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CHAPTER I

Introduction

1.1 Control System Design

Control system design consists of choosing the controlled plant inputs so that the

performance outputs of the plant meet a set of predefined control objectives in the

presence of uncontrolled exogenous inputs entering the plant. A plant is any process

that takes inputs and generates outputs, as shown in Figure 1.1.

Figure 1.1: A plant is a system that takes inputs and generates outputs.

Cruise control in the modern automobiles is one of the most popular control system

applications. For cruise control, the plant is the automobile, and the task is to choose

the control input acting on the automobile in order to regulate the output of the

automobile, in the presence of exogenous forces disturbing the vehicle. Specifically,

the goal is to choose the gas pedal angle so that the vehicle maintains a desired speed,

in the presence of aerodynamical and gravitational forces acting on the vehicle.
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Two main approaches are commonly used (sometimes jointly) in addressing the

control system design: Feedforward and Feedback control. Feedforward, or open-loop

control refers to the control system design in which the choice of the control input

does not depend on the plant output. For example, for the automobile, a primitive

feedforward cruise control strategy would be to adjust the gas pedal angle α based

on the desired speed level v. This can be done by going on a test drive with the

vehicle and recording the throttle angles α1, . . . , αk for a predefined set of speed levels

v1, . . . , vk. A feedforward cruise control scheme can then be implemented by building

a mechanism that adjusts the throttle angle according to the desired speed level set

by the driver. While this approach may work in ideal conditions, one critical aspect

of the problem that was overlooked in this approach is the presence of exogenous, or

disturbance forces acting on the vehicle. For instance, if you did your test drive and

recorded the αi values on a flat road on a wind-free day, then it is very unlikely that

your feedforward cruise controller will accurately maintain the desired speed when

your vehicle is climbing on a windy day. A command-feedforward control system is

shown in Figure 1.2.

Figure 1.2: Command-feedforward control architecture.

On the other hand, in feedback control, the control input is chosen based on mea-

sured values of plant outputs. An immediate prerequisite for feedback control is thus

the use of sensors to measure the outputs, which in turn increases the cost to imple-
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ment the control system. However, feedback control performs better than feedforward

control in the presence of external disturbances, is less sensitive to uncertainty in the

plant parameters, and is applicable to a broader range of plants [32, 62, 94, 95]. An

output feedback control architecture is shown in Figure 1.3.

Figure 1.3: Output-feedback control architecture.

1.2 Feedback Control

We interact with feedback control systems very frequently in our daily environ-

ment. In our homes, we interact with refrigerators and air conditioning units which

utilize feedback control to regulate the ambient temperature. Modern vehicles are

equipped with feedback control systems such as cruise control or traction control sys-

tems. In fact, while driving, the human brain acts like an output-feedback controller;

the eyes read the speed measurements from the speedometer, the brain compares

the measured speed with the speed limit, and uses the feet to regulate the speed by

pressing the brake or gas pedals.

The common objectives in feedback control are command following, disturbance

rejection, or the combination of both. The goal of command following is to have the

output of the plant follow a command trajectory. In disturbance rejection, the goal
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is to cancel the effect of external disturbances from the output of the plant. Finally,

combined command following and disturbance rejection problem consists of having

the output of the plant follow a command trajectory in the presence of external

disturbances. For instance, cruise control is a combined command following and

disturbance rejection problem, where the goal is to have the vehicle speed remain near

the commanded value in the presence of gravitational, frictional, and aerodynamic

disturbances acting on the vehicle.

One of the major benefits of feedback control is that it inherently reduces the

effect of disturbances and sensitivity of the control system to uncertainty in the plant,

assuming that the closed-loop stability is maintained. Therefore, in control systems,

the feedback gains must be as large as possible, but not larger, as too much feedback

may cause instability. The fundamental challenge in feedback control is thus to design

a controller that provides enough feedback in order to attenuate the disturbances and

reduce sensitivity, while maintaining closed-loop stability. If the exogenous inputs are

outputs of an unforced linear system, then the feedback controller can be designed

using the internal model principle [23, 29, 30, 31, 52], which consists of designing a

controller with high gain at the exogenous signal frequencies and small gain in other

frequencies. An integrator, which has infinite gain at DC, is the simplest internal

model controller. On the other hand, if the exogenous inputs are broadband, then

LQR/LQG techniques can be used to minimize the H2 cost of the closed-loop system

[81, 90, 95, 117]. However, these methods may require a complete and exact model

of the plant dynamics as well as a complete and exact model of the disturbance and

sensor-noise statistics and frequency spectrum. Therefore, any uncertainty in the

plant model or disturbance spectrum could lead to poor closed-loop performance, or

worse, instability.
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1.3 Adaptive Control

In many applications of control, a model of the plant that is sufficiently accurate

for feedback control synthesis is not available. A model with sufficient fidelity may

be lacking due to either complex physics that are not amenable to first principles

analysis or the inability to collect a sufficient amount of quality data for empirical

modeling. Even if a sufficiently accurate model is available, the plant may undergo

unexpected changes that cannot be accounted for prior to control-system operation.

The underlying motivation for feedback is uncertainty, yet uncertainty in the

parameters of a plant can degrade performance and lead to instability. The goal of

robust control is to design controllers that account for prior uncertainty in the plant

model [25, 71, 95, 117]. Robust control thus trades performance for stability.

In contrast to robust control, the goal of adaptive control is to avoid the need to

sacrifice performance for modeling uncertainty by modifying the controller online to

the actual plant. Although there is not an established definition of adaptive control,

it is generally understood to be a form of highly robust nonlinear control that does

not a priori sacrifice performance for uncertainty. In daily use, “to adapt” evokes a

modification according to changing circumstances. In [4], an adaptive controller is

defined as a controller with adjustable parameters and a mechanism for adjusting the

parameters. This definition invokes the use of an update mechanism (or update law)

that adjusts the parameters of the control law. Typically, this update mechanism is

driven by the performance output of the plant, and the updated controller parameters

are used to compute the control input, as shown for a feedback architecture in Figure

1.4.

Adaptive control for linear systems primarily focuses on adaptive stabilization,

adaptive pole placement, adaptive command following, and model reference adaptive

control (MRAC) [4, 7, 21, 34, 45, 46, 47, 50, 65, 66, 75, 79, 91, 105]. Extensions of

adaptive control to nonlinear systems include adaptive backstepping control, adaptive
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Figure 1.4: Adaptive feedback control architecture.

feedback linearization of nonlinear systems, and adaptive nonlinear stabilization using

control Lyapunov functions [53, 58, 60, 116].

For control applications requiring disturbance rejection, adaptive feedforward con-

trol algorithms such as filtered-X LMS have been developed [26, 63, 64]. These al-

gorithms do not require knowledge of the disturbance spectrum, but require a direct

measurement of the disturbance signal. For applications in which measurements of

only the plant response are available, feedback control is needed. For systems with

harmonic disturbances having known spectrum, such as active noise and vibration

control in helicopters, harmonic steady-state algorithms can be used [82]. For dis-

turbance rejection in the presence of harmonic disturbances with unknown spectra,

adaptive feedback control methods have been developed [10, 11, 43, 110]. A more

challenging problem is adaptive disturbance rejection without feedforward measure-

ments in the presence of broadband disturbances. Within the context of adaptive

feedback control, adaptive LQG control is considered in [18, 50, 83].

Adaptive control may depend on prior modeling information, such as bounds on

the model order and plant parameters, or it may entail explicit on-line system identifi-

cation. These approaches are known, respectively, as direct and indirect adaptive con-

trol. Adaptive controllers can be further classified as either digital [2, 4, 34, 51, 66, 105]
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or continuous-time [45, 46, 47, 50, 79, 91]. Although most plants are naturally mod-

eled in continuous time, the modeling data used by an adaptive controller is typically

based on sampled data. In addition, most control applications are confined to a

fixed, bounded sample rate, while controllers developed in discrete time can be di-

rectly transformed into embedded code.

In this dissertation, we focus on retrospective cost adaptive control (RCAC), which

is a digital, direct adaptive control algorithm. The earliest version of RCAC is given

in [110], where the authors develop a gradient update law based on a retrospective

performance variable that is computed using ARMARKOV system representations.

The retrospective performance of a plant is a function of time and a controller. In

particular, the retrospective performance is the performance output that would have

been obtained at current time assuming that a specific controller was used over a past

window of time. The underlying idea behind RCAC is to solve for the retrospectively-

optimized controller minimizing the retrospective performance at each time step, and

compute the control input at each time step by using the retrospectively-optimized

controller. Applications and extensions of the ARMARKOV-based method are given

in [1, 37, 42, 86].

In [43], a specialization of the ARMARKOV-based RCAC is considered. With this

specialization, the controller update is carried out using only the first nonzero Markov

parameter of the plant. Using this specialization, asymptotic command following and

disturbance rejection capabilities as well as stability properties of RCAC are rigor-

ously shown for minimum phase square plants, that is, plants with equal number

of inputs and outputs. In [87, 88], RCAC update law is reformulated as an opti-

mization problem which involves an instantaneous cost function that depends on the

retrospective performance. Furthermore, an alternative to the ARMARKOV based

representations is shown in [87, 88] by defining the retrospective performance in terms

of the time-series numerator coefficients of the plant. Finally, in [36], RCAC update
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law is reformulated as the solution of a cumulative cost function. Asymptotic conver-

gence properties for SISO, possibly nonminimum-phase (NMP) plants are shown in

[36] for both instantaneous and cumulative update laws, and these results are shown

for a MRAC extension of RCAC in [41]. This dissertation thus focuses on and extends

the instantaneous and cumulative update laws developed in [36, 43, 87, 88].

1.4 Adaptive Control of Nonsquare Plants

Most adaptive controllers, including MRAC, have the restrictive assumption that

the plant is minimum phase. The gradient-based method in [43] considers MIMO,

square plants, and shows convergence and stability results for MIMO, square plants,

assuming all the transmission zeros of the plant are minimum-phase. RCAC devel-

oped in [87, 88, 110] is applicable to NMP plants, but it is assumed that the NMP

transmission zeros of the plant, if any, are known.

Zeros of nonsquare (tall or wide) plants are considered in [24, 59], where it is

shown that nonsquare plants generically have no transmission zeros. This suggests

that nonsquare systems are generically minimum phase. Does this mean that it is

easier to apply adaptive control schemes to nonsquare plants than to square plants?

To be specific, consider the open-loop systems shown in Figures 1.5 and 1.6. In

Figure 1.5, the transfer functions from u to z1, and u to z2 are NMP. However, the

MIMO transfer matrix from u to z =

[

z1 z2

]T

given by

G(z) =







z−2
z2

z−3
z2






(1.1)

has no transmission zeros, and therefore is minimum phase. Similarly, in Figure 1.6,

the SISO channels are NMP, but the MIMO transfer matrix is minimum phase.

Let us assume that, for RCAC, it is indeed easier to control nonsquare plants since
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Figure 1.5: A 2 × 1 tall system. The
transfer function from u
to z1 is NMP, the trans-
fer function from u to z2 is
NMP, but the transfer ma-

trix from u to z
△
= [z1 z2]

T

has no transmission zeros.

Figure 1.6: A 1× 2 wide system. The
transfer function from u1

to z is NMP, the transfer
function from u2 to z is
NMP, but the transfer ma-

trix from u
△
= [u1 u2]

T to z
has no transmission zeros.

they generically have no transmission zeros. If this assumption held, then, in order to

control a SISO plant, all we would need to do is to add one more sensor or actuator

to the system, thus obtain either a wide or a tall plant, and apply RCAC without

worrying about the NMP zeros of the plant.

In this dissertation, we investigate adaptive control of MIMO nonsquare systems

with RCAC, and we demonstrate that nonsquare plants are not easier to control than

square plants, as far as the zero structure is concerned. In particular, contrary to the

intuitive expectation, we show that, the fact that the nonsquare plant is minimum

phase does not guarantee closed-loop stability and signal boundedness properties,

unlike the square case. Specifically, we show that, due to the nature of the RCAC

update law, retrospective cost adaptive control involves two implicit squaring oper-

ations; one performed by pre-compensating the plant, the other performed by post-

compensating the plant. In the wide case, pre-compensation leads to squaring-down,

which incorporates additional zeros due to squaring, which we call “input-subspace

zeros”. Similarly, in the tall case, post-compensation changes the zero structure and

incorporates additional zeros, which we call output-subspace zeros. We show that if
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the nonsquare plant has NMP subspace zeros, then RCAC may attempt to cancel

these zeros, which leads to unbounded control input in the wide case, and unbounded

control input and performance output in the tall case.

1.5 Robust Adaptive Control

Although adaptive control reduces the need for plant modeling, it usually does not

eliminate it completely. This modeling information may be obtained through either

an offline identification process, leading to direct adaptive control, or a simultaneous

identification process, leading to indirect adaptive control. In either case, it stands

to reason that the less modeling information an adaptive controller needs, the more

robust it is to model uncertainty. It may therefore be tempting to think that an

adaptive controller is inherently robust to any modeling information that it does not

require. This reasoning, however, is not completely accurate.

All practical adaptive controllers inevitably require that the plant dynamics satisfy

certain assumptions. The most common assumptions made in adaptive control in-

clude passivity, positive realness, or that the plant is minimum phase. Consequently,

the fact that an adaptive controller does not require a particular modeling informa-

tion does not imply that it is unconditionally robust to uncertainty in that modeling

information. For example, most adaptive controllers do not require specific knowledge

of plant poles and zeros, but, uncertainty in pole-zero configurations, or the presence

of unmodeled dynamics in the plant may lead to a violation of the assumptions and

thus destabilize the adaptive system.

The publication in 1985 of [84] challenged the robustness of adaptive control meth-

ods to uncertainty in plant dynamics. In particular, [84] presented two counterexam-

ples (known as the Rohrs counterexamples) showing the fragility of model reference

adaptive control (MRAC) schemes. These counterexamples considered plants with

high-frequency unmodeled dynamics that can induce a large, unknown phase shift
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in the plant’s open-loop response. The presence of unknown dynamics was shown

to result in drifting control parameters and unbounded plant response. These coun-

terexamples initially dampened enthusiasm for adaptive control and led to a caution-

ary view of these techniques. However, [84] encouraged the development of robust-

ness modifications that overcame the instability observed in these counterexamples

[4, 48, 49, 50, 77, 78, 79, 80, 91, 106].

Among the robustness modifications, the most common are leakage modifications

[4, 50, 78, 79] and parameter projection [34, 50, 76, 80]. Leakage modifications elimi-

nate parameter drift by adding a penalty term into the cost function which penalizes

the distance from the controller to an a priori known stabilizing controller. If the

plant is asymptotically stable, the stabilizing controller is typically chosen to be zero.

On the other hand, parameter projection eliminates parameter drift by constraining

the controller parameters to lie inside an a priori defined bounded convex set in the

parameter space. Each of these modifications is essentially based on constraining

the control parameters so that they do not depart too far away from an a priori

determined set of stabilizing controllers. These modifications led to a relaxation in

the adaptive control assumptions such as passivity, positive realness, known relative

degree, and persistent excitation.

Within the context of RCAC developed in [36, 41, 43, 87, 88, 110], the relative

degree, and the NMP zeros of the plant, if any, are assumed to be known. For RCAC,

the presence of unmodeled dynamics may therefore lead to two violations: It may

induce additional unknown NMP zeros due to sampling [3], or it may increase the

relative degree of the plant. Fortunately for RCAC, or for any sampled-data based

digital adaptive control scheme, the relative degree of a sampled-data system is almost

always equal to one, regardless of the relative degree of the underlying continuous-

time plant. Therefore, unmodeled dynamics in the continuous-time plant generically

do not change the relative degree of the sampled-data plant and do not lead to a
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violation of the known relative degree assumption. However, unknown NMP zeros

contributed by unmodeled dynamics stand as a major robustness challenge for RCAC.

The RCAC schemes developed in this dissertation incorporate a performance-

dependent control penalty that prevents the controller from destabilizing the closed-

loop system in the presence of unknown NMP zeros. This robustness modification

was originally developed for a variation of RCAC, where the controller update con-

sisted of an intermediate step of reconstructing the retrospective controls [19]. In

this dissertation, we remove the intermediate step of reconstructing the retrospective

controls and, as in [36, 41, 43, 87, 88, 110], we directly update the controller. We

do this for an instantaneous cost function as in [87, 88] as well as for a cumulative

cost function as in [36, 41]. In addition, and unlike [19], we modify the cost func-

tion by filtering the data used in the retrospective performance, which allows the

algorithm to work for plants with known NMP zeros without the need to use the

robustness modification. This new robust RCAC scheme was originally developed

and applied to Rohrs counterexamples in [100]. Further applications of robust RCAC

to flexible structures are presented for a centralized control architecture in [98], and

for a decentralized control architecture in [99]. Finally, in addition to the robustness

modification presented in [98, 99, 100], which penalizes the distance of the control

parameters from the origin, a novel feature of the robustness modification developed

in this dissertation is the additional flexibility of penalizing the distance between the

controller to any a priori known stabilizing controller. This additional flexibility al-

lows RCAC to control unstable, possibly not strongly stabilizable [111] plants with

unknown NMP zeros, provided a stabilizing controller is known in advance.

1.6 Dissertation Outline

In Chapter II, we present a review of the instantaneous and cumulative RCAC

update laws developed in [36, 88]. We reformulate the instantaneous update law
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given in [88] as a recursive gradient update. We also reformulate the cumulative

update law given in [36] using quadratic minimization lemma [5] as in [88], and

then derive the RLS update equations, which is how the update law is presented

in [36]. Next, we provide a summary of the Markov-parameter-based, time-series-

coefficients-based, and NMP-zero-based controller construction techniques that have

been developed in [36, 88, 110]. Then, we present a summary of closed-loop stabil-

ity and convergence properties of the instantaneous and cumulative RCAC update

laws. Finally, we present an application of the instantaneous RCAC to road-following

preview control for a vehicle, which was published in [104].

In Chapter III, we investigate RCAC for nonsquare plants. Except for the lim-

ited investigation of RCAC for SIMO and MISO plants provided in [97], RCAC for

nonsquare plants has not been studied before. We start the main discussion by provid-

ing motivating examples that consider nonsquare plants with no transmission zeros,

and demonstrate that the fact that the plant is minimum phase does not guaran-

tee closed-loop stability and signal boundedness properties, unlike the square case.

Then, we show that, in the wide case, the control signal generated by RCAC lies

inside a subspace that is contained within the input space, which we call the “input

subspace”. Next, we make a stability analysis for the instantaneous controller up-

date, and demonstrate that, in the case where d = 1, the controller update is static,

therefore stability is irrelevant, and, in the case where d = 2, the controller update is

globally exponentially stable under a weak persistency assumption. In this chapter,

we also provide sufficient conditions for convergence of the adaptive controller, which

shows that, if the performance output lies inside a specific “output subspace”, then

the controller converges. These results point out the existence of two implicit squaring

operations performed on the nonsquare plant: one performed by pre-compensating

the plant, the other performed by post-compensating the plant. In the wide case,

pre-compensation leads to squaring-down, which incorporates additional zeros due
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to squaring, which we call “input-subspace zeros”. Similarly, in the tall case, post-

compensation changes the zero structure and incorporates additional zeros, which we

call “output-subspace zeros”. We show that if the nonsquare plant has NMP sub-

space zeros, then RCAC attempts to cancel these zeros, which leads to unbounded

control input in the wide case, and unbounded control input and performance output

in the tall case. In light of these findings, we extend the retrospective cost function

to include a performance dependent control penalty in order to prevent the controller

from generating an unbounded control input. The analysis and results presented in

this chapter are submitted to the International Journal of Control.

In Chapter IV, we modify the RCAC update laws of [36, 88] to include a performance-

dependent control penalty. We call this modification the “η-modification” because

of the similarities of the technique with the ǫ-modification developed in [78] for

continuous-time adaptive control. This modification penalizes the distance between

the adaptive controller and an a priori known stabilizing controller on the regressor

directions. Therefore, this modification pushes the control input toward the input

signal that would have been generated by the stabilizing controller. In the open-loop

stable case, a simple choice for the stabilizing controller is the zero-gain controller. In

this case, the η-modification prevents the control input from growing without bound.

We present numerical examples demonstrating RCAC with η-modification for both

SISO and MIMO plants. Finally, we apply robust RCAC to the celebrated Rohrs

counterexamples in order to determine its ability to address the effects of unmodeled

dynamics and unknown NMP sampling zeros. We show that the unmodified RCAC

update laws of Chapter II exhibit instability when the unknown sampling zero is

NMP. However, we show that the robust RCAC update law with η-modification is

able to follow the sinusoidal command despite the unmodeled modes, the unknown

sinusoidal disturbance, and the unknown NMP sampling zero contributed by the un-

modeled dynamics. The algorithms and results presented in this chapter appear in
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[100].

In Chapter V, we numerically investigate asymptotic command following and dis-

turbance rejection capabilities of RCAC with η-modification. This numerical investi-

gation includes a large-scale simulation with random control parameters, whose results

suggest that the phase mismatch between an FIR filter involved in the retrospective

cost optimization and the open-loop plant plays critical role in the asymptotic con-

vergence of the performance output to zero. This numerical evidence motivates the

development of two system identification methods to fit IIR transfer functions with

FIR transfer functions to minimize the phase mismatch. These identification methods

lead to a new phase-matching-based controller construction technique in addition to

the Markov-parameter, NMP-zero, and time-series-based construction methods given

in Chapter II. We demonstrate the phase-matching-based construction on mass-

spring-dashpot systems in the presence of multi-tone sinusoidal disturbances. The

algorithms and results presented in this chapter appear in [97, 98, 102, 103].

Finally, in Chapter VI, we consider RCAC in the presence of aliasing, due to either

the high frequency free response of the plant, or the high-frequency content in the

disturbances. We show that the intersample command-following performance may

be nonzero due to aliasing of disturbances. We demonstrate that if the disturbance

frequency is larger than the Nyquist frequency, then RCAC converges to an internal

model controller with high gain at the aliased disturbance frequency. Therefore, the

samples of the performance output converge to zero, but the actual continuous-time

performance output is not zero between two consecutive sampling instants. Neverthe-

less, the numerical examples suggest that RCAC is able to stabilize the plant despite

the high-frequency dynamics, and does not destabilize the closed-loop system because

of disturbance aliasing, provided the controllability of unstable modes is not lost due

to sampling [57]. The results presented in this chapter appear in [101].
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CHAPTER II

Retrospective Cost Adaptive Control

2.1 Introduction

This chapter presents a review of the instantaneous and cumulative RCAC update

laws developed in [36, 88]. We reformulate the instantaneous update law given in [88]

as a recursive gradient update. We introduce the cumulative update law given in

[36] using the quadratic minimization lemma [5] as in [88], and then derive the RLS

update equations. Next, we provide a summary of the Markov-parameter-based, time-

series-coefficients-based, and NMP-zero-based controller construction techniques that

have been developed in [36, 88, 110]. Finally, we review the closed-loop stability and

convergence properties of the instantaneous and cumulative RCAC update laws, and

demonstrate the algorithm in a road-following preview control application.

2.2 Problem Statement

Consider the multivariable (MIMO) discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.1)

y(k) = Cx(k) +D2w(k), (2.2)

z(k) = E1x(k) + E0w(k), (2.3)
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where k ≥ 0, x(k) ∈ R
n, z(k) ∈ R

lz is the measured performance variable to be

minimized, y(k) ∈ Rly contains additional measurements that are available for control,

u(k) ∈ Rlu is the input signal, w(k) ∈ Rlw is the exogenous signal. The system (2.1)–

(2.3) can represent a sampled-data application arising from a continuous-time system

with sample and hold operations with the sampling period h, where y(k) represents

y(kh), z(k) represents z(kh), and so on. The operator matrix from u to z is thus

given by

Gzu(q)
△
= E1(qI − A)−1B, (2.4)

Gzw(q)
△
= E1(qI − A)−1D1, (2.5)

Gyu(q)
△
= C(qI − A)−1B, (2.6)

Gyw(q)
△
= C(qI − A)−1D1, (2.7)

where q is the shift operator which accounts for possibly nonzero initial conditions.

Furthermore, for a positive integer i, Hi
△
= E1A

i−1B is the ith Markov parameter of

Gzu.

We represent (2.1), (2.3) as the time series model

z(k) =
n
∑

i=1

αiz(k − i) +
n
∑

i=d

βiu(k − i) +
n
∑

i=0

γiw(k − i), (2.8)

where {α1, . . . , αn} ∈ R, {βd, . . . , βn} ∈ Rlz×lu , {γ0, . . . , γn} ∈ Rlz×lw , and d is the

smallest positive integer i such that the Hi is nonzero. Note that Hd = βd, and d is

the relative degree of Gzu.

Now, consider the output-feedback controller

xc(k + 1) = Ac(k)xc(k) +Bc(k)y(k), (2.9)

u(k) = Cc(k)xc(k), (2.10)
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where xc ∈ R
nc. The output feedback control (2.9), (2.10) is represented by u =

Gc(q, k)y, where

Gc(q, k)
△
= Cc(k)(qI − Ac(k))

−1Bc(k). (2.11)

The closed-loop system with output feedback (2.9), (2.10) is thus given by

x̃(k + 1) = Ã(k)x̃(k) + D̃1(k)w(k), (2.12)

y(k) = C̃x̃(k) +D2w(k), (2.13)

z(k) = Ẽ1x̃(k) + E0w(k), (2.14)

where x̃
△
=

[

xT xT
c

]T

,

Ã(k) =







A BCc(k)

Bc(k)C Ac(k)






, D̃1(k) =







D1

Bc(k)D2






,

C̃ =

[

C 0ly×nc

]

, Ẽ1 =

[

E1 0lz×nc

]

.

The closed-loop system (2.12)–(2.14) is described by the operator matrices

G̃zw(q, k)
△
= Ẽ1(qI − Ã(k))−1D̃1(k), (2.15)

G̃yw(q, k)
△
= C̃(qI − Ã(k))−1D̃1(k). (2.16)

The goal is to develop an adaptive output feedback controller to minimize the

performance measure zTz in the presence of the exogenous signal w with limited

modeling information about the dynamics and exogenous signal. The components of

the exogenous signal w can represent either command signals to be followed, external

disturbances to be rejected, or both. For instance, if D1 = 0 and E0 6= 0, then the
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objective is to have the output E1x follow the command signal −E0w. On the other

hand, if D1 6= 0 and E0 = 0, then the objective is to reject the disturbance w from

the performance variable z. In this case, we say that w is a matched disturbance

if R(D1) ⊆ R(B), where R(·) denotes range, and w is an unmatched disturbance

if it is not matched. Furthermore, if D1 =

[

D̂1 0

]

, E0 =

[

0 Ê0

]

, and w =

[

w1 w2

]T

, then the objective is to have E1x follow the command −Ê0w2 while

rejecting the disturbance D̂1w1. Lastly, if D1 and E0 are empty matrices, then the

objective is to achieve z(k) → 0 as k → ∞ with no exogenous signals. A block

diagram of the adaptive control architecture is shown in Figure 2.1.

Figure 2.1: Adaptive Control Problem

The model reference adaptive control (MRAC) problem can be formulated in terms

of (2.1)–(2.3), where z
△
= y0 − ym is the command-following error between the plant

output y0 and the output ym of a reference model Gm whose input is the reference

signal r. For MRAC, the measurement of the reference signal r is assumed to be

available for feedforward compensation, as shown in Figure 2.2.

For the adaptive controller (2.9), (2.10), the closed-loop state matrix Ã(k) may

be time-varying. To monitor the ability of the adaptive controller to stabilize the

19



Figure 2.2: MRAC Problem

plant, we compute the spectral radius spr(Ã(k)) at each time step. If the controller

converges, and spr(Ã(k)) converges to a number less than 1, then the asymptotic

closed-loop system is internally stable.

2.3 Retrospective Cost Adaptive Control

In this section, we describe the retrospective cost adaptive control algorithms

developed in [43, 36, 40, 41, 88].

2.3.1 Control Law

We represent (2.9), (2.10) by

u(k) = θT(k)φ(k − 1), (2.17)
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where

θ(k)
△
=







































N1(k)

...

Nnc(k)

M1(k)

...

Mnc(k)







































∈ R
nc(lu+ly)×lu , φ(k − 1)

△
=







































y(k − 1)

...

y(k − nc)

u(k − 1)

...

u(k − nc)







































∈ R
nc(lu+ly). (2.18)

The control law (2.17) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (2.19)

where

Φ(k − 1)
△
= Ilu ⊗ φT(k − 1) ∈ R

lu×lunc(lu+ly), (2.20)

Θ(k)
△
= vec(θ(k)) ∈ R

lunc(lu+ly), (2.21)

“⊗” denotes the Kronecker product, and “vec” is the column-stacking operator [5].

2.3.2 Retrospective Performance

For a positive integer r, we define

Gf(q
−1)

△
= K1q

−1 +K2q
−2 + · · ·+Krq

−r, (2.22)
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where Ki ∈ R
lz×lu for 1 ≤ i ≤ r. Next, for k ≥ 1, we define the retrospective

performance variable

ẑ(Θ̂, k)
△
= z(k) + Φf(k − 1)Θ̂− uf(k) ∈ R

lz , (2.23)

where

Φf(k − 1)
△
= Gf(q

−1)Φ(k − 1) ∈ R
lz×lunc(lu+ly), (2.24)

uf(k)
△
= Gf(q

−1)u(k) ∈ R
lz , (2.25)

for k ≤ 0, u(k) = 0, Φ(k−1) = 0, and, for k ≥ 1, Θ̂(k) ∈ Rlunc(lu+ly) is an optimization

variable. Necessary modeling information for constructing the finite-impulse-response

(FIR) transfer matrix Gf(q
−1) is discussed in Section 2.4.

2.3.3 Instantaneous Update Law

For k ≥ 1, we define the instantaneous cost function

Jins(Θ̂, k)
△
= ẑT(Θ̂, k)R1(k)ẑ(Θ̂, k) + α(k)(Θ̂−Θ(k − 1))TR2(k)(Θ̂−Θ(k − 1)),

(2.26)

where, for all k ≥ 1, α(k) > 0, R1(k) ∈ Rlz×lz is positive definite, and R2(k) ∈

Rlunc(lu+ly)×lunc(lu+ly) is positive definite. Now, substituting (2.23) into (2.26) yields

Jins(Θ̂, k) = Θ̂TΓ1(k)Θ̂ + ΓT
2 (k)Θ̂ + Γ3(k), (2.27)
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where

Γ1(k)
△
= ΦT

f (k − 1)R1(k)Φf(k − 1) + α(k)R2(k) ∈ R
lunc(lu+ly)×lunc(lu+ly), (2.28)

Γ2(k)
△
= 2ΦT

f (k − 1)R1(k) [z(k)− uf(k)]− 2α(k)R3(k)Θ(k − 1) ∈ R
lunc(lu+ly). (2.29)

Since Γ1(k) is positive definite, Jins(Θ̂(k), k) has the unique global minimizer

Θ(k) = −
1

2
Γ−1
1 (k)Γ2(k), (2.30)

which is the instantaneous RCAC update law.

The instantaneous update law (2.30) requires the on-line inversion of a positive-

definite matrix of size lunc(lu + ly) × lunc(lu + ly). The following result provides an

alternative recursive computation which requires the on-line inversion of a positive-

definite matrix of size lz × lz.

Proposition 2.3.1. Let R1(k) = Ilz , R2(k) = Ilunc(lu+ly). For each k ≥ 1, the unique

global minimizer of the instantaneous cost function (2.26) is given by

Θ(k) = Θ(k − 1)− ΦT
f (k − 1)Ψ−1(k)ẑ(Θ(k − 1), k), (2.31)

where

Ψ(k)
△
= α(k)I + Φf(k − 1)ΦT

f (k − 1). (2.32)
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Proof Substituting (2.29) into (2.30) and using (2.23) and (2.28) yields

Θ(k) = Γ−1
1 (k)[α(k)Θ(k − 1)− ΦT

f (k − 1)(z(k)− uf(k))]

= Γ−1
1 (k)[α(k)Θ(k − 1)− ΦT

f (k − 1)(z(k)− uf(k))]

+ Γ−1
1 (k)ΦT

f (k − 1)Φf(k − 1)Θ(k − 1)

− Γ−1
1 (k)ΦT

f (k − 1)Φf(k − 1)Θ(k − 1)

= Γ−1
1 (k)[α(k)I + ΦT

f (k − 1)Φf(k − 1)]Θ(k − 1)

− Γ−1
1 [ΦT

f (k − 1)(z(k)− uf(k)) + ΦT
f (k − 1)Φf(k − 1)Θ(k − 1)]

= Θ(k − 1)− Γ−1
1 (k)ΦT

f (k − 1)ẑ(Θ(k − 1), k). (2.33)

Next, applying the matrix inversion lemma to (2.28) and using (2.32) yields

Γ−1
1 (k) =

1

α(k)
[I − ΦT

f (k − 1)Ψ−1(k)Φf(k − 1)]. (2.34)

Now, substituting (2.34) into (2.33) yields

Θ(k) = Θ(k − 1)−
1

α(k)
ΦT

f (k − 1)Ψ−1(k)Ψ(k)ẑ(Θ(k − 1), k)

+
1

α(k)
ΦT

f (k − 1)Ψ−1(k)Φf(k − 1)ΦT
f (k − 1)ẑ(Θ(k − 1), k)

= Θ(k − 1)−
1

α(k)
ΦT

f (k − 1)Ψ−1(k)[α(k)ẑ(Θ(k − 1), k)

+ Φf(k − 1)ΦT
f (k − 1)ẑ(Θ(k − 1), k)− Φf(k − 1)ΦT

f (k − 1)ẑ(Θ(k − 1), k)]

= Θ(k − 1)− ΦT
f (k − 1)Ψ−1(k)ẑ(Θ(k − 1), k). �

Stability of the closed-loop adaptive system with the instantaneous RCAC update

law is analyzed in [43] for minimum-phase plants. The results of [43] are extended to

nonminimum-phase (NMP) plants in [36]. The closed-loop stability properties of the

instantaneous RCAC are summarized in Section 2.5 for convenience.
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2.3.4 Cumulative Update Law

For k ≥ 1, we define the cumulative cost function

Jcum(Θ̂, k)
△
=

k
∑

i=1

λk−iẑT(Θ̂, i)R1(i)ẑ(Θ̂, i) + λk(Θ̂−Θ(0))TP−1
0 (Θ̂−Θ(0)), (2.35)

where λ ∈ (0, 1], and P0 ∈ Rlunc(lu+ly)×lunc(lu+ly) is positive definite. Substituting

(2.23) into (2.35) yields

Jcum(Θ̂(k), k) = Θ̂TC1(k)Θ̂ + CT
2 (k)Θ̂ + C3(k), (2.36)

where C1(0) = P−1
0 , C2(0) = −2P−1

0 Θ(0), and, for all k ≥ 1,

C1(k)
△
=

k
∑

i=1

λk−iΦT
f (i− 1)R1(i)Φf(i− 1) + λkP−1

0 , (2.37)

C2(k)
△
=

k
∑

i=1

2λk−iΦT
f (i− 1)R1(i)[z(i)− uf(i)]− 2λkP−1

0 Θ(0). (2.38)

Since C1(k) is positive definite, the cumulative cost function (2.35) has the unique

global minimizer

Θ(k) = −
1

2
C−1
1 (k)C2(k), (2.39)

which is the cumulative RCAC update law. To reduce memory usage, C1(k) and C2(k)

can be computed recursively using

C1(k) = λC1(k − 1) + ΦT
f (k − 1)R1(k)Φf(k − 1), (2.40)

C2(k) = λC2(k − 1) + 2ΦT
f (k − 1)R1(k)[z(k)− uf(k)]. (2.41)

The cumulative update law (2.39) involves the on-line inversion of a positive-
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definite matrix of size lunc(lu + ly) × lunc(lu + ly). The following result provides an

alternative recursive computation that requires the on-line inversion of a positive-

definite matrix of size lz × lz.

Proposition 2.3.2. For all k ≥ 1, let R1(k) = I, and define P (k)
△
= C−1

1 (k) with

P (0) = P0. Then, for all k ≥ 1, P (k) satisfies

P (k) = P (k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1), (2.42)

where

Λ(k)
△
= Ilz + Φf(k − 1)P (k − 1)ΦT

f (k − 1). (2.43)

Furthermore, for each k ≥ 1, let Θ(k) be the unique global minimizer of the cumulative

cost function (2.35) given by (2.39). Then, for all k ≥ 1,

Θ(k) = Θ(k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)ẑ(Θ(k − 1), k). (2.44)

Proof It follows from (2.40) that

P−1(k) = P−1(k − 1) + ΦT
f (k − 1)Φf(k − 1). (2.45)

Applying the matrix inversion lemma to (2.45) and using (2.43) yields

P (k) = P (k − 1)

− P (k − 1)ΦT
f (k − 1)[Ilz + Φf(k − 1)P (k − 1)ΦT

f (k − 1)]−1Φf(k − 1)P (k − 1)

= P (k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1).

Hence, (2.42) holds. Next, since P (k) = C−1
1 (k), it follows from (2.39), (2.41), and
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(2.42) that

Θ(k) = −
1

2
P (k)CT

2 (k)

= −
1

2
P (k − 1)CT

2 (k − 1)− P (k − 1)ΦT
f (k − 1)[z(k)− uf(k)]

+
1

2
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)CT
2 (k − 1)

+ P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT

f (k − 1)[z(k)− uf(k)]

= Θ(k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)Λ(k)[z(k)− uf(k)]

− P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)Θ(k − 1)

+ P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT

f (k − 1)[z(k)− uf(k)]

= Θ(k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)[Φf(k − 1)Θ(k − 1) + (Ilz

+ Φf(k − 1)P (k − 1)ΦT
f (k − 1)− Φf(k − 1)P (k − 1)ΦT

f (k − 1))[z(k)− uf(k)]]

= Θ(k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)ẑ(Θ(k − 1), k). �

Stability of the closed-loop adaptive system with the cumulative RCAC update

law is analyzed in [36, 41]. The closed-loop stability properties of the cumulative

RCAC are summarized in Section 2.5 for convenience.

2.4 Construction of Gf

In this section we present three constructions for Gf based on the available mod-

eling information.

2.4.1 Construction of Gf Using Time-Series Coefficients

Assume that the relative degree d, the coefficients {βd, . . . , βi} corresponding to

the time-series model (2.8) are known. Then, the time-series-based construction of

27



Gf is given by

Gf(q
−1)

△
=

n
∑

i=d

βiq
−i. (2.46)

Note that the construction (2.46) captures the relative degree, the first nonzero

Markov parameter, and the transmission zeros of Gzu.

2.4.2 Construction of Gf Using Markov Parameters

Expanding Gzu for |z| > ρ(A) yields the Laurent series

Gzu =

∞
∑

i=1

Hiz
−i =

∞
∑

i=d

Hiz
−i, (2.47)

where ρ(A) denotes the spectral radius of A. For a positive integer r ≥ d, the

truncation

Gf(q
−1)

r
∑

i=d

Hiq
−i (2.48)

yields the construction of Gf using Markov parameters. The Markov parameters

contain information about the relative degree and the sign of the high-frequency gain

corresponding to Gzu. Furthermore, it is shown in [88] that, as r increases, roots

of the Markov-parameter-based construction (2.48) asymptotically approximate the

NMP zeros of Gzu that are located at least ρ(A) distance away from the origin.

Therefore, if A is Lyapunov stable and r is sufficiently large, then the construction

(2.48) contains information about the NMP zeros of Gzu. The advantage in using the

construction (2.48) is that the time-series coefficients βi need not be known. However,

if ρ(A) > 1, then the construction (2.48) may not be able to capture all the NMP

zeros of Gzu. As discussed in Section 2.5, for closed-loop stability, RCAC requires Gf

to capture the NMP zeros of Gzu.
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2.4.3 Construction of Gf Using NMP zeros

Assuming lz = lu = 1, we rewrite (2.4) as Gzu(q) = Hd
N(q)
D(q)

, where D(q) is a

monic polynomial of degree n, N(q) is a monic polynomial of degree n− d, and d is

the relative degree of Gzu. Assume that Hd and the nonminimum-phase (NMP) zeros

of Gzu, if any, are known. Now, consider the numerator factorization

N(q) = βU(q)βS(q), (2.49)

where βU(q) and βS(q) are monic polynomials of orders nU and nS = n − d − nU,

respectively, and each NMP zero of Gzu(q) is a root of βU(q). Defining

β̃U(q
−1)

△
= q−nU−dβU(q), (2.50)

the NMP-zero-based construction of Gf is given by

Gf(q
−1) = Hdβ̃U(q

−1). (2.51)

The construction (2.51) requires information about d, Hd, and the NMP zeros of Gzu

counting multiplicity.

Construction of Gf using NMP zeros is extended to MIMO plants in [39, 89]. This

extension requires the knowledge of d, Hd, and the NMP transmission zeros of Gzu

counting multiplicity.

2.5 Closed-Loop Stability Properties of RCAC

In this section, we present the convergence and stability properties of the in-

stantaneous and cumulative algorithms developed in Section 2.3. Since the stability

properties are dependent on whether or not Gzu is NMP, the results for minimum
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phase and NMP plants are covered separately. The following assumptions are required

for both the minimum phase and NMP cases.

(A1) C = E1, D2 = E0, and thus y = z.

(A2) The performance variable y is measured and available for feedback.

(A3) The triple (A,B,C) is controllable and observable.

(A4) d is known.

(A5) There exists an integer n̄ such that n ≤ n̄, and n̄ is known.

(A6) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k), w(k) = Cwxw(k), (2.52)

where xw ∈ Rnw and Aw has distinct eigenvalues, all of which are on the unit

circle.

(A7) There exists an integer n̄w such that nw ≤ n̄w and n̄w is known.

It should be noted that Assumption (A6) restricts the exogenous signal w to

consist purely of steps and sinusoids.

2.5.1 Stability and Convergence Properties for Minimum-Phase Plants

We now make the following additional assumptions.

(A8) lu = ly.

(A9) If ζ ∈ C and

rank







A− ζI B

C 0






< normal rank







A− zI B

C 0






, (2.53)
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then |ζ | < 1.

(A10) Hd is nonsingular.

(A11) There exists H̄d ∈ Rly×lu such that 2HT
d Hd ≤ HT

d H̄d + H̄T
d Hd, and Gf(q

−1) =

H̄dq
−d.

Assumption (A8) restricts the discussion to square Gyu. Assumption (A9) implies

that the invariant zeros of Gyu are minimum phase. It follows from Assumption (A3)

that the invariant zeros of Gyu are the transmission zeros of Gyu. Assumption (A11)

provides the construction of Gf for which the following result is valid. For the SISO

case, Assumption (A11) implies that RCAC has 6 dB downward, and infinite upward

gain margin to uncertainty in Hd.

The following result is due to [43].

Theorem 2.5.1. Consider the open-loop system (2.1)–(2.3) satisfying Assumptions

(A1)–(A11) and the control law (2.19) with the instantaneous update law (2.31).

Then, for all initial conditions x(0) and Θ(0), Θ(k) is bounded, u(k) is bounded,

limk→∞ y(k) = 0, and x(k) satisfying (2.1) is bounded. If, in addition, the open-loop

dynamics matrix A is asymptotically stable and u(k) = 0 for all k ≤ 0, then, for all

xw(0), the zero solution of the closed-loop adaptive system is Lyapunov stable.

2.5.2 Stability and Convergence Properties for NMP Plants

The following assumptions are required in addition to Assumptions (A1)–(A7).

(A12) lu = ly = 1.

(A13) If ζ ∈ C, |ζ | ≥ 1, and

rank







A− ζI B

C 0






< n+ 1, (2.54)
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then ζ is known.

(A14) Hd is known.

(A15) Gf(q
−1) is constructed as in (2.51).

(A16) Aw in (2.52) has no eigenvalue that coincides with a zero of Gyu.

Assumption (A12) limits the discussion to SISO Gyu and is thus more restrictive than

Assumption (A8). Assumption (A3) and (A13) imply that the NMP zeros of Gyu are

known, if any. Unlike the previous case of minimum-phase plants, it now follows

from Assumption (A14) that the first nonzero Markov parameter Hd is known. For

i ∈ {1, . . . , nc}, define λi(Ac(k)) to be the i
th instantaneous eigenvalue of the controller

dynamics matrix Ac(k) at frozen time k. The following result is due to [36].

Theorem 2.5.2. Consider the open-loop system (2.1)–(2.3) satisfying Assumptions

(A1)–(A7), (A12)–(A16), and consider the control law (2.19) with the instantaneous

update law (2.31) or the cumulative update law (2.42)–(2.44). Assume that there

exists ε > 0 and k1 > 0 such that, for all k ≥ k1, for all ζ ∈ C, |ζ | ≥ 1 satisfying

(2.54), and for all i ∈ {1, . . . , nc}, |λi(Ac(k))− ζ | ≥ ε. Then, for all initial conditions

x(0), xw(0), and Θ(0), Θ(k) is bounded, u(k) is bounded, and limk→∞ y(k) = 0.

Theorem 2.5.2 guarantees global asymptotic convergence of y to zero and bound-

edness of Θ and u. However, it should be noted that Theorem 2.5.2 does not claim

that the closed-loop adaptive system is Lyapunov stable.

Furthermore, Theorem 2.5.2 involves the assumption that there exist ε > 0, k1 >

0, such that, for all k ≥ k1, the poles of the instantaneous controller are located at

least a distance ε away from each NMP zero of Gyu. Although this assumption cannot

be verified a priori, numerical examples suggest that if Assumption (A15) is satisfied,

then the asymptotic unstable pole-zero cancellation does not occur [39, 88, 89, 100].
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2.6 Application of RCAC to Adaptive Road-Following Pre-

view Control for an Automobile

In this section, we consider a tracking problem for a car moving at a constant

speed. We assume that radius of curvature information is available at each point

along a road that is piecewise straight and circular. We assume that the only control

input is the steering angle. In addition, we assume that the road friction is sufficient

to avoid skidding. Under these assumptions, we apply the instantaneous RCAC as

discussed in section 2.3. The required modeling information for RCAC is provided by

system identification methods; no additional knowledge about car parameters such

as cornering stiffness or moment of inertia is required. Furthermore, since RCAC

can use multiple measurements, which can represent both feedback and feedforward

signals, we take advantage of this flexibility by including a preview estimate of time-

to-departure, which is based on current and future radius-of-curvature information.

Since RCAC requires only limited modeling information, we implement RCAC in

simulation using only data obtained from the simulation platform. In particular, we

perform Markov parameter identification using the CarSim simulation environment

[72], and then implement the instantaneous RCAC within the CarSim environment

using the Markov parameter based construction of Gf as outlined in Section 2.4.

2.6.1 Problem Setup

We consider the problem of having a car track a specified road while moving at a

constant speed. We assume that the radius-of-curvature at each point along the road

is known in advance. This information facilitates the use of preview control within

a feedforward control setting. However, the bank and inclination of the road are

unknown. For simplicity, the road is piecewise circular, which means that it consists

of segments that are either straight or arcs of circles. We assume that the road is free
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of bumps and the ambient wind is zero.

The only available control input is assumed to be the front wheel steering. The

speed of the car is maintained at a given constant value without explicit reference

to throttle or braking commands. For feedback control we assume that the lateral

displacement of the car from the center of lane and its derivative are known.

We model the problem as the linear discrete-time system (2.1)–(2.3), where the

control input u is the steering angle, while the exogenous signal w represents the

curvature, bank angle, and inclination angle along the road. Our goal is to minimize

the performance vector z, which consists of the displacement h from the center of

the lane, and its derivative ḣ. As described in Section 2.4, RCAC requires specific,

limited modeling information relating to (2.1)-(2.3).

Let c denote the center of mass of the car, OA denote a point on the center of the

lane, FA be a road-fixed frame, and FB be a car-fixed frame, as shown in Figure 2.3.

Let
⇀
r c/OA

denote the position of c relative to OA, and
⇀
v c/OA/A denote the velocity with

respect to FA. We resolve these vectors as
⇀
r c/OA

∣

∣

∣

A
=







h

d






,

⇀
v c/OA/A

∣

∣

∣

A
=







ḣ

ḋ






,

⇀
v c/OA/A

∣

∣

∣

B
=







vx

vy






.The speed of the car Vcar is then given by

Vcar =
√

v2x + v2y =
√

ḣ2 + ḋ2 =
vx

cos(β)
, (2.55)

where β is the sideslip angle.

We assume that measurements of h and ḣ are available, so that y(k) = z(k) =
[

h(k) ḣ(k)

]T

. When we use preview, we assume that measurements of vx and

β are available as well as knowledge of the radius-of-curvature and road width at

each point on the road surface. We then use this data to extrapolate and thus

estimate the time-to-departure Tdep, and define the preview variable ξTdep
, which is
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further discussed in Section 2.6.2. The performance vector is then extended to z(k) =
[

h(k) ḣ(k) ξTdep
(k)

]T

. We do not assume that additional output measurements

such as yaw rate or roll angle are available.

Figure 2.3: Illustration of the car-road model on a straight track.

The simulation architecture is shown in Figure 2.4. In order to apply RCAC, we

require specific modeling information, which we obtain from parameter estimation

based on simulation. In practice, this modeling data would be obtained from road

tests. For identification and implementation of RCAC, CarSim is interfaced with

Simulink. Since all required modeling data are obtained by system identification

methods, there is no need to specify the state space matrices in (2.1)–(2.3).

2.6.2 Definition of the Preview Variable

In this section, we construct the preview variable ξTdep
, which requires an estimate

of Tdep. The speed Vcar, the radius-of-curvature ρ, and width of the track 2a are

assumed to be known and constant, as shown in Figure 2.5.

35



Figure 2.4: Block diagram of the control architecture. The retrospective cost opti-
mization and extrapolation logic are handled by Matlab and Simulink,
while the car-road model and the road database are provided by Carsim.

Figure 2.5: Illustration of the variables used to estimate Tdep on a curve with constant
radius of curvature and road width.

We define the estimated preview tracking error hest(k, T ) by

hest(k, T )
△
= ((ρ+ h(k))2 + (VcarT )

2

− 2(ρ+ h(k))VcarT cos(
π

2
+ arcsin

ḣ(k)

Vcar
))−1 − ρ (2.56)

where T is the preview period. For a straight road, hest(k, T ) is given by

lim
ρ→∞

hest(k, T ) = ḣ(k)T + h(k).
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Next, ξT (k) is defined by

ξT (k)
△
= hest(k, T )f(T ), (2.57)

where f(T ) is a monotonically decreasing positive nonnegative function for T > 0, and

limT→∞ f(T ) = 0. We choose f(T ) = e−T 2
. We then estimate the time-to-departure

Tdep as the minimum positive Tdep that satisfies

|hest(k, Tdep)| = a.

Finally, we obtain the preview variable ξTdep
(k) by setting T = Tdep in (2.57), so that

ξTdep
(k) = hest(k, Tdep)f(Tdep). (2.58)

Since f(Tdep) is monotonically decreasing and nonnegative for all Tdep, minimizing

|ξTdep
(k)| maximizes Tdep. Note that Tdep → ∞ as ξTdep

(k) → 0.

We now demonstrate the extrapolation of Tdep under the assumption that ρ is

constant. Suppose the vehicle is tracking the centerline of the curved track shown in

Figure 2.5 with the present tracking error h and its derivative ḣ. Depending on ρ,

a, and the direction of
⇀
v c/OA/A, the vehicle leaves the road from either the inner or

outer edge. It can be shown that the car departs from the inner edge of the road if

both

ḣ < 0 (2.59)

and

0 < cos−1

(

|ḣ|

Vcar

)

≤ sin−1

(

ρ− a

ρ+ h

)

. (2.60)

Otherwise, the vehicle leaves from the outer edge. Note that, if
⇀
v c/OA/A is constant

and ρ < ∞, then the vehicle always leaves the track in finite time.

If (2.59) and (2.60) both hold, then Tdep is given by the minimum positive solution
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of

V 2
carT

2 − 2(ρ+ h)|ḣ|T + (ρ+ h)2 − (ρ− a)2 = 0.

Otherwise, Tdep is the positive solution of

V 2
carT

2 − 2(ρ+ h) cos(Ψ(ḣ, Vcar))VcarT + (ρ+ h)2

− (ρ+ a)2 = 0,

where

Ψ(ḣ, Vcar) =
π

2
+ arcsin

ḣ

Vcar
.

2.6.3 Markov Parameter Identification

We estimate Hi offline through least square identification in conjunction with a

µ-Markov model structure [27], where Hi represents the ith Markov parameter from

u to y =

[

h ḣ

]T

. For identification, we apply a white noise steering input to the

vehicle moving at 90 km/h along a straight road for 100 sec. We sample the input

and outputs h and ḣ with a sample interval Ts of 0.01 sec, yielding 10001 samples

for each signal. We then apply least squares µ-Markov identification to the sampled

signals to obtain estimates of Hi, each of which is a 2× 1 matrix.

Next, we estimate the Markov parameters for ξTdep
. Let Hh,i denote the estimate

of the ith Markov parameter for h. Then, the estimate of the ith Markov parameter

for ξTdep
is

HξTdep ,i
= Hh,τ+if(Tdep), (2.61)

where τ
△
= ⌊

Tdep

Ts
⌋. Therefore, the Markov parameters for ξTdep

are estimated by

shifting Hh,i back in time by Tdep seconds and scaling by f(Tdep).

The estimates of Hh,i and Hḣ,i are illustrated in Figures 2.6 and 2.7. Note that

Hh,i is almost linear, particularly for i ≥ 100. Therefore, we approximate Hh,τ+i by
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the least squares line fit to reduce implementation complexity.
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Figure 2.6: Markov parameter estimates for Hh,i, obtained through µ-Markov least-
squares estimation.
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Figure 2.7: Markov parameter estimates for Hḣ,i, obtained through µ-Markov least-
squares estimation.

2.6.4 Controller Parameter Tuning

In this section, we investigate by simulations the least amount µ of Markov pa-

rameters required to construct Gf in order to achieve closed-loop stability. We also
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present simulation results with various values of nc and µ, and compare the transient

and tracking performances. In all simulations, we take R2(k) = I in (2.26).

We consider the track shown in Figure 2.8. We define the output and performance

vectors y = z =

[

h ḣ ξTdep

]T

. We take the adaptive controller order nc = 1,

learning rate α(k) ≡ 2000, and R1(k) ≡ diag(20, 20, 1) in (2.26).

Figure 2.8: Spiral loop track. Starting from the origin, the track spirals inward first,
then outward. After two 180-degree curves, the track ends at the origin.

We first set µ = 1, so that only 1 Markov parameter estimate is used, that is,

Gf = H1q
−1. We conclude by simulation that the vehicle cannot follow the track

when µ = 1.

Now, we choose µ = 2 so that Gf(q
−1) = H1q

−1 + H2q
−2, and keep the other

parameters constant. Figure 2.9 shows that the performance variables do not diverge,

although the tracking error is large.

To obtain better tracking, we now vary nc and µ. Figure 2.10 shows that regardless

of µ, we get poor transients as we increase nc. Furthermore, nc does not affect the

tracking error significantly for µ = 10, 15 and 20. Therefore, we conclude that nc = 1

yields the best transient performance. On the other hand, increasing µ by keeping nc
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Figure 2.9: Steering input, and output variable plots with µ = 2. We observe that
the tracking error does not increase beyond 5 m.

constant leads to worse transient behavior, but improved tracking error. For nc = 1,

using µ = 15 yields the best performance, although decreasing µ to 10 yields similar

results.
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Figure 2.10: Simulation results obtained by varying the values of nc and µ and keeping
the remaining parameters constant. Each plot in a given row corresponds
to the same µ, and each plot in a given column corresponds to the same
nc.
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2.6.5 Numerical Examples

We now illustrate the performance of RCAC for various road types. For preview

control, we extrapolate Tdep and define ξTdep
under the assumption that ρ is constant,

as shown in Section 2.6.2. The only exception is the last example, where we use

preview information about ρ to extrapolate Tdep. It is assumed in each example that

the car is moving at constant longitudinal speed vx = 90 km/h. In each example, the

weighting matrix R2(k) in (2.26) is set to be equal to I for all k ≥ 1.

2.6.5.1 Circular Track

We consider a circular track with ρ = 250 m in the horizontal plane. Preview is

not used, and thus y = z =

[

h ḣ

]T

. We take the adaptive controller order nc = 1,

learning rate α(k) ≡ 2000, and R1(k) ≡ diag(1, 20). As shown in Figure 2.11, the

vehicle follows the circular with a decreasing tracking error. The controller gains are

shown in Figure 2.12.

0 1000 2000 3000 4000 5000 6000 7000
−0.5

0

0.5

1

1.5

Time (sec)

 

 
Tracking Error h (m)
hdot (m/s)

0 1000 2000 3000 4000 5000 6000 7000
−40

−20

0

20

Time (sec)

u(
t)

 (
de

g)

 

 
Steering Input

Figure 2.11: Steering input and closed-loop responses for the circular track.

2.6.5.2 Quasi-Circular Track

We now consider a flat, quasi-circular closed track consisting of six different cir-

cular arcs with radii 100, 150, and 250 m in the horizontal plane, as shown in Figure
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Figure 2.12: Adaptive controller gains. These traces show the time history the com-
ponents of the controller gain matrix Θ(k) during the simulation on the
circular track.

2.13. The simulation starts from the origin of the track coordinates, and the car moves

in the counterclockwise direction. Preview is not used, and thus y = z =

[

h ḣ

]T

.

We take nc = 1, α(k) ≡ 2000, and R1 ≡ diag(1, 20).

Figure 2.13: Quasi-circular track. This track has piecewise constant radius of curva-
ture ranging from 100 m to 250 m, zero inclination, and zero banking.

The closed-loop responses are shown in Figure 2.14. Note that the tracking error

does not exceed 1.25 m, and decreases as the car repeats the track. The controller

gains plotted in Figure 2.15 show that the algorithm adapts to different radii of

curvature.
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Figure 2.14: Steering input, closed-loop responses, and road radius of curvature.
These results are obtained for the simulation on the quasi-circular track.
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Figure 2.15: These traces show the time histories of the controller gains. The com-
ponents adapt to various radii of curvature. These results are obtained
for the simulation on the quasi-circular track.

2.6.5.3 Banked Road

We now consider the track shown in Figure 2.16. This track contains banked

sections with bank angles specified as percentages shown in Figure 2.16. Colors

indicate the bank direction. The simulation starts from the origin, and the car starts

by moving to the right.

We first do not use preview, so that y = z =

[

h ḣ

]T

. We take nc, α(k), and

R1(k) as in Section 2.6.5.2. Figure 2.17 shows that the car remains on the road with

a maximum tracking error about 1 m. Moreover, the steering input and ḣ response
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Figure 2.16: This track contains banked sections. Bank angles are illustrated with
percentages and colors. Black represents the higher edge, while gray
represents the lower edge of the road; red means the road is not banked.
Radii of curvature on this track range from 100 m to 500 m.

are oscillatory.
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Figure 2.17: Steering input and closed-loop responses for the banked road of Figure
2.16. Preview is not used in this simulation.

Now, preview variable is added to the performance vector, so that z = [ h ḣ ξTdep ]
T.

Tdep is extrapolated under constant ρ assumption. We take nc = 1, α(k) ≡ 2000, and

R1 ≡ diag(20, 20, 1). The closed-loop responses of h, ḣ, and ξTdep
are illustrated in

Figure 2.18. The oscillatory behavior of u(k) and ḣ disappears, while the maximum
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tracking error decreases to about 0.7 m.
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Figure 2.18: Steering input and closed-loop responses for the banked road of Figure
2.16. Preview variable is used in this simulation.

2.6.5.4 Inclined Road

Consider the track shown in Figure 2.19. This track has inclined sections as shown

in Figure 2.20. The simulation starts from the origin and the car starts moving to

the right.

Figure 2.19: Inclined road. This track contains inclined sections as shown in Figure
2.20. The radii of curvature on this track range from 100 m to 168 m.

We first do not use the preview variable, and take nc, α(k), and R1 as in Section

2.6.5.2. Figure 2.21 shows that the car is kept on track with a maximum tracking
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Figure 2.20: Elevation in the road with respect to the distance s along the road, where
s = 0 at the origin of the inclined track shown in Figure 2.19.

error of about 1.2 m. We also note oscillations in u(k) and ḣ.
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Figure 2.21: These simulation results are for the inclined road of Figures 2.19 and
2.20. Preview is not used in this simulation.

Preview variable is now added to the performance vector, and Tdep is estimated

under the assumption that ρ is constant. We take nc, α(k) as in Section 2.6.5.2, and

R1 ≡ diag(20, 20, 1). The closed-loop responses are presented in Figure 2.22. The

transient behavior of u(k) and ḣ are improved compared to Figure 2.21. We also

note a significant improvement in the overall tracking error. Furthermore, as shown

in Figure 2.23, preview control drives the car on the inside of the curve unlike control

without preview.
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Figure 2.22: These simulation results are for the inclined road of Figures 2.19 and
2.20. Preview variable is used in this simulation.
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Figure 2.23: Tracking on a curved section of the inclined road. The adaptive control
drives the car on the inside of the curve with a smaller tracking error
when we include the preview variable.

2.6.5.5 Single Curve

We now consider a section of a track that consists of a straight road, followed by

a curve with ρ = 100 m.

First, we do not use the preview variable, and we set the control parameters as

in Section 2.6.5.2. Figure 2.24 shows that the control does not steer the car until

the curve begins. The vehicle is driven on the outside of the curve with a maximum

tracking error of about 0.5 m.

Now, we include the preview variable to the performance vector, and we extrap-
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olate Tdep using current and preview ρ information. We set the control parameters

as in Section 2.6.5.4. The control starts steering to the inside of the track before the

curve begins, and keeps the vehicle on the inside of the curve, as shown in Figure

2.24. The tracking error remains less than 0.25 m throughout the simulation.
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Figure 2.24: Trajectories with and without preview. Control without preview steers
when the vehicle reaches the curve, and the vehicle is driven on the
outside of the curve. On the other hand, preview control starts steering
prior to the curve, and drives the vehicle on the inside of the curve with
a smaller tracking error.

2.7 Conclusion

In this chapter, we presented a review of the instantaneous and cumulative RCAC

update laws. We provided a summary of the Markov-parameter-based, time-series-

coefficients-based, and NMP-zero-based controller construction techniques, and re-

viewed the closed-loop stability and convergence properties of RCAC. In the minimum

phase case, RCAC leads to a Lyapunov stable closed-loop system, assuming that the

plant is square. In the NMP, SISO case, signals are bounded, and the performance

output asymptotically converges to zero.
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CHAPTER III

On the Role of Subspace Zeros for Retrospective

Cost Adaptive Control of Nonsquare Plants

3.1 Introduction

NMP zeros limit achievable control-system performance in various ways. These

limitations are manifested as constraints on the closed-loop frequency response, pole

locations, and step response [33, 38]. Analogous issues arise in discrete-time control

[108], with the additional difficulty that sampling may give rise to NMP zeros [3].

Zeros in MIMO systems can be defined in terms of either a state space realization

(invariant zeros) or a transfer function (transmission zeros) [24, 55, 70, 85, 92]. The

presence of zeros in MIMO systems implies blocking of certain input signals [38, 95].

Associated with the zeros of MIMO systems are zero directions, which determine

the directions along which each zero affects the response of the system. The zero

directions are grouped in two categories; input zero directions, which determine the

direction along which certain inputs are blocked, and output zero directions, which

give rise to directions along which the output may be difficult to control [95].

The NMP zeros of a MIMO plant may limit achievable control-system performance

in analogy with the SISO case [14, 15], however, the amount of reduction in total

phases associated with a NMP zero depends on its zero directions. Surprisingly, if
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the zero directions associated with a NMP zero satisfy certain conditions, then the

NMP zero does not necessarily limit the roll-off rates of the open-loop gains and may

have no effect on the phase margin [14].

Zeros of nonsquare (tall or wide) plants are considered in [24, 59], where it is

shown that nonsquare plants generically have no transmission zeros. This suggests

that nonsquare systems are generically minimum phase and therefore are easier to

control than square systems. This is shown to be a misconception in [68] due to

the fact that nonsquare plants may have zero-like properties that cannot be detected

through transmission blocking. In addition, control techniques developed for square

systems may not extend to, or may have poor performance in the nonsquare case.

For example, since perfect command following is typically infeasible for tall plants

[34], multivariable adaptive control methods, including MIMO extensions of MRAC,

are formulated exclusively for square plants [50, 79].

Therefore, for plants that are not square, it is often desirable to transform the

plant through squaring, where the plant is pre- or post-compensated, or augmented

by additional actuators/sensors, so as to create a square plant with a desired zero

structure [22, 54, 69, 109]. Specifically, it is shown in [109] that the zero structure

of the squared plant is closely related to the invariant dynamical indices [28] and

that the “squaring down and arbitrary zero assignment” problem has in general no

solution. Nevertheless, in [109], it is shown that, if certain conditions are satisfied,

then the zero placement problem admits a unique solution, which is obtained by using

the Smith-Mcmillan form of the nonsquare transfer matrix. In [73, 74] the opposite

case of “squaring up and zero assignment” is considered, where the underactuated

plant is augmented with additional sensors (for wide plants) or actuators (for tall

plants) to obtain a square, minimum phase plant. It should be noted, however, that

the squaring-based zero-assignment methods require partial or full knowledge of the

plant dynamics.
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In this chapter, we focus on RCAC, which is a direct, discrete-time adaptive

control algorithm. This approach was developed in [36, 43, 88, 110], where it was

shown that, in the square case, RCAC requires knowledge of the first nonzero Markov

parameter and the NMP transmission zeros of the plant, if any. A summary of RCAC

algorithms developed in [36, 43, 88, 110] is given in Chapter II. Extensions of RCAC

were given in [19, 20, 97, 102], where the need to know the NMP zeros of the square

plant was removed by modifying the retrospective cost function with a performance-

dependent control penalty. As shown in [20] for the SISO case, the price paid for this

relaxed modeling requirement is the need to ensure that the Markov parameters used

in RCAC provide a suitable approximation of the frequency response of the plant.

Except for the limited investigation of RCAC for SIMO and MISO plants provided

in [97], RCAC for nonsquare plants has not been studied.

The goal of the present chapter is thus to consider RCAC for nonsquare systems

without explicitly squaring-down or squaring-up the plant. Contrary to the intu-

itive expectation, we show that the fact that the nonsquare plant is minimum phase

does not guarantee closed-loop stability and signal boundedness properties, unlike the

square case. Specifically, we show that, due to the nature of the RCAC update law,

retrospective cost adaptive control involves two implicit squaring operations; one per-

formed by pre-compensating the plant, the other performed by post-compensating the

plant. In the wide case, pre-compensation leads to squaring-down, which incorporates

additional zeros due to squaring, which we call “input-subspace zeros”. Similarly, in

the tall case, post-compensation changes the zero structure and incorporates addi-

tional zeros, which we call “output-subspace zeros”. We show that if the nonsquare

plant has NMP subspace zeros, then RCAC may attempt to cancel these zeros, which

leads to unbounded control input in the wide case, and unbounded control input and

performance output in the tall case. In light of these findings, we extend the retro-

spective cost function to include a performance-dependent control penalty in order
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to prevent the controller from generating an unbounded control input.

3.2 Preliminaries and Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (3.1)

y(k) = Cx(k) +D2w(k), (3.2)

where (A,B,C) is minimal, x(k) ∈ Rn, y(k) ∈ Rly , u(k) ∈ Rlu , and w(k) ∈ Rlw . The

goal is to develop an output feedback controller of the form

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (3.3)

where, for all i ∈ {1, . . . , nc} and k ≥ 0, Mi(k) ∈ Rlu×lu and Ni(k) ∈ Rlu×ly , such

that the performance variable y converges to zero in the presence of the exogenous

signal w, which may be a sum of steps and sinusoids. The controller is activated at

k = 1 with Mi(k) = 0 and Ni(k) = 0 for all i ∈ {1, . . . , nc} and k ≤ 0. We rewrite

the control law (3.3) in regressor form

u(k) = θT(k)φ(k − 1), (3.4)
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∈ R
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and θ(0) = 0.

The components of the exogenous signal w can represent either command signals

to be followed, external disturbances to be rejected, or both. For instance, if D1 = 0

and D2 6= 0, then the objective is to have the output Cx follow the command signal

−D2w. On the other hand, if D1 6= 0 and D2 = 0, then the objective is to reject

the disturbance w from the performance variable y. In this case, we say that w

is a matched disturbance if R(D1) ⊆ R(B), where R(·) denotes range, and w is

an unmatched disturbance if it is not matched. Furthermore, if D1 =

[

D̂1 0

]

,

D2 =

[

0 D̂2

]

, and w =

[

w1 w2

]T

, then the objective is to have Cx follow

the command −D̂2w2 while rejecting the disturbance D̂1w1. Lastly, if D1 and D2

are empty matrices, then the objective is to achieve y(k) → 0 as k → ∞ with no

exogenous signals.

The open-loop system (3.1), (3.2) is characterized by the transfer matrix

y = G







u

w






, (3.6)
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where

G
△
=

[

Gyu Gyw

]

∈ R
ly×(lu+lw)(z) (3.7)

and

Gyu(z) = C(zI − A)−1B ∈ R
ly×lu(z), (3.8)

Gyw(z) = C(zI − A)−1D1 +D2 ∈ R
ly×lw(z). (3.9)

We write Gyu ∼









A B

C 0









to denote a realization of Gyu, and Gyu
min
∼









A B

C 0









to

denote a minimal realization of Gyu. If ly = lu, then Gyu is square, whereas, if ly 6= lu,

then Gyu is nonsquare. In particular, if ly > lu, then Gyu is tall, whereas, if ly < lu,

then Gyu is wide.

Definition 3.2.1. Let F ∈ Rly×lu(z) be a rational transfer matrix, and, for all i ∈

{1, . . . , ly} and j ∈ {1, . . . , lu}, let Fij(z) = pij(z)/qij(z), where qij is not the zero

polynomial, and pij(z), qij(z) ∈ R(z) are coprime. Then, the poles of F are the

elements of the set

poles(F )
△
=

ly ,lu
⋃

i,j=1

roots(qij(z)),

and the normal rank of F is the nonnegative integer

normal rank F
△
= max

z∈C\poles(F )
rank F (z).

55



Now, define the Rosenbrock system matrix of Gyu
min
∼









A B

C 0









by

Σ(z)
△
=







zI −A B

C 0






∈ R

(n+ly)×(n+lu)[z]. (3.10)

The transmission zeros of Gyu are the elements of the set

tzeros(Gyu)
△
= {ζ ∈ C : rank Σ(ζ) < normal rank Σ}. (3.11)

Definition 3.2.2. Let ζ ∈ tzeros(Gyu).

(i) If |ζ | ≥ 1, then ζ is a nonminimum-phase (NMP) transmission zero of Gyu.

(ii) If |ζ | < 1, then ζ is a minimum-phase transmission zero of Gyu.

(iii) If Gyu has at least one NMP transmission zero, then Gyu is NMP.

(iv) If Gyu is not NMP, then Gyu is minimum phase.

Expanding Gyu for |z| > ρ(A) yields the Laurent series

Gyu(z) =

∞
∑

i=1

Hiz
−i =

∞
∑

i=d

Hiz
−i,

where ρ(A) is the spectral radius of A, Hi
△
= CAi−1B ∈ R

ly×lu is the ith Markov

parameter of Gyu, and d is the relative degree, which is the smallest integer i such

that Hi is nonzero. For j ∈ {1, . . . , ly} and l ∈ {1, . . . , lu}, let Hi,(j,l) denote the (j, l)

entry of Hi. Then, it follows from (3.1), (3.2) that Hi,(j,l) is the impulse response

at k = i of the jth output of Gyu for a unit impulse at k = 0 applied to the lth

input of Gyu. In practice, Gyu may be a sampled-data plant arising from a strictly

proper continuous-time plant Tyu ∈ Rly×lu(s) under sample and hold operations with
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sampling period h. In this case, the relative degree of Gyu is generically equal to

1. In particular, for a zero-order hold, d > 1 if and only if the step response of

Tyu,(i,j) at t = h is zero for all i ∈ {1, . . . , ly} and j ∈ {1, . . . , lu}. Aside from a lower

bound on the required controller order to facilitate internal model control [43, 44],

d and Hd are the only modeling information assumed to be available for controller

synthesis. In particular, no modeling information about the poles and zeros of Gyu

is required, and no knowledge of the amplitude, phase, or spectrum of the harmonic

signal w is required. Throughout this chapter, we assume that Hd has full rank, that

is, rank Hd = min(lu, ly). Furthermore, throughout the chapter, we write ‖ · ‖ to

denote the Euclidean norm of a vector.

In the nonadaptive case, a sufficient condition for command following and distur-

bance rejection is [34, Lemma 5.2.2]

normal rank Gyu = ly, (3.12)

which is not satisfied if Gyu is tall. Furthermore, in the case where Gyu is wide, it

follows from (3.12) that lu − ly control inputs can be discarded without hindering

command following and disturbance rejection capabilities. Therefore, multivariable

MRAC is often formulated based on the assumption that Gyu is square [34, 43, 50].

In practice, this may incorporate the additional “squaring problem,” where, given B

(C), C (B) should be chosen so that Gyu is minimum phase [69]. Solving the squaring

problem may require partial or full knowledge about the matrices A, B and C.

On the contrary, in this chapter, we focus mainly on the case where Gyu is non-

square. Since (3.12) is a sufficient condition, there exist special cases where command

following and/or disturbance rejection is possible with tall Gyu. For example, in a

matched disturbance rejection problem, since R(D1) ⊆ R(B), u can be chosen to

cancel w from (3.1). Another example is the case where the individual performance
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outputs are chosen compatibly for a command following problem, for example, a step

command following problem with y(k) = [ y0(k)−w y0(k)−y0(k−1) ]T. On the other hand,

for wide plants, it follows from (3.12) that both asymptotic command following and

asymptotic disturbance rejection are achievable. Therefore, if a control technique is

applicable to wide plants, there is no reason to discard certain control inputs to obtain

a square plant.

3.3 Update Laws Based On Retrospective Cost Optimization

In this chapter, we present two RCAC update laws for the controller θ(k) in (3.4).

For convenience, we rewrite the control law (3.4) as

u(k) = Φ(k − 1)Θ(k), (3.13)

where

Φ(k − 1)
△
= Ilu ⊗ φT(k − 1) ∈ R

lu×lunc(lu+ly), (3.14)

Θ(k)
△
= vec(θ(k)) ∈ R

lunc(lu+ly), (3.15)

“⊗” denotes the Kronecker product, and “vec” is the column-stacking operator [5].

Note that Θ(0) = 0. For simplicity of analysis, we implicitly set the FIR filter Gf(q
−1)

in (2.22) to Hdq
−d throughout this chapter. Therefore, for control synthesis, the only

modeling information we use is d and Hd.
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3.3.1 Retrospective Performance

For k ≥ 0, we define the retrospective performance variable

ŷ(Θ̂, k)
△
= y(k) +HdΦ(k − d− 1)[Θ̂−Θ(k − d)] (3.16)

= y(k)−Hdu(k − d) +HdΦ(k − d− 1)Θ̂, (3.17)

where Θ̂ is an optimization variable. To understand the meaning of ŷ(Θ̂, k), note that

it follows from (3.1), (3.2) that

y(k) = CAdx(k − d) +

d
∑

i=1

Hiu(k − i) +D2w(k) +

d
∑

i=1

CAi−1D1w(k − i)

= CAdx(k − d) +HdΦ(k − d− 1)Θ(k − d) +D2w(k) +

d
∑

i=1

CAi−1D1w(k − i).

(3.18)

Replacing Θ(k − d) by Θ̂ in (3.18) yields

CAdx(k − d) +HdΦ(k − d− 1)Θ̂ +D2w(k) +

d
∑

i=1

CAi−1D1w(k − i)

= y(k)−HdΦ(k − d− 1)[Θ(k − d)− Θ̂]

= ŷ(Θ̂, k). (3.19)

Note that x(k − d) and Φ(k − d− 1) in (3.18) are independent of Θ(k− d), and thus

are unchanged if Θ̂ is used instead of Θ(k − d). Consequently, it follows from (3.19)

that the retrospective performance variable ŷ(Θ̂, k) is the performance output that

would have been obtained at time k if the controller Θ̂ had been used in place of

Θ(k − d).

We now formulate two update laws based on ŷ(Θ̂, k). In both cases, a quadratic

cost function that depends on ŷ(Θ̂, k) is minimized with respect to Θ̂. The algorithms
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presented below are equivalent to the instantaneous and cumulative update laws of

Chapter II with Gf(q
−1) = Hdq

−d.

3.3.2 Instantaneous Update Law

For each k ≥ 1, we define the instantaneous cost function

Jins(Θ̂, k)
△
= ŷT(Θ̂, k)ŷ(Θ̂, k) + µ[Θ̂−Θ(k − 1)]T[Θ̂−Θ(k − 1)], (3.20)

where µ > 0 weights the distance between Θ̂ and the controller Θ(k− 1) used at step

k − 1. Substituting (3.17) into (3.20) yields

Jins(Θ̂, k) = Θ̂TΓ1(k)Θ̂ + ΓT
2 (k)Θ̂ + Γ3(k), (3.21)

where

Γ1(k)
△
= ΦT(k − d− 1)HT

d HdΦ(k − d− 1) + µI ∈ R
lunc(lu+ly)×lunc(lu+ly), (3.22)

Γ2(k)
△
= 2ΦT(k − d− 1)HT

d [y(k)−Hdu(k − d)]− 2µΘ(k − 1) ∈ R
lunc(lu+ly), (3.23)

and Γ3(k) ∈ R. Since Γ1(k) is positive definite, Jins(Θ̂, k) has the unique global

minimizer

Θ(k) = −
1

2
Γ−1
1 (k)Γ2(k), (3.24)

which is the instantaneous RCAC update law. Note that the only modeling infor-

mation required to implement (3.24) is knowledge of d and Hd. We write (3.24) in

recursive form as follows.

Lemma 3.3.1. For each k ≥ 1, the unique global minimizer of the instantaneous cost
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function (3.20) is given by

Θ(k) = Θ(k − 1)− ΦT(k − d− 1)HT
d Ψ

−1(k)ŷ(Θ(k − 1), k), (3.25)

where

Ψ(k)
△
= µIly +HdΦ(k − d− 1)ΦT(k − d− 1)HT

d . (3.26)

Proof Substituting (3.23) into (3.24) and using (3.13) and (3.22) yields

Θ(k) = Γ−1
1 (k)[µΘ(k − 1)− ΦT(k − d− 1)HT

d (y(k)−Hdu(k − d))]

= Γ−1
1 (k)[µΘ(k − 1)− ΦT(k − d− 1)HT

d (y(k)−Hdu(k − d))]

+ Γ−1
1 (k)[ΦT(k − d− 1)HT

d HdΦ(k − d− 1)]Θ(k − 1)

− Γ−1
1 (k)[ΦT(k − d− 1)HT

d HdΦ(k − d− 1)]Θ(k − 1)

= Γ−1
1 (k)[µI + ΦT(k − d− 1)HT

d HdΦ(k − d− 1)]Θ(k − 1)

− Γ−1
1 (k)[ΦT(k − d− 1)HT

d (y(k)−Hdu(k − d))

+ ΦT(k − d− 1)HT
d HdΦ(k − d− 1)Θ(k − 1)]

= Θ(k − 1)− Γ−1
1 (k)ΦT(k − d− 1)HT

d ŷ(Θ(k − 1), k). (3.27)

Next, applying the matrix inversion lemma to (3.22) and using (3.26) yields

Γ−1
1 (k) =

1

µ
[I − ΦT(k − d− 1)HT

d Ψ
−1(k)HdΦ(k − d− 1)]. (3.28)
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Now, substituting (3.28) into (3.27) yields

Θ(k) = Θ(k − 1)−
1

µ
ΦT(k − d− 1)HT

d Ψ
−1(k)Ψ(k)ŷ(Θ(k − 1), k)

+
1

µ
ΦT(k − d− 1)HT

d Ψ
−1(k)HdΦ(k − d− 1)ΦT(k − d− 1)HT

d ŷ(Θ(k − 1), k)

= Θ(k − 1)−
1

µ
ΦT(k − d− 1)HT

d Ψ
−1(k)[µŷ(Θ(k − 1), k)

+HdΦ(k − d− 1)ΦT(k − d− 1)HT
d ŷ(Θ(k − 1), k)

−HdΦ(k − d− 1)ΦT(k − d− 1)HT
d ŷ(Θ(k − 1), k)]

= Θ(k − 1)− ΦT(k − d− 1)HT
d Ψ

−1(k)ŷ(Θ(k − 1), k). �

3.3.3 Cumulative Update Law

For each k ≥ 1, we define the cumulative cost function

Jcum(Θ̂, k)
△
=

k
∑

i=1

ŷT(Θ̂, i)ŷ(Θ̂, i) + Θ̂TP−1
0 Θ̂, (3.29)

where P0 ∈ Rlunc(lu+ly)×lunc(lu+ly). Throughout the chapter, we assume that P0 = βI,

where β is a positive constant. Substituting (3.17) into (3.29) yields

Jcum(Θ̂, k) = Θ̂TC1(k)Θ̂ + CT
2 (k)Θ̂ + C3(k), (3.30)

where

C1(k)
△
=

k
∑

i=1

ΦT(i− d− 1)HT
d HdΦ(i− d− 1) + P−1

0 , (3.31)

C2(k)
△
=

k
∑

i=1

2ΦT(i− d− 1)HT
d [y(i)−Hdu(i− d)], (3.32)
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and C3(k) ∈ R. Defining C1(0)
△
= P−1

0 and C2(0)
△
= 0, we can rewrite (3.31), (3.32) in

the recursive form

C1(k) = C1(k − 1) + ΦT(k − d− 1)HT
d HdΦ(k − d− 1), (3.33)

C2(k) = C2(k − 1) + 2ΦT(k − d− 1)HT
d [y(k)−Hdu(k − d)]. (3.34)

Since C1(k) is positive definite, Jcum(Θ̂, k) has the unique global minimizer

Θ(k) = −
1

2
C−1
1 (k)C2(k), (3.35)

which is the cumulative RCAC update law. As in the case of the instantaneous

controller update (3.24), the only modeling information required to implement (3.35)

is knowledge of d and Hd. We write (3.35) in recursive form as follows. Recall that

Θ(0) = 0.

Lemma 3.3.2. For all k ≥ 0, define P (k)
△
= C−1

1 (k). Then, for all k ≥ 1, P (k)

satisfies

P (k) = P (k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)P (k − 1),

(3.36)

where

Λ(k)
△
= Ily +HdΦ(k − d− 1)P (k − 1)ΦT(k − d− 1)HT

d . (3.37)

Furthermore, for each k ≥ 1, let Θ(k) be the unique global minimizer of the cumulative

cost function (3.29) given by (3.35). Then, for all k ≥ 1,

Θ(k) = Θ(k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)ŷ(Θ(k − 1), k). (3.38)
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Proof It follows from (3.33) that

P−1(k) = P−1(k − 1) + ΦT(k − d− 1)HT
d HdΦ(k − d− 1). (3.39)

Applying the matrix inversion lemma to (3.39) and using (3.37) yields

P (k) = P (k − 1)− P (k − 1)ΦT(k − d− 1)HT
d [Ily +HdΦ(k − d− 1)P (k − 1)

· ΦT(k − d− 1)HT
d ]

−1HdΦ(k − d− 1)P (k − 1)

= P (k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)P (k − 1).

Hence, (3.36) holds. Next, since P (k) = C−1
1 (k), it follows from (3.34), (3.35), and

(3.36) that

Θ(k) = −
1

2
P (k)CT

2 (k)

= −
1

2
P (k − 1)CT

2 (k − 1)− P (k − 1)ΦT(k − d− 1)HT
d [y(k)−Hdu(k − d)]

+
1

2
P (k − 1)ΦT(k − d− 1)HT

d Λ
−1(k)HdΦ(k − d− 1)P (k − 1)CT

2 (k − 1)

+ P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)P (k − 1)ΦT(k − d− 1)

·HT
d [y(k)−Hdu(k − d)]

= Θ(k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)Λ(k)[y(k)−Hdu(k − d)]

− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)Θ(k − 1)

+ P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)P (k − 1)ΦT(k − d− 1)

·HT
d [y(k)−Hdu(k − d)]

= Θ(k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)[HdΦ(k − d− 1)Θ(k − 1)

+ (Ily +HdΦ(k − d− 1)P (k − 1)ΦT(k − d− 1)HT
d −HdΦ(k − d− 1)P (k − 1)

· ΦT(k − d− 1)HT
d )[y(k)−Hdu(k − d)]]

= Θ(k − 1)− P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)ŷ(Θ(k − 1), k). �
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3.4 Adaptive Control of Nonsquare Plants: Motivating Ex-

amples

Under suitable assumptions on w and Gyu, it is shown in [43] for the instantaneous

update law (3.25) that limk→∞ y(k) = 0, and u, Θ and x are bounded. In particular,

it is assumed in [43] that Gyu is minimum phase and square, Hd is nonsingular, and w

is a harmonic signal with unknown spectrum. These convergence results are extended

to the cumulative update law (3.35) in [36]. We repeated these convergence results

at the end of Chapter II for convenience. We now demonstrate that these properties

may or may not hold if Gyu is nonsquare.

3.4.1 Examples with Wide Plants

Example 3.4.1 (2 × 3 wide plant, convergent output, bounded control). Consider

(3.1), (3.2) with

A =























0.5 0 0 0

0 0.7 0 0

0 0 0.4 −0.4

0 0 0.4 0.4























, B =























−0.8 1.35 −0.85

1.02 −0.22 −1.12

−0.13 −0.59 2.53

−0.71 −0.29 1.66























, D1 =























0

1

0

0























,

(3.40)

C =







0.31 −0.87 0.79 −2.33

−1.26 −0.18 −1.33 −1.45






, D2 =







0

0






, (3.41)

where (A,B,C) is minimal. We consider the harmonic disturbance w(k) = sin π
5
k.

Since

[

D1 B

]

is nonsingular, it follows that D1 is not an element of R(B), and

thus w is unmatched. The plant Gyu has no transmission zeros. We let nc = 6,

and apply the cumulative update (3.35) with P0 = I. As shown in Figure 3.1, y
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approaches zero, u is bounded, and Θ is bounded. �
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Figure 3.1: Example 3.4.1: Unmatched disturbance rejection for the minimum-phase,
2×3 wide plant (3.40), (3.41). The performance output y approaches zero,
the control signal u is bounded, and the controller Θ converges.

Example 3.4.2 (2× 3 wide plant, unbounded control). Consider (3.1), (3.2), where

the matrices A, B, D1, C, and D2 are as in (3.40), (3.41) except that B(1,1) = −1.8.

Note that (A,B,C) is minimal. We consider the same harmonic disturbance as in

Example (3.4.1). Since

[

B D1

]

is nonsingular, it follows that D1 is not an element

of R(B), and thus w is unmatched. The plant Gyu has no transmission zeros. We let

nc = 6 and apply the cumulative update (3.35) with P0 = I. As shown in Figure 3.2,

u grows without bound, while y approaches zero. �
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Figure 3.2: Example 3.4.2: Unmatched disturbance rejection for the 2× 3 wide plant
(3.40), (3.41) except that B(1,1) = −1.8. Although Gyu is minimum phase,
the control signal u grows without bound, while the performance output
y approaches zero. The controller Θ converges.
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We revisit Examples 3.4.1 and 3.4.2 in Section 3.7.3.1 to investigate the mechanics

behind the instability observed in Example 3.4.2. These examples are further revisited

in Section 3.9 to demonstrate a modified RCAC algorithm which does not exhibit the

instability observed in Example 3.4.2.

3.4.2 Examples with Tall Plants

Example 3.4.3 (3 × 1 tall plant, matched disturbance, no instability observed).

Consider (3.1), (3.2) with

A =















0.3 −0.16 0

0.125 0 0

0 0.125 0















, B =















16

0

0















, D1 = B, (3.42)

C =















−0.0625 −0.35 −0.48

0.0625 −1.5 9.16

0.1875 −0.75 −7.92















, D2 =















0

0

0















, (3.43)

where (A,B,C) is minimal. In this example, we consider the special case of matched

disturbance. Since u can be used to directly cancel w from (3.1), asymptotic distur-

bance rejection is achievable for tall plants in the case where w is matched with the

input. We consider the two-tone harmonic disturbance w(k) = sin 2π
7
k + sin π

5
k. The

plant has no transmission zeros. We let nc = 7 and apply the instantaneous update

(3.24) with µ = 20. As shown in Figure 3.3, all signals are bounded, Θ converges,

and y approaches zero. Therefore, RCAC drives all three outputs to zero using only

one control input, despite the sinusoidal disturbance. �

Example 3.4.4 (3 × 1 tall plant, unmatched disturbance, no instability observed).

Consider (3.1), (3.2), where the matrices A, B, C, and D2 are as in (3.42), (3.43),
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Figure 3.3: Example 3.4.3: Matched disturbance rejection for the minimum-phase,
3× 1 tall plant (3.42), (3.43). The controller Θ converges, u is bounded,
and y asymptotically approaches zero. RCAC cancels the matched sinu-
soidal disturbance from three outputs using only one actuator.

but D1 is now given by D1 =

[

0 1 0

]T

. We consider the same two-tone harmonic

disturbance as in Example 3.4.3, however, since

[

B D1

]

is nonsingular, it follows

that D1 is not an element of R(B), and thus w is now an unmatched disturbance.

The plant Gyu has no transmission zeros. We let nc = 7 and apply the instantaneous

update (3.24) with µ = 20. As shown in Figure 3.4, all signals are bounded and Θ

converges, but, since the plant is underactuated and the disturbance is unmatched, y

does not converge to zero. �
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Figure 3.4: Example 3.4.5: Unmatched disturbance rejection for the minimum-phase,
3 × 1 tall plant of Example 3.4.3 with D1 = [0 1 0]T. The controller Θ
converges, and the signals u and y are bounded. The performance output
y does not converge to zero due to the infeasibility of asymptotic rejection
of an unmatched disturbance in the tall case.
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Example 3.4.5 (3 × 1 tall plant, unmatched disturbance, input and output grow

without bound). Consider (3.1), (3.2) where the matrices A, B, C, D1 and D2 are

as in Example 3.4.4, except that C(1,2) = 0.6. Note that (A,B,C) is minimal. We

consider the same unmatched harmonic disturbance as in Example 3.4.4. The plant

Gyu has no transmission zeros. We let nc = 7 and apply the instantaneous update

(3.24) with µ = 20. As shown in Figure 3.5, Θ converges, and both u and y grow

without bound. �
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Figure 3.5: Example 3.4.5: Unmatched disturbance rejection for the 3×1 tall plant of
Example 3.4.4 except that C(1,2) = 0.6. Although Gyu is minimum phase,
the signals u and y grow without bound. The controller Θ converges.

We revisit Examples 3.4.4 and 3.4.5 in Section 3.8.3.1 to investigate the mechanics

behind the instability observed in Example 3.4.5. These examples are further revisited

in Section 3.9 to demonstrate a modified RCAC algorithm which does not exhibit the

instability observed in Example 3.4.5.

3.5 Input Subspace with Retrospective Cost Adaptive Con-

trol

We first consider the instantaneous update law (3.24), which is equivalent to

(3.25), (3.26) as shown by Lemma 3.3.1. We require the following technical lemma.
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Lemma 3.5.1. Let Θ(k) be given by the instantaneous update law (3.25), (3.26), let

φ ∈ Rnc(lu+ly), and define Φ
△
= Ilu ⊗ φT. Then, for all k ≥ 1,

ΦΘ(k) ∈ R(HT
d ). (3.44)

Proof Since Θ(0) = 0, it follows from (3.25) that

ΦΘ(1) = −ΦΦT(−d)HT
d Ψ

−1(1)ŷ(Θ(0), 1)

= −(Ilu ⊗ φT)(Ilu ⊗ φ(−d))HT
d Ψ

−1(1)ŷ(Θ(0), 1)

= −HT
d φ

Tφ(−d)Ψ−1(1)ŷ(Θ(0), 1)

∈ R(HT
d ).

Hence, (3.44) holds for k = 1. Next, suppose that (3.44) holds for k− 1. Then, there

exists vΦ(k − 1) ∈ Rly such that ΦΘ(k − 1) = HT
d vΦ(k − 1). Multiplying (3.25) on

the left by Φ yields

ΦΘ(k) = HT
d vΦ(k − 1)− ΦΦT(k − d− 1)HT

d Ψ
−1(k)ŷ(Θ(k − 1), k)

= HT
d vΦ(k − 1)−HT

d φ
Tφ(k − d− 1)Ψ−1(k)ŷ(Θ(k − 1), k)

= HT
d [vΦ(k − 1)− φTφ(k − d− 1)Ψ−1(k)ŷ(Θ(k − 1), k)]

∈ R(HT
d ).

By induction, (3.44) holds for all k ≥ 1. �

We can now state the main result of this section for the instantaneous update law

(3.24).

Theorem 3.5.1. For all k ≥ 1, let the control input u(k) be given by the control law
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(3.13) with the instantaneous update law (3.25), (3.26). Then, for all k ≥ 1,

u(k) ∈ R(HT
d ). (3.45)

Proof For all k ≥ 1, Φ(k−1) = Ilu ⊗φT(k−1), where φ(k−1) ∈ Rnc(lu+ly). Using

Lemma 3.5.1, it follows from (3.13) and (3.44) that, for all k ≥ 1, u(k) ∈ R(HT
d ). �

We now consider the cumulative update law (3.35), which is equivalent to (3.36)–

(3.38) as shown by Lemma 3.3.2. The following technical lemma is needed.

Lemma 3.5.2. For all k ≥ 1, let P (k) and Θ(k) be given by the cumulative update

law (3.36)–(3.38). Then, for all k ≥ 1, the following statements hold.

(i) Let φ1, φ2 ∈ Rnc(lu+ly), and define Φ1
△
= Ilu ⊗ φT

1 , Φ2
△
= Ilu ⊗ φT

2 . Then, for all

k ≥ 1, there exists NΦ1,Φ2(k) ∈ R
ly×ly such that Φ1P (k)ΦT

2H
T
d = HT

d NΦ1,Φ2(k).

(ii) Let φ ∈ Rnc(lu+ly), and define Φ
△
= Ilu ⊗ φT. Then, ΦΘ(k) ∈ R(HT

d ).

Proof To show (i), note that it follows from (3.36) that

Φ1P (1)ΦT
2H

T
d = Φ1P (0)Φ2H

T
d − Φ1P (0)ΦT(−d)HT

d Λ
−1(1)HdΦ(−d)P (0)ΦT

2H
T
d ,

and, since P (0) = βI,

Φ1P (1)ΦT
2H

T
d = β(Ilu ⊗ φT

1 )(Ilu ⊗ φ2)H
T
d + β(Ilu ⊗ φT

1 )(Ilu ⊗ φ(−d))HT
d Λ

−1(1)Hd

· Φ(−d)βΦ2H
T
d

= HT
d NΦ1,Φ2(1),

where NΦ1,Φ2(1)
△
= βφT

1 φ2Ily + β2φT
1 φ(−d)Λ−1(1)HdΦ(−d)ΦT

2H
T
d ∈ Rly×ly . Thus, (i)

holds for k = 1. Now, suppose (i) holds for k − 1 ≥ 1. Multiplying (3.36) on the left
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by Φ1 and on the right by Φ2H
T
d yields

Φ1P (k)Φ2H
T
d = Φ1P (k − 1)Φ2H

T
d

− Φ1P (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)HdΦ(k − d− 1)P (k − 1)Φ2H
T
d

= HT
d NΦ1,Φ2(k − 1)−HT

d NΦ1,Φ(k−d−1)(k − 1)Λ−1(k)HdH
T
d

·NΦ(k−d−1),Φ2
(k − 1)

= HT
d NΦ1,Φ2(k),

where

NΦ1,Φ2(k)
△
= NΦ1,Φ2(k − 1)−NΦ1,Φ(k−d−1)(k − 1)Λ−1(k)HdH

T
d NΦ(k−d−1),Φ2(k − 1)

∈ R
ly×ly ,

and thus, if (i) holds with k replaced by k − 1, then (i) holds for k. Therefore, by

induction, (i) holds for all k ≥ 1.

Next, note that, since Θ(0) = 0 and P (0) = βI, it follows from (3.38) that Θ(1) =

HT
d vΦ(1), where vΦ(1)

△
= −βφTφ(−d)Λ−1(1)ŷ(Θ(0), 1). Therefore, ΦΘ(1) ∈ R(HT

d ),

and thus (ii) holds for k = 1. Next, suppose (ii) holds for k−1 ≥ 1 so that ΦΘ(k−1) ∈

R(HT
d ). Then, there exists vΦ(k − 1) ∈ Rly such that ΦΘ(k − 1) = HT

d vΦ(k − 1).

Multiplying (3.38) on the left by Φ and using (i) yields

ΦΘ(k) = ΦΘ(k − 1)− ΦP (k − 1)ΦT(k − d− 1)HT
d Λ

−1(k)ŷ(Θ(k − 1), k)

= HT
d vΦ(k − 1)−HT

d NΦ,Φ(k−d−1)(k − 1)Λ−1(k)ŷ(Θ(k − 1), k)

= HT
d vΦ(k),
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where

vΦ(k) = vΦ(k − 1)−NΦ,Φ(k−d−1)(k − 1)Λ−1(k)ŷ(Θ(k − 1), k).

Hence, if (ii) holds for k−1, then (ii) holds for k. Therefore, by induction, (ii) holds

for all k ≥ 1. �

We can now state the main result of this section for the cumulative update law

(3.36)–(3.38).

Theorem 3.5.2. For all k ≥ 1, let the control input u(k) be given by the control law

(3.13) with the cumulative update law (3.36)–(3.38). Then, for all k ≥ 1,

u(k) ∈ R(HT
d ). (3.46)

Proof The result follows from statement (ii) of Lemma 3.5.2. �

3.6 Convergence of Θ

Examples 3.4.4 and 3.4.5 show that the controller Θ with the instantaneous update

(3.24) may converge despite the fact that y does not converge and may be unbounded.

In this section, we provide sufficient conditions under which Θ converges. These

convergence results involve the zero-update output subspace S ⊆ Rly , which has the

property that, if y approaches S exponentially, then Θ converges. For the case where

Gyu is tall, we show that S is nonzero, and thus Θ may converge despite the fact

that y does not converge. The discussion is limited to the instantaneous update law

(3.25), but similar results apply to the cumulative update law (3.36), (3.38). Define

the controller update vector ∆Θ(k)
△
= Θ(k)− Θ(k − 1). Note that, since we assume

that, for all k ≤ 0, Θ(k) = 0, it follows that, for all k ≤ 0, ∆Θ(k) = 0.
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3.6.1 Case 1: d = 1

Lemma 3.6.1. Consider the instantaneous update law (3.25), and assume that d = 1.

Then, ∆Θ(k) satisfies

∆Θ(k) = B(k)HT
1 y(k), (3.47)

where

B(k)
△
= −[µIlunc(lu+ly) + ΦT(k − 2)HT

1 H1Φ(k − 2)]−1ΦT(k − 2). (3.48)

Proof Subtracting Θ(k − 1) from both sides of (3.25) and using the identity

Q(I +QTQ)−1 = (I +QQT)−1Q yields

∆Θ(k) = −ΦT(k − 2)HT
1 [µIly +H1Φ(k − 2)ΦT(k − 2)HT

1 ]
−1ŷ(Θ(k − 1), k)

= [µIlunc(lu+ly) + ΦT(k − 2)HT
1 H1Φ(k − 2)]−1ΦT(k − 2)HT

1 ŷ(Θ(k − 1), k).

Since d = 1, it follows from (3.16) that ŷ(Θ(k − 1), k) = y(k). Therefore,

∆Θ(k) = −[µIlunc(lu+ly) + ΦT(k − 2)HT
1 H1Φ(k − 2)]−1ΦT(k − 2)HT

1 y(k)

= B(k)HT
1 y(k). �

It follows from Lemma 3.6.1 that, for d = 1, controller update (3.47) is a mem-

oryless process driven by HT
1 y(k). Note that, if y(k) ∈ N (HT

1 ), then ∆Θ(k) = 0.

Furthermore, ifGyu is either square or wide, thenN (HT
1 ) = {0}, and thusHT

1 y(k) = 0

if and only if y(k) = 0. However, if Gyu is tall, then N (HT
1 ) 6= {0}, and thus HT

1 y(k)

can be zero with nonzero y(k). The next result shows that, if HT
1 y converges expo-

nentially to zero, then Θ converges.

Theorem 3.6.1. Consider the instantaneous update law (3.25). Assume that B is
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bounded and there exist α > 0 and γ ∈ (0, 1) such that, for all k ≥ 0, ‖HT
1 y(k)‖ ≤

αγk. Then, Θ converges.

Proof See Section 3.12.1. �

Assume that Gyu is tall or square. Then HT
1 H1 is positive definite, and it follows

from (3.48) that B is bounded whether or not Φ is bounded. Therefore, if HT
1 y

converges exponentially to zero, then Θ converges whether or not Φ is bounded.

Theorem 3.6.1 has a geometric interpretation. If Gyu is tall, and thus HT
1 has

a nonzero null space, and if y converges to N (HT
1 ) ⊂ Rly exponentially, then Θ

converges. Thus, Θ may converge whether or not y is bounded as long as y remains

in, or exponentially approaches, N (HT
1 ). In Section 3.8.3.1, we show that this is what

happens in Examples 3.4.4 and 3.4.5.

3.6.2 Case 2: d = 2

Lemma 3.6.2. For all k ≥ 1, let Θ(k) be given by the instantaneous update law

(3.25) with d = 2. Then, ∆Θ(k) satisfies

∆Θ(k) = A(k)∆Θ(k − 1) + B(k)HT
2 y(k), (3.49)

where

A(k)
△
= −ΦT(k − 3)HT

2 [µIly +H2Φ(k − 3)ΦT(k − 3)HT
2 ]

−1H2Φ(k − 3), (3.50)

B(k)
△
= −[µIlunc(lu+ly) + ΦT(k − 3)HT

2 H2Φ(k − 3)]−1ΦT(k − 3). (3.51)

Proof Substituting d = 2 into (3.25) and using the matrix identity Q(I+QTQ)−1 =

(I +QQT)−1Q yields (3.49). �

As in the case d = 1, the controller update ∆Θ(k) is driven by HT
d y(k). However,

unlike (3.47), which is memoryless, (3.49) is dynamic. Therefore, we need to consider
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the stability of (3.49). In particular, for all k ≥ 1, consider the free response of (3.49),

which is given by

∆Θ(k) = A(k)∆Θ(k − 1). (3.52)

Definition 3.6.3. The zero solution of (3.52) is globally exponentially stable if, for

all ∆Θ(0) ∈ Rlunc(lu+ly) and k ≥ 0, there exist α ≥ 1 and γ ∈ (0, 1) such that

‖∆Θ(k)‖ ≤ α‖∆Θ(0)‖γk. (3.53)

Note that Definition 3.6.3 implies that the zero solution of (3.52) is Lyapunov

stable. In particular, it follows from (3.53) that, for all ε > 0, if ‖∆Θ(0)‖ < ε
α
, then,

for all k ≥ 0, ‖∆Θ(k)‖ < ε.

Substituting the singular value decomposition H2Φ(k − 3) = UkΣkVk into (3.50)

yields

A(k) = V ∗
k Σ

∗
kU

∗
k [UkµIU

∗
k + UkΣkVkV

∗
k Σ

∗
kU

∗
k ]

−1UkΣkVk

= V ∗
k Σ

∗
k[µI + ΣkΣ

∗
k]

−1ΣkVk,

and thus,

σi(A(k)) =
σ2
i (H2Φ(k − 3))

µ+ σ2
i (H2Φ(k − 3))

, (3.54)

where σi(A(k)) denotes the ith singular value of A(k). Furthermore, define

σ̄(A)
△
= sup

k≥1
σmax(A(k)),

where σmax denotes the largest singular value. It follows from (3.54) that σ̄(A) ∈ [0, 1].

Furthermore, if Φ is bounded, then σ̄(A) ∈ [0, 1).
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Proposition 3.6.4. Let Θ(k) be given by the instantaneous update (3.25) with d = 2,

and assume that Φ is bounded. Then the zero solution of (3.52) is globally exponen-

tially stable.

Proof See Section 3.12.2. �

Proposition 3.6.4 is restrictive in the sense that it requires that the regressor Φ

be bounded. We now relax this requirement by introducing a persistency condition.

For k ≥ 1 and m ≥ 2, define

Qm(k)
△
= A(k) · · ·A(k +m− 1). (3.55)

Proposition 3.6.5. Let Θ(k) be given by the instantaneous update (3.25) with d = 2,

and consider (3.52). Assume that there exists m ≥ 2 such that

σ̄(Qm) < 1. (3.56)

Then the zero solution of (3.52) is globally exponentially stable.

Proof See Section 3.12.3. �

The next result shows that (3.56) is satisfied if the regressor is sufficiently persis-

tent, in particular, persistently exciting of order two. For nonzero φ1, φ2 ∈ Rlunc(lu+ly),

let

Ω(φ1, φ2)
△
= cos−1 φT

1 φ2

‖φ1‖‖φ2‖
∈ [0, π] (3.57)

denote the angle between φ1 and φ2. We require the following technical lemma before

stating the persistency condition.

Lemma 3.6.6. For r, k ≥ 2, let φ1, . . . , φk ∈ Rr, assume that φ1 and φk are not
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parallel, and let Ω0 ∈ (0, π/2] such that

Ω0 ≤ Ω(φ1, φk) ≤ π − Ω0. (3.58)

Then, there exists l ∈ {1, . . . , k − 1} such that

1

k − 1
Ω0 ≤ Ω(φl, φl+1) ≤ π −

1

k − 1
Ω0. (3.59)

Proposition 3.6.7. Assume that Gyu is tall or square, and assume that there exist

m ≥ 2 and Ω0 ∈ (0, π/2] such that, for all k ≥ 1, there exist distinct k1, k2 ∈

{k, . . . , k+m− 1} such that Ω0 ≤ Ω(φ(k1 − 3), φ(k2 − 3)) ≤ π−Ω0. Then, σ̄(Qm) ≤

cos Ω0

m−1
< 1.

Proof See Section 3.12.4. �

It follows from Proposition 3.6.7 that, if there exist m ≥ 2 and Ω0 ∈ (0, π/2] such

that, for all k ≥ 1, the set {φ(k− 3), . . . , φ(k +m− 4)} contains at least two vectors

the angle between which is at least Ω0 radians and at most π−Ω0 radians, then (3.56)

is satisfied. This condition implies that the regressor is persistently exciting of order

two or more as defined in [34, 96].

Now that we have established global exponential stability for (3.52), we consider

Θ(k) generated by (3.49). Since N (HT
2 ) 6= {0} if and only if Gyu is tall, we consider

only the case where Gyu is tall.

Theorem 3.6.2. Consider the instantaneous update law (3.25) with d = 2, let Gyu

be tall, and assume that there exist α > 0 and γ ∈ (0, 1) such that, for all k ≥ 0,

‖HT
2 y(k)‖ ≤ αγk. Then, the following statements hold.

(i) If Φ is bounded, then Θ converges.

(ii) If there exists m ≥ 2 such that (3.56) is satisfied, then Θ converges.
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Proof See Section 3.12.5. �

Theorem 3.6.1 has a geometric interpretation similar to the case d = 1 with

N (HT
1 ) replaced by N (HT

2 ), that is, if y converges exponentially to N (HT
2 ), then Θ

converges.

3.6.3 Case 3: d ≥ 3

We now briefly investigate the case d ≥ 3. Consider the instantaneous update law

(3.25) with arbitrary d ≥ 3. First, from (3.16),

ŷ(Θ(k − 1), k) = y(k) +HdΦ(k − d− 1)[Θ(k − 1)−Θ(k − d)]

= y(k) +HdΦ(k − d− 1)[Θ(k − 1)−Θ(k − 2) + Θ(k − 2)

− · · · −Θ(k − d+ 1) + Θ(k − d+ 1)−Θ(k − d)]

= y(k) +HdΦ(k − d− 1)

d−1
∑

i=1

∆Θ(k − i). (3.60)

Substituting (3.60) into (3.25), subtracting Θ(k−1) from (3.25) and using the identity

Q(I +QTQ)−1 = (I +QQT)−1Q, we obtain

∆Θ(k) = M(k)∆Θ(k − 1) + · · ·+M(k)∆Θ(k − d+ 1) +N (k)HT
d y(k), (3.61)

where

M(k)
△
= −Φ(k − d− 1)THT

d [µIly +HdΦ(k − d− 1)ΦT(k − d− 1)HT
d ]

−1

·HdΦ(k − d− 1),

N (k)
△
= −[µIlunc(lu+ly) +HdΦ(k − d− 1)ΦT(k − d− 1)HT

d ]Φ(k − d− 1).
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Now, letting

X (k)
△
=















∆Θ(k)

...

∆Θ(k − d+ 2)















,

we rewrite (3.61) as

X (k) = E(k)X (k − 1) + F(k)HT
d y(k), (3.62)

∆Θ(k) = CX (k), (3.63)

where

E(k)
△
=























M(k) · · · M(k) M(k)

I · · · 0 0

...
. . .

...
...

0 · · · I 0























, F(k)
△
=























N (k)

0

...

0























, (3.64)

C
△
=

[

I 0 · · · 0

]

. (3.65)

Thus, as in the cases d = 1 and d = 2, the controller update (3.62), (3.63) is driven

by HT
d y(k). Furthermore, in addition to HT

d y(k), ∆Θ(k) also depends on d− 1 past

controller updates. It follows from (3.62) that, if, for all k ≥ 1, y(k) ∈ N (HT
d ), then,

for all X (0), X (k), and thus ∆Θ(k), converges to zero if and only if the equilibrium

X = 0 of

X (k) = E(k)X (k − 1) (3.66)

is globally attractive.

80



Since σmax(E(k)) may be greater than 1, convergence results for Θ(k) in the case

d = 3 are more complicated than in the cases d = 1 and d = 2. Numerical testing sug-

gests that, if y(k) ∈ N (Hd) and (3.56) is satisfied, then {X (k)}∞k=1 and
∑∞

i=1∆Θ(k)

converge, and thus Θ converges.

3.7 Input-Subspace Zeros

In this section, we build on the results of Section 3.5, and introduce the notion of

input-subspace zeros, which arise due to the fact that the control input is contained in

R(HT
d ), so that there exists v ∈ Rly such that u = HT

d v. If Gyu is square or tall, then

R(HT
d ) = Rlu ; in this case, we show that the input-subspace zeros of Gyu are equal

to the transmission zeros of Gyu. However, in the case where Gyu is wide, R(HT
d ) is

a proper subspace of Rlu . In this case, we show that Gyu may be minimum phase but

have NMP input-subspace zeros. Finally, in light of input-subspace zeros, we revisit

Examples 3.4.1 and 3.4.2 and demonstrate that the instability observed in Example

3.4.2 is caused by unstable cancellation of a NMP input-subspace zero that is not a

transmission zero of Gyu.

3.7.1 Right-Squared Transfer Matrix from v to y

Consider Gyu
min
∼









A B

C 0









, and define the right-squared transfer matrix

GR
yu

△
= GyuH

T
d ∼









A BHT
d

C 0









. (3.67)

Theorems 3.5.1 and 3.5.2 imply that, for all k ≥ 1, the control input u(k) generated

by the instantaneous and cumulative update laws lies in the subspace R(HT
d ) ⊆ Rly ,
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so that u(k) = HT
d v(k), where v(k) ∈ R

ly . Hence, (3.6) becomes

y = GR
yuv +Gyww. (3.68)

Note that GR
yu ∈ Rly×ly(z). If the realization (3.67) is minimal, then the transmission

zeros of GR
yu are given by

tzeros(GR
yu) = {ζ ∈ C : rank ΣR(ζ) < normal rank ΣR}, (3.69)

where

ΣR(z)
△
=







zI −A BHT
d

C 0






∈ R

(n+ly)×(n+ly)[z]. (3.70)

The transmission zeros of GR
yu are the input-subspace zeros of Gyu. We consider the

input-subspace zeros of tall, square, and wide plants separately.

3.7.2 Tall and Square Plants

The following result concerns minimality of (3.67) for tall and square Gyu.

Proposition 3.7.1. If Gyu
min
∼









A B

C 0









is tall or square, then (A,BHT
d , C) is

minimal.

Proof For all λ ∈ C, we have

[

λI − A BHT
d

]

=

[

λI − A B

]

Q, (3.71)
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where

Q
△
=







In 0n×ly

0lu×n HT
d






∈ R

(n+lu)×(n+ly). (3.72)

Since Gyu is tall or square and Hd has full rank, we have rank Hd = lu, and thus,

rank Q = n + lu. Therefore, it follows from (3.71) that

rank

[

λI −A BHT
d

]

= rank

[

λI − A B

]

. (3.73)

Since (A,B) is controllable, it follows from (3.73) that (A,BHT
d ) is controllable.

Furthermore, since (A,C) is observable, (3.67) is minimal. �

Thus, if Gyu is tall or square, then the input-subspace zeros of Gyu are defined as

in (3.69). We now show that, if Gyu is tall or square, then its input-subspace zeros

and transmission zeros are identical.

Proposition 3.7.2. If Gyu
min
∼









A B

C 0









is tall or square, then tzeros(GR
yu) =

tzeros(Gyu).

Proof It follows from (3.10) and (3.70) that ΣR(z) = Σ(z)Q, where Q is given by

(3.72). Since rankQ = n+lu, it follows that, for all z ∈ C, rank Σ(z) = rank ΣR(z). It

thus follows from (3.11), (3.69), and Proposition 3.7.1 that tzeros(GR
yu) = tzeros(Gyu).

�

Therefore, for tall and square plants, the restriction u(k) ∈ R(HT
d ) has no effect

on controllability, and does not alter the transmission zeros of the plant. This is

expected because R(HT
d ) = Rlu in the case where Gyu is tall or square.
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3.7.3 Wide Plants

It is reasonable to expect that the properties of GR
yu for wide plants are dual to

those of tall plants. However, as we now show, this is not the case. For example,

although the realization (3.67) is minimal for all tall plants Gyu, it turns out that

(3.67) for a wide plant Gyu may or may not be minimal, as illustrated by the following

example.

Example 3.7.3 (Minimality of (3.67)). Consider the 1 × 2 wide plant Gyu
min
∼









A B

C 0









, where

A =







0 0

1 0






, B =







0.5 0.5

−0.5 0.5






, C =

[

0 2

]

,

n = 2, d = 1, and H1 =

[

−1 1

]

. Note that

rank

[

BHT
1 ABHT

1

]

= rank







0 0

1 0






< n,

which implies that (3.67) is not minimal. �

Example 3.7.3 shows that minimality of (A,B,C) does not imply that (3.67) is

minimal. However, throughout the rest of this section, we only consider plants for

which (3.67) is minimal.

Since (A,BHT
d , C) is minimal, the input-subspace zeros of Gyu are defined as

in (3.69). The following example illustrates that the input-subspace zeros and the

transmission zeros of a wide plant may be distinct.

84



Example 3.7.4 (Input-subspace zeros of a wide plant). Consider Gyu
min
∼









A B

C 0









with

A =







0 0

1 0






, B =







−0.8 −0.3

0.5 0.5






, C =

[

0 2

]

,

n = 2, d = 1, H1 =

[

1 1

]

. For this example, (A,BHT
1 ) is controllable. It can

be shown that tzeros(Gyu) = ∅ and tzeros(GR
yu) = {1.1}. Hence, this example shows

that the transmission zeros and the input-subspace zeros of a wide plant may be

distinct. �

It follows from [24, Theorem 5] that wide Gyu
min
∼









A B

C 0









generically has

no transmission zeros, whereas, since GR
yu ∈ R

ly×ly(z), Gyu generically has n − ly

input-subspace zeros. In particular, in the case d = 1, since rank CB(CB)T = ly, it

follows that GR
yu has exactly n−ly zeros [71]. Therefore, Gyu typically has more input-

subspace zeros than transmission zeros. Furthermore, if Gyu has NMP input-subspace

zeros, then there exist infinitely many unbounded [70, 107, 108] output-zeroing input

sequences {u(k)}∞k=0 ⊂ R(HT
d ), each of which is associated with an initial condition

x(0) ∈ Rn, such that, for all k ≥ 0, the output y(k) of Gyu due to (x(0), {u(k)}∞k=0)

is identically equal to zero. The next result characterizes pairs (x(0), {u(k)}∞k=0) that

produce identically zero output y.

Proposition 3.7.5. Let Gyu
min
∼









A B

C 0









be wide with state x and output y, and

let ζ be a nonzero input-subspace zero of Gyu. Then, the following statements hold.
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(i) There exist nonzero







x0

v0






∈ Cn+ly such that

ΣR(ζ)







x0

v0






= 0. (3.74)

(ii) Let x(0) = −Re(x0), and, for all k ≥ 0, let

u(k) = HT
d [Re(ζ

k)Re(v0)− Im(ζk)Im(v0)]. (3.75)

Then, for all k ≥ 0,

x(k) = −Re(ζk)Re(x0) + Im(ζk)Im(x0), (3.76)

y(k) = 0. (3.77)

(iii) Let α ∈ R, let x(0) = −αRe(x0), and, for all k ≥ 0, let

u(k) = αHT
d [Re(ζ

k)Re(v0)− Im(ζk)Im(v0)]. (3.78)

Then, for all k ≥ 0, y(k) = 0.

(iv) Let α ∈ R, assume that A is discrete-time asymptotically stable, and let u(k) be

given by (3.78). Then, for all x(0) ∈ Rn, y(k) → 0 as k → ∞ with exponential

convergence.

Proof To show (i), suppose ζ ∈ tzeros(GR
yu). Then, it follows from (3.69), (3.70)

that rank ΣR(ζ) < normal rank ΣR ≤ n + ly. Therefore, N (ΣR(ζ)) 6= {0}, and thus

(i) is satisfied.

To show (ii), suppose that x(0) = −Re(x0) and u(k) = HT
d [Re(ζ

k)Re(v0) +
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Im(ζk)Im(v0)]. Since ζ0 = 1, (3.76) holds for k = 0, and, from (3.70) and (3.74),

y(0) = −CRe(x0) = 0. Thus, (3.76), (3.77) hold for k = 0. Now, assume that (3.76),

(3.77) hold for some k > 0. We thus have

x(k + 1) = Ax(k) +Bu(k)

= −Re(ζk)ARe(x0) + Im(ζk)AIm(x0) + Re(ζk)BHT
d Re(v0)

− Im(ζk)BHT
d Im(v0). (3.79)

Next, it follows from (3.70) and (3.74) that

ζx0 − Ax0 +BHT
d v0 = 0,

and thus,

BHT
d Re(v0) = ARe(x0) + Im(ζ)Im(x0)− Re(ζ)Re(x0) (3.80)

and

BHT
d Im(v0) = AIm(x0)− Re(ζ)Im(x0)− Im(ζ)Re(x0). (3.81)

Substituting (3.80) and (3.81) into (3.79), we obtain

x(k + 1) = −Re(ζk)ARe(x0) + Im(ζk)AIm(x0) + Re(ζk)[ARe(x0) + Im(ζ)Im(x0)

− Re(ζ)Re(x0)]− Im(ζk)[AIm(x0)− Re(ζ)Im(x0)− Im(ζ)Re(x0)]

= [−Re(ζk)Re(ζ) + Im(ζk)Im(ζ)]Re(x0)

+ [Re(ζk)Im(ζ) + Im(ζk)Re(ζ)]Im(x0)

= −Re(ζk+1)Re(x0) + Im(ζk+1)Im(x0), (3.82)
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which shows that (3.76) holds for k + 1. Furthermore, since Cx0 = 0 from (3.74), it

follows from (3.82) that

y(k + 1) = Cx(k + 1) = 0.

Thus, (3.76), (3.77) hold for k+1 if they hold for k. By induction, it follows that (ii)

holds. Statement (iii) follows from the homogeneity of linear systems.

Finally, to show (iv), consider

y(k) = CAkx(0) +
k
∑

i=1

Hiu(k − i), (3.83)

where u(k) is given by (3.78), and x(0) ∈ Rn. Adding and subtracting CAk(−αRe(x0))

from (3.83) and using (iii), we have

y(k) = CAk[x(0) + αRe(x0)] + CAk[−αRe(x0)] +

k
∑

i=1

Hiu(k − i)

= CAkx̃(k), (3.84)

where x̃(k)
△
= x(0)+αRe(x0) ∈ Rn. Since A is discrete-time asymptotically stable, it

follows from (3.84) that y(k) → 0 as k → ∞ with exponential convergence. �

Note that, if the input-subspace zero ζ satisfies |ζ | > 1, then the output-zeroing

input sequence (3.78) with α 6= 0 is unbounded. Hence, if Gyu has at least one

NMP input-subspace zero, then there exist infinitely many unbounded output-zeroing

input sequences that are contained in the subspace R(HT
d ), even though Gyu itself

is minimum phase. Since the retrospective cost functions (3.20) and (3.29) do not

contain a control penalty or a constraint on the amplitude of u, RCAC may converge

to a controller that produces an unbounded output-zeroing input sequence, namely, an

unstable controller with a pole (or poles) located at the NMP input-subspace zero(s)
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of Gyu. In the next subsection, we show that this is the cause of the instability in

Example 3.4.2. In Section 3.9, we remedy this behavior by modifying the retrospective

cost (3.29).

3.7.3.1 Examples 3.4.1 and 3.4.2 Revisited

In Examples 3.4.1 and 3.4.2, which are identical except for B(1,1), the cumulative

adaptive controller (3.35) is applied to 2 × 3 plants in order to reject an unmatched

harmonic disturbance. Both plants have no transmission zeros, the given realizations

are minimal, and the open-loop systems have the same eigenvalues. However, as

shown in Figure 3.2, the control signal u for the adaptive system in Example 3.4.2

is unbounded. We now demonstrate that the unbounded control signal is caused by

the NMP input-subspace zero of Gyu.

Example 3.7.6 (Example 3.4.2 revisited). We first confirm that (3.46) holds. Note

that d = 1 and

H1 =







0.1062 0.8195 −1.1582

3.2868 −0.4562 −4.4993






.

Hence, R(HT
1 ) is the plane described by au1 + bu2 + cu3 = 0, where a, b, c satisfy















a

b

c















∈ N (H1) = span

{















0.699

0.552

0.4547















}

.

The phase portrait of u(k) for k ≥ 1 illustrated in Figure 3.6 shows that u(k) is

confined to the subspace R(HT
1 ) for all k ≥ 1.

We now investigate the input-subspace zeros of the plant. Since (A,BHT
d , C) is

minimal, (3.69) can be used to obtain the input-subspace zeros of Gyu, which are given
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Figure 3.6: This figure illustrates the phase portrait of the unbounded control input
u for Example 3.4.2 shown in Figure 3.5. For all k ≥ 1, u(k) is contained
in the subspace R(HT

d ), which is the colored plane in this figure. The
control input is unbounded due to the fact that the input-subspace zeros
of Gyu are NMP.

by tzeros(GR
yu) = {−1.0555, 0.7596}. Therefore, Gyu has a NMP input-subspace zero

at −1.0555. Computing the controller poles at k = 150, Figure 3.7 shows that,

as Θ converges, one controller pole is located near the NMP input-subspace zero

location −1.0555. In effect, RCAC attempts to cancel the unmodeled NMP input-

subspace zero. Thus, the results of Example 3.4.2 can be explained as follows: The

unstable controller pole at the NMP input-subspace zero causes the control input to

diverge, but the effect of the unbounded control input is blocked by the NMP input-

subspace zero, and the performance output y converges to zero despite the fact that

u is unbounded, as suggested by (iv) of Proposition 3.7.5. Furthermore, since Gyu is

wide, N (HT
d ) = {0}, and thus Θ converges as y converges to zero. �

Example 3.7.7 (Example 3.4.1 revisited). We now revisit Example 3.4.1, where

the control input u is bounded. The phase portrait of u(k) for k ≥ 1 illustrated

in Figure 3.8 shows that u(k) is contained in the subspace R(HT
1 ) for all k ≥ 1.
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Figure 3.7: This figure illustrates the input-subspace zeros of the plant in Example
3.4.2 along with the poles of the adaptive controller at k = 150, whose
time evolution is shown in Figure 3.2. The adaptive controller places
a pole near the NMP input-subspace zero of Gyu, which is located at
−1.0555. This unstable pole-zero cancellation is the cause of the un-
bounded control input shown in Figure 3.2. Note that the NMP input-
subspace zero is not a transmission zero of Gyu.

The input-subspace zeros of the plant (3.40), (3.41) are given by tzeros(GR
yu) =

{−0.7334, 0.7679}. The input-subspace zeros for Example 3.4.1 are thus minimum

phase, and, as shown in Figure 3.1, the control input u is bounded. Furthermore, Θ

converges as y converges to zero. �

3.8 Output-Subspace Zeros

In this section we build on the convergence results of Section 3.6 and introduce

the notion of output-subspace zeros, which are the zeros from the control input to the

scaled performance variable HT
d y, which drives the update of Θ, as shown in Section

3.6. If Gyu is square or wide, then, since N (HT
d ) = {0}, HT

d y = 0 if and only if y = 0.

In this case, it is reasonable to expect that the zeros from u to y and zeros from u

to HT
d y are identical, which we show by proving that the output-subspace zeros and
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Figure 3.8: This figure illustrates the phase portrait of the bounded control input u
for Example 3.4.1 shown in Figure 3.1. For all k ≥ 1, u(k) is contained
in the subspace R(HT

d ), which is the colored plane in this figure. The
control input is bounded due to the fact that the input-subspace zeros of
Gyu are minimum phase.

the transmission zeros of square and wide plants are identical. However, in the case

where Gyu is tall, N (HT
d ) is a proper subspace of Rly , and thus HT

d y may be zero with

nonzero y. In this case, we show that the output-subspace zeros and the transmission

zeros of Gyu may be distinct. In particular, we show that Gyu may be minimum

phase, but have NMP output-subspace zeros, and, in this case, we show that the

control input may be unbounded despite the fact that HT
d y is exponentially decaying,

which in turn leads to converging Θ. At the end of the section, we revisit Examples

3.4.4 and 3.4.5 in light of output-subspace zeros, and demonstrate that the instability

observed in 3.4.5 is caused by unstable cancellation of a NMP output-subspace zero,

which leads to an unbounded control input and performance output, although the

unbounded control input does not affect HT
d y because of the NMP output-subspace

zero.
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3.8.1 Left-Squared Transfer Matrix from u to HT
d y

Consider Gyu
min
∼









A B

C 0









, and define the left-squared transfer matrix

GL
yu

△
= HT

d Gyu ∼









A B

HT
d C 0









. (3.85)

For plants with d = 1 or d = 2, Theorems 3.6.1 and 3.6.2 imply that, if HT
d y converges

to zero, then Θ converges. For tall plants, N (HT
d ) 6= {0}, and thus HT

d y may converge

to zero with possibly unbounded y. It follows from (3.47) and (3.49) that HT
d y drives

the controller update ∆Θ. To investigate the zeros from u to HT
d y, we multiply (3.6)

by HT
d , and consider

HT
d y = GL

yuu+HT
d Gyww. (3.86)

Note that GL
yu ∈ Rlu×lu(z). If (3.85) is minimal, then the transmission zeros of GL

yu

are given by

tzeros(GL
yu) = {ζ ∈ C : rank ΣL(ζ) < normal rank ΣL}, (3.87)

where

ΣL(z)
△
=







zI −A B

HT
d C 0






. (3.88)

The transmission zeros of GL
yu are the output-subspace zeros of Gyu. We consider

the output-subspace zeros of wide, square and tall plants separately. Unlike Section

3.7, where we consider tall and square plants before wide plants, in this section, we
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consider wide and square plants before tall plants. As it turns out, there exists a

duality between output-subspace zeros of wide and square (tall) plants and input-

subspace zeros of tall and square (wide) plants.

3.8.2 Wide and Square Plants

First, as pointed out in Section 3.6, if Gyu is wide or square, then N (HT
d ) = {0},

and thus, HT
d y(k) = 0 if and only if y(k) = 0. It is therefore intuitive to expect that

the output-subspace zeros of Gyu are equal to the transmission zeros of Gyu, that is,

tzeros(GL
yu) = tzeros(Gyu). We now show that this is indeed the case.

First, we show that (3.85) is minimal for all wide and square plants Gyu.

Proposition 3.8.1. If Gyu
min
∼









A B

C 0









is wide or square, then (A,B,HT
d C) is

minimal.

Proof Since Gyu is wide or square and Hd has full rank, we have rank Hd = ly,

and thus, rank Q = n + ly, where Q is given by (3.72). Therefore, for all λ ∈ C, we

have

rank







λI −A

HT
d C






= rank






Q







λI −A

C












= rank







λI − A

C






. (3.89)

Since (A,C) is observable, it follows from (3.89) that (A,HT
d C) is observable. Fur-

thermore, since (A,B) is controllable, (3.85) is minimal.

Since (3.85) is minimal, the output-subspace zeros of Gyu are defined as in (3.87).

We now show that if Gyu is wide or square, then its output-subspace zeros and

transmission zeros are identical.

Proposition 3.8.2. If Gyu
min
∼









A B

C 0









is wide or square, then tzeros(GL
yu) =
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tzeros(Gyu).

Proof It follows from (3.10) and (3.88) that ΣL(z) = QΣ(z), where Q is defined

as in (3.72). Since Gyu is wide or square and Hd has full rank, rank Q = n + ly.

Therefore, for all z ∈ C, rank Σ(z) = rank ΣL(z). It thus follows from (3.11), (3.87)

and Proposition 3.8.1 that tzeros(GL
yu) = tzeros(Gyu).

Therefore, for wide and square plants, GL
yu is NMP if and only if Gyu is NMP.

Therefore, if Gyu is minimum phase, then y cannot converge to N (HT
d ) = {0} with an

unbounded input sequence, and thus Θ cannot converge to a controller that generates

an unbounded input sequence.

3.8.3 Tall Plants

We first investigate the minimality of the realization (3.85) for tall plants. The

following example illustrates that the minimality of (A,B,C) does not imply that

(3.85) is minimal.

Example 3.8.3 (Minimality of (3.85)). Consider the 2×1 plant Gyu
min
∼









A B

C 0









,

where

A =







0 1

0 0






, B =







0

2






, C =







0.5 −0.5

0.5 0.5






, (3.90)

n = 2, d = 1, and H1 =

[

−1 1

]T

. Note that

rank







HT
1 C

HT
1 CA






= rank







0 1

0 0






< n,

which implies that (3.85) is not minimal. �
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Example 3.8.3 shows that minimality of (A,B,C) does not imply that (3.85) is

minimal. However, throughout the rest of this section, we only consider plants for

which (3.85) is minimal.

Since (3.85) is minimal, the output-subspace zeros of Gyu are defined as in (3.87).

The following example illustrates that the output-subspace zeros and the transmission

zeros of Gyu may be distinct.

Example 3.8.4 (Output-subspace zeros of a tall plant). Consider the 3 × 2 plant

Gyu
min
∼









A B

C 0









, where

A =























0.5 0.3 2.5 0.7

1.8 −1.3 1.2 0

−2.2 −0.4 −1.3 0.7

0.8 0.3 2 −0.2























, B =























−0.1 0.6

1.5 −1.2

1.4 0.7

1.4 1.6























, (3.91)

C =















0.4 −0.3 0.8 −0.8

1 0.3 −1.1 −1.9

0.7 −0.8 −1 1.4















, (3.92)

n = 4, d = 1, and H1 =















−0.49 −0.12

−3.85 −3.57

−0.71 2.92















. For this example, (A,HT
1 C) is observ-

able so that (A,B,HT
1 C) is minimal. It can be shown that tzeros(Gyu) = ∅ and

tzeros(GL
yu) = {0.0969 + 0.8774, 0.0969− 0.8774}. Hence, this example shows that

the transmission zeros and the output-subspace zeros of a tall plant may be distinct.

�
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It turns out that the properties of GL
yu for tall plants are dual to those of GR

yu

for wide plants. In particular, for almost all tall Gyu
min
∼









A B

C 0









, it follows from

[24, Theorem 5] that tzeros(Gyu) = ∅, whereas, since GL
yu ∈ Rlu×lu(z), Gyu gener-

ically has n − lu output-subspace zeros. Furthermore, in the case d = 1, it follows

that Gyu has exactly n − lu output-subspace zeros. Therefore, tall Gyu typically

has more output-subspace zeros than transmission zeros. Furthermore, if Gyu has

NMP output-subspace zeros, then there exist infinitely many unbounded input se-

quences {u(k)}∞k=0, each of which associated with an initial condition x(0) ∈ Rn, such

that, for all k ≥ 0, the scaled performance output HT
d y(k) due to (x(0), {u(k)}∞k=0)

is identically equal to zero. The following result, which is the dual of Proposition

3.7.5, characterizes pairs (x(0), u(k)) that produce identically zero HT
d y. The proof

is similar to the proof of Proposition 3.7.5 and is omitted.

Proposition 3.8.5. Let Gyu
min
∼









A B

C 0









be tall with state x(k) and output y(k),

and let ζ be a nonzero output-subspace zero of Gyu. Then, the following statements

hold.

(i) There exist nonzero







x0

u0






∈ Cn+lu such that

ΣL(z)







x0

u0






= 0. (3.93)

(ii) Let x(0) = −Re(x0), and, for all k ≥ 0, let the control input be given by

u(k) = Re(ζk)Re(u0)− Im(ζk)Im(u0). (3.94)
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Then, for all k ≥ 0, x(k) and HT
d y(k) satisfy

x(k) = −Re(ζk)Re(x0) + Im(ζk)Im(x0), (3.95)

HT
d y(k) = 0. (3.96)

(iii) Let α ∈ R, let x(0) = −αRe(x0), and, for all k ≥ 0, assume that the control

input is given by

u(k) = α[Re(ζk)Re(u0)− Im(ζk)Im(u0)]. (3.97)

Then, for all k ≥ 0, HT
d y(k) = 0.

(iv) Let α ∈ R, assume that A is discrete-time asymptotically stable, and let u(k)

be given by (3.97). Then, for all x(0) ∈ Rn, HT
d y(k) → 0 as k → ∞ with

exponential convergence.

It follows from Proposition 3.8.5 that, ifGyu has at least one NMP output-direction

zero, then there exist infinitely many unbounded input sequences such that y(k) ∈

N (HT
d ) for all k ≥ 0. It is shown in Section 3.6 that, if y(k) ∈ N (HT

d ), then Θ

converges independently of y. Therefore, if Gyu has NMP output-direction zeros,

then Θ may converge to a controller producing an unbounded input sequence which

drives y(k) to N (HT
d ), namely, an unstable controller with a pole (or poles) located at

the NMP output-subspace zero(s) of Gyu. In this case, unless Gyu and GL
yu have the

same NMP transmission zeros, since the control input is unbounded, the performance

output y is also unbounded. In the next subsection, we verify that these heuristic

arguments explain the closed-loop responses shown in Examples 3.4.4 and 3.4.5.
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3.8.3.1 Examples 3.4.4 and 3.4.5 Revisited

In Examples 3.4.4 and 3.4.5, the instantaneous adaptive controller (3.24) is applied

to a 3 × 1 plant in order to reject the unmatched harmonic disturbance w(k) =

sin 2π
7
k+sin π

5
k. In both cases, the plant Gyu has no transmission zeros, the realization

(A,B,C) is minimal, and the eigenvalues of the open-loop system are equal. The only

difference between Examples 3.4.4 and 3.4.5 is the entry C(1,2). In Example 3.4.4, Θ

converges, and u and y are bounded. In Example 3.4.5, Θ converges, but u and y are

unbounded. We now demonstrate that, in both cases, as k increases, y(k) approaches

N (HT
d ). Furthermore, we show that, in Example 3.4.5, the instability is due to the

presence of a NMP output-direction zero. Note that, since Gyu is tall in Examples

3.4.4 and 3.4.5, R(HT
d ) = Rlu , which, since Gyu has no transmission zeros, implies

that Gyu has no input-subspace zeros.

Example 3.8.6 (Example 3.4.5 revisited). We first verify that y(k) approaches

N (HT
d ) as Θ converges. First, note that d = 1 and H1 =

[

−1 1 3

]T

. Hence,

N (HT
1 ) is the plane described by ay1 + by2 + cy3 = 0, where a, b, c satisfy










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
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
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∈ R(H1) = span

{















−1

1

3















}

.

The phase portrait of y(k) for k ∈ [100, 200] illustrated in Figure 3.9 shows that,

as the controller converges, y grows without bound on the surface N (HT
1 ), which is

the colored surface in the figure. Therefore, even though y grows without bound in

Figure 3.5, since y ∈ N (HT
1 ) , Θ converges.

We now investigate the output-subspace zeros of the plant. It is easy to verify

that (A,B,HT
1 C) is minimal. Therefore, (3.87) can be used to solve for the output-

subspace zeros of Gyu, which are given by tzeros(GL
yu) = {−0.2954, 1.0863}. There-
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Figure 3.9: This figure illustrates the phase portrait for k ∈ [100, 200] of the un-
bounded performance output y for Example 3.4.5 shown in Figure 3.5.
Since the output-subspace zeros of Gyu are NMP, the unbounded output
y grows without bound on the surface N (HT

1 ). Since y is contained in
N (HT

1 ), the controller Θ in Figure 3.5 converges despite the fact that y
is unbounded.

fore, Gyu has a NMP output-subspace zero at 1.0863. Computing the controller poles

at k = 200, Figure 3.10 shows that, as Θ converges, one controller pole is located

near the NMP output-subspace zero location 1.0863. Thus, the results of Example

3.4.5 can be evaluated as follows. The unstable controller pole at the NMP output-

subspace zero location causes the input signal u to diverge. Since Gyu is minimum

phase, the performance output y also diverges due to the unbounded input. However,

since Gyu has a NMP output-subspace zero near the unstable controller pole location,

it follows from Proposition 3.8.5 that y approaches N (HT
1 ). Therefore, it follows from

the results of Section 3.6 that Θ converges. �

Example 3.8.7 (Example 3.4.4 revisited). We now revisit Example 3.4.4, where u

and y are bounded, y does not converge, and Θ converges. Figure 3.11 shows the

phase portrait of y(k) in R
3 for k ∈ [800, 1000]. As shown in Figure 3.11, y oscillates

on the surface N (HT
1 ), which drives ∆Θ to zero as k increases, as shown in Figure

3.4.
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Figure 3.10: This figure illustrates the output-subspace zeros of the plant in Exam-
ple 3.4.5 along with the poles of the adaptive controller at k = 200,
whose time evolution is shown in Figure 3.5. The adaptive controller
places a pole near the NMP output-subspace zero of Gyu, which is lo-
cated at 1.0863. This unstable pole-zero cancellation is the cause of
the unbounded control input shown in Figure 3.5. Note that the NMP
output-subspace zero is not a transmission zero of Gyu, and thus the
performance output shown in Figure 3.5 is also unbounded.

Figure 3.11: This figure illustrates the phase portrait for k ∈ [800, 1000] of the output
y for Example 3.4.4 shown in Figure 3.5. Since the output-subspace zeros
of Gyu are minimum phase, the performance output y is bounded, and
oscillates on the surface N (HT

1 ). Since y is contained in N (HT
1 ), the

controller Θ converges.
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We now investigate the output-subspace zeros of Gyu. Since (A,B,HT
1 C) is mini-

mal, we use (3.87) to obtain tzeros(GL
yu) = {−0.3362, 0.9544}. Note that the output-

subspace zeros for Example (3.4.4) are minimum phase, and, as shown in Figure 3.4,

both u and y are bounded. �

3.9 Robustness Modification for NMP Subspace Zeros

As shown in Examples 3.4.2 and 3.4.5, the update laws of Section 3.3 may converge

to a controller that cancels NMP subspace zeros, leading to an unbounded control

input and possibly unbounded performance output. We now modify the update

laws of Section 3.3 in order to prevent the controller from generating an unbounded

control input. This is done by extending the retrospective cost function to include a

performance-dependent control penalty term. This approach is related to the leakage

modification for robust adaptive control [4, 50, 79]. We apply the modified RCAC

update laws to Examples 3.4.2 and 3.4.5 to demonstrate this approach.

3.9.1 Instantaneous Update Law with η-Modification

For each k ≥ 1, we define the modified instantaneous cost function

J̃ins(Θ̂, k)
△
= ŷT(Θ̂, k)ŷ(Θ̂, k) + µ[Θ̂−Θ(k − 1)]T[Θ̂−Θ(k − 1)]

+ η(k)Θ̂TΦT(k − d− 1)Φ(k − d− 1)Θ̂, (3.98)

where

η(k)
△
= η1 + η0‖y(k)‖

2, (3.99)
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η1 ≥ 0, and η0 ≥ 0. Substituting (3.17) into (3.98), we have

J̃ins(Θ̂, k) = Θ̂TΓ̃1(k)Θ̂ + ΓT
2 (k)Θ̂ + Γ3(k), (3.100)

where

Γ̃1(k)
△
= Γ1(k) + η(k)ΦT(k − d− 1)Φ(k − d− 1)

= ΦT(k − d− 1)[HT
d Hd + η(k)Ilu]Φ(k − d− 1) + µIlunc(lu+ly). (3.101)

The terms Γ2(k) and Γ3(k) in (3.100) are identical to those in (3.21). Since Γ̃1(k) is

positive definite, J̃ins(Θ̂, k) has the unique global minimizer

Θ(k) = −
1

2
Γ̃1(k)Γ2(k), (3.102)

which is the instantaneous RCAC update law with η-modification.

The modified cost function (3.98) includes an additional term with the weighting

η(k), which penalizes ‖Φ(k − d − 1)Θ̂‖. This term tends to push the unique global

minimizer of (3.98) toward N (Φ(k− d− 1)), which drives Θ toward a controller that

would have generated u(k − d) = 0 if it had been used in place of Θ(k − d). The

modified cost (3.98) thus indirectly penalizes the control effort. Furthermore, note

that if η0 > 0, then η(k) is an increasing function of ‖y‖. Therefore, if y diverges, then

η(k)Θ̂TΦT(k−d−1)Φ(k−d−1)Θ̂ dominates (3.98), and the optimization problem is

approximately minΘ̂ ‖Φ(k−d−1)Θ̂‖. Choosing η0 > 0 can thus prevent the situation

in Example 3.4.5, where the adaptive controller destabilizes an open-loop plant and

leads to an unbounded performance variable y.
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3.9.2 Cumulative Update Law with η-Modification

For each k ≥ 1, we define the modified cumulative cost function

J̃cum(Θ̂, k)
△
=

k
∑

i=1

ŷT(Θ̂, i)ŷ(Θ̂, i) + η(i)Θ̂TΦT(i− d− 1)Φ(i− d− 1)Θ̂ + Θ̂TP−1
0 Θ̂,

(3.103)

where η(i) is as in (3.99). Substituting (3.17) into (3.103), we have

Jcum(Θ̂, k) = Θ̂TC̃1(k)Θ̂ + CT
2 (k)Θ̂ + C3(k), (3.104)

where

C̃1(k)
△
= C1(k) +

k
∑

i=1

η(i)ΦT(i− d− 1)Φ(i− d− 1)

=

k
∑

i=1

ΦT(i− d− 1)[HT
d Hd + η(i)Ilu ]Φ(i− d− 1) + P−1

0 . (3.105)

The terms C2(k) and C3(k) in (3.104) are identical to those in (3.30). Furthermore,

defining C̃1(0)
△
= P−1

0 , we can rewrite (3.105) in the recursive form

C̃1(k) = C̃1(k − 1) + ΦT(k − d− 1)[HT
d Hd + µIlu ]Φ(k − d− 1). (3.106)

Since C̃1(k) is positive definite, J̃cum(Θ̂, k) has the unique global minimizer

Θ(k) = −
1

2
C̃−1
1 (k)C2(k), (3.107)

which is the cumulative RCAC update law with η-modification. The rationale for the

η-modification is the same as for the instantaneous cost stated at the end of Section

3.9.1.
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3.9.3 Examples 3.4.2 and 3.4.5 Revisited with η-Modification

In this section, we apply the RCAC update laws with η-modification to Examples

3.4.2 and 3.4.5.

Example 3.9.1 (Example 3.4.2, cumulative RCAC with η-modification). We con-

sider the plant and unmatched harmonic disturbance in Example 3.4.2. We use the

same tuning parameters nc = 6, P0 = I, let η1 = 0.1, η0 = 0.05, and apply the

cumulative update law with η-modification. Figure 3.12 shows that η-modification

does not alter the input subspace, that is, u is still contained in R(HT
d ). Although the

plant has an unmodeled NMP input-subspace zero near −1.0555, the control penalty

prevents the control input from growing without bound, as shown in Figure 3.12.

Figure 3.12: Example 3.4.2, RCAC with η-modification: We consider the same plant
and disturbance as in Example 3.4.2, and apply the cumulative update
law with η-modification. We use nc = 6, P0 = I, η1 = 0.1, and η0 = 0.05.
Despite the unmodeled NMP input-subspace zero, Θ converges, y is
driven toward zero, and u is bounded.

As shown in Section 3.9.2, the modified cost function (3.103) has the additional

control weighting η(k). The term η0‖y(k)‖2 in (3.99) vanishes as y approaches zero,
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but the constant term η1 does not vanish. Therefore, for η1 > 0, we expect a tradeoff

between control effort and closed-loop performance. To demonstrate this tradeoff, we

keep nc and P0 the same, but increase η1 to 1. Figure 3.13 shows the closed-loop

response with η1 = 1. Comparing Figure 3.13 to Figure 3.12, we observe that, as η1

increases, the control effort is reduced during transients as well as in steady state,

but with a degradation in the steady-state performance level. �

Figure 3.13: Example 3.4.2, RCAC with η-modification: We now increase the con-
stant penalty term η1 to 1. This leads to a reduction in the control
effort as well as a degradation in the steady-state performance level.
Thus, η-modification introduces a tradeoff between control effort and
steady-state performance.

Example 3.9.2 (Example 3.4.5, instantaneous RCAC with η-modification). We

consider the plant and unmatched disturbance in Example 3.4.5. We use the same

tuning parameters nc = 7, µ = 20, let η1 = 0, η0 = 0.01, and apply the instantaneous

update law with η-modification. Although the plant has an unmodeled NMP output-

subspace zero near 1.0863, the control penalty prevents the control input u and the

performance output y from growing without bound, as shown in Figure 3.14. �
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Figure 3.14: Example 3.4.5, RCAC with η-modification: We consider the same plant
and disturbance as in Example 3.4.5, and apply the instantaneous update
law with η-modification. We use nc = 7, µ = 20, η1 = 0, and η0 = 0.01.
Despite the unmodeled NMP output-subspace zero, Θ converges, and u
and y are bounded.

3.10 Numerical Example: Boeing 747 Longitudinal Dynam-

ics

Consider the longitudinal dynamics of a Boeing 747 aircraft, linearized about

steady flight at 40000 ft and 774 ft/sec. The control inputs to the longitudinal

dynamics are taken to be elevator deflection and thrust. The linearized equations of

motion are thus given by
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(3.108)

where the state variables u, w, q and θ are forward speed, vertical speed, pitch rate,

and pitch perturbations respectively. Furthermore, the control input variables δe and

δT represent elevator deflection (deg) and thrust (ft/sec2) perturbations respectively.

The control objective is to have the pitch perturbation follow the output θm of the
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reference model

Gm(s) =
0.0131

s2 + 0.16s+ 0.0131
, (3.109)

whose input is the exogenous model reference command r.

We discretize (3.108) using a zero-order hold and a sampler with sampling period

h = 0.1 sec/sample. We assume that the samples of θ and r are measured. We thus

have
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z(k) =

[

0 0 0 1

]
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− θm(k). (3.111)

Therefore, we consider the 1×2 discretized plantGzu with poles {0.9999±0.0067, 0.9594±

0.0848}, and input-subspace zeros {−0.9857, 0.9714, 0.9972}. Throughout this ex-

ample, the only modeling information used in controller synthesis is the first nonzero

Markov parameter H1 =

[

−0.0057 0.0029

]

of Gzu.

We take the model reference command to be a 1 deg step command in pitch angle,

let nc = 5, and apply the cumulative update law (3.36)–(3.38) with P0 = 1010I,

η0 = 0, η1 = 0. The closed-loop response is shown in Figure 3.15. The command-

following error reduces to zero within 10 seconds, but elevator deflection and thrust

inputs oscillate during transients. In fact, elevator deflection has the peak magnitude

108



71 deg, and thrust has the peak magnitude 36 ft/sec2. Because of saturation limits,

these peak transient values may be unacceptable in practice. The large transients in

control input are caused by the cancellation of the input-subspace zero −0.9857, as

shown in Figure 3.16.
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Figure 3.15: Boeing 747 longitudinal dynamics: We apply RCAC without η-
modification. The pitch angle follows the output of the reference model,
but elevator deflection and thrust oscillate during transients with peak
magnitudes 71 deg and 36 ft/sec2, respectively.

We now consider the same step reference command, keep nc and P0 the same,

but introduce η-modification with η0 = 2000, η1 = 1. The closed-loop response is

shown in Figure 3.17. The command-following error z(k) does not exceed 0.015 deg

throughout the simulation. Furthermore, peak elevator deflection magnitude is less

than 0.9 deg, and peak thrust magnitude is less than 0.5 ft/sec2.
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Figure 3.16: This figure illustrates the input-subspace zeros of Boeing 747 longitudi-
nal dynamics along with the poles of the adaptive controller at t = 100
sec. The adaptive controller places a pole near the input-subspace zero
−0.9857. This pole-zero cancellation near the unit circle causes large
transient peaks in elevator deflection and thrust inputs, as illustrated in
Figure 3.15.

3.11 Conclusion

In this chapter, we provided a detailed analysis of RCAC for nonsquare plants. We

have shown that for nonsquare plants that the fact that the plant is minimum phase

does not guarantee closed-loop stability and signal boundedness properties, unlike the

square case. Specifically, we have shown that, due to the nature of the RCAC update

law, retrospective cost adaptive control involves two implicit squaring operations; one

performed by pre-compensating the plant, the other performed by post-compensating

the plant. In the wide case, pre-compensation leads to squaring-down, which incorpo-

rates additional zeros due to squaring, which we call input-subspace zeros. Similarly,

in the tall case, post-compensation changes the zero structure and incorporates ad-

ditional zeros, which we call output-subspace zeros. We have shown that if the non-

square plant has NMP subspace zeros, then RCAC attempts to cancel these zeros,
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Figure 3.17: Boeing 747 longitudinal dynamics: We apply RCAC with η-modification.

The pitch angle follows the output of the reference model, peak elevator
deflection magnitude is less than 0.9 deg, and peak thrust magnitude
is less than 0.5 ft/sec2. The command-following error z(k) is less than
0.015 deg throughout the simulation.

and leads to unbounded control input in the wide case, and unbounded control input

and performance output in the tall case. Finally, in light of these findings, we extend

the retrospective cost function to include a performance-dependent control penalty

in order to prevent the controller from generating an unbounded control input.
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3.12 Appendix: Proofs

3.12.1 Proof of Theorem 3.6.1

We show that {Θ(k)}∞k=0 is a Cauchy sequence. Let N,m1, m2 be positive integers

such that m2 > m1 > N . Then, it follows from Lemma 3.6.1 that

‖Θ(m1)−Θ(m2)‖ =

∥

∥

∥

∥

∥

Θ(0) +
m1
∑

i=1

∆Θ(i)−
m2
∑

i=1

∆Θ(i)−Θ(0)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m2
∑

i=m1+1

∆Θ(i)

∥

∥

∥

∥

∥

≤
m2
∑

i=m1+1

‖∆Θ(i)‖ ≤
m2
∑

i=m1+1

σmax(B(i))
∥

∥HT
1 y(i)

∥

∥ .

Since B is bounded, it follows that σ̄(B)
△
= supk≥1 σmax(B(k)) ∈ [0,∞). Note that,

if σ̄(B) = 0, then, for all k ≥ 1, ∆Θ(k) = 0, and thus limk→∞Θ(k) = Θ(0). Now,

assume that σ̄(B) > 0. Then,

‖Θ(m1)−Θ(m2)‖ ≤ σ̄(B)
m2
∑

i=m1+1

∥

∥HT
1 y(i)

∥

∥ ≤ σ̄(B)
m2
∑

i=m1+1

αγi ≤ σ̄(B)
∞
∑

i=N

αγi

= σ̄(B)γN

∞
∑

i=0

αγi = σ̄(B)γN α

1− γ
. (3.112)

Hence, since 0 < γ < 1, it follows from (3.112) that, for all ε > 0, there exists N such

that, for all m1, m2 > N , ‖Θ(m1) − Θ(m2)‖ < ε. Therefore, {Θ(k)}∞k=0 is a Cauchy

sequence and thus Θ converges. �

3.12.2 Proof of Proposition 3.6.4

For all k ≥ 0, it follows from (3.52) that

‖∆Θ(k)‖ = ‖A(k) · · ·A(1)∆Θ(0)‖ ≤ σmax(A(k)) · · ·σmax(A(1))‖∆Θ(0)‖. (3.113)
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Since Φ is bounded, it follows that σmax(H2Φ) is bounded, and thus, it follows from

(3.54) that σ̄(A) < 1. Therefore, it follows from (3.113) that

‖∆Θ(k)‖ ≤ ‖∆Θ(0)‖γk, (3.114)

where γ
△
= σ̄(A) < 1. Therefore, the zero solution of (3.52) is globally exponentially

stable.

3.12.3 Proof of Proposition 3.6.5

For all k ≥ 0, define

V (∆Θ(k))
△
= ‖∆Θ(k)‖2. (3.115)

It follows from (3.52) that

V (∆Θ(k +m)) = ∆ΘT(k)Qm(k + 1)QT
m(k + 1)∆Θ(k). (3.116)

Subtracting (3.115) from (3.116) yields

V (∆Θ(k +m))− V (∆Θ(k)) = ∆ΘT(k)[Qm(k + 1)QT
m(k + 1)− I]∆Θ(k).

Now, from (3.56), we have

V (∆Θ(k +m))− V (∆Θ(k)) ≤ [σ̄2(Qm)− 1]∆ΘT(k)∆Θ(k),

and thus, for all k ≥ 0,

V (∆Θ(k +m)) ≤ σ̄2(Qm)V (∆Θ(k)).
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Hence, it follows that there exists a nonnegative integer N such that, for all k ≥ 0,

‖∆Θ(k +mN)‖ ≤ σ̄N(Qm)‖∆Θ(k)‖. (3.117)

Rewriting k = mN + r, where 0 ≤ r ≤ m − 1, it follows from (3.117) that, for all

k ≥ 0,

‖∆Θ(k)‖ = ‖∆Θ(mN + r)‖ ≤ σ̄N(Qm)‖∆Θ(r)‖ ≤ σ̄N(Qm) max
0≤i≤m−1

‖∆Θ(i)‖

≤ σ̄k/m(Qm) max
0≤i≤m−1

‖∆Θ(i)‖ = (σ̄1/m)k(Qm) max
0≤i≤m−1

‖∆Θ(i)‖.

Since σ̄(A) ≤ 1, it follows from (3.52) that max0≤i≤m−1 ‖∆Θ(i)‖ = ‖∆Θ(0)‖. There-

fore, for all k ≥ 0,

‖∆Θ(k)‖ ≤ ‖∆Θ(0)‖γk,

where γ
△
= σ̄1/m(Qm). Since σ̄(Qm) ∈ (0, 1) it follows that γ < 1, which implies that

the zero solution of (3.52) is globally exponentially stable. �

3.12.4 Proof of Proposition 3.6.7

Let r
△
= lunc(lu + ly), and, without loss of generality, assume that k1 < k2. Since

σ̄(A) ∈ [0, 1], it follows from (3.55) that

σmax(Qm(k)) = σmax(A(k) · · ·A(k1) · · ·A(k2) · · ·A(k +m− 1))

≤ σmax(A(k1) · · ·A(k2)). (3.118)
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Since Ω0 ≤ Ω(φ(k1 − 3), φ(k2 − 3) ≤ π − Ω0, it follows from Lemma 3.6.6 that there

exists l ∈ {k1, . . . , k2 − 1} such that

Ω̃0 ≤ Ω(φ(l − 3), φ(l− 2)) ≤ π − Ω̃0, (3.119)

where

Ω̃0
△
=

1

k2 − k1
Ω0.

Since k1, k2 ∈ {k, . . . , k +m − 1}, it follows that Ω̃0 ≥ Ω0

m−1
> 0. Furthermore, since

Ω0 ≤ π/2 and m ≥ 2, it follows that Ω̃0 ≤ π/2. Therefore, Ω̃0 ∈ [ Ω0

m−1
, π/2].

Now, it follows from (3.118) that

σmax(Qm(k)) ≤ σmax(A(k1) · · ·A(l)A(l + 1) · · ·A(k2))

≤ σmax(A(l)A(l + 1)),

and thus,

σmax(Qm(k)) = max
v∈Rr\{0}

‖Qm(k)v‖

‖v‖
≤ max

v∈Rr\{0}

‖A(l)A(l + 1)v‖

‖v‖
. (3.120)

Next, it follows from [5, Fact 3.9.5] that there exists an orthogonal matrix R ∈

R
nc(lu+ly)×nc(lu+ly) such that

φ(l − 3) = αRφ(l − 2), (3.121)
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where α
△
= ‖φ(l−3)‖

‖φ(l−2)‖
. It follows from (3.14), (3.50), and (3.121) that

A(l) = (Ilu ⊗ αRφ(l − 2))HT
2 [µI +H2(Ilu ⊗ αφT(l − 2)RT)

· (Ilu ⊗ αRφ(l − 2))]−1H2(Ilu ⊗ αφT(l − 2)RT)

= α2(Ilu ⊗R)(Ilu ⊗ φ(l − 2))HT
2 [µI + α2H2(Ilu ⊗ φT(l − 2))(Ilu ⊗RT)

· (Ilu ⊗R)(Ilu ⊗ φ(l − 2))]−1H2(Ilu ⊗ φT(l − 2))(Ilu ⊗RT)

= (Ilu ⊗R)ΦT(l − 2)HT
2 [

µ

α2
I +H2Φ(l − 2)ΦT(l − 2)HT

2 ]
−1 (3.122)

·H2Φ(l − 2)(Ilu ⊗ RT)

= (Ilu ⊗R)Ã(l + 1)(Ilu ⊗ RT), (3.123)

where Ã(l+ 1) is given by (3.50) with µ replaced by µ/α2. Note that R(Ã(l+ 1)) =

R(A(l + 1)), N (Ã(l + 1)) = N (A(l + 1)), and N⊥(Ã(l + 1)) = R(Ã(l + 1)). In

particular, since Gyu is tall or square, HT
2 is right invertible. It thus follows from

(3.50) that

R(A(l + 1)) = R(Ã(l + 1)) = R(ΦT(l − 2))

= span

{[

φ(l−2)
0
...
0

]

, . . . ,

[ 0
...
0

φ(l−2)

]}

,

and thus, for all v ∈ Rr,

A(l + 1)v =

lu
∑

i=1

αi

[

0(i−1)nc(lu+ly)×1

φ(l−2)

0(lu−i)nc(lu+ly)×1

]

. (3.124)
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Therefore, it follows from (3.123) and (3.124) that, for all nonzero v ∈ R
r,

‖A(l)A(l + 1)v‖2
‖v‖

=
1

‖v‖

∥

∥

∥

∥

∥

(Ilu ⊗ R)Ã(l + 1)

lu
∑

i=1

αi

[ 0(i−1)nc(lu+ly)×1

RTφ(l−2)

0(lu−i)nc(lu+ly)×1

]∥

∥

∥

∥

∥

=
1

‖v‖

∥

∥

∥

∥

∥

Ã(l + 1)
lu
∑

i=1

αi

[ 0(i−1)nc(lu+ly)×1

RTφ(l−2)

0(lu−i)nc(lu+ly)×1

]∥

∥

∥

∥

∥

=
1

‖v‖

∥

∥

∥

∥

∥

Ã(l + 1)

(

lu
∑

i=1

cos(Ω(φ(l − 3), φ(l− 2)))αi

[

0(i−1)nc(lu+ly)×1

φ(l−2)

0(lu−i)nc(lu+ly)×1

]

+

lu
∑

i=1

sin(Ω(φ(l − 3), φ(l− 2)))αi

[

0(i−1)nc(lu+ly)×1

φperp(l−2)

0(lu−i)nc(lu+ly)×1

])∥

∥

∥

∥

∥

, (3.125)

where φperp(l−2) ∈ Rnc(lu+ly) is orthogonal to φ(l−2). Since φperp(l−2) is orthogonal

to φ(l − 2), it follows that

lu
∑

i=1

sin(Ω(φ(l − 3), φ(l− 2)))αi

[

0(i−1)nc(lu+ly)×1

φperp(l−2)

0(lu−i)nc(lu+ly)×1

]

∈ N (Ã(l + 1)), (3.126)

and thus, it follows from (3.119), (3.124), (3.125), and (3.126) that

‖A(l)A(l + 1)v‖

‖v‖
=

1

‖v‖

∥

∥

∥
cosΩ(φ(l − 3), φ(l − 2))Ã(l + 1)A(l + 1)v

∥

∥

∥

≤
|cosΩ(φ(l − 3), φ(l − 2))|

‖v‖

∥

∥

∥
Ã(l + 1)A(l + 1)v

∥

∥

∥

≤ |cosΩ(φ(l − 3), φ(l − 2))|σmax(Ã(l + 1))σmax(A(l + 1))

≤ cos Ω̃0.

Since Ω̃0 ∈ [ Ω0

m−1
, π/2], it follows from (3.120) that σmax(Qm(k)) ≤ cos Ω0

m−1
, and it

thus follows that σ̄(Qm) ≤ cos Ω0

m−1
< 1. �
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3.12.5 Proof of Theorem 3.6.2

Let N, k1, k2 be positive integers such that k2 > k1 > N . Then,

‖Θ(k1)−Θ(k2)‖ =

∥

∥

∥

∥

∥

Θ(0) +

k1
∑

i=1

∆Θ(i)−Θ(0)−
k2
∑

i=1

∆Θ(i)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k2
∑

i=k1+1

∆Θ(i)

∥

∥

∥

∥

∥

.

(3.127)

For all k ≥ 2, it follows from Lemma 3.6.2 that

∆Θ(k) =

k−1
∑

i=1

A(k) · · ·A(i+ 1)B(i)HT
d y(i) + B(k)HT

d y(k). (3.128)

Substituting (3.128) into (3.127) and using (3.112) yields

‖Θ(k1)−Θ(k2)‖ =

∥

∥

∥

∥

∥

k2
∑

i=k1+1

(

i−1
∑

j=1

A(i) · · ·A(j + 1)B(j)HT
d y(j) + B(i)HT

d y(i)

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k2
∑

i=k1+1

i−1
∑

j=1

A(i) · · ·A(j + 1)B(j)HT
d y(j) +

k2
∑

i=k1+1

B(i)HT
d y(i)

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

k2
∑

i=k1+1

i−1
∑

j=1

A(i) · · ·A(j + 1)B(j)HT
d y(j)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

k2
∑

i=k1+1

B(i)HT
d y(i)

∥

∥

∥

∥

∥

≤ α

k2
∑

i=k1+1

i−1
∑

j=1

‖A(i) · · ·A(j + 1)B(j)‖ γj +
ασ̄(B)

1− γ
γN , (3.129)

where the second term in (3.129) can be obtained by the same procedure that is used

to obtain (3.112). Note that, since Gyu is tall, HT
2 H2 is positive definite. Therefore,

it follows from (3.51) that B is bounded and thus σ̄(B) is finite.

Assume that Φ is bounded so that σ̄(A) < 1. Defining γ̃
△
= γ/σ̄(A) and applying
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Cauchy-Schwarz inequality to (3.129) yields

‖Θ(k1)−Θ(k2)‖ ≤ α

k2
∑

i=k1

i−1
∑

j=1

σ̄i−j(A)σ̄(B)γj +
ασ̄(B)

1− γ
γN

≤ α

∞
∑

i=N

i−1
∑

j=1

σ̄i−j(A)σ̄(B)γj +
ασ̄(B)

1− γ
γN

= ασ̄(B)
∞
∑

i=N

σ̄i(A)
i−1
∑

j=1

γ̃j +
ασ̄(B)

1− γ
γN . (3.130)

First, consider (3.130) with γ̃ = 1. In this case, we have

‖Θ(k1)−Θ(k2)‖ ≤ ασ̄(B)
∞
∑

i=N

(i− 1)σ̄i(A) +
ασ̄(B)

1− γ
γN

≤ ασ̄(B)
∞
∑

i=N

iσ̄i(A) +
ασ̄(B)

1− γ
γN

= ασ̄(B)σ̄N (A)

∞
∑

i=0

(i+N)σ̄i(A) +
ασ̄(B)

1− γ
γN

= ασ̄(B)σ̄N (A)

[

σ̄(A)

(1− σ̄(A))2
+

N

1− σ̄(A)

]

+
ασ̄(B)

1− γ
γN . (3.131)

Since σ̄(A) ∈ (0, 1) and γ ∈ (0, 1), it follows from (3.131) that, in the case γ̃ = 1,

for all ε > 0, there exists N such that, for each k1, k2 > N , ‖Θ(k1)−Θ(k2)‖ < ε.

Therefore, in the case γ̃ = 1, {Θ(k)}∞k=0 is Cauchy, and thus Θ converges. Next,

consider (3.130) with γ̃ 6= 1. In this case, we have

‖Θ(k1)−Θ(k2)‖ ≤
ασ̄(B)

1− γ̃

∞
∑

i=N

σ̄i(A)(γ̃ − γ̃i) +
ασ̄(B)

1− γ
γN

=
ασ̄(B)

1− γ̃

(

∞
∑

i=N

γ̃σ̄i(A)−
∞
∑

i=N

γi

)

+
ασ̄(B)

1− γ
γN

=
ασ̄(B)

1− γ̃

(

γ̃

1− σ̄(A)
σ̄N (A)−

1

1− γ
γN

)

. (3.132)

Since σ̄(A) < 1 and γ < 1, it follows from (3.132) that, in the case γ̃ 6= 1, for all
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ε > 0, there exists N such that ‖Θ(k1)−Θ(k2)‖2 < ε, and thus Θ converges. Thus

we have verified (i).

Now, assume that there exists m ≥ 2 such that (3.56) is satisfied. Define κ
△
=

σ̄(Qm) and κ̃
△
= κ1/m ∈ (0, 1). For N > m, it follows from (3.129) that

‖Θ(k1)−Θ(k2)‖

≤ α
k2
∑

i=k1+1

i−1
∑

j=i−m+1

‖A(i) · · ·A(j + 1)B(j)‖ γj +
i−m
∑

j=1

‖A(i) · · ·A(j + 1)B(j)‖ γj+

+
ασ̄(B)

1− γ
γN

≤ α
∞
∑

i=N

i−1
∑

j=i−m+1

‖A(i) · · ·A(j + 1)B(j)‖ γj +
i−m
∑

j=1

‖A(i) · · ·A(j + 1)B(j)‖ γj

+
ασ̄(B)

1− γ
γN

≤ α
∞
∑

i=N

i−1
∑

j=i−m+1

σ̄(B)γj +
i−m
∑

j=1

κ
i−j
m

−1σ̄(B)γj +
ασ̄(B)

1− γ
γN

= ασ̄(B)
∞
∑

i=N

γi−m+1

m−1
∑

j=0

γj + γκ−1κ̃−1κ̃i

i−m−1
∑

j=0

(γ

κ̃

)j

+
ασ̄(B)

1− γ
γN

= ασ̄(B)
∞
∑

i=N

1− γm+1

1− γ
γ1−mγi + ασ̄(B)γκ−1κ̃−1

∞
∑

i=N

κ̃i1−
(

γ
κ̃

)i−m

1− γ
κ̃

+
ασ̄(B)

1− γ
γN .

(3.133)

Define c1
△
= γ1−m−γ2

(1−γ)2
, c2

△
= ασ̄(B)γ

κκ̃(1− γ
κ̃)
. It follows from (3.133) that

‖Θ(k1)−Θ(k2)‖ ≤ ασ̄(B)c1γ
N + c2

(

∞
∑

i=N

κ̃i −
∞
∑

i=N

(

κ̃

γ

)m

κ̃i
(γ

κ̃

)i
)

+
ασ̄(B)

1− γ
γN

= ασ̄(B)c1γ
N +

c2
1− κ̃

κ̃N −
c2κ̃

m

γm(1− γ)
γN +

ασ̄(B)

1− γ
γN . (3.134)

Since γ ∈ (0, 1) and κ̃ ∈ (0, 1), it follows from (3.134) that {Θ(k)}∞k=0 is Cauchy, and

thus Θ converges. Thus we have verified (ii). �
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CHAPTER IV

η-Modification for Robust RCAC

4.1 Introduction

The history of adaptive control is marked by two key events. The first was the

tragic accident in 1967 involving the X-15. The second was the publication in 1985 of

[84], which presented two counterexamples showing the fragility of MRAC schemes.

These counterexamples considered plants with high-frequency unmodeled dynamics

that can induce a large, unknown phase shift in the plant’s open-loop response leading

to unbounded response. These events motivated the development of robust adaptive

control schemes, and adaptive control continued to be developed and applied to a

vast range of applications [4, 34, 50].

The purpose of the present chapter is to extend the RCAC update laws of Chapter

II to remove the need to know the NMP zeros by incorporating a robustness modifi-

cation into the update law. We use the same performance-dependent control penalty

approach that is used for nonsquare plants at the end of Chapter III. However, unlike

the algorithms presented in Chapter III, we now allow filtering of the data that is used

in retrospective-cost optimization as in Chapter II. Furthermore, rather than penaliz-

ing the amplitude of the control input as in Chapter III, we now penalize the distance

between the control input and the output of an a priori known stabilizing controller,

which allows adaptive control of unstable, NMP plants, assuming that a stabilizing

121



output-feedback controller is known. The effectiveness of the approach is illustrated

on SISO and MIMO plants with unknown NMP zeros. At the final section of this

chapter, we revisit the celebrated Rohrs counterexamples using robust RCAC. From a

sampled-data point of view, the challenging aspect of these problems for RCAC is not

the unmodeled dynamics per se, but rather the sampling zeros, which may be NMP

under fast sampling. Since the Rohrs counterexamples are open-loop asymptotically

stable, there is no need to know the parameters of a stabilizing controller, and RCAC

is able to provide reliable performance without knowledge of either the unmodeled

high-frequency dynamics or the NMP sampling zeros.

4.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (4.1)

y(k) = Cx(k) +D2w(k), (4.2)

z(k) = E1x(k) + E0w(k), (4.3)

where k ≥ 0, x(k) ∈ Rn, z(k) ∈ Rlz is the measured performance variable to be

minimized, y(k) ∈ R
ly contains additional measurements that are available for control,

u(k) ∈ Rlu is the input signal, w(k) ∈ Rlw is the exogenous signal that can represent

either a reference command, an external disturbance, or both. The system (4.1)–(4.3)

can represent a sampled-data application arising from a continuous-time system with

sample and hold operations with the sampling period h, where y(k) represents y(kh),

z(k) represents z(kh), and so on. The operator matrix from u to z is thus given by

Gzu(q)
△
= E1(qI − A)−1B, (4.4)
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where q is the shift operator which accounts for possibly nonzero initial conditions.

Furthermore, for a positive integer i, Hi
△
= E1A

i−1B is the ith Markov parameter of

Gzu.

Now, consider the output-feedback controller

xc(k + 1) = Ac(k)xc(k) +Bc(k)y(k), (4.5)

u(k) = Cc(k)xc(k), (4.6)

where xc ∈ Rnc. The closed-loop system with output feedback (4.5), (4.6) is thus

given by

x̃(k + 1) = Ã(k)x̃(k) + D̃1(k)w(k), (4.7)

y(k) = C̃x̃(k) +D2w(k), (4.8)

z(k) = Ẽ1x̃(k) + E0w(k), (4.9)

where x̃
△
=

[

xT xT
c

]T

,

Ã(k) =







A BCc(k)

Bc(k)C Ac(k)






, D̃1(k) =







D1

Bc(k)D2






,

C̃ =

[

C 0ly×nc

]

, Ẽ1 =

[

E1 0lz×nc

]

.

The goal is to develop a robust adaptive output feedback controller to minimize

the performance measure zTz in the presence of the unknown exogenous signal w

with no modeling information about the plant zeros and dynamics.

For the adaptive controller (4.5), (4.6), the closed-loop state matrix Ã(k) may

be time-varying. To monitor the ability of the adaptive controller to stabilize the

plant, we compute the spectral radius spr(Ã(k)) at each time step. If the controller
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converges, and spr(Ã(k)) converges to a number less than 1, then the asymptotic

closed-loop system is internally stable.

4.3 RCAC with η-Modification

In this section, we modify the instantaneous and cumulative update laws of Chap-

ter II to include a performance-dependent control penalty. The modification is made

in the cost function and thus does not change the control law and the definition of

retrospective performance. However, before introducing the modified update laws,

we briefly summarize the control law and the retrospective performance below for

convenience to reader.

We represent (4.5), (4.6) by

u(k) = θT(k)φ(k − 1), (4.10)

where φ(k−1) =

[

yT(k − 1) · · · yT(k − nc) uT(k − 1) · · · uT(k − nc)

]T

, θ(k) =

[

NT
1 (k) · · · NT

nc
(k) MT

1 (k) · · · MT
nc
(k)

]T

, and, for all 1 ≤ i ≤ nc, Ni(k) ∈

Rly×lu , Mi(k) ∈ Rlu×lu . The control law (4.10) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (4.11)

where Φ(k−1)
△
= Ilu ⊗φT(k−1) ∈ Rlu×lunc(lu+ly), and Θ(k)

△
= vec(θ(k)) ∈ Rlunc(lu+ly).

Now, for a positive integer r, we define the finite-impulse-response (FIR) transfer

matrix

Gf(q
−1)

△
= K1q

−1 +K2q
−2 + · · ·+Krq

−r, (4.12)

where Ki ∈ Rlz×lu for 1 ≤ i ≤ r. Next, for k ≥ 1, we define the retrospective
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performance variable

ẑ(Θ̂, k)
△
= z(k) + Φf(k − 1)Θ̂− uf(k), (4.13)

with

Φf(k − 1)
△
= Gf(q

−1)Φ(k − 1) ∈ R
lz×lunc(lu+ly), (4.14)

uf(k)
△
= Gf(q

−1)u(k) ∈ R
lz , (4.15)

where Θ̂(k) will be determined by optimization below.

4.3.1 Instantaneous Update Law with η-Modification

For k ≥ 1, we define the modified instantaneous cost function

Jins(Θ̂, k)
△
= ẑT(Θ̂, k)R1(k)ẑ(Θ̂, k) + α(k)(Θ̂−Θ(k − 1))TR2(k)(Θ̂(k)−Θ(k − 1))

+ η(k)(Θ̂−Θ∗)TΦT
f (k − 1)R3(k)Φf(k − 1)(Θ̂−Θ∗), (4.16)

where, for all k ≥ 0, α(k) > 0 and η(k) ≥ 0 are scalars, R1(k) ∈ Rlz×lz is positive

definite, R2(k) ∈ Rlunc(lu+ly)×lunc(lu+ly) is positive definite, R3(k) ∈ Rlz×lz is positive

definite, and Θ∗ is a stabilizing output-feedback controller of the form (4.11). Note

that if the open-loop plant is not unstable, then a rather obvious choice of Θ∗ is

Θ∗ = 0. Furthermore, we choose the weighting η(k) as

η(k) = η1 + η0

pc−1
∑

i=0

zT(k − i)z(k − i), (4.17)

where η1 ≥ 0, η0 ≥ 0 and pc is a positive integer. Unless stated otherwise, we take

η1 = 0 throughout this dissertation.

Comparing to (2.26), the modified instantaneous cost function given in (4.16) has
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the additional term with the weighting η(k) which penalizes the distance between the

updated controller Θ(k) and the stabilizing controller Θ∗ on the regressor directions.

It follows from (4.17) that the penalty becomes larger as z gets larger, and vanishes

as z approaches zero. Therefore, when z is small, (4.16) approaches (2.26), which

has the provable convergence properties given in Chapter II in the ideal case. On the

other hand, when z is large, the penalty term dominates (4.16) and tends to push

Θ toward Θ∗, thus discouraging the update law from destabilizing the closed-loop

system.

Now, substituting (4.13) into (4.16) yields

Jins(Θ̂, k) = Θ̂TΓ1(k)Θ̂ + ΓT
2 (k)Θ̂ + Γ3(k), (4.18)

where

Γ1(k)
△
= ΦT

f (k − 1) [R1(k) + η(k)R3(k)] Φf(k − 1) + α(k)R2(k) ∈ R
lunc(lu+ly)×lunc(lu+ly),

(4.19)

Γ2(k)
△
= 2[ΦT

f (k − 1)R1(k) (z(k)− uf(k))− η(k)ΦT
f (k − 1)R3(k)Φf(k − 1)Θ∗

− α(k)R2(k)Θ(k − 1)] ∈ R
lunc(lu+ly). (4.20)

Since Γ1(k) is positive definite, Jins(Θ̂, k) has the unique global minimizer

Θ(k) = −
1

2
Γ−1
1 (k)Γ2(k). (4.21)

Note that (4.21) involves the on-line inversion of a positive definite matrix of size

lunc(lu + ly). The following result provides a recursive computation for (4.21) that

involves the on-line inversion of a positive definite matrix of size lz.

Proposition 4.3.1. Let R1(k) ≡ R3(k) ≡ Ilz , R2(k) ≡ Ilunc(lu+ly), and Θ∗ = 0.

Then, for each k ≥ 1, the unique global minimizer of the modified instantaneous cost
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function (4.16) is given by

Θ(k) = Θ(k − 1)− γ(k)ΦT
f (k − 1)

(

µ(k)Ilz + Φf(k − 1)ΦT
f (k − 1)

)−1
ǫ(k), (4.22)

where

γ(k)
△
=

1

1 + η(k)
, (4.23)

µ(k)
△
= α(k)γ(k), (4.24)

ǫ(k)
△
= z(k)− uf(k) + (1 + η(k))ûf(k), (4.25)

and

ûf(k)
△
= Φf(k − 1)Θ(k − 1). (4.26)

Proof Substituting (4.20) into (4.21) and using (4.19), we obtain

Θ(k) = Γ−1
1 (k)

(

α(k)Θ(k − 1)− ΦT
f (k − 1)(z(k)− uf(k))

)

= Γ−1
1 (k)

(

α(k)Ilunc(lu+ly) + (1 + η(k))ΦT
f (k − 1)Φf(k − 1)

)

Θ(k − 1)

− Γ−1
1 (k)

(

ΦT
f (k − 1)(z(k)− uf(k)) + (1 + η(k))ΦT

f (k − 1)Φf(k − 1)Θ(k − 1)
)

= Θ(k − 1)− Γ−1
1 (k)ΦT

f (k − 1)ǫ(k). (4.27)

Now, applying the matrix inversion lemma to (4.19) yields

Γ−1
1 (k) =

1

α(k)

(

Ilunc(lu+ly) − (1 + η(k))ΦT
f (k − 1)Ψ−1(k)Φf(k − 1)

)

, (4.28)

where

Ψ(k)
△
= α(k)Ilz + (1 + η(k))Φf(k − 1)ΦT

f (k − 1).
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Finally, substituting (4.28) into (4.27) yields

Θ(k) = Θ(k − 1)−
1

α(k)
ΦT

f (k − 1)Ψ−1(k)Ψ(k)ǫ(k)

+
1 + η(k)

µ(k)
ΦT

f (k − 1)Ψ−1(k)Φf(k − 1)ΦT
f (k − 1)ǫ(k)

= Θ(k − 1)−
1

α(k)
ΦT

f (k − 1)Ψ−1(k)[α(k)ǫ(k) + (1 + η(k))Φf(k − 1)ΦT(k − 1)ǫ(k)

− (1 + η(k))Φf(k − 1)ΦT
f (k − 1)ǫ(k)],

and thus, we have

Θ(k) = Θ(k − 1)− γ(k)ΦT
f (k − 1)

(

µ(k)Ilz + Φf(k − 1)ΦT
f (k − 1)

)−1
ǫ(k). �

4.3.2 Cumulative Update Law with η-Modification

For k ≥ 1, we define the modified cumulative cost function

Jcum(Θ̂, k)
△
=

k
∑

i=1

λk−iẑT(Θ̂, i)R1(i)ẑ(Θ̂, i)

+
k
∑

i=1

λk−iη(i)(Θ̂−Θ∗)TΦT
f (i− 1)R2(i)Φf(i− 1)(Θ̂−Θ∗)

+ λk(Θ̂−Θ(0))TP−1
0 (Θ̂−Θ(0)), (4.29)

where λ ∈ (0, 1], R1(i) ∈ Rlz×lz is positive definite, R2(i) ∈ Rlz×lz is positive semidefi-

nite, and P0 ∈ R
lunc(lu+ly)×lunc(lu+ly) is positive definite. Substituting (4.13) into (4.29)

yields

Jcum(Θ̂(k), k) = Θ̂T(k)C1(k)Θ̂(k) + CT
2 (k)Θ̂(k) + C3(k), (4.30)
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where C1(0) = P−1
0 , C2(0) = −2P−1

0 Θ(0), and, for all k ≥ 1,

C1(k)
△
=

k
∑

i=1

λk−iΦT
f (i− 1) [R1(i) + η(i)R2(i)] Φf(i− 1) + λkP−1

0 , (4.31)

C2(k)
△
=

k
∑

i=1

2λk−iΦT
f (i− 1)[R1(i)(z(i)− uf(i))− η(i)R2(i)Φf(i− 1)Θ∗]

− 2λkP−1
0 Θ(0). (4.32)

Since C1(k) is positive definite, the modified cumulative cost function (4.29) has the

unique global minimizer

Θ(k) = −
1

2
C−1
1 (k)C2(k). (4.33)

To reduce memory usage, C1(k) and C2(k) can be computed recursively using

C1(k) = λC1(k − 1) + ΦT
f (k − 1) [R1(k) + η(k)R2(k)] Φf(k − 1), (4.34)

C2(k) = λC2(k − 1) + 2ΦT
f (k − 1)[R1(k)(z(k)− uf(k))− η(i)R2(i)Φf(i− 1)Θ∗].

(4.35)

Furthermore, (4.33) requires the on-line inversion of a positive definite matrix of size

lunc(lu+ ly)× lunc(lu+ ly). The following result reformulates (4.33) as an RLS update

law that requires inversion of a matrix of size lz × lz.

Proposition 4.3.2. For all k ≥ 0, define P (k)
△
= C−1

1 (k), and let R1(k) ≡ R2(k) ≡ Ilz

and Θ∗ = 0. Then, for all k ≥ 1, P (k) satisfies

P (k) =
1

λ

[

P (k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)

]

, (4.36)
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where

Λ(k)
△
=

λ

1 + η(k)
Ilz + Φf(k − 1)P (k − 1)ΦT

f (k − 1). (4.37)

Furthermore, for all k ≥ 1, let Θ(k) be the unique global minimizer of the modified

cumulative cost function (4.29) given by (4.33). Then, for all k ≥ 1,

Θ(k) = Θ(k − 1)−
1

1 + η(k)
P (k − 1)ΦT

f (k − 1)Λ−1(k)ǫ(k), (4.38)

where ǫ(k) is as defined in (4.25).

Proof From (4.34),

P−1(k) = λP−1(k − 1) + (1 + η(k))ΦT
f (k − 1)Φf(k − 1). (4.39)

Applying the matrix inversion lemma to (4.39) yields

P (k) =
1

λ
P (k − 1)−

1

λ
P (k − 1)ΦT

f (k − 1)

·

[

λ

1 + η(k)
Ilz + Φf(k − 1)P (k − 1)ΦT

f (k − 1)

]−1

Φf(k − 1)P (k − 1)

=
1

λ

[

P (k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)

]

.
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Hence, (4.36) holds. Next, since P (k) = C−1
1 (k), it follows from (4.33), (4.35) and

(4.36) that

Θ(k) = −
1

2
P (k)CT

2 (k)

= −
1

2
P (k − 1)CT

2 (k − 1)−
1

λ
P (k − 1)ΦT

f (k − 1)(z(k)− uf(k))

+
1

2
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)CT
2 (k − 1)

+
1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT
f (k − 1)(z(k)− uf(k))

= Θ(k − 1)−
1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Λ(k)(z(k)− uf(k))

− P (k − 1)ΦT
f (k − 1)Λ−1(k)ûf(k)

+
1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT
f (k − 1)(z(k)− uf(k))

= Θ(k − 1)− P (k − 1)ΦT
f (k − 1)Λ−1(k)[ûf(k) + (

1

1 + η(k)
Ilz +

1

λ
Φf(k − 1)

· P (k − 1)ΦT
f (k − 1)−

1

λ
Φf(k − 1)P (k − 1)ΦT

f (k − 1))(z(k)− uf(k))]

= Θ(k − 1)−
1

1 + η(k)
P (k − 1)ΦT

f (k − 1)Λ−1(k)ǫ(k). �

4.4 Numerical Examples

We now present numerical examples to illustrate the response of RCAC with η-

modification. In each example, the modified cumulative update law (4.33) is used

with λ = 1, R1(k) ≡ R2(k) ≡ Ilz . For the examples with asymptotically stable

plants, we use Θ∗ = 0 and apply the RLS update (4.36), (4.38), which yields the

same solution as (4.33), as shown in Proposition 4.3.2. All examples assume y = z

and, unless stated otherwise, Θ(k) is initialized to zero. Furthermore, in all examples,

the state is initialized to a random vector with norm ‖x(0)‖2 = 1.

Example 4.4.1 (SISO, NMP, Asymptotically Stable Plant). Consider the 3rd-order
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plant

A =















1.9 −1.4 0.45

1 0 0

0 1 0















, B =















1

0

0















, D1 =















0

1

0















,

E1 =

[

1 −1.8 2.77

]

, E0 = 0.

Therefore, the plant has the poles {0.5± 0.5, 0.9} and the NMP zeros {0.9± 1.4}.

We consider the unmatched disturbance w(k) = sinωk with ω = π/10 rad/sample.

Assuming H1 = 1 is known, we take Gf(q
−1) = H1q

−1, nc = 5, P0 = I, η0 = 0.05,

and pc = 1. The control is turned on at k = 100, and, after a slight transient, the

performance variable reduces to zero, the controller converges, and, after convergence,

the closed-loop system is asymptotically stable with spectral radius 0.92, as shown in

Figure 4.1. �

Example 4.4.2 (SISO, NMP, Not Strongly Stabilizable Plant). Consider the 2nd-

order plant

A =







1.7 −0.6

1 0






, B =







1

0






, D1 =







0

1






, (4.40)

E1 =

[

1 −1.1

]

, E0 = 0. (4.41)

Therefore, the plant has the poles {0.5, 1.2}, and the NMP zero {1.1}. Using basic

root locus rules, it can be shown that this plant is not strongly stabilizable, that is,

there does not exist a stable controller output feedback controller Gc that stabilizes

this plant. We consider the unmatched disturbance w(k) = sinωk, where ω = π/10

rad/sample. We assume that the first Markov parameter H1 = 1 is known. Further-
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Figure 4.1: Example 4.4.1: Unmatched disturbance rejection for the asymptotically
stable, SISO plant with NMP zeros {0.9 ± 1.4}. The performance out-
put y approaches zero, the control signal u is bounded, the controller Θ
converges, and, after convergence, the closed-loop dynamics matrix has
the spectral radius 0.92.

more, we assume that the stabilizing control law

(1− 0.9667q−1 − 0.5724q−2)u(k) = (−0.9401q−1 + 0.47q−2)y(k) (4.42)

is known. Note that the control law (4.42) is the low-authority discrete-time LQG

controller for plant (4.40), (4.41). Choosing nc = 5, we rewrite (4.42) in regressor

form

u(k) = Θ∗φ(k − 1),

where

Θ∗ △
=

[

−0.9401 0.47 0 0 0 0.9667 0.5724 0 0 0

]

,
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and φ(k − 1) is as in (2.18). We initialize Θ(k) to Θ∗, and take Gf(q
−1) = H1q

−1,

P0 = I, η0 = 0.2, and pc = 1. The modified cumulative update law (4.33) is turned

on at k = 500, and, after a slight transient, the performance variable reduces to

zero, as shown in Figure 4.2. In order to reject the unmatched disturbance, the

controller gains adapt, and converge to different values than the gains of Θ∗ without

destabilizing the closed-loop system. �
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Figure 4.2: Example 4.4.2: Unmatched disturbance rejection for the SISO, NMP,
not strongly stabilizable plant. The controller is initialized to the low-
authority discrete-time LQG controller Θ∗. The update is turned on at
k = 500. After a slight transient, the performance output y is reduced
to zero, the control signal u is bounded, the controller Θ converges to
a different controller than Θ∗, and, after convergence, the closed-loop
dynamics matrix has the spectral radius 0.97.

Example 4.4.3 (MIMO, NMP, Asymptotically Stable Plant). Consider the two
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input, two output, 4th-order plant

A =























0.66 0.1 0.07 0.31

0.18 0.58 −0.14 0.32

0.61 −1.38 0.93 −2.08

−0.12 −0.34 0.38 −0.28























, B =























0.81 −0.75

0.55 1.52

−1.05 −0.03

0.4 1.64























, D1 = 0,

E1 =







0.6 −2.19 −1.44 1.47

0.59 −1.33 0.4 −0.33






, E0 = I2.

Therefore, the plant has the poles {0.297± 0.596, 0.797, 0.499} and the transmission

zeros {−0.35, 1.342}. We consider the sinusoidal command w(k) = [ sinω1k 2 sinω2k ]
T

with ω1 = π/9 rad/sample and ω2 = π/2 rad/sample. Assuming H1 is known, we

take Gf(q
−1) = H1q

−1, nc = 10, P0 = I, η0 = 0.1, and pc = 1. The control is turned

on at k = 100, and, after a slight transient, the performance variable reduces to zero,

and the controller converges, as shown in Figure 4.3. �
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Figure 4.3: Example 4.4.3: Sinusoidal-command following for the asymptotically sta-
ble, 2 × 2 MIMO plant with NMP transmission zero 1.342. The perfor-
mance output y approaches zero, the control signal u is bounded, and the
controller Θ converges.
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4.5 Robust Sampled-Data Adaptive Control of Rohrs Coun-

terexamples

In [84], the authors presented two counterexamples showing the fragility of model

reference adaptive control (MRAC) schemes. These counterexamples considered

plants with high-frequency unmodeled dynamics that can induce a large, unknown

phase shift in the plant’s open-loop response leading to an unbounded response. These

examples are commonly referred to as the “Rohrs counterexamples”.

The purpose of this section is to revisit both Rohrs counterexamples using RCAC.

From a sampled-data point of view, the challenging aspect of these problems for

RCAC is not the unmodeled dynamics per se, but rather the sampling zeros, which

may be NMP under fast sampling. The goal of this section is thus to apply the

robust RCAC update laws developed in this chapter to Rohrs counterexamples, and

compare the effectiveness of the robustness modification with the unmodified RCAC

update laws presented in Chapter II in the case where the plant contains unmodeled

dynamics and unknown NMP sampling zeros.

4.5.1 Rohrs Counterexamples: Problem Formulation

We consider the first-order transfer function T0(s)
△
= 2

s+1
cascaded with the un-

modeled high-frequency dynamics

Λ(s)
△
=

229

(s− 15− 2)(s− 15 + 2)
.

The plant is given by Tzu(s)
△
= T0(s)Λ(s), which is minimum phase. Although the

phase of T0(ω) is in [0, 90] deg for all ω, Tzu(ω) has a phase crossover frequency of

ωpc = 16.1 rad/sec. The goal is to have the output z of the cascade plant Tzu follow

the output of the reference model Gm(s) =
3

s+3
.

In [84], the authors formulated two counterexamples demonstrating the fragility of
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MRAC in the presence of the unknown dynamics Λ(s). In the first counterexample,

the input to the reference model is a biased sinusoidal signal. In particular, two

sinusoidal reference inputs are considered: r1(t)
△
= 0.3 + 2 sin(8t), and r2(t)

△
= 0.3 +

1.8 sin(16.1t). It is shown in [84] that, if the reference signal is chosen to be r2(t),

whose frequency content includes the phase crossover frequency of the cascade plant,

then MRAC destabilizes the closed-loop system.

In the second counterexample, the output measurements are corrupted by an

unknown sensor noise, and, it is shown that, if the unknown sensor noise has higher

order of persistency than the reference input, then MRAC destabilizes the system.

Specifically, the second counterexample involved the reference input r(t)
△
= 21(t),

which is persistently exciting of order one, and the sinusoidal sensor noise d(t)
△
=

0.5 sin(8t), which is persistently exciting of order two.

4.5.2 Sampling Zeros of the Rohrs Plant

Consider a discrete-time sampled-data system consisting of a zero-order hold,

a continuous-time transfer function Tzu(s), and a sampler with sampling period h,

connected in series. The resulting discrete-time system is characterized by the pulse

transfer function Gzu(z) given by [61]

Gzu(z) = (1− z−1)Z{Tzu(s)/s}. (4.43)

If the relative degree of Tzu(s) is at least 2, then Gzu(z) typically has more zeros than

Tzu(s). The additional zeros are called sampling zeros [3].

Proposition 4.5.1. Let Tzu(s) be the nth-order rational transfer function

Tzu(s) = H
(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)
(4.44)

with relative degree d = n−m ≥ 2, and let Gzu(z) be the corresponding pulse transfer
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function. Then, as the sampling period h approaches 0, n−d zeros of Gzu(z) approach

1, and the remaining d− 1 zeros of Gzu(z) approach the roots of Bd(z), where

Bd(z)
△
= βd,1z

d−1 + βd,2z
d−2 + · · ·+ βd,d, (4.45)

and for k ∈ {1, . . . , d},

βd,k
△
=

k
∑

i=1

(−1)k−jid







d+ 1

k − i






. (4.46)

Proof. See Theorem 1 of [3].

All of the zeros of Bd(z) are negative, and Bd(z) has at least one zero that is on

or outside the unit circle [112]. For d ≥ 3, Bd(z) has at least one zero outside the

unit circle.

As a consequence of Proposition 4.5.1, sampled-data systems are typically NMP.

In particular, for sufficiently small h, the pulse transfer function corresponding to a

continuous-time system with relative degree 3 or more is NMP.

We now discuss the complications that arise in sampled-data control of the Rohrs

counterexamples due to unmodeled high-frequency dynamics. In Chapter II, the

NMP-zero-based construction of Gf requires knowledge of the NMP zeros of Gzu(z),

rather than the NMP zeros of Tzu(s). Therefore, we consider the pulse transfer

function Gzu(z).

Since the relative degree of T0(s) is 1, the pulse transfer function G0(z) has no

sampling zeros for every sampling period h, and thus, G0(z) is minimum phase.

However, due to the unmodeled dynamics Λ(s), the relative degree of the plant Tzu(s)

is 3. Therefore, in accordance with Proposition 4.5.1, Gzu(z) is NMP for all sufficiently

small h.

Applying (4.43) into T0(s) and Tzu(s), the numerator polynomial corresponding
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to the pulse transfer functions G0(z) = N0(z)/D0(z) and Gzu(z) = Nzu(z)/Dzu(z)

are

N0(z) = 2(1− e−h), (4.47)

Nzu(z) = β2z
2 + β1z + β0, (4.48)

where

β0 = −2e−31h + 2.29e−30h + 1.03e−16h sin 2h

− 0.29e−16h cos 2h, (4.49)

β1 = −0.29e−30h + 4.29(e−16h − e−15h) cos 2h

+ 0.29e−h − 1.03e−15h sin 2h, (4.50)

β2 = 0.29e−15h cos 2h− 2.29e−h + 2

+ 1.03e−15h sin 2h. (4.51)

Figure 4.4 illustrates the zeros of (4.48). We observe that for all h . 0.2, one of the

sampling zeros is outside the unit circle and thus Gzu(z) has an unknown NMP zero,

which is caused by the high-frequency dynamics Λ(s). Neither the presence nor the

location of this NMP zero can be assumed to be known, because Λ(s) is assumed to

be unmodeled.

4.5.3 Robustness of RCAC for the Rohrs Counterexamples

For h > 0.2 sec, the Rohrs sampled-data plant Gzu(z) is minimum phase. In

this case, as a consequence of Assumption (A11) in Section 2.5, the only modeling

information required for implementing RCAC is the first nonzero Markov parameter.

Therefore, in the case where h > 0.2 sec, robustness of unmodified RCAC update laws

is determined by the ratio of the first Markov parameters of G0(z) and Gzu(z). In
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Figure 4.4: Sampling Zeros of Gzu(z) as a function of h.

Figure 4.5, we illustrate the first Markov parameters H0,1 = 2(1−e−h) and Hzu,1 = β2

of G0(z) and Gzu(z) for h ∈ [0, 5]. As h → ∞, it follows from (4.47) and (4.51) that

both Markov parameters approach 2. Therefore,
H0,1

Hzu,1
≥ 0.5 for all h. Hence, Markov

parameter uncertainty is not a robustness issue for RCAC in Rohrs counterexamples.

However, for h . 0.2, the available model G0(z) does not capture the NMP sampling

zeros, and therefore, unmodified RCAC update laws of Chapter II will not work in

this case.

On the other hand, using RCAC with η-modification ensures robustness and

closed-loop stability, whether Gzu(z) is NMP or not. Intuitively, closed-loop sta-

bility is expected with η0 > 0. Indeed, suppose that the closed-loop system becomes

unstable, and z(k) diverges to infinity. In this case, the term
∑k

i=1 λ
k−iη(i)Θ̂TΦT

f (i−

1)Φf(i−1)Θ̂ in (4.29) starts dominating other terms. Therefore, assuming
∑k

i=1Φ
T
f (i−

1)Φf(i − 1) ≥ αI > 0, the optimization problem reduces to minΘ̂ ‖Θ̂‖, which gives

Θ̂ = 0. Thus, the closed-loop system reverts back to open-loop. Since the open-loop

plant is asymptotically stable, z(k) cannot diverge to infinity, which contradicts the
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Figure 4.5: First Markov parameters of G0(z) and Gzu(z).

assumption that the closed-loop system is unstable.

It should be noted that, since closed-loop stability does not imply zero asymp-

totic performance, the use of η-modification does not guarantee zero asymptotic per-

formance. In the next chapter, we present numerical evidence suggesting that a

phase condition is required for zero asymptotic performance when η-modification is

used. Nevertheless, for Rohrs counterexamples, the following section illustrates that

η-modification not only results in closed-loop stability, but also provides asymptotic

command following for the reference inputs considered in [84].

4.5.4 Sampled-Data Adaptive Control of the Rohrs Counterexamples

with RCAC

We now apply RCAC to the Rohrs counterexamples. In each example, the goal is

to follow the output of the reference modelGm(s) =
3

s+3
. Each simulation is initialized

with the controller gain vector Θ(0) set to zero, and RCAC is turned on at k = 5. We

use λ = 1 in all simulations. For consistency with the MRAC architecture, we use the
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measurements of the plant output y0 and the reference signal r so that y =

[

y0 r

]T

.

All modeling information we use is based on G0(z) rather than Gzu(z). In each case,

we illustrate the time traces of z(k), u(k), Θ(k), and the closed-loop spectral radius

spr(Ã(k)).

4.5.4.1 First Rohrs Counterexample: Sinusoidal Reference Inputs

In this section, we provide simulation results that illustrate the effectiveness of

η-modification in preserving the closed-loop stability as predicted in Section 4.5.3

regardless of the frequency content of the reference signal. We first examine the

unmodified RCAC cumulative update law with NMP-based construction of Gf as in

Chapter II, and show that the method exhibits instability when the sampling rate

is small enough to cause the sampling zeros to become NMP. We illustrate that the

NMP sampling zero is the only cause of instability, and when the sampling period

is large, RCAC does not suffer instability nor any parameter drift, regardless of the

frequency spectrum of the reference input. Next, we introduce η-modification by

letting η0 > 0, and show that the closed-loop system remains stable even in the

presence of the unknown NMP sampling zero independently of the frequency content

of the reference signal.

RCAC without η-modification We first consider the reference input r1(t) =

0.3 + 2 sin(8.0t). We sample the continuous-time plant with h = 0.25 sec/sample,

so that the Nyquist frequency ωN = 4π rad/sec is larger than the largest reference

frequency 8 rad/sec. For this sampling period, the sampling zeros are minimum-phase.

The first Markov parameters corresponding to the pulse transfer functions Gzu(z) and

G0(z) are Hzu,1 = 0.2341 and H0,1 = 0.4424, respectively. We let Gf = H0,1q
−1, and

choose P0 = 10I, nc = 10. As shown in Figure 4.6, z converges to zero, u remains

bounded, Θ converges, and spr(Ã)(k) converges below 1.
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Figure 4.6: Response of RCAC without η-modification. The reference input is
r1(t) = 0.3 + 2 sin(8.0t), and the sampling period is h = 0.25 sec/sample.
Under this sampling rate, the sampling zeros contributed by the unmod-
eled dynamics are minimum phase, the asymptotic closed-loop system is
asymptotically stable, and z converges to zero.

Keeping h the same, we now consider the reference input r2(t) = 0.3+1.8 sin(16.1t),

which causes parameter drift and instability in traditional adaptive methods [84].

Note that the frequency of the reference signal is selected at the point where Tzu(s)

has a 180-deg phase lag. Furthermore, note that the Nyquist rate ωN is smaller than

the largest reference frequency 16.1 rad/sec. However, the goal here is to show that

closed-loop stability is maintained independently of the frequency of the reference

command, as long as the sampling zeros arising from the unknown dynamics are min-

imum phase. Choosing the same controller and tuning parameters, the parameters

converge, and the closed-loop system is stable after convergence, as shown in Figure

4.7. Of course, since h is not small enough to reconstruct r2(t) from the sampled

data, the performance z(t) is not equal to zero between consecutive sampling instants

due to disturbance aliasing, as shown in Figure 4.8.
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Figure 4.7: Response of RCAC without η-modification. The reference input is r2(t) =
0.3+1.8 sin(16.1t) and the sampling period is h = 0.25 sec/sample. Under
this sampling rate, the sampling zeros contributed by the unmodeled dy-
namics are minimum phase, the asymptotic closed-loop system is asymp-
totically stable, the samples of z converge to zero, but the continuous-time
signal z(t) is not zero between consecutive sampling instants as shown in
Figure 4.8.

Finally, to improve the intersample behavior, we reduce h to 0.1 sec/sample, and

consider r2(t) again. We have shown in Section 4.5.3 that Gzu(z) is NMP for this

sampling rate, and predicted that the choice Gf = H0,1q
−1 without η-modification

would lead to instability, since Gf does not capture the NMP zeros of Gzu. The

first Markov parameters are now Hzu,1 = 0.037, H0,1 = 0.1903, and we choose Gf =

H0,1q
−1, P0 = 10I, and nc = 10. RCAC destabilizes the closed-loop system as shown

in Figure 4.9. Similar behavior is obtained with r1(t) and other reference signals,

which confirms that the only cause of instability is the unknown NMP sampling zero.

RCAC with η-modification We now introduce η-modification, and reconsider

the plant sampled at h = 0.1 sec/sample. We let Gf = H0,1q
−1. Note that the NMP
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Figure 4.8: Since the Nyquist rate ωN = 4π rad/sec is smaller than the reference
frequency 16.1 rad/sec, the intersample command following error is not
zero due to aliasing.

sampling zero −1.82 of Gzu is not captured by Gf .

We first consider r1(t). Choosing η0 = 0.2, pc = 10, P0 = 10I, and nc = 10, z

converges to zero, and the asymptotic closed-loop system is stable with no parameter

drift as shown in Figure 4.10.

Keeping the same tuning and controller parameters Gf , η0, P0, and nc, we now

consider r2(t) = 0.3+1.8 sin(16.1t). In order to ensure that no parameter drift occurs,

we simulate the adaptive system for 1000 seconds. The performance converges to zero,

and the asymptotic closed-loop system is stable with no parameter drift as shown in

Figure 4.11. Furthermore, since h is now sufficiently small to avoid aliasing, the

command-following error is zero between consecutive sampling instants, as shown in

Figure 4.12.
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Figure 4.9: Response of RCAC without η-modification. The reference input is
r2(t) = 0.3+1.8 sin(16.1t) and the sampling period is h = 0.1 sec/sample.
Under this sampling rate, the sampling zeros contributed by the unmod-
eled dynamics are NMP. Since the sampling zeros are unmodeled and
are not captured by Gf , RCAC without η-modification destabilizes the
closed-loop system.

4.5.4.2 Second Rohrs Counterexample: Sensor Noise and Lack of Persis-

tent Excitation

Unknown additive sensor noise is pointed out as the second main robustness chal-

lenge for common adaptive methods [84]. In this section, we show that RCAC is

unconditionally robust to sensor noise with either construction method.

We consider the unknown additive sensor noise d(t), and modify the measurement

vectors y and z to have

y(k)
△
=

[

y0(k) + d(k) r(k)

]T

,

z(k)
△
=

[

y0(k) + d(k)− yM(k)

]

.
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Figure 4.10: Response of RCAC with η-modification. The reference input is r1(t) =
0.3+2 sin(8t) and the sampling period is h = 0.1 sec/sample. Under this
sampling rate, the sampling zeros contributed by the unmodeled dynam-
ics are NMP. However, η-modification prevents the adaptive controller
from destabilizing the plant, controller gains converge, and z converges
to zero, and the asymptotic closed-loop system is stable.

Hence, RCAC interprets the sensor noise as an additional component of the command

that needs to be followed. Hence, the performance measurement z is not equal to

the command-following error y0− yM. For illustration, we consider the step reference

input r(t) = 2, which is persistently exciting of order one, with the unknown sensor

noise d(t) = 0.5 sin 8t, which is persistently exciting of order two.

RCAC without η-modification We sample the continuous-time plant h = 0.25

sec/sample, and thus the sampling zeros are minimum-phase. ChoosingGf = H0,1q
−1,

nc = 10, and P0 = 10I, we apply cumulative RCAC without η-modification. The

performance measurement (not the command-following error) is driven to zero, the

parameters converge, and the asymptotic closed-loop system is stable as shown in
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Figure 4.11: Response of RCAC with η-modification. The reference input is r2(t) =
0.3 + 1.8 sin(8t) and the sampling period is h = 0.1 sec/sample. Un-
der this sampling rate, the sampling zeros contributed by the unmod-
eled dynamics are NMP. However, η-modification prevents the adaptive
controller from destabilizing the plant, controller gains converge, and z
converges to zero, and the asymptotic closed-loop system is stable.

Figure 4.13.

RCAC with η-modification We now sample the continuous-time plant with h =

0.1 sec/sample, and thus one of the sampling zeros is NMP. Choosing Gf(q
−1) =

H0,1q
−1, η0 = 0.2, pc = 10, P0 = I, and nc = 10, we apply cumulative RCAC

with η-modification. The performance measurement reduces to zero, the parameters

converge, and the closed-loop system is stable as shown in Figure 4.14.

4.6 Conclusion

In this chapter, we modified the RCAC update laws of Chapter II by incorpo-

rating a performance-dependent control penalty into the retrospective cost function.

This modification, which we call the η-modification, penalizes the distance between
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Figure 4.13: RCAC without η-modification: Response to the reference input r(t) =
2 and sensor noise d(t) = 0.5 sin 8t with h = 0.25 sec/sample. The
performance measurement reduces to zero, the control gains converge,
and the asymptotic closed-loop system is stable.
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Figure 4.14: RCAC with η-modification: Response to the reference input r(t) = 2
and sensor noise d(t) = 0.5 sin 8t with h = 0.1 sec/sample. The per-
formance measurement reduces to zero, the control gains converge, and
the asymptotic closed-loop system is stable, despite the unknown NMP
sampling zero.

the adaptive controller and an a priori known stabilizing controller on the regressor

directions. Therefore, η-modification pushes the control input toward the input sig-

nal that would have been generated by the stabilizing controller. In the open-loop

stable case, a simple choice for the stabilizing controller is the zero controller, that is,

Θ = 0. In this case, the the robustness modification prevents the control input from

growing without bound. We presented numerical examples demonstrating RCAC

with η-modification for both SISO and MIMO plants. Finally, we applied robust

RCAC to Rohrs counterexamples. We demonstrated that the unmodified RCAC up-

date laws of Chapter II exhibit instability when the unknown sampling zero is NMP.

However, we showed that the robust RCAC update law with η-modification is able to

follow the sinusoidal command despite the unmodeled modes, the unknown sinusoidal

disturbance, and the unknown NMP sampling zero.

150



CHAPTER V

FIR-Based Phase Matching for Robust RCAC

5.1 Introduction

One of the motivations for adaptive control is the desire to minimize the amount

of required modeling information [4, 34, 50, 105]. Since an adaptive controller tunes

itself to the actual plant, the main benefit of adaptive control is thus the reduced

need to model the system for controller tuning without sacrificing performance.

Although model-free adaptive control allows arbitrary plant uncertainty, model-

free control may entail large learning transients and may be subject to restrictions

on zero locations [46]. Therefore, adaptive controllers typically rely on some plant

modeling data, which is obtained through either prior modeling and identification or

on-line identification.

In the present chapter we focus on the robust RCAC developed in Chapter V.

In Chapter V, the retrospective cost function is modified to include a performance

dependent control penalty to remove the need to know the NMP zeros, as well as

to reduce the number of required Markov parameters. In particular, it is shown

in [102, 97, 98] that in many cases, a single nonzero Markov parameter suffices to

achieve convergence of the adaptive controller. However, in this chapter, we present

counterexamples in which using a single nonzero Markov parameter does not lead

to perfect asymptotic performance. In addition, we conduct a large-scale simulation
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with random plants and random controller tuning parameters, and demonstrate that

the mismatch between the plant and the finite-impulse-response (FIR) approximation

constructed from the chosen set of Markov parameters is highly correlated with the

asymptotic performance of the robust RCAC.

The main purpose of this chapter is thus to develop system identification algo-

rithms to match the phase of an IIR transfer function with FIR transfer functions.

The underlying goal is to use the FIR transfer function to minimize the phase mis-

match, and improve the performance of the robust RCAC. Therefore, we develop FIR

fitting methods, both based on least-squares minimization. These system identifica-

tion methods rely on the frequency response estimates of the IIR transfer function.

We present numerical examples illustrating the use of the fit methods developed in

this chapter. These identification methods lead to a new phase-matching-based con-

troller construction technique in addition to the Markov-parameter, NMP-zero, and

time-series-based construction methods given in Chapter II. We demonstrate the

phase-matching-based construction on mass-spring-dashpot systems in the presence

of multi-tone sinusoidal disturbances.

5.2 Phase Mismatch

For scalar transfer functions Gf and Gzu, consider the phase mismatch function

∆(Ω) defined by

∆ : [0, π] → [0, 180],

Ω → cos−1
Re
[

Gzu(e
Ω)Gf(eΩ)

]

|Gzu(eΩ)| |Gf(eΩ)|
. (5.1)

Note that ∆(Ω) represents the angle between Gzu(e
Ω) and Gf(e

Ω) in the complex

plane as illustrated in Figure 5.1. For convenience, we express the phase mismatch
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in degrees rather than radians.
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Figure 5.1: Phase mismatch ∆(Ω) is the angle between Gzu(e
Ω) and Gf(e

Ω) in the
complex plane.

5.3 Motivating Examples

In this section, we present numerical evidence suggesting that the phase mis-

match (5.1) plays a critical role for asymptotic performance of robust RCAC with

η-modification.

5.3.1 Example 1: Step Command Following

Consider the NMP plant Gzu with d = 1, H1 = 1, poles {0.7, 0.5, 0.4± 0.5}, and

zeros {1.2, 1.1± 0.7}. We consider the step command w(k) = 1(k). Assuming that

the NMP zeros are unknown, we take Gf(q
−1) = H1q

−1, and apply cumulative RCAC

with η-modification using the parameters η0 = 0.1, pc = 10, λ = 1, and P0 = 10I.

The phase mismatch ∆(Ω) and the closed-loop response are illustrated in Figure 5.2.

153



Note that ∆(0) = 180 deg. The asymptotic closed-loop system is stable, but the

performance z does not reduce to zero.
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Figure 5.2: Example 1: Step command following, NMP plant, Gf(q
−1) is constructed

using H1. With this choice of Gf , the phase mismatch ∆(Ω) is 180 deg
at the command frequency 0 rad/sample. The controller converges, and
the asymptotic closed-loop system is asymptotically stable, but the per-
formance z does not converge to zero. In fact, RCAC drives z to the
opposite direction, and the closed-loop performance is worse than the
open-loop performance.

We now consider the same plant and the same step command, but, assuming the

knowledge of H1 and H2 is available, we now take Gf(q
−1) = H1q

−1+H2q
−2. There-

fore, we use the Markov-parameter-based construction (2.48) with r = 2. Note that

Gf(q
−1) still does not capture the NMP zeros of Gzu, therefore, we apply cumulative

RCAC with η-modification using the same tuning parameters as above. The phase

mismatch ∆(Ω) and the closed-loop response are illustrated in Figure 5.3. Note that

∆(0) = 0 deg. The asymptotic closed-loop system is stable, and the performance z

now reduces to zero after learning transients.

We now consider the same plant and the same step command, but now take

Gf(q
−1) = −0.1q−1. Note that −0.1 is not a Markov parameter or a time-series
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Figure 5.3: Example 1: Step command following, NMP plant, Gf is constructed using

H1 and H2. With this choice of Gf , we have ∆(0) = 0 deg. The controller
converges, the asymptotic closed-loop system is asymptotically stable,
and the performance z now reduces to zero.

coefficient of Gzu, and it has the opposite sign of H1 = 1. We choose η0 = 1, pc = 10,

P0 = 100I, and apply cumulative RCAC with η-modification. The phase mismatch

∆(Ω) and the closed-loop response are illustrated in Figure 5.4. Note that ∆(0) = 0

deg. The asymptotic closed-loop system is stable, and the performance z reduces to

zero after learning transients.

5.3.2 Example 2: Sinusoidal Command Following

We consider the same plant as in Section 5.3.1, but now consider the sinusoidal

command w(k) = sinωk, where ω = 0.52 rad/sample. We first take Gf(q
−1) =

H1q
−1 + H2q

−2, which led to zero asymptotic command-following-performance for

step command. However, with this choice of Gf , the phase mismatch at the command

frequency ω is ∆(0.52) = 179.3 deg. We choose η0 = 1, pc = 1, P0 = 10I, and apply

cumulative RCAC with η-modification. The closed-loop response is illustrated in

Figure 5.5. The asymptotic closed-loop system is stable, but the performance z does
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Figure 5.4: Example 1: Step command following, NMP plant, we take Gf(q

−1) =
−0.1q−1. With this choice of Gf , we have ∆(0) = 0 deg. The controller
converges, the asymptotic closed-loop system is asymptotically stable,
and the performance z reduces to zero.

not reduce to zero.

We now consider the same plant and the same sinusoidal command, but now take

Gf(q
−1) = H1q

−1 and thus use less modeling information. However, with this choice

of Gf , we now have ∆(0.52) = 73.6 deg. We choose η0 = 1, pc = 1, P0 = 10I, and

apply cumulative RCAC with η-modification. The closed-loop response is illustrated

in Figure 5.6. The asymptotic closed-loop system is stable, and the performance z

now reduces to zero after learning transients.

5.3.3 Large-Scale Monte Carlo Simulations

In this section, we present a numerical investigation of the closed-loop stability

and performance characteristics of RCAC with η-modification for open-loop stable

plants.
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Figure 5.5: Example 2: Sinusoidal command following, NMP plant, Gf(q

−1) is con-
structed using H1 and H2. With this choice of Gf , we have ∆(ω) = 179.3
deg at the command frequency ω = 0.52 rad/sample. The controller con-
verges, and the asymptotic closed-loop system is asymptotically stable,
but the performance z does not converge to zero. In fact, the closed-loop
performance is worse than the open-loop performance.

5.3.3.1 Simulation Setup

The large-scale simulation parameters are set up as follows. In each simulation,

we turn on the robust cumulative update law at k = 100, and simulate the adaptive

system for 2000 time steps. In this study, we only consider sinusoidal command

following with E0 = −1, where the frequency of the sinusoid is chosen randomly

from the uniform distribution on the interval ω ∈ [0.01, π/2] rad/sample, and the

peak amplitude of the sinusoid is fixed at one in each case. In each simulation, the

plant is SISO, y = z, and the plant parameters are chosen randomly. Specifically,

the order n takes values from the uniform distribution on the set {2, . . . , 10}, and

the matrices A, B, E1 are matrices of appropriate sizes, generated randomly using

“randn” command in MATLAB. In this study, we set Θ∗ = 0, which limits out

consideration to Lyapunov stable plants. Therefore, in each simulation, we ensure
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Figure 5.6: Example 2: Sinusoidal command following, NMP plant, Gf(q

−1) is con-
structed using H1. With this choice of Gf , we have ∆(ω) = 73.6 deg
at the command frequency ω = 0.52 rad/sample. The controller con-
verges, the asymptotic closed-loop system is asymptotically stable, and
the performance z now reduces to zero.

that the open-loop plant is Lyapunov stable by multiplying A with cρ(A), where

c takes values from the uniform distribution on the interval [0, 1], and ρ(A) is the

spectral radius of A. After the state space matrices are generated, the state x is

initialized to a random unit vector of appropriate size. In each simulation, we choose

the tuning and controller parameters nc = n + 2, λ = 1, pc = 1, P0 = I, Gf(q
−1) =

H1q
−1, η1 = 0.005, and, we choose η0 from the uniform distribution on the interval

[0.5, 2]. It should be stressed that, in a practical application, the control parameters

may require a moderate amount of tuning effort in order to improve transient and

steady-state performance. For the subsequent discussion, let zrms denote the RMS

value of the closed-loop performance calculated for k ∈ [1901, 2000], and let ‖∆Θ‖rms

denote the RMS value of ‖∆Θ(k)‖ = ‖Θ(k) − Θ(k − 1)‖. We use these values to

compare the closed-loop RMS performance to the open-loop RMS performance and

numerically assess the convergence of the controller Θ.
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5.3.3.2 Simulation Results

We ran a total of 10000 simulations with the simulation setup described above.

In 3240 cases, Gzu was NMP, and in the remaining cases, Gzu was minimum phase.

In 3337 cases, we had 2 ≤ n ≤ 4, in 3288 cases, we had 5 ≤ n ≤ 7, and in the

remaining 3375 cases, we had 8 ≤ n ≤ 10. In 4953 cases, the normalized open-loop

spectral radius ρ(A) satisfied 0 ≤ ρ(A) ≤ 0.5, in 3979 cases, we had 0.5 < ρ(A) ≤ 0.9,

and, in the remaining 1068 cases, we had 0.9 < ρ(A) ≤ 1. Finally, we had 7713

cases with ∆(ω) ≤ 45 deg, 1300 cases with 45 < ∆(ω) ≤ 90 deg, 575 cases with

90 < ∆(ω) ≤ 135, and 412 cases with 135 < ∆(ω) ≤ 180 deg, where ω is the

command frequency. The distribution of these plant parameters is shown in Table

5.3.3.2. It should be noted that, as expected, the parameters n and ρ(A) are uniformly

distributed as expected from simulation setup. However, the number of minimum

phase plants was about two times more than the number of NMP plants. This

suggests that the random construction of A, B and E1 using the MATLAB “randn”

command is more likely to lead to a minimum phase plant Gzu. Furthermore, note

that the phase mismatch ∆(ω) was less than 45 deg in most cases. This outcome may

be correlated with the bias in favor of minimum phase cases.

In order to evaluate the closed-loop performance at each sample, we calculate

‖∆Θ‖rms, zrms, and ρ(Ã(2000)) at the end of each simulation. For evaluating the

improvement in the closed-loop performance, we compare zrms with the open-loop

RMS performance. If zrms < %100, then the closed-loop RMS performance is smaller

than the open-loop RMS performance. For evaluating the convergence of Θ, we

calculate the normalized RMS controller update ‖∆Θ‖norm
△
= ‖∆Θ‖rms

‖Θ(2000)‖
, which is a

measure of total adaptation that took place in the final 100 steps of each simulation.

Distribution of these performance measures is shown in Table 5.3.3.2. Note that in

more than 99% of the simulations, the normalized RMS controller update is less than

10−3, which suggests that the controller converged in almost all cases. Furthermore,
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Plant Parameter Number of Samples Percentage

Zeros
MP 6760 68%

NMP 3240 32%

Order

2 ≤ n ≤ 4 3337 33%

5 ≤ n ≤ 7 3288 33%

8 ≤ n ≤ 10 3375 34%

Spectral radius

0 ≤ ρ(A) ≤ 0.5 4953 50%

0.5 < ρ(A) ≤ 0.9 3979 40%

0.9 < ρ(A) < 1 1068 11%

Phase mismatch

0 ≤ ∆(ω) ≤ 45 7713 77%

45 < ∆(ω) ≤ 90 1300 13%

90 < ∆(ω) ≤ 135 575 6%

135 < ∆(ω) ≤ 180 412 4%

Table 5.1: Distribution of plant parameters for the large-scale simulation with 10000
samples.

97% of the simulations resulted in an asymptotic closed-loop system with spectral

radius less than 1. Furthermore, in 94% of the simulations, the closed-loop RMS

performance was smaller than the open-loop RMS performance. It should be noted

that all simulations resulted in bounded closed-loop performance.

Finally, we investigate the correlations between the open-loop plant parameters

and the closed-loop RMS performance level. Figure 5.7 shows the correlation between

zrms and the order of the open-loop plant, Figure 5.8 shows the correlation between

zrms and the spectral radius of the open-loop system, and, finally, Figure 5.9 shows the

correlation between zrms and the phase mismatch ∆(ω) between the open-loop plant

and Gf at the command frequency ω. Figure 5.7 suggests that the plant order does not

have a significant effect on zrms. Figure 5.8 shows that there is a moderate amount of

correlation between the open-loop spectral radius and zrms. Specifically, as the open-

loop spectral radius increases, zrms increases. However, Figure 5.9 shows that the

phase mismatch ∆(ω) is the most important factor in closed-loop RMS performance.

Specifically, almost all the simulations with ∆(ω) ≤ 45 deg led to improved closed-loop

160



Performance measure Number of Samples Percentage

Convergence of Θ

0 ≤ ‖∆Θ‖norm ≤ 10−6 8390 84%

10−6 < ‖∆Θ‖norm ≤ 10−3 1607 16%

‖∆Θ‖norm > 10−3 3 <1%

Closed-loop stability

0 ≤ ρ(Ã) < 1 9710 97%

1 ≤ ρ(Ã) < 1.01 207 2%

1.01 ≤ ρ(Ã) < 1.1 81 1%

ρ(Ã) ≥ 1.1 2 <1%

Closed-loop performance

0 ≤ zrms ≤ 10% 8808 88%

10% < zrms ≤ 100% 567 6%

100% < zrms ≤ 1000% 572 6%

1000% < zrms ≤ 10000% 53 1%

Table 5.2: Distribution of closed-loop performance metrics for the large-scale simula-
tion with 10000 samples.

performance compared to open-loop, whereas, in 88% of the cases with ∆(ω) ≥ 135

deg, the closed-loop performance was worse than the open-loop performance. In fact,

the most intriguing part of this numerical study is that, although ∆(ω) > 90% took

place in only about 10% of simulations, it accounted for 81% of the cases where zrms

was larger than the open-loop RMS performance. Therefore, these results suggest

that phase matching is a significant factor influencing the asymptotic closed-loop

performance of RCAC with η-modification.

5.4 FIR Fitting Methods for Minimizing Phase Mismatch

The numerical results of the previous section suggest that the closed-loop perfor-

mance of RCAC with η-modification is highly correlated with the phase mismatch.

Specifically, numerical results suggest that the closed-loop performance gets progres-

sively better as the phase mismatch at the exogenous frequency is reduced. In this

section, we formulate two least-squares-based methods to fit an IIR transfer function

with an FIR transfer function to minimize the phase mismatch at a predefined set of

frequencies. The underlying goal is to increase the closed-loop performance obtained
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Figure 5.7: The plant order has a marginal effect on closed-loop RMS performance.
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Figure 5.8: Open-loop spectral radius has a moderate effect on closed-loop RMS
performance. As ρ(A) increases, the closed-loop performance becomes
poorer. This figure suggests that RCAC with η-modification may lead to
better performance on plants with smaller spectral radius.

with RCAC when η-modification is employed.
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Figure 5.9: This figure illustrates that the closed-loop performance of RCAC with
η-modification is highly correlated with the phase mismatch ∆(ω) at the
command frequency ω. The likelihood of obtaining improved closed-loop
performance progressively drops as the phase mismatch increases. For the
case ∆(ω) ≤ 45 deg, almost all simulations lead to improved performance
compared to open-loop. For the case ∆(ω) > 135 deg, 88% of simulations
resulted in poorer closed-loop performance compared to open-loop. These
results suggest that the phase mismatch is critical for obtaining acceptable
closed-loop performance with RCAC when η-modification is employed.

5.4.1 Linear FIR Fitting Method

In this section, we formulate a constrained linear least squares method that fits

the frequency response of Gzu with an FIR transfer function Gf . We assume that

an estimate of the frequency response of the plant Gzu(e
θ) is available at a finite

number of frequencies. This knowledge can be obtained through either modeling or

frequency-domain identification. We constrain the least squares solution to bound the

phase mismatch ∆(θ) over a chosen frequency interval [θl, θh], where 0 ≤ θl < θh ≤ π.
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The phase mismatch bound does not need to be uniform over [θl, θh]. Furthermore,

the largest bound that we allow is 90 deg. Finally, we show that the numerator coef-

ficients of Gf obtained by using the unconstrained least squares solution are Markov

parameters of Gzu. However, this is not the case when phase constraints are imposed.

5.4.1.1 Linear Least Squares Parametric Model

For 1 ≤ i ≤ N , consider the frequency response estimates

Ĝzu(e
θi) = αi + βi, (5.2)

at the frequencies θi, where αi ∈ R, βi ∈ R. The goal is to fit the above estimates

with the FIR transfer function

Gf(z)
△
=

κ1z
s−1 + · · ·+ κs−1z + κs

zs
, (5.3)

where s is the order of the FIR model, and κi ∈ R are the corresponding numerator

coefficients that will be determined. We now expand (5.3) into the Laurent series

Gf(z) = κ1z
−1 + · · ·+ κsz

s, (5.4)

which is finite since Gf is an FIR transfer function. We now evaluate (5.4) at eθi for

i = 1, . . . , N , and separate the unknown parameters κi to obtain the linear parametric

model

Gf(z)|eθi = κ1e
−θi + · · ·+ κse

−sθi

=

[

κ1 · · · κs

]

(

[

cos θi · · · cos(sθi)

]T

+ 

[

− sin θi · · · − sin(sθi)

]T
)

. (5.5)
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Then, the linear least squares fit of (5.2) with the FIR parametric model (5.5) is

obtained by minimizing

min
X

‖Y − ΦTX‖, (5.6)

where

Y =

[

α1 · · · αN β1 · · · βN

]T

, (5.7)

Φ =

[

cos θ1 ··· cos θN − sin θ1 ··· − sin θN
...

...
...

...
cos(sθ1) ··· cos(sθN ) − sin(sθ1) ··· − sin(sθN )

]

, (5.8)

X =

[

κ1 · · · κs

]T

. (5.9)

5.4.1.2 Phase Mismatch Constraints

To impose phase mismatch bounds on the solution X of (5.6), we consider the

constrained linear least squares problem

min
X

‖Y − ΦTX‖, subject to CX ≤ 0, (5.10)

where C is constructed based on the phase information of each Ĝzu(e
θi) and the

desired phase mismatch bounds at each frequency.

For example, consider the frequency-response estimate Ĝzu(e
θm) = αm+βm, and

the phase mismatch bound ∆̄m ∈ (0, 90) deg imposed on ∆(θ) at the frequency θm.

Then, the linear phase mismatch bounds Im(x) = umRe(x) and Im(x) = lmRe(x) are

determined by ∆̄m as shown in Figure 5.10. The slopes um and lm are given by

um
△
= tan(∠(αm + βm) + ∆̄m), (5.11)

lm
△
= tan(∠(αm + βm)− ∆̄m). (5.12)
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Since um ≥ βm

αm
≥ lm, and αm > 0, we have the inequality constraints βm−umαm ≤ 0

and lmαm − βm ≤ 0. Then, the linear constraint that needs to be imposed on X to

bound ∆(θm) by ∆̄m is given by

CmX ≤ 0, Cm =







lmΦ
T(m, :)− ΦT(N +m, :)

ΦT(N +m, :)− umΦ
T(m, :)






,

and ΦT(m, :) represents the mth row of ΦT.

Figure 5.10: Ĝzu(e
θm), the linear upper bound um and the linear lower bound lm.

Note that um and lm are the slopes of the dashed black lines, and are
given by (5.11), (5.12) respectively.

The above procedure is carried out for each frequency θ1, . . . , θN to construct the

constraint matrix

C =

[

C1 · · · CN

]T

∈ R
2N×s.

Note that there are 4 possible constraint inequality conditions corresponding to 12

possible configurations of um and lm, all of which are illustrated in Figure 5.11.
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Figure 5.11: Possible bound configurations and associated linear constraints.

5.4.1.3 Special Case: Unconstrained Least Squares Solution

We now illustrate the unconstrained least squares solution of (5.6) with exact

frequency response estimates (5.2) of Gzu. Consider

Gzu(z) = 12
(z − 1.4)(z − 0.6)(z − 0.4)

(z − 0.85)(z − 0.5)(z − 0.3 + 0.8)(z − 0.3− 0.8)
.

We apply unconstrained least squares fitting using exact frequency response estimates

Ĝzu(e
θi) = Gzu(e

θi), where θi are equally placed between 0 and π. We let the order of

Gf be s = 10. Figure 5.12 shows that the estimated coefficients κ1, . . . , κ10 converge

to the Markov parameters H1, . . . , H10 as the number of data points used in the

estimation is increased.

5.4.2 Nonlinear FIR Fitting Method

We now develop a nonlinear parameterization to fit the phase plot of Gzu with

the phase of an FIR transfer function. This nonlinear formulation requires only

an estimate of the phase plot of Gzu in [θl, θh], and thus it requires less modeling

information than the linear method presented in the previous section.
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Figure 5.12: Unconstrained linear least squares solution converges to Markov param-
eters of Gzu.

For 1 ≤ i ≤ N , let

φ(θi)
△
= ∠Ĝzu(e

θi) ∈ [0, 360), (5.13)

be the estimates of the phase of Gzu at frequencies 0 ≤ θ1 ≤ . . . ≤ θN ≤ π. The goal

is to fit the above phase estimates using the phase plot of the FIR model (5.3). Let

g(θi) denote the phase ∠GFIR(e
θ) of the FIR model evaluated at the frequency θi.

Then, it follows from (5.5) that

g(θi) = ∠
(

κ1e
−θi + · · ·+ κse

sθi
)

= ∠σi + ωi

= atan2(ωi, σi)

where

σi =

s
∑

l=1

κl cos(lθi), ωi = −
s
∑

l=1

κl sin(lθi),

and atan2 is the four-quadrant inverse of the tangent function mapped to [0, 360).

168



Then, the phase mismatch ∆(θi) is

∆(θi) = min (φ(θi)− g(θi) mod 360,

360− (φ(θi)− g(θi) mod 360)) . (5.14)

Now, solving the minimization problem

min
κi

N
∑

l=1

‖∆(θl)‖ (5.15)

yields the numerator coefficients κi of the FIR approximation GFIR that provides the

best phase matching with the estimated phase plot (5.13) of Gzu.

5.5 FIR Fitting Examples

We now present numerical examples illustrating the use of linear and nonlinear

fitting methods for minimizing ∆(θ). We use numerical optimization tools for both

linear and nonlinear fitting; we use the MATLAB functions lsqlin for minimizing

(5.10), and lsqnonlin for minimizing (5.15).

The constrained minimization problem (5.10) may not have a solution if the chosen

order of the FIR fit is too small to satisfy the constraints. If that is the case, we

increase the order of the FIR fit until the minimization problem is feasible.

Since we are using only the phase information (5.13) in the nonlinear method,

scaling each coefficient κi by a positive constant γ results in the same cost value

(5.15). In order to avoid numerical problems that can arise, we first fix κ1 = 1, and

solve for κi, 2 ≤ i ≤ s. Next, we fix κ1 = −1, and repeat the process. Finally, we

compare the residuals and take the solution with the smaller residual norm.

Example 5.5.1. Consider the plant Gzu(z) with H1 = 1, poles 0.1, 0.5± 0.3, 0.85,

0, minimum-phase zero 0.45, and NMP zeros 1.5, 1.2 ± 0.5. We first assume we
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have the exact knowledge of the frequency response Gzu(e
θi) at 1001 equally spaced

frequencies in [0, π]. With this knowledge, we apply linear fitting to uniformly bound

the phase mismatch ∆(θ) by ∆̄1 = 80 deg, ∆̄2 = 40 deg, and ∆̄3 = 10 deg. Figure

5.13 shows the phase mismatch functions of the resulting FIR approximations. Note

that the order of the FIR fit increases as the phase mismatch bound becomes tighter.

We now assume that we do not have complete frequency response information of

Gzu, but we do have exact knowledge of the phase plot at the above specified frequen-

cies. With this knowledge, we apply nonlinear fitting to minimize ∆(θ) over [0, π].

Figure 5.14 shows the phase mismatch functions of the resulting FIR approximations

with orders s = 4, 5, and 7.

We now assume we have no frequency domain knowledge of Gzu, but we have

exact knowledge of Markov parameters. With this knowledge, we construct 4th, 5th

and 7th-order FIR plants, the phase mismatch functions of which are illustrated in

Figure 5.15. Note that ∆(0) = 180 deg in each case. �
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Figure 5.13: Ex1: Lin Fit.
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Example 5.5.2. Consider the same plant Gzu as in Example 5.5.1, and assume we

have the exact knowledge of the frequency response Gzu(e
θi) at 1001 equally spaced

frequencies in [0, π]. Suppose we are interested in tracking sinusoids at a particu-

lar frequency range with RCAC. Therefore, the objective is to impose nonuniform

bounds that are tighter at the frequencies of interest. In particular, we consider three

cases: smaller mismatch at low frequencies, smaller mismatch at high frequencies,

and smaller mismatch at intermediate frequencies. Furthermore, to have robustness

at all frequencies, we want ∆(θ) < 90 deg for all θ ∈ [0, π]. We apply linear fitting

with nonuniform bounds to obtain the phase mismatch functions illustrated in Figure

5.16. The order of the FIR fit is s = 5 in each case, which is smaller than the order

s = 7 we obtain when we impose a uniform 10 deg bound at every frequency. �
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Figure 5.16: Ex2: Lin Fit.

Example 5.5.3. Consider the same plant Gzu as above. We now assume that the

plant model is unknown. With the plant realized in controllable canonical form,

we excite the unknown plant with a white noise sequence and collect output mea-
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surements for 2500 time steps with the unknown nonzero initial condition x(0) =
[

0.8644 0.0942 −0.8519 0.8735 −0.4380

]T

. We then take the ratio of the fast

fourier transforms of the output and input signals to obtain frequency response es-

timates Ĝzu(e
θ) over θ ∈ [0, π]. The Bode plot of Gzu and the estimated frequency

response are shown in Figure 5.17.
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Figure 5.17: Ex2: Lin Fit.

Using the noisy frequency response estimates, we first apply the linear fitting

method with a uniform phase mismatch bound ∆̄ = 80 deg. Figure 5.18 shows the

phase plot of the resulting FIR transfer function Gf and the phase mismatch function

∆(θ) between the actual plant Gzu and Gf . Although the phase of Gf is within a ±80

deg envelope of the estimated phase plot ∠Ĝzu, the phase mismatch with Gzu gets

above 80 deg near θ = 1 rad/sample. Furthermore, the order of Gf is now s = 11,

which is larger than the order s = 4 we obtain if the frequency response estimates

are exact.
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Figure 5.18: Ex2: Lin Fit.

Using the estimated phase plot, we now apply the nonlinear fitting method to
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minimize ∆̄. Figure 5.19 shows the phase plot of the resulting FIR transfer functionGf

and the phase mismatch function ∆(θ) between the actual plant Gzu andGf . Since the

nonlinear method directly minimizes the phase difference between the estimated phase

plot and the Gf model in a least squares sense, the effect of noise is less significant

than the linear method, and Gf matches the actual plant with less than 30 deg phase

mismatch for all θ ∈ [0, π]. Furthermore, the order of Gf s = 8 is lower than the order

s = 11 we obtain with the linear method. �.
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5.6 Example: Adaptive Control of Flexible Structures

5.6.1 Problem Formulation

We consider the generic structural model

Mq̈ + Cdq̇ +Kq = B0f +Dww̄, (5.16)

where q ∈ Rr is a vector of generalized displacements, andM, Cd, andK are the mass,

damping, and stiffness matrices, respectively. Throughout this section, we assume

that M is positive definite, and Cd and K are positive semidefinite. Positive-definite

and positive-semidefinite matrices are assumed to be symmetric. The control input

to this system is the force f ∈ Rm, and the disturbance force is given by w̄ ∈ Rlw .
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Measurements are given by

ȳ =

[

C0 C1 C2

]















q

q̇

q̈















+ D̄2v̄, (5.17)

z̄ =

[

Ep Ev Ea

]















q

q̇

q̈















+ Ē3v̄, (5.18)

where v̄ denotes sensor noise. The measurements z̄ are the performance variables.

We assume that w̄ and v̄ are uncorrelated. We can write (5.16), (5.17), (5.18) in state

space form as

ξ̇(t) = Āξ(t) + B̄ū(t) + D̄1w̄(t), (5.19)

ȳ(t) = C̄ξ(t) + D̄ū(t) + D̄2v̄(t) + D̄3w̄(t), (5.20)

z̄(t) = Ē1ξ(t) + Ē2ū(t) + Ē3v̄(t) + Ē0w̄(t) (5.21)
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where

Ā
△
=







0 Ir

−M−1K −M−1Cd






, B̄

△
=







0r×m

M−1B0






, D̄1

△
=







0r×lw

M−1Dw






, (5.22)

C̄
△
=

[

C0 − C2M
−1K C1 − C2M

−1Cd

]

, D̄
△
= C2M

−1B0, D̄3
△
= C2M

−1Dw,

(5.23)

Ē1
△
=

[

Ep − EaM
−1K Ev − EaM

−1Cd

]

, Ē2
△
= EaM

−1B0, Ē0
△
= EaM

−1Dw,

(5.24)

ξ(t)
△
=







q(t)

q̇(t)






∈ R

2r, ū(t)
△
= f(t). (5.25)

We consider four special cases of (5.16) when it is unforced, namely,

Mq̈ + Cdq̇ +Kq = 0. (5.26)

These cases are distinguished by the stability of (5.26). For details, see [6].

In state space form, (5.26) can be written as

ξ̇ = Āξ. (5.27)

5.6.1.1 Case 1: Lyapunov-Stable Case

The unforced structure (5.27) is Lyapunov stable if every eigenvalue of Ā lies in

the closed left-half plane and is semisimple on the imaginary axis. In this case the

response of (5.27) is bounded for all initial conditions.
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Fact 5.6.1. (5.27) is Lyapunov stable if and only if

rank







K

Cd






= r. (5.28)

5.6.1.2 Case 2: Semistable Case

The unforced structure (5.27) is semistable if every eigenvalue of Ā lies in the

open left-half plane or is zero and the zero eigenvalue (if present) is semisimple. In

this case, the free response of such a structure is bounded and the state q converges,

but not necessarily to q = 0.

Fact 5.6.2. (5.27) is semistable if and only if (M−1K,Cd) is observable.

The observability condition in Fact 5.6.2 is known as pervasive damping.

The presence of a semisimple eigenvalue at zero signifies the presence of a damped

rigid body mode.

5.6.1.3 Case 3: Asymptotically Stable Case

The unforced structure (5.27) is asymptotically stable if every eigenvalue of Ā lies

in the open left-half plane. In this case the free response of (5.27) converges to q = 0,

q̇ = 0 for all initial conditions.

Fact 5.6.3. (5.27) is asymptotically stable if and only if A is semistable and K is

positive definite.

5.6.1.4 Case 4: Unstable Case

If (5.27) is not Lyapunov stable, then we say that (5.27) is unstable. The following

result shows that an unstable structure must have at least one rigid body mode and

that this is precisely the nature of the instability.
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Fact 5.6.4. Assume that (5.27) is not Lyapunov stable. Then Ā has a repeated zero

eigenvalue that appears in a 2 × 2 block in the Jordan canonical form of Ā, and no

zero eigenvalue of Ā appears in a Jordan block of size greater than 2× 2.

5.6.2 Numerical Examples

We now apply cumulative RCAC with η-modification to structural models. We

consider disturbance rejection problems for SISO plants. In all cases, the adaptive

controller gain matrix is initialized to be zero, that is, Θ(0) = 0, and the forgetting

factor λ = 1 in all examples.

Each example is constructed using the multiple degrees-of-freedom (MDOF) lumped

parameter structure shown in Figure 5.20, and the output measurement is sampled

with zero-order hold. The equations of motion for this system can be written in the

form (5.16) with M = diag(m1, . . . , mr),

Cd =
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Figure 5.20: An r-mass lumped parameter structure.

Example 5.6.5 (Adaptive control of a 2DOF asymptotically stable lumped param-

eter structure).

Consider a two-mass lumped parameter structure with the masses m1 = 1, m2 =

1; the spring constants k1 = 5 kg/sec2, k2 = 0 kg/sec2, k3 = 2 kg/sec2; and the

damping coefficients c1 = 2 kg/sec, c2 = 1 kg/sec, and c3 = 0 kg/sec. With these

parameters, every eigenvalue of Ā lies in the open left-half plane, thus the structure

is asymptotically stable. The continuous-time plant Tzu(s) = Ē1(sI − Ā)−1B̄ is

sampled at 4 Hz so that Ts = 0.25 sec/sample. The sampled-data system Gzu(q) has

the sampling zeros −0.211 and −2.8758, one of which is NMP.

The control objective is to keep q2 near zero in the presence of the disturbance

forces w̄1 and w̄2, using the control force f1. Therefore, we consider a SISO disturbance

rejection problem with z = q2, B0 =

[

1 0

]T

, Dw = I2. We assume that q2 is the

only measurement, therefore, y = z. Furthermore, we assume that the measurements

are noise-free.

We first consider an unknown sinusoidal disturbance w̄2(t) with frequency ω2 =
1
7

Hz, that is, w(k) =

[

0 100 sinΘ2k

]T

N, where Θ2 = 2πω2Ts = 2π/28 rad/sample.

The open-loop system is given the initial conditions q(0) =

[

4 −1

]T

m, and
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q̇(0) =

[

−2 −0.5

]T

m/sec. The plant is simulated in open-loop for 25 seconds,

and at t = 25 sec, RCAC is turned on with tuning parameters nc = 10, η0 = 0.5,

P0 = 10I, pc = 1, and Gf(q
−1) = H1q

−1 = 0.002q−1. The performance converges to

zero, the asymptotic closed-loop system is stable, and RCAC converges to an internal

model controller with high-gain at the disturbance frequency Θ2 as shown in Figure

5.21.

We now consider the unknown sinusoidal disturbances w̄1(t) and w̄2(t) with fre-

quencies ω1 = 0.5 Hz and ω2 = 2
9
Hz, that is, w(k) =

[

w1(k) w2(k)

]T

=

[

100 sinΘ1k 10 sinΘ2k

]T

N, where Θ1 = 2π/8 rad/sample and Θ2 = 2π/18

rad/sample. We use the nonlinear FIR fitting method to obtain the 8th-order FIR fit

Gf(q
−1) = K1q

−1 + · · ·+K8q
−8, (5.29)

with

[

K1 · · · K8

]

= 10−3

[

−2.1 0.3 1.4 1.6 1.2 0.2 −0.7 −1.8

]

, (5.30)

which results in ∆(θ) < 90 for all θ ∈ [0, π] rad/sample. Note that the NMP sampling

zero −2.8758 is not a zero of Gf . The open-loop system is given the same initial

conditions as above. The plant is simulated in open-loop for 100 seconds, and at

t = 100 sec, RCAC is turned on with tuning parameters nc = 15, η0 = 0.1, P0 = 0.1I,

and pc = 5. The closed-loop response is shown in Figure 5.22. After convergence,

the disturbance frequencies π/9 rad/sample and π/4 rad/sample are attenuated as

shown in Figure 5.23. �

Example 5.6.6 (3DOF asymptotically stable lumped parameter structure with un-

certain dynamics and measurement noise).

Consider a 3DOF lumped parameter structure with the masses m1 = 4.6 kg,
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Figure 5.21: Example 5.6.5: 2DOF, asymptotically stable structure, sampled with
Ts = 0.25 sec/sample. The sampled-data system has a NMP sampling
zero. The control objective is to keep q2(t) near zero in the presence of
the disturbance force w̄2(t) = 100 sin(2πt/7) N using the control force f1.
RCAC is turned on at t = 25 sec with the tuning parameters nc = 10,
η0 = 0.5, P0 = 10I, pc = 1, and Gf(q

−1) = H1q
−1. With this choice

of Gf , the phase mismatch is smaller than 90 deg at the disturbance
frequency Θ1 = π/14 rad/sample. The controller gain vector Θ(k) con-
verges, and q2 converges to zero in about 70 seconds (280 time steps).
RCAC converges to an internal model controller with high-gain at the
disturbance frequency. After convergence, the spectral radius spr(Ã) of
the closed-loop system is 0.94.
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Figure 5.22: Example 5.6.5: 2DOF, asymptotically stable structure sampled with
Ts = 0.25 sec/sample. The sampled-data system has a NMP sampling
zero. The control objective is to keep q2(t) near zero in the presence of
the disturbance forces w̄1(t) = 100 sin(2πt/2) N and w̄2(t) = 10 sin(2π 2

9
t)

N using the control force f1. RCAC is turned on at t = 100 sec with
the tuning parameters nc = 15, η0 = 0.1, P0 = 0.1I, and pc = 5. Gf

is constructed using the nonlinear FIR fitting method to obtain ∆(θ) ≤
90 deg for all θ ∈ [0, π] rad/sample. The controller gain vector Θ(k)
converges, and q2 converges to zero in about 400 seconds (2000 time
steps). The performance variable does not exceed the open-loop during
the transient period. After convergence, the spectral radius spr(Ã) of
the closed-loop system is 0.99.
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Figure 5.23: Example 5.6.5: 2DOF asymptotically stable structure with NMP sam-
pling zeros, two-tone disturbance rejection problem. The Bode plots
show the attenuation at the disturbance frequencies π/9 and π/4
rad/sample after controller convergence.

m2 = 4.7 kg, m3 = 5.2 kg; the spring constants k1 = 9.9 kg/sec2, k2 = 5.8 kg/sec2,

k3 = 8 kg/sec2, k4 = 8.5 kg/sec; and the damping coefficients c1 = 2.8 kg/sec,

c2 = 2.7 kg/sec, c3 = 2.42 kg/sec, and c4 = 2.65 kg/sec. With these parame-

ters, every eigenvalue of Ā lies in the open left-half plane, therefore, the structure is

asymptotically stable. The continuous-time plant Tzu(s) is sampled at 1 Hz so that

Ts = 1 sec/sample. The sampled-data system Gzu(z) has two sampling zeros, one of

which is NMP.

In this example, we assume that the structure parameters, including the Markov

parameters, are completely unknown, that is, no prior modeling information is avail-

able. Therefore, we first apply an off-line frequency-domain identification to construct

Gf . In particular, with the unknown nonzero initial conditions q(0) = [ 0.04 0.1 −0.02 ]T

m and q̇(0) = [ 0.02 −0.03 0.01 ]T m/sec, we excite the uncertain plant with a white noise

sequence and collect output measurements for 1500 time steps. We then take the ratio

of the fast fourier transforms of the output and input signals to obtain frequency re-

sponse estimates Ĝzu(e
θ) of Gzu in 750 equally spaced points in θ ∈ [0, π] rad/sample.

The Bode plot of the estimated frequency response is shown in Figure 5.24. Next,

using the frequency response estimates, we apply the constrained linear least squares
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Figure 5.24: Example 5.6.6: Frequency response estimate of Gzu, obtained through
frequency domain system identification using a gaussian white noise se-
quence.

method to fit Ĝzu(e
θ) with an FIR plant using a uniform phase mismatch bound

∆(θ) ≤ 80 deg. The resulting FIR fit is

Gf(q
−1) = 0.041q−1 + 0.0709q−2,

Note that the coefficients of Gf are not the Markov parameters H1 = 0.0155 and

H2 = 0.0578 of Gzu.

The control objective is to keep q2 near zero in the presence of the disturbance

forces w̄1, w̄2 and w̄3 using the control force f3. Furthermore, we assume that the

measurements y and z are corrupted by a zero-mean gaussian white noise v(k) with

standard deviation σv = 0.32 m, so that y(k) = z(k) = q2(kTs) + v(k). We consider

the unknown sinusoidal disturbances w̄1, w̄2 and w̄3 with frequencies ω1 = 0.1429

Hz, ω2 = 1
3
Hz, ω3 = 0.0588 Hz, that is, w(k) =

[

w1(k) w2(k) w3(k)

]T

=
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[

75 sinΘ1k 30 sinΘ2k 70 sinΘ3k

]T

N, where Θ1 = 2π/7 rad/sample, Θ2 = 2π/3

rad/sample, and Θ3 = 2π/17 rad/sample. The open-loop system is given the initial

conditions q(0) =

[

−0.7 0.65 −0.35

]T

m, and q̇ =

[

0.5 0.1 0.3

]T

m/sec.

The plant is simulated in open-loop for 100 seconds, and at t = 100 sec, RCAC is

turned on with tuning parameters nc = 15, η0 = 0.005, pc = 1, P0 = I, and Gf as

given above. The closed-loop response is shown in Figure 5.25. After convergence, the

disturbance frequencies π/7 rad/sample, 2π/3 rad/sample and 2π/17 are attenuated

as shown in Figure 5.26. �

5.7 Conclusion

In this chapter, we defined the phase mismatch, and numerically demonstrated

that it is highly correlated with the asymptotic performance of RCAC with η-modifica-

tion. This numerical evidence motivated the development of two system identification

methods to fit IIR transfer functions with FIR transfer functions to minimize the

phase mismatch. These identification methods led to a new phase-matching-based

controller construction technique in addition to the Markov-parameter, NMP-zero,

and time-series-based construction methods given in Chapter II. We demonstrated

the phase-matching-based construction on mass-spring-dashpot systems in the pres-

ence of multi-tone sinusoidal disturbances.
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Figure 5.25: Example 5.6.6: 3DOF, asymptotically stable structure, sampled with
Ts = 1 sec/sample. The sampled-data system has a NMP sampling zero.
The plant parameters are assumed to be completely unknown, and Gf

is constructed using the constrained linear least squares method devel-
oped in Section 5.4.1. The frequency response estimates are obtained
with frequency domain system identification using a white-noise input
sequence. The control objective is to keep q2 near zero in the presence
of the disturbance forces w̄1(t) = 75 sin(2πt/7) N, w̄2(t) = 30 sin(2πt/3)
N and w̄3(t) = 70 sin(2πt/17) N, using the control force f3. Further-
more, the measurements are corrupted by a gaussian white-noise with
standard deviation 0.32 m. RCAC is turned on at t = 100 sec with
the tuning parameters nc = 15, η0 = 0.005, pc = 1 and P0 = I. The
performance variable q2 converges near zero in about 100 seconds (100
time steps), and the transient performance does not exceed the open-
loop performance. The spectral radius spr(Ã) of the closed-loop system
is 0.96 at t = 1000 sec.
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Figure 5.26: Example 5.6.6: 3DOF asymptotically stable uncertain structure. The
Bode plots show the attenuation at the disturbance frequencies 2π/7,
2π/3 and 2π/17 rad/sample after controller convergence.
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CHAPTER VI

Aliasing Effects in Retrospective Cost Adaptive

Control of Plants with High-Frequency Dynamics

and Disturbances

6.1 Introduction

Because of the ability to implement nonlinear and logical operators in embedded

code, as well as the ability to easily modify that code, even remotely, the vast majority

of modern control systems are implemented digitally. Digital controllers possess one

drawback relative to analog controllers, however, namely, aliasing effects, which arise

when the sampled signal possesses frequency content above the Nyquist frequency,

which is half of the sampling frequency. Aliasing implies that frequency content above

the Nyquist frequency is “folded” down to a lower frequency by mirror imaging its

spectral content about the Nyquist frequency. The aliased harmonics of the folded

signal thus constitute harmonics that are not present in the original, analog signal.

Consequently, the controller may be forced to operate on an error signal that is not a

true representation of the error signal that it was designed to operate on. The aliased

signal thus acts as a disturbance that is injected into the system due to sampling.

There are two strategies for addressing the effects of aliasing. First, the sampling

rate can be chosen to be significantly above the highest frequency content of the
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sampled signal, including both the dynamic response of the system and exogenous

signals. This approach may require a sampling rate that is far beyond the required

bandwidth of the system, thus entailing an undue burden on the digital hardware.

For example, if the goal is to control rigid body motion but the system has a high-

frequency flexible mode, then a fast sampling rate is needed in order to avoid aliasing

the contribution of the flexible mode. Thus, the flexible mode may be inadvertently

excited by the feedback controller. Furthermore, fast sampling may be undesirable

because of the sampling zeros, which are typically NMP for sufficiently fast sampling

rates [3].

The second approach to addressing the effects of aliasing is to employ an anti-

aliasing filter. An anti-aliasing filter is a filter that is designed to roll off at a chosen

frequency and thus to attenuate the frequency content of the signal above the Nyquist

frequency. Anti-aliasing filters are almost always analog; a digital filter cannot reliably

remove the effects of aliasing once the signal has been sampled, except perhaps as a

notch filter when the aliased frequencies are known. Consequently, the analog anti-

aliasing filter is a fixed component that must be engineered into the system along

with the choice of sampling rate and controller bandwidth.

In summary, aliasing can be addressed by either fast sampling or analog anti-

aliasing. Both approaches have drawbacks and both may be imperfect. For virtually

all digital control systems, the question thus remains as to whether the effects of

aliasing can degrade the performance of the closed-loop system. The goal of this

chapter is thus to investigate the effects of aliasing without assuming the benefits of

either sufficiently fast sampling or sufficiently effective analog anti-aliasing filters.

Control under arbitrarily slow sampling is considered in [81], where it is shown

that, under perfect modeling, the effects of aliasing can be addressed by sampled-data

LQG control, except at sampling rates at which controllability is lost [57]. A general

approach to H2-optimal sampled-data control is considered in [16, 17]. The present
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chapter, however, focuses on the more realistic case of model uncertainty, especially at

high frequencies. Within the context of adaptive control, unmodeled high-frequency

dynamics are known to present difficulties, as demonstrated by the celebrated Rohrs

counterexample [84]. Recently, this issue was revisited in [100] within the context

of sampled-data adaptive control. Specifically, retrospective cost adaptive control

(RCAC) was applied to this problem in order to determine its ability to address

the effects of unmodeled high-frequency dynamics. As shown in [100], RCAC was

able to follow the command despite the unmodeled modes, the unknown sinusoidal

disturbance, and the unknown nonminimum-phase sampling zero contributed by the

unmodeled high-frequency dynamics.

The results of [100], however, assumed that the sampling rate was sufficiently high

as to avoid aliasing. Therefore, the goal of the present chapter is to consider adaptive

control in the presence of aliasing, due to either the high-frequency free response of the

plant or the high-frequency content in the disturbances. To investigate this question,

we present a numerical investigation of RCAC applied to sampled-data command-

following and disturbance-rejection problems, and we investigate the performance

of RCAC in the presence of aliasing, that is, the case in which the continuous-time

plant is sampled at a rate slower than the Nyquist rate corresponding to the frequency

content of the free response of the plant and exogenous signals. We are especially

interested in the intersample behavior of the plant and performance variables as

a consequence of sampling and aliasing. Within the context of fixed-gain control,

intersample behavior is examined in [8, 17, 35].
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6.2 Problem Formulation

Consider the MIMO plant

˙̄x(t) = Āx̄(t) + B̄ū(t) + D̄1w̄(t), (6.1)

z̄(t) = E1x̄(t)− r̄(t), (6.2)

where (Ā, B̄, Ē1) is minimal, x̄(t) ∈ Rn is the state variable, z̄(t) ∈ Rlz is the perfor-

mance output, ū(t) ∈ Rlu is the control input, w̄(t) ∈ Rlw is the disturbance signal,

r̄(t) ∈ Rlr is the reference command, and t ≥ 0. In this chapter, we assume that w(t)

and r(t) are harmonic signals with bandwidth ωB,w and ωB,r respectively. Further-

more, we define ωN,w = 2ωB,w and ωN,r = 2ωB,r as the Nyquist rate corresponding

to w and r respectively. The plant (6.1), (6.2) can be discretized for sampled-data

control using sample and hold operators, as illustrated for the SISO case in Figure

6.1. For a zero-order-hold operator and a sampler with sampling period h sec/sample

and sampling rate ωs = 2π/h rad/sample, the sampled-data system is described by

x(k + 1) = Ax(k) +Bu(k) + f(w, k, h), (6.3)

z(k) = E1x(k)− r(k), (6.4)

where

A = eĀh, B =

∫ (k+1)h

kh

eĀ((k+1)h−τ)dτB̄, (6.5)

f(w, k, h) =
∫ (k+1)h

kh
eĀ((k+1)h−τ)D̄1w̄(τ)dτ , and x(k), u(k), r(k) and z(k) represent

x̄(kh), ū(kh), r̄(kh) and z̄(kh), respectively.

For the sampled-data system (6.3), a sufficient condition for controllability is given

by the following proposition [57].
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Proposition 6.2.1. A sufficient condition for complete controllability of (A,B) is to

have

Im{λi(Ā)− λj(Ā)} 6= 2πl/h, (6.6)

for all eigenvalues λi(Ā), λj(Ā) of Ā such that

Re{λi(Ā)− λj(Ā)} = 0, (6.7)

for all nonzero integers l. Furthermore, condition (6.6), (6.7) is necessary as well if

lu = 1.

A weaker condition suffices for (A,E1) to be observable [67]. Thus, (A,B,E1) is

minimal if (6.6), (6.7) is satisfied.

The input-output relationship from u to z is described by the operator matrix

Gzu(q)
△
= E1(qI − A)−1B, (6.8)

where q is the forward shift operator. Unlike the z-transform, (6.8) accounts for

possibly nonzero initial conditions. Furthermore, for each positive integer i,

Hi
△
= E1A

i−1B

is the ith Markov parameter of Gzu.

Figure 6.1: Typical sampled-data system.
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Now, consider the nth
c -order strictly proper output feedback controller

xc(k + 1) = Ac(k)xc(k) +Bc(k)z(k), (6.9)

u(k) = Cc(k)xc(k), (6.10)

where xc ∈ Rnc . The feedback control (6.9), (6.10) is represented by u = Gc(q, k)z,

where

Gc(q, k)
△
= Cc(k)(qI − Ac(k))

−1Bc(k). (6.11)

The closed-loop system with output feedback (6.9), (6.10) is thus given by

x̃(k + 1) = Ãx̃(k) + f̃(w, k, h), (6.12)

z(k) = Ẽ1x̃(k) + E0r(k), (6.13)

where

Ã
△
=







A BCc

BcE1 Ac






, f̃(w, k, h)

△
=







f(w, k, h)

0






,

Ẽ1
△
=

[

E1 0lz×nc

]

, (6.14)

and x̃(k) =

[

xT(k) xT
c (k)

]T

∈ Rn+nc.

From a sampled-data point of view, the objective is to develop an adaptive output

feedback controller to minimize zT(k)z(k) in the presence of the disturbance signal

w̄(t) and the reference command r̄(t) with limited modeling information about the

dynamics, disturbance signal, and command signal. We assume that the measurement

of the performance variable z(k) is available for feedback. However, having z(k) near

zero at every sample k does not guarantee that z̄(t) is small for all t. Therefore, in
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practice, the objective is to design a sampled-data adaptive controller to minimize

z̄(t) not only at the sampling instants t = kh, but for all t.

In practice, the effects of aliasing may be mitigated by filtering the performance

output z̄(t) with an anti-aliasing filter to decrease the bandwidth of the cascade

continuous-time plant. Indeed, this would facilitate the problem for the adaptive

controller since the high-frequency components due to w̄(t) and internal dynamics

would be filtered out from the performance measurement. But this would go against

the goal of this chapter, which is to study the effects of aliasing in digital adaptive

control. Thus, we apply adaptive control using the sampled measurements of z(k)

directly, with no intermediate anti-aliasing filters acting on z̄(t).

For the adaptive controller (6.9), (6.10), the closed-loop state matrix Ã(k) may

be time-dependent. To monitor the ability of the adaptive controller to stabilize the

plant, we compute the spectral radius spr(Ã(k)) at each time step. If the controller

converges, and spr(Ã(k)) converges to a number less than 1, then the asymptotic

closed-loop system is internally stable.

6.3 Numerical Examples with Disturbance Aliasing

We now investigate the performance of RCAC with undersampling of disturbances,

that is, the continuous-time plant is sampled at a rate slower than the Nyquist rate

corresponding to the disturbance w̄(t) so that ωs < ωN,w. In each example, the

controller gain matrix Θ(k) is initialized to be zero, and the cumulative update law

(2.42)–(2.44) is used with λ = 1 .

Example 6.3.1 (Undersampled disturbances.). Consider the third-order continuous-

time plant Tzu(s) = T0(s)Λ(s) with T0(s) =
2

s+1
and Λ(s) = 229

(s−15−2)(s−15+2)
. This

plant is used in [84] to show that if the fast poles contributing by Λ(s) are unmodeled

or ignored, traditional continuous-time MRAC may lead to an unstable closed-loop
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system. Sampled-data adaptive control of Rohrs counterexamples with RCAC is

extensively covered in [100], where it is shown that the pulse transfer function Gzu(z)

corresponding to Tzu(s) has a NMP sampling zero for sampling frequencies larger

than 10π rad/sample. In this example, we consider a problem where the sampling

rate is chosen so that the sampled-data plant is minimum-phase. Furthermore, the

control objective is to follow the reference command r̄(t) = 2 + sin t, and the only

modeling information available is the first Markov parameter H1 of Gzu.

First, we consider the case with no disturbances. Choosing nc = 10 and P0 = 108I,

RCAC drives the sampled error signal z(k) to zero by converging to an internal

model controller with high gain at the command frequencies Ω1 = 0 rad/sample and

Ω2 = 0.25 rad/sample = 1 rad/sec. Furthermore, after convergence, the command-

following error z̄(t) is small between consecutive sampling instants, as shown in Figure

6.2.
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Figure 6.2: Example 6.3.1: Undersampled disturbances. This figure illustrates the
closed-loop response with no disturbances. Both the samples z(k) and
the actual continuous-time command-following error z̄(t) converge to zero,
the controller gains converge, and RCAC converges to an internal model
controller with high gain at the command frequencies 0 rad/sample and
0.25 rad/sample.

Now, we consider the same problem in the presence of the matched disturbance
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w̄(t) = 2.5 sin 5πt. Unlike ωN,r, the Nyquist rate ωN,w = 10π rad/sec corresponding to

w̄(t) is larger than the sampling rate ωs = 8π rad/sec and thus z̄(t) is undersampled at

this sampling rate. Choosing the same control parameters, RCAC drives the sampled

error signal z(k) to zero in about 15 samples by converging to an internal model con-

troller with high gain at the command frequencies, as well as the disturbance aliasing

frequency 2π− 1.25π = 0.75π rad/sample. Thus the actual command-following error

z̄(t) does not converge to zero due to aliasing, as shown in Figure 6.3. �
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Figure 6.3: Example 6.3.1: Undersampled disturbances. This figure illustrates the
closed-loop response with the matched disturbance w̄(t) = 2.5 sin 5πt.
The disturbance frequency is larger than the Nyquist frequency 4π
rad/sample. RCAC drives the sampled performance z(k) to zero, but the
actual command-following error z̄(t) is nonzero between consecutive sam-
ples, due to disturbance aliasing. In addition to the command frequency,
RCAC places an internal model into the disturbance aliasing frequency
0.75π rad/sample.

6.4 Numerical Examples with High-Frequency Dynamics

We now apply RCAC to sampled-data stabilization, command following, and dis-

turbance rejection problems. We consider plants with lightly-damped, undamped,

or unstable high-frequency dynamics, and, to investigate the performance of RCAC
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with aliasing of plant dynamics, we choose the sampling rate below the Nyquist rate

corresponding to the free response of the plant. In each example, the controller gain

matrix Θ(k) is initialized to be zero, and the cumulative update law (2.42)–(2.44) is

used with λ = 1.

Example 6.4.1 (Undersampled asymptotically stable lightly-damped modes.). Con-

sider the 4th-order Lyapunov stable plant Tzu(s) = 50 (s+0.2+3)(s+0.2−3)
(s+1.5)(s−1.5)(s+0.5+10)(s+0.5−10)

.

The goal is to have the output of the plant follow the reference command r̄(t) =

sin 0.5t while rendering the closed-loop system asymptotically stable. The plant is

initialized with nonzero initial conditions so that the free response is nonzero.

First, we choose the sampling rate to be ωs = 4π rad/sec. Notice that the Nyquist

frequency ωs/2 is smaller than 10 rad/sec and thus the plant is undersampled due to

the high-frequency component of the free response contributed by the lightly-damped

modes. Choosing nc = 6, P0 = 105I and Gf(q
−1) = H1q

−1, RCAC is turned on at

t = 5 sec. RCAC drives the sampled command-following error z(k) to zero, and the

actual command-following error z̄(t) is small between consecutive sampling instants,

as shown in Figure 6.4.

We now investigate the performance of RCAC when the lightly-damped modes of

Tzu become uncontrollable due to sampling in accordance with Proposition 6.2.1. For

this, it follows from (6.6) that the sampling rate should be chosen so that lωs = 20

rad/sec, where l is a positive integer. We consider l = 1, that is, ωs = 20 rad/sec,

and thus h = π/10 sec/sample. As shown in Figure 6.5, this causes the sampled-

data plant to have a stable pole-zero cancellation near −0.62. Choosing the same

control parameters, RCAC is turned on at t = 5 sec. RCAC stabilizes the system

and drives the sampled-command-following error to zero, and the command following

error remains small between consecutive sampling instants. This examples suggests

that undersampling of asymptotically stable dynamics does not harm the asymptotic

performance of RCAC, even when these modes are uncontrollable due to sampling in

196



0 10 20 30
−4

−2

0

2

4

time (sec)

z(
k
)

0 10 20 30
−5

0

5

10

time (sec)

z̄
(t

)

0 10 20 30
−40

−20

0

20

40

time (sec)

Θ
(k

)

0 10 20 30
0.5

1

1.5

2

2.5

time (sec)

sp
r(

Ã
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Figure 6.4: Example 6.4.1: Undersampled asymptotically stable modes. This figure
illustrates the closed-loop response with the command r̄(t) = sin 0.5t.
The Nyquist frequency 2π rad/sec is smaller than the damped frequency
10 rad/sec corresponding to the lightly-damped modes. RCAC is turned
on at t = 5 sec, drives both z(k) and z̄(t) to zero, and stabilizes the
closed-loop system.

accordance with Proposition 6.2.1. �
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Figure 6.5: Example 6.4.1: Pole-zero maps corresponding to Gzu with ωs = 4π
rad/sec (left) and ωs = 20 rad/sec (right). With ωs = 20 rad/sec, modes
−0.5 ± 10 of the continuous-time plant are uncontrollable due to sam-
pling.

Example 6.4.2 (Undersampled undamped modes). Consider the 4th-order Lya-

punov stable plant Tzu(s) = 50 (s+0.2+3)(s+0.2−3)
(s+10)(s−10)(s+0.5+1.5)(s+0.5−1.5)

. The plant is initialized

with the nonzero initial condition x(0) =

[

0.0846 −0.0229 −0.0474 −0.0083

]T

in controllable canonical form. Due to the nonzero initial conditions, z̄(t) oscillates in
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Figure 6.6: Example 6.4.1: Undersampled asymptotically stable modes. This figure
illustrates the closed-loop response with lightly-damped modes that are
uncontrollable due to sampling. Nevertheless, RCAC drives both z(k)
and z̄(t) to zero, and the closed-loop sampled-data system is stable after
convergence.

open-loop, and the control objective is to drive z̄(t) to zero. Furthermore, at t = 50

sec, the matched sinusoidal disturbance w̄(t) = 1(t − 50)25 sin(t) starts exciting the

system. Therefore, the objective is to first regulate the output z̄(t) and then reject

the disturbance w̄(t) from z̄(t). Note that the disturbance frequency is ω = 1 rad/sec

= 0.16 Hz.

We first sample the plant with ωs = 20π rad/sec = 10 Hz, which is faster than the

Nyquist rate 20 rad/sec associated with the undamped modes. RCAC is turned on

at t = 20 sec, and choosing nc = 6, P0 = 104I and Gf(q
−1) = H1q

−1 = 0.23q−1, both

z(k) and z̄(t) are driven to zero, and the closed-loop sampled-data system is asymp-

totically stable after convergence, as shown in Figure 6.7. Note that the controller

readapts at t = 50 sec in order to reject the disturbance w̄(t).

Now, we sample the plant with ωs = 20 rad/sample = 10/π Hz. The sampled-data

plant is uncontrollable at this sampling rate, and the uncontrollable modes correspond

to the undamped modes of the continuous-time plant. Choosing nc = 6, P0 = 104I,

and Gf(q
−1) = H1q

−1 = q−1, the closed-loop response is shown in Figure 6.8. The

first observation is the inability of the adaptive controller to reduce the spectral
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Figure 6.7: Example 6.4.2: Undersampled undamped modes. This figure illustrates
the closed-loop response with sufficiently fast sampling, that is, the sam-
pling rate 20π rad/sec is faster than the Nyquist rate corresponding to
the disturbance and the dynamics. RCAC first stabilizes the system and
then readapts at t = 50 sec to reject the disturbance. The spectral radius
of the closed-loop system is 0.99 after convergence.

radius of the closed-loop sampled-data system below 1. This is expected, because

the undamped modes are uncontrollable due to sampling. The second observation

is that, despite the fact that z(k) converges to zero, the intersample values of z̄(t)

are large, in fact, in steady-state, z̄(t) has a peak magnitude of about 22. To study

the cause of large intersample behavior, we perform a spectral analysis of z̄(t) after

convergence. Figure 6.9 shows the power spectral density of z̄(t) for t > 100. In

particular, we notice spikes near frequencies ω1 = 0.16 Hz, ω2 = 1.59 Hz, ω3 = 3.04

Hz and ω4 = 3.34 Hz. Note that ω1 is exactly the frequency ω of the disturbance

signal w̄(t). Furthermore, ω3 = ωs − ω1, and ω4 = ωs + ω1 are alias frequencies

associated with the disturbance frequency ω and sampling rate ωs. However, the

spike with the largest magnitude corresponds to ω2, which is exactly the frequency of

the undamped modes. Note that ω2 is also the Nyquist frequency of the sampled-data

system. The large intersample oscillations in z̄(t) are therefore caused by the aliasing

effects associated with the undamped, uncontrollable modes of the continuous-time
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plant.
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Figure 6.8: Example 6.4.2: Undersampled undamped modes. This figure illustrates
the closed-loop response with undamped modes that are uncontrollable
due to sampling. Although RCAC drives the sampled output z(k) to
zero, the actual continuous-time signal z̄(t) is not equal to zero between
sampling instants. Since the undamped modes are uncontrollable, RCAC
cannot decrease the closed-loop spectral radius below 1.
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Figure 6.9: Example 6.4.2: Undersampled undamped modes. This figure illustrates
the power spectral density of the closed-loop performance z̄(t) shown in
Figure 6.8 in steady-state. The largest peak in the spectral content is near
1.59 Hz, which is the frequency of the uncontrollable, undamped modes.

Finally, we reconsider the same problem with ωs = 4π rad/sample = 2 Hz, which is
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slower than the Nyquist rate corresponding to the undamped modes. The continuous-

time plant is thus undersampled, however, the sampled-data plant does not lose con-

trollability due to sampling. Furthermore, the sampled-data plant now has a NMP

sampling zero near −1.34. Choosing nc = 6, P0 = 104I, and Gf(q) = H1
(q+1.34)

q2 , the

closed-loop response is shown in Figure 6.10. We observe that before the disturbance

is introduced, both z(k) and z̄(t) are driven to zero, and then, after the disturbance

is introduced, z(k) converges to zero after a transient period, although z̄(t) exhibits

intersample oscillations. This suggests that the intersample oscillations are caused by

the aliasing effects associated with the disturbance, rather than the undamped modes.

The power spectral density of z̄(t) shown in Figure 6.11 confirms this view, as the

spikes in the spectral density are near ω, and the alias frequencies lωs ± ω, where l

is a positive integer. In conclusion, aliasing of the undamped dynamics causes trou-

ble only if these modes are uncontrollable due to sampling. Otherwise, RCAC moves

these modes inside the unit circle so that the natural response of the closed-loop plant

converges to zero as t increases.

Example 6.4.3 (Undersampled unstable modes). Consider the 4th-order unstable

plant Tzu(s) = 20 (s+0.6)(s+1.5)
(s−1+10)(s−1−10)(s+0.5+1.5)(s+0.5−1.5)

. The plant is initialized with the

nonzero initial conditions x(0) =

[

−0.09 0.03 −0.02 −0.005

]T

in controllable

canonical form. The control objective is to stabilize the closed-loop system and drive

the output z̄(t) to zero.

It follows from (6.6) that if the sampling rate is chosen to be ωs = 20/l, where

l is a positive integer, sampled-data control of Tzu becomes impractical, since the

unstable modes are uncontrollable due to sampling.

Now, to investigate the effects of undersampling of unstable (but controllable)

modes, we sample Tzu(s) with ωs = 2π rad/sample = 1 Hz. Note that ωs is slower than

the Nyquist rate 20 rad/sample corresponding to the unstable modes. Furthermore,

the sampled-data system has a NMP sampling zero near −2.91. RCAC is turned on at
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Figure 6.10: Example 6.4.2: Undersampled undamped modes. Sampling rate 4π
rad/sec is now lower than the Nyquist rate corresponding to the un-
damped modes, however, these modes are now controllable after sam-
pling. The output first oscillates due to nonzero initial conditions, and
then, RCAC is turned on at t = 20 sec, and drives both z(k) and z̄(t)
to zero. Then, at t = 50 sec, the disturbance starts exciting the system,
RCAC readapts, and rejects the disturbance from z(k). However, z̄(t)
is nonzero between sampling instants due to disturbance aliasing.
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Figure 6.11: Example 6.4.2: Undersampled undamped modes. This figure illustrates
the power spectral density of the closed-loop performance z̄(t) shown in
Figure 6.8 in steady-state. The power spectral density does not have a
peak near the frequency of the undamped modes. Rather, the peaks are
near the disturbance frequency ω and aliased frequencies lωs ±ω, where
l is a positive integer.
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t = 2 sec with nc = 4, P0 = 1000I, and Gf(q) = H1
(q+2.91)

q2 . Since the sampling rate

is chosen to be slow, the output z̄(t) undergoes large transients, but nevertheless,

RCAC stabilizes the plant, and both z(k) and z̄(t) converge to zero in about 30

seconds, which is 30 time steps, as shown in 6.12.
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Figure 6.12: Example 6.4.3: Undersampled unstable modes. This figure illustrates
the closed-loop response with the sampling rate 2π rad/sample, which is
slower than the Nyquist rate 20 rad/sample corresponding to the unsta-
ble modes. The plant is initialized with nonzero initial conditions, and
therefore, the output z̄(t) first diverging away from zero. Then, at t = 2,
RCAC is turned on. Since the sampling rate and therefore the sampled-
data controller is slow, the output z̄(t) undergoes large transients before
controller convergence, but eventually, RCAC stabilizes the plant, and
drives both z(k) and z̄(t) to zero.

Indeed, transient performance and convergence time can be improved by sampling

faster. For example, choosing ωs = 20π rad/sample = 10 Hz, nc = 4, P0 = 1000I, and

Gf(q) = H1
q
−1+1.1
q2 , RCAC is turned on at t = 2 sec. Now, z̄(t) converges to zero in

about 30 time steps, which is the same as in the previous case, but since a time step

is equal to 0.1 sec, convergence occurs in only 3 sec, and the transient performance

is much better compared to Figure 6.12 as shown in Figure 6.13.

In conclusion, the adaptive controller is able to stabilize the unstable plant even if

the unstable modes are undersampled, however, if the sampling rate and therefore the
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Figure 6.13: Example 6.4.3: Undersampling of unstable modes. This figure illustrates
the closed-loop response with the sampling rate 20π rad/sample, which is
ten times faster than the sampling rate of Figure 6.12. The convergence
is faster, and the transient performance is better compared to Figure
6.12.

controller is too slow, the output may become too large before it can be regulated by

the controller, and therefore, undersampling the unstable modes may be undesirable

in practice. Obviously, the sampling rate should be chosen so that the unstable modes

of the system are controllable.

6.5 Conclusion

In this chapter, we presented a numerical investigation of retrospective cost adap-

tive control (RCAC) applied to sampled-data control in the presence of aliasing of

dynamics and disturbances. It is shown that RCAC stabilizes plant even if the high-

frequency unstable modes are undersampled. However, even if the samples of the

performance variable converge to zero, intersample command following error may be

nonzero due to aliasing of disturbances. If the disturbance frequency is larger than

the Nyquist frequency, RCAC converges to an internal model controller with high

gain at the aliased disturbance frequency. Controllability loss due to sampling is also

considered, and it is shown that the performance of RCAC is not degraded as long
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as the uncontrollable modes are stable.

6.6 Appendix: Undersampling and Aliasing

In this appendix section, we provide a review of several major results concerning

sampling and reconstruction theory [9, 61, 90]. The goal here is not to provide a

thorough analysis of the sampling theory, rather, the goal here is to provide a quick

overview of certain terminology and results in sampling theory for the sake of clarity

in upcoming sections.

Consider the continuous-time harmonic signal z̄(t) and a sampler with sampling

period h sec/sample as shown in Figure 6.1. The sampler thus has the frequency

νs =
1
h
Hz, or ωs =

2π
h

rad/sec. Notice that the units of νs and ωs are different, but

they both represent the same sampling frequency. The sampling operator maps the

continuous-time signal z̄(t) to a discrete-time signal that we call the sampled signal.

The sampled signal is denoted by z(k), which represents z̄(kh), where k is an integer.

Unlike z̄(t), the sampled signal z(k) is a discrete sequence whose domain is the set

of integers. For example, z(3), z(5) and z(17) are well-defined, but z(1.7), z(π) or

z(0.01) are not defined, whereas z̄(1.7), z̄(π) or z̄(0.01) are well-defined. Furthermore,

in general, z(k) 6= z̄(t). This is why we use a bar symbol to distinguish the continuous-

time signal from the sampled signal.

The (almost) inverse of the sampling operator is referred to as the reconstruc-

tion operator. The reconstruction operator maps the discrete-time signal z(k) to a

continuous-time signal z̃(t). The typical reconstruction method is the Whittaker-

Shannon (W-S) interpolation formula [113, 93], which passes z(k) through an ideal

low-pass filter with the cutoff frequency ωs

2
to obtain z̃(t). Thus, sampling and recon-

struction are, in certain conditions, exact inverses of each other. However, in general,

sampling is not one-to-one, that is, sampling two continuous-time signals z̄1(t) and

z̄2(t) may yield the same sampled signal z(k), even when z̄1(t) 6= z̄2(t). Therefore,
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the continuous-time signal z̄(t) may not be equal to the reconstructed signal z̃(t).

This relates to the famous sampling theorem [93], which provides the necessary and

sufficient condition to have z̄(t) = z̃(t).

Theorem 6.6.1. A function z̄(t) is completely determined by giving its ordinates at

a series of points spaced 1
2νB

seconds apart if and only if z̄(t) contains no frequencies

higher than νB Hz.

In essence, it follows from Theorem 6.6.1 that if the sampling rate νs (or ωs) is at

least twice as large as the highest frequency (or bandwidth) νB (or ωB) of z̄(t), then

z̃(t) = z̄(t), that is, the continuous-time signal z̄(t) can be reconstructed from the

sampled signal z(k) by the means of W-S interpolation.

Notice that the frequency 2νB is a threshold for the sampling rate νs, determining

whether or not the sampling rate is sufficiently fast for reconstructing the signal z̄(t)

from its samples. Conversely, νs
2
is a threshold for the bandwidth of the signal z̄(t),

and, if νB < νs
2
, then z̄(t) can be reconstructed from the samples z(k). The former

threshold 2νB is referred to as the Nyquist rate corresponding to z̄(t), whereas the

latter threshold νs
2
is defined as the Nyquist frequency corresponding to the sampler.

Nyquist rate and Nyquist frequency are not to be confused; Nyquist rate is a property

of the signal, whereas Nyquist frequency is a property of the sampler.

When z̄(t) is sampled at a rate slower than the Nyquist rate, we say that the signal

is undersampled. Conversely, z̄(t) is undersampled if the Nyquist frequency is slower

than the bandwidth of z̄(t). If z̄(t) is undersampled, it follows from Theorem 6.6.1

that the signal z̄(t) cannot be recovered from the sampled signal z(k) by the means

of W-S interpolaation. For instance, for the harmonic signal z̄(t) with a frequency

component at ω0, the sampled signal z(k) will have replicate frequency components

or aliases at ω0+ lωs and −ω0+ lωs, where l is an integer. Thus, if ω0 > ωN, where ωN

is the Nyquist frequency, then z(k) will have an alias frequency component between

0 rad/sec and ωN rad/sec. In particular, the alias frequency component ω0a ∈ [0, ωN]
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is given by

ω0a = min(ω0[ωs], ωN − ω0[ωN]), (6.15)

and, once the sampled signal z(k) is reconstructed by passing it through a low-pass

filter with the cutoff frequency ωN, the reconstructed signal z̃(t) contains the alias

frequency ω0a, but does not contain the actual frequency component ω0 since it is

filtered out during the interpolation.

As an example, consider the sinusoidal signal z̄1(t) = sin(1.3πt). To illustrate

aliasing due to sampling, we choose h = 1 sec/sample and thus ωs = 2π rad/sec, which

is smaller than the Nyquist rate 2.6π rad/sec corresponding to z̄1(t). The sampled

signal is thus z1(k) = sin(1.3πk). We claim that this signal is indistinguishable from

the sampled signal z2(k) = − sin(0.7πk) corresponding to the continuous-time signal

z̄2(t) = − sin(0.7πt), and, interpolating z1(k) by the means of W-S generates z̄2(t)

rather than z̄1(t). Indeed, since e
x is a periodic function with the period X = 2π, we

have

z1(k) = sin(1.3πk) =
1

2

(

e1.3πk − e−1.3πk
)

=
1

2

(

e1.3πk−2πk − e−1.3πk+2πk
)

= −
1

2

(

e0.7πk − e−0.7πk
)

= − sin(0.7πk).

Now, if this signal is passed through an ideal low-pass filter with the cutoff frequency

ωs

2
, the resulting signal z̃1(t) is given by − sin(0.7πt) = z̄2(t).
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CHAPTER VII

Conclusion and Future Work

This dissertation presented the latest advances and extensions in retrospective

cost adaptive control. The main topics of this dissertation included theory and anal-

ysis for retrospective cost adaptive control of nonsquare systems, and development

of a modified RCAC update law for maintaining stability and convergence in the

presence of unmodeled NMP zeros. Other contributions of this work included: a

stability analysis for the RCAC update equations and derivation of sufficient condi-

tions for convergence of RCAC, sampled-data analysis and adaptive control of Rohrs

counterexamples using robust RCAC, numerical investigation of the role of phase mis-

match between an FIR filter involved in the retrospective cost optimization and the

open-loop plant, development of least-squares based fitting algorithms to match the

phase of an IIR transfer function with an FIR transfer function, and an investigation

of RCAC in the presence of aliasing of high-frequency dynamics and disturbances.

In Chapter II, we reviewed the instantaneous and cumulative RCAC update laws

developed in [88, 36]. We reformulated the instantaneous update law given in [88]

as a recursive gradient update. We also reformulated the cumulative update law

given in [36] using the quadratic minimization lemma [5] as in [88], and then de-

rived the RLS update equations presented in [36]. Next, we provided a summary

of the Markov-parameter-based, time-series-coefficients-based, and NMP-zero-based
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controller construction techniques that have been developed in [110, 88, 36]. We pre-

sented a summary of closed-loop stability and convergence properties of the instan-

taneous and cumulative RCAC update laws. The most notable assumption required

for these properties is that the NMP zeros of the plant, if any, are known. Finally, we

presented an application of the algorithm to road-following preview control problem.

In Chapter III, we investigated RCAC for nonsquare plants, which generically

have no transmission zeros. Except for the limited investigation of RCAC for SIMO

and MISO plants provided in [97], RCAC for nonsquare plants has not been studied

before. We started the main discussion by providing motivating examples which show

that RCAC may lead to unbounded control input and unbounded plant response, even

when the nonsquare plant has no transmission zeros. Next, we provided an analysis

which shows that, in the wide case, the control signal generated by RCAC lies inside a

subspace that is contained within the input space, which we call the “input subspace”.

Next, we analyzed the stability of the controller update. We demonstrated that, in

the case where d = 1, the controller update is static, and therefore stability is irrel-

evant, and, in the case where d = 2, the controller update is globally exponentially

stable under a weak persistency assumption. We also provide sufficient conditions for

convergence of the adaptive controller, which shows that, if the performance output

lies inside an output subspace which depends on the first nonzero Markov param-

eter, then the controller converges. These results point out the existence of two

implicit squaring operations performed on the nonsquare plant: one performed by

pre-compensating the plant, the other performed by post-compensating the plant. In

the wide case, pre-compensation leads to squaring-down, which incorporates addi-

tional zeros due to squaring, which we call “input-subspace zeros”. Similarly, in the

tall case, post-compensation changes the zero structure and incorporates additional

zeros, which we call “output-subspace zeros”. We showed that if the nonsquare plant

has NMP subspace zeros, then RCAC attempts to cancel these zeros, which leads to
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unbounded control input in the wide case, and unbounded control input and perfor-

mance output in the tall case. In light of these findings, we extended the retrospective

cost function to include a performance-dependent control penalty in order to prevent

the controller from generating an unbounded control input.

With regard to retrospective cost adaptive control of nonsquare plants, future work

should focus on a proof of stability and convergence for the adaptive system. In this

dissertation, we analyzed the mechanics behind the instability observed in nonsquare

plants, and showed that the presence of NMP subspace zeros may cause RCAC to

converge to a destabilizing controller. However, we did not provide a rigorous stability

and convergence analysis for the case when the subspace zeros are minimum phase.

Future research might focus on extending the stability proof in [43] to nonsquare

plants with minimum phase subspace zeros. Furthermore, the analysis presented in

Chapter III is confined to the case Gf(q
−1) = Hdq

−1, where Hd is assumed to have full

rank. Future work might focus on extending the results developed in this dissertation

to higher-order Gf , and to the case where Hd may have less than full rank. It should

be noted that, in the case where Hd has less than full rank, input and subspaces do

play a role in square plants as well as nonsquare plants. Specifically, assume that

the plant is square, and that Hd has less than full rank. Then, dim R(HT
d ) < lu

and thus u is contained inside a proper subspace of the input space. Furthermore,

since dim N (HT
d ) ≥ 1, the controller may converge with nonzero performance output.

Therefore, square, minimum-phase plants that have rank-deficient Hd may have NMP

subspace zeros, which may lead to the same instability that was demonstrated for

nonsquare plants in Chapter III.

In Chapter IV, we modified the RCAC update laws of [36, 88] to include a per-

formance dependent control penalty. This modification is called “η-modification”

because of the similarities of the technique with the ǫ-modification developed in [78].

This modification penalizes the distance between the adaptive controller and an a
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priori known stabilizing controller on the regressor directions. Therefore, this modi-

fication pushes the control input toward the input signal that would have been gen-

erated by the stabilizing controller. In the open-loop stable case, a simple choice for

the stabilizing controller is the zero-gain controller. In this case, the η-modification

prevents the control input from growing without bound. We presented numerical ex-

amples demonstrating RCAC with η-modification for both SISO and MIMO plants.

Finally, we applied robust RCAC to Rohrs counterexamples in order to determine its

ability to address the effects of unmodeled dynamics and unknown NMP sampling

zeros. We showed that the RCAC update laws of Chapter II without η-modification

exhibit instability when the unknown sampling zero is NMP. However, we showed

that the robust RCAC update law with η-modification is able to follow the sinusoidal

command despite the unmodeled modes, the unknown sinusoidal disturbance, and

the unknown NMP sampling zero contributed by the unmodeled dynamics.

With regard to η-modification, future work might focus on extending the heuristic

stability arguments and developing a rigorous stability proof for the adaptive system

with η-modification. Because of the similarities of the approach with ǫ-modification

in continuous-time adaptive control, the proof may be carried out by extending the

stability proofs of ǫ-modification to discrete-time adaptive control. Furthermore, a

proof-by-contradiction may be possible for open-loop stable plants with the assump-

tion that the adaptive controller does not involve an asymptotic pole-zero cancella-

tion. This can be done by showing that, if the closed-loop system becomes unstable

and observability is preserved, then the performance output must diverge to infinity,

which would cause Θ to converge to the nullspace of the regressor, which would then

revert the closed-loop system back to open-loop, which is asymptotically stable.

In Chapter V, we provided a numerical investigation of the asymptotic command

following and disturbance rejection capabilities of RCAC with η-modification. This

numerical investigation included a large-scale simulation with random plants and ran-
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dom tuning parameters. The results of this numerical study suggested that the phase

mismatch between an FIR filter Gf involved in the retrospective cost optimization

and the open-loop plant Gzu plays critical role in the asymptotic convergence of the

performance output to zero. This numerical evidence motivated the development of

two system identification methods to fit IIR transfer functions with FIR transfer func-

tions to minimize the phase mismatch. These identification methods lead to a new

phase-matching-based controller construction technique in addition to the Markov-

parameter, NMP-zero, and time-series-based construction methods given in Chapter

II. We demonstrated the effectiveness of the phase-matching-based construction on

mass-spring-dashpot systems in the presence of multi-tone sinusoidal disturbances.

Future work includes a more in-depth analysis of the effects of phase mismatch on

the asymptotic convergence of performance to zero. In particular, phase mismatch

may be linked to positive realness of the plant transfer function Gzu divided by the

FIR transfer function Gf . It should be noted that passivity of Gzu/Gf is a sufficient

condition for having less than 90 deg phase mismatch at the frequency interval [0, π]

rad/sample.

Finally, in Chapter VI, we considered RCAC in the presence of aliasing, due to ei-

ther the high frequency free response of the plant, or the high-frequency content in the

disturbances. We showed that the intersample command-following performance may

be nonzero due to aliasing of disturbances. We demonstrated that if the disturbance

frequency is larger than the Nyquist frequency, then RCAC converges to an internal

model controller with high gain at the aliased disturbance frequency. Therefore, the

samples of the performance output converge to zero, but the actual continuous-time

performance output is not zero between two consecutive sampling instants. Nev-

ertheless, the numerical examples suggest that RCAC is able to stabilize the plant

despite the high-frequency dynamics, and does not destabilize the closed-loop system

because of disturbance aliasing, unless the controllability of unstable modes is lost
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due to sampling.
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