 

representative of the location and error-free, and that the time-activity data were complete 

(Ft,miss = 0) and error-free.   

 With the (strong) assumptions just stated,  

 1 = Foutdoor + Findoor + Fother                                                         (14) 

where Fother = is the exposure fraction in all other compartments, e.g., commuting and 

workplace.  If some time is unaccounted for (e.g.,Ft,miss>0), then Foutdoor + Fhome < 1.  As 

discussed later, Foutdoor was generally very small.  However, Findoor >1 for 11 to 20% of the 

observations (n= 52 to 98, depending on the VOC), Fhome >1.25 for 5 to 11% of the data (n= 

25 to 53), and Fhome >1.5 for 2 to 8% of the observations (n= 11 to 39).  Clearly, these cases 

did not satisfy the assumptions stated, i.e., the indoor time-concentration product exceeded 

the total personal exposure.  Violation of any of the assumptions could cause such results.  

Considering the VOC measurement errors alone, most sampling programs set performance 

criteria at about 25%, and it is reasonable that roughly 10% of the measurements had greater 

errors.  Given the importance of the indoor environment to VOC exposure, sampling error 

alone might explain a good fraction of the divergence from the assumptions.  While cases 

where Fhome >1 might be excluded, it seems likely that indoor exposure was important and 

dominant, and thus might be reasonable to assume that Findoor ≈ 1 and Foutdoor ≈ 0 in such cases.  

In the following analysis, we excluded Fhome > 1.25.   

 A second approach to apportion exposures to measure residual compartments might 

estimate the total exposure Etotal (µg m-3 min) as: 

 Etotal ≈ Coutdoor Toutdoor + Cindoor Tindoor + Cother Tother                                    (15) 

and then use this approximate value (rather than Cpersonal Ttotal) as the denominator in eqs. (12) 

and (13).  This remains an approximate and downward-biased estimate since Cother was not 

measured, however, if the Cother Tother product is small, errors should be small, moreover, all 

fractions are sure to be less than 1.  Fhome calculated using eq. (15) was very near one, e.g., 

means and medians ranged from 0.96 to 1 for all VOCs, and the 75th percentile exposure 

fractions were 1 for all VOCs, again showing the dominance of indoor exposures.  Thus, the 
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former method (eq. 13) was used. 

 Exposure fractions were stratified by city and by warm (May to October) and cool 

(November to April) seasons.  The significance of differences was evaluated using 

Kruskal-Wallis (K-W) tests.  

2.2.9 Identification of Determinants 

2.2.9.1 Variable Selection 

 As an initial step to identify possible exposure determinants, each of the 527 RIOPA 

variables was used in univariate regression models with outdoor, indoor and personal VOC 

measurements as dependent variables.  These models used six VOCs (benzene, toluene, 

MTBE, 1,4-DCB, PERC and chloroform), which were selected to represent a range of VOCs 

and potential emission sources.  Next, variables that attained statistical significance (p < 

0.05) were used in forward stepwise multivariate regression models with selection based on 

the Schwarz Bayesian Information Criterion.  While this reduced the number of variables, 

the resulting parameter estimates are approximate since these models do not account for 

possible correlations due to clustering and nesting, e.g., two seasonal samples for most 

participants. 

2.2.9.2 Linear Mixed-Effect Models 

 LMMs that incorporated fixed and random effects and repeated measures (Krueger and 

Tian 2004) were estimated for outdoor, indoor and personal measurements using the 

variables selected by the stepwise models.  These models also incorporated several 

variables with strong theoretical support or of special interest (e.g., city, ethnicity, and presence 

of an attached garage).  Two-way interactions among variables were evaluated.  However, 

few significant interactions between determinants of VOC exposures were found.  Thus, 

interaction terms were not retained in the final models.  Using log-transformed VOC 

concentrations, random intercepts, nested effects for city, and interactions, the LMMs are 

expressed as: 

 log(Cti) = (β0 + b0i) + β1 Visitt + β2 City +… + βn Xn + εti                       (16) 

where Cti = VOC concentration (µg m-3) at time t for individual i, β = model coefficients for 

fixed effects, b = random deviation from the overall fixed effects, Visitt = sample collected at 
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time t, X = other covariates, and εti = random error of the VOC concentrations from the 

predicted line at time t for individual i.  Since the LMMs used log-transformed VOCs, the 

effect size for each explanatory variable was calculated as follows, 

 Effect size = e(β U)                                                                   (17) 

where e = exponential, U = 1 for categorical variables, and U = interquartile range (IQR) for 

continuous variables. 

 To maintain a sufficient sample size, variables with fewer than 400 observations were not 

included in the final LMMs.  Separate LMMs were developed for the 15 VOCs, and grouped 

into three categories based on common determinants:  gasoline-related VOCs (BTEX, 

MTBE and styrene); odorant and cleaning-related VOCs (1,4-DCB, chloroform, d-limonene, 

α-pinene and β-pinene); and dry-cleaning and industry-related VOCs (TCE, PERC and 

CTC).   

2.2.9.3 Model Assessment 

 Steps taken to help verify model results included the following:  Partial residual plots 

were examined to assess linearity and fit of continuous variables, e.g., wind speed and 

household AERs.  Transformations (e.g., log-transformation or reciprocal) were tested for 

variables showing non-linear relationships.  Because the reduction in residual variance (R2) 

attributable to fixed effect variables cannot be directly obtained from the SAS procedure, R2 

was estimated as: 

 R2 = (ߪ௜௡௧
ଶ ௙௨௟௟ߪ -

ଶ ௜௡௧ߪ/ (
ଶ                                                  (18) 

where ߪ௜௡௧
ଶ  = variance of the intercept only model, and ߪ௙௨௟௟

ଶ  = variance of full model.  

Here, R2 indicates the difference of variance between reduced (i.e., intercept-only) and full 

(i.e., with predictor variables) models. 

2.2.9.4 Missing Data 

 Candidate variables in the LMMs typically had 50 to 100 missing observations.  The 

effect of missing data was evaluated using multiple imputation (MI), and results were 

compared to the original dataset (with missing data).  Three models for each sample type were 

selected for this comparison:  models with the least missing data (e.g., 3% missing for 
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personal measurements of styrene), models with a modest amount of missing data (e.g., 20% 

missing for benzene), and models with a high amount of missing data (e.g., 28% missing for 

d-limonene).  Differences between the original and MI datasets were computed as the relative 

change in model estimates of β.  The results of this comparison (Supplemental Tables S3 to S5) 

demonstrated that while models using imputed data tended to have smaller (more statistically 

significant) p-values, changes were not large.  Also, the model parameters themselves did not 

show obvious biases.  Differences tended to increase with the fraction of missing data, 

although changes were generally small, and among the nine models tested, only one (outdoor 

benzene) had three parameters change by more than 30%.  Because missing data did not 

greatly affect the LMM results, subsequent results do not use MI. 

 Most analyses used SAS 9.2 (SAS Institute, Cary, North Carolina, USA).  Variable 

selection used proc glmselect, LMMs used proc mixed, and MI analyses used proc mi and proc 

mianalyze.  Partial residual plots were drawn in R version 2.13.1 (R Development Core Team, 

Vienna, Austria).  Relative changes were calculated using Excel (Microsoft, Redmond, WA). 
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CHAPTER 3 

Results and Discussion 

 The results of the statistical analyses described in Chapter 2 are presented in this chapter.  

It includes nine sections in the order of the research objectives (Section 1.3).  Section 3.1 

provides descriptive statistics for the RIOPA and NHANES datasets.  Section 3.2 shows the 

full distributions of the observed VOC data.  Section 3.3 presents extreme value analyses 

for the VOC exposures.  Section 3.4 addresses the mixture distributions for the exposures.  

Section 3.5 presents the trends of VOC exposure from 1988 to 2004.  Section 3.6 shows the 

VOC mixtures identified by PMF analysis.  Section 3.7 describes the dependencies and 

joint distributions of VOC mixtures.  Section 3.8 presents time fractions and VOC exposure 

fractions.  Section 3.9 addresses potential determinants of personal, home and outdoor 

VOCs.  Each section (except Sections 3.1 and 3.2) also compares results with previous 

studies, and discusses the strengths and limitations of the analyses. 

3.1 Descriptive Statistics 

3.1.1 RIOPA Study 

 Descriptive statistics for RIOPA VOCs are shown in Table 3 to 10, and Spearman rank 

correlations between pollutants are shown in Table 11 to 14.  Findings from these initial 

analyses include: 

 Detection frequencies varied widely and depended on the compound.  For VOCs, 

detection frequencies ranged from 6 to 97% for outdoor measurements; from 25 to 95% 

for indoor measurements; from 31 to 96% for personal adult measurements; and from 23 

to 97% for personal child measurements).  For PM2.5, all of the measurements were 

above the MDL.  One-half of the MDL was substituted for measurements below MDLs.   

 For most VOCs, mean concentrations were ranked as roughly:  indoor = personal > 

outdoor.  However, for 1,4-DCB, the maximum indoor concentration (4051 μg m-³) was 
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twice that of the highest personal concentration.  The highest mean outdoor, indoor, 

personal adult, and personal child VOC concentrations occurred in Los Angeles, Houston, 

Houston and Elizabeth, respectively.  

 The correlation coefficients among outdoor VOCs were generally higher and more 

commonly statistically significant than among indoor and personal VOCs, and there were 

more statistically significant pairs among the outdoor measurements. 

3.1.2 NHANES III and 1999-2004 

 Table 15 breaks out descriptive summary statistics for the NHANES III (1988-1994) and 

continuous NHANES (1999-2004) cohorts.  (Supplemental Tables S6 gives cohort-specific 

statistics.)  CTC and TCE had very low DFs (5.5 and 4.8%, respectively), and were excluded 

from further analyses.  In NHANES III, 1,4-DCB had the highest mean level (1.11 ± 0.12 µg 

L-1) among the 12 VOCs, over twice that seen for the next highest compound, toluene, while 

BDCM had the lowest mean (0.008 ± 0.001 µg L-1) with 86% of measurements fell below the 

MDL.  In continuous NHANES, 1,4-DCB levels decreased (0.87 ± 0.10 µg L-1), although it 

remained the single highest VOC.  Again, DBCM had the lowest concentration (0.002 ± 

0.000 µg L-1) with 43% of measurements below the MDL (which also decreased).  VOC 

levels decreased over these two periods, and differences in high-end exposures were 

particularly striking (Table 15).  Again examining 1,4-DCB, the maximum was 52 µg L-1 and 

the 1988-1994 95th percentile concentration was 11 µg L-1, well above any other VOC.  As 

discussed later, products containing 1,4-DCB have been widely used indoors, and possible 

occupational exposure and low clearance rates for this VOC may increase exposures and 

concentrations in blood.   

 As expected, related VOCs were correlated.  The five BTEX compounds in blood had 

Spearman rank correlation coefficients from 0.14 (benzene and m,p-xylene) to 0.81 

(ethylbenzene and o-xylene) in NHANES III, and from 0.38 (benzene and m,p-xylene) to 0.89 

(ethylbenzene and o-xylene) in continuous NHANES (Table 16).  The THM compounds were 

significantly correlated, except for chloroform and bromoform in NHANES III.  In general, 

correlation coefficients were lower in the 1988-1994 cohorts, in part due to the higher MDLs 

obtained during this period.   

 Correlation coefficients between blood and personal air measurements in the 1999/2000 
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cohort were statistically significant for the nine VOCs available, and ranged from 0.24 to 0.38 

for the BTEX compounds, to 0.62 for PERC and 0.65 for 1,4-DCB (Table 17).  Thus, the 

personal air measurements explained a modest portion of the blood measurements.  The 

NHANES study design likely lowered these correlations since sequential, rather than 

simultaneous, measurements were utilized, i.e., higher agreement likely would have occurred 

if blood was sampled when the personal air samplers were returned.  Also, correlations are 

lowered by clearance rates that differ among VOCs, exposure pathways other than inhalation 

(e.g., consumption of chlorinated water), and experimental errors.  Nonetheless, the positive 

and significant correlation suggests that the blood measurements provide useful exposure 

information.   

 Due to relatively rapid clearance, VOCs measurements in blood reflect exposures over 

only the immediate period preceding the blood draw (e.g., 2 or 3 half-lives).  If sampling was 

random, blood measurements can reflect chronic exposures, although some attenuation is 

expected since blood draws would not immediately follow high exposure events due to time 

needed for travel and processing in the MEC.  Consequently, the sample variability may not 

reflect the true variability of chronic exposures.   

 The 1988-1991 cohort had an excessive fraction (63%) of values reported as "extreme or 

illogical values" for toluene, ethylbenzene, o-xylene, styrene, bromoform and PERC, which 

left fewer than 200 valid measurements.  Also, compared to subsequent cohorts, available 

data for these VOCs and cohort tended to have lower correlation among related compounds, 

and means (and medians) appeared inconsistent (Supplemental Tables S6).  For example, 

m,p-xylene measurements in this cohort were very low and inconsistent with data in 

subsequent cohorts.  Measurements of these seven VOCs in the 1988/1991 cohort were not 

considered to be reliable, and thus were omitted from subsequent analyses, along with the 

derived BTEX and ΣTHM variables.  Other assessments of VOC data quality in the NHANES 

documentation or general literature have not been identified. 

3.2 Full Distributions for VOC Observations 

 Table 18 shows the distribution types providing the highest GOF, based on A-D tests, by 

VOC measurement type (outdoor, indoor, adult personal, child personal) in RIOPA.  Data 

were right skewed, as expected, and the most common distribution for the RIOPA VOCs was 



 

42 

the Pearson type 5 (right-skewed). 

 The nature of the VOC distributions in RIOPA can also be visualized in Figures 1 to 4 for 

four VOCs that often represent different sources:  benzene, 1,4-DCB, PERC, and chloroform.  

The left-hand panels of each figure show histograms and fitted distributions; the right-hand 

panels show log-transformed data and distributions fitted to the transformed data.  This 

analysis shows several features.  In addition to the right skew of the data, log-transformed data 

show departures from normality, primarily due to two features at either end of the distribution.  

First, each of the VOCs show a large number of low concentration measurements, a result of 

setting concentrations below the MDL, which are typically addressed by setting values to 

one-half MDL or some similar value.  As presented in Section 3.1.1, outdoor VOCs, including 

styrene, 1,4-DCB, MC, TCE, chloroform, d-limonene, α-pinene, and β-pinene, and indoor MC 

and TCE, and child measures of TCE, all had especially low detection frequencies (< 30%, i.e., 

most values were below MDLs).  This characteristic, an artifact in the sense that it is a result 

of the VOC sampling and analysis method employed in RIOPA, can influence distribution 

fitting and data interpretation.   

 Figures 1 to 4 also point out show positive skew after log transformation and (remaining 

high) outliers that cause deviations among the upper tails of the distributions.  This was 

especially apparent for outdoor 1,4-DCB, indoor 1,4-DCB and d-limonene, adult 1,4-DCB, 

chloroform, d-limonene, and PERC, and child 1,4-DCB and d-limonene.  In this research, the 

highest values are of key interest given that these portray the highest exposures. 

 The full range distributions of VOCs in RIOPA and NHANES shared some similarities.  

Distributions were right-skewed, and the top ranked distributions for the NHANES VOCs 

were usually lognormal (except for MTBE, 1,4-DCB and TCE).  In contrast, of the RIOPA 

VOCs, the top ranked distribution was lognormal for only two VOCs (PERC and chloroform).  

Of course, several distributions can provide quite similar fits.  As examples, Figure 5 contrasts 

observed and modeled distributions for benzene, 1,4-DCB, PERC, and chloroform, which can 

be compared to the personal adult distributions shown earlier in Figures 1 to 4.  This analysis 

showed a number of differences.  First, as can be seen on the figures, the NHANES data 

tended not to show a mode that was attributable to measurements below MDLs.  Second, 

measures of central tendency and other properties tended to vary.  For example, NHANES 
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and RIOPA had median concentrations of only one VOC, PERC, that were not different 

(Mann-Whitney tests, p < 0.05); average concentrations were not different for only three 

compounds (1,4-DCB, PERC and chloroform, t test, p < 0.05). 

3.3 Extreme Value Analyses for VOC Exposures 

3.3.1 Predicted Health Risks for Extreme VOC Exposures in RIOPA 

 Estimates of individual excess lifetime cancer risks for the median, 90th and 95th 

percentile concentrations are shown in Table 19 (Additional statistics are shown in 

Supplemental Table S7).  Using median concentrations, chloroform, 1,4-DCB and benzene 

presented the highest (and very similar) risks, 2.0 to 2.9 x 10-5, respectively; risks for other 

VOCs were below 10-5.  For the 95th percentile concentrations, the same three VOCs also 

presented the highest risks, 1.5 x 10-4, 3.6 x 10-3 and 7.7 x 10-5, respectively; risks above 10-5 

are also caused by ethylbenzene, MTBE, styrene, PERC and CTC.  Among the RIOPA VOCs, 

1,4-DCB presented the greatest risks, e.g., for the top 10% extrema, all individuals had risks 

exceeding 10-4, 88% exceeded 10-3, and 13% exceeded 10-2, a high level.  Additionally, 

1,4-DCB’s share of the total carcinogenic risk (the sum of risks across individual VOCs) 

increased greatly at higher percentiles, e.g., 1,4-DCB represented 17% of the total risk using 

median concentrations, 81% using 90th percentile concentrations, and 98% using 95th 

percentile concentrations.  As discussed later, the dominance of 1,4-DCB is partly a function 

of the specific VOCs measured.  

 Predicted risks for the three VOC mixtures also are shown in Table 19.  For 

hematopoietic toxicity, the median and 95th percentile risks were 7.6 x 10-5 and 3.7 x 10-3, 

respectively, most of which was due to benzene and 1,4-DCB among the five VOCs (benzene, 

MTBE, 1,4-DCB, TCE and PERC) in this mixture.  For liver and renal toxicity, the median 

and 95th percentile risks were 1.1 x 10-4 and 3.7 x 10-3, respectively, mostly contributed by 

1,4-DCB and chloroform among the seven VOCs (ethylbenzene, MTBE, 1,4-DCB, TCE, 

PERC, chloroform and CTC) in this mixture. 

 These risks and hazard quotients represent preliminary screening-level predictions and 

have several limitations.  They include only a subset of VOCs among those known or 

suspected to be toxicants, e.g., RIOPA did not include naphthalene, which is associated with 

anemia (ATSDR 2005b), or include reliable measurements of 1,3-butadiene, which is 
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associated with blood and lymphatic system cancers (ATSDR 2009).  The two personal 

exposure measurements averaged together for each RIOPA participant may not be a robust 

measure of lifetime average exposure.  The uncertainty in the RfC and URF is considerable, 

and the values used are believed to be conservative.  Finally, the exposure measurements 

represent multiday averages; shorter term exposures (1–24 hr) can be higher and could 

possibly exceed RfC or other guidance levels for acute effects. 

3.3.2 Gumbel Distributions for the RIOPA and NHANES Data 

 Figures 6 to 9 display model fits to the data for indoor, outdoor and personal 

concentrations for the same four VOCs in RIOPA discussed earlier.  Table 20 summarizes 

results for all VOCs and sample types.   

 In all cases, Gumbel distributions provided a higher fit to extrema when defined as values 

above the 95th percentile as compared to above the 90th percentile, suggesting that this is 

a more appropriate cut-off.  Thus, the remainder of this analysis uses this higher cut-off. 

 Higher fits (R2 > 0.85) were seen for outdoor measurements of benzene, toluene, MTBE, 

d-limonene and α-pinene; indoor measurements of BTEX compounds, MTBE, styrene, 

1,4-DCB, chloroform, α-pinene and β-pinene; personal adult measurements of 

ethylbenzene, m,p-xylene, o-xylene, styrene, 1,4-DCB and β-pinene; and personal child 

measurements of styrene, 1,4-DCB, α-pinene and β-pinene. 

 Lower fits (R2 < 0.6) were seen for many outdoor measurements of ethylbenzene, 

o-xylene, styrene, 1,4-DCB, MC, TCE, PERC, chloroform, CTC, α-pinene and β-pinene. 

 Often, child personal measurements had lower fits, possibly a result of lower sample sizes 

which did not capture many “true” outliers. 

 High fits were seen for indoor and personal measurements for several VOCs, including 

the BTEX compounds, styrene, 1,4-DCB, chloroform and β-pinene. 

 Several VOCs did not show high fits for any sample types, e.g., MC, PERC and CTC.   

 In a number of cases, an even higher cut-off might be appropriate when fitting 

Gumbel-type distributions, and sometimes results are driven by a few outliers. 

 These results suggest that simple parametric distributions do not fit the entire range of 
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observations in the RIOPA VOC dataset, that extreme value distributions often can provide 

good fits the highest values, e.g., the top 5% of measurements, and that some additional work 

to explore the sensitivity to cut-offs could be useful.   

 Although the extreme value analysis is descriptive and cannot suggest underlying causes, 

it does suggests that extreme values are more likely for certain VOCs and certain types of 

exposure measures, e.g., high personal exposures to BTEX may be associated with vehicle 

refueling events, high indoor levels of pinene may be associated with cleaning events, etc.  

For some VOCs and certain exposure compartments, outliers are unlikely, e.g., CTC is a long 

lived VOC with few localized sources, and other solvents and some other VOCs also have few 

strong and localized outdoor sources likely to produce extrema. 

 RIOPA and NHANES show the contrast between extreme value distributions.  Most 

VOCs in NHANES showed better fits (higher R2) to the maximum Gumbel distribution than 

the RIOPA data, although BTEX compounds showed high R2 values in both data sets.  

Chlorinated hydrocarbons (TCE, PERC and chloroform) had better fits in NHANES, the 

opposite for 1,4-DCB.  Several large differences were seen in maxima in that RIOPA had 

higher maximum concentrations, sometimes by very large amounts, e.g., PERC and 

chloroform maxima in RIOPA were 2,618 and 1,224 µg m-3, respectively, compared to 659 and 

54 µg m-3 in NHANES.  Like other compounds, maximum Gumbel distributions provided a 

better fit to these two VOCs in the NHANES dataset than obtained for RIOPA.   

 Different sampling designs and sample bias likely explain some of the differences 

between RIOPA and NHANES.  Designed as a nationally representative sample, NHANES 

should reflect population heterogeneity, and if this applies to VOCs and their extrema, then 

NHANES should better represent the true extreme value distributions than the more stratified 

sampling design used in RIOPA.  A second reason is protocol differences.  In NHANES, 

staging was extensive, and included two trips by participants, in most cases by private vehicle, 

to a centrally-located MEC, which consisted of multiple trailers in a parking lot used for 

surveys, blood collection, VOC sampler deployment, and other purposes.  RIOPA used 

in-home measurements and did not require common staging and the associated trips.  This 

might have produced greater uniformity in the NHANES data, among other differences.  We 

have noted discrepancies in some of the NHANES blood VOC data in earlier cohorts and only 
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modest correlation between VOC measurements in blood and personal air in a subset of the 

1999-2000 NHANES cohort (Su et al. 2011), however, these issues are not expected to 

adversely affect the comparability of the air samples. 

3.3.3 Generalized Extreme Value Distributions for the RIOPA Data 

 Table 21 shows parameters of GEV distributions fitted to the VOC data, and 

goodness-of-fit statistics.  Figure 10 shows cumulative distributions of cancer risks for four 

VOCs for simulated data matching GEV, Gumbel and lognormal distributions, as well as the 

observed data.  Separate plots are shown for the top 5 and 10% extrema.  The GEV 

distributions closely fitted both the top 5 and 10% of observations of all VOCs based on A-D 

tests (Table 21), and comparisons of simulated and observed distributions matched based on 

K-S tests, with the exception of the top 10% of β-pinene (Table 22).  With the exception of the 

top 5% of benzene concentrations, the shape parameters of the GEV distribution were close to 

or larger than 0, indicating Gumbel or Fréchet distributions, and the location and scale 

parameters reflected the high percentile concentrations shown earlier (Table 21).  While the 

GEV distributions closely fitted the extrema, including both individual VOCs and the three 

VOC mixtures, simulations sometimes produced extremely high values that greatly 

overpredicted maxima, e.g., concentrations > 20,000 μg m−3.  This occurred for the top 10% 

of ethylbenzene, styrene, 1,4-DCB, TCE and PERC concentrations, and the top 5% of 

ethylbenzene, MTBE, styrene, 1,4-DCB, TCE and chloroform concentrations.  These 

problems were limited to the extreme right-hand tails, e.g., values above the 98th or 99th 

percentile.   

 Gumbel distributions fitted several of the VOCs (e.g., top 5 and 10% of benzene, 

ethylbenzene, MTBE, styrene, 1,4-DCB, PERC and chloroform concentrations), based on K-S 

tests (Table 22).  Sometimes the lowest values (i.e., the left tail) were lower than observations, 

and some values even went negative (The plots in Figure 10 are truncated and do not make this 

visible.) 

 Lognormal distributions fitted extrema for several VOCs (e.g., top 10% of benzene and 

ethylbenzene observations, the top 5 and 10% of MTBE, PERC and chloroform, and the top 

5% of CTC, shown in Table 22.  However, these distributions typically diverged from 

observations, and the “fat” right-hand tails were greatly unrepresented (Figure 10).  We note 
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that the lognormal distributions were fitted for the full dataset, not just the top 5 and 10% used 

for the GEV and Gumbel distributions. 

 The observed and predicted fraction of individuals with risks that exceed 10−6, 10−5, 10−4, 

10−3 and 10−2, risk cut-offs that might be considered “bright lines”, are examined in Table 23.  

This analysis is performed for the top 5% and 10% of the data, and the three distributions.  

GEV and Gumbel predictions were very close to observed frequencies, and differences were 

usually within a few percent.  As an example, for the top 10% of the benzene data, the 

observed, GEV, Gumbel and lognormal simulations showed risk levels exceeding 10−4 for 29%, 

26%, 31% and 18% of the population, respectively.  As a second example, using the top 5% of 

1,4-DCB values, the corresponding frequencies were 25%, 27%, 24% and 10%.  As noted 

earlier, GEV simulations sometimes overpredicted the very highest upper percentiles (seen at 

the 10−4 risk level for ethylbenzene, MTBE, styrene, TCE, PERC, chloroform and CTC), and 

such risks were not seen in the data. However, such cases were rare, comprising less than about 

1% of the entire dataset.  Gumbel distributions also overpredicted extrema (although maxima 

were lower), and also underpredicted lower risks, in part due to its unbounded nature that can 

generate small and negative values.  For example, all (100%) observed individuals had risks 

exceeding 10−6 for MTBE, styrene, 1,4-DCB, TCE, PERC and CTC, but Gumbel predictions 

ranged from 77% (TCE) to 99% (MTBE).  As noted above, lognormal predictions did not 

match observations, and the differences could be large, e.g., for the top 5% of PERC risks, 33% 

of the observations exceeded the 10−4 risk level, but the lognormal predictions showed 

percentages less than half of this level.  Similar results were seen for benzene, styrene, TCE 

and other VOCs. 

 Overall, these evaluations show that GEV distributions provided a good fit to pollutant 

and risk extrema for the VOCs and VOC mixtures measured in RIOPA.  Occasionally, GEV 

distributions overpredicted some concentrations and risks, but this was limited to the very 

highest values.  The 3-parameter GEV distributions provided better fit than the 2-parameter 

Gumbel distribution. In contrast, lognormal distributions provided poor fits to extrema. 

3.3.4 Generalized Extreme Value Distributions for the NHANES Data 

 In most cases, the top 5% and top 10% of the NHANES data did not match GEV 

distributions fitted to either the larger dataset, which used sample weights to specify repeat 
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frequencies, or to the smaller (equal size) datasets that used bootstrap methods and repeated 

sampling (Table 24 and Table 25).  Using the latter approach, for example, GEV distributions 

matched only the top 5% of 1,4-DCB and TCE (marginally significant) based on the A-D tests, 

but not the K-S test.  Possibly the two approaches used to incorporate the sampling weights 

did not decrease the “staircase” nature of the weighted datasets, which caused these tests to 

reject the hypothesis that the original and fitted distributions did not differ.  Another possible 

explanation is that the repeated observations violated the assumption that extreme values 

should be drawn from a set of independent, identically distributed samples (Fisher and Tippett 

1928).  We tried a third approach, fitting GEV distributions to the unweighted NHANES data, 

which did match on basis of A-D and K-S tests (Table 26).  These results suggest that the 

fitting or possibly the evaluation approaches used for the GEV distributions are inappropriate 

for weighted datasets. 

3.3.5 Limitations 

 This work has several limitations.  GEV and Gumbel distributions describe only one tail 

of a distribution, and cannot be used for the remainder of the distribution.  Cancer risk 

estimates require long-term exposure estimates, and averaging the two visits in the RIOPA 

dataset may not be representative of long-term exposure.  Additionally, individuals lacking 

either data from either visit were excluded, which reduced the sample size.  Extrema were 

defined using two cut-offs (90 and 95th percentiles).  The use of a higher cut-off, e.g., the 98th 

percentile, was not feasible due to sample size issues.  The results for RIOPA are limited to 

personal exposure measurements of 15 VOCs made in three large cities in the USA.  Because 

RIOPA included only non-smoking households, and for other reasons noted earlier, its results 

are not generalizable to other cities.  We did not evaluate extreme value distributions for other 

VOCs (e.g., formaldehyde) or other pollutants (e.g., PM2.5).  There may be additional 

explanations for the differences between the RIOPA and NHANES results beyond those noted 

(i.e., different sampling designs, staging, demographics, and presence of smokers). 

3.4 Mixture of Normal Distributions for VOC Observations in RIOPA 

3.4.1 Single Normal Distributions 

 For chloroform, which is roughly lognormally distributed except that 17% of the data is 

under the MDL, the single normal distribution model fits about as well as the finite mixture of 
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normals and DPM of normals (described below) on the basis of MSE and MAE values, and 

gives a 21% probability of being below the MDL, similar to that observed (Table 27).  

However, for 1,4-DCB and styrene, which have more data under the MDL as well as heavy 

tails, the fit of the single normal distribution model is inferior compared to those of the 

mixture models.  For example, the predicted probability of being below MDL is 28% and 

56% for 1,4-DCB and styrene, respectively, compared to 34% and 66% observed, and 33% 

and 64% estimated by the mixture models.  The single normal distribution overestimated the 

mean of these VOCs since it underestimated the non-detection frequency. 

3.4.2 Finite Mixture of Normals 

 Fitted density plots (and component clusters) are shown in Figures 11B, 12B and 13B for 

chloroform, 1,4-DCB and styrene, respectively.  The fitted parameters (weight λ௞ , location 

μ௞ and dispersion σ௞
ଶ) of each cluster K for the mixture of normals are given in Table 28.  

The optimal Ks (based on the AICc) were 2, 4 and 3 for chloroform, 1,4-DCB and styrene, 

respectively.  These choices of K clearly reflected the multi-modality and right skewness of 

the VOC data, and the resulting mixture of normals closely fitted the observed distributions.  

For example, Figure 12B represents the four clusters that fitted the 1,4-DCB data:  the first 

(red) cluster captured the left censoring due to the MDL, the second and third (green and blue) 

clusters reflected the majority of the data and the skewness, and the fourth (blue) cluster 

modeled the heavy tail. 

3.4.3 Nonparametric DPM of Normals 

 Fitted densities using DPM of normals for the three VOCs are shown in Figures 11C, 12C 

and 13C.  This method clearly captures the censoring, right-skewness, and potential 

multi-modality of the exposure data.  In terms of MSE and MAE, the DPM approach attained 

slightly lower values than the finite mixture of normals (Table 27).  

 Panel D on Figures 11 to 13 show results of the sensitivity analysis with the four different 

gamma distributions used as priors for precision parameter α.  As noted before, K 

stochastically increases with ߙ as E(K |ߙ, n) ≈ log (1 ߙ + n/ߙ) for moderately large n 

(Antoniak 1974).  The four prior distributions were informative and formed up to 20 clusters 

that reflected more specific subject matter information.  Estimated densities obtained using 

the four priors nearly overlapped and showed very similar MSE and MAE for each of the 
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VOCs, although the corresponding posterior distribution of the number of clusters K varied 

(Table 29).  The posterior mean of K under all prior settings of ߙ (Table 29) slightly 

exceeded the K selected using the AICc (Table 28).  The higher K in the DPM is due to the 

prior information of α, and does not introduce any additional complexity or more model 

parameters.  The initial prior variance of α critically influences the extent of smoothing 

(Escobar and West 1995).  Given K distinct values among the elements of θ, a larger variance 

leads to increased dispersion among the K group means, which increases the likelihood of 

multiple modes and decreased smoothness in the resulting predictive distribution (Escobar and 

West 1995).   

 No convergence issues using the DPM method were encountered, and density estimation 

results were robust given the moderate sample size (n = 544).  Another advantage of the DPM 

method is that a constraint to ensure a cluster below MDL is not required since the sampling 

scheme (8) is data driven.  As shown in (8), the DPM can handle values under the MDL that 

are represented as a point mass, because a newly sampled value has equal probability 

1/(݊ − 1 +  .to be drawn from the observed set of values (ߙ

 The nonparametric DPM of normal distributions assume that observed data randomly 

arise from sub-distributions with certain probabilities as the finite mixture of distribution 

models.  (Again, sub-populations that an individual observation belongs are not identified.)  

Compared to the finite mixture models, DPM distributions have advantages in providing a 

formal assessment of uncertainty for all model parameters, including the number of 

components K, through generated draws from the posterior distribution.  With a suitable 

Dirichlet process prior structure (Escobar and West 1995), these models produce predictive 

distributions qualitatively similar to kernel techniques, and they allow for differing degrees of 

smoothing by the choice on priors for precision parameter α.  The density estimation results 

were robust given a moderate sample size (n = 544) without any convergence issues noted. 

3.4.4 Simulations 

 Simulation results, summarized in Table 30, show similar patterns for the MSE and 

MAE criteria.  Both finite mixture and DPM of normals provided much better fits than a 

single normal distribution, except that the former two methods are only slightly better under 

distribution 1 with P଴ = 0.15.  For both distributions, as the fraction P଴ of data below the 
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MDL increased, there is evidence of increasing trend of lack of fit for a single normal 

distribution, while the finite mixture and DPM of normals fitted considerable better and 

without such trend.  The DPM of normals shows advantage of robustness regarding P଴.  It 

fits equally well, or even better, as P଴ increased.  For distribution 1, the finite mixture of 

normals provided a slightly better fit than the DPM of normals, but this trend can be offset 

since the prior variance of α can be decreased to promote smoothness.  In this regard, DPM 

is much more flexible than the finite mixture of normal.  Here, we have used 

α ~ Gamma(1.2, 2.5) which favors 1-5 clusters given our sample size (as the prior 

information of K).  For distribution 2 which is right skewed and with a heavy tail, the DPM 

of normals provided a much better fit than finite mixture of normals under all settings. 

 Both types of mixture models are well suited to the RIOPA VOC data containing a large 

fraction of censored data due to MDLs, fat tails, and multiple modes.  They offer clear 

advantages over parametric full distribution models and extreme value models, and also appear 

appropriate for many other types of environmental data, such as concentrations or doses of 

persistent and/or emerging compounds and biomarkers.  The use of mixture models has the 

potential to improve the accuracy and realism of models used in a variety of exposure and risk 

applications, and further environmental applications are warranted. 

3.5 VOC Trends from 1988 to 2004 

 Potential covariates were identified before evaluating VOC trends in NHANES cohorts.  

Several occupational groups were associated with VOC levels, although none achieved 

statistical significance in ANOVA tests, possibly because effects were small or diluted due to 

the broad occupational categories used.  Nevertheless, trend analyses were adjusted for 

groups that seemed likely to have VOC exposure: service occupations (associated with 

elevated 1,4-DCB levels); precision production, craft and repair occupations (BTEX); and 

operators, fabricators, and laborers (BTEX).  A variable combining these groups was used as a 

covariate in QR models.  Additionally, all VOCs except PERC were associated with serum 

cotinine levels, which dropped from an average of 107 to 70 ng mL-1 over the 1988-2004 

period.  Initially, all QR models were adjusted using log-transformed cotinine levels.  

However, this variable was not statistically significant for non-aromatic VOCs and parameter 

estimates changed little, thus cotinine was maintained in the final QR models for only aromatic 
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VOCs.  Among demographic variables, only age and education differed significantly between 

NHANES cohorts, and both age and college attainment increased with time.  QR models 

including these variables showed insignificant changes in parameter estimates, and thus the 

demographic variables were not included in the final models. 

 The trend analysis focused on concentration quantiles exceeding 0.5 (50th percentile).  

Often, lower quantiles were at or near MDL concentrations.  Linear QR models representing 

the entire study period (1988 to 2004) and adjusted for solvent-related occupations and 

cotinine levels (aromatic VOCs) showed statistically significant trends at 0.5, 0.75 and 0.95 

quantiles for all VOCs except for PERC at the 0.5 quantile, and styrene and 1,4-DCB at the 

0.95 quantile (Table 31).  For most VOCs, these changes corresponded to an average decrease 

of 2.5 to 6.4% per year (Table 32).  Graphical interpretations of results for benzene, 1,4-DCB 

and PERC are presented in Figures 14 to 16.  Panel A of each figure shows box plots for the 

five cohorts, superimposed with the estimated linear QR trend lines; panel B shows quantile 

plots of the linear QR estimate at 0.25, 0.5, 0.75 and 0.95 quantiles, along with 95% confidence 

intervals.  Due to low DFs, the 0.25 quantile (left-most point) is not meaningful for 1,4-DCB 

and PERC, and only somewhat meaningful for benzene.  These plots suggest that the rate of 

decline can depend on the quantile, and three patterns were discerned across the VOCs.  

Pattern 1 has similar decreases at all quantiles, shown by benzene (Figure 14B).  This pattern 

suggests uniform emission and/or exposure reductions from the sources that dominate 

population exposures, e.g., reduced exhaust and evaporative emissions from vehicles, the 

largest benzene exposure source.  Pattern 2 shows more rapid decreases at upper quantiles and 

slower decreases at lower quantiles, as seen for PERC (Figure 16B).  In this case, the most 

exposed cohort might have a unique exposure source, which has been controlled, or that other 

measures have been taken to limit high exposures, while lower level exposures continue 

largely unabated among the general population, possibly due to other sources that have not 

been controlled as much.  This pattern could be explained by controls on the leading 

occupational exposure sources of PERC, e.g., dry cleaning and metal-degreasing operations.  

Pattern 3 is a rapid decrease at central quantiles that exceeds upper quantiles decreases, as seen 

for 1,4-DCB (Figure 15B).  This may result from controls on sources that affect indoor and/or 

outdoor concentrations, without a commensurate reduction in high exposure cases.  For 

1,4-DCB, this might be explained by reduced use of mothballs and air fresheners, the major 
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exposure sources for the general population, while the most exposed individuals either 

continue to experience a separate exposure source, e.g., industrial production of repellents, 

insecticides, resins, etc., or they remain intensive users of this chemical.  Patterns and possible 

sources for individual VOCs are discussed in the next section. 

 The trend analysis also raised questions regarding the veracity of the 1999/2000 VOC 

data, which had the highest levels of benzene (average of 0.184±0.015 μg L-1) and chloroform 

(0.058±0.005 μg L-1) across five NHANES cohorts.  Moreover, using the 1999/2000 data as a 

baseline, subsequent cohorts showed very rapid declines (>15% per year to 2003/2004) in 

median and higher percentile concentrations of benzene, toluene and chloroform, far faster 

than earlier years (Table 32).  As noted, previous discussions of the comparability of this or 

other cohorts in the VOC dataset have not been seen.  To investigate the sensitivity of results 

to the 1999/2000 cohort, linear QR models were rerun without these data.  While this lessened 

the rate of decrease, differences were generally small, e.g., slopes changed by less than 30% for 

all VOCs and quartiles except benzene and toluene (0.75 quantile), BTEX (0.5 quantile), 

styrene (0.75 and 0.95 quantiles), chloroform and ∑THM (0.95 quantile), and few coefficients 

differed statistically (based on Wald tests assuming nil covariance between the two slopes) 

except benzene, toluene, o-xylene, and BTEX (0.5 quantile), benzene, toluene, bromoform, 

and PERC (0.75 quantile) (Supplemental Table S8).  Bromoform and PERC at the 0.5 

quantile also showed differences, but these were attributable to low DFs and are not 

meaningful.  In summary, long-term trends were not strongly dependent on the 1999/2000 

data, and thus these data were kept in subsequent analyses.   

 A second sensitivity analysis was undertaken that used piecewise linear QR models 

allowing changes in trend over the study period.  As before, models were adjusted for 

solvent-related occupations and cotinine.  QR model results using a knot at 1999/2000 are 

shown in Supplemental Table S9.  (Knots at other locations provided poor fits.)  This 

analysis indicates that for most VOCs, declines from 1988 through 2000 were either not 

statistically significant or considerably smaller than declines from 1999/2000 through 2004, 

and that several VOC increased over the 1988-2000 period (including benzene and chloroform 

at the 0.5 quantile, benzene, toluene, styrene and chloroform at the 0.75 quantile, and benzene, 

m,p-xylene, styrene, and chloroform at the 0.95 quantile).  Declines in the second period 

(shown as Slope2 in Supplemental Table S9) were reasonably consistent for the aromatic 
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VOCs and chloroform, and faster than those from the linear QR models that spanned the entire 

period (Table 31).  Overall, the piecewise QR models are similar to results in Table 32, and 

likewise suggest that reductions in blood VOC levels were largely accomplished from 

1999/2000 onward.  However, the piecewise models are less robust than the linear QR model 

since slopes for each time period use only three cohorts (or time points), and sometimes only 

two in the first period (1988-2000) since portions of the 1988-1991 data were omitted, and 

since they depend strongly on the 1999/2000 cohort data, which have several anomalies as 

noted previously.  Moreover, trends in ambient concentrations for most VOCs do not support 

this steeper decline, as discussed below.  

 The third sensitivity analysis compared both linear and piecewise regression models with 

and without adjustments for strata and clusters.  This showed only small differences in most 

cases:  standard errors were larger for most VOCs, however, differences were significant for 

only BTEX among the linear models, and for DBCM, bromoform and PERC among the 

piecewise models.  Although we cannot account for NHANES’ cluster sampling protocol in 

the QR models, these results suggest that the QR model results are reliable.   

 In summary, VOC levels in the NHANES blood samples substantially declined over the 

15 year period.  While piecewise models suggest that exposures to some VOCs did not 

decrease in the 1990's and then rapidly declined in the early 2000's, this may be driven by 

anomalies in the NHANES data, as discussed below. 

3.5.1 Interpretation and Reliability of Trends 

 Many factors can affect the interpretation and representativeness of the NHANES data.  

First, while each cohort was designed to be nationally representative, biases might result from 

unknowingly over-sampling populations that are more exposed, genetically special (e.g., 

unable to rapidly clear VOCs), or otherwise not representative.  As noted earlier, only minor 

group differences were seen among the demographic variables, literature discussing biases has 

not been identified, and while genetic differences can affect results, the biomarker 

documentation does not specify any such factor that affects the interpretation of VOC 

measurements in blood (ACGIH 2001).  Second, statistical variation is inherent in any 

sampling program and some cohorts had smaller PSU and sample sizes, but considering the 

NHANES sample sizes, this should not cause systematic biases.  Third, whether the 
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NHANES blood measurements represent valid exposure measures could be questioned, and 

indeed the approximate nature of these biomarkers was indicated by only modest correlation 

with air samples and the rapid clearance in the blood (discussed earlier).  In this case, however, 

a bias towards the null (no trend) would be the likely outcome, which was not seen.  Fourth, 

changes in protocols, including the air sampling conducted in the 1999/2000 cohort, the shift 

from NHANES III to continuous NHANES, or some other unknown study element, could 

affect results.  We did identify NHANES data that appears suspect, and either excluded it or 

used sensitivity analyses to obtain confirm interpretations.  Nothing emerged that could 

explain observed patterns.   

 Several independent findings support the long-term VOC exposure trends derived from 

NHANES.  First, the NATA emission inventory, while including only a few of the VOCs in 

measured in NHANES, reports that emissions of several VOCs increased in the 1990's, e.g., 

benzene increased from 337,000 to 410,000 tons/year from 1996 to 2002, and chloroform 

increased very markedly from 3,310 to 15,139 tons/year from 1996 to 1999; Table 33).  

Annual average ambient concentrations predicted by NATA, spatially averaged, show 

negligible movement from 1996 to 1999 for benzene, chloroform, PERC and 1,4-DCB, and 

decreases of 3.9 to 18% per year for benzene, toluene, xylene and PERC from 1999 to 2002.  

These data support some of the piecewise trends, and also the high levels of benzene and 

chloroform seen in NHANES in 1999/2000, however, exposure analyses using emission 

inventories have limitations, as discussed in the Introduction.   

 Ambient air monitoring provides a more direct exposure measure.  PAMS data are 

summarized in Table 34.  For the 2001-4 period, annual mean concentrations of benzene, 

toluene, ethylbenzene and o-xylene in the UATMP network decreased by 11 to 20% per year, 

and by 7 to 11% per year in PAMS.  Thus, recent UATMP and PAMS trends are roughly 

similar, though UATMP concentrations are lower.  Considering the older (1993-1999) PAMS 

data, annual mean concentrations of aromatic VOCs decreased from 4.4% per year (toluene) to 

11% per year (styrene), and for five of the six VOCs measured, the rate was half that seen in the 

1999-2004 period.  Issues regarding the spatial and temporal coverage of PAMS data were 

discussed in the Introduction.  The AQS data may be more revealing, and annual means of the 

nine VOCs common to NHANES are tabulated and plotted in Table 35.  Regression analyses 

show approximately linear decreases of 5 to 7% per year for benzene, toluene, ethylbenzene 
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and styrene from about 1990 to 2004.  Trend plots show comparable long-term decreases and 

hints of somewhat accelerated trends since 2000 for m,p-xylene, o-xylene and 1,4-DCB.  

Chloroform shows a dramatic 21% per year decrease from 1990 to 1994, which then shows a 

flat trend.  PERC levels decrease by 6.7% per year, although the trend is erratic.  While 

ambient measurements too have limitations as exposure indicators, the national-level data 

show that ambient concentrations of many VOCs have declined in a linearly over 15 years, and 

the rate appears slightly faster than those based on the NHANES exposure data.  For several 

VOCs, some evidence suggests swifter declines after 2000, however, the ambient data does not 

reflect the high levels of benzene and chloroform in the 1999/2000 NHANES blood data.  

 In summary, ambient and emission data for most VOCs show strong downward trends 

from about 1990 through 2004.  Regarding indoor exposures, national-level corroborating 

evidence is unavailable, however, there is linkage with ambient data in that outdoor 

concentrations represent a "floor" for indoor levels, and because the emission controls on 

fuels and vehicles that lower ambient VOC concentrations will also reduce exposures while 

commuting and in buildings with attached garages (Batterman et al., 2006).  We next 

examine trends of individual VOCs. 

3.5.2 Benzene 

 Over the 15 year study period, benzene exposures in NHANES declined by 3.3 to 4.3% 

per year, depending on the quantile.  As noted, benzene trends matched pattern 1, with 

relatively consistent decreases at all quantiles, which parallel some of the emission and 

airborne concentration trends.  Benzene was listed as a hazardous air pollutant by U.S. EPA in 

1977 and as a carcinogen in 1986, and many emissions have been inventoried and regulated.  

U.S. emissions fell from 493,000 to 386,000 T yr-1 tons between 1990-1993 and 2005 (US EPA 

2009b), representing a 1.5% per year decrease.  On-road vehicle emissions, the single largest 

source category, declined faster, from 312,000 to 143,000 T yr-1 or 3.6% per year.  Further 

restrictions of benzene content in gasoline were issued in 2007, and additional reductions in 

mobile source air toxics emissions (including benzene) are anticipated (US EPA 2010c).  

Benzene is metabolized fairly rapidly with a half-life in blood of about 8 hr (Brugnone et al. 

1992). 

 Inhalation exposure to benzene has been extensively reviewed (ATSDR 2007a).  
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Ambient measurements declined by 4.5 to 4.9% per year from 1994 to 2008; medians dropped 

from 2.10 to 0.79 µg m-3; and 90th percentile levels fell from 5.03 to 1.59 µg m-3 (US EPA 

2009a).  Urban concentrations fell faster, e.g., PAMS data show 8.4%, 7.2%, and 6.9% per 

year declines at 0.5, 0.75, and 0.95 quantiles from 1993 to 2004 and AQS data (Table 34).  

Since few indoor sources exist other than smoking, benzene concentrations in outdoor, indoor 

and personal air can be similar (PL Kinney et al. 2002), however, an attached garage can 

elevate residential levels (Batterman et al. 2006).  Differences in biomarker and ambient 

trends are reflected by the relatively low correlation between blood and personal airborne 

levels (r=0.24, Table 17).  Occupational exposures in many settings have substantially 

declined, e.g., median personal concentrations of laboratory technicians at a refinery dropped 

from 319 to <32 µg m-3 from 1977 to 2005 (Panko et al. 2009), however, national statistics on 

occupational exposures are unavailable.  As mentioned, tobacco smoke is an important 

exposure source (L Wallace et al. 1987), and about 50% of benzene exposure in the U.S. has 

been apportioned to active and passive smoking (ATSDR 2007a).  However, NHANES data 

continued to show declines in each quantile after cotinine adjustment.  Overall, the trends 

suggest that reductions in population exposure, as reflected in NHANES, have been driven 

largely by reductions in gasoline- and vehicle-related emissions.   

3.5.3 Toluene 

 Over the 1988 to 2004 period, toluene exposures decreased by 4.7 to 5.7% per year, 

depending on the quantile.  Like benzene, toluene reductions fit pattern 1 (consistent 

decreases across quantiles), which indicates improved control of general exposures, e.g., 

vehicle exhaust, as well as high-concentration exposures, e.g., architectural paints, which are 

now limited in VOC contents to 250 and 500 g L-1 for flat coatings and graphic arts paints, 

respectively (US EPA 1998).  Toluene is one of the more prevalent components associated 

with vehicles and, unlike benzene, many household products contain and emit toluene.  NATA 

emissions decreased from 996,443 to 884,066 T yr-1 between 1999 and 2002, or 3.8% per year, 

on-road emissions decreased from 460,240 to 428,672 T yr-1, or 2.3% per year (Table 33) (US 

EPA 1999a, 2002), and average ambient predictions declined from 3.0 to 2.5 µg m-3, or 5.2% 

per year (Table 36).  Ambient concentration at PAMS sites decreased by 6.4-8.5% per year, 

depending on quantile (Table 34), while annual means in the AQS data declined by 5.7% per 

year (Table 35).  Like benzene, blood and airborne levels had only modest correlation (r=0.26, 
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Table 17).  Toluene's half-life in blood is short, about 4.5 hr (Brugnone et al. 1986), thus blood 

levels tend to reflect current exposures. 

3.5.4 Other BTEX Compounds 

 QR results for the remaining BTEX compounds for the 1988-2004 period showed 

significantly downward trends that tended to fit pattern 2 (rapid decreases at upper quantiles), 

even after adjustment for cotinine (Tables 31 and 32).  Ethylbenzene, m,p-xylene, o-xylene, 

and styrene concentrations in blood decreased by 2.5 to 5.6% per year at each quantile.  The 

composite BTEX exposure showed consistent decreases across quantiles in the same period; 

benzene and toluene contribute disproportionately to this indicator.  The half-life of 

ethylbenzene in blood is very short (<1 hr) (Adams et al. 2005; ATSDR 2007b); xylenes are 

reported to have biphasic half-lives: 0.5-1 hr initially, followed by 20-30 hr (US EPA 2003b); 

and styrene has biphasic half-lives of 0.58 and 13 hr in blood (ATSDR 2007c).  Thus, blood 

tends represent only recent exposures.  Correlation coefficients between personal air and 

blood for ethylbenzene, m,p-xylene and o-xylene in the 1999/2000 NHANES cohort were 0.35, 

0.38, and 0.36, respectively, higher than seen for benzene and toluene (Table 17).   

 In the NATA database, nationwide emissions of o- and m,p-xylene fell from 712,084 to 

595,241 T yr-1 between 1999 and 2002 (Table 33), or 5.5% per year, and on-road vehicle 

emissions decreased from 269,500 to 247,765 T yr-1, only 2.7% per year (US EPA 1999a, 

2002).  Ambient measurements fell faster, e.g., median levels of aromatic VOCs in PAMS fell 

by about 9% per year from 1993 to 2004 (Table 34), and AQS means fell by 5.8 to 6.4% per 

year, with faster declines after 2000 (Table 35).  Thus, ambient levels fell more rapidly that the 

roughly 4% per year seen for NHANES blood VOC levels from 1988-2004 (Table 32), but less 

rapidly than the more recent (1999-2004) blood VOC data.  The divergence suggests that 

reductions of indoor VOC sources trailed outdoor reductions by perhaps a decade. 

3.5.5 THMs 

 Chloroform was the most prevalent THM.  With the 1999/2000 data included, levels 

declined rapidly at upper quantiles (pattern 2), while comparable reductions of about 4% per 

year were seen across quantiles when comparing starting and ending cohorts (Table 31 and 32).  

BDCM, DBCM and bromoform showed rapidly decreases at central quantiles over the study 

period.  Due to low DFs, trends at lower percentiles could not be evaluated (Supplemental 
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Table S2).  Over the 15 year study period, concentrations decreased by 5.0 to 7.9% per year 

for the median, and by 3.0 to 7.5% per year for upper quantiles.   

 Exposures of individual THMs, including chloroform, are likely to be highly correlated, 

although this was not consistently shown in the NHANES blood measurements (Table 16).  

This can be explained, in part, by the rapid clearance of THMs from blood, e.g., half-lives of 

about 0.5 hr (Ashley and Prah 1997), and a biphasic clearance pattern is reported for 

chloroform with half-lives of 9 to 21 min and then 86 to 96 hr (ATSDR 1997a).  Given these 

rates, the blood data represent only recent exposures.  Chloroform showed a moderate but 

significant correlation (r=0.38) between blood and personal air concentrations (Table 17).  

 NATA emissions of chloroform jumped from 3,310 to 15,139 T yr-1 from 1996 to 1999, or 

119% per year, followed by a decline in 2002 to 6,805 T yr-1, or 18% per year (Table 33) (US 

EPA 1996, 1999a, 2002).  The dramatic increase from 1996 to 1999 is likely due to changes in 

inventory procedures (US EPA 1999a).  Predicted ambient concentrations increased by 0.9% 

per year from 1996 to 1999, and then decreased by 1.7% per year (Table 36).  Interestingly but 

perhaps serendipitously, the period of highest chloroform emissions (1999) corresponded to 

the highest blood measurements in NHANES (Supplemental Table S6).  In the mid-1990s, 

Maximum Achievable Control Technology standards limited emissions of halogenated 

solvents at industrial and waste treatment facilities (US EPA 2000c).  About the same time, 

maximum contaminant levels on THMs in drinking water were imposed, which is probably the 

largest exposure source (both ingestion and inhalation) of THMs for the general population.  

(NATA estimates do not account for THM emissions in to drinking water, but the NHANES 

blood data does account for the ingestion pathway.)  Lowering THMs in drinking water is 

expected to decrease levels at all quantiles (pattern 1).  Ambient concentrations of chloroform 

show a trend unique among the VOCs: early decreases of nearly 21% per year for the 

1990-1994 period, followed by a flat trend from 1995 onward (Table 35).  Exposures of the 

brominated THMs had inconsistent trends, which is attributed to analytical uncertainties 

resulting from low concentrations (generally 10 times lower than chloroform). 

3.5.6 Other VOCs 

 Styrene exposures significantly decreased at 0.5 and 0.75 quantiles, e.g., median levels 

fell by 3.8% per year over the study period (Table 32), but much faster (18% per year) from 
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1999 to 2004.  Serum cotinine and blood styrene levels in NHANES were correlated (r=0.49), 

but QR models adjusted for cotinine levels continued to showed a declining trend (Table 31).  

(NATA only included styrene data in 2002.)  Ambient concentrations of styrene in PAMS 

declined by about 8% per year, depending on quantile, over the 1993-2004 period, while AQS 

means declined by 5.5% per year, though the data showed considerable scatter (Appendices H 

and I).  Styrene is used in reinforced plastics manufacturing, and indoor emissions can occur 

from building materials and tobacco smoke (ATSDR 2007c).  It has biphasic half-lives of 0.58 

and 13 hr in blood (ATSDR 2007c). 

 1,4-DCB decreased by 3.5% per year over the 15 year study period (Table 32).  

Decreases were more rapid at median quantiles, (pattern 3), and the 0.95 quantile result was 

not significant (Table 31).  1,4-DCB is widely used in mothballs, other pest repellents and 

toilet-deodorizer blocks, and airborne levels in occupational settings occasionally reach very 

high levels, e.g., 4,350 mg m-3 in a mono- and dichlorobenzene manufacturing plant (IARC 

1982).  In the US, mean and median indoor 1,4-DCB concentrations were 24 μg and 1.7 μg 

m-3, respectively (ATSDR 2006b); the large difference reflects the highly skewed distribution 

of this VOC.  A Japanese study found high indoor levels (mean = 114 μg m-3), far above 

outdoor levels (3.4 μg m-3) (Azuma et al. 2007).  1,4-DCB's half-life is estimated to be 7.1-8.1 

hours in rats (no human data are available (Hissink et al. 1997; Boutonnet et al. 2004).  NATA 

emission estimates of 1,4-DCB fell from 12,794 to 7,244 T yr-1 between 1999 and 2002, or 

15% per year (Table 33) (US EPA 1999a, 2002).  Ambient concentrations are low, and median 

concentrations among 11 sites declined by 5.0% per year from 1995 to 2005, and by 10% per 

year among 32 sites from 2000 to 2005 (McCarthy et al. 2007).  Among the AQS VOCs, 

1,4-DCB showed the strongest decrease after 2000 (Table 35).  As noted, 1,4-DCB had the 

highest air-to-blood correlation coefficient among the NHANES VOCs (r=0.65, Table 17), 

thus exposures tend to reflect personal air concentrations.   

 PERC exposures declined by 3.2 to 6.4% per year, depending on quantile, over the 15 

year study period, and decreases at upper quantiles were faster (pattern 2) (Table 31 to 32).  

PERC's half-life in blood, 12 to 16 hr (ATSDR 1997b), is the longest among the VOCs, and its 

air-blood correlation was relatively high (r=0.62, Table 17).  NATA emissions increased by 

2.0% per year, from 44,100 to 46,793 T yr-1, between 1996 and 1999, followed by a 8% per 

year decrease to 35,613 T yr-1 in 2002 (Table 33) (US EPA 1996, 1999a, 2002).  However, 
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predicted ambient concentrations decreased slightly, 1.5% per year, between 1996 and 1999, 

and then by 18% per year between 1999 and 2002 (Table 36).  Nationwide emission data 

before 1993 are not available.  MACT standards for dry cleaners, perhaps the major urban 

source of PERC (US EPA 2010c), were initiated in 1993.  Although the AQS means show 

considerable variation (Table 35), the long term decline of ambient concentrations nearly 

exactly corresponds to the rate seen in blood. 

3.6 Selected VOC Mixtures in RIOPA based on PMF 

 VOC sources are identified on the basis of the VOC composition using PMF analyses.  

In cases, several source types can contribute to a factor, or sources may have collinear 

emission profiles (source compositions) and thus cannot necessarily be distinguished.  The 

following show the possible VOC composition on the basis of emission sources by sampling 

types. 

3.6.1 Outdoor VOCs 

 Outdoors, apportionments were dominated by gasoline-related sources, and seasonal 

variation was observed.  Results of sources apportionment of VOCs in RIOPA study are 

presented in Table 37.  In warm season, four categories were shown:  the dominant 

component in mixture 1 was MTBE, indicating gasoline vapor; mixture 2 mainly included 

BTEX & β-pinene, representing vehicle exhaust and biogenic sources; mixture 3 was 

dominated by d-limonene, representing some odorants; mixture 4 contained TCE, PERC and 

α-pinene which may be from industrial emissions and biogenic sources.  In cold season, there 

were four groups:  mixture 1 mainly contained BTEX compounds, indicating vehicle exhaust; 

mixture 2, like mixture 1 in warm season, was dominated by MTBE, representing gasoline 

vapor; a lot of VOCs were included in mixture 3, e.g., 1,4-DCB, TCE, CTC, d-limonene, 

α-pinene and β-pinene, which may come from industrial emissions; PERC, the dominant VOC 

in mixture 4, was used in dry cleaning industry.  Gasoline-related sources (more than 60% of 

the contributions) were prevailing for outdoor VOCs in both seasons. 

 Figure 17 presents the median ratios of four common VOC groups, including aromatics, 

MTBE, chlorocarbons, and terpenes, by quintiles of TVOC concentrations to show VOC 

composition at different levels.  For all outdoor VOC observations, aromatics, including 

benzene, toluene, ethylbenzene, m,p-xylene, o-xylene and styrene, were less abundant in the 
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2nd and 3rd quintiles, and MTBE was more abundant in middle and highest quintiles.  The 

gasoline-related VOCs showed more abundance by quintiles.  In contrast, chlorocarbons, 

including 1,4-DCB, MC, TCE, PERC, CTC, and chloroform, and terpenes, including 

d-limonene, α-pinene, and β-pinene, showed less abundance in higher quintiles.  In the first 

quintile, 15% of TVOC was terpenes, and then the abundance dropped to 5% in the last 

quintile.  Outdoor terpenes were emitted from biogenic sources, representing relatively stable 

background levels.  Higher concentrations of TVOC may mainly attribute to other VOCs 

from anthropogenic sources.  Thus, terpenes’ abundance decreased in high quintile due to 

increases of other VOC concentrations.  VOC measurements in different cities and seasons 

showed similar abundance with overall measurements, except for samples in Houston, which 

have more abundance of MTBE in higher quintiles. 

3.6.2 Indoor VOCs 

 Indoor apportionments in warm and cold seasons were similar, and cleaning products 

and odorants were the major sources.  There were four common factors for indoor VOCs in 

both seasons (Table 37):  mixture 1 was dominated by 1,4-DCB, indicating moth repellents 

and odorants; mixture 2 contained d-limonene, α-pinene and β-pinene, representing cleaning 

products and air fresheners; mixture 3 mainly contained aromatics, TCE, PERC, chloroform 

and CTC, which may come from vehicle exhaust and chlorinated solvents using for degreasing; 

MTBE was the dominant compound in mixture 4, and indicated gasoline vapor.  Cleaning 

products and odorants were the leading emission sources for indoor VOCs in both warm 

(73% of the contributions) and cold (66% of the contribution) seasons. 

 Aromatics and MTBE showed less abundance in higher quintiles for indoor VOCs 

(Figure 18).  Abundance of gasoline-related VOCs in the 5th quintile was about 16% 

comparing to 44% in the 1st quintile, and there was no difference between warm and cold 

seasons.  Indoor gasoline-related VOCs are mainly generated by outdoor sources, and 

affected by transportation and penetration process.  Other VOCs, e.g., 1,4-DCB and 

d-limonene, generated by indoor sources, have extreme values to lead to large proportion of 

abundance in the higher quintiles.  For example, the average concentration of 1,4-DCB in 

4th quintile of TVOC was 10 µg m-3, indicating 1.8% of median abundance, and the average 

in 5th quintile was 327 µg m-3, indicating 27% of median abundance.  Similar pattern was 



 

63 

observed for d-limonene in higher quintiles.  Variations of VOC abundance were shown 

among cities, especially in Houston.  In Houston, a quarter of 1,4-DCB samples in 5th 

quintile were above 1000 µg m-3 (only one 1,4-DCB sample was above 1000 µg m-3 in Los 

Angeles and Elizabeth). 

3.6.3 Personal VOCs Consisting of Adult and Child Measurements 

 Dominant VOC sources for personal exposures were cleaning products and odorants, and 

seasonal effects were also observed (Table 37).  In warm season, four groups of VOCs were 

shown:  mixture 1, including d-limonene, α-pinene and β-pinene, indicated the use of cleaning 

products and odorants; ethylbenzene, m,p-xylene and o-xylene in mixture 2 represented motor 

sources; benzene and MTBE contained in mixture 3 indicated gasoline vapor; mixture 4 

containing 1,4-DCB, TCE, PERC, chloroform and CTC suggested exposures to moth 

repellents and chlorinated solvents.  In cold season, VOC apportionments were still 

dominated by cleaning products and odorants, like d-limonene, α-pinene and β-pinene (more 

than 40% of the contributions in both seasons).  The other three VOC groups included:  

mixture 2 (benzene, toluene, MTBE, styrene, 1,4-DCB, TCE, chloroform and CTC) indicating 

gasoline, chlorinated solvents, and cleaning products, mixture 3 (ethylbenzene, m,p-xylene 

and o-xylene) representing vehicle exhaust, and mixture 4 (PERC) from dry cleaning solvent. 

 Like indoor VOCs, gasoline-related VOCs were less abundant in higher quintiles with 

variations between cities (Figure 19).  Personal samples showed more abundance of 

chlorocarbons in the highest quintile than indoor samples, suggesting that people contacted 

the emission source, e.g., moth repellents, directly or extensively.  For example, the median 

concentrations of 1,4-DCB in the highest quintiles were 65 µg m-3 for indoor samples, and 95 

µg m-3 for personal samples.  No significant differences of abundance between seasons were 

found.  However, large variations were observed among cities, especially in Houston.  

Chlorocarbons were the majority (85%) in highest quintile in Houston, and other VOC 

groups were less than 10%.  On the other hand, aromatics and terpenes were dominant in 

the highest quintiles in Los Angeles and Elizabeth.  It was because most extreme values of 

1,4-DCB were measured in Houston.  Eighteen out of 66 1,4-DCB measurements were 

above 1000 µg m-3 in Houston, but there were only two measurements in Elizabeth over that 

value, and none in Los Angeles.  Thus, extreme values of chlorocarbons in the highest 
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quintiles resulted in less abundance of other VOC groups in Houston. 

3.6.4 Personal Adult VOCs at the First Visits 

 Based on the PMF analysis, four VOC mixtures were identified (and designated as 

mixtures A1 to A4 in Table 38 and Figure 20):   

 Mixture A1 contained benzene (average contribution = 1.4 μg m-3) and MTBE (11.2 μg 

m-3), and is identified as "gasoline vapor".  These VOCs are highly volatile and 

components of gasoline during the sampling era.  The RIOPA samples, collected from 

1999 to 2001, reflect the gasoline composition from a decade ago when benzene levels 

were higher (benzene content is now limited to 0.62% of the fuel (US EPA 2007a).  Also, 

MTBE was used in California, New Jersey, and Texas (US EPA 2008b), but has been 

phased out (starting in 2000, fully in 2006) (US EPA 2012c).   

 Mixture A2 is designated as "vehicle exhaust" due to contributions from toluene (4.9 μg 

m-3), ethylbenzene (1.9 μg m-3), m,p-xylene (5.5 μg m-3), o-xylene (1.7 μg m-3) and 

styrene (0.2 μg m-3).  These VOCs are also highly volatile components of gasoline and 

diesel fuels as well as exhaust emissions from gasoline- and diesel-powered vehicles 

(ATSDR 2007, 2010b, a).   

 Mixture A3 included several common indoor contaminants, including a moth repellent 

(1,4-DCB at 0.9 μg m-3), chlorinated solvents (TCE at 0.2 μg m-3, PERC at 1.7 μg m-3, 

CTC at 0.5 μg m-3), and a water disinfection by-product (chloroform at 0.8 μg m-3).  

These VOCs are fairly specific to these sources, e.g., 1,4-DCB is a the major ingredient of 

mothballs (ATSDR 2006a) (although similar repellents often use naphthalene).  PERC is 

a widely used dry cleaning solvent (ATSDR 1997b).  Chloroform is a by-product of 

water disinfection using chlorine dioxide (ATSDR 1997a).  TCE and CTC are used in 

industry as degreasers, chemical intermediates, and pesticides (ATSDR 1997c, 2005a).   

 Mixture A4 contained d-limonene (20.5 μg m-3), α-pinene (1.5 μg m-3) and β-pinene (2.7 

μg m-3), which are fragrances and solvents indicative of "cleaning products and odorants".  

Both d-limonene and pinene are widely used flavors and fragrance additives in cleaning 

products, fresheners, other consumer products, and even in foods and beverages (IARC 

1993; US EPA 2012b). 



 

65 

 These four mixtures respectively explained 20.5, 20.9, 16.3 and 42.3% of the variation in 

ΣVOC levels in the RIOPA dataset (Table 38).  PMF is often used for source apportions, 

usually for ambient particulate matter, and these factors and apportionments are one of the final 

results of these approaches.  Similar source profiles (gasoline vapor, vehicle exhaust, 

deodorizer and shower, and dry cleaning) were observed in a study using PMF and the 

NHANES dataset, although NHANES did not measured d-limonene, α-pinene and β-pinene, 

and the dominant mixtures were gasoline vapor and the vehicle exhaust (Jia et al. 2010).  

Mixture A4, cleaning products and odorants, explained the largest portion (42.3%) of the 

total VOC exposure.  This large fraction is a result of the VOCs included in RIOPA, the 

large fraction (87% on average) most people spend indoors (Klepeis et al. 2001), the wide 

use of the VOCs in this mixture, and their high concentrations (relative to other VOCs 

measured in RIOPA).  Because many of the RIOPA participants were older (average age = 

45 years old; 24% were ≥ 60 years old) and predominantly female (75%), we suspected that 

indoor residential fraction would be especially important.  Indoor time fractions calculated 

for the RIOPA participants, which included indoor at home, school, work, and "other" indoor 

locations, indicated that RIOPA participants spent an average of 91% of time indoors -- 

higher than the national data.  (The indoor time fraction varied by city, e.g., 89, 92 and 92% 

for participants in Los Angeles, Elizabeth and Houston, respectively, p < 0.0001.)  In 

summary, the source strength of the A4 mixture and the large amount of time spent indoors 

explains the dominance of this mixture in terms of its large share of TVOC.   

 Identifying the emission source(s) is a key determinant of exposures, and an essential step 

prior to implementing any exposure reduction strategy.  PMF provides a concentration-based 

approach that can identify generated mixtures, discussed earlier as those that arise from a 

common or correlated emission source.  However, VOC levels also may reflect common 

contaminant transport and fate factors (e.g., building AERs), as well as common behavioral 

patterns (e.g., a tendency to use or tolerate certain types of cleaning products), thus mixtures 

identified by PMF (or other correlation-based methods) may not be uniquely generated 

mixtures, but rather a combination of generated, intentional and possibly coincidental mixtures.  

It should also be noted that unlike the mixtures based on the mode of actions, the PMF-based 

mixtures should be orthogonal, that is, uncorrelated. 
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3.6.5 High Exposure Mixtures 

 The analysis of high exposure mixtures, which were identified in Section 3.6.4, 

suggested several variables associated with high exposures (Table 39).  When comparing the 

top quartile to the remainder of the data, the following variables were significant (95 percent 

confidence interval excluding 1, except as noted):   

 City effect:  Participants in Los Angeles and Elizabeth had lower odds of high exposure 

(≥ 75th percentile) than Houston participants for all mixtures (ORs from 0.18 to 0.63), 

except mixture A3 for the Elizabeth participants. 

 Race/ethnicity:  Mexicans had increased odds of high exposure to mixtures A1 (benzene 

and MTBE), A3 (1,4-DCB, TCE, PERC, chloroform and CTC), and A4 ( d-limonene, 

α-pinene and β-pinene) compared to Whites (ORs from 2.03 to 3.97).  Hispanics had 

higher odds of high exposure to mixture A3 than Whites (OR = 1.78, 95% CI = 1.09-2.92).  

Asians, Blacks and Indians were less likely to have high exposure to mixture A2 (toluene, 

ethylbenzene, xylene, and styrene) than Whites (OR = 0.47, 95% CI = 0.24-0.92).   

 Employment:  Employed participants had lower odds of high exposure to mixture A4 

(OR = 0.40, 95% CI = 0.27-0.61) 

 AERs:  Higher log transformed AERs decreased odds of high exposure to all VOC 

mixtures, especially for mixtures associated with strong indoor sources, e.g., d-limonene 

and pinene (mixture A4); (ORs from 0.38 to 0.69). 

 Open doors or windows:  Participants reporting opening doors or windows during the 

sampling periods had lower odds of high exposure for all mixtures than individuals not 

opened doors or windows (ORs from 0.32 to 0.40 with 95% CIs not including 1, except 

for mixture A1).  As seen for AERs, this effect of opening doors or windows was more 

pronounced for mixture A4 (d-limonene and pinene). 

 Attached garages:  Participants living in houses with attached garages had increased 

odds of high exposure to mixtures A1 (gasoline vapor) and A2 (vehicle exhaust) mixtures 

(ORs = 2.27 and 1.95, 95% CIs = 1.45-3.56 and 1.25-3.05, respectively).    

 Participant activities:  Participants who self-pumped gas during the sampling period had 

increased odds of high exposure to the gasoline mixture A1 (OR = 2.10, 95% CI = 
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1.35-3.52).  Participants who used fresheners had higher odds of having high exposure to 

the d-limonene, α-pinene and β-pinene mixture A4 (OR = 2.20, 95% CI = 1.17-4.14). 

 Activities of family members:  Family members showering during the sampling period 

had increased odds of high exposures to mixtures A3 (moth repellents, chlorinated 

solvents and water disinfection by-product mixture, OR = 2.06, 95% CI = 1.20-3.56) and 

A4 (cleaning and odorant mixtures, OR = 2.45, 95% CI = 1.42-4.23). 

 Notably, city, ethnicity, and AERs were significantly associated with all VOC mixtures.  

In addition, several factors identified for gasoline and vehicle exhaust mixtures for the 

RIOPA participants also have been shown for the personal exposures measurements in 

NHANES, e.g., the presence of attached garages and self-pumped gas were related to 

benzene, toluene and MTBE exposures (Jia et al. 2010).  However, statistically significant 

factors have not been identified for 1,4-DCB and chloroform in the NHANES dataset.  

Factors associated with this mixture may have been identified in RIOPA due to demographic 

differences between NHANES and RIOPA, specifically, RIOPA participants were more 

likely to be older, female, unemployed, and at home more often (Su et al. 2012), all of which 

may increase the importance of indoor sources of 1,4-DCB and chloroform for these 

participants. 

 The logistic regression models used do not require normality of the response variables.  

Thus, even variables with right-skewed distributions do not significantly affect the robustness 

of the models.   

 As noted earlier, the main objective of the PMF analysis was to identify mixtures.  A 

more detailed analysis of factors associated with exposure to individual VOCs, that is, the 

determinants of exposure, and that accounts for repeated measures and interactions, is 

provided in Section 3.9 using LMMs. 

3.6.6 The Robustness of PMF Results 

 We investigated the robustness of PMF results using the bootstrap method.  This 

method is a re-sampling technique in which “new” datasets are drawn in by randomly 

selecting observations, and results of the analysis (using PMF) are compared to those 

obtained using the original data (US EPA 2008a).  The variability of the results using the 
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bootstrap samples shows the stability of original results.  We used 500 runs, the original 

sample size, random sampling with replacement, and the personal VOC exposures.  Figure 

21 represents the variability for each species of the profiles using box plots.  The original 

results are shown (as a blue box) for reference.  Although 2 to 4 of the VOCs in each factor 

have large variability, e.g., m,p-xylene, MTBE and PERC in the odorant profile, the 

variability of the VOCs selected to represent the source type in each factor is small, and the 

original results are consistent with the medians of the bootstrap model results.  Thus, source 

apportionment results using PMF method provided quite robust results. 

3.7 Dependency Structures and Joint Distributions of VOC Mixtures in RIOPA 

3.7.1 Copulas 

 The selected copula types are listed in Table 40.  (Parameters of the marginal 

distributions, GOF statistics and copula parameters are in Table 41 to 43.)  AICs and BICs for 

the different copulas were fairly similar for mixtures A1 (benzene, MTBE), A3/B3 (1,4-DCB, 

TCE, PERC, chloroform, CTC), A4 (d-limonene, α-pinene, β-pinene) and B1 (ethylbenzene, 

MTBE), however, AICs and BICs for mixtures A2 (toluene, ethylbenzene, xylene, styrene) 

and B2 (benzene, MTBE, 1,4-DCB, TCE, PERC) were much lower for Gaussian and t copulas, 

suggesting that these copulas differ in their ability to describe the dependency structures.  

Gumbel copulas best fitted mixtures A1 and B1, both of which included two VOCs, while t 

copulas best fitted mixtures A2, A3, A4 and B2, each of which contained four or more VOCs.  

We previously noted that the VOC exposures in RIOPA tended to have extreme value 

distributions (Su et al. 2012), and both Gumbel and t copulas better represent extreme values 

than other copulas (Schmidt 2006).  Fitting results also might have been affected by the 

detection frequency.  Since data below the MDLs were assigned a single value (0.5 MDL), 

these single values formed "ties" in the distribution.  Scatter plots for any two variables that 

contain many ties display a star shape, which fit the t copula.  In contrast, mixtures A1 

(benzene and MTBE) and B1 (ethylbenzene and MTBE) contained at least one VOC with very 

high detection frequencies (e.g., 96% for MTBE), and joint distributions did not show this star 

shape.  Among other mixtures containing at least two VOCs with many non-detects, joint 

distributions formed star shapes.  To explore this explanation, a mixture of two VOCs with 

low detection frequencies (styrene at 49% and α-pinene at 66%) was modeled.  In this case, 



 

69 

the t copula showed the best fit, suggesting that copula fits are not influenced by the number of 

mixture components, but that mixtures containing components with low detection frequencies 

are better fitted by the t copula. 

 Table 40 contrasts the probability of exceeding various percentile cut-offs for observed 

data and that predicted using the copula simulations.  Differences were generally small.  For 

the binary mixtures A1 and B1, differences ranged from 0.001 (A1 at the 90th percentile and B1 

at 50th, 75th, and 95th percentiles) to 0.02 (B1 at the 75th percentile).  For mixtures with three or 

more components, differences ranged from 0.001 (B2 at the 95th percentile) to 0.12 (A4 at the 

50th percentile).  These results suggest that copulas have better predictive ability for bivariate 

distributions than higher order distributions.   

 Table 40 also shows crossing probabilities, assuming the mixture components are 

uncorrelated (independent).  As expected, these estimates fell far below observations, 

especially at higher percentiles, e.g., for the odorant mixture A4 (d-limonene, α-pinene and 

β-pinene), the observed 90th percentile probability was 0.023, but only 0.001 if the components 

are assumed to be uncorrelated.  Such large differences demonstrate the need to account for 

dependencies in mixtures. 

 Gumbel and Gaussian copulas were shown to best fit VOCs in NHANES that were highly 

correlated (Jia et al. 2010).  However, the earlier study examined only bivariate mixtures, and 

did not consider t copulas that best fitted much of the RIOPA data.  The present study did find 

the same dependency structure as in NHANES for the benzene and MTBE mixture (Gumbel 

copulas). 

3.7.2 Mixture Fractions 

 Median mixture fractions are shown in Table 44.  The copula simulations matched the 

mixture fraction for the dominant components observed in all mixtures at all levels, with one 

exception (mixture B2 at the 75 to 90th percentile level).  Often, a single compound dominated 

the mixture, e.g., MTBE accounted for 78 to 94% of the exposure in mixtures A1 and B1 

considering both observations and copula simulations.  VOCs with strong indoor sources, e.g., 

1,4-DCB and d-limonene, dominated mixtures A3 and A4, respectively, and their fraction 

increased with percentile.  For example, the median fractions of 1,4-DCB in mixture A3 

(1,4-DCB, TCE, PERC, chloroform, CTC) for 50-75th percentile observations and simulations 
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were 0.33 and 0.45, respectively; these increased to 0.99 and 0.99, respectively, at the 95-100th 

percentile.  These results reflect the extreme values previously found for 1,4-DCB and 

d-limonene (Su et al. 2012).  In contrast, mixture fractions varied little for mixtures A1, A2 

and B1, e.g., toluene was the dominant component in mixture A2 (toluene, ethylbenzene, 

xylenes and styrene) with mixture fractions of 0.58 and 0.56 for observations and simulations, 

respectively, at the 50-75th percentile level, and 0.57 and 0.53, respectively, at the 90-95th 

percentile.  Consistent mixture fractions may suggest generated mixtures as compared to 

other types where compositions are more varying.  Mixture B2 shifted composition at upper 

percentiles, e.g., the MTBE mixture fractions were 0.61 and 0.55 at the 50-75th percentile 

levels for observations and simulations, respectively, but 1,4-DCB was dominant at the 

95-100th percentiles with mixture fractions of 0.98 and 0.94, respectively.  These results show 

that mixtures such as B2 may be very heterogeneous with compositions that differ by exposure 

level.  This mixture was selected based on the similar mode-of-action for the component 

VOCs (and not on the basis of common sources or high correlations).  Mixture B2 may be 

considered an "incidental" mixture as it likely combined VOCs from different sources. 

 Mixtures A3/B3 and B2 were selected to investigate whether the mixture fractions 

estimated by the copulas were driven by copula type or by the marginal distribution of the 

components in the mixture.  Both mixtures were simulated for five types of copulas, all using 

the same set of marginal distributions.  (For these simulations, marginal distributions are 

shown in Table 41, and mixture fractions in Table 45.)  For mixture A3/B3, the analysis 

revealed only small changes in median fractions, e.g., 1,4-DCB remained the dominant 

component at high exposure levels, and its mixture fraction increased with percentile.  

Mixture B2 showed larger differences between median fractions for the (best-fit) t and other 

copulas, and the dominant VOC at the 90 to 95th percentile level differed among copulas, e.g., 

the dominant VOCs were 1,4-DCB for the t and Clayton copulas, but MTBE for the Gaussian, 

Gumbel and Frank copulas.  Even though t and Clayton copulas identified 1,4-DCB, its 

mixture fraction varied from 0.47 to 0.70 in the two copulas.  This highlights the importance 

of the type of copula, not just the marginal distributions of the VOC components. 

3.7.3 Estimated Cancer Risks 

 Estimated cancer risks for the mode-of-action mixtures B1 to B3 are shown in Table 46.  
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Based on the observed data, VOC mixtures can present rather high cancer risks, e.g., about 

10% of RIOPA participants had exposures of mixtures B2 and B3 associated with a 10-3 or 

higher lifetime cancer risk.  Mixture B1 (ethylbenzene and MTBE) posed lower risks, e.g., a 

25% chance of exceeding a risk of 10-5, and 1% chance of exceeding 10-4.  For mixture B2 

(benzene, MTBE, 1,4-DCB, TCE and PERC), 3% of participants exceeded a very high risk 

level, 10-2.  Similar results were seen for mixture B3 (1,4-DCB, TCE, PERC, chloroform and 

CTC). 

 For each mixture, the copula simulations gave risk predictions that were generally similar 

to observations, although there is notable divergence at the highest levels, particularly for 

mixture B3 (Table 46, Figure 22).  The highest risks (> 10-3) were underestimated by both the 

copulas and the lognormal simulations, although copulas had smaller errors.  For mixture B1, 

the lognormal simulations slightly overestimated the chance of exceeding a risk of 10-5, but 

underpredicted higher risks.  For example, moving vertically on the figure at the risk level of 

10-5, the observed data, copula simulations, and lognormal simulations respectively predicted 

25, 27 and 32% of individuals in excess of this risk level.  At a risk of 10-4, predictions for 

observed data, copula simulations, and lognormal simulations were 1, 0.6, and 0%, 

respectively.  For mixture B2, lognormal simulations again overestimated low to moderate 

risks (10-6 to 10-4), and both copula and lognormal simulations underestimated the highest risks 

(10-3 to 10-2).  For mixture B3, the lognormal simulations significantly underestimated the 

highest cancer risks (10-2).  The cumulative probability plot (Figure 22) shows that the 

copulas sometimes overpredicted the highest values, information not seen in Table 46, e.g., the 

highest observed risk for mixture B3 was 3.0×10-2 while the highest copula simulation was 

8.1×10-2.  However, such cases were rare (< 1% of the cases).   

 This analysis suggests that lognormal distributions are a poor choice to represent extreme 

values, as has been noted earlier (Su et al. 2012).  It also highlights several important 

differences between predictions using lognormal distributions and copulas.  Copulas can use 

any marginal distribution for each mixture component, and the simulations used the best-fit 

marginal distribution (both type and parameters) for each VOC.  This increases the flexibility 

and can improve fit marginal distributions.  However, the copula simulations propagate any 

mismatches in the marginal distributions, which may explain the underprediction of the higher 

risk levels.  Second, copulas permit asymmetric dependency structures that can emphasize 
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extreme values or other portions of the distribution that display “local” dependencies, e.g., 

mixture B1 fit the Gumbel copula which emphasizes upper tail dependencies.  Lastly, copulas 

performed better than multivariate lognormal models in all cases, although copulas predictions 

also diverged from the very highest observations, e.g., above the 95th percentile. 

3.7.4 Strengths and Limitations 

 This is the first study to estimate dependency structures of personal exposures to 

multivariate VOC mixtures using copulas, a powerful technique that is unrestricted with 

respect to the marginal distributions of the underlying mixture components.  Since VOC 

exposures were right-skewed even after log-transformation, traditional methods do not 

properly capture the tail behavior of the VOC distributions.  Using the RIOPA data, two sets 

of VOC mixtures were identified, namely, those based on correlative measures (using PMF 

analyses), and those based on toxicological mode-of-action.  In the former group, the RIOPA 

data revealed four common mixtures, which were easily identified and considered to be 

"generated" or "intentional" mixtures.  The second group of mixtures, which potentially cause 

similar health effects, were associated with high lifetime cancer risks, at least for the more 

exposed individuals.  Copulas can improve the precision of exposure estimates, and decrease 

the bias of risk estimates.  Like the cumulative cancer risks predicted in this study, exposures 

to VOC mixtures should be modeled appropriately to obtain accurate risk estimates.  Another 

application concerns the population attributable fraction (PAF), which quantifies the 

contribution of various risk factors to a disease, i.e., the number of cases that would not occur if 

the risk factor did not exist (WHO 2013).  In this case, the proportion of population exceeding 

certain exposure levels, e.g., an exposure threshold, could be estimated to obtain the correct 

PAF. 

 The study has several limitations.  First, to avoid the effect of repeated measurements, 

only the first-visit data from RIOPA were used.  This decreased the sample size and did not 

permit the analysis of possible seasonal effects.  Second, because PMF does not indicate the 

optimal number of factors, there is some arbitrariness in this analysis.  However, the VOC 

components in each factor were quite consistent, and the factors often resembled in other 

studies.  The analysis tested only two families of copulas (elliptical and Archimedean) due to 

the limitations of the software for copula simulations.  However, these are best known and 
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most commonly used copulas.  The RIOPA data have some limitations.  Only 18 VOCs 

were measured, and MDLs for some compounds were higher than desirable.  Low detection 

frequencies may affect results of PMF, copula and risk evaluations.  While the PMF 

analysis incorporated uncertainty, distribution and copula selection and fitting assumed that 

the measurements were error-free.  Of course, exposure measurements can involve many 

types of errors, and both the lowest and highest measurements may be especially prone to 

errors.  The RIOPA sample is not population-based, and results may not be generalizable to 

the population as a whole.  Finally, the RIOPA dataset is over ten years old, and changes in 

product formulation and other factors may have altered both the concentrations and 

compositions of VOC exposures. 

3.8 Time and VOC Fractions in RIOPA 

3.8.1 Time Fractions 

 Figure 23 displays the average time fractions spent outdoors, indoors and in transit for the 

RIOPA participants.  Indoor time fractions averaged 89, 92, and 92% in Los Angeles, 

Elizabeth, and Houston, respectively, p < 0.001), and participants in Los Angeles spent the 

least time at home (71, 80, and 80% for the three cities, p < 0.001), likely explained in part by 

the lower unemployment rate in Los Angeles.  Little time was spent outdoors, including time 

within and out of their neighborhoods (fractions averaging 5.1, 4.5, and 4.3% in Los Angeles, 

Elizabeth, and Houston, respectively, p = 0.650).  Similarly, time spent in transit was small 

(5.5, 3.6 and 3.6 in the three cities, respectively, p < 0.001).   

 Figure 23 compares the RIOPA time budgets to a nationally representative sample using 

the National Human Activity Pattern Survey (NHAPS), a probability-based telephone 

interview survey conducted from 1992 to 1994 that collected 24-h time-activity information, 

demographics, and exposure-related questions from 9,196 respondents (Klepeis et al. 2001).  

NHAPS respondents spent more time outdoors (7.6%) than the RIOPA participants (4.6%), but 

less time indoors (87%) and at home (69%).  This difference may result from the RIOPA’s 

predominating female (75% vs. 54% in NHAPS) rate and older participants (18% of RIOPA 

participants over 64 years old vs. 14% in NHAPS).  Also, the unemployment rate (53%) was 

high in RIOPA.  These older, female and unemployed participants may spend most of their 

time at home or other indoor places.  Indeed, the data from NHAPS shows somewhat more 
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time in transit and less time at school/work.  Both RIOPA and NHAPS reflect the well know 

pattern that most individuals spend the overwhelming fraction of time at home. 

3.8.2 Outdoor and Indoor Exposure Fractions 

 The home environment dominated personal VOC exposures, e.g., median and mean 

Fhome values ranged from 0.63 (MTBE) to 0.78 for α-pinene (Figure 24A, Table 47).  The 

95th percentile values, which approached to 1 for all VOCs, show an even stronger influence 

of the home.  Fhome differed by season for two VOCs (benzene and MTBE), and by city for 

most VOCs (except toluene, o-xylene, 1,4-DCB, PERC, d-limonene and β-pinene).  The 

median Fhome was highest in Houston (68% to 81%) for most VOCs (except benzene, styrene, 

PERC, and d-limonene).  The importance of the home environment is unsurprising since 

RIOPA participants spent most (median of 77%) of their time at home, and since indoor 

concentrations of most VOCs were much higher than outdoors levels. 

 Outdoor contributions to personal exposure, shown in Figure 24B, were very small, e.g., 

median values of Foutdoor ranged from 0.02% (d-limonene) to 1% (CTC).  Thus, the outdoor 

environment typically accounted for below 1% of personal exposure, and even less for those 

VOCs with strong indoor sources, e.g., 1,4-DCB and chloroform.  Even the 95th percentile 

values of Foutdoor fell below 15%.  Foutdoor differed (p < 0.05) by season for all VOCs and by 

city for over half of the VOCs (benzene, toluene, m,p-xylene, o-xylene, MTBE, TCE, PERC 

and CTC).  (Differences by city and season are shown in Table 48.)  Outdoor contributions 

were small, a result of both the little time spent outdoors and the low outdoor VOC 

concentrations.  Because many of VOCs (toluene, styrene, 1,4-DCB, TCE, chloroform, 

d-limonene, α-pinene, β-pinene) had low detection frequencies (< 60%), the outdoor 

exposure fractions are approximate. 

 The two VOC fractions (Fhome and Foutdoor) estimated in the study do not represent the 

whole “exposure profile” contributed by various microenvironments, but this analysis does 

highlight the most significant contributor of VOC exposures, the home environment.  Since 

this study population mainly comprised older, female, and unemployed participants, who 

spent most of time at home, the effect of other microenvironments may less important. 

 The literature is consistent regarding the dominance of the indoor microenvironment for 

VOC exposure (Lioy et al. 1991; P Kinney et al. 2002; Adgate et al. 2004; Phillips et al. 2005; 
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Sexton et al. 2007).  For example, the home exposures of toluene, styrene, 1,4-DCB, PERC 

and chloroform dominated exposure for a group of school children (n = 73) in Minneapolis, 

Minnesota (Adgate et al. 2004).  These children spent an average of 65% of their time at 

home.  Time-weighted indoor concentrations were positively associated with personal 

exposure for these VOC, while time-weighted outdoor concentrations did not have 

significant associations.  In another Minneapolis/St. Paul study, nonsmoking adults (n = 70) 

showed similar results, with > 50% of VOC exposure occurring at home and 71% of time spent 

at home (Sexton et al. 2007).  

 In the present study, indoor VOC levels did not vary seasonally, but city effects were 

significant, a likely result of differences in emission sources, meteorology and household 

characteristics (e.g., presence of attached garage) among the three cities studied, as discussed 

later.  Seasonal effects on indoor levels of VOCs in RIOPA may be affected and potentially 

diminished by lifestyle factors, e.g., opening windows, and using air conditioners.  Other 

important factors affecting indoor concentrations were household characteristics such as the 

existence of attached garages (Batterman et al. 2007) (also see Section 3.9.5).   

3.9 Determinants of Personal, Home, and Outdoor VOC Concentrations in RIOPA 

3.9.1 Gasoline-related VOCs 

 BTEX, MTBE and styrene, all components of gasoline and vehicle exhaust, shared 

several exposure determinants (Table 49 and Supplemental Table S10).  Increased exposures 

were associated with living in Houston, homes with attached garages, and self-pumped gas; 

decreased exposures were associated with higher wind speeds and house AERs.  Interestingly, 

lower exposures of toluene, ethylbenzene and o-xylene were found for participants reporting 

cooking activities during the sampling period, possibly because these individuals drove less for 

food related activities.  Indeed, participants reporting cooking activities spent less time in cars 

with closed windows (mean time spent = 71 min) than those not reporting cooking activities 

(mean time spent = 88 min, p-value of t test = 0.038).  (No differences were seen for time in 

cars with open windows or for total travel time.) 

 The literature supports these findings for BTEX, MTBE and styrene (Table 1).  In 

Houston, important VOC sources included petrochemical facilities and vehicles (Weisel et al. 

2005b).  Attached garages are known sources of gasoline-related aromatics in homes 
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(Batterman et al. 2007; Sexton et al. 2007; D'Souza et al. 2009; Delgado-Saborit et al. 2009; 

Symanski et al. 2009; Wang et al. 2009).  Gasoline pumping has been shown to elevate 

personal exposures to BTEX in cold weather in Alaska (Backer et al. 1997).  The effects of 

both attached garages and pumping gas on gasoline-related VOCs were also seen in NHANES 

(Symanski et al. 2009).  Concentrations arising from outdoor sources, e.g., vehicle exhaust, 

are diluted by wind (US EPA 2010b), so higher wind speeds may lower exposures.  The AER, 

which accounts for infiltration and ventilation and which depends on wind speed (US EPA 

2011b), influences indoor concentrations and thus personal exposures for those pollutants 

arising from indoor sources.  Cooking-related activities have been shown to increase indoor 

and personal concentrations of several VOCs, e.g., benzene and toluene (Clobes et al. 1992; 

Byun et al. 2010).  However, in RIOPA, negative associations were seen between cooking and 

personal exposures to toluene, ethylbenzene and o-xylene.  This inconsistency could be 

explained by statistical chance, although the explanation offered above -- that participants 

without cooking activity traveled more to dine out during which time they were exposed to 

gasoline-related VOCs -- appears reasonable.  The RIOPA data does not allow further analysis, 

but we speculate that visits to "drive-though" fast-food facilities where vehicles are queued up 

and idling may be a particularly important source of VOC exposure.   

3.9.2 Odorant and Cleaning-related VOCs 

 Four determinants were found for the group of odorant and cleaning-related VOCs 

(1,4-DCB, chloroform, d-limonene, α-pinene and β-pinene) (Table 50 and Supplemental 

Table S11).  Like the gasoline-related VOCs, Houston participants had higher exposures to 

these VOCs.  AERs were negatively associated with VOC exposures, reflecting the dilution 

effects affecting indoor sources.  Participants in larger houses (more rooms) tended to have 

lower exposure to 1,4-DCB, chloroform, d-limonene and α-pinene.  Interestingly, the 

behavior of other household members was associated with personal exposure, e.g., 

non-participants showering during the sampling period was associated with higher exposures 

of chloroform, d-limonene, α-pinene and β-pinene. 

 The odorant and cleaning-related VOCs are primarily released by indoor sources, such 

as mothballs, air fresheners, cleansers and chlorinated water (ATSDR 1997a, 2006a; Chin et 

al. 2012; US EPA 2012a).  Thus, the use and storage of these products can affect exposure.  
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Also, since these VOCs arise mainly from indoor sources, AER is expected to be a 

determinant (Mudarri 2010).  The identification of the number of rooms, a suggestion of 

house size, as a determinant may reflect additional mixing in large houses that lowers 

concentrations compared to approximately the same product use in smaller houses.  We 

have previously noted that in low income households, which are usually smaller and 

sometimes crowded, there may be a tendency to try to mask odors using heavier applications 

of cleaners and fragrances that would increase concentrations (Chin et al. 2013).  In RIOPA, 

the number of rooms in a household was positively associated with household income (β = 

0.79, p-value < 0.001), and thus socioeconomic factors may be an indirect or interacting 

factor associated with high exposures of odorant and cleaning-related VOCs.  However, no 

association with household income and VOC exposures were found.  The effect of 

employment on d-limonene exposure might result as unemployed participants spent more 

time at home (2,278 and 2,000 min for unemployed and employed participants, respectively; 

p-value < 0.001), and possibly engaged in chores that increased their contact with cleaners 

and odorants.  

 Chloroform is a byproduct produced when chlorine is used as a water disinfectant, thus 

drinking water, contacting water (e.g., bathing) and inhaling water vapor can increase 

exposure (ATSDR 1997a).  Elevated chloroform concentrations in a room adjoining a study 

bathroom during showering has been noted and called “secondary shower exposure” (Gordon 

et al. 2006).  Such secondary exposure is consistent with findings that chloroform exposure 

in RIOPA increased when other family member showered.  However, bathing or showering 

by the RIOPA participants themselves did not affect their exposure.  Similar (negative) 

results with showering were found for the 1999-2000 NHANES dataset, possibly due to a lack 

of variance in showering-related variables since most (85%) participants showered during the 

sampling period (Riederer et al. 2009).  The same explanation may apply to the present study 

since 87% of participants showered during the sampling period.  Additionally, participants 

were instructed not to get the samplers wet, and they may have removed them outside of the 

shower and bathroom (Weisel et al. 2005b).     

 The effect of city can be attributable to several factors, including differences in outdoor 

emission sources, e.g., industry and traffic (Weisel et al. 2005b), meteorological factors that 

affect both dispersion and emissions of outdoor pollutants, systematic differences in building 
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AERs, demographic and cultural factors.  For example, outdoor temperatures were 

considerably warmer in Houston during the sampling period, compared to Los Angeles and 

Elizabeth (respectively averaging 22.3 ± 7.5, 18.6 ± 4.7 and 14.6 ± 8.6 °C, p-value < 0.001).  

Higher temperatures increase vapor pressures, permeation rates, and evaporation rates, 

potentially producing higher concentrations.  Since a fraction of odorant and 

cleaning-related VOCs arise from volatilization and sublimation from indoor sources, indoor 

temperatures are also important.  Indoor temperatures showed less variation and differences 

were not significant (respectively averaging 23.3 ± 2.6, 23.9 ± 2.6°C and 24.0 ± 3.4 in Los 

Angeles, Elizabeth, and Houston, p-value = 0.052). 

3.9.3 Dry-cleaning and Industry-related VOCs 

 The dry-cleaning and industrial emissions group had three VOCs (TCE, PERC and CTC) 

which were affected by city and household water source (Table 51 and Supplemental Table 

S12).  Elizabeth and Los Angeles participants had the highest TCE and PERC exposures, 

but Houston participants had the highest CTC exposure.  Public water supplies were 

associated with lower TCE exposure, but higher CTC exposure.   

 As expected, PERC exposures increased by visiting a dry cleaner (Table 51 and 

Supplemental Table S12).  This solvent has been widely used for dry cleaning clothes, and 

exposures occur when visiting dry cleaning establishments, and storing dry cleaned clothes at 

home, whether or not clothes are wrapped in plastic (Sherlach et al. 2011), as noted in Table 1.  

PERC exposures were higher among employed participants.  Since PERC has been widely 

used in industry as a degreaser and also has been added into products such as adhesives and 

paint removers (ATSDR 1997b), employed participants may have more chances to contact it.  

The city effect may be related to population density: Los Angeles and Elizabeth have higher 

densities (Weisel et al. 2005b), which may lead to more dry cleaners and elevated ambient 

concentrations.  The outdoor PERC levels were higher in Los Angeles and Elizabeth than in 

Houston (median were 1.29, 0.74, and 0.11 μg m-3, respectively, p-value < 0.001). 

 TCE has been used extensively as a degreaser, paint remover, adhesive, and chemical 

intermediate (ATSDR 1997c).  Exposure may increase if TCE-containing consumer or 

home products are present, e.g., vinyl siding, glue and car stain removers (US EPA 2007b).  

Additionally, TCE is sometimes found in contaminated soils and groundwater, and 
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participants in households near to subsurface or surface contaminated soils may be exposed 

indoors through soil vapor intrusion and water consumption, if a local well (especially a 

private well without water monitoring or treatment) provides the water source.  In the 

RIOPA dataset, the TCE detection frequency was only 31%, thus, the only the higher levels 

were quantified.  In consequence, TCE results may not be robust.    

 Most commercial uses of CTC were phased out by 1986 due to this chemical's toxicity 

and persistence, and industrial emissions also have been limited under the Clean Air Act 

Amendments of 1990 (ATSDR 2005a).  (Previously, CTC had been used in medical 

treatment and as a component in fire extinguishers, fumigants and pesticides.)  Currently, 

CTC use is permitted only in a few industrial processes for which there are no effective 

substitutes.  CTC is globally distributed at generally low levels with spatial little variation, 

except near contaminated source areas where levels increase.  The variation among CTC 

exposures among the RIOPA participants is limited, and little variance can be explained by 

the available variables. 

3.9.4 Summary of Key Exposure Determinants 

 The most common and significant determinants of personal VOC exposures were city, 

inverse wind speed, log-transformed AER, number of rooms, presence of an attached garage, 

and self-pumping gas.  Inverse wind speed was positively associated with log-transformed 

benzene, ethylbenzene, m,p-xylene, o-xylene, MTBE, and PERC.  Log-transformed AER 

was negatively associated with log-transformed toluene, ethylbenzene, m,p-xylene, o-xylene, 

PERC, chloroform, d-limonene, α-pinene and β-pinene.  Participants living in larger houses 

(more rooms) had lower exposures of benzene, styrene, 1,4-DCB, chloroform, d-limonene, 

and α-pinene; those in houses with attached garages had higher levels of benzene, toluene, 

ethylbenzene, m,p-xylene, o-xylene, and MTBE.  Participants who self-pumped gas had 

higher exposures of benzene, ethylbenzene, m,p-xylene, o-xylene, and MTBE.  While the 

effects varied, participants in Houston usually had higher exposures than participants in Los 

Angeles and Elizabeth.  The effect of employment lowered d-limonene exposure but 

increased PERC exposure (Tables 50 and 51).  These effects were significant and based on 

linear mixed models, which controlled for clustering and repeated measures.  As discussed 

later, the LMMs explained for 0.003 (CTC) to 0.4 (β-pinene) of the variance in personal 
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exposure. 

3.9.5 Determinants of Indoor VOC Concentrations 

 An analysis parallel to that performed for personal samples, i.e., using LMMs, was 

conducted for the indoor VOC measurements.  Given the correlation between indoor and 

personal exposure measurements, it is not surprising that many of the same factors were 

identified as determinants (Tables 52 to 54).  Most of the VOCs were affected by city and 

several household characteristics.  Among household characteristics, AER was negatively 

associated with indoor levels of toluene, m,p-xylene, o-xylene, styrene, TCE, PERC, 

chloroform, d-limonene, α-pinene and β-pinene.  Larger houses (more rooms) was 

associated with decreased concentrations of benzene, toluene, m,p-xylene, o-xylene, styrene, 

1,4-DCB, d-limonene and α-pinene.  BTEX (except for toluene) and MTBE increased with 

the presence of attached garages.  Again, city effect varied by VOC, although Houston had 

the highest levels of VOCs except for MTBE, TCE, and PERC.  (These were highest in 

Elizabeth). 

 Two meteorological factors were negatively associated with indoor VOC levels:  

ambient relative humidity with toluene, ethylbenzene, m,p-xylene, o-xylene, styrene, 

chloroform and β-pinene, and wind speed with ethylbenzene, m,p-xylene, o-xylene, MTBE, 

styrene and PERC.  Wind speed is expected to dilute outdoor concentrations from local 

sources, and to affect AERs as noted earlier.  Outdoor relative humidity may be a surrogate 

for seasonal affects and weather, e.g., precipitation, possibly representing effect of fronts or 

low pressure systems with good dispersion or effective cleansing.  Another meteorological 

factor, indoor temperature, showed opposite effects on two indoor VOCs, benzene and 

chloroform.  Higher indoor temperatures were associated with lower benzene, but higher 

chloroform, which may be due to the high volatilization rates. 

3.9.6 Determinants of Outdoor VOC Concentrations 

 Outdoor concentrations were affected by city and three meteorological variables (Tables 

55 to 57).  Ambient relative humidity was negatively associated with concentrations of 

benzene, ethylbenzene, m,p-xylene, o-xylene, MTBE, styrene, and β-pinene levels.  Wind 

speed was negatively associated with concentrations of benzene, toluene, ethylbenzene, 

m,p-xylene, o-xylene, MTBE, styrene, TCE, PERC, and α-pinene.  Effects of city and 
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outdoor temperature depended on the VOC.  For example, Houston had the highest 

concentrations for benzene, m,p-xylene and β-pinene, which may be due to the crowed 

petrochemical industry (Weisel et al. 2005b).   

3.9.7 Common Determinants of Personal, Indoor and Outdoor Concentrations 

 Two factors affected personal, indoor and outdoor levels:  city and wind speed.  Three 

factors affected both personal and indoor levels:  AER, number of rooms, and attached 

garage.  That five common factors affected concentrations of most personal and indoor 

VOC measurements suggests that the critical influence of indoor sources (or levels) on 

personal exposures.  In contrast, outdoor levels had only minor impacts on personal 

exposure, although they may influence indoor levels (Sexton et al. 2007).  As in many other 

studies, RIOPA participants spent most of their time indoors, and outdoor concentrations 

were low. 

3.9.8 Assumption of Linearity 

 The assumption of linearity for the continuous covariates in the LMMs (wind speed, 

ambient relative humidity, indoor temperature, AER, and time spent indoors at home) was 

evaluated using partial residual plots, which account for effects of all other covariates.  Plots 

for wind speed and AER suggested some non-linearities with log-transformed VOC 

concentrations (Figures 25A, C, and E).  Several transformations of these variables were 

attempted, and near-linear relationships were achieved using the reciprocal of wind speed and 

the logarithm of AER (Figures 25B, D, and F). Inverse wind speed can be supported based on 

dilution or mass balance principles (applying to sources with emission rates that are 

independent of the wind speed).  For buildings with internal emission sources, the AER is 

proportional to the air flow through the building, so again the reciprocal of the AER is expected 

be linearly related to indoor concentrations.  However, indoor concentrations are affected by 

many factors, and AERs are measured with error.  The log AER, rather than 1/AER, would 

tend to diminish the effect of both very large and very small AERs, and the fit with this 

transformation suggests that the measured AER may have had some outliers and possibly some 

bias or errors.  Still, the expected relationship was seen, i.e., indoor concentrations of VOCs 

with strong indoor sources (e.g., chloroform and d-limonene) decreased as AERs increased 

(Table 53). 
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3.9.9 Model Validation 

 The estimated fraction of variance (R2) attributable to fixed-effect variables in the LMMs 

for each VOC and each sample type (personal, indoor, outdoor) is shown in Table 58.  For 

personal exposures, R2 ranged from 0.003 (CTC) to 0.40 (β-pinene); for indoor measurements, 

the R2 ranged from 0.09 (toluene) to 0.42 (PERC); and for outdoor concentrations, the R2 

values were from 0.17 (1,4-DCB) to 0.65 (PERC).  Generally, more variance was explained 

for the outdoor measurements.  VOCs with specific emission sources, e.g., PERC (dry 

cleaners) and α-pinene (cleaning products and freshener), had the largest R2 among 15 VOCs; 

this applied to all three sample types.  In contrast, VOCs used in many commercial products 

and that were also components of exhaust and other sources, e.g., toluene, had small R2 across 

the three sample types.  The LMMs explained only a portion of the variance in the dataset.  

While some of the variance is random and some is due to errors in measurement and model 

specifications, it is likely that the LMMs are incomplete models in the sense that other 

(unknown) variables and other (also unknown) interactions among the variables affect 

exposure.  However, low R2 values do not invalidate the identification or significance of the 

determinants.    

3.9.10 Strengths and Limitations 

 The analysis of the extended and comprehensive RIOPA dataset, which includes outdoor, 

indoor and personal measurements of 15 VOCs along with over 500 other variables used as 

candidate factors, advances the understanding of VOC exposure and exposure determinants.  

The relationship of outdoor and home VOC levels to personal exposures were evaluated, using 

time and VOC fractions, and many factors were shared among outdoor, indoor and personal 

measurements.  Strengths of analysis include the use of LMMs, the repeated measurements 

for available participants, and the nested analysis, which allowed estimation of individual 

differences from average levels for specific variables (Krueger and Tian, 2004; Wu, 1996).  

The time fractions help to understand the participants’ activity pattern, and to estimate the 

contribution of VOC sources to exposures.  Many of our results are consistent with previous 

studies, e.g., the significance of strong indoor VOC sources (Sexton et al., 2007), the presence 

of attached garages (D'Souza et al., 2009; Delgado-Saborit et al., 2009; Sexton et al., 2007; 

Symanski et al., 2009; Wang et al., 2009), and activities such as visiting dry cleaners (D'Souza 
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et al., 2009; Wallace, 1989; Wallace, 2001; Wang et al., 2009).  Several new determinants 

were discovered, including a strong effect due to city, other family member showering, and 

residence size.  

 The limitations of the dataset include missing data, which decrease sample size and 

statistical power.  Two methods were used to address this issue.  First, variables with sample 

sizes less than 400 (>150 missing cases) were excluded from LMMs.  This excluded several 

potentially significant variables, e.g., land use data.  Fortunately, land use data were highly 

correlated with city, which was utilized in every model.  Second, the use of multiple 

imputations was evaluated, and results showed that for the models tested, the impacts of 

missing data would not be substantial.  We also noted that models for personal exposures 

explained less variance (lower R2) than outdoor and indoor models, probably due to the 

number and complexity of factors (especially behaviors) that affect an individual’s exposure.  

A final limitation of the study is the representativeness of the study sample.  RIOPA data was 

collected in three U.S. cities, which have specific emission sources (Weisel et al. 2005b).  A 

convenience sample was used, which led to a number of demographic and other differences, as 

discussed.  Since the study period, VOC sources and levels may have changed somewhat.  

Thus, study results may not reflect the U.S. population or current period.  However, most 

findings correspond to other studies that using regional or national data, thus, most of the 

results appear relevant. 
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Table 1.  Determinants of VOC exposures in previous and present studies. 
Determinants Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 1,4-DCB TCE PERC Chloroform CTC d-Limonene α-Pinene β-Pinene 

Personal activities                Contact with chlorinated water        m   A, C, M  M M M 
Cooking L L, m m  m      L     Cycling/ walking  E E E E           Keep pets           m    m 
Near vehicle or engines D, E, G D A, D, E A, D, E A, D, E  D   A      Polish/wax furniture    j j   M        Pump gas/near gasoline E, K, M J, K E, J, K, M E, J, K, M E, J, K, M M          Renovate house  M           M   Smoke or near ETS A, B, C, D, G, H, k B, D, e, H B, D, H B, D, H B, D, H  A, B, D         Stay in/ presence of attached garages F, G, H, J, K, M F, H, J, M F, G, H, J, K, M F, H, J, K, M F, H, J, K, M H, M    H      Time spent at home  m     m         Time spent in closed cars         M       Undertake arts and crafts  E E E E           Use air cleaning devices    M M       M    Use deodorizers and mothballs        A, C, H    m    Use gas heating/gas stove D, G, M D, j D D D D D      M   Use paint and other solvents H H, K G, H, K, M H, J, K, M H, J, K      K     Use perfume      m          Visit dry-cleaner/near dry-cleaned clothes          A, C, H, K, M      Socioeconomic factors                Age           i, k     City/ region* l, m l l, m l, m  m m m m m m m m m m 
Education/parental education k    l   k        Non-Hispanic White h, k h h h h h  h, k   h, i, k     Male K  K K K      k     Machine-related jobs/ work in a factory H H G, H H H           Ownership of the house           m     Unemployed          m   M   Environmental factors                AER  m m m m     m m  m m m 
Ambient RH          m m    m 
Furniture refinisher in neighborhood        M        Existence of a fireplace       G     M    Existence of a swim pool           H, I   M  Existence of a well/ use well water         M  h m    Indoor temperature m        m       Live in an apartment/mobile home L          I     Near commerical street/ highway      H  H  H      Number of floors m     m          Number of rooms m      m m   m  m m  Open windows/ doors f, h, j, k f, h, j, k f, h f, h f, h, m f f, m f, m  f, h f, h, i, k  f f f 
Restaurants or bakery in neighborhood        M m       Vinyl, asbestos or other siding         M       Wind speed m  m m m m    m      Years lived in home h h h h h           

A, Wallace et al. 1989; b, Edwards et al. 2001; c, Wallace 2001; d, Kim et al. 2002; e, Hinwood et al. 2007; f, Sexton et al. 2007; g, Delgado-Saborit et al. 2009; h, 
D'Souza et al. 2009; i, Riederer et al. 2009; j, Symanski et al. 2009; k, Wang et al. 2009; l, Byun et al. 2010; m, the present study. 
Capital letters indicate increased exposure, and lower case indicates decreased exposure; *, no increasing or decreasing trends.  
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Table 2.  Toxicity standards/guidelines for personal VOC exposures. 

 
VOCs 

Cancer Non-cancer 

IRIS IARC URF  
(µg m-3)-1 Source Health effect  

Chronic 
RfC  

(µg m-3) 
Source 

Acute 
MRL  

(µg m-3) 
Source 

Benzene A 1 7.8 x 10-6 IRIS, 2011 Leukemia (occupational)  30  IRIS, 2011 29  ATSDR, 2010 

Toluene D 3 NA IRIS, 2011 Neurological effects (occupational); color vision impairment 
(occupational) and respiratory irritation (human volunteer)  5000  IRIS, 2011 3766  ATSDR, 2010 

Ethylbenzene D 2B 2.5 x 10-6 OEHHA, 2005 Lung, liver, and renal adenomas and carcinomas (animal)  1000  IRIS, 2011 21696  ATSDR, 2010 

Xylenes D 3 NA IRIS, 2011 Impaired motor coordination (animal)  100  IRIS, 2011 8679  ATSDR, 2010 

MTBE D 3 2.6 x 10-7 OEHHA, 2005 Lymphomas, leukaemias, hepatocellular adenomas, and renal 
tubular and testicular tumours (animal)  3000  IRIS, 2011 7206  ATSDR, 2010 

Styrene ND 2B 2.0 x 10-6 Caldwell  
 et al., 1998 Pulmonary adenomas (animal)  1000  IRIS, 2011 21286  ATSDR, 2010 

1,4-DCB ND 2B 1.1 x 10-5 OEHHA, 2005 Liver and kidney tumor, and mononuclear-cell leukemia (animal)  800  IRIS, 2011 12019  ATSDR, 2010 

TCE  ND 2A 2.0 x 10-6 OEHHA, 2005 Liver and biliary tract cancer, and lymphoma (human); liver, 
renal-cell, lung and testicular tumours, and lymphomas (animal)  40  EPA, 2001 10741  ATSDR, 2010 

PERC ND 2A 5.9 x 10-6 OEHHA, 2005 
Oesophageal and cervical cancer, and non-Hodgkin's lymphoma 

(human); hepatocellular carcinomas and mononuclear-cell 
leukaemia (animal) 

 16  EPA, 2010 1356  ATSDR, 2010 

Chloroform B2 2B 2.3 x 10-5 IRIS, 2011 Renal tubule and hepatocellular tumours (animal)  NA   488  ATSDR, 2010 

CTC  B2 2B 1.5 × 10-5 IRIS, 2011 Liver and mammary neoplasms (animal)  100  IRIS, 2011 NA   

d-Limonene  ND ND NA    NA   NA   

α-Pinene  ND ND NA    NA   NA   

β-Pinene  ND ND NA    NA   NA   
IRIS, Integrated Risk Information System; IARC, International Agency for Research on Cancer; URF, unit risk factor; RfC, reference concentration; MRL, minimal 
risk level; NA, not available; ND, no data.
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Table 3.  Statistics of outdoor VOC (μg m-³) concentrations in RIOPA. 

Outdoor n Mean SD GM GSD Min 25th 50th 75th 95th Max 

Benzene 555 2.15 2.11 1.57 2.19 0.27 0.69 1.68 2.67 5.16 20.92 

CTC 555 0.72 1.31 0.63 1.50 0.14 0.55 0.64 0.75 1.00 31.23 

Chloroform 555 0.37 1.43 0.22 1.87 0.14 0.14 0.21 0.21 0.79 24.72 

1,4-DCB 555 2.15 17.16 0.57 2.69 0.22 0.46 0.46 0.64 3.66 355.05 

Ethylbenzene 555 1.28 1.87 0.88 2.29 0.11 0.37 0.93 1.67 3.04 36.24 

d-Limonene 555 1.97 6.34 0.78 2.65 0.35 0.35 0.64 0.64 6.54 74.20 

MC 555 1.06 2.23 0.63 2.73 0.15 0.15 1.05 1.05 2.46 39.86 

MTBE 555 8.11 9.99 5.04 2.79 0.19 2.84 5.32 9.72 22.09 105.17 

α-Pinene 555 1.31 4.16 0.71 2.53 0.14 0.46 1.02 1.02 2.23 63.17 

β-Pinene 555 0.94 2.15 0.72 1.69 0.51 0.51 0.51 1.05 1.26 46.17 

Styrene 555 0.58 2.06 0.39 1.94 0.17 0.17 0.42 0.42 1.29 47.00 

Toluene 555 6.83 6.54 5.26 1.91 3.35 3.35 3.56 8.71 19.63 64.97 

TCE 555 0.34 1.30 0.22 1.92 0.12 0.12 0.22 0.22 0.80 30.07 

PERC 555 1.02 2.17 0.51 3.16 0.11 0.21 0.61 1.21 3.17 41.82 

m,p-Xylene 555 3.56 4.16 2.44 2.36 0.33 1.49 2.49 4.26 10.02 51.21 

o-Xylene 555 1.46 3.90 0.92 2.31 0.15 0.43 0.96 1.58 3.23 80.98 
n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum; 
max, maximum.
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Table 4.  Statistics of outdoor VOC concentrations (μg m-³) stratified by city in RIOPA. 

Outdoor 

Los Angeles, CA 
(n=175) 

Elizabeth, NJ 
(n=182) 

Houston, TX 
(n=198) 

Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th 

Benzene 2.50 2.37 1.76 2.36 1.98 6.10 1.45 1.56 1.09 2.03 1.22 3.30 2.48 2.17 1.98 1.93 1.94 5.69 

CTC 0.68 0.23 0.64 1.45 0.63 1.00 0.84 2.28 0.63 1.78 0.69 1.04 0.63 0.15 0.62 1.21 0.62 0.80 

Chloroform 0.40 0.77 0.28 1.88 0.21 1.26 0.47 1.93 0.25 1.87 0.21 0.97 0.26 1.34 0.16 1.56 0.14 0.35 

1,4-DCB 1.32 2.13 0.78 2.34 0.46 5.05 3.58 26.97 0.64 2.63 0.46 6.95 1.57 12.38 0.38 2.71 0.22 2.45 

Ethylbenzene 1.61 1.53 1.15 2.30 1.30 4.50 1.34 2.75 0.86 2.31 0.99 2.93 0.94 0.80 0.72 2.12 0.79 2.49 

d-Limonene 3.33 9.17 1.30 2.95 0.64 12.30 1.99 5.65 0.88 2.34 0.64 10.90 0.74 2.53 0.44 1.86 0.35 1.36 

MC 1.59 3.18 1.22 1.62 1.05 3.25 1.46 2.07 1.19 1.57 1.05 3.09 0.23 0.16 0.19 1.68 0.15 0.59 

MTBE 10.79 11.43 7.26 2.61 8.31 26.81 5.77 5.34 3.77 2.75 4.32 19.16 7.89 11.31 4.78 2.72 4.52 25.6
7 

α-Pinene 2.30 6.52 1.27 2.01 1.02 6.52 1.34 3.10 1.09 1.43 1.02 1.02 0.41 0.71 0.29 2.13 0.30 0.84 

β-Pinene 0.86 1.43 0.62 1.79 0.51 2.22 0.89 3.46 0.56 1.64 0.51 1.23 1.08 0.46 1.06 1.15 1.05 1.05 

Styrene 0.71 0.94 0.53 1.81 0.42 2.52 0.72 3.46 0.45 1.52 0.42 0.82 0.34 0.36 0.25 1.98 0.17 1.09 

Toluene 8.69 8.82 6.32 2.10 3.35 24.14 6.80 5.68 5.29 1.93 3.35 18.06 5.21 4.04 4.45 1.62 3.56 14.3
6 

TCE 0.29 0.30 0.25 1.52 0.22 0.59 0.60 2.22 0.36 1.98 0.22 1.05 0.14 0.09 0.13 1.36 0.12 0.30 

PERC 1.85 1.90 1.28 2.43 1.30 4.40 1.10 3.09 0.72 2.12 0.74 2.19 0.22 0.20 0.17 1.89 0.11 0.69 

m,p-Xylene 4.91 5.25 3.19 2.62 3.56 12.97 3.21 4.31 2.25 2.24 2.34 8.75 2.69 2.18 2.07 2.10 2.23 7.52 

o-Xylene 1.78 1.66 1.26 2.31 1.40 4.45 1.67 6.54 0.88 2.17 0.94 2.61 0.99 0.84 0.73 2.25 0.80 2.45 

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 5.  Statistics of indoor VOC (μg m-³) concentrations in RIOPA. 

Indoor n Mean SD GM GSD Min 25th 50th 75th 95th Max 

Benzene 554 3.50 5.15 2.19 2.50 0.55 1.27 2.19 3.85 10.03 46.07 

CTC 554 0.71 0.97 0.61 1.61 0.14 0.52 0.62 0.75 1.10 18.07 

Chloroform 554 1.86 2.97 0.93 3.20 0.14 0.37 0.92 2.16 6.34 40.18 

1,4-DCB 554 68.84 303.76 2.61 8.94 0.22 0.46 1.40 7.85 343.88 4050.73 

Ethylbenzene 554 2.52 4.74 1.49 2.52 0.29 0.89 1.46 2.47 7.62 68.37 

d-Limonene 554 30.98 107.06 9.27 4.81 0.35 3.16 9.67 27.99 102.75 2101.31 

MC 554 2.40 10.61 0.91 3.00 0.15 0.67 1.05 1.05 7.50 187.64 

MTBE 554 11.79 27.29 5.60 3.26 0.19 3.10 5.98 10.68 36.00 348.04 

α-Pinene 554 7.04 14.60 3.03 3.24 0.40 1.02 2.60 7.17 25.49 174.67 

β-Pinene 554 4.85 10.95 1.77 3.63 0.51 0.51 1.21 4.46 20.45 123.14 

Styrene 554 1.47 4.24 0.68 2.58 0.17 0.42 0.42 1.07 5.13 59.37 

Toluene 554 15.26 24.48 9.83 2.37 3.35 3.56 10.41 17.10 39.79 323.95 

TCE 554 0.97 7.19 0.27 2.58 0.12 0.12 0.22 0.28 1.73 132.32 

PERC 554 1.84 4.47 0.80 3.40 0.11 0.35 0.84 1.71 6.01 78.05 

m,p-Xylene 554 7.32 15.87 4.01 2.68 0.33 2.28 4.07 6.91 22.18 231.22 

o-Xylene 554 2.47 4.78 1.46 2.51 0.15 0.88 1.46 2.44 7.24 66.88 
n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum; 
max, maximum.
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Table 6.  Statistics of indoor VOC concentrations (μg m-³) stratified by city in RIOPA. 

Indoor 

Los Angeles, CA 
(n=174) 

Elizabeth, NJ 
(n=182) 

Houston, TX 
(n=198) 

Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th 

Benzene 3.00 5.00 1.94 2.36 2.05 6.53 2.51 3.97 1.53 2.49 1.65 7.33 4.85 5.93 3.38 2.19 3.06 12.23 

CTC 0.80 1.69 0.60 1.73 0.58 1.09 0.66 0.30 0.58 1.73 0.63 1.18 0.68 0.28 0.65 1.35 0.62 1.12 

Chloroform 1.57 2.13 0.88 2.96 0.92 5.16 1.65 3.46 0.74 3.25 0.74 6.51 2.31 3.07 1.22 3.21 1.32 9.11 

1,4-DCB 38.81 315.6 1.61 5.16 1.18 31.06 29.20 121.1 2.40 6.66 1.39 137.1 131.7 389.6 4.32 15.01 2.02 1017 

Ethylbenzene 2.45 3.51 1.51 2.53 1.45 7.99 2.30 5.71 1.21 2.69 1.29 7.02 2.78 4.72 1.77 2.26 1.68 7.62 

d-Limonene 21.87 45.00 6.96 4.76 7.31 92.25 14.66 24.53 5.41 4.46 6.71 62.56 53.99 170.3 19.58 3.87 20.79 166.8 

MC 1.86 2.77 1.33 1.85 1.05 6.67 1.77 4.17 1.24 1.73 1.05 3.71 3.44 17.08 0.49 4.36 0.37 11.80 

MTBE 13.16 33.09 6.38 3.31 7.44 26.92 7.35 9.56 3.98 3.31 4.96 25.02 14.67 31.88 6.84 2.97 5.82 55.08 

α-Pinene 6.82 14.62 2.57 3.35 1.02 32.60 3.97 10.83 1.92 2.58 1.02 14.34 10.06 16.88 5.35 3.01 5.53 34.90 

β-Pinene 3.04 9.20 1.14 3.09 0.51 10.50 3.32 11.15 1.07 3.14 0.51 9.90 7.84 11.57 4.13 3.02 4.03 24.96 

Styrene 1.30 2.04 0.71 2.49 0.42 6.45 1.50 4.05 0.64 2.52 0.42 6.60 1.58 5.64 0.68 2.71 0.67 3.04 

Toluene 16.29 33.73 9.72 2.45 10.71 34.60 12.75 11.58 9.31 2.19 9.74 34.80 16.66 23.47 10.42 2.46 10.51 47.65 

TCE 0.51 2.52 0.26 1.78 0.22 0.62 0.97 2.50 0.47 2.62 0.22 2.79 1.38 11.55 0.16 2.50 0.12 0.85 

PERC 3.32 7.06 1.71 2.83 1.66 13.80 1.32 1.98 0.94 2.14 0.90 3.38 1.02 2.42 0.35 3.43 0.30 5.14 

m,p-Xylene 6.88 9.33 4.01 2.82 4.16 25.22 6.50 18.99 3.23 2.71 3.18 15.85 8.47 17.23 4.90 2.42 4.55 25.02 

o-Xylene 2.44 3.14 1.58 2.44 1.64 7.71 2.13 5.32 1.19 2.52 1.18 6.38 2.80 5.40 1.64 2.49 1.53 8.98 

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 7.  Statistics of personal adult VOC (μg m-³) concentrations in RIOPA. 

Adult n Mean SD GM GSD Min 25th 50th 75th 95th Max 

Benzene 544 3.64 5.31 2.37 2.41 0.27 1.45 2.39 4.09 10.74 85.37 

CTC 544 0.80 2.44 0.61 1.66 0.14 0.53 0.62 0.74 1.08 42.27 

Chloroform 544 4.25 52.49 1.05 3.17 0.14 0.49 1.04 2.20 6.58 1223.56 

1,4-DCB 544 56.83 229.37 2.98 8.10 0.22 0.46 1.88 8.30 314.50 2153.45 

Ethylbenzene 544 2.78 5.13 1.65 2.54 0.11 0.97 1.68 2.69 7.48 64.55 

d-Limonene 544 41.14 238.90 10.90 4.58 0.35 4.85 11.77 29.42 112.21 5113.77 

MC 544 3.11 17.14 0.99 3.05 0.15 0.93 1.05 1.05 7.40 329.85 

MTBE 544 14.77 42.67 6.98 3.23 0.19 3.83 7.14 13.99 42.67 843.74 

α-Pinene 543 6.86 16.26 3.20 3.03 0.55 1.02 2.88 6.95 23.62 231.48 

β-Pinene 544 5.53 13.07 1.92 3.72 0.51 0.51 1.52 4.49 22.43 133.16 

Styrene 544 1.55 4.31 0.73 2.56 0.17 0.42 0.42 1.10 5.52 59.52 

Toluene 544 19.12 37.31 11.60 2.48 3.35 4.38 12.42 19.94 50.25 641.47 

TCE 544 1.44 10.74 0.29 2.90 0.12 0.12 0.22 0.47 2.38 200.31 

PERC 544 7.17 112.35 0.94 3.54 0.11 0.41 0.89 2.00 7.24 2617.79 

m,p-Xylene 544 8.07 15.49 4.63 2.63 0.70 2.71 4.42 7.85 22.73 219.05 

o-Xylene 544 2.87 5.59 1.74 2.42 0.42 1.06 1.72 2.77 8.16 79.56 
n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum; 
max, maximum.
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Table 8.  Statistics of personal adult VOC concentrations (μg m-³) stratified by city in RIOPA. 

Adult 

Los Angeles, CA 
(n=174) 

Elizabeth, NJ 
(n=171) 

Houston, TX 
(n=199) 

Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th 

Benzene 3.10 6.53 2.08 2.25 2.26 6.22 2.80 4.19 1.70 2.51 1.76 10.09 4.82 4.76 3.55 2.10 3.13 14.78 

CTC 0.86 3.16 0.60 1.66 0.58 0.99 0.88 2.96 0.57 1.99 0.64 1.23 0.67 0.23 0.65 1.28 0.62 1.06 

Chloroform 8.52 92.67 0.92 3.14 0.87 5.19 2.20 4.83 0.95 3.38 0.85 7.02 2.27 2.95 1.28 2.95 1.33 8.65 

1,4-DCB 14.95 63.36 1.70 4.74 1.23 60.10 26.49 113.7 2.59 6.04 1.85 86.76 119.5 351.3 5.49 12.66 3.42 945.9 

Ethylbenzene 2.33 3.60 1.50 2.46 1.66 5.55 2.91 6.89 1.42 2.86 1.40 8.04 3.06 4.45 2.03 2.25 1.83 11.22 

d-Limonene 48.17 388.2 7.41 4.43 7.62 87.71 17.91 32.12 6.72 4.58 8.39 59.67 54.97 152.6 23.16 3.43 22.40 154.3 

MC 3.84 25.02 1.41 2.15 1.05 8.40 1.81 3.79 1.23 1.78 1.05 4.25 3.60 15.63 0.59 4.39 0.45 12.46 

MTBE 12.23 13.48 8.09 2.69 8.52 35.20 14.63 65.43 5.06 3.61 5.49 38.02 17.12 33.88 8.08 3.21 7.32 66.77 

α-Pinene 4.83 8.12 2.33 2.92 1.02 26.59 5.06 16.44 2.25 2.73 1.02 15.89 10.17 20.44 5.72 2.68 5.83 27.49 

β-Pinene 2.80 8.55 1.06 2.95 0.51 10.09 5.14 16.19 1.32 3.61 0.51 30.34 8.25 12.86 4.45 2.94 4.16 25.53 

Styrene 1.19 1.90 0.67 2.39 0.42 6.07 1.84 5.56 0.69 2.76 0.42 10.40 1.61 4.59 0.81 2.51 0.84 3.09 

Toluene 18.79 49.32 11.17 2.44 12.71 48.60 20.74 38.63 11.33 2.67 11.33 56.71 18.01 20.17 12.25 2.36 13.09 49.91 

TCE 0.72 3.31 0.30 2.20 0.22 1.56 2.39 15.63 0.53 3.03 0.50 4.80 1.26 9.79 0.17 2.62 0.12 1.22 

PERC 3.79 9.59 1.86 2.69 1.75 9.82 17.36 200.1 1.11 2.98 1.00 4.94 1.38 4.75 0.44 3.41 0.36 6.40 

m,p-Xylene 7.07 9.76 4.45 2.64 4.54 18.89 7.91 20.34 3.84 2.89 4.04 25.51 9.07 14.75 5.64 2.32 5.10 32.12 

o-Xylene 2.53 3.42 1.76 2.29 1.84 6.01 3.04 8.06 1.48 2.71 1.56 9.16 3.02 4.40 1.98 2.24 1.80 9.52 

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation.
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Table 9.  Statistics of personal child VOC (μg m-³) concentrations in RIOPA. 

Child n Mean SD GM GSD Min 25th 50th 75th 95th Max 

Benzene 209 4.16 5.57 2.84 2.29 0.55 1.75 2.79 4.55 11.95 54.68 

CTC 209 0.57 0.16 0.54 1.41 0.14 0.47 0.56 0.67 0.83 1.22 

Chloroform 209 2.03 3.63 1.10 2.82 0.14 0.53 1.14 2.12 7.47 38.59 

1,4-DCB 209 121.56 313.58 6.83 11.39 0.22 1.05 4.18 25.88 978.59 1783.50 

Ethylbenzene 209 3.34 6.35 2.00 2.44 0.11 1.22 1.95 3.07 10.28 60.24 

d-Limonene 209 32.11 49.75 16.48 3.56 0.64 8.02 17.36 37.99 111.49 577.74 

MC 209 1.70 6.50 0.62 3.31 0.15 0.15 0.88 1.05 5.25 88.88 

MTBE 209 11.69 22.06 6.73 2.87 0.19 3.86 7.03 13.46 30.16 224.83 

α-Pinene 209 5.69 5.75 3.63 2.63 0.75 1.50 3.57 8.14 16.61 36.03 

β-Pinene 209 5.33 6.21 2.79 3.29 0.51 1.05 2.85 8.06 18.22 35.29 

Styrene 209 1.70 4.36 0.78 2.65 0.17 0.42 0.65 1.23 6.89 39.70 

Toluene 209 18.30 27.82 11.72 2.38 3.35 7.64 12.34 19.49 57.17 238.39 

TCE 209 0.35 0.89 0.20 2.17 0.12 0.12 0.12 0.22 0.95 9.62 

PERC 209 2.82 15.91 0.67 3.52 0.11 0.29 0.57 1.40 7.34 211.10 

m,p-Xylene 209 8.87 16.74 5.31 2.47 0.70 3.14 5.15 8.55 28.17 205.41 

o-Xylene 209 2.91 4.88 1.89 2.33 0.15 1.22 1.96 2.89 7.97 59.65 
n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; min. minimum; 
max, maximum.
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Table 10.  Statistics of personal child VOC concentrations (μg m-³) stratified by city in  
           RIOPA. 

Child 

Los Angeles, CA 
(n=33) 

Elizabeth, NJ 
(n=41) 

Houston, TX 
(n=135) 

Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th Mean SD GM GSD 50th 95th 

Benzene 2.20 1.39 1.76 2.07 2.21 5.48 2.75 4.00 1.80 2.37 1.97 6.54 5.07 6.37 3.68 2.08 3.96 13.64 

CTC 0.49 0.17 0.46 1.57 0.51 0.77 0.62 0.22 0.57 1.62 0.63 0.94 0.57 0.12 0.56 1.25 0.56 0.80 

Chloroform 0.93 0.97 0.61 2.51 0.71 3.78 2.62 6.16 0.99 3.57 1.06 9.07 2.12 2.92 1.32 2.53 1.41 11.40 

1,4-DCB 1.33 1.91 0.79 2.45 0.46 6.51 36.40 159.3 2.75 6.76 1.46 137.1 176.8 369.1 15.26 11.23 10.19 1086 

Ethylbenzene 1.87 1.14 1.51 2.04 1.69 4.41 3.41 9.24 1.56 2.80 1.53 6.61 3.67 6.01 2.31 2.37 2.08 11.17 

d-Limonene 9.96 8.45 6.25 3.17 7.55 31.81 19.86 23.56 9.03 4.68 14.49 52.51 41.24 58.39 25.07 2.66 24.46 126.1 

MC 1.44 1.33 1.22 1.57 1.05 5.16 2.22 3.25 1.44 2.11 1.05 10.98 1.61 7.87 0.41 3.40 0.36 4.53 

MTBE 8.34 6.86 5.94 2.52 5.87 25.44 9.23 10.52 4.84 3.92 6.63 37.49 13.25 26.54 7.67 2.60 7.19 31.80 

α-Pinene 4.33 8.17 1.92 2.89 1.02 31.89 4.01 4.15 2.53 2.59 2.18 15.19 6.53 5.31 4.73 2.31 4.85 17.32 

β-Pinene 1.24 1.27 0.88 2.16 0.51 4.93 3.25 5.70 1.42 3.27 1.23 19.53 6.97 6.46 4.55 2.63 4.46 19.88 

Styrene 1.22 1.74 0.70 2.51 0.42 6.68 2.22 4.73 0.85 3.07 0.42 16.94 1.65 4.69 0.78 2.57 0.78 3.14 

Toluene 15.17 15.24 10.32 2.45 11.10 50.54 26.39 49.34 13.25 2.77 11.27 209.1 16.61 19.85 11.64 2.25 12.58 46.95 

TCE 0.28 0.16 0.25 1.45 0.22 0.69 1.01 1.85 0.52 2.69 0.52 7.08 0.16 0.13 0.14 1.54 0.12 0.40 

PERC 5.00 15.25 1.82 3.03 1.55 33.95 1.65 2.95 1.03 2.34 0.97 5.75 2.65 18.26 0.46 3.41 0.39 5.76 

m,p-Xylene 4.63 3.04 3.55 2.30 4.13 11.59 10.69 31.49 4.80 2.71 3.90 19.90 9.36 11.45 6.05 2.38 5.53 38.98 

o-Xylene 1.77 0.89 1.51 1.89 1.72 3.34 3.26 9.12 1.57 2.58 1.48 6.65 3.08 3.40 2.12 2.33 2.01 10.07 

n, sample size; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation. 
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Table 11.  Spearman rank correlation coefficients among outdoor VOC measurements in RIOPA. 

Outdoor Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE α-Pinene β-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene 

Benzene 1                
CTC 0.337 1               

Chloroform 0.282 0.722 1              
1,4-DCB 0.025 0.125 0.369 1             

Ethylbenzene 0.657 0.804 0.629 0.153 1            
d-Limonene 0.182 0.261 0.481 0.39 0.345 1           

MC 0.408 0.204 0.16 0.023 0.393 0.082 1          
MTBE 0.623 0.061 0.145 -0.017 0.38 0.263 0.288 1         

α-Pinene 0.174 0.431 0.533 0.116 0.419 0.468 0.101 0.251 1        
β-Pinene 0.363 0.886 0.795 0.181 0.747 0.483 0.219 0.132 0.488 1       
Styrene 0.43 0.95 0.753 0.135 0.866 0.313 0.276 0.179 0.483 0.891 1      
Toluene 0.493 0.137 0.214 0.054 0.405 0.41 0.378 0.547 0.285 0.206 0.216 1     

TCE 0.312 0.967 0.708 0.154 0.796 0.258 0.213 0.047 0.415 0.861 0.938 0.152 1    
PERC 0.516 0.809 0.613 0.115 0.837 0.348 0.464 0.263 0.421 0.758 0.843 0.36 0.804 1   

m,p-Xylene 0.757 0.504 0.442 0.079 0.815 0.354 0.548 0.63 0.345 0.521 0.625 0.599 0.51 0.733 1  
o-Xylene 0.324 0.399 0.356 0.079 0.51 0.295 0.219 0.232 0.227 0.374 0.441 0.296 0.453 0.432 0.566 1 

Bold type indicates statistically significant (p<0.05). 
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Table 12.  Spearman rank correlation coefficients among indoor VOC measurements in RIOPA. 

Indoor Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE α-Pinene β-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene 

Benzene 1                
CTC 0.483 1               

Chloroform 0.201 0.201 1              
1,4-DCB 0.258 0.417 0.073 1             

Ethylbenzene 0.229 0.181 0.063 0.127 1            
d-Limonene 0.065 0.072 0.11 0.053 0.002 1           

MC -0.007 0.062 0.004 -0.018 0.023 0.019 1          
MTBE 0.546 0.603 0.204 0.18 0.279 0.042 -0.008 1         

α-Pinene 0.233 0.409 0.22 0.218 0.095 0.258 0.081 0.284 1        
β-Pinene 0.282 0.262 0.239 0.097 0.044 0.172 0.072 0.256 0.577 1       
Styrene 0.092 0.009 0.04 0.139 0.218 0.01 0.435 0.043 0.07 0.081 1      
Toluene 0.492 0.723 0.218 0.3 0.357 0.081 0.238 0.633 0.407 0.309 0.217 1     

TCE -0.004 0.036 0.047 0.024 0 0.048 0.022 0.004 0.051 0.014 -0.01 0.044 1    
PERC 0.157 0.29 0.096 0.084 0.135 -0.015 0.012 0.229 0.107 0.031 0.038 0.306 -0.008 1   

m,p-Xylene 0.22 0.175 0.043 0.125 0.966 0.006 0.03 0.272 0.091 0.046 0.227 0.369 0.003 0.092 1  
o-Xylene 0.263 0.232 0.06 0.151 0.955 0.009 0.024 0.329 0.116 0.065 0.228 0.408 0.005 0.116 0.98 1 

Bold type indicates statistically significant (p<0.05). 
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Table 13.  Spearman rank correlation coefficients among personal adult VOC measurements in RIOPA. 

Adult Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE α-Pinene β-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene 

Benzene 1                
CTC 0.554 1               

Chloroform 0.667 0.747 1              
1,4-DCB 0.077 0.002 0.012 1             

Ethylbenzene 0.424 0.309 0.248 0.05 1            
d-Limonene 0.62 0.666 0.912 0.024 0.22 1           

MC 0.007 0.009 0.015 -0.022 -0.004 0.019 1          
MTBE 0.432 0.116 0.119 0.019 0.52 0.114 -0.01 1         

α-Pinene 0.122 0.158 0.138 0.07 0.056 0.202 0.03 0.017 1        
β-Pinene 0.181 0.071 0.018 0.083 0.024 0.138 0.002 0.037 0.635 1       
Styrene 0.092 0.12 -0.005 0.153 0.228 -0.008 0.134 0.044 0.042 0.058 1      
Toluene 0.607 0.535 0.717 0.079 0.544 0.657 0.075 0.366 0.112 0.026 0.108 1     

TCE 0.034 0.139 0.067 -0.016 0.021 0.061 0.004 -0.002 0.049 0.017 0.011 0.039 1    
PERC 0.015 0.033 0.035 -0.011 -0.007 0.026 -0.004 -0.003 0.024 -0.007 -0.008 0.013 0.797 1   

m,p-Xylene 0.408 0.269 0.267 0.048 0.961 0.239 0.004 0.446 0.048 0.012 0.234 0.567 0.013 0 1  
o-Xylene 0.465 0.311 0.281 0.037 0.952 0.252 0 0.649 0.063 0.034 0.212 0.592 0.025 0 0.944 1 

Bold type indicates statistically significant (p<0.05). 
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Table 14.  Spearman rank correlation coefficients among personal child VOC measurements in RIOPA. 

Child Benzene CTC Chloroform 1,4-DCB Ethylbenzene d-Limonene MC MTBE α-Pinene β-Pinene Styrene Toluene TCE PERC m,p-Xylene o-Xylene 

Benzene 1                
CTC 0.031 1               

Chloroform 0.035 0.228 1              
1,4-DCB 0.225 0.074 0.134 1             

Ethylbenzene 0.073 0.089 0.016 0.071 1            
d-Limonene 0.043 0.051 0.104 0.16 -0.018 1           

MC -0.039 -0.029 -0.043 -0.06 -0.027 -0.021 1          
MTBE 0.205 0.158 0.069 -0.013 0.195 -0.022 -0.021 1         

α-Pinene 0.016 0.139 0.15 0.134 -0.004 0.289 0.065 0.124 1        
β-Pinene 0.156 0.109 0.104 0.249 -0.044 0.344 0.035 -0.022 0.5 1       
Styrene 0.046 -0.061 -0.012 0.244 0.174 0.022 0.426 -0.003 0.199 0.163 1      
Toluene 0.041 0.137 0.081 0.105 0.379 0.138 0.165 0.192 0.069 -0.013 0.202 1     

TCE -0.066 0.075 0.07 -0.035 0.034 -0.066 0.016 0.054 0.064 -0.081 -0.013 0.105 1    
PERC -0.026 0.035 -0.028 -0.042 -0.02 -0.046 0.026 -0.011 -0.015 0.037 0.003 0.03 -0.002 1   

m,p-Xylene 0.071 0.119 0.004 0.132 0.826 -0.019 -0.011 0.226 0.047 -0.026 0.262 0.497 0.054 -0.01 1  
o-Xylene 0.086 0.139 0.01 0.154 0.761 -0.008 0.031 0.276 0.099 0 0.299 0.527 0.057 -0.006 0.972 1 

Bold type indicates statistically significant (p<0.05)
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Table 15.  Statistics of VOC concentrations (μg L-1) in blood measured for NHANES III and continuous NHANES. 

VOCs 
 NHANES III: 1988-1994  Continuous NHANES: 1999-2004 

 n DF Mean SE 50th 90th 95th  n DF Mean SE 50th 90th 95th 

Aromatics                 

Benzene  796 66 0.132 0.008 0.062 0.323 0.476  2482 62 0.091 0.006 0.032 0.190 0.320 

Toluene  575 56 0.596 0.008 0.281 1.081 1.478  2587 95 0.278 0.014 0.120 0.578 0.880 

Ethylbenzene  606 56 0.125 0.004 0.061 0.183 0.245  2439 68 0.049 0.002 0.031 0.089 0.133 

m,p-Xylene  1018 62 0.246 0.033 0.117 0.414 0.607  2602 97 0.206 0.012 0.140 0.374 0.512 

o-Xylene  628 59 0.153 0.004 0.101 0.198 0.267  2654 41 0.054 0.002 0.035 0.087 0.116 

BTEX  1018 NA 0.845 0.101 0.463 1.642 2.380  2703 NA 0.645 0.030 0.363 1.293 1.842 

Styrene  624 54 0.094 0.001 0.041 0.129 0.177  2476 52 0.068 0.012 0.021 0.110 0.158 

THMs                 

Chloroform  876 47 0.042 0.002 0.023 0.072 0.118  2216 95 0.027 0.003 0.014 0.053 0.079 

BDCM  937 13 0.008 0.001 0.006 0.011 0.019  2461 86 0.003 0.000 0.002 0.007 0.011 

DBCM  919 11 0.010 0.000 0.009 0.015 0.022  2464 64 0.002 0.000 0.001 0.005 0.008 

Bromoform  579 4.5 0.021 0.000 0.019 0.019 0.034  2413 60 0.003 0.001 0.001 0.005 0.010 

∑THM  1016 NA 0.065 0.003 0.049 0.107 0.147  2513 NA 0.032 0.002 0.018 0.066 0.100 

Others                 

1,4-DCB  915 86 1.112 0.122 0.322 4.658 11.03  2409 57 0.872 0.102 0.140 1.900 5.300 

PERC  566 41 0.219 0.005 0.061 0.347 0.617  2577 29 0.081 0.007 0.034 0.090 0.180 

MTBE  NA NA NA NA NA NA NA  2263 85 0.041 0.005 0.013 0.110 0.159 
Sample size n includes measurements below MDL, which were replaced by 1/2 MDLs. 
Statistical analyses only accounted for detectable measurements and measurements below MDLs, which were replaced by 1/2 MDLs. 
DF, detection frequency (%); SE, standard error; NA, not available. 
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Table 16.  Spearman rank correlation coefficients for blood BTEX and THM compounds in NHANES III (top) and continuous 
NHANES (bottom). 

1988-1994* 
(n = 1338) Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene BTEX Chloroform DBCM BDCM Bromoform ∑THM 

Benzene 1.0           
Toluene 0.42 1.00          

Ethylbenzene 0.23 0.59 1.00         
m,p-Xylene 0.14 0.46 0.62 1.00        
o-Xylene 0.08 0.38 0.81 0.49 1.00       

BTEX 0.42 0.88 0.79 0.77 0.63 1.00      
Chloroform 0.09 -0.01 0.20 0.44 0.28 0.25 1.00     

DBCM -0.01 -0.03 -0.04 -0.05 0.02 -0.03 0.09 1.00    
BDCM 0.04 -0.06 -0.05 -0.04 -0.01 -0.06 0.27 0.37 1.00   

Bromoform -0.03 -0.10 -0.06 -0.06 -0.04 -0.08 -0.02 0.14 0.36 1.00  
∑THM -0.02 -0.01 0.19 0.44 0.28 0.25 0.99 0.05 0.04 0.04 1.00 

1999-2004 
(n = 3789)            

Benzene 1.00           
Toluene 0.76 1.00          

Ethylbenzene 0.68 0.74 1.00         
m,p-Xylene 0.38 0.49 0.70 1.00        
o-Xylene 0.62 0.73 0.89 0.71 1.00       

BTEX 0.76 0.92 0.87 0.62 0.89 1.00      
Chloroform 0.11 0.11 0.04 0.04 0.11 0.11 1.00     

DBCM 0.04 0.03 0.06 0.06 0.05 0.03 0.11 1.00    
BDCM -0.01 0.02 0.00 0.01 0.02 0.00 0.48 0.70 1.00   

Bromoform -0.05 -0.10 0.03 0.10 -0.01 -0.06 -0.08 0.46 0.19 1.00  
∑THM 0.01 0.02 -0.01 0.01 0.05 0.02 0.90 0.36 0.59 0.22 1.00 

*, excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ∑THM and PERC. 
Bold type means statistically significant (p<0.05). 
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Table 17.  Spearman rank correlations between blood and personal airborne VOCs in 
NHANES 1999/2000.   
    

Blood      
 
Air 

Benzene Toluene Ethylbenzene m,p-Xylene o- Xylene BTEX Chloroform 1,4-DCB PERC 

Benzene 0.24 0.25 0.26 0.29 0.25 0.24 -0.17 -0.06 -0.04 

Toluene 0.15 0.26 0.23 0.24 0.24 0.21 -0.15 -0.01 0.02 

Ethylbenzene 0.15 0.23 0.35 0.35 0.33 0.27 -0.05 -0.04 0.04 

m,p-Xylene 0.16 0.25 0.36 0.38 0.35 0.28 -0.04 0.01 0.11 

o-Xylene 0.17 0.25 0.36 0.38 0.36 0.28 -0.05 0.02 0.16 

BTEX 0.20 0.31 0.34 0.37 0.34 0.31 -0.08 0.01 0.04 

Chloroform -0.11 -0.08 -0.11 -0.06 -0.05 -0.13 0.38 0.18 0.21 

1,4-DCB -0.08 -0.01 -0.03 0.04 0.01 -0.03 0.16 0.65 0.18 

PERC -0.27 -0.22 -0.13 -0.13 -0.07 -0.22 0.22 0.17 0.62 

Shaded values show correlations for same compounds. 
Bold type means statistically significant (p<0.05). 
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Table 18.  Identification of best-fit distributions (first rank) for VOCs in RIOPA by sample type. 

VOCs 

 Best-fit distribution 

 Untransformed  Log-transformed 

 Outdoor Indoor Adult Adult_NH Child  Outdoor Indoor Adult Child 

Benzene  Gamma ExtValue Pearson5 Lognormal Pearson5  Normal Logistic Logistic Logistic 

Toluene  Logistic ExtValue Pearson5 Lognormal Pearson5  Logistic Normal Logistic Logistic 

Ethylbenzene  Gamma Pearson5 Pearson5 Lognormal LogLogistic  Weibull Logistic Logistic Logistic 

m,p-Xylene  Lognormal Pearson5 Pearson5 Lognormal LogLogistic  Logistic Logistic Logistic LogLogistic 

o-Xylene  Lognormal LogLogistic Pearson5 Lognormal LogLogistic  Normal Logistic Logistic Logistic 

MTBE  Pearson5 Pearson5 Pearson5 Weibull LogLogistic  Logistic Logistic Logistic Logistic 

Styrene  Pearson5 Pearson5 Pearson5 NA Pearson5  Normal LogLogistic Pearson5 LogLogistic 

1,4-DCB  Pearson5 Student Student Pareto Logistic  ExtValue InvGauss InvGauss Weibull 

MC  LogLogistic Pearson5 Pearson5 NA Student  Normal Logistic Student Normal 

TCE  Student Student Student Pareto Student  Logistic ExtValue ExtValue Logistic 

PERC  Pearson5 Exponential Lognormal Lognormal InvGauss  Normal Logistic Logistic LogLogistic 

Chloroform  Student Lognormal Lognormal Lognormal Pearson5  ExtValue Normal Normal Logistic 

CTC  LogLogistic LogLogistic LogLogistic NA LogLogistic  Logistic Logistic Logistic Logistic 

d-Limonene  Student Pearson5 Pearson5 NA Pearson5  ExtValue Logistic Logistic Logistic 

α-Pinene  LogLogistic Lognormal Lognormal NA LogLogistic  Normal Weibull Logistic BetaGeneral 

β-Pinene  ChiSq ExtValue ExtValue NA ExtValue  Normal Logistic Logistic Normal 
NA, not available; adult_NH, personal airborne exposures in the 1999/2000 NHANES database. 
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Table 19.  Predicted excess cancer risks for adult participants in RIOPA (n = 239). 

VOCs Unit risk  
(µg m-3)-1 

Predicted excess cancer cases per million population 

Mean SD Min 25th 50th 75th 90th 95th 98th Max 

Benzene 7.8 x 10-6 28.4 25.9  4.3#  13.5  20.4  32.7  53.0  76.6  134.2  172.6  

Ethylbenzene  2.5 x 10-6 7.1  9.9  0.9#  3.0  4.4  7.6  13.0  19.0  43.2  82.9  

MTBE 2.6 x 10-7 3.5  4.6  0.1# 1.2  2.1  4.1  6.6  11.6  17.5  37.2  

Styrene 2.0 x 10-6 3.2  6.9  0.3#  0.8# 1.5  2.6  5.8  12.9  23.9  59.9  

1,4-DCB 1.1 x 10-5 626.5 2223  2.4# 10.0# 24.5  126.0  908.9  3620.7  9518.1  19167  

TCE 2.0 x 10-6 1.4  4.1 0.2# 0.2# 0.4# 0.93 2.2  4.6  16.1  40.9  

PERC 5.9 x 10-6 12.9 25.9  0.7# 2.5# 5.9  11.8  24.1  47.1  97.5  242.3  

Chloroform 2.3 x 10-5 47.0 62.2  3.2#  14.5  28.9  52.6  97.1  147.5  248.8  537.6  

CTC 1.5 x 10-5 9.8  2.9  2.0# 8.2  9.3  10.7  12.9  15.0  17.1  27.8  

Hematopoietic mixture NA 680.2 2240  12.78 44.89  76.4  180.22  965.4  3651.5  9695.8  19196  

Liver and kidney toxicant mixture NA 714.8 2247  20.80 61.25  111.1  265.03  1102.2  3683.6  9723.1  19223  

Total VOCs NA 745.8 2254  34.1  83.9  141.1  293.3  1125.0  3710.1  9780.5  19250  
NA, not available; SD, standard deviation. 
#, concentrations were based on MDLs. 
Hematopoietic mixture includes benzene, MTBE, 1,4-DCB, TCE and PERC; liver and kidney toxicant mixture includes ethylbenzene, MTBE, 1,4-DCB, TCE, 
PERC, chloroform and CTC. 
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Table 20.  Goodness of fit measures (R2) for the maximum Gumbel distribution fits for 90th and 95th percentile groups in RIOPA by 
sample type. 

VOCs 
Outdoor  Indoor  Adult Adult_NH  Child 

90th%, n=56 95th%, n=28  90th%, n=56 95th%, n=28  90th%, n=54 95th%, n=27 90th%, n=67 95th%, n=33  90th%, n=21 

Benzene 0.795  0.928   0.788  0.873   0.701  0.788  0.79  0.85   0.772  

Toluene 0.834  0.894   0.706  0.884   0.668  0.841  0.61  0.87   0.805  

Ethylbenzene 0.494  0.639   0.745  0.916   0.785  0.953  0.38  0.59   0.774  

m,p-Xylene 0.703  0.850   0.755  0.908   0.776  0.929  0.85  0.95   0.661  

o-Xylene 0.407  0.619   0.742  0.884   0.753  0.908  0.78  0.91   0.682  

MTBE 0.790  0.922   0.769  0.915   0.546  0.718  0.65  0.70   0.651  

Styrene 0.358  0.510   0.791  0.941   0.808  0.935  NA NA  0.911  

1,4-DCB 0.430  0.647   0.884  0.965   0.912  0.950  0.70  0.79   0.991  

MC 0.570  0.819   0.586  0.760   0.554  0.758  NA NA  0.546  

TCE 0.284  0.442   0.477  0.715   0.539  0.785  0.62  0.88   0.702  

PERC 0.512  0.681   0.683  0.793   0.231  0.394  0.45  0.70   0.560  

Chloroform 0.524  0.755   0.785  0.883   0.227  0.386  0.89  0.94   0.839  

CTC 0.227  0.381   0.407  0.613   0.344  0.546  NA NA  0.808  

d-Limonene 0.837  0.958   0.508  0.670   0.407  0.607  NA NA  0.587  

α-Pinene 0.545  0.867   0.870  0.977   0.647  0.802  NA NA  0.948  

β-Pinene 0.396  0.686   0.851  0.962   0.874  0.972  NA NA  0.964  
n, sample size; NA, not available; adult_NH, personal airborne exposures in the 1999/2000 NHANES database.  
R2 < 0.6 shows in red, and > 0.85 shows in blue (bold type). 
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Table 21.  GEV parameters and goodness-of-fit for average VOC exposures in RIOPA. 

VOCs 
Top 10% (n = 24)  Top 5% (n = 12) 

Shape Location Scale p-value  Shape Location Scale p-value 

Benzene 0.4  9.1  2.4  0.876   -0.2 13.6  3.6  0.684  

Toluene 1.6  35.8  7.3  0.672   0.6  63.6  19.2  0.829  

Ethylbenzene 1.2  6.3  1.7  0.951   0.8  10.6  3.9  0.943  

m,p-Xylene 0.8  19.9  6.6  0.963   1.2  28.7  6.9  0.905  

o-Xylene 0.9  6.8  2.1  0.900   1.8  10.0  1.3  0.915  

MTBE 0.6  36.3  12.5  0.988   0.9  53.0  11.4  0.958  

Styrene 1.3  3.9  1.6  0.676   0.9  8.4  2.8  0.895  

1,4-DCB  0.5  258.0  188.0  0.991   0.5  516.0  234.9  0.953  

TCE 1.1  1.7  0.8  0.987   1.7  2.8  1.0  0.909  

PERC 1.0  5.9  2.6  0.882   0.7  11.4  4.2  0.988  

Chloroform 0.7  5.5  1.6  0.954   1.1  7.6  1.7  0.943  

CTC 0.7  0.9  0.1  0.854   0.7  1.1  0.1  0.991  

d-Limonene 0.6  85.8  20.0  0.725   0.4  124.8  19.7  0.890  

α-Pinene  1.1  18.0  4.0  0.959   1.7  23.4  6.0  0.797  

β-Pinene  0.9  18.2  6.5  0.897   0.1  35.2  13.8  0.905  
p-values shown for Anderson-Darling tests.  
p-value > 0.05 indicating that observations fit to generalized extreme value distributions. 
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Table 22.  Comparison of adult VOC distributions between observed data and GEV, Gumbel 
and lognormal simulation in RIOPA using Kolmogorov-Smirnov tests. 

VOCs 

GEV simulation  Gumbel simulation  Lognormal simulation 

Top 10% Top 5%  Top 10% Top 5%  Top 10% Top 5% 

Statistics p-value Statistics p-value  
Statistic

s p-value Statistic
s p-value  

Statistic
s p-value Statistic

s p-value 

Benzene 0.13  0.823  0.24  0.482   0.17  0.527  0.23  0.549   0.20  0.313  0.40  0.037  

Ethylbenzene 0.08  0.996  0.14  0.979   0.21  0.228  0.17  0.899   0.22  0.204  0.44  0.014  

MTBE 0.09  0.987  0.14  0.975   0.27  0.065  0.36  0.083   0.17  0.533  0.26  0.355  

Styrene 0.18  0.450  0.15  0.949   0.18  0.423  0.23  0.528   0.41  0.001  0.76  < 0.001 

1,4-DCB 0.10  0.976  0.14  0.970   0.15  0.667  0.15  0.943   0.51  < 0.001 0.64  < 0.001 

TCE 0.10  0.967  0.18  0.822   0.44  < 0.001 0.46  0.014   0.38  0.003  0.65  < 0.001 

PERC 0.11  0.939  0.11  0.998   0.16  0.603  0.18  0.855   0.18  0.417  0.36  0.067  

Chloroform 0.09  0.983  0.17  0.900   0.17  0.467  0.19  0.789   0.13  0.833  0.26  0.357  

CTC 0.14  0.747  0.15  0.954   0.47  < 0.001 0.52  0.003   0.33  0.011  0.17  0.816  

Sample size of observed data is 239; sample size of simulated data is 10,000. 
p-value < 0.05 shown in bold type; p-value > 0.05 indicating that there is no significance difference between two 
distributions. 
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Table 23.  Evaluation of simulated VOC concentrations above the 90th and 95th percentiles in 
RIOPA fit to GEV, Gumbel and lognormal distributions. 

VOCs % exceeding 
Predicted cancer risks   

Above the 90th percentile of exposure  Above the 95th percentile of exposure 
1 x 10-6 1 x 10-5 1 x 10-4 1 x 10-3 1 x 10-2  1 x 10-6 1 x 10-5 1 x 10-4 1 x 10-3 1 x 10-2 

Benzene 

Observed measurements 100  100  29  0  0   100  100  58  0  0  
GEV simulation 100  100  26  0  0   100  100  71  0  0  

Gumbel simulation 100  100  31  0  0   100  100  67  0  0  
Lognormal simulation 100  100  18  0  0   100  100  35  0  0  

Ethylbenzene  

Observed measurements 100  100  0  0  0   100  100  0  0  0  
GEV simulation 100  100  7  1  0   100  100  8  0  0  

Gumbel simulation 100  91  0  0  0   100  98  1  0  0  
Lognormal simulation 100  100  0  0  0   100  100  0  0  0  

MTBE 

Observed measurements 100  63  0  0  0   100  100  0  0  0  
GEV simulation 100  57  1  0  0   100  100  3  0  0  

Gumbel simulation 98  74  0  0  0   99  87  0  0  0  
Lognormal simulation 100  53  0  0  0   100  100  0  0  0  

Styrene 

Observed measurements 100  54  0  0  0   100  100  0  0  0  
GEV simulation 100  46  6  1  0   100  100  5  0  0  

Gumbel simulation 96  69  0  0  0   100  93  0  0  0  
Lognormal simulation 100  28  0  0  0   100  55  0  0  0  

1,4-DCB 

Observed measurements 100  100  100  88  13   100  100  100  100  25  
GEV simulation 100  100  100  96  13   100  100  100  100  27  

Gumbel simulation 96  96  95  89  7   100  100  100  99  24  
Lognormal simulation 100  100  100  65  5   100  100  100  100  10  

TCE 

Observed measurements 100  21  0  0  0   100  42  0  0  0  
GEV simulation 100  18  2  0  0   100  33  7  2  0  

Gumbel simulation 77  61  1  0  0   83  74  9  0  0  
Lognormal simulation 100  2  0  0  0   100  3  0  0  0  

PERC 

Observed measurements 100  100  17  0  0   100  100  33  0  0  
GEV simulation 100  100  18  2  0   100  100  32  1  0  

Gumbel simulation 99  96  16  0  0   100  100  44  0  0  
Lognormal simulation 100  100  8  0  0   100  100  16  0  0  

Chloroform 

Observed measurements 100  100  88  0  0   100  100  100  0  0  
GEV simulation 100  100  93  2  0   100  100  100  6  1  

Gumbel simulation 100  100  86  0  0   100  100  98  0  0  
Lognormal simulation 100  100  93  0  0   100  100  100  0  0  

CTC 

Observed measurements 100  100  0  0  0   100  100  0  0  0  
GEV simulation 100  100  0  0  0   100  100  1  0  0  

Gumbel simulation 96  81  0  0  0   89  78  4  0  0  
Lognormal simulation 100  100  0  0  0   100  100  0  0  0  

Hematopoietic 
mixture 

Observed measurements 100  100  100  96  17   100  100  100  100  33  
GEV simulation 100  100  100  97  14   100  100  100  100  27  

Gumbel simulation 97  97  96  90  10   100  100  100  99  30  
Lognormal simulation 100  100  100  79  2   100  100  100  100  4  

Liver and 
kidney 

toxicant 
mixture 

Observed measurements 100  100  100  100  17   100  100  100  100  33  
GEV simulation 100  100  100  97  14   100  100  100  100  26  

Gumbel simulation 97  97  97  91  10   100  100  100  99  31  
Lognormal simulation 100  100  100  88  1   100  100  100  100  3  

Total VOCs 

Observed measurements 100  100  100  100  17   100  100  100  100  33  
GEV simulation 100  100  100  98  13   100  100  100  100  27  

Gumbel simulation 97  97  96  92  11   100  100  100  100  32  
Lognormal simulation 100  100  100  97  1   100  100  100  100  1  
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Table 24.  GEV parameters and goodness-of-fit for the originally weighted personal VOC 
exposures in NHANES 1999/2000. 

VOCs 
μg m-3 

Top 10% (n = 1442 - 1467)  Top 5% (n = 726 - 775) 

Shape Location Scale p-value for 
A-D test 

p-value for 
K-S test  Shape Location Scale p-value for 

A-D test 
p-value for 

K-S test 

Benzene 0.42 17 4.3 < 0.05 < 0.05  0.41 23.4 4.3 < 0.05 0.24  

Toluene 0.82 89.4 35.3 < 0.05 < 0.05  1.29 125.8 51.8 < 0.05 < 0.05 

Ethylbenzene 0.94 21.1 9 < 0.05 < 0.05  1.07 35.6 15.1 < 0.05 < 0.05 

m,p-Xylene 0.74 62.6 30.1 < 0.05 < 0.05  0.54 117.5 46.4 < 0.05 < 0.05 

o-Xylene 0.56 23.2 9.7 < 0.05 < 0.05  0.68 36 11.9 < 0.05 < 0.05 

MTBE  0.81 16.7 7.3 < 0.05 < 0.05  0.99 27.6 9.6 < 0.05 < 0.05 

1,4-DCB  0.87 88.3 69.8 < 0.05 < 0.05  0.56 234.1 96.2 < 0.05 < 0.05 

TCE  1.35 4.4 5.1 < 0.05 < 0.05  1.02 17.1 13 < 0.05 < 0.05 

PERC 1.13 12 7.7 < 0.05 < 0.05  0.94 28.2 12.4 < 0.05 < 0.05 

Chloroform 0.35 9.7 3.8 < 0.05 < 0.05  0.53 14.5 3 < 0.05 < 0.05 

A-D tests were the goodness-of-fit tests for GEV distribution fitting. 
K-S tests were used to compare the observations (the whole weighted sample without ties, n = 14,320 to 14,524) 
with simulated data based on the GEV parameters. 
p-value > 0.05 indicating that observations fit to GEV distributions or indicating that the observational 
measurements were not different from GEV simulations. 
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Table 25.  GEV parameters and goodness-of-fit for the weighted personal VOC exposures that 
used bootstrap methods and repeated sampling in NHANES 1999/2000. 

VOCs 
μg m-3 

Top 10% (n = 64)  Top 5% (n = 32) 

Shape Location Scale p-value for 
A-D test 

p-value for 
K-S test  Shape Location Scale p-value for 

A-D test 
p-value for 

K-S test 
Benzene 0.48  16.87  4.18  < 0.05 < 0.05  0.53  23.0  4.0  < 0.05 < 0.05 

Toluene 1.07  91.66  42.12  < 0.05 < 0.05  1.80  151.2  111.6  < 0.05 < 0.05 

Ethylbenzene 1.02  20.65  8.83  < 0.05 < 0.05  1.26  36.0  17.6  < 0.05 < 0.05 

m,p-Xylene 0.88  62.11  27.51  < 0.05 < 0.05  0.54  120.4  45.6  < 0.05 < 0.05 

o-Xylene 0.69  22.86  8.85  < 0.05 < 0.05  0.77  36.4  10.9  < 0.05 < 0.05 

MTBE  0.92  16.22  6.76  < 0.05 < 0.05  1.06  27.3  9.6  < 0.05 < 0.05 

1,4-DCB  0.99  91.37  73.84  < 0.05 < 0.05  0.73  233.7  106.7  > 0.05 < 0.05 

TCE  1.54  4.49  5.28  < 0.05 < 0.05  1.22  16.9  13.5  > 0.05 < 0.05 

PERC 1.08  12.37  8.01  < 0.05 < 0.05  1.05  28.1  13.2  < 0.05 < 0.05 

Chloroform 0.48  9.42  3.43  < 0.05 < 0.05  0.56  14.6  3.0  < 0.05 < 0.05 
A-D tests were the goodness-of-fit tests for GEV distribution fitting using the repeated datasets (n = 635 to 648, 
300 times) randomly selected from the weighted samples; values of parameters were averages of 300 results. 
K-S tests were used to compare the observations (the whole weighted sample without ties, n = 14,320 to 14,524) 
with simulated data based on the GEV parameters, which were estimated from the 300 random samples. 
p-values were estimated from empirical distributions of statistics, i.e., comparing the observational statistics with 
the statistics of random samples (repeatedly sampling 300 times); p-value > 0.05 indicating that observations fit to 
GEV distributions or indicating that the observational measurements were not different from GEV simulations. 
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Table 26.  GEV parameters and goodness-of-fit for the unweighted personal VOC exposures 
in NHANES 1999/2000. 

VOCs 
μg m-3 

Top 10% (n = 64)  Top 5% (n = 32) 

Shape Location Scale p-value for 
A-D test 

p-value for 
K-S test  Shape Location Scale p-value for 

A-D test 
p-value for 

K-S test 
Benzene 0.69 15.5 3.7 0.82  0.70   0.64 21.8 4.4 0.99  0.90  

Toluene 1.1 78.5 33.4 0.92  0.82   1.76 119.5 43.5 0.75  0.56  

Ethylbenzene 0.93 17.9 8.6 0.90  0.94   0.87 32.9 14.2 1.00  1.00  

m,p-Xylene 1.18 47.7 20.2 0.45  0.53   0.57 101.7 47.1 0.81  0.71  

o-Xylene 1.08 17.3 7.4 0.42  0.41   0.84 32.5 12.4 0.76  0.35  

MTBE  0.86 20.3 8.9 0.90  0.98   0.94 34.7 11.9 0.91  0.94  

1,4-DCB  0.69 199.4 111.6 1.00  1.00   1 350.3 122.1 0.85  0.85  

TCE  1.65 5.2 7.1 0.63  0.81   1.11 22.3 20.6 0.89  0.92  

PERC 1.29 11 6.4 0.49  0.43   1.16 25.2 10 0.98  0.97  

Chloroform 0.67 8.9 3 0.63  0.31   0.73 13.7 3 0.96  0.96  

A-D tests were the goodness-of-fit tests for GEV distribution fitting. 
K-S tests were used to compare the observations (the whole unweighted sample) with simulated data 
based on the GEV parameters. 
p-value > 0.05 indicating that observations fit to GEV distributions or indicating that the observational 
measurements were not different from GEV simulations. 
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Table 27.  Goodness of fit statistics of each density estimation method for chloroform, 
1,4-DCB and styrene sample data from the RIOPA study. 

VOCs 
(estimated) Proportion below MDL  MSE  MAE 
Observe

d 
Norma

l MN DPM
N  

Norma
l MN DPM

N  
Norma

l MN DPM
N 

Chlorofor
m 0.17 0.21 0.2

3 0.23  0.07 0.0
7 0.08  7.18 6.8

9 6.95 

1,4-DCB 0.34 0.28 0.3
3 0.33  31.81 0.0

8 0.04  167.05 7.0
0 5.30 

Styrene 0.66 0.56 0.6
4 0.64  32.61 0.0

7 0.04  160.47 6.1
0 4.27 

MSE, mean squared error; MAE, mean absolute error; MN, mixture of normals; DPMN, Dirichlet process 
mixture of normals. 
MSE and MAE are multiplied by a scalar of 1,000 to reflect the significant figure. 
 

 
Table 28.  Fitted weight, location and dispersion parameters under the finite mixture of 

normals for chloroform, 1,4-DCB and styrene sample data from the RIOPA study. 

 Chloroform  1,4-DCB  Styrene 

  Weight Mean SD   Weight Mean SD   Weight Mean SD 

K=2 AICc= 1774  AICc=2403  AICc=1735 

cluster 1  0.11 -1.78 1.31   0.16 -1.05 0.96   0.40 -1.12 1.86 

cluster 2  0.89 0.19 1.06   0.84 1.35 2.23   0.60 -0.40 0.62 

K=3 AICc=1778  AICc=2330  AICc=1716 

cluster 1  0.12 -1.78 1.23   0.12 -1.05 1.58   0.41 -1.12 1.31 

cluster 2  0.60 0.08 0.90   0.63 0.31 1.14   0.51 -0.35 0.54 

cluster 3  0.28 0.55 1.20   0.25 3.84 1.93   0.08 1.82 1.01 

K=4 AICc=1781  AICc=2328  AICc=1714 

cluster 1  0.11 -1.78 1.27   0.14 -1.05 1.54   0.39 -1.12 1.33 

cluster 2  0.07 -0.52 0.25   0.60 0.27 1.08   0.49 -0.37 0.60 

cluster 3  0.05 0.61 0.15   0.23 3.29 1.55   0.04 -0.29 0.08 

cluster 4  0.78 0.24 1.09   0.04 6.64 0.67   0.07 1.90 0.97 

K=5 AICc= 1785  AICc=2329  AICc=1722 

cluster 1  0.11 -1.78 1.26   0.14 -1.05 1.52   0.33 -1.12 1.32 

cluster 2  0.17 -0.39 0.43   0.05 -0.24 0.16   0.05 -1.51 1.28 

cluster 3  0.10 0.60 0.21   0.62 0.48 1.21   0.04 -0.29 0.08 

cluster 4  0.58 0.22 1.21   0.04 6.66 0.66   0.51 -0.37 0.60 

cluster 5  0.04 1.31 0.12   0.16 3.86 1.27   0.08 1.86 0.99 
SD, standard deviation. 
The smallest AIC shown in bold type. 
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Table 29.  Posterior distribution of the number of clusters K based on various prior settings of 
α as a sensitivity analysis. 

Prior 

 Posterior distribution of K 

 Chloroform  1,4-DCB  Styrene 

 mean median SD  mean median SD  mean median SD 

Setting 1  2.8 2 1.4  32.8 34 20.2  10.9 5 10.8 

Setting 2  3.9 3 2.4  5.6 5 2.5  4.6 4 2.8 

Setting 3  4.1 4 2.2  7.1 7 3.4  7.9 7 4.4 

Setting 4  10.5 9 6.0  15.3 14 6.5  13.1 12 6.0 
SD, standard deviation. 
Setting 1: α ~ Gamma(0.3, 0.4); Setting 2:  α ~ Gamma(1.2, 2.5);  
Setting 3: α ~ Gamma(2, 1.5); Setting 4:  α ~ Gamma(5, 2). 
 
 
 
 

 
 

 
 

 
 
Table 30.  Summary of goodness of fit statistics of each density estimation method in the 

simulation study. 

 Proportion  
below MDL 

MSE  MAE 

 Normal MN DPMN  Normal MN DPMN 

Distribution 1 

0.15 0.09  0.03  0.08   7.65  4.64  7.11  

0.30 0.19  0.04  0.08   11.19  4.80  7.29  

0.50 0.43  0.05  0.05   16.77  5.26  5.69  

Distribution 2 

0.15 1.55  0.10  0.02   32.58  8.19  3.57  

0.30 2.53  0.10  0.02   43.69  8.59  3.29  

0.50 2.62  0.12  0.02   46.52  8.22  3.28  
MSE, mean squared error; MAE, mean absolute error; MN, mixture of normals; DPMN, Dirichlet process 
mixture of normals. 
MSE and MAE are multiplied by a scalar of 1000 to reflect the significant figure. 
Distribution 1: Normal(0, 2ଶ) ; Distribution 2: ଵ

ଶ
Gamma(3, 1.5) + ଵ

ଶ
Uniform(−3, 8).  

Prior distribution on α is Gamma(1.2, 2.5). 
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Table 31.  Linear quantile regressions of log-transformed blood VOC concentrations for the 
NHANES 1988 to 2004 period.* 

VOCs 
 0.5 Quantile  0.75 Quantile  0.95 Quantile 

 Slope SE  Slope SE  Slope SE 

Aromatics          

Benzene  -0.054  0.003   -0.078  0.009   -0.043  0.025  

Toluene  -0.099 0.009  -0.144  0.017   -0.118  0.024  

Ethylbenzene  -0.060 0.005  -0.066  0.008   -0.103  0.023  

m,p-Xylene  -0.033  0.006   -0.057  0.008   -0.117  0.042  

o-Xylene  -0.069 0.004  -0.097  0.007   -0.122  0.028  

BTEX  -0.066 0.006  -0.080  0.010   -0.071  0.027  

Styrene  -0.036 0.004  -0.039  0.009   -0.061  0.033  

THMs          

Chloroform  -0.065  0.005   -0.064  0.006   -0.103  0.025  

BDCM  -0.097  0.007   -0.043  0.003   -0.034  0.012  

DBCM  -0.202  0.014   -0.149  0.005   -0.077  0.007  

Bromoform  -0.241 0.001  -0.201  0.000   -0.128  0.022  

∑THM  -0.115 0.007  -0.101  0.009   -0.115  0.030  

Others          

1,4-DCB  -0.063  0.001   -0.045  0.009   -0.032  0.025  

PERC  0.001 0.001   -0.166  0.006   -0.177  0.042  

*, excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ΣTHM 
and PERC. 
Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs 
were adjusted for solvent-related occupations only. 
SE, standard error. 
Bold type means statistically significant (p < 0.05); benzene at 0.95 quantile is borderline significant. 
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Table 32.  Relative changes (%) per year in untransformed blood VOC concentrations in 
NHANES at various quantiles.* 

VOCs 
 1988-1991 vs. 2003/2004  1988-1991 vs. 1999/2000  1999/2000 vs. 2003/2004 

 0.5 0.75 0.95  0.5 0.75 0.95  0.5 0.75 0.95 

Aromatics             

Benzene  -3.8 -4.3 -3.3  5.2 -1.2 0.1  -18.2 -14.8 -12.4 

Toluene  -5.6 -5.7 -4.7  -1.9 -2.9 -1.3  -15.3 -14.8 -12.9 

Ethylbenzene  -4.2 -4.9 -4.9  -4.2 -4.2 -3.2  -6.5 -9.4 -11.1 

m,p-Xylene  -2.5 -3.5 -4.5  -0.8 -1.8 -2.4  -6.3 -7.9 -10.8 

o-Xylene  -5.5 -5.5 -5.6  -7.9 -6.8 -5.3  -2.1 -6.4 -10.9 

BTEX  -4.4 -4.6 -4.2  -2.1 -1.6 -0.8  -10.8 -12.0 -11.9 

Styrene  -3.9 -2.7 -3.1  0.5 0.1 0.6  -12.3 -8.2 -10.1 

THMs             

Chloroform  -3.9 -3.6 -3.9  3.5 6.3 2.5  -17.5 -18.1 -17.0 

BDCM  -5.0 -5.6 -3.4  -6.5 -3.5 -3.0  -3.1 -2.6 -6.8 

DBCM  -6.3 -3.0 -4.8  -8.1 -6.6 -5.8  -13.5 -10.8 -5.9 

Bromoform  -7.9 -7.5 -7.0  -11.9 -11.2 -10.6  2.8 -1.0 1.1 

∑THM  -5.9 -5.4 -3.8  -5.4 -2.1 2.7  -12.2 -14.4 -13.9 

Others             

1,4-DCB  -3.5 -3.7 -3.7  -2.3 -2.5 -4.8  -9.0 -9.8 -0.8 

PERC  -3.2 -6.2 -6.4  -2.7 -4.8 -5.1  -5.3 -14.8 -15.4 
*, excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ΣTHM 
and PERC. 
Relative changes of VOC levels per year between study period at each percentile.    
Bold type means statistically significant trend (p<0.05). 
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Table 33.  Total emissions and relative changes per year of VOCs in NATA. 

VOCs 
 Total emissions (T yr-1)  Relative change per year (%) 

 1996 1999 2002  1996 vs. 1999 1999 vs. 2002 

Aromatics        

Benzene  337,000 350,776 410,219  1.4 5.6 

Toluene  NA 996,443 884,066  NA -3.8 

Ethylbenzene  NA NA 127,742  NA NA 

o,m,p-Xylene  NA 712,084 595,241  NA -5.5 

Styrene  NA NA 49,795  NA NA 

THMs        

Chloroform  3,310 15,139 6,805  119.1 -18.3 

Bromoform  NA NA 22  NA NA 

Others        

1,4-DCB  NA 12,794 7,244  NA -14.5 

PERC  44,100 46,793 35,613  2.0 -8.0 

NA, not available. 
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Table 34.  Ambient concentrations and change per year of aromatics for various concentration quantiles in PAMS. 

 VOCs 
 Ambient concentrations (ppb)  Relative change per year (%) 
 1993 1994 1999 2000 2001 2002 2003 2004  1993-1999 1999-2004 1993-2004 

Aromatics  Mean       
Benzene  3.43  4.18  2.33  1.96  0.99  0.86  0.74  0.70   -5.3  -14.0  -7.2  
Toluene  8.12  9.85  5.99  4.85  2.89  2.52  2.33  2.30   -4.4  -12.3  -6.5  

Ethylbenzene  2.07  1.87  1.13  0.96  0.49  0.46  0.38  0.34   -7.5  -14.1  -7.6  
m,p-Xylene  5.36  5.37  3.34  2.57  1.33  1.17  0.93  0.80   -6.3  -15.2  -7.7  

o-Xylene  2.48  2.18  1.34  1.08  0.56  0.53  0.43  0.38   -7.7  -14.4  -7.7  
Styrene  1.77  1.17  0.57  0.58  0.26  0.27  0.31  0.41   -11.3  -5.7  -7.0  

Aromatics  0. 5 Quantile     
Benzene  1.80  2.21  1.18  1.00  0.47  0.41  0.23  0.14   -5.7  -17.6  -8.4  
Toluene  4.10  4.77  2.82  2.27  0.87  0.67  0.35  0.26   -5.2  -18.2  -8.5  

Ethylbenzene  0.90  0.97  0.59  0.48  0.15  0.10  0.05  0.03   -5.7  -19.1  -8.8  
m,p-Xylene  2.70  2.65  1.46  1.06  0.31  0.25  0.10  0.05   -7.7  -19.3  -8.9  

o-Xylene  1.10  1.10  0.64  0.50  0.17  0.12  0.05  0.03   -6.9  -19.2  -8.9  
Styrene  0.60  0.56  0.33  0.30  0.11  0.10  0.10  0.04   -7.6  -17.8  -8.5  

Aromatics  0.75 Quantile     
Benzene  3.70  4.40  2.23  2.00  1.26  1.08  0.90  0.75   -6.6  -13.3  -7.2  
Toluene  9.29  10.70  6.06  5.09  3.32  2.70  2.40  1.82   -5.8  -14.0  -7.3  

Ethylbenzene  1.90  2.00  1.20  1.01  0.60  0.51  0.43  0.36   -6.1  -14.0  -7.4  
m,p-Xylene  6.00  5.86  3.36  2.59  1.47  1.17  0.94  0.74   -7.3  -15.6  -8.0  

o-Xylene  2.41  2.40  1.40  1.10  0.66  0.58  0.47  0.39   -7.0  -14.4  -7.6  
Styrene  1.81  1.27  0.58  0.56  0.33  0.32  0.34  0.32   -11.3  -9.0  -7.5  

Aromatics  0.95 Quantile     
Benzene  11.58  14.80  7.31  6.30  3.62  3.20  3.00  2.84   -6.1  -12.2  -6.9  
Toluene  31.39  35.50  20.69  17.06  11.90  10.44  10.71  9.30   -5.7  -11.0  -6.4  

Ethylbenzene  6.20  6.65  3.70  3.36  2.02  1.87  1.69  1.51   -6.7  -11.8  -6.9  
m,p-Xylene  20.50  19.64  11.66  9.81  5.68  4.88  4.30  3.80   -7.2  -13.5  -7.4  

o-Xylene  7.90  7.89  4.50  4.15  2.30  2.20  2.00  1.74   -7.2  -12.3  -7.1  
Styrene  8.04  3.21  1.66  1.70  0.90  1.02  1.07  1.55   -13.2  -1.3  -7.3  
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Table 35.  Site-weighted average of average concentrations (ppb) of ambient VOCs in AQS datasets.*  

Year 
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Styrene Chloroform 1,4-DCB PERC 

n mean n mean n mean n mean n mean n mean n mean n mean n mean 

1990 590 7.92  530 23.27  NA NA NA NA NA NA NA NA 614 0.727  NA NA NA NA 

1991 754 6.65  582 18.09  NA NA NA NA NA NA NA NA 779 0.670  NA NA 773 0.55  

1992 1066 5.54  751 13.82  NA NA NA NA NA NA NA NA 1189 0.399  NA NA 1184 0.37  

1993 1318 6.21  1087 14.53  888 3.208  NA NA 824 3.23  915 1.47  1581 0.179  NA NA 1578 0.37  

1994 1600 6.37  1367 13.43  1164 3.197  949 7.83  1103 2.73  1229 2.47  1839 0.153  NA NA 1844 0.39  

1995 1981 5.51  1673 11.91  1413 2.201  1399 6.13  1351 2.20  1465 2.05  2050 0.110  919 0.53  2043 0.30  

1996 2224 4.14  1908 12.50  1672 1.568  1692 5.61  1642 1.75  1722 4.00  2367 0.051  976 0.55  2357 0.21  

1997 2491 4.68  2164 12.02  1923 1.957  1918 5.48  1863 2.35  2007 1.49  2727 0.053  943 0.83  2763 0.42  

1998 2991 3.99  2502 8.70  2380 1.701  2381 5.41  2197 1.77  2202 0.93  3004 0.058  560 0.61  2995 0.26  

1999 3586 3.99  3171 8.00  3029 1.252  3050 5.16  2965 1.75  3010 0.73  3529 0.054  1069 0.38  3535 0.11  

2000 4407 3.61  3976 7.52  3845 1.434  3769 6.17  3622 2.18  3568 1.38  4630 0.055  1850 0.80  4787 0.11  

2001 5307 4.00  5005 7.87  4637 1.227  4603 4.38  4446 1.56  4456 0.81  5689 0.048  2704 0.69  5805 0.12  

2002 6860 3.11  6509 6.55  6044 1.077  6075 3.46  5973 1.43  6015 0.60  6962 0.059  3988 0.56  7041 0.15  

2003 8106 2.98  7674 5.54  7717 0.973  7643 2.62  7581 1.05  7283 2.66  8230 0.063  5009 0.46  8264 0.17  

2004 9507 2.59  9054 4.51  9155 0.828  8648 2.10  8864 0.85  8504 0.54  9791 0.069  6254 0.38  9894 0.18  

% change1 -4.8 -5.8 -6.7 -7.3 -6.7 -5.7 -19.7, -4.2 -3.2 -5.2 

% change2 -4.7  -5.7  -7.1  -6.4  -5.8  -5.5  -21.1, NA -2.8  -6.7  
*, AQS data used 24 h sampling, 24 or more measurements per site-year in EPA Region 1-10. 
n, number of observations; NA, not available. 
BTEX observations in Site 42 (Edinburg), Region 6 in 1997 were excluded due to extremely high values. 
% change1, relative change per year from the beginning year to 2004.  For benzene and toluene, the beginning year is 1990; for ethylbenzene, o-xylene, and styrene, 
the beginning year is 1993; for m,p-xylene, the beginning year is 1994; for 1,4-DCB, the beginning year is 1995; for PERC, the beginning year is 1991.  The 
relative changes per year for chloroform were calculated from 1990 to 1994 (-19.7%) and 1995 to 2004 (-4.2%). 
% change2, relative change per year were estimated by regression models from the beginning year to 2004.  For example, the estimated relative change for benzene 
is (((benzene2004- benzene1990)/ benzene1990)*100%)/(2004-1990).  Since the estimated chloroform levels in 1995-2004 were negative, the relative change did not 
be calculated. 
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Table 36.  Modeled ambient concentrations and relative changes per year of VOCs for mean 
and two quantiles in NATA. 

VOCs 

 Modeled ambient concentrations (µg m-3)  Relative change per year (%) 

 Mean  0.5  0.95  Mean  0.5  0.95 

 1996 1999 2002  1996 1999  1996 1999  1996 vs. 
1999 

1999 vs. 
2002  1996 vs. 

1999  1996 vs. 
1999 

Aromatics                  

Benzene  1.39 1.37 1.21  1.21 1.16  2.84 3.12  -0.5 -3.9  -1.4  3.3 

Toluene  NA 3.02 2.54  NA 2.21  NA 8.61  NA -5.2  NA  NA 

Ethylbenzene  NA NA 0.28  NA NA  NA NA  NA NA  NA  NA 

o,m,p-Xylen
e  NA 2.23 1.25  NA 1.60  NA 6.60  NA -14.7  NA  NA 

Styrene  NA NA 0.05  NA NA  NA NA  NA NA  NA  NA 

THMs                  

Chloroform  0.09 0.09 0.09  0.08 0.07  0.11 0.21  0.9 -1.7  -5.5  32.4 

Bromoform  NA NA 0.00  NA NA  NA NA  NA NA  NA  NA 

Others                  

1,4-DCB  NA 0.06 0.06  NA 0.03  NA 0.21  NA 0.1  NA  NA 

PERC  0.32 0.31 0.15  0.24 0.19  0.78 1.14  -1.5 -17.5  -7.9  15.4 

NA, not available. 
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Table 37.  Sources and apportionments of outdoor, indoor, and personal VOCs (non-averaged measurements) in RIOPA by sample type 
and seasons, based on PMF results. 

Type  Season Factor Source Category Included VOCs 
Apportionment 

% µg m-3 

Outdoor 

Warm 

1 Gasoline MTBE 32 8.9 
2 Vehicle exhaust and industrial sources Aromatics, TCE, chloroform, CTC and β-pinene 32 8.9 
3 Cleaning products and odorants 1,4-DCB and D-limonene 18 5.1 
4 Industrial and biogenic sources Styrene, 1,4-DCB, TCE, PERC, chloroform, CTC and α-pinene 18 4.9 

Cold 

1 Vehicle exhaust BTEX 34 11.7 
2 Gasoline MTBE and toluene 27 9.2 

3 Cleaning products, odorants and industrial sources Styrene, 1,4-DCB, TCE, chloroform, CTC, α-pinene, β-pinene and 
D-limonene 22 7.6 

4 Industrial and biogenic sources Styrene, PERC and α-pinene   17 5.9 

Indoor 

Warm 

1 Moth repellents and odorants 1,4-DCB 52 85.3 
2 Cleaning products and odorants D-limonene, α-pinene and β-pinene  21 35.1 

3 Vehicle exhaust, chlorinated solvents, and cleaning 
products Aromatics, TCE, PERC, chloroform, CTC, α-pinene and β-pinene 14 23.8 

4 Gasoline Benzene and MTBE 13 21 

Cold 

1 Moth repellents and odorants 1,4-DCB 39 52.5 
2 Cleaning products and odorants D-limonene, α-pinene and β-pinene  26 35.3 

3 Vehicle exhaust, chlorinated solvents, and cleaning 
products Aromatics, TCE, PERC, chloroform, CTC, α-pinene and β-pinene 21 27.6 

4 Gasoline MTBE 14 18 

Personal 

Warm 

1 Cleaning products and odorants D-limonene, α-pinene and β-pinene 42 42.3 
2 Vehicle exhaust Ethylbenzene, m,p-xylene and o-xylene 22 22.6 
3 Gasoline Benzene and MTBE  20 19.8 
4 Moth repellents and chlorinated solvents 1,4-DCB, TCE, PERC, chloroform and CTC 15 15.3 

Cold 

1 Cleaning products and odorants D-limonene, α-pinene and β-pinene 44 45.1 

2 Gasoline, chlorinated solvents, and cleaning 
products Benzene, toluene, MTBE, styrene, 1,4-DCB, TCE, chloroform and CTC   27 27.2 

3 Vehicle exhaust Ethylbenzene, m,p-xylene and o-xylene 20 19.9 
4 Dry cleaning solvent PERC 7.7 7.8 

Personal measurements include adult and child exposure data. 
Warm season indicates April to September, and cold season indicates October to March. 
Apportionment indicates source contributions to the total VOCs by the percentages and concentrations. 
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Table 38.  Sources and apportionments of mixtures of VOCs derived using PMF and the 
first-visit measurements in RIOPA. 

Mixture ID Suggested Source Categories VOC Components 
Fraction of TVOC 

% µg m-3 

A1 Gasoline Benzene and MTBE 20.5 19.9 

A2 Vehicle exhaust Toluene, ethylbenzene, xylenes, 
and styrene 20.9 20.3 

A3 Moth repellents, chlorinated solvents 
and disinfection by-products 

1,4-DCB, TCE, PERC, 
chloroform, and CTC 16.3 15.9 

A4 Cleaning products and odorants d-Limonene, α-pinene, and 
β-pinene 42.3 41.1 
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Table 39.  Results of bivariate logistic regression models for VOC mixtures identified by PMF 
analyses in RIOPA. 

Potential factor 

Mixtures 

Benzene and MTBE 
Toluene, 

ethylbenzene, 
xylenes, and styrene 

1,4-DCB, TCE, 
PERC, chloroform, 

and CTC 

d-Limonene, 
α-pinene, and 

β-pinene 
Categorical 

variables Group OR 95% CI OR 95% CI OR 95% CI OR 95% CI 

City 

CA 0.56 0.35-0.90 0.45 0.28-0.73 0.49 0.30-0.79 0.18 0.11-0.30 

NJ 0.39 0.24-0.63 0.51 0.31-0.82 0.63 0.39-1.03 0.21 0.12-0.34 

TX Reference Reference Reference Reference 

Ethnicity 

Mexican 2.03 1.19-3.47 1.57 0.92-2.67 3.21 1.87-5.54 3.97 2.29-6.87 

Hispanic 1.07 0.66-1.75 1.35 0.82-2.20 1.78 1.09-2.92 0.98 0.60-1.61 

Other 0.58 0.30-1.12 0.47 0.24-0.92 1.66 0.86-3.21 0.86 0.45-1.66 

White Reference Reference Reference Reference 

Employment 
Yes 0.95 0.63-1.42 0.98 0.65-1.47 1.02 0.68-1.52 0.40 0.27-0.61 

No Reference Reference Reference Reference 

Attached garage 
Yes 2.27 1.45-3.56 1.95 1.25-3.05     
No Reference Reference     

Open doors or 
windows 

Yes 0.79 0.52-1.18 0.40 0.26-0.61 0.36 0.24-0.55 0.32 0.21-0.49 

No Reference Reference Reference Reference     

Self-service pump 
gas 

Yes 2.10 1.25-3.52 1.62 0.97-2.70     
No Reference Reference     

Other family 
members take 

showers 

Yes     2.06 1.20-3.56 2.45 1.42-4.23 

No     Reference Reference 

Use fresheners 
Yes     1.37 0.73-2.57 2.20 1.17-4.14 

No     Reference Reference 
Continuous 

variables Unit         
Log-transformed 

AERs hr-1 0.69 0.54-0.89 0.45 0.35-0.58 0.49 0.38-0.63 0.38 0.29-0.49 

OR, odds ratio; CI, confidence interval. 
Statistically significant ORs are shown in bold type. 
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Table 40.  Observed and estimated probability of high concentration mixtures in RIOPA. 

Mixture 
ID VOCs Copula Percentile 

Probability 

Observed 
(n = 299) Uncorrelated Copula 

(n = 1,000) 

A1 Benzene and 
MTBE Gumbel 

50th 0.3545 0.2500 0.3470 

75th 0.1371 0.0625 0.1550 

90th 0.0502 0.0100 0.0510 

95th 0.0201 0.0025 0.0250 

A2 

Toluene, 
ethylbenzene, 
xylenes, and 

styrene* 

t 

50th NC 0.0625 0.1950 

75th 0.0635 0.0039 0.0500 

90th 0.0134 0.0001 0.0110 

95th 0.0033 0 0.0040 

A3, B3 

1,4-DCB, 
TCE*, PERC, 
chloroform, 

and CTC 

t 

50th NC 0.0313 0.0820 

75th 0.0067 0.0010 0.0040 

90th 0.0033 0 0 

95th 0 0 0 

A4 
d-Limonene, 
α-pinene, and 

β-pinene 
t 

50th 0.3244 0.1250 0.2070 

75th 0.1171 0.0156 0.0480 

90th 0.0234 0.0010 0.0060 

95th 0.0100 0.0001 0.0030 

B1 Ethylbenzene 
and MTBE Gumbel 

50th 0.3478 0.0625 0.3490 

75th 0.1438 0.0039 0.1430 

90th 0.0435 0.0001 0.0510 

95th 0.0234 0.0000 0.0240 

B2 

Benzene, 
MTBE, 

1,4-DCB, 
TCE*, and 

PERC 

t 

50th NC 0.0313 0.0630 

75th 0.0067 0.0010 0.0060 

90th 0.0033 0 0 

95th 0 0 0 
Mixture ID:  A: mixture identified by PMF; B: mixture identified by toxicological mode of action. 
NC, not calculated as styrene and TCE had detection frequencies <50%. 
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Table 41.  Distribution type and parameters fitted to individual VOCs (first-visit 
measurements) in RIOPA. 

VOC Distribution Parameters 

Benzene Pearson5 (1.7416, 3.0237) 

Toluene Pareto (0.80165, 3.3500) 

Ethylbenzene Lognormal (2.3804, 3.4359) 

Xylenes Loglogistic (0.74464, 4.8664, 1.5276) 

MTBE LogLogistic (-0.068879, 6.9726, 1.5498) 

Styrene Pearson5 (1.4394, 0.62596) 

1,4-DCB Lognormal (51.195, 1100.2) 

TCE Pareto (1.0292, 0.12000) 

PERC Loglogistic (-134.65, 136.13, 55.589) 

Chloroform Pearson5 (1.1756, 0.92852) 

CTC Loglogistic (-0.089049, 0.70987, 5.0349) 

d-Limonene Pearson5 (1.2177, 11.984) 

α-Pinene Pearson5 (0.80312, 0.93957) 

β-Pinene Pareto (0.77374, 0.50500) 

Parameters for Pearson 5 are α, β; parameters for Pareto are θ, a; parameters for lognormal are μ, σ; parameters for 
loglogistic are γ, β, α. 
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Table 42.  Goodness-of-fit statistics of fitted copulas for RIOPA mixtures. 

Mixture ID Copula -BIC -AIC 

A1 

Gaussian 113.66 117.34 
t 117.67 125.03 

Gumbel 123.99 131.35 
Clayton 112.76 120.12 
Frank 102.30 109.66 

A2 

Gaussian 607.97 629.88 
t 655.80 681.32 

Gumbel 327.11 330.80 
Clayton 227.24 230.93 
Frank 381.40 385.09 

A3, B3 

Gaussian 77.67 113.91 
t 86.12 125.91 

Gumbel 59.92 63.60 
Clayton 44.30 47.98 
Frank 54.34 58.03 

A4 

Gaussian 281.49 292.51 
t 319.30 333.96 

Gumbel 310.60 314.28 
Clayton 264.28 267.97 
Frank 321.34 325.02 

B1 

Gaussian 83.59 87.27 
t 94.59 101.95 

Gumbel 99.17 106.53 
Clayton 94.78 102.14 
Frank 81.80 89.16 

B2 

Gaussian 140.72 176.97 
t 156.22 196.01 

Gumbel 36.37 40.05 
Clayton 33.11 36.80 
Frank 27.53 31.21 

BIC, Bayesian information criterion; AIC, Akaike information criterion. 
The lowest value of the information criterion was the best-fit copula, which was shown in bold type. 
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Table 43.  Parameters and correlation matrixes of the fitted copulas for VOC mixtures in 
RIOPA. 

Mixture ID Parameter 
A1 θ=1.67 
B1 θ=1.57 

 
Mixture A2 (df = 4) 

 Toluene Ethylbenzene Xylenes Styrene 

Toluene 1.00 0.64 0.65 0.12 

Ethylbenzene 0.64 1.00 1.00 0.17 

Xylenes 0.65 1.00 1.00 0.17 

Styrene 0.12 0.17 0.17 1.00 
 

Mixture A3 (df = 5) 

 1,4-DCB TCE PERC Chloroform CTC 

Benzene 1.000 -0.022 -0.015 0.011 0.004 

MTBE -0.022 1.000 0.849 0.069 0.147 

1,4-DCB -0.015 0.849 1.000 0.033 0.031 

TCE 0.011 0.069 0.033 1.000 0.748 

PERC 0.004 0.147 0.031 0.748 1.000 

 
Mixture A4 (df = 2) 

 d-Limonene α-Pinene β-Pinene 

d-Limonene 1.00 0.39 0.17 

α-Pinene 0.39 1.00 0.42 

β-Pinene 0.17 0.42 1.00 
 

Mixture B2 (df = 5) 

 Benzene MTBE 1,4-DCB TCE PERC 

Benzene 1.000 0.471 0.054 0.046 0.017 

MTBE 0.471 1.000 0.034 -0.010 -0.006 

1,4-DCB 0.054 0.034 1.000 -0.022 -0.015 

TCE 0.046 -0.010 -0.022 1.000 0.849 

PERC 0.017 -0.006 -0.015 0.849 1.000 
df, degree of freedom.  
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Table 44.  Median mixture fractions based on observations and copula simulations in RIOPA. 

Mixture ID VOCs 

Mixture fractions* for indicated percentile 

Observed (n = 299)  Best-fit copula (n = 1,000) 

50 - 75th 75 - 90th 90 - 95th 95 - 100th  50 - 75th 75 - 90th 90 - 95th 95 - 100th 

A1 
Benzene 0.222  0.150  0.169  0.099   0.179 0.177 0.137 0.173 

MTBE 0.778  0.850  0.831  0.901   0.821 0.823 0.863 0.827 

A2 

Toluene 0.578  0.555  0.571  0.484   0.557 0.572 0.533 0.547 

Ethylbenzene 0.072  0.071  0.085  0.083   0.073 0.072 0.080 0.074 

Xylenes 0.300  0.316  0.328  0.368   0.303 0.280 0.298 0.291 

Styrene 0.024  0.020  0.019  0.012   0.038 0.040 0.037 0.038 

A3, B3 

1,4-DCB 0.333  0.842  0.972  0.993   0.447 0.786 0.968 0.994 

TCE 0.026  0.009  0.001  0.000   0.031 0.010 0.002 0.000 

PERC 0.165  0.032  0.005  0.001   0.128 0.031 0.009 0.001 

Chloroform 0.180  0.053  0.015  0.003   0.134 0.052 0.013 0.001 

CTC 0.065  0.023  0.005  0.001   0.069 0.024 0.006 0.001 

A4 

d-Limonene 0.667  0.661  0.754  0.765   0.720 0.751 0.825 0.850 

α-Pinene 0.204  0.149  0.100  0.080   0.176 0.127 0.102 0.041 

β-Pinene 0.078  0.099  0.143  0.120   0.061 0.055 0.026 0.029 

B1 
Ethylbenzene 0.156  0.125  0.106  0.062   0.154 0.117 0.106 0.083 

MTBE 0.844  0.875  0.894  0.938   0.846 0.883 0.894 0.917 

B2 

Benzene 0.118  0.062  0.019  0.004   0.093 0.068 0.022 0.004 

MTBE 0.606  0.347  0.054  0.009   0.552 0.515 0.159 0.023 

1,4-DCB 0.134  0.411  0.857  0.982   0.127 0.170 0.484 0.943 

TCE 0.010  0.005  0.001  0.000   0.009 0.005 0.003 0.001 

PERC 0.054  0.019  0.004  0.001   0.031 0.016 0.012 0.001 
Mixture ID:  A indicates mixtures indentified by PMF; B indicates mixtures identified by toxicological mode of 
action. 
* median fractions.  They may not sum to 1. 
Dominant mixture fraction shown in bold. 
Copula simulations use fitted marginal distributions shown in Table 41, and best-fit copula type in Table 42. 
 
  



 

126 

Table 45.  Comparison of mixture fractions for mixture A3/B3 and B2 in RIOPA for different 
copulas types. 

Copula Components Median fractions* at different percentiles of cumulative exposure 
50th-75th 75th-90th 90th-95th  95th-100th 

t 

1,4-DCB 0.447  0.786  0.968  0.994  
TCE 0.031  0.010  0.002  0.000  

PERC 0.128  0.031  0.009  0.001  
Chloroform 0.134  0.052  0.013  0.001  

CTC 0.069  0.024  0.006  0.001  
Benzene 0.093  0.068  0.022  0.004  
MTBE 0.552  0.515  0.159  0.023  

1,4-DCB 0.127  0.170  0.484  0.943  
TCE 0.009  0.005  0.003  0.001  

PERC 0.031  0.016  0.012  0.001  

Gaussian 

1,4-DCB 0.466  0.681  0.962  0.993  
TCE 0.028  0.009  0.002  0.001  

PERC 0.107  0.041  0.009  0.002  
Chloroform 0.130  0.063  0.013  0.002  

CTC 0.059  0.025  0.007  0.001  
Benzene 0.092  0.065  0.040  0.013  
MTBE 0.448  0.399  0.346  0.063  

1,4-DCB 0.180  0.202  0.190  0.852  
TCE 0.010  0.005  0.003  0.001  

PERC 0.043  0.022  0.011  0.003  

Gumbel 

1,4-DCB 0.449  0.754  0.937  0.989  
TCE 0.026  0.011  0.003  0.001  

PERC 0.132  0.055  0.011  0.004  
Chloroform 0.131  0.055  0.025  0.003  

CTC 0.063  0.023  0.008  0.001  
Benzene 0.086  0.060  0.033  0.012  
MTBE 0.496  0.396  0.343  0.069  

1,4-DCB 0.163  0.189  0.332  0.829  
TCE 0.011  0.006  0.005  0.001  

PERC 0.043  0.023  0.015  0.007  

Clayton 

1,4-DCB 0.418  0.774  0.946  0.990  
TCE 0.025  0.010  0.003  0.001  

PERC 0.123  0.040  0.013  0.002  
Chloroform 0.134  0.051  0.013  0.002  

CTC 0.056  0.021  0.007  0.002  
Benzene 0.089  0.047  0.028  0.006  
MTBE 0.425  0.439  0.128  0.045  

1,4-DCB 0.226  0.237  0.699  0.906  
TCE 0.010  0.005  0.003  0.001  

PERC 0.040  0.026  0.013  0.005  

Frank 

1,4-DCB 0.402  0.663  0.928  0.991  
TCE 0.027  0.008  0.003  0.000  

PERC 0.120  0.046  0.012  0.001  
Chloroform 0.130  0.080  0.019  0.003  

CTC 0.055  0.021  0.006  0.001  
Benzene 0.088  0.054  0.037  0.014  
MTBE 0.428  0.361  0.499  0.070  

1,4-DCB 0.160  0.229  0.199  0.874  
TCE 0.009  0.007  0.004  0.001  

PERC 0.041  0.030  0.019  0.006  
* median fractions.  They may not sum to 1. 
Dominant mixture fraction shown in bold. 
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Table 46.  Percentage of individuals exceeding individual lifetime cancer risk thresholds for 
VOC mixtures in RIOPA: comparison of observations, simulations using copulas, 
and simulations using multivariate lognormal distribution. 

Mixture ID VOC Type 
Percentage exceeding indicated cancer risks 

1 x 10-6 1 x 10-5 1 x 10-4 1 x 10-3 1 x 10-2 

B1 Ethylbenzene and 
MTBE 

Observations 100.0 25.4 1.0 0.0 0.0 

Copula simulations 97.5 27.1 0.6 0.0 0.0 

Lognormal simulations 96.9 32.0 0.0 0.0 0.0 

B2 
Benzene, MTBE, 

1,4-DCB, TCE and 
PERC 

Observations 100.0 100.0 34.8 9.7 3.0 

Copula simulations 100.0 99.5 35.9 6.6 1.6 

Lognormal simulations 100.0 99.2 40.1 5.6 0.7 

B3 1,4-DCB, TCE, PERC, 
chloroform and CTC 

Observations 100.0 100.0 44.5 11.0 3.3 

Copula simulations 100.0 99.8 44.8 9.5 1.9 

Lognormal simulations 100.0 99.7 53.6 6.7 0.2 
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Table 47.  Fractions of personal VOCs originating indoors (at home) in RIOPA. 

Fhome 

Median fraction  p-value for K-W test 

All 
(n = 

427-455) 

CA 
(n = 

139-156) 

NJ 
(n = 

106-128) 

TX 
(n = 

164-179) 

Hot 
(n = 

246-268) 

Cool 
(n = 

178-195) 
 City 

Among 
cities  
in hot 
season 

Among 
cities  

in cool 
season 

Season 
Between 
seasons  
in CA 

Between 
seasons  
in NJ 

Between 
seasons  
in TX 

Benzene 0.72  0.64  0.76  0.73  0.70  0.74   0.001  0.053  0.007  0.014  0.337  0.118  0.039  

Toluene 0.66  0.63  0.67  0.68  0.66  0.66   0.138  0.415  0.258  0.950  0.908  0.603  0.695  

Ethylbenzene  0.69  0.64  0.68  0.73  0.67  0.72   0.028  0.017  0.487  0.110  0.021  0.614  0.772  

m,p-Xylene 0.68  0.64  0.67  0.75  0.67  0.70   0.013  0.041  0.234  0.412  0.552  0.371  0.948  

o-Xylene 0.69  0.65  0.67  0.71  0.69  0.68   0.072  0.041  0.808  0.597  0.371  0.427  0.463  

MTBE 0.66  0.63  0.58  0.72  0.61  0.73   0.004  0.006  0.555  0.001  0.009  0.098  0.157  

Styrene 0.74  0.72  0.79  0.72  0.75  0.72   0.039  0.008  0.780  0.068  0.377  0.032  0.847  

1,4-DCB  0.72  0.67  0.73  0.76  0.72  0.74   0.255  0.151  0.810  0.467  0.075  0.772  0.940  

TCE 0.74  0.66  0.74  0.80  0.73  0.77   0.000  0.052  0.003  0.798  0.276  0.554  0.468  

PERC 0.71  0.69  0.75  0.71  0.70  0.72   0.329  0.534  0.642  0.358  0.456  0.604  0.563  

Chloroform 0.74  0.74  0.70  0.81  0.74  0.74   0.001  0.006  0.138  0.280  0.439  0.404  0.921  

CTC 0.75  0.72  0.74  0.79  0.76  0.75   0.000  0.003  0.001  0.526  0.980  0.024  0.454  

d-Limonene 0.71  0.72  0.67  0.71  0.71  0.70   0.053  0.259  0.096  0.827  0.272  0.454  0.767  

α-Pinene  0.78  0.79  0.74  0.81  0.79  0.77   0.017  0.063  0.220  0.629  0.840  0.920  0.423  

β-Pinene  0.76  0.76  0.73  0.78  0.74  0.78   0.175  0.663  0.183  0.302  0.504  0.844  0.232  
Fhome, fraction of personal VOCs originating indoors at home; CA, Los Angeles in California; NJ, Elizabeth in New Jersey; TX, Houston in Texas; hot, hot season 
from May to October; cool, cool season from November to April; K-W test, Kruskal-Wallis test; n, sample size, which excluded participants with missing time 
fractions > 0.25 or < 0, as well as Fhome > 1.25. 
p-value < 0.05 which indicates there is evidence that at least one of the group medians is different from the others was shown in bold type. 
  



 

129 

Table 48.  Fractions of personal VOCs originating outdoors (in neighborhood) in RIOPA. 

Foutdoor 

Median fraction  p-value for K-W test 

All 
(n = 

480-481) 

CA 
(n = 164) 

NJ 
(n = 

135-136) 

TX 
(n = 181) 

Hot 
(n = 

279-280) 

Cool 
(n = 

200-201) 
 City 

Among 
cities  
in hot 
season 

Among 
cities  

in cool 
season 

Season 
Between 
seasons  
in CA 

Between 
seasons  
in NJ 

Between 
seasons  
in TX 

Benzene 0.007  0.000  0.006  0.009  0.009  0.002   0.021  0.406  0.005  0.011  0.053  0.016  0.701  

Toluene 0.003  0.000  0.002  0.007  0.006  0.002   0.017  0.462  0.004  0.008  0.038  0.032  0.572  

Ethylbenzene 0.004  0.000  0.003  0.005  0.005  0.001   0.125  0.676  0.030  0.007  0.062  0.026  0.476  

m,p-Xylene 0.004  0.000  0.005  0.005  0.006  0.002   0.049  0.492  0.022  0.009  0.060  0.047  0.377  

o-Xylene 0.004  0.000  0.005  0.006  0.006  0.001   0.029  0.433  0.014  0.010  0.056  0.042  0.395  

MTBE 0.005  0.000  0.003  0.008  0.008  0.002   0.006  0.316  0.002  0.013  0.064  0.013  0.661  

Styrene 0.004  0.000  0.007  0.005  0.007  0.001   0.196  0.313  0.056  0.002  0.050  0.005  0.490  

1,4-DCB  0.000  0.000  0.000  0.000  0.001  0.000   0.409  0.816  0.072  0.004  0.051  0.010  0.509  

TCE 0.006  0.000  0.003  0.012  0.010  0.002   0.000  0.039  0.001  0.004  0.061  0.013  0.240  

PERC 0.004  0.000  0.007  0.006  0.007  0.002   0.016  0.274  0.010  0.006  0.046  0.020  0.527  

Chloroform 0.001  0.000  0.001  0.002  0.002  0.000   0.108  0.376  0.023  0.021  0.084  0.019  0.970  

CTC 0.010  0.000  0.011  0.017  0.014  0.004   0.001  0.063  0.001  0.007  0.059  0.004  0.618  

d-Limonene 0.000  0.000  0.000  0.000  0.000  0.000   0.721  0.145  0.292  0.002  0.012  0.015  0.476  

α-Pinene  0.001  0.000  0.003  0.001  0.001  0.000   0.076  0.006  0.532  0.004  0.040  0.003  0.910  

β-Pinene  0.002  0.000  0.001  0.003  0.003  0.001   0.108  0.547  0.005  0.018  0.063  0.006  0.721  
Foutdoor, fraction of personal VOCs originating outdoors in neighborhood; CA, Los Angeles in California; NJ, Elizabeth in New Jersey; TX, Houston in Texas; hot, 
hot season from May to October; cool, cool season from November to April; K-W test, Kruskal-Wallis test; n, sample size, which excluded participants with 
missing time fractions > 0.25 or < 0, as well as Foutdoor > 1.25. 
p-value < 0.05 which indicates there is evidence that at least one of the group medians is different from the others was shown in bold type. 
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Table 49.  Results of linear mixed-effect models for personal exposure to gasoline-related VOCs in RIOPA. 

Variable Group/unit Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 
β SE β SE β SE β SE β SE β SE β SE 

Intercept 
 2.21  0.41  3.74  0.37  1.41  0.42  2.23  0.37  0.78  0.29  1.82  0.32  1.09  0.33  

Visit 1 -0.03  0.07  0.12  0.09  -0.14  0.08  -0.08  0.08  -0.07  0.07  0.06  0.10  0.07  0.08  
2 Reference Reference Reference Reference Reference Reference Reference 

City 
Los Angeles -0.83  0.12  0.08  0.11  -0.37  0.14  -0.29  0.14  -0.06  0.13  -0.35  0.16  -0.23  0.11  

Elizabeth -0.37  0.14  0.06  0.13  -0.16  0.18  -0.25  0.19  -0.17  0.17  0.07  0.20  -0.11  0.10  
Houston Reference Reference Reference Reference Reference Reference Reference 

Attached garage No -0.19  0.09  -0.72  0.25  -0.36  0.12  -0.36  0.12  -0.35  0.11  -0.36  0.12  -0.42  0.25  
Cooking No 

  0.22  0.09  0.17  0.08  0.15  0.09  0.20  0.08      

Education 
Less than HS 0.15  0.12              
High school -0.08  0.10              
> College Reference             

Ethnicity 

White     -0.13  0.15  -0.23  0.16  -0.21  0.14      
Mexican     0.19  0.19  0.07  0.19  0.12  0.17      
Hispanic     0.30  0.19  0.27  0.20  0.35  0.18      

Other 
    Reference Reference Reference     

Heating fuel 
Electricity 0.20  0.18              

Gas 0.42  0.16              
Oil and wood Reference             

Indoor temperature °C -0.04  0.01              
Inverse wind speed  knot-1 4.20  0.53    3.16  0.69  2.84  0.71  2.54  0.62  5.86  0.84    

Log-transformed AER  hr-1   -0.30  0.05  -0.17  0.06  -0.21  0.06  -0.14  0.05  -0.09  0.07    
Number of floors  -0.15  0.04          -0.20  0.06    
Number of rooms  -0.10  0.03            -0.09  0.02  

Open doors or windows No         0.22  0.10    0.20  0.09  
Pumping gas No -0.16  0.08    -0.24  0.11  -0.22  0.11  -0.28  0.10  -0.34  0.13    

Renovation in the past year No   -0.30  0.10            
Time spent in home min   -0.0002 0.0001  -0.0002  0.0001        -0.0003 0.0001 

Unemployed No           0.23  0.12    
Using air cleaning devices No     -0.27  0.18  -0.42  0.18  -0.38  0.16  -0.35  0.20    
Using nail polish remover No   -0.29  0.17  -0.39  0.16  -0.33  0.17        

Wore powder, spray or perfume No           0.41  0.12    
AER, air exchange rate; HS, high school. 
For dichotomous variables, the reference group is “Yes”; n = 400 to 530 depending on models. 
p-value < 0.05 shown in bold type. 
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Table 50.  Results of linear mixed-effect models for personal exposure to odorant-related VOCs in RIOPA. 

 Variable Group/unit 1,4-DCB Chloroform d-Limonene α-Pinene β-Pinene 
β SE β SE β SE β SE β SE 

Intercept  3.50  0.78  1.34  0.47  3.62  0.39  2.42  0.25  1.57  0.44  

Visit 1 0.33  0.14  0.15  0.09  0.10  0.15  0.18  0.07  0.08  0.10  
2 Reference Reference Reference Reference Reference 

City 
Los Angeles -1.10  0.30  -0.45  0.16  -0.82  0.19  -0.71  0.13  -1.16  0.15  

Elizabeth -0.81  0.31  -0.06  0.17  -1.12  0.22  -0.59  0.14  -1.06  0.17  
Houston Reference Reference Reference Reference Reference 

Air conditioning No 0.54  0.23      -0.51  0.10  -0.20  0.13  
Ambient relative humidity %   -0.010  0.005      -0.011  0.005  

Furniture refinisher in neighborhood No -1.30  0.50          Waxing or polishing furniture No -0.81  0.33          Keeping dogs or cats No       0.15  0.10  0.29  0.11  
Log-transformed AER hr-1   -0.41  0.06  -0.33  0.08  -0.40  0.05  -0.31  0.07  

Not using fresheners or candles  No         0.32  0.18  
Number of rooms  -0.14  0.07  -0.12  0.04  -0.13  0.04  -0.10  0.03    

Open doors or windows No 0.42  0.20        0.22  0.12  
Other family members took showers  No   -0.39  0.15  -0.80  0.18  -0.41  0.12  -0.35  0.14  
Outdoor swimming pool or hot tub No       -0.31  0.13    

Using heating at  
< 64 °F 0.76  0.26          

64 to 70 °F -0.03  0.24          
> 70 °F Reference         

Ownership of the house No   0.30  0.14        
Pets indoors No   0.32  0.12        

Renovation in the past year No     -0.45  0.15      
Restaurants or bakery in neighborhood No -0.63  0.27          Unemployed No     -0.35  0.16      

Using a clothes washer No 0.53  0.19          
Using dishwashers No   -0.25  0.13        

Using other heaters (non-CHS)  No         0.55  0.27          
AER, air exchange rate; CHS, central heating system. 
For dichotomous variables, the reference group is “Yes”; n = 393 to 433 depending on models. 
p-value < 0.05 shown in bold type. 
 



 

132 

Table 51.  Results of linear mixed-effect models for personal exposure to dry-cleaning and 
Industrial-related VOCs in RIOPA. 

Variable  Group/unit 
TCE PERC CTC 

β SE β SE β SE 

Intercept  -0.79 0.42 -0.48 0.49 -0.64 0.23 

Visit 
1 0.18 0.07 0.19 0.10 -0.01 0.03 

2 Reference Reference Reference 

City 

Los Angeles 0.66 0.14 0.58 0.18 -0.17 0.07 

Elizabeth 1.23 0.14 0.54 0.24 -0.11 0.07 

Houston Reference Reference Reference 

Ambient relative humidity %   -0.01 0.01   

Ethnicity 

White   -0.12 0.19   
Mexican   -0.48 0.23   
Hispanic   0.06 0.24   

Other   Reference   
Having a fireplace No     -0.13 0.07 
Indoor temperature °C -0.03 0.01   0.01 0.01 

Inverse wind speed knot-1   4.87 0.83   
Log-transformed AER hr-1   -0.20 0.07   

Not using fresheners or candles No     -0.20 0.08 
Restaurants or bakery in 

neighborhood No 0.26 0.13     
Source of household water Public -0.58 0.27   0.50 0.14 

Sweeping indoors No   0.19 0.12   
Time spent at closed cars min 0.0018 0.0005     

Unemployed No   0.42 0.13   
Using air cleaning devices No     -0.19 0.08 

Vinyl, asbestos or other siding No -0.25 0.13     
Visited dry cleaners during past 

week No   -0.63 0.15   
AER, air exchange rate. 
For dichotomous variables, the reference group is “Yes”; n = 400 to 446 depending on models. 
p-value < 0.05 shown in bold type. 
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Table 52.  Results of linear mixed-effect models for indoor levels of gasoline-related VOCs in RIOPA. 

Variable Group/unit 
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 

β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value 
Intercept   2.57 0.40 <.0001 3.88 0.52 <.0001 0.58 0.48 0.22 2.65 0.49 <.0001 1.47 0.45 0.00 1.46 0.37 0.00 1.10 0.45 0.02 

Visit 
1 -0.22 0.08 0.010 0.26 0.08 0.00 -0.09 0.09 0.30 0.07 0.09 0.47 0.11 0.08 0.18 -0.10 0.10 0.34 0.12 0.09 0.18 
2 Reference  Reference  Reference  Reference  Reference  Reference  Reference  

City 
CA -0.52 0.12 <.0001 -0.18 0.13 0.16 -0.49 0.15 0.00 -0.22 0.16 0.17 -0.03 0.14 0.85 -0.22 0.16 0.17 -0.28 0.13 0.03 
NJ -0.81 0.13 <.0001 -0.09 0.13 0.49 -0.30 0.19 0.12 -0.22 0.21 0.29 -0.21 0.19 0.27 0.18 0.24 0.45 -0.01 0.14 0.92 
TX Reference  Reference  Reference  Reference  Reference  Reference  Reference  

Ambient relative humidity %    -0.01 0.00 0.02 -0.01 0.00 0.09 -0.01 0.00 0.08 -0.01 0.00 0.04    -0.02 0.00 <.0001 
Attached garage No -0.23 0.09 0.014    -0.38 0.12 0.00 -0.37 0.11 0.00 -0.39 0.10 0.00 -0.62 0.13 <.0001 0.28 0.12 0.03 

Cement and other flooring No    0.22 0.11 0.05                
Central heat No    -0.12 0.09 0.20                

Education 
Less than HS 0.34 0.13 0.010                   
High school 0.03 0.10 0.735                   
 > College Reference                    

Ethnicity 

White       -0.23 0.15 0.13 -0.19 0.17 0.26 -0.14 0.15 0.35 -0.04 0.18 0.85    
Mexican       0.19 0.18 0.31 0.19 0.20 0.34 0.24 0.18 0.19 0.53 0.21 0.01    
Hispanic       0.06 0.19 0.77 0.16 0.21 0.44 0.27 0.19 0.15 0.21 0.22 0.34    

Other       Reference  Reference  Reference  Reference     

Heating fuel 
Electricity       0.47 0.22 0.03             

Gas       0.48 0.20 0.02             
Oil and wood       Reference              

Indoor temperature °C -0.04 0.01 0.005 -0.02 0.01 0.07                
Inverse wind speed knot-1       3.21 0.70 <.0001 3.06 0.75 <.0001 2.92 0.69 <.0001 6.13 0.82 <.0001 2.74 0.71 0.00 

Logtransformed AERs hr-1    -0.34 0.05 <.0001    -0.19 0.06 0.00 -0.18 0.06 0.00    -0.20 0.06 0.00 
Number of floors                 -0.13 0.05 0.01    
Number of rooms  -0.10 0.03 0.000 -0.06 0.03 0.03    -0.08 0.03 0.01 -0.09 0.03 0.00    -0.09 0.03 0.00 

Open doors or windows No          0.20 0.11 0.07 0.23 0.10 0.03    0.18 0.11 0.08 
Professional cleaning No 0.19 0.11 0.077    0.20 0.12 0.10             

Time spent indoors at home min    0.00 0.00 0.18             0.00 0.00 0.04 

Type of building 

Single family 
home                0.15 0.15 0.30    

Mobile home                -0.31 0.25 0.21    Apartment/ 
townhouse                Reference     

Unemployed No 0.17 0.10 0.084    0.27 0.10 0.01             
Use of candles or incense No          -0.25 0.10 0.01 -0.22 0.09 0.01       
Using air cleaning devices No       -0.41 0.17 0.02 -0.61 0.19 0.00 -0.50 0.17 0.00 -0.40 0.21 0.06    

AER, air exchange rate; HS, high school. 
For dichotomous variables, the reference group is “Yes”; n = 387 to 455 depending on models. 
p-value < 0.05 shown in bold type.  
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Table 53.  Results of linear mixed-effect models for indoor levels of odorant-related VOCs in RIOPA. 

Variable  Group/unit 
1,4-DCB Chloroform d-Limonene α-Pinene β-Pinene 

β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value 
Intercept  4.215 0.903 <.0001 -0.41 0.54 0.45 3.57 0.39 <.0001 2.48 0.21 <.0001 1.59 0.43 0.00 

Visit 
1 0.320 0.152 0.037 -0.04 0.10 0.71 -0.11 0.15 0.44 0.12 0.07 0.09 0.12 0.09 0.21 
2 Reference  Reference  Reference  Reference  Reference  

City 
CA -0.972 0.309 0.002 -0.26 0.15 0.08 -0.46 0.19 0.01 -0.47 0.12 0.00 -1.01 0.15 <.0001 
NJ -0.612 0.413 0.140 -0.22 0.16 0.17 -0.53 0.29 0.07 -0.62 0.13 <.0001 -1.20 0.16 <.0001 
TX Reference  Reference  Reference  Reference  Reference  

Ambient relative humidity %    -0.01 0.00 0.02       -0.01 0.00 0.01 

Ethnicity 

White -0.417 0.395 0.293    0.19 0.23 0.41       
Mexican 0.441 0.460 0.340    0.78 0.27 0.01       
Hispanic -0.287 0.452 0.526    0.06 0.30 0.85       

Other Reference     Reference        
Furniture or floor was waxed or polished No -0.906 0.342 0.009             

Furniture refinisher in neighborhood No -1.392 0.531 0.010             
Indoor temperature °C    0.05 0.02 0.01          

Keeping dogs or cats No             0.35 0.11 0.00 
Logtransformed AERs hr-1    -0.54 0.06 <.0001 -0.43 0.09 <.0001 -0.46 0.05 <.0001 -0.34 0.06 <.0001 
Not using fresheners No             0.37 0.18 0.04 

Number of rooms  -0.141 0.073 0.055    -0.13 0.04 0.01 -0.07 0.03 0.01    
Open doors or windows No    0.16 0.12 0.19       0.18 0.12 0.15 

Other family members took showers No    -0.40 0.13 0.00 -0.76 0.19 <.0001 -0.55 0.11 <.0001 -0.34 0.14 0.02 

Outdoor temperature when heating starts 
< 64 °F 0.526 0.288 0.070             

64 to 70 °F -0.043 0.255 0.866             
> 70 °F Reference              

Ownership of the house No    0.59 0.12 <.0001          
Pets indoors No    0.30 0.11 0.01          

Renovation in the past year No       -0.34 0.15 0.03       
Spending awake time at 1st floor Yes          -0.39 0.12 0.00    

Using a clothes washer No 0.684 0.208 0.001             
Using central air conditioning No       -0.44 0.17 0.01 -0.62 0.11 <.0001 -0.27 0.12 0.03 

Using cleaning solutions No    -0.20 0.10 0.05          
Using dishwashers No    -0.34 0.12 0.01          
Using mothballs No -0.404 0.314 0.201             

AER, air exchange rate. 
For dichotomous variables, the reference group is “Yes”; n = 409 to 494 depending on models. 
p-value < 0.05 shown in bold type.
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Table 54.  Results of linear mixed-effect models for indoor levels of dry-cleaning and 
industrial-related VOCs in RIOPA. 

Variable  
Group/unit 

TCE PERC CTC 

β SE p-value β SE p-value β SE p-value 

Intercept  -0.877 0.292 0.003 -1.99 0.25 <.0001 -0.70 0.10 <.0001 

Visit 
1 0.191 0.066 0.004 0.05 0.09 0.59 0.05 0.05 0.30 

2 Reference  Reference  Reference  

City 

CA 0.707 0.128 <.0001 0.98 0.17 <.0001 -0.06 0.05 0.24 

NJ 1.098 0.125 <.0001 1.20 0.16 <.0001 -0.11 0.06 0.08 

TX Reference  Reference  Reference  
Cooking No    0.20 0.09 0.03    

Having a fireplace No       0.11 0.05 0.04 

Inverse wind speed knot-1    4.00 0.78 <.0001    
Logtransformed AERs hr-1 -0.17 0.05 0.001 -0.30 0.06 <.0001    
Professional cleaning No    -0.28 0.13 0.03    
Source of household 

water Public -0.49 0.23 0.039       
Sweeping indoors No    0.16 0.10 0.13    

Unemployed No    0.24 0.12 0.04    
Using central air 

conditioning No       -0.11 0.05 0.03 

Using other heaters No -0.34 0.14 0.020    0.15 0.08 0.07 
Using nail polish 

remover No -0.31 0.15 0.038       
Vacuuming No    0.26 0.10 0.01 0.12 0.04 0.01 

Vinyl, asbestos or 
other siding No -0.22 0.11 0.052 0.38 0.13 0.00    

Visited dry cleaners No    -0.34 0.14 0.02    
AER, air exchange rate. 
For dichotomous variables, the reference group is “Yes”; n = 400 to 472 depending on models. 
p-value < 0.05 shown in bold type. 
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Table 55.  Results of linear mixed-effect models for outdoor levels of gasoline-related VOCs in RIOPA. 

Variable Group/unit Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 
β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value 

Intercept   0.39 0.39 0.321 1.17 0.16 <.0001 -0.13 0.41 0.754 -0.04 0.44 0.931 -0.05 0.31 0.859 2.13 0.44 <.0001 -1.237 0.224 <.0001 

Visit 1 -0.03 0.06 0.593 0.26 0.06 <.0001 -0.03 0.07 0.643 0.06 0.07 0.403 0.09 0.07 0.207 -0.06 0.09 0.534 -0.027 0.052 0.602 
2 Reference  Reference  Reference  Reference  Reference  Reference  Reference  

City 
CA -0.56 0.10 <.0001 0.06 0.09 0.517 0.01 0.10 0.947 -0.25 0.13 0.049 -0.03 0.11 0.765 0.02 0.14 0.874 0.558 0.079 <.0001 
NJ -0.76 0.13 <.0001 -0.16 0.10 0.099 0.05 0.14 0.699 -0.19 0.15 0.209 -0.05 0.14 0.724 -0.09 0.18 0.624 0.735 0.108 <.0001 
TX Reference  Reference  Reference  Reference  Reference  Reference  Reference  Ambient relative humidity % -0.01 0.00 <.0001    -0.02 0.00 <.0001 -0.01 0.00 <.0001 -0.02 0.00 <.0001 -0.02 0.00 0.000 -0.01 0.00 0.000 

Attached garage No    -0.15 0.07 0.042                Cooking No                   -0.09 0.05 0.047 
Crawl space No -0.17 0.09 0.044                   

Ethnicity 

White -0.20 0.11 0.069    -0.21 0.11 0.068 -0.16 0.13 0.221 -0.14 0.11 0.208 -0.14 0.15 0.337 -0.03 0.08 0.686 
Mexican 0.10 0.13 0.443    0.24 0.13 0.069 0.09 0.15 0.540 0.15 0.13 0.256 0.43 0.17 0.016 0.27 0.10 0.007 
Hispanic -0.02 0.13 0.871    0.08 0.14 0.539 0.03 0.15 0.845 0.08 0.14 0.576 -0.02 0.18 0.927 -0.07 0.10 0.506 

Other Reference     Reference  Reference  Reference  Reference  Reference  Foundation of slab No    0.15 0.06 0.016                Gardening No 0.17 0.08 0.037                   House volume m3          0.00 0.00 0.014 0.00 0.00 0.040       Inverse wind speed knot-1 4.18 0.50 <.0001 1.91 0.49 0.000 4.69 0.54 <.0001 5.65 0.58 <.0001 5.50 0.54 <.0001 5.63 0.74 <.0001 3.10 0.40 <.0001 
Near diesel vehicles No -0.20 0.06 0.002                   No pets No    -0.27 0.07 0.000                Number of floors              -0.08 0.03 0.031       Number of rooms        -0.10 0.02 <.0001             Open doors or windows No                   -0.14 0.06 0.015 

Other family members took showers No    -0.38 0.08 <.0001                

Outdoor temperature 

Q1 0.39 0.09 <.0001 0.26 0.09 0.003 0.22 0.10 0.026 0.29 0.10 0.005 0.23 0.10 0.020 -0.03 0.13 0.839    Q2 0.33 0.09 0.000 0.27 0.08 0.001 0.26 0.09 0.007 0.22 0.10 0.029 0.22 0.09 0.022 0.24 0.13 0.069    Q3 -0.01 0.09 0.909 -0.10 0.08 0.247 0.08 0.09 0.378 0.02 0.10 0.868 -0.02 0.09 0.803 0.01 0.13 0.941    Q4 Reference  Reference  Reference  Reference  Reference  Reference     Ownership of the house No          0.21 0.09 0.018 0.23 0.08 0.005       Pets indoors No          0.14 0.08 0.074 0.15 0.07 0.033       Professional cleaning No    0.14 0.08 0.079                Tobacco products smoked in home No 0.66 0.26 0.012    0.64 0.27 0.019 0.79 0.29 0.008          

Type of building 

Single 
family 
home                   -0.08 0.06 0.210 

Mobile 
home                   0.19 0.10 0.056 

Apartment/ 
townhouse                   Reference  

Unvented appliances in basement No                -0.46 0.20 0.025    
For dichotomous variables, the reference group is “Yes”; n = 439 to 457 depending on models. 
p-value < 0.05 shown in bold type.  
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Table 56.  Results of linear mixed-effect models for outdoor levels of odorant-related VOCs in RIOPA. 

Variable Group/unit 
1,4-DCB Chloroform d-Limonene α-Pinene β-Pinene 

β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value 
Intercept  -0.503 0.233 0.032 -1.6286 0.1561 <.0001 -0.05043 0.2266 0.824 -1.2703 0.18 <.0001 0.2626 0.1449 0.071 

Visit 
1 0.026 0.090 0.775 0.05289 0.05428 0.331 0.1084 0.08358 0.197 0.01116 0.07082 0.875 -0.00363 0.03871 0.925 
2 Reference  Reference  Reference  Reference  Reference  

City 
CA 0.798 0.116 <.0001 0.4407 0.08141 <.0001 0.9777 0.1205 <.0001 1.4284 0.1013 <.0001 -0.5964 0.04991 <.0001 
NJ 0.632 0.151 <.0001 0.3717 0.1102 0.001 0.5528 0.143 0.000 1.3766 0.1137 <.0001 -0.7679 0.06444 <.0001 
TX Reference  Reference  Reference  Reference  Reference  

Air conditioning No 0.35 0.10 0.001             
Ambient relative humidity %             0.00 0.00 0.020 

Attached garage No    -0.20 0.07 0.005          
Cement and other flooring No    0.16 0.07 0.014          
Detached garage or carport No             0.08 0.04 0.039 

Ethnicity 

White    0.12 0.09 0.152          
Mexican    0.27 0.10 0.008          
Hispanic    0.08 0.11 0.447          

Other    Reference           
Furniture refinisher in neighborhood No -0.77 0.21 0.000             

Inverse wind speed knot-1          1.56 0.54 0.005    
No pets No    -0.17 0.06 0.009 -0.20 0.10 0.059    -0.09 0.04 0.044 

Not using fresheners No    -0.17 0.09 0.056 -0.28 0.14 0.048       
Number of floors     0.08 0.02 0.001 0.09 0.04 0.033       

Outdoor temperature 

Q1 -0.36 0.13 0.005 -0.21 0.07 0.005 -0.47 0.12 <.0001 -0.23 0.10 0.016    
Q2 -0.32 0.12 0.011 -0.17 0.07 0.019 -0.52 0.11 <.0001 -0.29 0.09 0.002    
Q3 0.03 0.12 0.804 -0.10 0.07 0.146 -0.21 0.11 0.067 -0.13 0.09 0.146    
Q4 Reference  Reference  Reference  Reference     

Outdoor temperature °C             0.01 0.00 0.033 
Professional cleaning No       -0.31 0.11 0.008 -0.20 0.09 0.024    

Type of building 

Single family home          -0.12 0.08 0.136    
Mobile home          0.11 0.12 0.365    
Apartment/ 
townhouse          Reference     

Using mothballs No 0.15 0.09 0.117             
Using cloth dryers No          0.13 0.07 0.055    

Wore any powder/hair spray/perfume No             0.07 0.04 0.062 
For dichotomous variables, the reference group is “Yes”; n = 437 to 470 depending on models. 
p-value < 0.05 shown in bold type.
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Table 57.  Results of linear mixed-effect models for indoor levels of dry-cleaning and 
industrial-related VOCs in RIOPA. 

Variable Group/unit 
TCE PERC CTC 

β SE p-value β SE p-value β SE p-value 

Intercept  -1.86 0.14 <.0001 -2.26 0.20 <.0001 -0.29 0.08 0.00 

Visit 
1.00 0.14 0.04 0.00 -0.03 0.08 0.70 0.06 0.03 0.08 

2.00 Reference Reference Reference 

City 

CA 0.46 0.06 <.0001 1.40 0.11 <.0001 -0.01 0.05 0.82 

NJ 0.80 0.07 <.0001 1.20 0.12 <.0001 -0.08 0.06 0.15 

TX Reference Reference Reference 
Dry cleaners in 
neighborhood No    -0.16 0.08 0.05    

Inverse wind speed knot-1 0.74 0.33 0.03 4.63 0.59 <.0001    
No pets No -0.12 0.05 0.01 -0.22 0.09 0.01    

Not using fresheners No       -0.15 0.06 0.01 
Number of carpeted 

rooms     -0.05 0.02 0.05    
Number of floors  -0.03 0.02 0.07       

Open doors or 
windows No -0.08 0.05 0.08    0.06 0.04 0.08 

Outdoor temperature 

Q1 0.13 0.06 0.04 0.15 0.11 0.16    
Q2 0.17 0.06 0.00 0.33 0.10 0.00    
Q3 0.03 0.06 0.59 0.00 0.10 0.99    
Q4 Reference Reference   

Type of building 

Single family home       -0.12 0.04 0.01 
Mobile home       -0.12 0.06 0.07 

Apartment/townhous
e       Reference 

Unvented appliances 
in basement No -0.23 0.09 0.01       
Vacuuming No    0.16 0.07 0.02    

For dichotomous variables, the reference group is “Yes”; n = 402 to 461 depending on models. 
p-value < 0.05 shown in bold type. 
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Table 58.  The reduction in residual variance (R2) attributable to fixed-effect variables in 
linear mixed-effect models for RIOPA VOCs. 

VOCs 
R2 

Outdoor Indoor Personal 
Benzene 0.37  0.25  0.29  
Toluene 0.23  0.09  0.10  

Ethylbenzene  0.37  0.13  0.15  
m,p-Xylene 0.31  0.12  0.13  

o-Xylene 0.41  0.16  0.19  
MTBE  0.23  0.21  0.25  
Styrene 0.44  0.15  0.06  

1,4-DCB  0.17  0.12  0.16  
TCE  0.62  0.25  0.22  

PERC 0.65  0.42  0.32  
Chloroform 0.33  0.32  0.16  

CTC  0.35  0.13  0.003  
d-Limonene  0.29  0.27  0.26  

α-Pinene  0.54  0.40  0.36  
β-Pinene  0.48  0.39  0.40  
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Figure 1.  Observed (histograms in blue bars) and fitted distributions (red line) of benzene 

concentrations in RIOPA by sample type.   
Left panels (A-D) are untransformed data; right panels (E-H) use natural log 
transform. 

  

A. Outdoor 
Gamma (α=1.17, β=1.61) 

E. Outdoor 
Normal (μ=0.45, σ=0.78) 

B. Indoor 
ExtValue (a=2.06, b=1.99) 

F. Indoor 
Logistic (α=0.78, β=0.52) 

C. Adult 
Pearson5 (α=2.42, β=5.90) 

G. Adult 
Logistic (α=0.86, β=0.49) 

D. Child 
Pearson5 (α=2.93, β=9.31) 

H. Child 
Logistic (α=1.05, β=0.46) 
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Figure 2.  Observed (histograms in blue bars) and fitted distributions (red line) of 1,4-DCB 

concentrations in RIOPA by sample type.   
Left panels (A-D) are untransformed data; right panels (E-H) use natural log 
transform.  Plots omit the following: 1,4-DCB concentrations > 5 µg m-3 (n=23), 
150 µg m-3 (n=41), 150 µg m-3 (n=38) and 1000 µg m-3 (n=10) in 2A, 2B, 2C and 
2D, respectively. 

A. Outdoor 
Pearson 5 (α=0.41, β=0.01) 

E. Outdoor 
ExtValue (a=-0.97, b=0.63) 

B. Indoor 
Student (v=1) 

F. Indoor 
InvGauss (μ=3.19, λ=5.53) 

C. Adult 
Student (v=1) 

G. Adult 
InvGauss (μ=3.49, λ=8.47) 

D. Child 
Logistic (α=24.31, β=55.63) 

H. Child 
Weibull (α=1.45, β=3.92) 
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Figure 3.  Observed (histograms in blue bars) and fitted distributions (red line) of PERC 
concentrations in RIOPA by sample type.   

Left panels (A-D) are untransformed data; right panels (E-H) use natural log 
transform.  Plots omit the following: PERC concentrations > 3 µg m-3 (n=32), 30 
µg m-3 (n=1), 40 µg m-3 (n=6) and 20 µg m-3 (n=2) in 3A, 3B, 3C and 3D, 
respectively. 

A. Outdoor 
Pearson 5 (α=0.46, β=0.03) 

E. Outdoor 
Normal (μ=-0.67, σ=1.15) 

B. Indoor 
Expon (λ=1.42) 

F. Indoor 
Logistic (α=-0.22, β=0.70) 

C. Adult 
Lognormal (μ=1.83, σ=4.03) 

G. Adult 
Logistic (α=-0.10, β=0.70) 

D. Child 
InvGauss (μ=0.99, λ=0.48) 

H. Child 
LogLogistic (γ=-4.42, α=5.83, β=3.85) 
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Figure 4.  Observed (histograms in blue bars) and fitted distributions (red line) of chloroform 
concentrations in RIOPA by sample type.   

Left panels (A-D) are untransformed data; right panels (E-H) use natural log 
transform.  One extreme value of 1224 µg m-3 was not showed in 4C. 

  

A. Outdoor 
Student (v=5) 

E. Outdoor 
ExtValue (a=-1.73, b=0.32) 

B. Indoor 
Lognormal (μ=2.22, σ=7.22) 

F. Indoor 
Normal (μ=-0.07, σ=1.16) 

C. Adult 
Lognormal (μ=2.12, σ=5.19) 

G. Adult 
Normal (μ=0.05, σ=1.15) 

D. Child 
Pearson5 (α=1.66, β=1.59) 

H. Child 
Logistic (α=0.09, β=0.58) 
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Figure 5.  Observed (histograms in blue bars) and fitted distributions (red line) of benzene, 
1,4-DCB, PERC and chloroform concentrations in 1999/2000 NHANES.   

Left panels (A-D) are untransformed data; right panels (E-H) use natural log 
transform.  Left plots omit the following:  Benzene > 60 µg m-3 (n=2), 1,4-DCB 
>10 µg m-3 (n=171), PERC >10 µg m-3 (n=44) and chloroform >30 µg m-3 (n=4). 

A. Benzene 
Lognormal (μ=4.92, σ=10.72) 

E. Benzene 
Weibull (α=1.65, β=1.71) 

B. 1,4-DCB 
Pareto (θ=0.62, a=0.31) 

F. 1,4-DCB 
InvGauss (μ=3.09, λ=6.40) 

C. PERC 
Lognormal (μ=1.56, σ=3.95) 

G. PERC 
Weibull (α=1.55, β=2.40) 

D. Chloroform 
Lognormal (μ=2.62, σ=6.54) 

H. Chloroform 
Weibull (α=1.86, β=2.27) 
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Figure 6.  Top 10% (red cross and dashed line) and 5% (blue circle and solid line) of benzene 
concentrations in RIOPA fitted to maximum extreme distributions by sample type.   

Pv = (r - 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the 
extreme values (Barnett, 1975). 
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Figure 7.  Top 10% (red cross and dashed line) and 5% (blue circle and solid line) of 1,4-DCB 
concentrations in RIOPA fitted to maximum extreme distributions by sample type.   

Pv = (r - 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the 
extreme values (Barnett, 1975). 
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Figure 8.  Top 10% (red cross and dashed line) and 5% (blue circle and solid line) of PERC 

concentrations in RIOPA fitted to maximum extreme distributions by sample type.   
Pv = (r - 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the 
extreme values (Barnett, 1975). 
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Figure 9.  Top 10% (red cross and dashed line) and 5% (blue circle and solid line) of 
chloroform concentrations in RIOPA fitted to maximum extreme distributions by 
sample type.   
Pv = (r - 0.44)/(n + 0.12), where r = the reverse rank of Ci, and n = number of the 
extreme values (Barnett, 1975). 
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Figure 10.  Comparison of cancer risks for top 10% and 5% of VOC exposure using observed 

measurements, generalized extreme value, Gumbel and lognormal simulations 
for the RIOPA data.  
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Figure 11.  The fitted density plots for chloroform (log scale) in RIOPA using normal, mixture 

of normal and Dirichlet process mixture of normal model. 
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Figure 12.  The fitted density plots for 1,4-DCB (log scale) in RIOPA using normal, mixture 

of normal and Dirichlet process mixture of normal model. 
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Figure 13.  The fitted density plots for styrene (log scale) in RIOPA using normal, mixture of 

normal and Dirichlet process mixture of normal model. 
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Figure 14.  A) Box plot of benzene concentrations showing 0.05, 0.25, 0.50, 0.75 and 0.95 

quantiles for each NHANES cohort.  Linear QR trend lines for 0.5, 0.75 and 0.95 
quantiles are shown as dashed, dashed and dotted, and solid lines, respectively.   
B) Quantile plot for linear QR model of benzene over entire study period 
(1988-2004).  A solid line shows coefficients for linear QR models at various 
quantiles.  A dashed horizontal line shows coefficients for linear regression model, 
and dotted horizontal lines show 95% confidence intervals. 

 
Figure 15.  Box plots and linear QR model results for 1,4-DCB.  Otherwise as Figure 1. 

 
Figure 16.  Box plots and linear QR model results for PERC.  Otherwise as Figure 1. 
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Figure 17.  Outdoor VOC composition at quintiles of total VOC concentrations in RIOPA.   
Warm season indicates April to September, and cold season indicates October to 
March.    , aromatics;     , MTBE;     , chlorocarbons;     , terpenes. 
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Figure 18.  Indoor VOC composition at quintiles of total VOC concentrations in RIOPA. 
Warm season indicates April to September, and cold season indicates October to 
March.    , aromatics;     , MTBE;     , chlorocarbons;     , terpenes. 
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Figure 19.  Personal VOC composition at quintiles of total VOC concentrations in RIOPA. 

Warm season indicates April to September, and cold season indicates October to 
March.    , aromatics;     , MTBE;     , chlorocarbons;     , terpenes. 
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Figure 20.  Factor profiles from PMF analyses for personal exposure measurements of VOCs 
in RIOPA.   

Red boxes indicate percentage of mass of each species apportioned to the factor; 
blue bars indicate concentrations of species. 
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Figure 21.  Factor profiles and variability for personal VOC exposures in RIOPA based on 
bootstrap analyses.   

Blue boxes show original factor profiles; red boxes show interquartile ranges; 
green lines are the medians of the bootstrap results; and red crosses are values 
outside the interquartile range. 

B. Gasoline profile 

C. Industrial and biogenic sources 

D. Vehicle exhaust and biogenic sources 

A. Odorant profile 
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Figure 22.  Cumulative probability plots of cancer risks for VOC mixtures using observations, copula and multivariate lognormal 
simulations in the RIOPA study.   

The y-axis scale emphasizes differences at upper percentiles. 

Mixture B1 Mixture B2 Mixture B3 

Cancer risk levels (case per 106 populations) 
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Figure 23.  Mean time-spent fractions for RIOPA (by city) and NHAPS participants (Klepeis 

et al. 2001). 
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Figure 24.  Box plots showing 5th, 25th, 50th, 75th and 95th percentiles and average (red dot) for 
Fhome and Foutdoor for selected VOCs in the three RIOPA cities.   

CA, Los Angeles; NJ, Elizabeth; TX, Houston. 
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Figure 25.  Partial residual plots of linear mixed-effect models for selected VOCs in RIOPA. 
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Supplemental Table S 1.  Method detection limits and detection frequencies of VOCs concentrations in RIOPA. 

VOCs 
MDL (μg m-3)  Outdoor  Indoor  Adult  Child 

NJ & CA TX & CA  n % below MDL  n % below MDL  n % below MDL  n % below MDL 

Benzene 1.1 0.54  555 24.5  554 17.9  544 14.5  209 8.1 

CTC 0.27 0.34  555 3.2  554 4.5  544 4.6  209 3.3 

Chloroform 0.42 0.28  555 87.2  554 23.3  544 17.3  209 11.5 

1,4-DCB 0.91 0.43  555 71.5  554 35.1  544 28.5  209 19.6 

Ethylbenzene 0.74 0.22  555 24.5  554 15.2  544 14.2  209 6.2 

d-Limonene 1.27 0.74  555 79.6  554 13.4  544 11.6  209 6.2 

MC 2.1 0.29  555 85  554 70.6  544 67.7  209 58.4 

MTBE 0.68 0.38  555 3.6  554 6.1  544 3.9  209 3.8 

α-Pinene 2.04 0.28  555 75.7  554 37.4  544 33.7  209 19.1 

β-Pinene 1.01 2.09  555 93.7  554 47.8  544 43.8  209 30.6 

Styrene 0.84 0.34  555 83.5  554 54.3  544 51.5  209 31.6 

Toluene 6.7 7.12  555 66.1  554 30  544 25  209 22.5 

TCE 0.44 0.24  555 80  554 74.2  544 68.6  209 77.5 

PERC 0.42 0.22  555 31.9  554 18.6  544 12.5  209 14.8 

m,p-Xylene 1.4 0.65  555 15.3  554 10.3  544 8.5  209 3.8 

o-Xylene 0.85 0.29  555 26.7  554 18.2  544 12.9  209 7.2 
MDL, method detection limit; n, sample size. 
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Supplemental Table S 2.  Method detection limits and detection frequencies of VOC concentrations in blood by NHANES cohort. 

VOCs 
 NHANES 1988-1991  NHANES 1991-1994  NHANES 1999/2000  NHANES 2001/2002  NHANES 2003/2004 

 MDL n Extre DF  MDL n Extre DF  MDL n Extre DF  MDL n Extre DF  MDL n Extre DF 

Aromatics                          
Benzene  0.0300 552 134 62  0.0300 466 88 71  0.0323 300 0 100  0.0170 837 0 53  0.0170 1345 0 59 

Toluene  0.0920 552 362 34  0.0920 466 81 82  0.0231 304 6 97  0.0177 954 1 95  0.0177 1336 0 95 

Ethylbenzene  0.0200 552 352 35  0.0200 466 60 81  0.0101 262 1 90  0.0170 879 0 61  0.0170 1299 0 68 

m,p-Xylene  0.0330 552 0 37  0.0330 466 0 91  0.0358 296 2 96  0.0240 962 0 96  0.0240 1346 0 98 

o-Xylene  0.0400 552 353 36  0.0400 466 37 87  0.0210 309 1 58  0.0346 981 0 40  0.0346 1365 0 37 

Styrene  0.0190 552 352 34  0.0190 466 42 77  0.0066 284 1 94  0.0212 950 2 54  0.0212 1245 0 41 

THMs                          
Chloroform  0.0210 552 109 45  0.0210 466 33 50  0.0064 255 2 99  0.0017 744 3 96  0.0015 1222 0 93 

BDCM  0.0090 552 41 13  0.0090 466 40 12  0.0002 354 0 95  0.0002 785 0 99  0.0004 1322 0 76 

DBCM  0.0130 552 62 13  0.0130 466 37 8.4  0.0002 350 0 87  0.0002 781 0 80  0.0004 1333 0 49 

Bromoform  0.0270 552 362 1.4  0.0270 466 77 8.2  0.0004 330 0 76  0.0004 774 0 84  0.0011 1310 1 42 

Others                          
1,4-DCB  0.0730 552 35 91  0.0730 466 68 80  0.0412 304 17 83  0.0849 807 5 51  0.0849 1322 2 54 

PERC  0.0300 552 355 30  0.0300 466 97 55  0.0144 286 3 76  0.0339 978 1 33  0.0339 1317 0 17 

MDL, method detection limit (µg L-1); n, sample size (all measurements, including "extreme or illogical" values); Extre, numbers of "extreme or illogical" values.; 
DF, detection frequency (%). 
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Supplemental Table S 3.  Results of linear mixed-effect models for outdoor VOCs in RIOPA using multiply imputed datasets (n = 
2,775). 

Benzene 1,4-DCB PERC 
Variable Group β SE p-value % change Variable Group β SE p-value % change Variable Group β SE p-value % change 
Intercept  0.51 0.34 0.138 30.4 Intercept  -0.55 0.21 0.011 8.8 Intercept  -2.34 0.18 <.0001 3.4 

Visit 
1 -0.08 0.05 0.141 126.9 

Visit 
1 0.03 0.07 0.693 11.7 

Visit 
1 -0.07 0.06 0.255 127.0 

2 Reference  2 Reference  2 Reference  

City 
CA -0.56 0.10 <.0001 -0.8 

City 
CA 0.78 0.11 <.0001 -2.4 

City 
CA 1.45 0.10 <.0001 3.3 

NJ -0.62 0.09 <.0001 -18.7 NJ 0.59 0.13 <.0001 -6.5 NJ 1.36 0.09 <.0001 13.2 
TX Reference  TX Reference  TX Reference  

Inverse wind 
speed  knot-1 4.18 0.46 <.0001 0.1 Number of 

floors  0.10 0.04 0.009 3.2 Inverse wind 
speed  knot-1 4.61 0.51 <.0001 -0.4 

Ambient 
relative 

humidity 
% -0.01 0.00 <.0001 -17.0 

Outdoor 
temperature 

Q1 -0.44 0.12 0.000 20.0 
No pets 

No -0.15 0.08 0.062 -29.2 

Outdoor 
temperature 

Q1 0.40 0.08 <.0001 2.7 Q2 -0.27 0.11 0.017 -13.3 Yes Reference  
Q2 0.31 0.08 <.0001 -5.0 Q3 -0.03 0.11 0.800 -195.8 

Vacuuming 
No 0.18 0.06 0.004 13.2 

Q3 -0.01 0.08 0.926 -22.3 Q4 Reference  Yes Reference  
Q4 Reference  

Furniture 
refinisher in 

neighborhood 

No -0.68 0.20 0.001 -11.5 Dry cleaners in 
neighborhood 

No -0.12 0.07 0.076 -25.8 

Near diesel 
vehicles 

No -0.20 0.06 0.000 -1.0 Yes Reference  Yes Reference  
Yes Reference  Airconditioning 

No 0.31 0.09 0.001 -13.2 Number of 
carpeted rooms  -0.05 0.02 0.010 8.3 

Gardening 
No 0.16 0.08 0.047 -5.1 Yes Reference  

Outdoor 
temperature 

Q1 0.11 0.09 0.242 -28.6 
Yes Reference  

Using 
deordorizers or 

fresheners 

No 0.16 0.09 0.087 9.4 Q2 0.36 0.09 <.0001 8.9 

Crawl space 
No -0.15 0.08 0.078 -16.5 Yes Reference  Q3 0.03 0.09 0.700 2099.0 

Yes Reference        Q4 Reference  
Tobacco 
products 

smoked in 
home 

No 0.39 0.21 0.062 -40.8             

Yes Reference              

Ethnicity 

White -0.19 0.10 0.067 -4.9             
Mexican 0.06 0.12 0.635 -41.8             
Hispanic -0.16 0.11 0.156 659.7             

Other Reference              
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Supplemental Table S 4.  Results of linear mixed-effect models for indoor VOCs in RIOPA using multiply imputed datasets (n = 2,770). 
Benzene PERC α-Pinene 

Variable Group β SE p-value % 
change Variable Group β SE p-value % change Variable Group β SE p-value % change 

Intercept  2.67 0.36 <.0001 4.0 Intercept  -1.71 0.22 <.0001 -13.9 Intercept  2.50 0.20 <.0001 0.9 

Visit 
1 -0.17 0.07 0.008 -19.3 

Visit 
1 -0.02 0.07 0.752 -141.5 

Visit 
1 0.09 0.06 0.143 -21.9 

2 Reference  2 Reference  2 Reference  

City 
CA -0.56 0.12 <.0001 7.4 

City 
CA 1.05 0.15 <.0001 7.6 

City 
CA -0.47 0.12 <.0001 1.0 

NJ -0.77 0.10 <.0001 -5.1 NJ 1.11 0.12 <.0001 -7.4 NJ -0.60 0.13 <.0001 -2.5 
TX Reference  TX Reference  TX Reference  

Number of 
rooms  -0.08 0.02 0.000 -12.5 Inverse wind 

speed knot-1 3.09 0.63 <.0001 -22.7 Number of rooms  -0.07 0.03 0.011 -5.7 

Unemployed 
No 0.10 0.09 0.298 -41.7 Visited dry 

cleaners during 
past week 

No -0.33 0.13 0.012 -1.1 Other members of 
the household took 

showers 

No -0.54 0.11 <.0001 -2.5 

Yes Reference  Yes Reference  Yes Reference  

Education 

Less than 
HS 0.27 0.12 0.024 -22.7 Sweeping 

indoors 
No 0.15 0.09 0.088 -6.2 Using central air 

conditioning 
No -0.67 0.10 <.0001 7.6 

High school 0.04 0.10 0.719 3.8 Yes Reference  Yes Reference  
College or 

above Reference  Cooking inside 
or outside 

No 0.18 0.08 0.027 -13.6 Logtransformed 
AER  hr-1 -0.44 0.05 <.0001 -4.4 

Professional 
cleaning 

No 0.17 0.10 0.088 -11.7 Yes Reference  Spending awake 
time at 

1st 
floor -0.39 0.11 0.001 -1.1 

Yes Reference  Vacuuming 
No 0.21 0.08 0.013 -21.1 Others Reference  

Indoor 
temperature °C -0.04 0.01 0.000 12.0 Yes Reference        

Attached 
garage 

No -0.19 0.09 0.029 -16.9 Vinyl, asbestos 
or other siding 

No 0.27 0.11 0.015 -30.2       
Yes Reference  Yes Reference        

      Professional 
cleaning 

No -0.14 0.13 0.292 -50.0       
      Yes Reference        

      
Logtransforme

d AER  hr-1 -0.25 0.05 <.0001 -16.6       

      Unemployed 
No 0.20 0.11 0.057 -15.7       

      Yes Reference        
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Supplemental Table S 5.  Results of linear mixed-effect models for personal VOCs in RIOPA using multiply imputed datasets (n = 
2,720). 

Benzene Styrene d-Limonene 
Variable Group β SE p-value % change Variable Group β SE p-value % change Variable Group β SE p-value % change 
Intercept  2.51  0.38  <.0001 13.7  Intercept   1.00  0.34 0.003  -8.2  Intercept  3.34  0.36  <.0001 -7.8  

Visit 
1 -0.07  0.06  0.282  119.3  

Visit 
1  0.07  0.08 0.331  -2.1  

Visit 
1 -0.01 0.11  0.898  -115.0  

2 Reference   2  Reference   2 Reference   

City 
CA -0.80  0.11  <.0001 -3.8  

City 
CA -0.21  0.11 0.060  -7.2  

City 
CA -0.77 0.18  <.0001 -5.9  

NJ -0.37  0.12  0.002  0.8  NJ -0.10  0.10 0.320  -8.1  NJ -0.96 0.17  <.0001 -14.3  
TX Reference   TX Reference   TX Reference   

Inverse wind 
speed  knot-1 3.60  0.53  <.0001 -14.3  Number of rooms   -0.09  0.02 0.000  -7.0  Number of 

rooms  -0.09 0.04  0.011  -29.4  

Number of 
rooms  -0.10  0.02  <.0001 -0.9  Time spent indoors 

at home min 0.00  0.00 0.004  -5.6  Other members 
of the 

household took 
showers  

No -0.74 0.17  <.0001 -6.8  

Number of 
floors  -0.13  0.03  0.000  -16.2  Open doors or 

windows 

No 0.22  0.09 0.014  13.2  Yes Reference   

Heating fuel 

Electricity 0.10  0.17  0.558  -47.7  Yes Reference   Logtransformed 
AER hr-1 -0.34 0.08  <.0001 3.8  

Gas 0.31  0.15  0.038  -25.7  Spent at least 15 
minutes in an 

enclosed garage 
with a parked car 

No -0.41  0.25 0.100  -1.5  Renovation to 
the house in the 

past year 

No -0.32 0.15  0.043  -30.1  

Oil and 
wood Reference   Yes Reference   Yes Reference   

Indoor 
temperature  °C -0.05  0.01  <.0001 11.8              

Unemployed 
No -0.40 0.14  0.005  15.2  

Education 

Less than 
HS 0.13  0.12  0.288  -12.8              Yes Reference   

High school -0.04  0.11  0.696  -48.8              Using other 
heaters (no 

central heating 
system) 

No 0.53  0.25  0.035  -3.4  

> College Reference               Yes Reference   

Attached 
garage  

No -0.18  0.09  0.050  -4.3                         
Yes 0.00  . .                          

Pumping gas 
No -0.17  0.08  0.044  4.3                         
Yes Reference                          
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Supplemental Table S 6.  Statistics of VOC concentrations (µg L-1) in blood measured for each NHANES cohort. 

VOCs 
 NHANES 1988-1991  NHANES 1991-1994  NHANES 1999/2000  NHANES 2001/2002  NHANES 2003/2004 

 n Mean SE 50th  n Mean SE 50th  n Mean SE 50th  n Mean SE 50th  n Mean SE 50th 

Aromatics                          
Benzene  418 0.147 0.003 0.065  378 0.117 0.010 0.061  300 0.184 0.015 0.103  837 0.082 0.021 0.027  1345 0.069 0.004 0.028 

Toluene  190 0.510 0.012 0.291  385 0.628 0.089 0.275  298 0.420 0.023 0.234  953 0.291 0.054 0.152  1336 0.216 0.018 0.091 

Ethylbenzene  200 0.111 0.002 0.054  406 0.131 0.016 0.063  261 0.074 0.007 0.042  879 0.046 0.008 0.029  1299 0.044 0.001 0.031 

m,p-Xylene  552 0.195 0.103 0.023  466 0.302 0.011 0.185  294 0.256 0.013 0.174  962 0.225 0.053 0.150  1346 0.168 0.008 0.130 

o-Xylene  199 0.122 0.001 0.099  429 0.165 0.012 0.102  308 0.070 0.008 0.038  981 0.057 0.008 0.035  1365 0.045 0.002 0.035 

BTEX  552 0.525 0.150 0.161  466 1.193 0.112 0.680  320 0.922 0.054 0.563  1015 0.652 0.117 0.390  1368 0.535 0.029 0.320 

Styrene  200 0.158 0.001 0.042  424 0.070 0.006 0.040  283 0.067 0.004 0.042  948 0.092 0.009 0.024  1245 0.043 0.003 0.021 

THMs                          
Chloroform  443 0.045 0.004 0.024  433 0.040 0.005 0.023  253 0.058 0.005 0.033  741 0.026 0.004 0.017  1222 0.020 0.005 0.010 

BDCM  511 0.008 0.000 0.006  426 0.008 0.000 0.006  354 0.004 0.000 0.002  785 0.004 0.001 0.002  1322 0.003 0.000 0.002 

DBCM  490 0.011 0.001 0.009  429 0.010 0.000 0.009  350 0.003 0.000 0.001  781 0.002 0.000 0.001  1333 0.002 0.000 0.000 

Bromoform  190 0.021 0.000 0.019  389 0.021 0.000 0.019  330 0.002 0.000 0.001  774 0.004 0.001 0.001  1309 0.004 0.001 0.001 

∑THM  551 0.059 0.007 0.049  465 0.072 0.006 0.050  356 0.047 0.005 0.028  820 0.033 0.003 0.025  1337 0.026 0.004 0.014 

Others                          
1,4-DCB  517 1.145 0.098 0.294  398 1.071 0.192 0.374  287 0.875 0.230 0.219  802 0.935 0.305 0.087  1320 0.827 0.142 0.140 

PERC  197 0.142 0.004 0.075  369 0.255 0.025 0.055  283 0.110 0.014 0.043  977 0.070 0.004 0.034  1317 0.081 0.011 0.034 
Sample size n including valid measurements; values below MDL measurements were replaced by 1/2 MDL. 
SE, standard error. 
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Supplemental Table S 7.  Predicted excess cancer risk for RIOPA adult participants (n = 239). 

VOCs Unit risk  
(µg m-3)-1 

Predicted excess cancer cases per million population 

Mean SD Min 25th 75th 98th Max 

Benzene 7.8 x 10-6 28.4 25.9 4.3# 13.5 32.7 134.2 172.6 

Ethylbenzene 2.5 x 10-6 7.1 9.9 0.9# 3.0 7.6 43.2 82.9 

MTBE 2.6 x 10-7 3.5 4.6 0.1# 1.2 4.1 17.5 37.2 

Styrene 2.0 x 10-6 3.2 6.9 0.3# 0.8# 2.6 23.9 59.9 

1,4-DCB 1.1 x 10-5 626.5 2223.0 2.4# 10.0# 126.0 9518.1 19167.0 

TCE 2.0 x 10-6 1.4 4.1 0.2# 0.2# 0.93 16.1 40.9 

PERC 5.9 x 10-6 12.9 25.9 0.7# 2.5# 11.8 97.5 242.3 

Chloroform 2.3 x 10-5 47.0 62.2 3.2# 14.5 52.6 248.8 537.6 

CTC 1.5 x 10-5 9.8 2.9 2.0# 8.2 10.7 17.1 27.8 

Hematopoietic mixture NA 680.2 2239.7 12.78 44.89 180.22 9695.8 19195.8 
Liver and kidney toxicant 

mixture NA 714.8 2247.4 20.80 61.25 265.03 9723.1 19222.9 

Total VOC NA 745.8 2253.9 34.1 83.9 293.3 9780.5 19250.0 
NA, not available; SD, standard deviation; min, minimum; max, maximum.  
#, concentrations were based on MDLs. 
Hematopoietic mixture includes benzene, MTBE, 1,4-DCB, TCE and PERC; liver and kidney toxicant mixture includes ethylbenzene, MTBE, 1,4-DCB, TCE, 
PERC, chloroform and CTC. 
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Supplemental Table S 8.  Linear quantile regressions of log-transformed blood VOC concentrations for NHANES 1988-1994 and 
2001-2004 (without 1999/2000).* 

VOCs 
 Quantile 0.5  Quantile 0.75  Quantile 0.95 
 β SE % change  β SE % change  β SE % change 

Aromatics             
Benzene  -0.043 0.003 -20.1#  -0.038 0.004 -51.9#  -0.023 0.014 NA 
Toluene  -0.071 0.005 -27.7#  -0.089 0.012 -38.1#  -0.089 0.012 -12.9 

Ethylbenzene  -0.054 0.006 -9.2  -0.055 0.006 -15.7  -0.095 0.027 -19.4 
m,p-Xylene  -0.024 0.006 -28.4  -0.055 0.008 -4.5  -0.136 0.049 16.0 
o-Xylene  -0.082 0.000 18.5#  -0.098 0.007 0.7  -0.129 0.035 5.4 

BTEX  -0.043 0.005 -35.3#  -0.059 0.008 -26.6  -0.083 0.029 17.5 
Styrene  -0.029 0.004 -18.7  -0.025 0.006 -35.0  -0.096 0.039 56.7 
THMs             

Chloroform  -0.059 0.004 -9.3  -0.054 0.006 -15.2  -0.059 0.015 -42.4 
BDCM  -0.102 0.007 5.4  -0.040 0.001 -6.5  -0.034 0.010 1.2 
DBCM  -0.202 0.018 0.0  -0.142 0.004 -4.6  -0.077 0.007 0.0 

Bromoform  -0.241 0.000 0.0  -0.196 0.001 -2.4#  -0.161 0.028 25.9 
∑THM  -0.112 0.006 -2.4  -0.092 0.005 -8.8  -0.052 0.020 -55.1 
Others             

1,4-DCB  -0.061 0.001 -2.6  -0.040 0.009 -11.0  -0.031 0.022 NA 
PERC  NA NA NA  -0.149 0.003 -10.3#  -0.144 0.038 -18.5 

*, excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ∑THM and PERC. 
Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs were adjusted for solvent-related occupations 
only. 
SE=standard error; NA=not available. 
% change=(((βwithout1999/2000-βwith1999/2000)/βwith1999/2000)100%), which was calculated only when both βwith1999/2000 and βwithout1999/2000 were 
significant.  
Bold type means statistically significant (p<0.05) in QR models; # means differences between βwith1999/2000 and βwithout1999/2000 were statistically significant 
examined by approximately Wald tests. 
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Supplemental Table S 9.  Piecewise quantile regressions using knot at 1999/2000 for log-transformed blood VOC concentrations in the 
1988 to 2004 period.* 

VOCs 
 0.5 Quantile  0.75 Quantile   0.95 Quantile  

 Slope1 (SE) Slope2 (SE)  Slope1 (SE) Slope2 (SE)  Slope1 (SE) Slope2 (SE) 

Aromatics          

Benzene  0.061 (0.009)  -0.244 (0.011)  0.082 (0.008)  -0.260 (0.010)   0.067 (0.022) -0.204 (0.030) 

Toluene  0.018 (0.011)  -0.207 (0.012)  0.052 (0.018) -0.238 (0.016)  -0.040 (0.042) -0.176 (0.040) 

Ethylbenzene  -0.059 (0.013) -0.060 (0.014)  -0.032 (0.012) -0.090 (0.015)  -0.051 (0.057) -0.135 (0.029) 

m,p-Xylene  0.008 (0.012) -0.069 (0.012)  0.016 (0.011) -0.116 (0.012)  0.107 (0.025) -0.263 (0.030) 

o-Xylene  -0.148 (0.005) -0.006 (0.002)  -0.067 (0.013) -0.127 (0.016)  -0.039 (0.053) -0.163 (0.032) 

BTEX  0.009 (0.011) -0.126 (0.009)  0.020 (0.014) -0.154 (0.013)  0.010 (0.037) -0.124 (0.030) 

Styrene  -0.001 (0.006) -0.067 (0.006)  0.051 (0.012) -0.134 (0.014)  0.113 (0.036) -0.168 (0.030) 

THMs          

Chloroform  0.062 (0.013)  -0.294 (0.017)   0.084 (0.011)  -0.301 (0.018)  0.039 (0.018) -0.273 (0.024) 

BDCM  -0.084 (0.009)  -0.124 (0.021)  -0.011 (0.012) -0.094 (0.010)  -0.013 (0.021) 0.076 (0.033) 

DBCM  -0.168 (0.013)  -0.268 (0.021)  -0.116 (0.015) -0.205 (0.027)  -0.077 (0.021) -0.076 (0.036) 

Bromoform  -0.403 (0.000) -0.014 (0.000)  -0.306 (0.005) -0.032 (0.037)  -0.200 (0.049) -0.028 (0.060) 

∑THM  -0.054 (0.013) -0.184 (0.014)  -0.003 (0.011) -0.215 (0.013)  0.044 (0.031) -0.195 (0.027) 

Others          

1,4-DCB  -0.067 (0.007)  -0.056 (0.012)  -0.024 (0.020) -0.072 (0.027)  0.012 (0.042) -0.123 (0.075) 

PERC  -0.121 (0.000) 0.000 (0.000)  -0.110 (0.025) -0.191 (0.004)  -0.109 (0.077) -0.207 (0.057) 
*, excludes 1988-1991 data for toluene, ethylbenzene, m,p-xylene, o-xylene, BTEX, styrene, bromoform, ∑THM and PERC. 
Aromatic VOCs were adjusted for solvent-related occupations and serum cotinine levels; THMs and other VOCs were adjusted for solvent-related occupations. 
Slope1=slope of regression line connecting 1988-1991 and 1999/2000; slope2=slope of regression line connecting 1999/2000 and 2003/2004. 
SE=standard error; NA=not available. 
Bold type means statistically significant (p<0.05). 
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Supplemental Table S 10.  Effect sizes* of linear mixed-effect models for personal exposure to gasoline-related VOCs in RIOPA. 

Variable Group/unit Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene MTBE Styrene 
Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Intercept  9.13  2.21  42.16  2.05  4.10  2.27  9.32  2.06  2.18  1.78  6.18  1.85  2.98  1.93  

Visit 1 1.031  1.136  1.13  1.19  -1.15  1.17  -1.09  1.18  -1.07  1.16  1.06  1.22  1.08  1.16  
2 Reference Reference Reference Reference Reference Reference Reference 

City 
Los Angeles -2.29  1.26  1.09  1.24  -1.45  1.31  -1.34  1.32  -1.06  1.30  -1.41  1.38  -1.26  1.25  

Elizabeth -1.44  1.32  1.07  1.29  -1.17  1.43  -1.29  1.45  -1.19  1.39  1.07  1.48  -1.12  1.23  
Houston Reference Reference Reference Reference Reference Reference Reference 

Attached garage No -1.21  1.19  -2.06  1.63  -1.44  1.26  -1.43  1.27  -1.42  1.23  -1.43  1.27  -1.51  1.63  
Cooking No   1.24  1.19  1.19  1.18  1.17  1.19  1.22  1.16      

Education 
Less than HS 1.16 1.27              
High school -1.09  1.22              
> College Reference             

Ethnicity 

White   -1.14  1.35    -1.25  1.37  -1.23  1.32      
Mexican   1.21  1.44    1.07  1.46  1.12  1.40      
Hispanic   1.35  1.45    1.31  1.48  1.42  1.41      

Other     Reference Reference Reference     

Heating fuel 
Electricity 1.22  1.42              

Gas 1.52  1.37              
Oil and wood Reference             

Indoor temperature °C -1.17  1.08              
Inverse wind speed  knot-1 1.52  1.11    1.37  1.14  1.33  1.15  1.29  1.13  1.80  1.18    

Log-transformed AER  hr-1   -1.39  1.12  -1.20  1.13  -1.26  1.13  -1.17  1.12  -1.10  1.15    
Number of floors  -1.35  1.16          -1.48  1.26    
Number of rooms  -1.21  1.10            -1.21  1.10  

Open doors or windows No         1.25  1.20    1.22  1.20  
Pumping gas No -1.18  1.18    -1.27  1.25  -1.24  1.25  -1.32  1.22  -1.40  1.30    

Renovation in the past year No   -1.35  1.22            
Time spent in home min   -1.18  1.16  -1.15  1.16        -1.22  1.13  

Unemployed No           1.26  1.27    
Using air cleaning devices No     -1.31  1.42  -1.52  1.43  -1.46  1.37  -1.42  1.49    
Using nail polish remover No   -1.34  1.39  -1.48  1.38  -1.38  1.40        

Wore powder, spray or perfume No           1.50  1.26    
*, for continuous variables, the effect size (µg m-3) is equal to the change in exposure for one inter-quartile range of the determinant. 
AER, air exchange rate; HS, high school. 
For dichotomous variables, the reference group is “Yes”. 
p-value < 0.05 shown in bold type. 
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Supplemental Table S 11.  Effect sizes* of linear mixed-effect models for personal exposure to odorant-related VOCs in RIOPA. 

 Variable  Group/unit 1,4-DCB Chloroform d-Limonene α-Pinene β-Pinene 
Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Intercept  33.23  4.60  3.83  2.53  37.39  2.14  11.27  1.62  4.80  2.36  

Visit 1 1.40  1.33  1.17  1.19  1.10  1.34  1.19  1.16  1.08  1.21  
2 Reference Reference Reference Reference Reference 

City 
Los Angeles -3.00  1.79  -1.56  1.36  -2.27  1.44  -2.04  1.28  -3.18  1.34  

Elizabeth -2.25  1.82  -1.06  1.40  -3.07  1.54  -1.81  1.31  -2.88  1.39  
Houston Reference Reference Reference Reference Reference 

Air conditioning No 1.71  1.56      -1.67  1.23  -1.22  1.28  
Ambient relative humidity %   -1.14  1.12      -1.14  1.12  

Furniture refinisher in neighborhood No -3.66  2.65          Waxing or polishing furniture No -2.24  1.90          Keeping dogs or cats No       1.17  1.22  1.34  1.24  
Log-transformed AER hr-1   -1.56  1.15  -1.43  1.19  -1.54  1.12  -1.40  1.15  

Not using fresheners or candles  No         1.37  1.42  
Number of rooms  -1.32  1.30  -1.26  1.18  -1.29  1.18  -1.21  1.13    Open doors or windows No 1.52  1.47        1.24  1.27  

Other family members took showers  No   -1.47  1.34  -2.22  1.43  -1.51  1.27  -1.42  1.32  
Outdoor swimming pool or hot tub No       -1.37  1.28    

Using heating at  
< 64 °F 2.14  1.68          64 to 70 °F -1.03  1.59          > 70 °F Reference         Ownership of the house No   1.34  1.33        Pets indoors No   1.37  1.26        Renovation in the past year No     -1.57  1.34      Restaurants or bakery in neighborhood No -1.87  1.70          Unemployed No     -1.42  1.36      Using a clothes washer No 1.70  1.46          Using dishwashers No   -1.29  1.30        Using other heaters (non-CHS)  No         1.73  1.68          

*, for continuous variables, the effect size (µg m-3) is equal to the change in exposure for one inter-quartile range of the determinant. 
AER, air exchange rate; HS, high school. 
For dichotomous variables, the reference group is “Yes”. 
p-value < 0.05 shown in bold type. 
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Supplemental Table S 12.  Effect sizes* of linear mixed-effect models for personal exposure to dry-cleaning and industrial-related 
VOCs in RIOPA. 

 Variable  Group/unit 
TCE PERC CTC 

Estimate 95% CI Estimate 95% CI Estimate 95% CI 
Intercept  -2.21  2.29  -1.62  2.64  -1.89  1.58  

Visit 
1 1.20  1.15  1.21  1.21  -1.01  1.07  
2 Reference Reference Reference 

City 
Los Angeles 1.94  1.33  1.78  1.42  -1.19  1.15  

Elizabeth 3.42  1.33  1.71  1.60  -1.12  1.16  
Houston Reference Reference Reference 

Ambient relative humidity %   -1.13  1.13    

Ethnicity 

White   -1.13  1.45    
Mexican   -1.62  1.57    
Hispanic   1.06  1.60    

Other   Reference   
Having a fireplace No     -1.14  1.14  
Indoor temperature °C -1.10  1.10    1.04  1.04  
Inverse wind speed knot-1   1.63  1.18    

Log-transformed AER hr-1   -1.24  1.15    
Not using fresheners or candles  No     -1.22  1.16  

Restaurants or bakery in neighborhood No 1.30  1.30      
Source of household water  Public -1.78  1.69    1.65  1.32  

Sweeping indoors No   1.21  1.26    
Time spent at closed cars min 1.25  1.12      

Unemployed No   1.52  1.28    
Using air cleaning devices No     -1.21  1.18  

Vinyl, asbestos or other siding No -1.28  1.29      
Visited dry cleaners during past week No   -1.88  1.34    

*, for continuous variables, the effect size (µg m-3) is equal to the change in exposure for one inter-quartile range of the determinant. 
AER, air exchange rate; HS, high school. 
For dichotomous variables, the reference group is “Yes”. 
p-value < 0.05 shown in bold type.
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CHAPTER 4 

Conclusions 

 This dissertation draws on the outdoor, indoor, personal and biological VOC 

measurements from two large datasets, RIOPA and NHANES, and utilizes several novel and 

powerful statistical modeling and analysis techniques.  It identifies and characterizes 

exposure distributions, risks, trends, mixtures, dependencies of the components in mixtures, 

and exposure determinants.  The conclusions are presented in this chapter.  Section 4.1 

summarizes the main findings for each objective (see Section 1.3).  Section 4.2 addresses 

the relevance of the findings to public health and environmental concerns.  Section 4.3 

suggests possible applications of the advanced statistical methods used in this research, and 

identifies unsolved scientific issues for further investigation.      

4.1 Main Findings  

4.1.1 Extreme Value Analyses 

 The results of the extreme value analyses (Section 3.3) showed that the highest 

exposures in RIOPA, which can be the most significant in terms of health risks, closely fitted 

generalized extreme value (GEV) distributions and, in many cases, Gumbel distributions, a 

reduced form of the GEV distribution.  In contrast, lognormal distributions, the usual 

"default" distributional assumption, underestimated concentrations and risks from extrema.  

Despite the importance of extreme value exposures, few studies have fitted distributions or 

otherwise characterized such extrema.  Better ways to accurately characterize pollutant 

distributions and predict the numbers of individuals that exceed risk-based exposure guidelines 

or other criteria are needed.  GEV distributions will be useful in impact and policy analyses to 

describe concentrations, exposures and risks.   

4.1.2 Mixture of Normal Distributions 

 Although GEV distributions can represent tail behavior of exposure and risk distributions, 
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they do not fit the full distribution of most environmental data, which can have multiple modes, 

heavy tails, left-censoring, and other features.  Compared to parametric distributions, the 

finite mixture of normals and Dirichlet process mixture (DPM) of normals were shown 

(Section 3.4) to have superior performance in fitting VOC exposure data with heavy tails or 

with a large fraction of data below the method detection limits (MDLs).  The optimal 

number of distributions (k) needed for the finite mixture of normals models ranged from 2 to 4, 

depending on VOCs.  Distributions from the DPMs provided slightly better fits than the 

finite mixture of normals.  This model has advantages by characterizing uncertainty around 

the number of components, and by providing a formal assessment of uncertainty for all model 

parameters through the posterior distribution.  The method adapts to a spectrum of departures 

from standard model assumptions and provides robust estimates of the exposure density, even 

under left censoring (due to the MDL). 

4.1.3 Trend Analyses 

 In Section 3.5, VOC exposure trends from 1988 to 2004 were examine using 

concentrations measurements in blood drawn from five cohorts of NHANES, a large and 

nationally representative sample of U.S. adults.  There is no question that VOC exposures 

decreased over this period, however, the rate of decrease depends on the both the VOC and the 

quantile.  Using quantile regression (QR) models, three patterns were discerned:  exposures 

of benzene, toluene, BTEX and, with less confidence, ΣTHMs and chloroform, had similar 

decreases at all quantiles (pattern 1); ethylbenzene, m,p-xylene, o-xylene, styrene and PERC 

levels decreased fastest at upper quantiles (pattern 2); and 1,4-DCB declined faster at central 

quantiles (pattern 3).  Because the sample included participants with a wide range of 

occupations and exposures, upper quantile exposures may reflect occupational exposure, 

while lower quantiles arise from general environmental sources.  There is less certainty 

regarding the nature of the exposure trends.  Linear models yielded reductions of 2.5 to 6.4% 

per year for most VOCs, a robust result that is consistent with ambient trends, described below.  

Shorter term trends, evaluated using piecewise models and other analyses, suggest that several 

VOCs had smaller changes through the 1990's, followed by swifter reductions in subsequent 

years; however, these trends may be driven by previously unreported anomalies in the 

NHANES data that affected the 1988 through 2000 cohorts.   
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 VOC emissions and ambient concentrations were compared to the biomonitoring data.  

For most VOCs, reported emissions decreased more slowly (e.g., 4-6% per year for toluene 

and xylene from 1999 to 2004) than median exposures.  However, for most VOCs, long 

term trends of ambient concentrations decreased more rapidly than the NHANES exposure 

data.  Exposure, emission and concentration trends may diverge, especially for VOCs with 

strong indoor sources, e.g., chloroform and 1,4-DCB.  These differences suggest the 

importance of indoor emission sources, smoking, occupation, personal activities and other 

factors on exposure, in addition to emissions and ambient concentrations. 

 Internal checks on the validity of the NHANES measurements were made by comparing 

blood and personal sampling measurements collected in the 1999/2000 cohort, and by 

comparing results across cohorts.  The low to moderate correlation found can be explained by 

NHANE's experimental design, the rapid clearance of most VOCs from blood, and other 

factors.  It should be noted that data were insufficient to estimate trends for BDCM, DBCM 

and bromoform, and also that portions of the 1988-1991 through 1999/2000 VOC data appear 

unreliable.  Still, the NHANES measurements are unique and valuable in providing a 15 year 

history of population exposure to VOCs in the U.S. 

4.1.4 Identification of Mixtures 

 Many VOCs have similar emission sources and/or toxicological effects, highlighting the 

need to understand and evaluate exposures to mixtures.  VOC mixtures in the RIOPA dataset 

were identified using positive matrix factorization (PMF) analyses and the toxicological mode 

of action (Sections 2.2.6.2 and 3.6).  The VOC emission sources identified using PMF 

included gasoline vapor (mixture A1), vehicle exhaust (mixture A2), moth repellents, 

chlorinated solvents and water disinfection by-products (mixture A3), and cleaning products 

and odorants (mixture A4).  These four mixtures were affected by city, ethnicity and air 

exchange rates.  The influence of environmental factors and personal activities was also 

shown for certain mixtures, e.g., mixture A1 was associated with attached garages and 

self-service pumping gas.  Three additional mixtures based on cancer endpoints were 

identified, which respectively can cause liver and renal tumors (mixtures B1 and A3/B3), and 

hematopoietic cancers (mixture B2).   
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4.1.5 Dependencies of Components in Mixtures 

 Dependencies between mixture components were described using copulas (Section 3.7), 

which showed a high degree of accuracy and flexibility, including the ability to represent 

asymmetrical dependency structures.  The dependency structures of four mixtures in RIOPA 

were best described by the t copula, while two other mixtures best fitted Gumbel copulas, 

which better capture dependency structures of distributions containing extreme values.  In all 

cases, the copulas clearly provided better fits than multivariate lognormal distributions.  

Copulas can provide accurate estimates and simulations for the joint distribution of pollutants 

across the full range of concentrations, and they faithfully represent the correlation in the tails 

of the distributions.  Thus, copulas may be the method of choice for estimating cumulative 

risks of exposure to mixtures, particularly for the highest exposures or extreme events, which 

poorly fit lognormal distributions, and which may represent the greatest risk. 

4.1.6 Exposure Determinants 

 LMMs were used to identify determinants of VOC exposures in RIOPA (Section 3.9).  

The determinants included city, personal activities (e.g., pumping gas and visiting dry 

cleaners), household characteristics (e.g., AERs, number of rooms, attached garages), and 

meteorology (e.g., wind speed).  Most of these factors were associated with indoor 

concentrations in the participant's home, which contributed a large share exposure (average 

exposure fractions ranged from 63% for MTBE to 75% for CTC).  Gasoline-, odorant and 

cleaning-, and dry-cleaning and industry-related VOCs were associated with a number of 

individual and environmental determinants, consistent with previous studies, e.g., 

gasoline-related VOCs were higher in homes with attached garages, and dry cleaning-related 

VOCs were higher in participants who visited dry cleaners.  Several new determinants were 

identified, including effects of city, other family member showering, and residence size.  

Outdoor VOC concentrations provided small contributions to VOC exposure (exposure 

fractions averaged from 0.032 to 0.006).  To extend and generalize results, further 

investigation using a more representative population and a wider suite of VOCs is suggested. 

4.2 Implications of Findings 

 This dissertation highlights several critical issues in exposure science relevant to public 

health that have received relatively little attention.  These issues were addressed using several 
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advanced statistical approaches and the RIOPA and NHANES VOC datasets.  These methods 

performed well, and they deserve more widespread consideration and application. 

 First, the highest exposure events do not fit “default” distributional assumptions, i.e., 

lognormal distributions, but they can be described using extreme value analyses.  Since the 

highest exposures may be the ones most relevant to health risks, they frequently become the 

determinants or "drivers" of environmental decisions and policies.  We suggest the need to 

more accurately characterize and model these high concentrations and exposures, potentially 

using the extreme value theory, and that the use of this enhanced information and methods for 

estimating population risks and establishing exposure and risk guidelines. 

 Second, single (parametric) distributions may not accurately fit exposure data, which 

contains features such as multiple modes, heavy tails, and left censoring.  The suggested 

mixture models, finite mixture of normals and DPM of normals, provided much better fits to 

the RIOPA VOC dataset than lognormal distributions.  These full distribution models offer 

several advantages over parametric distribution models, and they appear appropriate for other 

types of environmental data (e.g., persistent and/or emerging compounds).  The use of 

mixture models can improve the accuracy and realism of models used in a variety of exposure 

and risk applications. 

 Third, trends of VOC exposures were evaluated using QR models and 1988 to 2004 

NHANES data.  This analysis reveals changes in blood VOC levels in the U.S. population (20 

to 59 year old) over past decades.  The trends were examined at various percentiles (one of the 

greatest advantages of using QR models), and showed different patterns, which may reflect 

changes in exposure sources.  Additionally, exposure trends were compared to trends of 

emissions and ambient VOCs.  The results reflect declining trends in emissions and ambient 

VOC levels, but also suggest the importance of indoor sources and personal activities on VOC 

exposures.    

 Fourth, copulas were used to estimate dependency structures in mixtures of VOCs.  The 

RIOPA dataset showed complex dependencies, e.g., the dominant VOC in a mixture often 

changed as the mixture concentration increased.  Copula methods have many strengths: they 

overcome shortcomings of traditional methods that address only pair-wise correlations (e.g., 

correlation coefficients); allow the use of any marginal distribution; permit asymmetrical 
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dependency structures; and they decouple the dependency structure from the marginal 

distribution.  These are essential considerations for cumulative exposure and cumulative risk 

assessment, and copulas provide a powerful tool in this application, especially for high 

concentration mixtures that may pose the greatest risks.   

 Lastly, the analysis of exposure determinants in this dissertation suggests several 

interventions that can help prevent or reduce VOC exposures.  Since people spent over 90% 

of their time at home, and since exposure at home contributes an average of 60% of an 

individual's total VOC exposure, minimizing indoor VOC sources/levels will decrease 

exposure.  In addition, VOC exposures can be reduced by modifying activities that 

contribute significantly contribute to VOC exposure, e.g., pumping gasoline and visiting dry 

cleaners, and by addressing environmental factors that influence VOC exposures, e.g., 

attached garages, and outdoor VOC sources.   

4.3 Recommendations for Further Study 

 This dissertation used data drawn from RIOPA and NHANES, much of which was 

collected over a decade ago.  Updated data are needed to explore and understand current 

exposure situations.  For example, the most recent blood VOC data in NHANES was from the 

2005/2006 cohort (latest release).  Since this time, the survey has been expanded to include 

younger participants (from 12 year old).  Further research could examine more recent trends 

of VOC exposures, and separate children and adult populations.   

 This dissertation has applied several advanced statistical methods, but these methods 

rarely have been applied in other environmental studies.  Further applications of these 

methods are warranted.  For example, considering the tail dependencies of VOC mixtures and 

the extreme value distributions of VOCs, future studies should apply extreme-value copulas 

(including Galambos and Husler-Reiss copulas, as well as Gumbel copulas), which combine 

the copula technique and the extreme value theory.  Such approaches can predict the risk of 

exposure to extreme values of VOCs.  In addition, dependency structures in VOC mixtures 

may change over time due to different emission sources or activity patterns, so the longitudinal 

NHANES data can be used with copulas to explore temporal joint distributions of VOC 

exposures.  Also, copulas are recommended to estimate the dependency structures of other 

class of pollutants or across different types of pollutants.   
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Another possible application is the use of QR models for determining exposure factors.  

Determinants of VOC exposures may vary as a function of exposure levels, i.e., high- and 

low-exposed populations may be affected by different factors; further research could help 

explore exposure determinants at different percentiles using QR models.   

Since people are typically exposed to mixtures, there will be a continuing need to 

estimate the determinants of such exposures.  In this case, the associations between multiple 

correlated response variables (e.g., VOC mixtures), and covariates (e.g., potential 

determinants), can be estimated using copula regression models.   

Finally, the general recommendation is that the statistical approaches used in these 

analyses are needed when investigating other pollutants like particulate matter, other settings 

such as other countries and other populations, especially sensitive populations, e.g., children 

and elders.  This more comprehensive interpretation provides an improved foundation on 

which to base policy decisions.   
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