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Abstract 

The focus of our research was to achieve better understanding of the processes 

underlining the chemistry of highly electrophilic boron cations, and to develop the 

applications of such cations to C–B bond formation.  The reactions of Lewis base borane 

complexes with potent electrophiles such as the trityl cation, bistriflimide and 

tris(pentafluorophenyl)borane were explored, and the product structures were assigned 

based on the X-ray crystallographic and spectroscopic data.  Hydride abstraction from 

Lewis base borane complexes by trityl cation was shown to be a viable method for 

generation of unstabilized primary borenium species, and several such L–BH2
+
 cations 

were shown to exist in the condensed phase in the form of diborane(6)-type dicationic 

dimers.  We also explored the aliphatic and aromatic borylation chemistry involving B–H 

borocations, and developed a procedure for the intramolecular C–H borylation of amine 

boranes that uses only a catalytic amount of a strong electrophile, and produces H2 gas as 

the sole byproduct. 

Additionally, the methodology for generation of more substituted unstabilized 

borocations derived from 9-BBN was developed, and subsequently applied to the 

borylation of electron-rich heteroaromatic compounds.  An unusually hindered boronium 

cation possessing a 9-BBN cage chelated by 1,8-bis(dimethylamino)naphthalene was 

structurally characterized and shown to be a potent borylating reagent. 
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Chapter 1 

Toward Generation of Primary Borenium Ions 

Introduction—Boron Cation Overview 

Cationic boron complexes have been known since 1906, when Dilthey et al. 

reported formation of salt-like boron compounds such as [(acac)2B]
+
 [FeCl4]

−
 (acac = 

2,4-pentanedionate) upon treatment of 1,3-diketones with BCl3 followed by anion 

exchange.
1
 The range of cationic boron species produced in the following 100 years is 

remarkable.  Both extremely robust species surviving reflux in aqueous acids and 

transient cations existing only in the gas phase have been reported.  In general, reactivity 

of boron compounds is influenced by the coordination number of the boron atom, its 

Lewis acidity, and both steric and electronic properties of the substituents.  The same 

considerations apply to cationic boron complexes, with the coordination number arguably 

being the most important factor determining borocation reactivity.  As proposed by Nöth, 

boron cations can be divided into three major groups based on their coordination number 

(Figure 1-1).
2
 

This simple division scheme allows making some generalizations regarding the 

reactivity of boron cations, although it is important to keep in mind that no distinction is 

made about B–L and B–R bond orders and population of the formally vacant p-orbitals at 

boron.  Thus, for a group of structurally related species, dicoordinate (borinium) cations 

can be expected to have higher reactivity toward external Lewis bases than the 



 2 

corresponding tricoordinate (borenium) species.  Tetracoordinate (boronium) cations, in 

turn, can be expected to have the lowest reactivity due to the absence of empty p-orbitals 

at boron.  Also, the borinium-borenium-boronium nomenclature conveniently parallels 

the trends observed in the 
11

B NMR chemical shifts of borocations, due to the substantial 

dependence of chemical shifts on the coordination number at boron, a topic that will be 

discussed later. 

Figure 1-1 also serves to illustrate some shortcomings of the traditional Lewis 

structure drawings when applied to boron cations.  Despite the absence of a formal 

positive charge at boron in Lewis structures, the reactivity of these compounds is best 

understood by assuming that the net positive charge of the cation mostly resides at the 

boron atom.  In view of this, and also of the fact that multicenter bonds frequently 

encountered in boron compounds cannot be properly described by Lewis structures, both 

Lewis and abbreviated (net charge) structures will be used interchangeably throughout 

the text. 

Figure 1-1.  Major boron cation classes
a
 

 

a
L = neutral Lewis base ligand
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Some general understanding of the reactivity of boron cations can be gained from 

their isoelectronic relationship with carbenium ions.  Thus, assuming that BH3 is 

isoelectronic with CH3
+
, primary borenium cation 1 can be considered to be isoelectronic 

with dication 2.  It is this isoelectronic relationship that allows classifying borenium 

cations as gitonic superelectrophiles according to Olah's terminology.
3
 

 

As with the isoelectronic carbenium counterparts, borinium and borenium 

structures are most easily accessible in those structural environments that allow efficient 

population of the p-orbital on the boron atom.  Similarly to the widely encountered 

iminium and oxocarbenium structures in carbocation series, the vast majority of known 

borinium and borenium ions are stabilized by adjacent N and O atom lone pairs.  

Unstabilized borinium and borenium structures are exceedingly rare, however. Thus, the 

extremely reactive non-stabilized dicoordinate borinium cations have been generated 

exclusively in the gas phase,
4
 while convincing evidence for the existence of non-

stabilized tricoordinate borenium ions in the condensed phase was reported only very 

recently (Chapters 2, 3).
5
 

Tricoordinate borenium cations hold the most promise for synthetic applications.  

This is due to their intermediate position between the rather unreactive tetracoordinate 

boronium species and the violently reactive dicoordinate borinium cations.  Since the 

area of cationic boron complexes has been reviewed extensively,
2,6

 we will only focus on 
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some of the major methods used for borenium generation, as well as selected synthetic 

applications. 

Even though the first tricoordinate borenium species might have been encountered 

as early as in 1933,
7
 it was not until the advent of 

11
B NMR spectroscopy that their 

existence was unambiguously established.  In 1970 Ryschkewitsch et al. reported 

formation of tricoordinate borenium ion 4 upon chloride abstraction from 4-picoline BCl3 

complex 3 (eq 1).
8
 The tricoordinate nature of cation 4 was deduced from the prominent 

change in the 
11

B chemical shift upon reaction of 3 with Al2Cl6 (3, δ 
11

B +8 ppm; 4, 

δ 
11

B +47 ppm).  The chemical shift difference between tricoordinate salt 4 and 

tetracoordinate precursor 3 (39 ppm difference) illustrates the usefulness of 
11

B NMR 

spectroscopy for determining the number of ligands at boron.  Generally, tetracoordinate 

boron species give rise to signals anywhere between +20 and −60 ppm, while 

tricoordinate boron peaks are typically observed between +100 to +10 ppm.
9
 The same 

study by Ryschkewitsch et al. also proved the existence of an equilibrium between 

3 + Al2Cl6 and 4 (Keq ≈ 20), confirming that tricoordinate cation 4 does not form by a 

spontaneous dissociation of 3, but rather by interaction of 3 with a strong halophile.  This 

equilibrium also suggests that 4 is a sufficiently strong halophile to partially compete for 

Cl
−
 with strongly Lewis acidic Al2Cl6.  Further support for the Lewis acidity of 4 comes 

from its reactivity with added Lewis bases, such as NMe3 (eq 1) and Cl
−
. 
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Overall, formation of 4 from 3 represents a widely used approach for borenium 

generation, namely abstraction of an anionic fragment (in this case Cl
−
) from a 

tetracoordinate boron complex by a strong Lewis acid.  Aside from halide abstraction by 

a halophile (eq 1), other variations of this general approach are known, such as hydride 

abstraction by a “hydridophile”, which is the focus of the following parts of this chapter. 

Protonation of tricoordinate boron species possessing basic ligands at boron is the 

other commonly used approach for accessing borenium ions.  This method is especially 

efficient for generation of tricoordinate boron cations from aminoboranes R2B–NR'2.  In 

1984 Narula and Nöth reported what might be the first convincing evidence for the 

formation of n-stabilized borenium structures upon protonation of aminoboranes (eq 2),
10

 

although such processes have been considered previously.
11

 Despite the diminished 

basicity of the nitrogen lone pairs due to π-delocalization, protonation of diazaborolidine 

6 with TfOH proceeds smoothly yielding borenium triflate 7. 

 

Several factors account for the existence of salt 7 in the tricoordinate borenium 

form as opposed to the tetracoordinate covalent adduct 8.  While the stability of the 

tricoordinate form is partially determined by the low coordinating ability of the triflate 
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anion, this by itself might not be sufficient to prevent formation of the covalent adduct.  

In fact, even the much less coordinating Tf2N
−
 anion has been shown to form covalent 

adducts with tricoordinate boron cations in some circumstances (vide infra).  The other 

factor determining the stability of the tricoordinate form of 7 is the population of the 

p-orbital on boron by the lone pair of the adjacent nitrogen atom.  This iminium-type 

stabilization decreases Lewis acidity of the boron atom, thus preventing interaction with 

the weakly basic TfO
−
 anion. 

An undisputable proof of the tricoordinate nature of borenium 7 in the solid state 

was obtained by a single crystal X-ray diffraction study.
10

 To produce suitable quality 

crystals, salt 7 was prepared by an independent route starting from boron triflate 9 and 

diphenylamine (eq 2).  The process apparently involves complexation of the amine to the 

Lewis acidic boron center, followed by the loss of triflate and a proton transfer.  This 

nucleophilic addition–heterolysis approach represents another common method used to 

access borenium species, and will be discussed in more detail in Chapter 3. 

Despite the long history of cationic boron compounds, they have seen relatively 

few synthetic applications.  Arguably, the most widely known boreniums are the cationic 

oxazaborolidine catalysts developed by Corey et al.
12

 The inherent Lewis acidity of the 

borenium unit constrained by the asymmetric prolinol backbone makes protonated 

oxazaborolidines a highly efficient class of chiral Lewis acids.  A typical oxazaborolidine 

borenium preparation route involves protonation of the commercially available neutral 

aminoborane 10 with strong protic acids such as TfOH or Tf2NH (eq 3).
13
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In view of the utility of ionic oxazaborolidine catalysts, it is surprising that little 

data is available to convincingly establish the degree of coordination around the B atom 

in protonated oxazaborolidines in solution.  No 
11

B NMR data has been reported, and the 

less informative 
1
H NMR evidence suggests that salt 11 apparently exists in equilibrium 

with the corresponding covalent triflate adduct (cf. equilibrium between 7 and 8).  In 

general, the equilibria between tricoordinate boreniums and their corresponding neutral 

tetracoordinate counterion adducts are substantially affected by borenium structure and 

counterion coordinating ability, as well as smaller factors such as the solvent effect. 

One of the major goals of our research is to develop boron reagents that are 

sufficiently electrophilic to interact with unactivated C–H bonds in both aromatic and 

aliphatic environments.  Logical steps toward reaching this degree of electrophilicity in 

boron cations are to increase the Lewis acidity of the empty orbital at boron, and to 

decrease the coordinating ability of both the counterion and the solvent.  The subsequent 

parts of this chapter will focus on preparation and properties of some of the most 

electrophilic boron species accessible in the condensed phase, while the following 

chapters mostly deal with applications of such species toward C–H bond 

functionalization. 
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Electrophilic Activation of Lewis Base Borane Complexes 

Development of highly electrophilic cationic boron reagents capable of 

interacting with weakly basic σ- and π-bonds crucially relies on the availability of tools 

and methods that could be used to regulate Lewis acidity of the boron atom.  The 

coordinating properties of the medium in which such cations are generated must also be 

controlled tightly to ensure that the solvent and the counterion don't bind to the boron 

electrophile irreversibly.  In our attempts to generate highly reactive borenium species we 

focused our attention on cations possessing exclusively σ-donor substituents at boron.  In 

the absence of n- and π-donor ligands, hyperconjugation is expected to be the only 

substantial contributor of electron density to the vacant p-orbital at B.  Because of this, 

the electron population of the p-orbital is expected to be noticeably lower than in the 

previously reported borenium salts.  The degree of borenium stabilization can further be 

reduced by introducing H substituents at boron, thereby limiting the number of groups 

available for participation in hyperconjugative interactions.  The subsequent sections of 

this chapter summarize our efforts toward the preparation of some of the least stabilized 

borenium species imaginable. 

Lewis base borane complexes are well known to react with electrophiles.
14

 In this 

process the starting borane complex 13 formally acts as a hydride source, while the 

electrophile acts as a “hydridophile” (eq 4).  The choice of electrophile is virtually 

unlimited, given that the electrophile is sufficiently strong to make the process 

thermodynamically favorable. 
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Depending on the leaving group ability and coordinating properties of X, the 

resulting B–X bond in complex 14 can be expected to have a variable degree of covalent 

character.  In principle, in the case of a sufficiently weakly-coordinating X
−
, complex 14 

can be reasonably expected to exist in the borenium form 15, making the reaction 

between L–BH3 and E–X a viable pathway for non-stabilized borenium generation.  The 

exact position of the borderline between 14 and 15 was not known at the time this 

research project was initiated, however. 

Reactions of L–BH3 with Electrophiles Possessing Moderately Coordinating Counterions 

Probably, the most desirable electrophiles for Lewis base borane complex 

activation are protic acids, since the only other product (E–H, eq 4) generated besides the 

desired 14 or 15 would be H2 gas.  Early attempts to use strong acids TfOH and Tf2NH 

(bistriflimide) in Et3N–BH3 activations performed by Timothy DeVries led to the 

conclusion that tetravalent boron adducts 14 (L = Et3N, X = OTf and NTf2) are formed as 

dominant products.
15

 No other structural features of these adducts besides coordination 

number at boron have been established, however.  Further clarification of these features 

was the starting point for the studies presented below. 

Treatment of a range of amine borane complexes 16 with 1 equiv of Tf2NH in 

CD2Cl2, d8-PhMe or d5-PhBr generally produced mixtures of two isomeric species (eq 5, 

Table 1-1).  The reaction proceeded vigorously, and gas liberation ceased within seconds 
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at rt, indicating complete consumption of Tf2NH.  The products were identified as N- and 

O-bound covalent boron bistriflimides 17 and 18 based on multinuclear NMR 

spectroscopy.  Thus, both species could be reliably assigned as tetracoordinate boron 

complexes based on 
11

B NMR data.  From 
19

F and 
13

C NMR data it is also apparent that 

in one of the isomers both CF3 groups are magnetically equivalent, as expected in the 

N-bound isomer 17, but they are distinctly different in the O-bound isomer 18.  

Bistriflimide connectivity isomerism has previously not been observed in boron 

compounds (very few boron sulfonylimides have been reported so far
16

), although it is a 

known phenomenon in Si bistriflimides.
17

 

 

In most cases the ratio of 17 to 18 measured immediately following mixing 16 

and Tf2NH was different from that observed after a few hours at room temperature, 

suggesting a kinetic preference for the formation of one of the isomers.  Such kinetic 

product mixtures initially contained larger amounts of the O-bound isomer 18, some of 

which gradually turned into 17 over time.  Activation of Me3N–BH3 (16a) with Tf2NH in 

d8-PhMe serves as a representative example where equilibration to the thermodynamic 

product ratio was observed to be particularly slow (hours at rt).  To avoid discrepancies 

caused by slow kinetics, ratios of N- vs. O-bound products (17 vs. 18) summarized in 

Table 1-1 were confirmed to remain unchanged for days following the initial 

equilibration period.  Product ratio (17 vs. 18) measured at equilibrium correlates 

reasonably well with steric properties of the amine fragment.  Thus, while 17 is the 

thermodynamically preferred isomer in the relatively unhindered Me3N series (7:1 
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17a:18a), the O-bound isomer is clearly the dominant species in the far more hindered 

i-Pr2NEt derivatives (<1:25 17c:18c).  Similar observations in Si bistriflimides have been 

rationalized based on lower steric demands of the bistriflimide fragment in the O-bound 

isomer,
17

 and the same considerations apparently can be extended to boron compounds. 

While the observed equilibration suggests facile interconversion of 17 and 18, the 

exact mechanism of this process is unclear.  The existing array of experimental data does 

not allow a clear distinction between the dissociative mechanism (which would involve 

primary borenium 19, eq 6) and other alternatives, such as an SN2 process involving 

Tf2N
−
 anion inevitably present in all Tf2NH activations, as suggested by 

19
F NMR data. 

Table 1-1.  
11

B and 
19

F NMR Data for R3N–BH2NTf2 Complexes 17 and 18
a
 

Entry R3N 

δ 
11

B, 

N-bound 

(17) 

δ 
11

B, 

O-bound 

(18) 

δ 
19

F, 

N-bound 

(17) 

δ 
19

F, 

O-bound 

(18) 

N-/O-bound 

product ratio 

(17:18) at 

equilibrium
b
 

a Me3N −3.7 4.0 −69.2 −77.6, −79.1 7:1 

b Et3N −7.4 0.7 −68.9 −76.7, −79.1 1:4.7 

c (i-Pr)2NEt ND 1.2 −68.4 −77.0, −79.1 <1:25 

d p-MeBnNMe2 −3.2 4.0 −69.0 −76.6, −79.1 4.2:1 

e 
 

−4.6
c
 0.6

c
 −69.2

c
 

−76.7
c
, 

−78.7
c
 

1:2.6
c
 

a
1:1 R3N–BH3:Tf2NH, CD2Cl2, rt. 

b
monitored up to 2-14 days at rt. 

c
in d8-PhMe. 

 

 

Similar mechanistic ambiguities represent a recurring theme throughout this work.  

As an example, reactions of 17/18 with nucleophiles can be imagined to proceed either 

by an SN1 pathway involving dissociation to 19 (as in eq 6), or by a direct SN2 

displacement.  To obscure issues even further, primary borenium 19 can potentially exist 
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as a weak complex with the solvent, a species that may also be capable of reacting by an 

SN2 pathway.  While a careful kinetic study can distinguish between these mechanistic 

alternatives in theory, we chose not to focus on the fine mechanistic details, but rather to 

treat 17/18 and related highly reactive complexes as “equivalents” of 19, making the 

distinction between these species only when reliable spectroscopic evidence is available.  

It should be noted, however, that the “equivalency” of 17/18 to 19 is only partial, since 

both species can still differ substantially in their reactivity.  It is only their ability to serve 

as a source of the cationic [R3N–BH2]
+
 unit (19) in reactions with nucleophiles that is the 

real basis for their equivalency in our terms. 

When activations of amine boranes were performed using only a 

substoichiometric amount of Tf2NH, formation of an additional product was observed by 

NMR spectroscopy.  Thus, when Et3N–BH3 (16b) was treated with 0.5 equiv of Tf2NH in 

CD2Cl2, NMR assay after 30 min at rt indicated the presence of three new compounds 

aside from unreacted 16b (eq 7).  While two of the products were found to be 17b and 

18b in the same 1:4.7 ratio as in the stoichiometric Tf2NH activation experiment 

(Table 1-1), the third product was assigned as the unusual H-bridged cationic boron 

complex 20 based on the similarity of the NMR data to that reported by Timothy DeVries 

for the corresponding [B(C6F5)4]
−
 salt.

15
  Structurally, cation 20 can be viewed as a 

complex between amine borane 16b and the hypothetical primary borenium cation 

19 (R = Et), with the central 3c2e B–H–B bond formed from the empty p-orbital of 

19 (R = Et) and the σ-basic B–H bond of 16b.  The observed ratio between 16b, 17b, 18b 

and 20 (approx. 7.2:1.1:5.0:1.0 mol) thus suggests that B–H σ-bonds of Et3N–BH3 are 

sufficiently basic to compete with Tf2N
−
 for binding to 19 (R = Et) in the thermodynamic 
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sense.  The existence of a rapid equilibrium between 16b, 17b/18b and 20 is in line with 

the previous observations suggesting rapid formation of covalent boron bistriflimides 

upon treatment of independently generated [B(C6F5)4]
−
 salt of the H-bridged cation 20 

with the Tf2N
−
 salt of a hindered pyridinium cation.

15
 

 

Despite the structural description of cation 20 as a complex between 16b and 

19 (R = Et), the free borenium cation 19 (R = Et) is not necessarily present at any stage of 

the reaction shown in eq 7, since both the forward and the reverse processes can also be 

envisioned as proceeding by SN2-type displacements at B atoms of 17b or 18b (forward 

process) or 20 (reverse process).  While the chemistry of such H-bridged cations 

occupying an intermediate position between borenium and boronium species will be 

discussed in more detail in the following section, it should be noted that eq 7 represents 

the borderline case for the formation of covalent counterion adducts of 19.  Any further 

decrease in the coordinating ability of the anion can be expected to favor formation of 20. 

Reactions of L–BH3 with Electrophiles Possessing Weakly Coordinating Counterions 

As was pointed out in the previous section, attempts to generate borenium ions in 

the presence of compounds possessing basic B–H bonds can lead to formation of 

H-bridged borocations when the coordinating ability of the counterion and the solvent is 
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sufficiently low.  This section deals specifically with chemistry of such H-bridged boron 

cations, including their intermediate role in the generation of tricoordinate borenium ions. 

Cationic boron species possessing 3c2e B–H–B bonds are fairly uncommon, 

despite the wide abundance of multi-center bonds in both neutral and anionic boron 

compounds.  In 1997 Kodama reported formation of triboron cation 21 upon treatment of 

B2H4(PMe3)2 with Ph3C
+
 BF4

−
.
18

 To the best of our knowledge, this is the first report on a 

borocation for which the existence of a B–H–B bridge can be reliably assigned based on 

multinuclear NMR data.  Facile cleavage of the B–H–B bridge in 21 by PMe3 was also 

reported (eq 8). 

 

More intriguingly, formation of a cation tentatively assigned as [B2H5(PMe3)2]
+
 

by hydride abstraction from Me3P–BH3 with Ph3C
+
 BF4

−
 was also reported in the same 

communication by Kodama,
18

 although no structural or spectroscopic details were 

provided.  Hydride abstractions from amine and phosphine borane complexes by Ph3C
+
 

salts were further studied in our group by Timothy DeVries, and it was concluded that 

when L–BH3 (23) and Ph3C
+
 [B(C6F5)4]

−
 were mixed in a 1:1 ratio, hydride abstraction 

proceeded only to the stage of H-bridged intermediate 24, leaving 50 mol% of Ph3C
+
 

intact (eq 9).
15

 At that point it was also noted that when CH2Cl2 solvent was used, 

extensive decomposition of Ph3CH byproduct was taking place.  This behavior was 

rationalized by Timothy DeVries by proposing facile dissociation of 24 to 25 and 23 at rt, 

followed by generation of the electrophilic CH2Cl2 complex 26, and subsequent reaction 
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of 26 with Ph3CH byproduct (Scheme 1-1). Fast reactions of 24 with other nucleophiles 

such as R3SiH were also proposed to proceed via generation of an equilibrium 

concentration of 25 by the spontaneous dissociation of 24. 

 

Scheme 1-1.  Proposed Mechanism for the Electrophilic Ph3CH Degradation in CH2Cl2
15

 

 

Our further exploration of the hydride abstraction from Lewis base borane 

complexes, however, raised the suspicion that the proposed dissociation of 24 to 25 and 

23 may be somewhat less thermodynamically favorable than was suggested previously.  

For example, it was noticed that the stability of H-bridged dimers 24 in CD2Cl2 solution 

containing Ph3CH depends rather strongly on whether additional Ph3C
+
 is present in the 

solution or not.  Thus, in the absence of Ph3C
+
, a 1:1 mixture of 24a (24, L = Me3N) and 

Ph3CH in CD2Cl2 does not show any traces of Ph3CH decomposition for weeks at rt, 

while in the presence of 1 eq Ph3C
+
 substantial decomposition of 24a and Ph3CH is 

evident after a mere 10 min at rt.  The ability of cation 24 to generate 25 efficiently in a 

spontaneous dissociation event thus demands additional investigation.  Importantly, the 
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hypothesis that 24 can produce 25 only under the influence of an added electrophile 

deserves close attention.  The relevant issues of stability of H-bridged species 24 toward 

dissociation, as well as their thermal stability, will be discussed in more detail in 

Chapter 2. 

Unambiguous structural proof for cation 24a was obtained by isolating the 

compound in the pure form, and confirming its structure by X-ray crystallography.  

Performing the reaction between Me3N–BH3 (23a) and Ph3C
+
 [B(C6F5)4]

−
 in PhH solvent 

allowed facile removal of Ph3CH byproduct by separating layers of the biphasic reaction 

mixture, while X-ray quality single crystals of 24a were produced by layering CH2Cl2 

solution of the product with hexanes.  Crystallographic analysis confirmed the H-bridged 

nature of the cation (Figure 1-2, Appendix A), and allowed measuring some bonding 

parameters despite the fact that the part of the structure to the left of H1 in Figure 1-2 is 

disordered with the Me3N–BH2 fragment occupying two different orientations.  

Comparison with the X-ray data
19

 for Me3N–BH3 reveals a ca. 0.04Å shorter B–N 

distance in 24a, and distorted B–N–C bond angles.  Thus, the B1–N1–C2 bond angle 

involving the methyl group (C2) antiperiplanar to the hydride bridge is ca. 6° smaller 

than the other two B–N–C angles, indicating hyperconjugative interaction between the 

filled orbital of N1–C2 bond with the antibonding orbital of the B–H–B bridge. 

Having confirmed the H-bridged cationic structure of 24a, we proceeded to 

investigate the possibility of generating unstabilized boreniums such as 25 by the 

stoichiometric trityl cation activation of Lewis base borane complexes.  The existing data 

suggest that moderately to weakly stabilized tricoordinate borenium species can be 

accessed by the action of “hydridophiles” on tetracoordinate boron species possessing 
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B–H bonds.  Thus, Stephan et al. reported formation of borenium 29 upon treatment of 

catecholborane (27) with a “frustrated Lewis pair” composed of t-Bu3P and strongly 

electrophilic borane B(C6F5)3 (eq 10).
20

 The key step of the process apparently involves 

hydride abstraction from the transient tetracoordinate adduct 28. 

 

Additionally, reinvestigation of the previous results on hydride abstraction from 

cyclic amine borane complexes
21

 by Timothy DeVries revealed that rather weakly 

stabilized bora-benzylic borenium cation 32 can be prepared by treating 30 with 1 equiv 

of Ph3C
+
 [B(C6F5)4]

−
 (eq 11).

15
 Interestingly, in this case the H-bridged cation 31 was 

observed to be merely an intermediate on the way to tricoordinate species 32, and not the 

ultimate trityl activation product. 

Figure 1-2.  X-Ray structure of 24a (cation only, 50% probability ellipsoids) 
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Finally, generation of a stabilized primary borenium salt 34 was reported very 

recently by Alcarazo et al.
22

 In this case formation of a dihydrido borenium species upon 

H
−
 abstraction from complex 33 by B(C6F5)3 (eq 12) was possible due to strong σ- and 

π-donating properties of the carbodiphosphorane ligand. 

 

We thus proceeded to explore the reactivity of Lewis base borane complexes with 

Ph3C
+
 [B(C6F5)4]

−
 in d5-PhBr solution at rt.  Two different types of Lewis base 

complexes were used, namely amine and N-heterocyclic carbene (NHC) borane 

complexes.
23,24

 Activation of NHC–BH3 complexes 35a, 35b and 35c with 0.5 equiv of 

the trityl salt predictably resulted in clean formation of H-bridged cations 36a, 36b and 

36c, respectively (eq 13).  The product cations were identified based on their 

spectroscopic properties, featuring broad peaks in 
11

B NMR spectra downfield from the 

corresponding starting complexes 35 (35a δ 
11

B −36.3 ppm, 36a δ 
11

B −24.6 ppm; 35b 

δ 
11

B −35.5 ppm, 36b δ 
11

B −24.6 ppm; 35c δ 
11

B −36.6 ppm, 36c δ 
11

B −22.1 ppm).  The 

H-bridged nature of the product complexes was evident from the characteristic broad 

resonances in 
1
H NMR spectra (36a δ 

1
H −2.6 ppm; 36b δ 

1
H −2.7 ppm; 36c δ 

1
H 

−3.0 ppm), paralleling observations in amine borane activation.
15

 Additionally, H-bridged 
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cation 36c [B(C6F5)4]
−
 salt was prepared in PhH suspension, isolated as a sensitive 

crystalline solid in 97% yield and characterized by 
1
H, 

11
B, 

13
C and 

19
F NMR. 

 

Subsequent addition of another 0.5 equiv of the trityl salt to the reaction mixture 

containing 36a resulted in another hydride abstraction event, producing Ph3CH, and a 

new species 37a giving rise to a 
11

B NMR signal at δ +11.9 ppm.  Formation of the new 

product was rather slow, taking a few hours at rt to reach completion.  In contrast, a 

similar reaction involving the more substituted NHC borane 35d proceeded noticeably 

faster, with full conversion of 36d to the new product 37d (δ 
11

B +8.0 ppm) reached in 

less than 10 min at rt.  Intriguingly, the structural and reactivity data summarized below 

suggest that the product of the second hydride abstraction step is not the expected 

primary borenium 38, but rather its dicationic dimer 37 (eq 14).  Quenching the products 

37 with 4-dimethylaminopyridine (DMAP) afforded isolable dihydridoboronium cations 
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39 (quantitative by in situ NMR), while BH4
−
 quench restored the starting carbene 

boranes 35 (>95% isolated yield).  Analogously, reaction of 37 with 35 cleanly afforded 

the corresponding H-bridged cations 36 as single products according to NMR assay.  No 

degradation of [B(C6F5)4]
−
 counterion was observed by 

19
F NMR, so the composition of 

the NHC containing fragment could be formulated as “NHC−BH2
+
”.  This structural 

assignment, however, does not explain the unusual 
11

B NMR chemical shift, which 

suggests that the product is unlikely to be a tricoordinate boron derivative.  In principle, 

aside from the free cation structure 38, under the reaction conditions the “NHC−BH2
+
” 

species could also exist as a base adduct, with the base being either the solvent, or the 

counterion, or the Ph3CH byproduct.  All of these possibilities, however, could be ruled 

out, since the chemical shift of the 
11

B NMR signal was observed to be fairly insensitive 

to the solvent (d5-PhBr or CD2Cl2) and the counterion ([B(C6F5)4]
−
 or [HCB11Cl11]

−
) 

used, and did not depend on the presence of Ph3CH.  Even more puzzling for the 

“NHC−BH2
+
” species, the solubility of products 37 was found to be rather low.  Thus, 

attempts to perform stoichiometric trityl activation of 35c resulted in formation of a fine 

crystalline solid insoluble in both d5-PhBr and CD2Cl2.  Even the very lipophilic carbene 

complex 35d upon activation with 1 equiv Ph3C
+
 afforded a product (37d) that was only 

moderately soluble in d5-PhBr, with excess product separating out as an oil. 

The structure of the mysterious “NHC–BH2
+
” product 37 was unambiguously 

established by X-ray crystallography.  The product derived from carbene borane 35e was 

found to offer a nice balance between solubility and crystallinity, although the reaction 

conditions had to be optimized carefully to improve the crystal quality of the sensitive 

dication salt.  Thus, competing formation of the dichlorinated cation 40e (assigned based 
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on a partially solved X-ray structure, δ 
11

B +47.6 ppm) due to the reaction with the 

solvent prevented crystallization of 37e salts from CH2Cl2, and the use of [HCB11Cl11]
−
 

counterion in PhF resulted in heavily disordered crystal structures.  Finally, suitable 

crystals of 37e precipitated out of the reaction mixture upon allowing the stoichiometric 

mixture of Ph3C
+
 [Al2Br7]

−
 and 35e to react in PhF solution at rt, again suggesting low 

solubility of the product in the relatively polar PhF solvent.  Even in this case the crystal 

quality was found to deteriorate quickly with time, prompting immediate analysis after 

reasonable crystal size is reached. 

Figure 1-3.  X-Ray structure of 37e (dication only, 50% probability ellipsoids) 

 

The X-ray structure (Figure 1-3, Appendix A) serves as the key evidence 

suggesting the dicationic nature of 37e.  The dication conforms to the crystallographically 

imposed Ci symmetry, with the inversion center rendering both “NHC–BH2
+
” subunits 

equivalent.  The same symmetry considerations define the mutually parallel orientation of 

the mean planes of both 5-membered rings with interplane separation of 0.46Å.  Another 

bonding parameter of interest is the C1–B1 bond distance of 1.58Å, which is only 

marginally shorter than the corresponding C–B bond in the starting carbene borane 35e 

(1.59Å).
25

  The most crucial bonding parameter, the B···B distance is 1.78Å which is 

very similar to B···B distances measured by X-ray crystallography in neutral RBH2 
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dimers 41 (1.79Å)
26

 and 42 (1.78Å),
27

 as well as the B···B distance determined by 

electron diffraction in the parent B2H6 (1.77Å),
28

 and substantially exceeds that 

determined in diborane(4) 43 (X-ray 1.49Å; neutron diffraction 1.48Å).
29

 The hydrogen 

atoms at the central diboron fragment were located on difference Fourier maps and 

allowed to refine isotropically as independent atoms.  A minor ambiguity about the 

number of H atoms at borons might still persist, however, due to the inherently low 

contribution of hydrogens to the electron density map.  Therefore, while X-ray structure 

refinement clearly favors the diborane(6)-type structure, other evidence would only serve 

to strengthen this structural assignment.  To this end, the B···B distance taken together 

with the results of the quenching experiments suggesting “NHC–BH2
+
” composition of 

the crystalline solid serve as the key evidence supporting the diborane(6)-type structure 

of 37e.  Most importantly, the products that are formed quantitatively upon quenching 

solid 37e with nucleophiles such as 35e or DMAP suggest that the solid, for a selected 

crystal of which the X-ray analysis was performed, must contain one BH2 unit per each 

NHC fragment. 

 

The same dicationic dimer structure 37 is apparently also preserved in the solution 

phase, explaining the unusual chemical shifts of ca. δ +8–12 ppm in the 
11

B NMR 

spectrum.  Further justification for the chemical shift value was gained by GIAO (gauge-

independent atomic orbital) calculations for 37e in dichloromethane solution.  The 

predicted value of δ 
11

B +10.8 ppm is in a good agreement with the observed chemical 
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shift of 10.7 ppm, suggesting that the structural assignment is reasonable (method details 

summarized in the computational section of this chapter).  It should be emphasized that 

dimerization of the extremely Lewis acidic cation 38 to form 37 is preferred over 

complexation with weakly basic species such as Ph3CH, CD2Cl2, d5-PhBr, [Al2Br7]
−
 or 

[B(C6F5)4]
−
, suggesting that the σ-basicity of B–H bonds of 38 is sufficiently high to 

overcome electrostatic repulsion of the two cationic fragments.  The preference for the 

dicationic structure is even more surprising given the possibility of benzylic-type 

stabilization of the empty orbital at boron by the π-system of the heterocyclic ring in 38, 

but not in 37. 

 

Having established the behavior of NHC borane complexes upon hydride 

abstraction, we turned our attention to amine borane complexes, hoping to gain insight 

into their reactivity in the electrophilic activation beyond formation of H-bridged 

monocations 24. Amine boranes (iPr)2EtN–BH3 (DIEA–BH3, 23b) and Me3N–BH3 (23a) 

were tested in the reaction with Ph3C
+
 [B(C6F5)4]

−
 in d5-PhBr at rt, giving rise to 

markedly different observations (eq 15).  Thus, treatment of the more hindered 23b with 

1 equiv of the trityl salt resulted in immediate formation of two new boron species as 

evidenced by NMR spectra.  While the major new product can be assigned as 24b (δ 
11

B 

−0.5 ppm; bridging H δ 
1
H −2.8 ppm), the other product (δ 

11
B +53.9 ppm) is clearly a 

tricoordinate boron cation.  The observation of a broad resonance around δ 
1
H 4.8 ppm 
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typical for B–H resonances in tricoordinate boron species allows us to postulate that the 

signal at δ 
11

B +53.9 ppm might be due to the primary borenium ion 25b.  It should be 

noted here that formation of other unidentified species starts to interfere within minutes 

following the mixing of reagents, and decomposition results in complete consumption of 

Ph3CH and partial degradation of [B(C6F5)4]
−
 in 2h at rt as evidenced by 

1
H and 

19
F NMR 

data.  The observed 
11

B chemical shift of +53.9 ppm for 25b (in d5-PhBr) can be 

reasonably rationalized based on the comparison with 
11

B spectra of boreniums 45 (δ 
11

B 

+85.1 ppm in CD2Cl2) and 46 (δ 
11

B +71.1 ppm in CD2Cl2, +69.5 ppm in d5-PhBr), 

which will be covered in more detail in the following chapters.  Since it is reasonable to 

expect that most of the 
11

B chemical shift difference between 45 and 46 arises from the 

differences in substituents directly attached to B, it could be proposed that replacing an 

alkyl group at B in a non-stabilized borenium with a hydrogen atom shifts the 
11

B NMR 

signal upfield by ca. 14 ppm.  Further extrapolation of this effect suggests a chemical 

shift of ca. +57 ppm for a primary borenium species, which is sufficiently close to the 

observed value of +53.9 ppm for what could be 25b.  Also, the 
11

B chemical shift of 25b 

(+55.8 ppm in d5-PhBr, method details summarized in the computational section of this 

chapter) as calculated by GIAO can be taken as further evidence for the formation of a 

primary borenium cation in the stoichiometric Ph3C
+
 activation of 23b. 

 

Behavior of the less hindered trimethylamine borane (23a) under the same 

activation conditions was noticeably different, however.  While little reactivity beyond 

generation of 24a was observed after 10 min at rt, formation of a new product 44a (δ 
11

B 
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+12.9 ppm) was evident, reaching roughly a 1:3 44a:24a ratio (
11

B NMR peak intensity) 

after 2h at rt.  Judging from the detection limits based on 
1
H and 

19
F NMR data, 

essentially no Ph3CH or counterion degradation had occurred at this point, and the 

subsequent quenching experiments were thus performed at the relatively low conversion.  

Even after 24h at rt, with 44a being the dominant component of the mixture (2.5:1 

44a:24a, 
11

B NMR peak intensity), species originating from decomposition processes 

constituted only a minor fraction of the B containing products.  While our attempts to 

obtain X-ray quality crystals of 44a have not been successful, the apparent similarity 

between this process and formation of the NHC-derived dicationic dimers 37 allows us to 

postulate that the product of the reaction of 24a with trityl cation is also a dicationic 

dimer.  This tentative assignment is substantiated by quenching experiments, which 

suggest “Me3N–BH2
+
” stoichiometry of 44a.  Thus, when the reaction mixture containing 

44a and 24a in a 1:3 ratio (1:1 mixture of 23a and Ph3C
+
 [B(C6F5)4]

−
 in d5-PhBr after 2h 

at rt) was treated with a slight excess of trimethylamine borane (23a), the resulting 

solution was found to contain exclusively 24a (as [B(C6F5)4]
−
 salt) and Ph3CH, aside 

from excess 23a.  The quenching experiment was performed at the same low conversion 

to 44a as mentioned above to ensure high quality of the 
1
H and 

11
B NMR data, which 

allowed making a clear conclusion that 44a reacts with trimethylamine borane (23a) 

forming 24a.  While the possibility that the peak at δ 
11

B +12.9 ppm might arise from 

Me3N–BH2–L
+
 (L = counterion, Ph3CH or d5-PhBr) type of species cannot be excluded 

as rigorously as in the case of NHC boreniums 37, no peaks that could be attributed to 

complexed L were identified in 
1
H, 

11
B, 

13
C and 

19
F spectra of the reaction mixtures 

containing 44a.  As an additional consistency proof, the observed chemical shift of δ 
11

B 
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+12.9 ppm is in a reasonable agreement with the calculated shift of δ 
11

B 17.0 ppm for 

44a (see computational section for details).  The above structural assignment suggests 

that the differences in 
11

B chemical shift and stability of the products derived from amine 

boranes 23a and 23b might arise from the differences in the coordination environment at 

boron, since the tricoordinate B atom in borenium 25b can reasonably be expected to be 

both more deshielded and more reactive than B atoms in the bridged dication 44a. 

Scheme 1-2.  Electrophilic activation of H-bridged borocations 

 

Two limiting mechanistic alternatives for the formation of H-bridged dications 37 

(or 44 in the amine case) are summarized in Scheme 1-2.  Depending on the ability of the 

H-bridged cations 36 to dissociate to 38 and 35 to a sufficient extent at rt, the second step 

of the electrophilic activation can either follow path a or b.  While path a might seem 

more intuitive due to the facility of the hydride abstraction from 35, path b might still 

operate in case dissociation of 36 is thermodynamically unfavorable.  Even though path b 

necessarily involves the electrostatically unfavorable interaction between positively 

charged 36 and Ph3C
+
, such interactions are rather well precedented in superelectrophile 

chemistry.
3
 Ultimate formation of dicationic product 37 can also serve as an indirect 

evidence suggesting that cation-cation repulsion can be overcome in such systems by 
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other stabilizing factors, such as 3c2e bonding.  Therefore, it is also plausible that multi-

center multi-electron interactions can lower the barrier for the formation of the doubly 

charged transition structure from two monocationic species in the hydride abstraction 

from 36 (path b). 

If the assignment of species 25b and 44 is correct, then dissociation of dicationic 

dimers 37 and 44 to their corresponding monomers should be relatively facile, since the 

differences in the amine fragments of 23a and 23b are sufficient to determine the 

preference for monocationic vs. dicationic structure.  It should be noted, however, that in 

contrast to amine borane derivatives, even the extremely hindered NHC borane 

complexes 35b and 35d (eq 13, 14) still form the dicationic dimers rather than the 

corresponding primary borenium cations, a result that can be rationalized by the 

relatively higher σ-basicity of B–H bonds in the strongly σ-donating NHC environment. 

The results presented up to this point suggest that some borenium cations are 

potent Lewis acid.  Thus, the extremely high electronic demand of the empty p-orbital at 

B in unstabilized primary borenium cations determines the ability of such species to 

covalently bind weak nucleophiles such as Tf2N
−
, as well as to form 3c2e bonds with  

B–H bonds of other boron species including another primary borenium cation.  It was 

thus of interest for us to perform a more systematic analysis of known borenium cations 

with the aim of establishing the effects of the structure on their Lewis acidity. 

Experimental Evaluation of Borenium Lewis Acidity 

Borenium ions are stronger Lewis acids compared to typical boranes due the 

combined effect of the net positive charge and a formally vacant p-orbital at tricoordinate 

boron, but how much stronger are they?  There is no simple way to answer this question.  
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Judging from the experimental data available in the literature, the degree of Lewis acidity 

of borenium ions spans a rather wide range, depending on the nature of substituents 

attached to boron.  Thus, if the ability to form covalent bonds to counterions is used as a 

rough measure of Lewis acidity, then the two representative limiting cases would be (1) 

the aromatic cation 47 which resists complexation with the relatively nucleophilic 

chloride anion,
30

 and (2) the powerful electrophile H2B–NMe3
+
 (25a) that covalently 

binds even to the weakly coordinating bistriflimidate anion to form the neutral adduct 

14b (L = Me3N; eq 4). However, the Lewis acidity of borenium ions depends on the 

steric as well as the electronic availability of the vacant p-orbital on boron. Thus, the 

borenium cation 45 does not bind the bistriflimidate counterion even though it lacks 

stabilizing π or n electron donors, nor does it bind excess added triethylamine 

(Chapter 3).
5
 The more highly substituted 45 would have additional stabilizing 

hyperconjugative interactions with proximal σ-bonds compared to 25a, but severe steric 

crowding is a major factor that makes 45 a weaker Lewis acid than 25a.  In contrast, the 

previously studied relatively unhindered borenium cation 47
30

 is unlikely to interfere 

sterically with an incoming nucleophile such as chloride ion, but 47 does not undergo 

conversion to the tetracoordinate boron adduct because the boron p-orbital is strongly 

populated by involvement in the aromatic π-system. In this case, electronic factors are 

dominant. 

 

While most reports on borenium ion chemistry contain qualitative descriptors of 

Lewis acidity (such as the ability to coordinate counterions or other Lewis bases), 
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systematic comparisons of borenium Lewis acidities have been rare.  Such comparisons 

would be informative if performed using the same reference Lewis base to probe the 

equilibrium between tricoordinate and tetracoordinate boron species, but the literature 

data are very limited, while data obtained using spectroscopic evaluation of 

tetracoordinate boron adducts are also limited and rather difficult to compare.  Estimates 

of Lewis acidity for borenium ions based on NMR methods have been reported in some 

cases. Thus, Piers et al. investigated the effect of complexation by borenium species 48 

and 49 on the 
1
H chemical shift for the β-proton of crotonaldehyde (Child's test), and 

concluded that the Lewis acidities of 48 and 49 are mutually close and comparable to 

those of Et2AlCl and BF3.
31

 In a somewhat different test involving non-equilibrium 

conditions, Ingleson et al. assessed the Lewis acidity of the hypothetical cation 50 by 

measuring the 
31

P chemical shift of the Et3PO adduct 51 (δ 106.9 ppm) and comparing 

this chemical shift with the corresponding values for the Et3PO adducts of several 

reference Lewis acids including (C6F5)3B (δ 76.6 ppm), AlCl3 (δ 80.3 ppm), and BBr3 (δ 

91.2 ppm).
32

 The chemical shifts for the three reference Lewis acids increased in the 

same order as their Lewis acidity determined from earlier studies using Child's test.  This 

correlation suggests that the non-equilibrium 
31

P chemical shifts may also be used to 

estimate relative Lewis acidities. Unfortunately, the standard Child's test (complex 

formation with crotonaldehyde in CD2Cl2) could not be performed with 50 due to its 

incompatibility with the solvent.  This problem was avoided in C6D6 solution, but the 

crotonaldehyde chemical shift data obtained for 50 in C6D6 did not show a simple 

correlation with the reference data in CD2Cl2, and correlation data for the same solvent 

were not reported. 
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The simpler test based on the 
31

P chemical shift of 51 is consistent with the notion 

that 50 is a very powerful Lewis acid that is probably more potent than the neutral boron 

Lewis acids B(C6F5)3 and BBr3.  On the other hand, Lewis acidity estimates based on the 

31
P chemical shift criterion would be influenced by other factors resulting from structural 

changes near the boron subunit.  Thus, the 
31

P chemical shifts for the Et3PO adducts 

corresponding to the hypothetical, non-stabilized borenium cation H2BNMe3
+
 (25a) and 

the observable π-stabilized "borabenzylic" cation 32
15

 happen to be identical (δ 85.7 ppm 

in CD2Cl2) despite the apparent difference in stabilization (see experimental section for 

details).  In view of these findings, more definitive experimental methods to probe the 

Lewis acidity of borenium species are needed, and remain to be developed. 

Computational Studies on Lewis Acidity of Borenium Ions 

The experimental challenges associated with handling highly reactive boron 

cations prompted us to use modern electronic structure methods as a means for getting 

additional insight into both the structural features and reactivity of such species.  Besides 

the quantitative results summarized in this section, the use of computational tools 

throughout the project served to outline additional areas where experimental efforts 

should be directed.  This section primarily deals with choosing appropriate methods for 

modeling cationic boron complexes, as well as with predicting the NMR properties and 

estimating the Lewis acidity of such species.  The computational results relevant to the 
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reactivity of borocations are mostly treated in the computational section of the next 

chapter. 

Closed shell boron compounds belong to the “easy cases” for ab initio electronic 

structure methods and can generally be modeled by post-Hartree–Fock methods with 

high accuracy.  The size of the systems of interest to our research, however, and 

unfavorable scaling properties of electron-correlated ab initio methods made us consider 

a suitable density functional theory (DFT) method instead.  Surprisingly enough, most 

widely used DFT functionals perform rather poorly in modeling even the simplest Lewis 

base complexes of boron Lewis acids.  Thus, B3LYP and PBE functionals famous for 

their excellent performance in typical problems of interest to organic chemistry fail to 

reproduce experimentally determined dissociation enthalpies of simple amine borane 

complexes.  As an example, the B–N bond dissociation enthalpy of Me3N–BMe3 

calculated at B3LYP/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p) level of theory is 

only −2.4 kcal/mol,
33

 which is over 15 kcal/mol off from the experimentally determined 

enthalpy of −17.6 kcal/mol.
34

 Perhaps more disturbing is the observation that the 

accuracy of the dissociation enthalpies predicted by this method varies substantially 

among a range of MenH3−nN–BMe3 complexes,
33

 rendering systematic error correction 

impossible.  Overall, the poor performance of most widely used DFT functionals appears 

to be traceable to their inability to reproduce the effects of non-bonding interactions.  

This is further substantiated by the fact that the performance of the PBE functional can be 

noticeably improved by including the empirical dispersion correction.
33

 

The recently developed “Minnesota” family of parametrized functionals 

introduced by Truhlar et al. represents a significant milestone in the development of DFT 
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functionals suitable for use in systems with substantial contribution from non-bonding 

interactions.
35

 Thus, mean absolute error (MAE) for a range of B–N bond dissociation 

enthalpies calculated using M06-2X functional with a large basis set is only 0.3 kcal/mol, 

as compared to the MAE of 10.8 kcal/mol for B3LYP functional with the same basis 

set.
33

 A prohibitively expensive basis set (6-311++G(3df,2p)) was used for geometry 

optimization and frequency calculation, however, so a less computationally demanding 

method had to be established and validated for our systems.  Calculating single point 

energies at a high level of theory using the molecular geometries from a lower level of 

theory is a common method for reducing computational effort without significant loss in 

accuracy.
36

 The relatively inexpensive 6-31+G(d,p) basis set was thus chosen for 

geometry optimizations and frequency calculations, while single point energies were 

determined using a large 6-311++G(3df,2p) basis set. 

The scarcity of high quality experimental thermochemical data for boron Lewis 

acid complexes is a substantial obstacle for validating the chosen computational method, 

however.  To an extent, this could be compensated for by using highly accurate 

composite methods to generate a set of reference energy values.  Taking the accuracy of 

the reference method to the extreme, W1BD composite ab initio method was used.
37

 A 

member of the “Weizmann” family offering sub-kcal/mol accuracy in atomization 

energies, this outrageously demanding method can only be used on species containing 

just a few non-H atoms. 

Computational Details and Method Validation 

The following methodology was used to obtain the results summarized in this 

section, as well as the computational results presented in the following chapters. 
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All calculations were performed using the Gaussian 09 suite of computational 

programs.
38

 Gas-phase W1BD calculations were performed as implemented in  

the software; tight geometry optimization criteria were used, and the use of  

symmetry was enabled for larger systems.  All other calculations were performed at 

M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) level of theory.  Unless specified 

explicitly, calculations were performed in the gas phase, and stationary points at the 

potential energy surface (PES) were confirmed by calculating vibrational frequencies.  

Counterions were not considered in the calculations performed on cationic species.  Tight 

optimization criteria (opt=tight) and ultrafine integration grids (int=ultrafine) were used 

in all DFT calculations.  A scaling factor of 0.97 was used for the thermochemical 

analysis.  Counterpoise correction for the basis set superposition error was applied to 

single point energies where specified explicitly.  Extensive conformational search was 

not performed, so some of the structures presented below and in the following chapters 

might not be the lowest energy conformers.  For the structures for which no X-ray 

crystallographic data exist, a few arbitrarily chosen conformations were tested, and the 

lowest energy conformation was used to gather the actual data.  This is not expected to be 

a major complication, since the nature of the results was mostly intended to be qualitative 

rather than quantitative.  As will be mentioned further, in some cases the condensed 

phase effects could not be neglected, such as when modeling processes involving 

dicationic species.  In those cases the solution phase was modeled using the SMD 

method.
39

 It should be noted, however, that the accuracy of the currently available 

methods for solution phase modeling is only moderate, and thus only rough conclusions 

can be drawn.  The choice of the solvation method is somewhat arbitrary in the absence 
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of experimental thermochemical data on borenium ions, but Truhlar’s SM methods are 

typically known to perform better than other continuum solvation models.
40

 In the cases 

where solution modeling was employed, all steps of the calculation (geometry 

optimization, frequency calculation, single point energy calculation, NMR properties 

calculation) were performed using the same solvation model.  Methods and reference 

compounds for calculating 
11

B NMR chemical shifts are discussed further in the last 

section of this chapter. 

Table 1-2 presents a set of gas-phase thermodynamic values for model reactions 

calculated at both W1BD and M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) levels 

of theory.  The test set of enthalpies involves Lewis base affinities of BH3 and a few 

selected boron cations, as well as the affinity of simple boreniums for the shared electron 

pair of B–H bonds in ammonia and phosphine BH3 complexes (i.e. 3c2e bond formation).  

As can be seen from the table, in general the agreement between the two methods is 

excellent, with MAE (mean absolute error) being 0.6 kcal/mol.  It is important to 

emphasize that both methods are fundamentally different from the theoretical 

perspective, and the good agreement between methods differing substantially in their 

weaknesses can be taken as a further evidence for the accuracy of the results. 
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Additional support for the validity of the chosen DFT method comes from the 

comparison of the calculated B–N dissociation enthalpies with the available experimental 

data (Table 1-3).
34

 Since the importance of BSSE (basis set superposition error) 

correction in predicting accurate dissociation enthalpies of amine boranes has been 

previously emphasized in the literature, counterpoise correction for BSSE was employed 

to calculate enthalpies summarized in Table 1-3.
33

 Note that in this case the dissociation 

enthalpies were calculated at 373K to match the available experimental data.  While the 

Table 1-2.  Reaction Enthalpies Calculated Using W1BD and M06-2X Methods 

Reaction ∆H298, W1BD, 

kcal/mol
a
 

∆H298, M06-2X, 

kcal/mol
b
 

[BH2(H2)]
+
 → BH2

+
 + H2 16.8 15.8 

[H3NBH2(H2)]
+
 → [H3NBH2]

+
 + H2 7.2 7.1 

[H3PBH2(H2)]
+
 → [H3PBH2]

+
 + H2 13.4 13.2 

[H3NBH2]
+
 → H3N + BH2

+
 91.4 91.0 

[H3PBH2]
+
 → H3P + BH2

+
 71.6 69.9 

[H2OBH2]
+
 → H2O + BH2

+
 74.9 76.1 

[H2SBH2]
+
 → H2S + BH2

+
 63.3 61.8 

[HFBH2]
+
 → HF + BH2

+
 35.5 36.5 

[H3NBH2NH3]
+
 → [H3NBH2]

+
 + H3N 55.8 55.9 

[H3NBH2PH3]
+
 → [H3NBH2]

+
 + H3P 41.6 40.8 

[H3NBH2OH2]
+
 → [H3NBH2]

+
 + H2O 37.8 39.2 

[H3NBH2SH2]
+
 → [H3NBH2]

+
 + H2S 31.2 31.0 

[H3NBH2FH]
+
 → [H3NBH2]

+
 + HF 15.5 16.8 

[H3NBH2PH3]
+
 → [H3PBH2]

+
 + H3N 61.4 61.9 

[H3NBH2OH2]
+
 → [H2OBH2]

+
 + H3N 54.3 54.2 

[H3NBH2SH2]
+
 → [H2SBH2]

+
 + H3N 59.3 60.2 

[H3NBH2FH]
+
 → [HFBH2]

+
 + H3N 71.3 71.2 

H3NBH3 → H3N + BH3 28.1 28.2 

H3PBH3 → H3P + BH3 22.7 22.3 

H2SBH3 → H2S + BH3 12.4 12.6 

H2OBH3 → H2O + BH3 11.6 12.5 

[H3NBH2–H–BH2NH3]
+
 → [H3NBH2]

+
 + H3BNH3 48.9 48.8 

[H3PBH2–H–BH2PH3]
+
 → [H3PBH2]

+
 + H3PNH3 47.3 46.9 

a
Gas-phase enthalpies (298.15K) determined using W1BD method as described above. 

b
Gas-phase enthalpies (298.15K) determined using M06-2X/6-311++G(3df,2p)// 

M06-2X/6-31+G(d,p) level of theory.  No counterpoise correction applied. 
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limited data set does not allow drawing statistically rigorous conclusions, the 

experimental enthalpies were reproduced with MAE of only 0.4 kcal/mol. 

Table 1-3.  Experimental and Calculated Dissociation Enthalpies of Amine Boranes 

Amine-borane ∆H373, experimental, 

kcal/mol 

∆H373, calculated, 

kcal/mol 

H3N–BMe3 13.8 14.3 

MeNH2–BMe3 17.6 18.5 

Me2NH–BMe3 19.3 19.3 

Me3N–BMe3 17.6 17.9 

 

Computational Evaluation of Borenium Lewis Acidity 

In an early computational attempt to gain insight regarding the factors that 

influence the bonding, stability, and Lewis acidity of boron cations, Nöth, Bursten et al. 

studied a series of cations R2BL
+
 (R = H, NH2; L = H2O, pyridine, NH3, etc.) using ab 

initio methods.
41

 Two different geometries were compared for the L = pyridine case, and 

the fully planar structure was found to be favored by 12.6 kcal/mol compared to the 

geometry having the pyridine ring turned perpendicular to the plane of the boron 

σ-bonds.  This energy difference was associated with a π-delocalization effect, the same 

stabilizing interaction involving delocalization between the pyridine ring with the boron 

p-orbital that had been deduced in earlier studies.
2
 The ab initio investigation also 

explored the dissociation of the borenium cation H3N–BH2
+
 (1) into the simple 

components (the borinium ion H2B
+
 and ammonia).

41
 This conversion was discussed in 

the context of heterolytic bond dissociation, a process that reflects the enthalpic 

component for B–N bond formation in the reverse reaction (ammonia + H2B
+
 as the 

Lewis acid), corresponding to the ammonia affinity of H2B
+
.  Subject to the usual caveats 

regarding the evaluation of condensed phase phenomena using computed gas phase 

energies, this general approach offers a potential way to estimate NH3 affinities of other 
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boron cations, including labile borenium ions that are difficult to compare under 

standardized solution conditions. 

An extrapolation from the above precedent has been performed with the goal of 

ranking a series of borenium ions according to their gas phase NH3 affinities. The range 

of borenium ions studied (Table 1-4) includes several structures of synthetic interest 

(Lewis acid catalysts; electrophilic borylating agents).  It also represents various bonding 

environments for boron, and includes most borenium examples characterized by X-ray 

crystallography during the past decade to allow the comparison of computed and 

experimental geometries.  While the calculations disregard additional factors such as 

solvation, ion pairing, and conformational effects, a qualitative comparison of borenium 

Lewis acidities should still be possible.  The data presented in Table 1-4 show that in the 

cases where reliable X-ray crystallographic data are available, the calculated bond lengths 

are in reasonable agreement with the experiment.  Only qualitative enthalpies can be 

obtained from these computational results, but some trends deserve attention.  Thus, 

Piers' borenium ions 48 and 49 are predicted to have comparable Lewis acidities, well in 

accord with the reported data.
31

 Moreover, the NH3 affinities of 48 and 49 are close to the 

NH3 affinity of BF3 calculated using the same method (ΔH = −20.4 kcal/mol), consistent 

with the Lewis acidities determined by Piers using Child's test.
31

 As expected, borenium 

ions 25a or 1 having the highest NH3 affinity are sterically unhindered, and experience 

relatively little electronic stabilization by the ligands due to the absence of n- or π-donors 

(entries 13, 14).  The 9-BBN-derived cation 45 also lacks n- or π-donors, but the 

calculated NH3 affinity is rather modest (entry 4). The explanation for this contrast lies 

partly in the greater degree of boron substitution in 45 and the resulting hyperconjugative 
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stabilization compared to 25a, but steric hindrance may be even more important.  One 

consequence of the highly hindered environment is apparent in the substantially longer 

B–NEt3 bond compared to the B–NH3 bond in the ammonia adduct, evidence that the 

larger ligand encounters severe steric strain.  More generally, the above example reflects 

the elongation of bonds to the boron atom that occurs upon complexation with the Lewis 

base, and the pronounced moderating effect of steric hindrance on borenium NH3 affinity. 

Nitrogen n-donor substituents at boron substantially decrease the NH3 affinity of 

borenium ions, as exemplified by structure 7 (entry 1).  Related borenium cations 

possessing oxygen n-donors such as cation 29 (entry 6) or Corey's Diels-Alder catalyst 12 

(entry 10) are somewhat more Lewis acidic, apparently due to the increased 

electronegativity of oxygen compared to nitrogen.  The substantial difference between 29 

and 12 in terms of NH3 affinity remains unexplained, but 12 clearly is a potent Lewis 

acid, as also expected from its catalytic reactivity.  Similar oxygen electronegativity 

effects on NH3 binding energies were noted for dicoordinate boron cations (borinium 

ions) by Nöth, Bursten et al. in their computational study,
41

 and the general trends were 

recognized in earlier experimental work.
2
 

Increased NH3 affinity also correlates with the presence of a larger number of 

electronegative atoms in the conjugated π-systems attached to boron (entries 7, 8, 11), but 

other factors are difficult to evaluate in these more complex examples.  Thus, cations 49 

and 48 (entries 7, 8) are formally antiaromatic 12π electron systems, a factor that should 

also enhance NH3 affinity.  However, Piers et al. found no evidence for substantial 

antiaromaticity using the nucleus-independent chemical shift criterion NICS(1),
31
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precluding the unambiguous assessment of antiaromaticity and electronegativity vs. 

simple n-delocalization from the nitrogen substituent attached to B in cations 48 and 49. 

The calculated NH3 affinities are generally consistent with the empirical 

comparisons of borenium Lewis acidities as discussed earlier in this chapter.  To a first 

approximation, the ordering of calculated NH3 affinities may reflect the Lewis acidities 

of borenium ions toward other nucleophiles, provided that they are relatively unhindered.  

However, the structure of the test nucleophile is certainly important.  One telling 

observation is the fact that 45 does not form an adduct with triethylamine (See Chapter 3 

for details).  If triethylamine had been selected as the test nucleophile for Table 1-4, then 

45 would have to be classified as a weak Lewis acid, a ranking that would be somewhat 

at odds with the observed reactivity, as discussed in Chapter 3. 

The most striking feature of Table 1-4 is the broad range of ΔH values, differing 

by >50 kcal/mol from the weakest to the strongest Lewis acid (from entry 1 to entry 14).  

By comparison, the NH3 affinities for simple borane derivatives (tricoordinate boron 

lacking any formally positive substituent) span a much narrower range.  Thus, the same 

computational approach gave the following NH3 affinities for several boranes: BMe3 

(ΔH = −14.3 kcal/mol), BF3 (ΔH = −20.4 kcal/mol), BCl3 (ΔH = −25.3 kcal/mol), BH3 

(ΔH = −27.9 kcal/mol), values that are in good agreement with earlier computational and 

experimental studies.
33,34

 Because the inherent NH3 affinities are much larger for 

borenium ions compared to boranes, the moderating effect of stabilizing substituents is 

also larger, and this trend is evident in Table 1-4. 
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Table 1-4.  Calculated Borenium Geometries and NH3 Affinities
a,b

 

Entry Structure 
 

Borenium cation NH3 adduct R1R2B(L)NH3 
∆H

c
 

B–R1, Å B–R2, Å B–L, Å B–R1, Å B–R2, Å B–L, Å B–NH3, Å 

1 7
10

 

 

1.408 

1.412 

1.395 

1.386 

1.576 

1.547 
1.489 1.469 1.659 1.706 −2.3 

2 52
42

 
d
 

1.541 

1.550 

1.541 

1.532 

1.533 

1.501 
1.616 1.620 1.619 1.689 −9.2 

3 53
42

 
 

1.553 

1.560 

1.553 

1.570 

1.517 

1.480 
1.626 1.623 1.610 1.682 −13.3 

4 45
5
 

 

1.559 1.555 1.571 1.618 1.621 1.712 1.660 −13.6 

5 54
43

 

 

1.551 

1.562 

1.551 

1.560 

1.602 

1.579 
1.636 1.631 1.648 1.688 −15.1 

6 29
20

 
 

1.368 

1.369 

1.369 

1.373 

1.945 

1.933 
1.438 1.440 2.015 1.665 −17.4 

7 49
31

 

 

1.438 

1.404
e
 

1.181 
1.438 

1.402
e
 

1.522 1.196 1.520 1.664 −18.8 

8 48
31

 

 

1.439 

1.429
e
 

1.323 

1.414
e
 

1.439 

1.430
e
 

1.520 1.379 1.520 1.659 −18.9 
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9 51
32

 

 

1.377 

1.381 

1.360 

1.372 

1.386 

1.374 
1.443 1.438 1.474 1.631 −23.6 

10 12
13

 

 

1.534 1.340 1.576 1.592 1.423 1.664 1.659 −25.5 

11 55
44

 

 

1.385 

1.380 

1.385 

1.380 

1.385 

1.380 
1.466 1.466 1.466 1.650 −27.6 

12 32
15

 

 

1.504 1.183 1.559 1.587 1.199 1.627 1.633 −34.8 

13 25a 

 

1.181 1.181 1.528 1.198 1.198 1.604 1.620 −48.8 

14 1 

 

1.178 1.178 1.554 1.194 1.194 1.615 1.615 −55.6 

a
Gas-phase counterpoise-corrected heterolytic association enthalpies (298.15K) determined using M06-2X/6-311++G(3df,2p)// 

M06-2X/6-31+G(d,p) level of theory. 
b
Bold numbers indicate bond lengths taken from X-ray crystal structure determination as cited. 

c
ΔH corresponds to the enthalpy for [(cation + NH3) → (ammonia adduct)] in kcal/mol. 

d
Ar = 2,6-di-Me-C6H2. 

e
X-ray data for 48 and 

49 may be imprecise due to disorder as reported by Piers et al.
31
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Calculation of 
11

B NMR Chemical Shifts of Cationic Boron Species 

The structures of the very unusual cationic boron species presented in this chapter 

were largely deduced from their multinuclear NMR spectra, and only in a few cases was 

X-ray crystallographic analysis feasible.  While good agreement between different sets of 

spectroscopic data was achieved, pointing at the consistency of the structural 

assignments, an independent prediction of spectroscopic properties, most importantly  

11
B NMR chemical shifts, is still highly desirable.  To this end, we calculated  

11
B chemical shifts of cations 25b, 37e and 44a using GIAO method at 

M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) level of theory using SMD solvation 

model as described above.  Since the main goal of the study was to generate a reasonably 

good estimate of the 
11

B chemical shift of a given borocation, different reference 

molecules were employed for each cation.  Thus, tricoordinate B–H cation 46 (described 

in detail in Chapter 2) was used as a reference molecule for predicting the chemical shift 

of another tricoordinate B–H cation 25b, while B2H6 was used as a reference molecule 

for dications 37e and 44a containing formal diborane(6) units. 

Summary 

To summarize, electrophilic activation of Lewis base borane complexes under 

weakly nucleophilic conditions leads to formation of a range of structurally different 

species depending on the nature of the substrate and the electrophile.  In terms of their 

reactivity with nucleophiles, all of these species can be generalized as being equivalent to 

the corresponding primary borenium cations L–BH2
+
.  Depending on the stoichiometry, 

amine borane complex activation with Tf2NH can lead either to neutral R3NBH2–NTf2 

species (as a mixture of Tf2N
−
 connectivity isomers), or to H-bridged cations such as 20 
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(eq 7).  Depending on the ratio of the reactants, the reaction of Lewis base borane 

complexes with the strongly electrophilic Ph3C
+
 [B(C6F5)4]

−
 affords either monocationic 

H-bridged species, or their further activation products.  The structure of the unusual 

H-bridged cation 24a was confirmed by X-ray crystallography, and clear NMR evidence 

for the formation of the amine-based unstabilized primary borenium 25b was obtained.  

Surprisingly, several other primary borenium species prefer to exist in the form of 

dicationic dimers such as 37.  The dicationic structure of 37 was established based on 

X-ray crystallography and quenching experiments. 
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Experimental 

General Methods.  All reactions were performed at room temperature (unless 

otherwise stated), under an atmosphere of dry nitrogen, either in a glovebox, or using 

standard Schlenk techniques.  Nuclear magnetic resonance experiments were performed 

on Varian Inova 700, Varian Inova 500 and Inova 400 spectrometers at the following 

frequencies: 
1
H 700 MHz, 500 MHz or 400 MHz; 

11
B and 

11
B{

1
H} 225 MHz, 160 MHz 

or 128 MHz; 
13

C{
1
H} 176 MHz, 126 MHz or 101 MHz; 

19
F 471 MHz or 377 MHz; 

31
P 

162 MHz.  All spectra were recorded in CDCl3, CD2Cl2, d5-PhBr, or d8-PhMe and 

referenced to the 
1
H signal of internal Me4Si according to IUPAC recommendations,

45
 

using a  (referencing parameter) of 32.083974 for BF3·OEt2 (
11

B), a  of 25.145020 for 

Me4Si (
13

C), a  of 94.094011 for CCl3F (
19

F), and a  of 40.480742 for H3PO4 (
31

P).  

When the internal Me4Si reference could not be used, residual solvent peaks in 
1
H NMR 

spectra were referenced instead.  Toluene was distilled over CaH2; CH2Cl2, THF and 

hexanes were dried by passing through a column of activated alumina.  Toluene, CH2Cl2 

and hexanes used in sensitive reactions were further dried by storing over activated 3Å 

molecular sieves in the glovebox.  Commercially available NMR grade deuterated 

solvents (Cambridge Isotope Laboratories), as well as benzene and fluorobenzene were 

not distilled; instead they were simply dried over a large amount of activated 3Å 

molecular sieves in the glovebox.  All other reagents were used as received from 

commercial suppliers.  NHC borane complexes 35a-d were prepared in Prof. Curran's 

group at the University of Pittsburgh by following published procedures.
24
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Procedure for Tf2NH Activations of Amine Borane Complexes.  Formation of 17/18 

General Procedure.  Every possible effort was made to protect the reaction 

mixtures from exposure to air and moisture.  The reactions were set up in dry J. Young 

NMR tubes under N2 atmosphere in a glovebox.  The NMR tubes were dried in a heating 

oven at ca. 200 °C overnight, and the fitted Teflon valves were dried in a dessicator over 

Drierite.  Commercial grade Tf2NH and amine boranes (Me3N–BH3 (16a), Et3N–BH3 

(16b) and (iPr)2EtN–BH3 (16c)) were used without further purification.  Benzylic amine 

borane p-MeC6H4CH2NMe2–BH3 was prepared as reported previously.
15

 

1-Neopentylpyrrolidine borane was prepared as described in Chapter 2. Commercial 

grade CD2Cl2 and d8-PhMe (Cambridge Isotope Laboratories) were not distilled, but 

rather simply dried with freshly activated molecular sieves in the glovebox. 

When solid amine boranes were used (16a, p-MeC6H4CH2NMe2–BH3 (16d), 

1-neopentylpyrrolidine borane (16e)), the reaction tube was charged with a mixture of 

solid Tf2NH and the corresponding amine borane.  The solid mixture was dissolved by 

adding the solvent (either 0.6 mL CD2Cl2 or 0.8 mL d8-PhMe) to the tube in one portion 

at rt.  Gas liberation was observed, although no substantial exotherm was noted, 

potentially due to the small scale of the reaction.  The tube was sealed with the fitted 

Teflon valve, and then shaken vigorously for ca. 1 min.  The amounts of the reagents 

used in each particular case are listed below. 

When liquid amine boranes were used (Et3N–BH3 (16b) and (iPr)2EtN–BH3 

(16c)), the reaction tube was charged with a solution of Tf2NH in 0.6 mL of CD2Cl2.  

Neat amine borane was then added to the solution via a microsyringe at rt, causing 

intense gas liberation, although no substantial exotherm was noted, potentially due to the 
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small scale of the reaction.  The tube was sealed with the fitted Teflon valve, and then 

shaken vigorously for ca. 1 min.  The amounts of the reagents used in each particular case 

are listed below. 

The ratios of N-/O-bound isomers of the products were measured by NMR after 

the initial equilibration had completed, and were confirmed to remain stable for 2-14 days 

at rt. 

17a:18a, 7:1 ratio after equilibration.  The following reagents were used: trimethylamine 

borane (16a) (8.0 mg, 0.109 mmol), Tf2NH (30.7 mg, 0.109 mmol), CD2Cl2 (0.6 mL). 

17a: 
1
H NMR (500 MHz, CD2Cl2): δ 3.2-1.9 (br m, 2H), 2.65 ppm (s, 9H). 

11
B NMR 

(160 MHz, CD2Cl2): δ −3.7 ppm (t, J = 115 Hz). 
13

C NMR (126 MHz, CD2Cl2): δ 119.6 

(q, JC–F = 326 Hz), 51.8 ppm. 
19

F NMR (471 MHz, CD2Cl2): δ −69.2 ppm (s). 

18a: 
1
H NMR (500 MHz, CD2Cl2): δ 3.2-1.9 (br m, 2H), 2.69 ppm (s, 9H). 

11
B NMR 

(160 MHz, CD2Cl2): δ 4.0 ppm (t, J = 120 Hz). 
13

C NMR (126 MHz, CD2Cl2): δ 119.1 (q, 

JC–F = 320 Hz), 118.7 (q, JC–F = 321 Hz), 49.7 ppm. 
19

F NMR (471 MHz, CD2Cl2): δ 

−76.6 (s), −79.1 ppm (s). 

17b:18b, 1:4.7 ratio after equilibration.  The following reagents were used: triethylamine 

borane (16b) (13.3 μL, 90.7 μmol), Tf2NH (25.5 mg, 90.7 μmol), CD2Cl2 (0.6 mL). 

17b: 
1
H NMR (500 MHz, CD2Cl2): δ 3.4-1.9 (br m, 2H), 2.88 (q, J = 7.2 Hz, 6H), 1.21 

ppm (t, J = 7.2 Hz, 9H). 
11

B NMR (160 MHz, CD2Cl2): δ −7.4 ppm (unres t). 
13

C NMR 

(126 MHz, CD2Cl2): δ 119.6 (q, JC–F = 327 Hz), 49.8, 8.2 ppm. 
19

F NMR (471 MHz, 

CD2Cl2): δ −68.9 ppm (s). 
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18b: 
1
H NMR (500 MHz, CD2Cl2): δ 3.4-1.9 (br m, 2H), 2.90 (q, J = 7.2 Hz, 6H), 1.21 

ppm (t, J = 7.2 Hz, 9H). 
11

B NMR (160 MHz, CD2Cl2): δ 0.7 ppm (unres t). 
13

C NMR 

(126 MHz, CD2Cl2): δ 119.2 (q, JC–F = 320 Hz), 118.7 (q, JC–F = 321 Hz), 49.2, 7.5 ppm. 

19
F NMR (471 MHz, CD2Cl2): δ −76.7 (s), −79.1 ppm (s). 

17c:18c, <1:25 ratio after equilibration.  The following reagents were used:  

(iPr)2EtN–BH3 (16c) (26.7 μL, 0.153 mmol), Tf2NH (43.0 mg, 0.153 mmol), CD2Cl2 

(0.6 mL).  Due to the low concentration of the N-bound isomer 17c in solution, only 
19

F 

signals were assigned. 

17c: 
19

F NMR (471 MHz, CD2Cl2): δ −68.4 ppm (s). 

18c: 
1
H NMR (500 MHz, CD2Cl2): δ 3.70-3.60 (m, 2H), 3.4-2.1 (br m, 2H), 3.01 (q, 

J = 7.3 Hz, 2H), 1.37-1.33 (m, 12H), 1.26 ppm (t, J = 7.3 Hz, 3H). 
11

B NMR (160 MHz, 

CD2Cl2): δ 1.2 ppm (unres t). 
13

C NMR (126 MHz, CD2Cl2): δ 119.2 (q, JC–F = 321 Hz), 

118.7 (q, JC–F = 321 Hz), 56.7, 56.6, 45.3, 18.3 (overlapping s), 9.5 ppm. 
19

F NMR (471 

MHz, CD2Cl2): δ −77.0 (s), −79.1 ppm (s). 

17d:18d, 4.2:1 ratio after equilibration.  The following reagents were used: 

p-MeC6H4CH2NMe2–BH3 (16d) (23.0 mg, 0.141 mmol), Tf2NH (39.6 mg, 0.141 mmol), 

CD2Cl2 (0.6 mL). 

17d: 
1
H NMR (500 MHz, CD2Cl2): δ 7.30-7.17 (m, 4H), 3.96 (s, 2H), 3.3-2.0 (br m, 2H), 

2.48 (s, 6H), 2.39 ppm (s, 3H). 
11

B NMR (160 MHz, CD2Cl2): δ −3.2 ppm (unres t). 
13

C 

NMR (126 MHz, CD2Cl2): δ 140.0, 132.5, 129.4, 125.5, 119.7 (q, JC–F = 326 Hz), 64.9, 

46.8, 20.9 ppm. 
19

F NMR (471 MHz, CD2Cl2): δ −69.0 ppm (s). 
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18d: 
1
H NMR (500 MHz, CD2Cl2): δ 7.30-7.17 (m, 4H), 3.99-3.97 (m, 2H), 3.3-2.0 (br 

m, 2H), 2.54 (s, 3H), 2.53 (s, 3H), 2.39 ppm (s, 3H). 
11

B NMR (160 MHz, CD2Cl2): δ 4.0 

ppm (unres t). 
13

C NMR (126 MHz, CD2Cl2): δ 140.3, 132.3, 129.5, 125.1, 119.2 (q, JC–F 

= 321 Hz), 118.8 (q, JC–F = 321 Hz), 63.5, 45.5, 45.4, 20.9 ppm. 
19

F NMR (471 MHz, 

CD2Cl2): δ −76.6 (s), −79.1 ppm (s). 

17e:18e, 1:2.6 ratio after equilibration.  The following reagents were used: 

1-neopentylpyrrolidine borane (16e) (10.9 mg, 70.3 μmol), Tf2NH (19.8 mg, 70.3 μmol), 

d8-PhMe (0.8 mL). 

17e: 
1
H NMR (700 MHz, d8-PhMe): δ 3.2-2.3 (br m, 2H), 3.01-2.94 (m, 2H), 2.60-2.55 

(m, 2H), 2.44 (s, 2H), 1.57-1.42 (m, 2H), 1.22-1.11 (m, 2H), 0.73 ppm (s, 9H). 
11

B NMR 

(225 MHz, d8-PhMe): δ −4.6 ppm (unres t). 
13

C NMR (176 MHz, d8-PhMe): δ 120.5 (q, 

JC–F = 327 Hz), 68.8, 57.8, 33.0, 30.3, 22.0 ppm. 
19

F NMR (471 MHz, d8-PhMe): δ −69.2 

ppm (s). 

18e: 
1
H NMR (700 MHz, d8-PhMe): δ 3.2-2.3 (br m, 2H), 3.01-2.94 (m, 1H), 2.79-2.74 

(m, 1H), 2.33 (d, J = 13.7 Hz, 1H), 2.08 (d, J = 13.7 Hz, 1H), 1.98-1.93 (m, 1H), 1.93-

1.86 (m, 1H), 1.57-1.42 (m, 2H), 1.22-1.11 (m, 2H), 0.78 ppm (s, 9H). 
11

B NMR (225 

MHz, d8-PhMe): δ 0.6 ppm (unres t). 
13

C NMR (176 MHz, d8-PhMe): δ 120.2 (q, JC–F = 

320 Hz), 119.6 (q, JC–F = 320 Hz), 72.2, 60.4, 59.4, 33.1, 29.7, 22.6, 22.1 ppm. 
19

F NMR 

(471 MHz, d8-PhMe): δ −76.7 (s), −78.7 ppm (s). 

Isolation of 24a 

Every possible effort was made to protect the reaction mixture from the exposure 

to air and moisture.  The reaction was performed under N2 atmosphere in a glovebox.  
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Disposable glassware flame-dried at the glass softening temperature was used.  

Commercial grade Ph3C
+
 [B(C6F5)4]

−
 (Strem) and Me3N–BH3 (23a) (Aldrich) were used 

without further purification.  Commercial grade anhydrous benzene (Aldrich) was 

additionally dried with freshly activated molecular sieves in the glovebox.  Solid Ph3C
+
 

[B(C6F5)4]
−
 (80.0 mg, 86.7 μmol) was added in portions to a stirred solution of Me3N–

BH3 (23a) (24.0 mg, 0.329 mmol) in 1 mL of dry PhH at rt.  No substantial exotherm was 

observed, potentially due to the small scale of the reaction.  After stirring for ca. 30 min 

at room temperature, the two-layer mixture was diluted with 1 mL of dry hexanes.  The 

clear top layer contained triphenylmethane and was discarded, and the dark bottom layer 

of the crude product was washed with 3x1.5 mL PhH.  The product crystallized on 

trituration with 1 mL of hexanes.  Drying in the glovebox produced 59 mg (83%) of 24a 

as a white solid.  The NMR spectroscopic data matched those reported previously.
15,46

 

Solutions of the product in CD2Cl2 protected from air and moisture showed no 

indications of decomposition after storing for ca. 3 days at rt, as evidenced by NMR 

spectroscopy.  Layering CH2Cl2 solution of the product with hexanes at room 

temperature produced X-ray quality crystals as colorless needles.  X-ray crystallographic 

study confirmed the proposed structure of 24a (see Appendix A for details). 

Generation of Unstabilized Primary Borenium Cation 25b 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was set up in a dry J. Young NMR tube under N2 

atmosphere in a glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Commercial grade (iPr)2EtN–BH3 (23b) was used without further purification.  
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Commercial grade d5-PhBr (Cambridge Isotope Laboratories) was not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox.  The reaction tube 

was charged with a solution of Ph3C
+
 [B(C6F5)4]

−
 (48.0 mg, 52.0 μmol) in 0.6 mL 

d5-PhBr.  To this solution neat (iPr)2EtN–BH3 (23b) (9.1 μL, 52.0 μmol) was added via a 

microsyringe in one portion.  No substantial exotherm was observed, potentially due to 

the small scale of the reaction.  The tube was immediately sealed with the fitted Teflon 

valve, and then shaken vigorously for ca. 1 min.  Since primary borenium 25b is very 

unstable under the reaction conditions, all NMR spectra had to be acquired within the 

first 10 minutes following mixing the reagents to obtain reasonable quality data.  The 

following NMR spectra were acquired: (1) 
1
H NMR (ca. 3 sec total acquisition time) at 3 

min counting from the moment of addition of 23b to the solution of the trityl reagent; (2) 

11
B NMR (ca. 7 min total acquisition time) at 3–10 min counting from the moment 

addition of 23b to the solution of the trityl reagent. 

While overlaps in the 
1
H spectrum did not allow to fully assign the peaks of the 

(iPr)2EtN fragment, observation of a broad signal at δ 5.2–4.3 ppm serves as a clear 

indication for the formation of a tricoordinate B–H species in the course of the reaction.  

To illustrate the reasoning behind this assignment, the 
1
H NMR B–H signal of 

tricoordinate borenium 46 also appears as a broad peak around δ 5.2–4.3 ppm (in 

d5-PhBr), while the B–H signals of other plausible species with larger coordination 

numbers at B appear noticeably upfield from that (cf. δ 
1
H 3.5–2.7 ppm for dication 44a 

in d5-PhBr).  Integration of the peaks at δ 5.2–4.3 ppm (BH2 of 25b) and −2.8 (bridging 

H of 24b) in the 
1
H spectrum suggests a ca. 3.9:1 molar ratio of 24b and 25b.  The molar 

ratio of 24b to 25b determined by the integration of peaks at δ −0.5 and +53.9 ppm, 
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respectively, in the 
11

B NMR is comparable (4.3:1), supporting the assignment of the 

peak at δ 
11

B +53.9 ppm as the primary borenium species.  The 
11

B NMR spectrum at that 

time also showed two minor peaks at δ +19.1 and +15.0 ppm whose intensity gradually 

increased along with the disappearance of 25b.  Monitoring the progress of the reaction 

over time suggests that these two peaks apparently correspond to some unidentified 

decomposition products.  Aside from the integration, the gradual disappearance of the 

peak at δ 
11

B +53.9 ppm due to decomposition appears to parallel the disappearance of 

the broad peak at δ 
1
H 5.2–4.3 ppm, suggesting that the two peaks likely arise from the 

same compound.  The spectral data summarized below lists only those peaks that can be 

reasonably assigned as arising from the cation of 25b.  The signals corresponding to 

Ph3CH, Ph3C
+
, 24b and [B(C6F5)4]

−
 counterion are omitted. 

1
H NMR (700 MHz, d5-PhBr): δ 5.2-4.3 ppm (br m, 2H). 

11
B NMR (225 MHz, d5-PhBr): 

δ +53.9 ppm. 

Preparation of 35e 

A solution of LiN(SiMe3)2 (7.06 g, 42.2 mmol) in 20 mL of dry THF was 

cannulated to a slurry of thoroughly dried 1,3,4,5-tetramethylimidazolium iodide (9.68g, 

38.4 mmol) in 20 mL of dry THF at −78 °C.  After stirring at −78 °C for 1 h, neat  

Me2S–BH3 (4.3 mL, 42.2 mmol) was added dropwise, and the resulting mixture was 

allowed to warm up to rt.  The resulting clear yellowish solution was stirred at rt for 1 h, 

during which time it developed a white precipitate.  Following careful quenching with 

100 mL of brine (frothing!) the reaction mixture was extracted with CH2Cl2 (1x70 mL, 

then 2x40 mL).  The combined organic extracts were dried with MgSO4, then filtered and 

concentrated.  Crystallization of the resulting solid from hexanes/CHCl3 mixture 
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provided 4.94g (93%) of 35e as an off-white crystalline solid in two crops.  The product 

was additionally recrystallized from hexanes/CHCl3 before use in sensitive electrophilic 

activations. 

1
H NMR (700 MHz, CDCl3): δ 3.62 (s, 6H), 2.12 (s, 6H), 1.3-0.8 ppm (m, 3H). 

11
B NMR 

(225 MHz, CDCl3): δ −36.9 ppm (q, J = 86 Hz). 
13

C NMR (176 MHz, CDCl3): δ 169.7-

168.6 (m), 123.0, 32.4, 8.7 ppm. HRMS (EI+): m/z calculated for C9H22BNNa [M−H]
+
 

137.1250, found 137.1257 (+5 ppm). 

Generation of Cations 36 

Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The reactions were set up in dry J. Young NMR tubes under N2 

atmosphere in a glovebox.  The NMR tubes were dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valves were dried in a dessicator over Drierite.  

Ph3C
+
 [B(C6F5)4]

−
 (Strem) was used without further purification.  Commercial grade 

d5-PhBr and CD2Cl2 (Cambridge Isotope Laboratories) were not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox. 

General Procedure.  The reaction tube was charged with a mixture of solid NHC 

borane and Ph3C
+
 [B(C6F5)4]

−
.  The solid mixture was then dissolved by adding 0.6 mL 

of solvent to the tube in one portion at rt.  No substantial exotherm was observed, 

potentially due to the small scale of the reaction.  The tube was immediately sealed with 

the fitted Teflon valve, and then shaken vigorously for ca. 1 min. 

36a: The reaction was performed in d5-PhBr solvent (0.6 mL).  The following reagents 

were used: 35a (25.0 mg, 62.1 µmol), Ph3C
+
 [B(C6F5)4]

−
 (28.7 mg, 31.1 µmol).  NMR 
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assay shortly following the mixing of reagents indicated clean formation of H-bridged 

cation 36a ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct. 

11
B NMR (225 MHz, 

d5-PhBr): δ −16.1 (s), −24.6 ppm (br s). 

36b (in d5-PhBr): The reaction was performed in d5-PhBr solvent (0.6 mL).  The 

following reagents were used: 35b (27.4 mg, 68.1 µmol), Ph3C
+
 [B(C6F5)4]

−
 (31.4 mg, 

34.0 µmol).  NMR assay shortly following the mixing of reagents indicated clean 

formation of H-bridged cation 36b ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct. 

11
B 

NMR (225 MHz, d5-PhBr): δ −16.1 (s), −24.6 ppm (br s). 

36b (in CD2Cl2): The reaction was performed in CD2Cl2 solvent (0.6 mL).  The following 

reagents were used: 35b (24.9 mg, 61.9 µmol), Ph3C
+
 [B(C6F5)4]

−
 (28.6 mg, 31.0 µmol).  

NMR assay shortly following the mixing of reagents indicated clean formation of 

H-bridged cation 36b ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct. 

11
B NMR (128 

MHz, CD2Cl2): δ −16.7 (s), −24.6 ppm (br s). 

Isolation of 36c 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was performed under N2 atmosphere in a glovebox.  

Disposable glassware flame-dried at the glass softening temperature was used.  

Commercial grade Ph3C
+
 [B(C6F5)4]

−
 (Strem) was used without further purification.  

Commercial grade anhydrous benzene (Aldrich) was additionally dried with freshly 

activated molecular sieves in the glovebox.  To a mixture of solid Ph3C
+
 [B(C6F5)4]

−
 

(0.461 g, 0.500 mmol) and 35c (0.115 g, 1.05 mmol) 2 mL of dry PhH was added at rt, 

which resulted in formation of a two-layer liquid.  No substantial exotherm was observed, 
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potentially due to the small scale of the reaction.  After stirring for ca. 10 min at room 

temperature, the two-layer mixture was diluted with 2 mL of dry hexanes.  The clear top 

layer contained triphenylmethane and was discarded, and the bottom layer of the crude 

product was washed with 4x2 mL of dry hexanes.  The crude product crystallized on 

trituration with hexanes.  Drying in the glovebox produced 0.437 g (97%) of 36c as a 

white solid.  Layering CH2Cl2 solution of the product with hexanes at room temperature 

produced single crystals suitable for X-ray crystallographic analysis.  X-ray 

crystallography confirmed the proposed connectivity in the cation, although severe 

disorder did not allow to solve the structure fully. 

1
H NMR (700 MHz, d5-PhBr): δ 6.29 (s, 4H), 3.26 (s, 12H), 2.7-1.6 (br m, 4H), 

−2.2-−3.8 ppm (br s, 1H). 
11

B NMR (225 MHz, d5-PhBr): δ −16.2 (s), −22.1 ppm (br m). 

13
C NMR (176 MHz, d5-PhBr): δ 158.1-156.1 (br m), 149.7-147.5 (m), 139.4-137.5 (m), 

137.5-135.5 (m), 125.2-123.7 (m), 121.7, 35.4 ppm. 
19

F NMR (471 MHz, d5-PhBr): δ 

−131.8 (m), −162.0 (t, J = 20.9 Hz), −166.0 ppm (m). 

Generation of Dications 37 

Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The reactions were set up in dry J. Young NMR tubes under N2 

atmosphere in a glovebox.  The NMR tubes were dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valves were dried in a dessicator over Drierite.  

Ph3C
+
 [B(C6F5)4]

−
 (Strem) was used without further purification.  Commercial grade 

d5-PhBr and CD2Cl2 (Cambridge Isotope Laboratories) were not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox. 
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General Procedure.  The reaction tube was charged with a mixture of solid NHC 

borane and Ph3C
+
 [B(C6F5)4]

−
.  The solid mixture was then dissolved by adding 0.6 mL 

of solvent to the tube in one portion at rt.  No substantial exotherm was observed, 

potentially due to the small scale of the reaction.  The tube was immediately sealed with 

the fitted Teflon valve, and then shaken vigorously for ca. 1 min. 

37a (in d5-PhBr): The reaction was performed in d5-PhBr solvent (1.0 mL).  The 

following reagents were used: 35a (25.0 mg, 62.1 µmol), Ph3C
+
 [B(C6F5)4]

−
 (57.3 mg, 

62.1 µmol).  Formation of dication 37a was found to be somewhat slow.  Thus, after ca. 

1.5 h at rt following the mixing of reagents the reaction mixture was found to contain 36a 

and 37a ([B(C6F5)4]
−
 salts) in a ca. 1:1.4 ratio, along with Ph3CH byproduct and 

unreacted Ph3C
+
.  After 17 h at rt 

11
B NMR assay indicated clean formation of 37a. 

11
B 

NMR (128 MHz, d5-PhBr): δ 11.9 (br s), −16.2 ppm (s). 

37a (in CD2Cl2): The reaction was performed in CD2Cl2 solvent (0.6 mL).  The following 

reagents were used: 35a (30.8 mg, 76.5 µmol), Ph3C
+
 [B(C6F5)4]

−
 (66.8 mg, 72.4 µmol).  

Formation of dication 37a was found to be somewhat slow.  Thus, after 15 min at rt 

following the mixing of reagents the reaction mixture was found to contain 36a and 37a 

([B(C6F5)4]
−
 salts) in a ca. 1.5:1 ratio, along with Ph3CH byproduct and unreacted Ph3C

+
.  

After 26 h at rt 
11

B NMR assay indicated clean formation of 37a. 
11

B NMR (225 MHz, 

CD2Cl2): δ 12.4 (br s), −16.7 ppm (s). 

37d (in d5-PhBr): The reaction was performed in d5-PhBr solvent (0.6 mL).  The 

following reagents were used: 35d (20.6 mg, 45.1 µmol), Ph3C
+
 [B(C6F5)4]

−
 (41.6 mg, 

45.1 µmol).  NMR assay shortly following the mixing of reagents indicated clean 
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formation of dication 37d ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct. 

11
B NMR (225 

MHz, d5-PhBr): δ 8.0 (br s), −16.1 ppm (s). 

37d (in CD2Cl2): The reaction was performed in CD2Cl2 solvent (0.6 mL).  The following 

reagents were used: 35d (20.6 mg, 45.1 µmol), Ph3C
+
 [B(C6F5)4]

−
 (46.8 mg, 50.7 µmol).  

NMR assay shortly following the mixing of reagents indicated clean formation of 

dication 37d ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct.  Some unreacted Ph3C

+
 was 

also observed. 
11

B NMR (225 MHz, CD2Cl2): δ 9.9 (br s), −16.7 ppm (s). 

37e: The reaction was performed in CD2Cl2 solvent (0.6 mL).  The following reagents 

were used: 35e (9.9 mg, 71.7 µmol), Ph3C
+
 [B(C6F5)4]

−
 (66.1 mg, 71.7 µmol).  Addition 

of the solvent to the solid mixture produced a clear solution, which turned into a slush of 

fine crystals within ca. 1 min at rt.  NMR assay shortly following the mixing of reagents 

indicated clean formation of dication 37e ([B(C6F5)4]
−
 salt) along with Ph3CH byproduct. 

11
B NMR (225 MHz, CD2Cl2): δ 10.6 (br s), −16.7 ppm (s). 

Quenching of 37e with 4-(Dimethylamino)pyridine (DMAP) 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was set up in dry J. Young NMR tubes under N2 

atmosphere in a glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Ph3C
+
 [B(C6F5)4]

−
 (Strem) was used without further purification.  Commercial grade 

d5-PhBr (Cambridge Isotope Laboratories) was not distilled, but rather simply dried with 

freshly activated molecular sieves in the glovebox.  The reaction tube was charged with a 

mixture of solid 35e (8.3 mg, 60.1 µmol) and Ph3C
+
 [B(C6F5)4]

−
 (55.4 mg, 60.1 µmol).  
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The solid mixture was then dissolved by adding anhydrous d5-PhBr (1.0 mL) to the tube 

in one portion at rt.  No substantial exotherm was observed, potentially due to the small 

scale of the reaction.  The tube was immediately sealed with the fitted Teflon valve, and 

then shaken vigorously for ca. 1 min.  Formation of dication 37e [B(C6F5)4]
−
 salt was 

evident from the formation of a fine crystalline precipitate in the reaction tube (vide 

supra, in situ generation of 37e).  Addition of excess DMAP (ca. 1.5 equiv) along with 

ca. 1 mL d5-PhBr resulted in dissolution of the crystalline solid.  
11

B NMR assay 

indicated clean formation of boronium salt 39e (δ −14.7 ppm, compared to an 

independently prepared sample). 

Isolation of 37e 

This procedure describes preparation of crystalline [Al2Br7]
−
 salt of the dication 

for the X-ray crystallographic study.  For other applications such as the quenching 

experiments, [B(C6F5)4]
−
 salts of 37e were generated in situ as described in the next 

section.  Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was performed under N2 atmosphere in a glovebox.  

Disposable glassware flame-dried at the glass softening temperature was used.  

Commercial grade Al2Br6 (Aldrich) and Ph3CBr were used without further purification.  

Commercial grade fluorobenzene (Acros) was not distilled, but rather simply dried with 

freshly activated molecular sieves in the glovebox.  The starting NHC borane 35e was 

prepared as described above, crystallized from hexanes/CHCl3, and dried in high vacuum 

before transferring into the glovebox.  In a dry 4 mL scintillation vial a mixture of solid 

Al2Br6 (96.0 mg, 0.180 mmol) and Ph3CBr (58.2 mg, 0.180 mmol) was dissolved in 1 mL 

of dry PhF at rt.  No substantial exotherm was observed, potentially due to the small scale 
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of the reaction.  The resulting intensively colored red-orange solution was allowed to 

stand at rt for 20 min, and then it was carefully layered with a solution of 35e (24.8 mg, 

0.180 mmol) in 0.5 mL of dry PhF.  On standing overnight at rt in the sealed vial the 

reaction mixture developed a substantial amount of X-ray quality crystalline material.  

The quality of the crystals was found to deteriorate quickly with time, prompting 

immediate crystallographic analysis as soon as the sufficient crystal size is reached.  

X-ray crystallographic study (Appendix A) confirmed the proposed dicationic structure 

of 37e. 

Generation of Dication 44a 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was set up in a dry J. Young NMR tube under N2 

atmosphere in a glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Commercial grade Me3N–BH3 (23a) (Aldrich) was used without further purification.  

Commercial grade d5-PhBr (Cambridge Isotope Laboratories) was not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox.  The reaction tube 

was charged with a mixture of solid 23a (3.4 mg, 48.0 μmol) and Ph3C
+
 [B(C6F5)4]

−
 (44.3 

mg, 48.0 μmol).  The solid mixture was then dissolved by adding 0.6 mL of anhydrous 

d5-PhBr to the tube in one portion at rt.  No substantial exotherm was observed, 

potentially due to the small scale of the reaction.  The tube was immediately sealed with 

the fitted Teflon valve, and then shaken vigorously for ca. 1 min.  After 2.5–3 h at rt a ca. 

3:1 ratio of 24a:44a was reached as evidenced by 
11

B NMR (peaks at δ −0.4 and 

+12.9 ppm, respectively).  At this point only Ph3CH, unreacted Ph3C
+
, 24a and 44a were 
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present in the reaction mixture according to 
1
H NMR data.  After 24h following mixing 

the reagents the molar ratio of 1:2.4 (24a:44a) was reached.  At this point a minor peak 

(<5% of the combined intensity of the peaks assigned as 44a and 24a) of an unidentified 

product at δ +4.8 ppm was also apparent in 
11

B NMR.  The spectral data summarized 

below are for the dication of 44a only.  The signals corresponding to Ph3CH, Ph3C
+
, 24a 

and [B(C6F5)4]
−
 counterion are omitted. 

1
H NMR (700 MHz, d5-PhBr): δ 3.6-2.7 (br m, 2H), 2.08 ppm (s, 9H). 

11
B NMR (225 

MHz, d5-PhBr): δ 12.9 ppm (unres m). 
13

C NMR (176 MHz, d5-PhBr): δ 50.3 ppm. 

Quenching Dication 44a with Trimethylamine Borane (23a) 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was set up in a dry J. Young NMR tube under N2 

atmosphere in a glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Commercial grade Me3N–BH3 (23a) (Aldrich) was used without further purification.  

Commercial grade d5-PhBr (Cambridge Isotope Laboratories) was not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox.  The reaction tube 

was charged with a mixture of solid 23a (7.4 mg, 0.102 mmol) and Ph3C
+
 [B(C6F5)4]

−
 

(93.9 mg, 0.102 mmol).  The solid mixture was then dissolved by adding 0.6 mL of 

anhydrous d5-PhBr to the tube in one portion at rt.  No substantial exotherm was 

observed, potentially due to the small scale of the reaction.  The tube was immediately 

sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min.  After 2 h at 

rt ca. 3:1 ratio of 24a:44a was reached as evidenced by 
11

B NMR (peaks at δ −0.4 and 

+12.9 ppm, respectively).  At this point only Ph3CH, unreacted Ph3C
+
, 24a and 44a were 
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present in the reaction mixture according to 
1
H NMR data.  The reaction tube was opened 

in the glovebox, and solid 23a (12.5 mg, 0.171 mmol) was added in one portion.  The 

reaction tube was immediately sealed, and then shaken vigorously for ca. 1 min.  

According to the high quality 
1
H and 

11
B NMR spectra acquired shortly after the addition 

of 23a, the only species present in the reaction mixture at that time were Ph3CH, excess 

23a and 24a in a ca. 1:1.5 molar ratio, as well as [B(C6F5)4]
−
 counterion.  No other 

signals were detected. 

Attempted Assessment of Lewis Acidity of Boreniums 25a and 32 by 
31

P NMR 

Chemical Shifts of Their Complexes with Et3PO.  Boronium Cations 56 and 57 

The following experiments serve to illustrate some of the shortcomings of 

estimating Lewis acidity of borocations from the NMR properties of their Et3PO adducts.  

As can be concluded from the spectroscopic data presented below, 
31

P chemical shifts of 

the two complexes match despite the substantial difference in the stabilization of 

boreniums 25a and 32.  Every possible effort was made to protect the reaction mixtures 

from exposure to air and moisture.  The reactions were performed under N2 atmosphere 

in a glovebox.  Disposable glassware flame-dried at the glass softening temperature was 

used.  Commercial grade Ph3C
+
 [B(C6F5)4]

−
 (Strem), Me3N–BH3 (23a) (Aldrich) and 

Et3PO were used without further purification.  Cyclic amine borane 30 was prepared as 

described in Chapter 2 and crystallized from hexanes.  Commercial grade fluorobenzene 

(Acros) was not distilled, but rather simply dried with freshly activated molecular sieves 

in the glovebox. 
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Et3PO adduct of 25a (56).  A dry 4 mL scintillation vial was charged with a 

mixture of solid 23a (7.3 mg, 0.100 mmol), Et3PO (13.4 mg, 0.100 mmol) and Ph3C
+
 

[B(C6F5)4]
−
 (92.2 mg, 0.100 mmol).  The solid mixture was then dissolved by adding 1 

mL of dry PhF at rt.  The characteristic color of Ph3C
+
 vanished almost immediately.  No 

substantial exotherm was observed, potentially due to the small scale of the reaction.  

After a few minutes at rt the solution was diluted with dry hexanes (3 mL), causing 

precipitation of an oil.  The top layer containing triphenylmethane was removed and 

discarded, and the bottom layer was washed with 2x1 mL of hexanes, which induced 

crystallization.  Following decantation of the solvent, the brownish powder of the product 

was dried in the glovebox.  Yield was not determined. 

1
H NMR (400 MHz, CD2Cl2): δ 2.9-1.6 (br m, 2H), 2.58 (s, 9H), 2.09 (dq, J = 12.0, 

7.7 Hz, 6H), 1.25 ppm (dt, J = 18.4, 7.7 Hz, 9H). 
11

B NMR (128 MHz, CD2Cl2): δ 1.5 (t, 

J = 115 Hz), −16.7 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): δ 149.7-146.3 (m), 140.0-

136.4 (m), 138.0-134.5 (m), 125.5-122.0 (br m), 49.1, 16.1 (d, J = 64 Hz), 4.7 ppm (d, J = 

4.7 Hz). 
19

F NMR (377 MHz, CD2Cl2): δ −133.2 (m), −163.7 (t, J = 20.4 Hz), −167.6 

ppm (m). 
31

P NMR (162 MHz, CD2Cl2): δ 85.7 ppm. 
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Et3PO adduct of 32. (57)  The same procedure was followed to prepare Et3PO 

adduct of 32.  Instead of Me3N–BH3 (23a), cyclic amine borane 30 (14.7 mg, 0.100 

mmol) was used.  Yield was not determined. 

1
H NMR (400 MHz, CD2Cl2): δ 7.44-7.39 (m, 1H), 7.35-7.26 (m, 2H), 7.23-7.18 (m, 

1H), 4.32 (d, J = 14.0 Hz, 1H), 4.03 (d, J = 14.0 Hz, 1H), 3.9-2.5 (br m, 1H), 2.76 (s, 3H), 

2.65 (s, 3H), 2.07 (dq, J = 12.0, 7.7 Hz, 6H), 1.16 ppm (dt, J = 18.6, 7.7 Hz, 9H). 
11

B 

NMR (128 MHz, CD2Cl2): δ 6.5 (d, J = 105 Hz), −16.7 ppm (s). 
13

C NMR (126 MHz, 

CD2Cl2): δ 149.6-146.6 (m), 144.6-142.6 (br m), 139.9, 139.5-136.7 (m), 137.7-134.8 

(m), 130.0, 128.7, 128.0, 125.0-122.6 (br m), 123.2, 67.5, 49.0, 45.4, 16.8 (d, J = 64 Hz), 

4.7 ppm (unres d). 
19

F NMR (377 MHz, CD2Cl2): δ −133.1 (m), −163.7 (t, J = 20.4 Hz), 

−167.6 ppm (m). 
31

P NMR (162 MHz, CD2Cl2): δ 85.7 ppm. 
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Chapter 2 

Electrophilic Borylation and Related Reactions of B–H Borenium Cations 

Introduction—C–H Borylation by Electrophilic Boron Complexes 

Tricoordinate boron inserts into C–H bonds upon heating.
1-5

 In the first report, 

Hurd studied the reaction of B2H6 with several substrates including benzene (100 °C) and 

methane (180 °C), and found evidence for the formation of phenylboron compounds and, 

indirectly, of methylboron species, respectively.
1
 Related intramolecular C–H insertion 

reactions were subsequently identified,
2,3

 and were explored in depth by Köster et al.
3
 

However, typically extreme conditions (ca. 200-300 °C), variable regioselectivity, and 

substrate limitations may have discouraged further development.  According to 

computational evaluation, the borylation of aliphatic C–H bonds involves a 4-center 

mechanism.
6,7

 Related C–H insertion may also take place in the gas phase reactions of 

simple alkanes with cationic, dicoordinate boron intermediates (borinium cations) under 

flowing afterglow conditions.
8
 

Some of the relatively facile electrophilic borylations of aromatic substrates by 

tethered tricoordinate boron species may also follow a C–H insertion pathway.  Timothy 

DeVries in our group previously studied the intramolecular borylation of 

N,N-dimethylbenzylamine borane (1) activated with a stoichiometric amount of Ph3C
+
 

[B(C6F5)4]
−
 (Scheme 2-1).  The structures of the crucial intermediates 2 and 4 were 

convincingly established using 
11

B and 
1
H NMR spectroscopy, and a C–H insertion step 



 69 

in the hypothetical tricoordinate borenium 3 was proposed to rationalize the formation of 

the observable cation 4.  Since a full equivalent of the cationic trityl reagent was used, a 

hydride quench was necessary to convert 4 to the isolable amine borane 5.  The C–B 

bond forming event was proposed to occur via a concerted insertion mechanism based on 

the substantial kinetic isotope effect associated with the loss of the aromatic proton, 

although an electrophilic aromatic substitution mechanism still remains a plausible 

alternative.
4,5

 

Scheme 2-1.  The Stoichiometric Aromatic Borylation 

 

Electrophilic Borylations Using Stoichiometric Electrophiles 

The previous work
4,5

 on the directed electrophilic aromatic borylation using 

stoichiometric trityl activation clearly outlined the possibility of C–H insertions in 

reactive B–H borenium cations, and we continued this research in order to get a deeper 

insight into this intriguing transformation.  The initial mechanistic proposal considered 

spontaneous dissociation of the H-bridged cation 2, followed by a rate-limiting C–H 

insertion step.  The kinetic isotope effect served as good evidence for the rate-limiting  

C–H borylation, although little experimental evidence was available to support the 
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spontaneous generation of the primary borenium cation 3 from 2.  We thus proceeded to 

explore the effects of the variations in the 1:Ph3C
+
 stoichiometry on the progress of the 

reaction by in situ NMR experiments.  If activated  with <50 mol% of Ph3C
+
 [B(C6F5)4]

−
, 

the solutions of amine borane 1 showed exclusive formation of the H-bridged cation 2 

(δ 
11

B 0.0 ppm), with no traces of the expected cyclization product 4.  No NMR signals 

attributable to the borylation product 4 were detected even after multiple days at rt, or 

after heating to 50 °C for 28 h.  Addition of another 0.5 equiv Ph3C
+
 [B(C6F5)4]

−
, 

however, induced a rapid aromatic borylation reaction which reached a ca. 50% 

conversion to 4 (δ 
11

B 59 ppm) in 25 min at rt.  This observation suggests that the 

additional trityl cation is necessary for efficient progress of the reaction beyond formation 

of the H-bridged dimer 2.  The room temperature intramolecular borylation of 1 thus 

demands the use of a full equivalent of the trityl reagent. 

Having established the trityl stoichiometry required for borylation reactivity at 

room temperature we turned our attention to expanding the substrate scope of this 

reaction (Scheme 2-2).  The reactions were performed using 0.9 equiv of Ph3C
+
 

[B(C6F5)4]
−
 in either PhBr or PhF solutions at rt.  A small excess of the amine borane 

substrates was used because this stoichiometry leads to a slight improvement in the purity 

of the crude reaction mixture, as observed empirically in the previous study.
4,5

 Since the 

reactions were performed using roughly stoichiometric trityl activation, a hydride quench 

with n-Bu4NBH4 was essential to generate the isolable cyclic arylboranes. 
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Scheme 2-2.  Substrate Scope of the Stoichiometric Borylation
a
 

 

a
1:0.9 L–BH3:Ph3C

+
 [B(C6F5)4]

−
, rt, 4 h; quenched with excess n-Bu4NBH4. 

b
5 min at rt. 

c
2 h at rt 



 72 

The regiochemistry of the borylation was explored using m-halogenated 

benzylamine substrates 6, 9 and 12, and in all cases negligible selectivity was observed.  

While the fluorinated substrate 6 mostly undergoes borylation at the para-position 

relative to the halogen substituent, borylation at the ortho-position is marginally preferred 

in the iodinated amine borane 12.  The chlorinated substrate 9, in turn, occupies an 

intermediate position, leading to roughly equal amounts of the ortho- and para-borylation 

products 10 and 11.  As discussed later, however, the borylation selectivity of amine 

boranes 6, 9 and 12 can be noticeably improved by using an alternative protocol 

employing a catalytic electrophile at high temperatures. 

Prior literature indicates that the trimethylsilyl group, as well as the tert-butyl 

group are easily displaced in the electrophilic aromatic substitution,
9
 resulting in an 

ipso-substitution pathway.  In order to test whether ipso-substitution is feasible in the 

borylation reaction, substrates 15 and 16 were prepared.  While the amine core of the 

silylated substrate 15 was prepared in a straightforward route involving ortho-lithiation of 

N,N-dimethylbenzylamine followed by Me3SiCl quench,
10

 the preparation of the 

butylated substrate 16 required a more sophisticated approach (eq 1).  Inspired by the 

literature reports on organolithium addition to benzyne intermediates,
11

 we envisioned 

that a convenient aldehyde intermediate 18 can be prepared in one step from 

fluorobenzene, tert-butyllithium (tert-BuLi) and N,N-dimethylformamide (DMF).  

Indeed, addition of 4 equiv of tert-BuLi to a solution of fluorobenzene in Et2O at −78 °C, 

followed by stirring the reaction mixture at −55 °C for 3h, generated o-(tert-Bu)C6H4Li, 

which was subsequently quenched with DMF to afford 18 after a mildly acidic aqueous 

workup and chromatographic purification.  While the reductive amination of the hindered 
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aldehyde 18 was somewhat sluggish, the overall sequence of eq 1 allowed a 

straightforward access to the substituted amine borane 16. 

 

The performance of 15 and 16 upon trityl activation, however, was noticeably 

different.  Thus, the activation of the silylated substrate 15 resulted in a very rapid 

formation of the ipso-substituted product 5 after a hydride quench.  The closely related 

amine borane 16, however, underwent a clean cyclization to 17.  No trace of the product 

arising from loss of the tert-butyl group (5) was observed in the crude 
1
H NMR spectrum. 

The cyclic cation 4 is a representative of the rare B–H borenium class,
4,5,12

 and 

shares a structural analogy with the hypothetical cation 3, so its reactivity demanded a 

closer investigation.  Since the cyclization of 1 produces minor impurities aside from the 

desired 4, a pure sample of 4 was prepared by the alternative route of hydride abstraction 

from 5 with Ph3C
+
 [B(C6F5)4]

−
.  The borenium salt 4 was isolated as a pure solid by 

performing the trityl activation of 5 in anhydrous benzene, which allowed complete 

removal of the triphenylmethane byproduct.  Surprisingly, while not affected by CD2Cl2 

and d5-PhBr solvents, solutions of the borenium salt 4 underwent a slow decomposition at 

rt involving a pentafluorophenyl group abstraction from the counterion.  The counterion 

decomposition was substantially accelerated by heating, which allowed a preparative 

access to the substituted amine borane 19 (eq 2).  Similar dearylation of [B(C6F5)4]
−
 by 

potent cationic Zr and Al electrophiles was reported in the literature.
13
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As expected from the C–H borylating reactivity of weakly stabilized B–H 

boreniums, cation 4 reacts with σ-bond nucleophiles, such as D2 gas and silanes.  Thus, 

stirring the suspension of 4 in PhH under D2 (ca. 2–3 atm) for 15–30 days at rt followed 

by quenching the heterogeneous reaction mixture with n-Bu4NBH4 provided mixtures of 

5 and 19 with variable deuterium incorporation (5-d and 19-d, eq 3).  Some caution must 

be used while interpreting the deuterium incorporation results, since the byproduct of the 

counterion decomposition is the strongly electrophilic B(C6F5)3, which is a part of the 

known protocol for molecular H2 activation.
14

 Additionally, cation 4 inserts into Si–D 

and Si–C bonds of Et3SiD (eq 4) and Me4Si (eq 5), respectively.  Thus, stirring the 
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suspension of 4 in benzene with excess Et3SiD for 10 min at rt, followed by a hexane 

wash to remove the silicon reagent, afforded a sample of 4-d with only 8% residual 

intensity of the B–H peak in the 
1
H NMR spectrum.  The methylated amine borane 20 

(eq 5) was first identified among decomposition products of 4 in a d5-PhBr solution 

containing Me4Si NMR reference.  Repeating the experiment in a preparative fashion 

using large excess of Me4Si afforded 20 in 31% yield after chromatography. 

Finally, X-ray crystallographic analysis of 4 was performed, this time using a salt 

with the more robust [HCB11Cl11]
−
 anion (Figure 2-1).  The X-ray quality crystals were 

grown in a glovebox at rt by layering a solution of 4 in CH2Cl2 with hexanes.  Additional 

details are provided in the experimental section, as well as in Appendix A. 

Figure 2-1.  X-Ray structure of 4 (cation only, 50% probability ellipsoids) 

 

In view of the reactivity of 4 with σ-bond nucleophiles, the possibility of aliphatic 

C–H borylation seemed plausible.  Treating a hindered amine borane complex 21 with 50 

mol% of the strong electrophile Ph3C
+
 [B(C6F5)4]

−
 predictably resulted in formation of an 

H-bridged cationic boron intermediate 22, δ 
11

B = −1.1 ppm in d5-PhBr (Scheme 2-3).
15

 

Further addition of the electrophilic trityl salt induced rapid formation of a tricoordinate 

boron species, as evidenced by a broad signal at δ +69.3 ppm in the 
11

B NMR spectrum 
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within 10 minutes at room temperature.
16

 Over the same timescale, the 
1
H NMR 

spectrum showed disappearance of the tert-Bu singlet of 22 (δ 
1
H = 0.86 ppm), while two 

new singlets appeared (δ 
1
H = 0.64 and 1.27 ppm; 6:2 integral ratio).  Together with the 

substantial downfield shift of the broad B–H resonance (δ 
1
H = 4.8 ppm) and liberation of 

H2, these and other spectroscopic data (see experimental section) are consistent with the 

spirocyclic borenium structure 24.  At no time was the open-chain borenium cation 23 

detected.  Interestingly, 24 constitutes a rare example of a tricoordinate boron cation 

lacking stabilizing n- or π-donor groups.
16

 Additionally, 24 is a representative of the 

uncommon B–H borenium ion class; only a few such compounds have been reported to 

date.
4,5,12

 Borenium salt 24 was also isolated and characterized in pure form by treating 

21 with the trityl reagent, followed by precipitation of the product with hexanes.  Single 

crystals of 24 were grown by layering a CH2Cl2 solution of the borenium salt with 

hexanes.  X-ray crystallography confirmed the proposed connectivity of the cation, 

although a severe disorder in the crystal prevented reliable determination of the bonding 

parameters. 

Scheme 2-3.  Stoichiometric Aliphatic Borylation 
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Hydride quench with n-Bu4NBH4 converted 24 to the isolable amine borane 25 

(82% yield), readily identified by the broad CH2B 
1
H and 

13
C NMR signals (δ 0.75 ppm 

and 31 ppm, respectively, in CDCl3), and an H-coupled triplet at δ −4.2 ppm in the 
11

B 

NMR spectrum. 

In contrast to the stoichiometric trityl activation of the sterically hindered amine 

borane 21, intramolecular borylation of N,N-dimethylpropanamine borane (26) was 

noticeably less efficient under the same conditions (Scheme 2-4).  Thus, essentially no 

cyclic cation 30 was observed in the reaction mixture by in situ 
11

B and 
1
H NMR even 

after 2 h at rt.  Instead, the major boron species observed besides the complex borate 

anion were the incomplete activation product 27, as well as the unprecedented dicationic 

dimer 28, tentatively evidenced by the peaks at δ 
11

B −0.9 ppm and δ 
11

B +13.2 ppm, 

respectively, and supported by analogies to be discussed later.  While after 48 h at rt the 

cyclic cation 29 was found to be the dominant species in the reaction mixture, small 

amounts of 27 and 28 were still observed by 
11

B NMR.  This behavior contrasts the 

cyclization of 21, where exclusive formation of the cyclization product 24 

(δ 
11

B +69.3 ppm) was observed after only 10 min at rt.  The difference in the cyclization 

rates of amine boranes 21 and 26 might simply reflect the difference in the energy 

barriers associated with the actual C–H insertion step, but the data presented in Chapter 1 

suggest an additional possibility.  In principle, the observed dissimilarities in the behavior 

of the activated complexes 21 and 26 might also be caused by the differences in the 

processes leading to generation of the primary boreniums 23 and 29, respectively.  While 

multiple factors might be involved, the existence of the primary borenium 29 in the form 
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of the dicationic dimer 28 may be one of the reasons responsible for the difference in the 

cyclization rates of 21 and 26. 

Scheme 2-4.  Stoichiometric Trityl Activation of 26 

 

The trityl activations of complexes 21 and 26 are reminiscent of the activations of 

Me3N–BH3 and (iPr)2EtN–BH3 presented in Chapter 1.  Thus, the stoichiometric trityl 

activation of the unhindered trimethylamine borane proceeded slowly at rt, leading to 

buildup of the corresponding dicationic dimer, with relatively little decomposition 

observed even after 24h at rt.  In contrast, activation of the bulky (iPr)2EtN–BH3 led to 

formation of the observable primary borenium cation in solution, and very rapid 

degradation of Ph3CH and [B(C6F5)4]
−
 was observed.  Since the most plausible 

explanation suggests that it is the primary borenium cation that is responsible for the 

observed borylation and decomposition processes, it is likely that the high reactivity of 

the hindered amine boranes upon activation is in part due to the instability of the 

corresponding dicationic dimers. 

Electrophilic Borylations Using Catalytic Electrophiles 

The experimental data summarized in the previous section suggest that a 

stoichiometric amount of the trityl cation is required in order to induce the electrophilic 
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borylation in 1 (Scheme 2-1) at rt.  In accord with the observations presented in 

Chapter 1, this suggests that the H-bridged monocations 2 apparently are not very 

efficient sources of the free primary borenium cations at rt.  On the other hand, it is 

possible that the free borenium ion 3 can be generated along with the starting amine 

borane 1 in the thermal dissociation of 2.  To test this possibility, a solution of 

N,N-dimethylbenzylamine borane (1) in d5-PhBr was activated with ca. 4 mol% of Ph3C
+
 

[B(C6F5)4]
−
, resulting in partial formation of the H-bridged cation 2 as the sole 

intermediate detected.  Heating the reaction mixture at 120 °C caused rapid 

disappearance of 2, and formation of the cyclization product 5 along with H2 gas, as 

evidenced by NMR.  The reaction was found to be rather slow at 120 °C, reaching ca. 

60% conversion after 44 h of heating. 

Intrigued by this observation, we attempted the perform the same transformation 

using a range of other strongly electrophilic catalysts, such as Ph3C
+
 

[closo-HCB11H5Br6]
−
, Tf2NH, B(C6F5)3, AgNTf2, TfOH and Li[B(C6F5)4] (Et2O 

complex).  Interestingly, formation of the H-bridged dimer 2 was observed upon treating 

the solutions of 1 with catalytic amounts of the first three electrophiles (Ph3C
+
 

[closo-HB11H5Br6]
−
, Tf2NH and B(C6F5)3), and clean formation of the cyclization product 

5 was observed in these cases upon heating the reaction mixtures to 120 °C.  In contrast, 

the use of TfOH and Li[B(C6F5)4] catalysts did not produce 2 upon activation, and did not 

result in borylation upon heating.  Formation of colloidal Ag metal prevented a clear 

conclusion about the nature of the intermediates formed upon treating a solution of 1 with 

AgNTF2 at rt, although in this case the high-temperature borylation was also successful.  

The seeming insensitivity of the borylation reaction to the nature of the electrophilic 
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catalyst introduced to the reaction mixture suggests that the activated intermediate 

sustaining the catalytic cycle is a boron species, potentially related to the H-bridged 

dimer 2. 

Seeking further improvement of the protocol, Tf2NH “hydridophile” was 

evaluated more thoroughly, this time in d8-PhMe, which was expected to simplify the 

product isolation.  The composition of the activated intermediates was greatly influenced 

by the solvent and by the ratio of 1 and Tf2NH, as described in more detail for other 

amine boranes in Chapter 1.  Thus, the stoichiometric reaction between 1 and Tf2NH 

afforded the covalent adduct BnMe2N–BH2–NTf2 (31) as a mixture of N- and O-bound 

isomers.  The same adduct 31 was seen in d8-PhMe using 5 mol% of Tf2NH for 

activation, but the H-bridged cation 2 was also detected as the activated species in 

CD2Cl2.  Subsequent events were also influenced by the ratio of Tf2NH and 

N,N-dimethylbenzylamine borane (1).  Using 5 mol% of Tf2NH in toluene, clean 

catalytic cyclization to 5 and H2 was observed above 120 °C.  In contrast, heating the 

covalent adduct 31 under the same conditions afforded essentially no cyclization product. 

The high stability of the bistriflimide anion paired with good solubility of its 

derivatives in aromatic solvents allowed developing a simple catalytic procedure that 

could be used with a range of substrates, both aromatic and aliphatic (Schemes 2-5 and 

2-6).  The same 5% loading of the catalyst Tf2NH was used in all cases, and the reactions 

were performed in toluene, fluorobenzene or benzene in sealed thick-walled tubes at 

160 °C without attempting to define the threshold temperatures for each example.  After 

quenching with n-Bu4NBH4 (to slightly increase the reaction yields), simple filtration 

through silica gel to retain polar bistriflimide-containing byproducts gave clean products 
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or isomer mixtures.  The isomer mixtures were further separated by crystallization or 

chromatography, and structures of all compounds were assigned by multinuclear NMR 

spectroscopy and HRMS (see experimental section). 

Besides the unsubstituted benzylic amine borane 1, the catalytic borylation 

protocol also works well for the substituted analogs, provided that the substituent is 

sufficiently stable under the reaction conditions.  The functional group tolerance is fairly 

limited due to the highly electrophilic (and, to some extent, reducing) nature of the 

activated amine borane solution, although the presence of halogen (6, 9, 12) and 3-PhO 

(32) substituents presented no complications.  The borylation regioselectivity in 

substituted benzylic amine boranes 6, 9, 12, 32 is very good, favoring p-borylation 

relative to the ring substituent in all cases.  This selectivity sharply contrasts that 

observed in the stoichiometric borylations described earlier in this chapter, and will be 

discussed in more detail later.  The observed regioselectivity and functional group 

tolerance in some cases appears to be complementary to other widely used borylation 

protocols, namely transition metal-catalyzed borylation,
17

 and C–H lithiation followed by 

Li to B exchange.  Thus, the iodinated substrate 12 can be imagined to be a challenging 

substrate for both approaches due to the high lability of the iodine substituent, while 

lithiation of 1-(dimethylamino)naphthalene was previously shown to favor the C8 atom 

of the naphthalene backbone.
18
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Scheme 2-5.  Substrate Scope of the Catalytic Aromatic Borylation
a
 

 

a
5 mol% Tf2NH, 160 °C, sealed tube, 14 h; quenched with 5-10 mol% n-Bu4NBH4. 

b
24h 
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Amine borane 37 presented a more unusual limitation to the substrate scope.  

Here, apparently, the facile cleavage of the C–N bond in an activated intermediate
5
 

produced α-phenethyl cation 40, which was then quenched by a hydridic B–H, 

regenerating a reactive boron species (eq 6).  The exact species undergoing the C–N bond 

cleavage is unknown, and eq 6 shows 39 as a plausible candidate for that role, although a 

wide variety of other activated derivatives of 37 can be reasonably imagined to 

decompose in the same fashion.  Overall, the major reaction pathway for the α-substituted 

amine borane 37 thus amounts to decomposition to ethylbenzene and Me2NBH2 dimer.  

A similar degradation pathway apparently also complicates the cyclization of 35, since 

1-methylnaphthalene byproduct was observed in the reaction mixture by GC-MS.  

Overall, it appears that the fragmentation interferes most in those cases where a 

reasonably stable carbocation can be formed upon the C–N bond cleavage. 

 

A range of substrates possessing suitably placed aliphatic C–H bonds was also 

screened in the same high-temperature catalytic protocol (Scheme 2-6).  The 

intramolecular borylation method is particularly efficient for forming aliphatic C–B 

bonds next to quaternary centers in hindered amine boranes, furnishing organoboron 

structures not available via the conventional hydroboration route.  Thus, amine boranes 

21 and 41 cleanly formed products 25 and 42, respectively.  In contrast, a similar process 

involving substrate 43 stalled at 20% conversion.  It remains to be seen whether the low 

conversion in this difficult case reflects thermodynamic or kinetic complications in the 
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catalytic cycle, or whether the unfavorable 1,3-diaxial arrangement of the N–B and  

C–CH3 bonds impedes cyclization. 

Scheme 2-6.  Substrate Scope of the Catalytic Aliphatic Borylation
a
 

 

a
5 mol% Tf2NH, 160 °C, sealed tube, 14 h; quenched with 5-10 mol% n-Bu4NBH4. 
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Cyclization of the aliphatic amine borane 45 afforded spirocycle 46 as the major 

product, revealing the preferred C–H insertion reactivity as methyl > methylene.  Due to 

difficulties in isomer separation, the minor product 47 was characterized as an enriched 

mixture. 

To further address regioselectivity, substrate 48 was tested under the catalytic 

conditions.  The aromatic borylation product 49 was found to predominate, although the 

minor aliphatic borylation product 50 was also detected.
19

 The cyclization of a related 

substrate 51 was more complex, although the major product 52 was formed by a similar 

preference for borylation at methyl over methylene C–H as seen with 45.  The minor 

product 54 also contains a new aliphatic C–B bond, while the unusual tricyclic product 

53 contains aryl as well as aliphatic C–B bonds, apparently due to a second borylation 

event with loss of H2.  As evidenced by in situ NMR spectroscopy between 120-160 °C, 

the formation of 53 begins only after most of 51 has been converted to 52, suggesting that 

the aromatic borylation event leading to 53 is the slower cyclization step in this sequence. 

The initial studies on the catalytic borylation were based on the rationale that the 

dissociation of 2 to the borenium 3 and the amine borane 1 might be possible under the 

thermal conditions (Scheme 2-7).  In this catalytic cycle, the crucial C–H borylation step 

(3 to 4) is expected to be the same as in the stoichiometric experiment.  To confirm the 

feasibility of the hydride transfer step (regeneration of 2), a solution of 4 was treated with 

1, and the subsequent NMR assay indicated formation of 2 among other reaction 

products.  The only step of the proposed catalytic cycle that lacked a clear precedent was 

the dissociation of 2 to 3 and 1, and the success of the catalytic reaction was initially 

interpreted as an indication for the formation of 3 at a high temperature.  While this 
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mechanism does not include a role for the dimeric dications discussed in the context of 

stoichiometric borylations, the significance of such species under the catalytic conditions 

can be expected to be low, since the concentration of 3 available for dimerization in the 

presence of a stronger σ-donor 1 might be too small. 

Scheme 2-7.  The Catalytic Borylation Mechanism. An Early Proposal 

 

At the present time, however, the real reaction mechanism remains unclear.  The 

most striking difference between the catalytic and stoichiometric borylation processes is 

in the opposite trends in regioselectivity for the halogenated amine boranes 6, 9 and 12.  

While in the catalytic process the p-/o-selectivity gradually increases in the F–Cl–I series 

from 13:1 (6) to 40:1 (12), in the stoichiometric trityl borylations in the same series the 

selectivity gradually decreases from 4:1 (6) to 1:2.4 (12).  It is tempting to propose that 

the differences in the product ratios arise from thermodynamic equilibration under the 

high-temperature conditions, but so far all indications have suggested that the catalytic 

borylations are a kinetic process.  Thus, the product regioisomer ratios do not change 

throughout the reaction process, and the isolated borylation products were shown not to 

undergo equilibration under the reaction conditions. 
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The following experiments were performed to confirm the stability of the 

products 10 and 11 under the reaction conditions.  Each of the isolated isomers was 

activated with 5 mol% Tf2NH in d8-PhMe, and the resulting solutions were heated at 

120 °C.  No equilibration of pure 10 or 11 to the isomer mixture was observed, although 

the catalytic activation of 9 under the same conditions led to a ca. 25:1 mixture of 10 and 

11. 

Since it can be argued that the catalytic activation of the products 10 or 11 does 

not exactly mimic the borylation conditions, a slightly modified set of experiments was 

also performed.  Thus, mixtures of 0.1 equiv of either 10 or 11 with 1 equiv of 1 in 

toluene were activated with 5 mol% Tf2NH, and then heated in sealed tubes at 160 °C.  

Under the reaction conditions, full conversion of 1 to 5 was observed (after a borohydride 

quench), although compounds 10 and 11 were recovered unchanged.  In a control 

experiment, 0.1 equiv of 9 and 1 equiv of 1 were used.  This time, a mixture of the 

cyclized products 5, 10 and 11 was formed, and the ratio of 10 and 11 was found to be 

the same as in the cyclization of 9 with no 1 present (ca. 25:1 10:11).  This suggests that 

while under the explored conditions the starting amine borane 9 cyclizes to form a 

mixture of 10 and 11, the interconversion of the two isomers does not occur.  In this 

series of experiments, the cyclization of 1 to 5 serves not only to reproduce the actual 

cyclization conditions, but also as a probe confirming that in a particular experiment such 

conditions were indeed available. 

In view of these observations, the dissociation of 2 to generate the primary 

borenium 3 appears unlikely, since in this case the selectivity determining step would be 

the very same C–H insertion process as in the stoichiometric reaction, and both processes 



 88 

would be expected to provide the same regioselectivity corrected for the difference in the 

reaction temperatures. 

Interestingly, the rate determining step in the catalytic borylation appears to be 

mostly insensitive to the electronic effects in the substrate, since a competition 

experiment showed that the cyclization rates of 1 and 32 are essentially equal, despite the 

presence of the activating 3-phenoxy substituent in the latter.  This is consistent with the 

C–B bond forming event being a concerted C–H insertion step, and thus the possibilities 

of other insertion mechanisms not involving the primary borenium 3 were explored 

computationally. 

 

Intriguingly, aside from the dissociation discussed above, there exists another 

reasonable mechanism by which tricoordinate boron species capable of inserting into C–

H bonds might be generated from the H-bridged cations such as 2.  A closer look at the 

generic 3c2e B–H–B cation 55 reveals that this cation is formally isoelectronic with the 

alkane borenium complex 56, which is a logical intermediate in the borenium C–H 

insertion step.  Comparing the structures 55 and 56 reveals that while 56 appears to be 

pre-organized for a C–H insertion step resulting in formation of a new C–B bond, the 

isoelectronic structure 55 clearly has potential for undergoing a B–H insertion (57, eq 7) 

leading to formation of a new B–B bond.  This insertion can be expected to produce a 

molecule of H2 along with the tricoordinate diboron cation 58.  It should be noted here 

that the insertion of tricoordinate boron hydrides into B–H bonds accompanied by the 
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loss of H2 is among the most important reactions in the field of polyhedral boron 

complexes.
20

 

 

The two possible pathways of the catalytic process were explored using the same 

M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) method as described in Chapter 1.  

Figure 2-2 summarizes the gas-phase enthalpies (kcal/mol) of selected structures 

corresponding to the critical points on the potential energy surface.  A few structures of 

no direct significance to the discussion presented below, such as the weak complex 

between 61 and CH4, have been omitted from the scheme.  The enthalpies shown in 

Figure 2-2 were calculated at 298.15 K, using a scaling factor of 0.97 in the 

thermochemical analysis.  To reduce the computational effort, the calculations were 

performed using simplified models of both the H-bridged cation (59), and the aliphatic 

C–H fragment undergoing borylation (CH4).  Figure 2-2 shows two hypothetical reaction 

pathways (a and b) shown up to the highest energy transition states (62 and 65, 

respectively).  In pathway a, the initial event is the dissociation of the H-bridged cation 

59 to the amine borane 60 and the primary borenium 61, which is calculated to be 

enthalpically unfavorable by 43.9 kcal/mol.  The rate limiting step in this sequence is 

predicted to be the C–H borylation proceeding via the transition state 62 (57.1 kcal/mol 

above the starting 59 and CH4), ultimately forming H2 byproduct and a new C–B bond.  

Pathway b, however, starts with a lower energy B–H insertion step 63 (29.3 kcal/mol), 

which produces a molecule of H2, as well as the tricoordinate cation 64 possessing a 

covalent B–B bond.  The diboron cation 64 (25.5 kcal/mol) is calculated to be the 
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reactive borylating agent in this pathway, which is illustrated by its reaction with CH4 in 

the transition state 65.  Interestingly, the C–H borylation of CH4 in 65 does not produce 

H2, since the C–H hydrogen ultimately gets captured by the B–B bond of 64 in the form 

of a 3c2e B–H–B bond. 

The most important message delivered by the computational results summarized in 

Figure 2-2 is that there apparently exists a lower energy pathway for the C–H borylation 

starting with H-bridged monocations such as 59, which does not involve generation of the 

primary borenium species such as 61.  While the initial results suggesting that the 

catalytic borylation process might begin with a B–H insertion step were purely 

computational, we were delighted to find an experimental result supporting the 

theoretical predictions.  Thus, heating a solution of the phosphine-based H-bridged cation 

66 ([B(C6F5)4]
−
 salt) in d5-PhBr at 90 °C for 18 h resulted in clean formation of the 

complex triborane cation 67, and the boronium byproduct 68 in 1:1 ratio, as shown by 

multinuclear NMR experiments (eq 8).  Formally, the known cation 67
21

 can be viewed 

as the adduct between a BH3 molecule and the tricoordinate diboron cation 69, although 

this formalism may not necessarily reflect the actual structure of 67.  While formation of 

67 serves as a clear indication for the formation of covalently bound B–B species in the 

decomposition of H-bridged cations, it also introduces some additional ambiguity to the 

reaction mechanism.  Thus, while it is reasonable that species like 69 can react with the 

suitably placed C–H bonds before the formation of 67, cation 67 can also be expected to 

lose H2 under the thermal conditions.  This would inevitably lead to formation of other 

weakly stabilized tricoordinate boron cations, further complicating the mechanistic 

pathways.
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Figure 2-2.  Mechanistic Alternatives for the Catalytic C–H Borylation 
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With the above B–H insertion mechanism, a plausible catalytic cycle can be 

drawn for the borylation of 1 (Scheme 2-8).  Under the thermal conditions, loss of H2 

from the H-bridged cation 2 might lead to tricoordinate diboron cation 70, which then 

isomerizes to the H-bridged species 71 via a C–H insertion.  Interaction with another 

molecule of the starting amine borane 1 is then expected to regenerate 2, displacing the 

product 5 from the H-bridged dimer 71. 

Scheme 2-8.  The Catalytic Borylation Mechanism Involving B–H Insertion 
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Lewis Base Borane Complex Reactions with B(C6F5)3 

The successful performance of B(C6F5)3 in the catalytic borylation chemistry 

briefly mentioned in this chapter demanded a closer investigation of the reactivity of this 

highly Lewis acidic compound with amine boranes.  Addition of triethylamine borane to 

a solution of 0.5 equiv of B(C6F5)3 in CD2Cl2 at rt resulted in a rapid hydride abstraction 

and formation of the H-bridged cation 72, as evidenced by 
1
H and 

11
B NMR (eq 6).  

Unlike in the trityl activation experiments described in Chapter 1, the other product of the 

hydride abstraction was not a mere spectator, but rather the weakly coordinating 

[HB(C6F5)3]
−
 counterion.  Additionally, the difference in the counterion structure and 

stability was found to have a prominent effect on the subsequent events.  Thus, even at rt 

degradation of the H-bridged cation 72 was evident, and the process was substantially 

accelerated by heating the sealed reaction tube to 40 °C.  At this point the 
11

B NMR 

analysis indicated formation of B2H6, and another compound identified as 73 upon 

isolation.  Formation of 73 is apparently a result of some disproportionation process 

involving a [HB(C6F5)3]
−
 derivative, and despite the 1:1.5 “R3N–BH3”:“–C6F5” reaction 

stoichiometry, only C6F5BH2 complexes were formed. 

 

The reaction was further developed to a preparative protocol, optimized with 

respect to decreasing the amount of the expensive B(C6F5)3 used, and simplified product 

isolation.  Consequently, the optimized procedure requires only a slight excess (0.36 

equiv vs. theoretical 0.33 equiv) of the fluorinated borane, and the product isolation in 

most cases is accomplished by a simple filtration of the reaction mixture through a plug 



 94 

of silica gel, followed by concentration of the solution.  The results listed in Table 2-1 

suggest that this method can be conveniently used to access pentafluorophenylborane 

complexes of simple tertiary amines and phosphines.  Very recently, a similar method for 

accessing related dimethylsulfide complexes was reported in the literature.
22

 

Table 2-1.  Synthesis of C6F5BH2 Complexes
a
 

Entry Substrate Solvent Temp Time Product Yield 

1 Me3N–BH3 CH2Cl2 50 °C 1 h Me3N–BH2C6F5 (74) 97% 

2 Et3N–BH3 PhF 50 °C 3 h Et3N–BH2C6F5 (73) quant 

3 BnMe2N–BH3 PhF 50 °C 1 h BnMe2N–BH2C6F5 (75) quant 

4 Ph3P–BH3 CH2Cl2 40 °C 1 h Ph3P–BH2C6F5 (76) 71% 
a
0.36:1 B(C6F5)3:L–BH3; the reaction performed in sealed vials 

 

Hydroboration of Alkenes with Activated Lewis Base Borane Complexes 

The high electrophilicity of activated Lewis base borane complexes evident from 

their reactivity with weak nucleophiles such as the aliphatic C–H bonds suggests that 

they can also be useful for other types of synthetic transformations.  Indeed, the 

foundations of the C–H borylation project in our research group were laid while 

developing the methodology for alkene hydroboration using activated borane 

complexes.
23

 Some aspects of alkene hydroboration by amine and phosphine borane 

complexes under Ph3C
+
 [B(C6F5)4]

−
 activation conditions were previously explored in our 

group by Timothy DeVries,
5
 and thus the initial goals of this study were to expand the 

potential applications of this chemistry to other classes of substrates and borane 

complexes. 

Drawing some parallels to the ipso-substitution of silyl groups in the electrophilic 

aromatic borylation described in the beginning of this chapter, we proceeded to explore 

hydroboration of silylated alkenes using activated triethylamine borane.  The 
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hydroborations were performed using the H-bridged cation 77 generated from 1:2 

mixture of Ph3C
+
 [B(C6F5)4]

−
 and Et3N–BH3 in PhMe, and the hydroboration products 

were isolated as the corresponding alcohols following the oxidative workup.  As the 

substrates for hydroboration we chose to use alkenylsilane 78 (eq 7) and allylsilane 80 

(eq 8), mainly due to the differences in the relative position of the silyl groups to the 

double bonds in these compounds. 

 

Interestingly, despite the high electrophilicity of the reaction medium, in both 

cases the major products retained the C–Si bonds.  Furthermore, the hydroboration 

regiochemistry in the case of 78 was strongly influenced by the presence of the 

trimethylsilyl group in the substrate, since no trace of the regioisomeric benzylic alcohol 

was observed in the 
1
H NMR spectrum of the crude reaction mixture.  The directing 

effect of the silyl group in hydroboration reactions using BH3·THF and Br2BH·SMe2 was 

previously described in the literature,
24

 and appears to operate under the current 

hydroboration conditions as well.  The effect of the more remote trimethylsilyl group in 

the alkene 80, however, was not sufficient to override the inherent preference for 

hydroboration at the least hindered position.  It should be emphasized that in both cases 

the isolated yields of the alcohols are sufficiently high to suggest that at least two H 

atoms of 77 can be used in the hydroboration process. 
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We also explored the applicability of the trityl activation protocol to 

hydroborations using NHC boranes.  Without activation, such complexes do not 

hydroborate alkenes even at very high temperatures,
25

 which is explained by the very 

strong (in the heterolytic sense) bonding between the NHC unit and BH3.  Electrophilic 

activation of such complexes, however, opens up the possibility of performing 

hydroborations without breaking the strong bond between the NHC fragment and the 

boron atom. 

 

In accord with our expectations based on the analogy to other Lewis base borane 

complexes, the electrophilic activation approach to hydroborations using NHC boranes 

was found to be successful.  The reactions summarized in Table 2-2 were performed 

using the relatively unhindered 1,3-dimethyl-2-ylidene borane (82), although the 

feasibility of hydroboration reactions using more hindered carbene borane complexes was 

established by in situ NMR experiments.  The reaction protocol involved activation of 82 

in CH2Cl2 solution with an electrophile (5 mol% of either Ph3C
+
 [B(C6F5)4]

−
 or Tf2NH), 
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followed by addition of excess alkene.  The oxidative workup using a 

H2O2/NaOH/MeOH mixture was much slower than in conventional hydroborations using 

BH3·THF, although full conversion to the alcohol products was still achieved in ca. 16 h 

at rt.  The product yields summarized in Table 2-2 were determined by 
1
H NMR analysis 

using PhMe as the internal reference. 

Table 2-2.  Alkene Hydroboration Using Activated 82
a,b

 

Entry Substrate Time Temp 
% CαOH 

(unrearr) 

% CβOH 

(unrearr) 

% rearranged 

products 

1
c
 (E)-3-hexene 1.5 h 25 °C 

3-hexanol 

(5%) 
– 

1-hexanol (2%) 

2-hexanol (71%) 

2
d
 (E)-3-hexene 1.5 h 25 °C 

3-hexanol 

(5%) 
– 

1-hexanol (3%) 

2-hexanol (72%) 

3
c
 (E)-3-hexene 20 min 25 °C 

3-hexanol 

(68%) 
– 2-hexanol (7%) 

4
c
 (E)-3-hexene 4 h 50 °C 

3-hexanol 

(6%) 
– 

1-hexanol (16%) 

2-hexanol (68%) 

5
c
 1-octene 1.5 h 25 °C 

1-octanol 

(94%) 

2-octanol 

(5%) 
– 

6
c
 (E)-2-octene 1.5 h 25 °C 

2-octanol 

(85%) 

3-octanol 

(5%) 

1-octanol (tr) 

4-octanol (tr) 

7
c
 (E)-3-octene 1.5 h 25 °C 

3-octanol 

(8%) 

4-octanol 

(9%) 

1-octanol (tr) 

2-octanol (74%) 

8
c
 (E)-3-octene 19 h 25 °C 

3-octanol 

(5%) 

4-octanol 

(5%) 

1-octanol (31%) 

2-octanol (57%) 

9
e
 (E)-3-octene 2 h 50 °C – 

4-octanol 

(tr) 

1-octanol (61%) 

2-octanol (15%) 

10
e
 (E)-4-octene 1.5 h 25 °C – 

4-octanol 

(8%) 

1-octanol (15%) 

2-octanol (65%) 

3-octanol (7%) 

11
e
 (E)-4-octene 2 h 50 °C – 

4-octanol 

(7%) 

1-octanol (62%) 

2-octanol (25%) 

3-octanol (tr%) 

12
e
 (Z)-4-octene 2 h 50 °C – 

4-octanol 

(tr) 

1-octanol (32%) 

2-octanol (21%) 

3-octanol (tr) 
a
3.5:1 alkene:82. 

b
Product yields as determined by 

1
H NMR using an internal reference; 

2:1 alkene:82 hydroboration ratio assumed for calculating the theoretical yield. 
c
5 mol% 

Tf2NH used as the catalyst. 
d
5 mol% Ph3C

+
 [B(C6F5)4]

−
 used as the catalyst. 

e
30 mol% 

Tf2NH used as the catalyst. 
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To our surprise, the major product of the (E)-3-hexene hydroboration after 1.5 h 

at rt (entry 1) was found to be 2-hexanol.  The expected 3-hexanol was found to be only a 

minor component of the reaction mixture (14:1 2-hexanol:3-hexanol), and a trace of 

1-hexanol was also detected.  A similar experiment quenched after 20 min at rt gave a 

different product ratio, this time favoring 3-hexanol (entry 3).  The experiment performed 

for a longer period of time (4 h) at 50 °C (entry 4), however, provided a mixture 

containing a larger amount of 1-hexanol, although 2-hexanol was still found to be the 

dominant product.  Similar reactivity patterns were also observed using octene substrates 

(entries 5–12), and a substantial selectivity for the C2 migration product in (E)-3-octene 

hydroboration was achieved after 1.5 h at rt (entry 7).  Somewhat larger loadings of the 

bistriflimide catalyst (30 mol%) were necessary for the efficient conversion of (E)- and 

(Z)-4-octenes (entries 10–12), and under these conditions 1- and 2-octanols were found to 

predominate among the reaction products. 

 

The above results are best rationalized by the existence of a low energy barrier for 

the reversible conversion between dialkylborenium cation 83 and the corresponding 

alkene π-complexes such as 84.  While alkylboranes are well known to undergo 

rearrangements at high temperatures (typically above 150 °C),
26

 the C–B bond migrations 

in the NHC borane derivatives appear to be unusually facile.  Another surprising aspect 

of the hydroborations by activated NHC boranes is the apparent kinetic selectivity for the 

C2 rearranged products in 3-hexene and 3-octene hydroborations.  This suggests higher 
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thermodynamic stability of the secondary alkyl C2 isomer vs. secondary alkyl C3 isomer, 

as well as the lower kinetic barrier for the C3/C2 rearrangement as compared to C2/C1 

rearrangement. 

Summary 

To summarize, we explored a range of reactions involving Lewis base borane 

complexes activated with potent electrophiles.  The scope of C–H insertion reactions of 

unstabilized primary borenium cations was expanded to include aliphatic substrates, and 

convenient C–H borylation protocols using only catalytic amounts of strong electrophiles 

were developed.  Additionally, weakly stabilized B–H borenium ions 4 and 24 were 

isolated, and characterized by multinuclear NMR spectroscopy, as well as X-ray 

crystallography in the case of compound 4.  A protocol for electrophile-catalyzed 

hydroboration using NHC borane 82 was developed, and was found to offer unusual 

hydroboration products arising from facile C–B bond migration under the reaction 

conditions. 
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Experimental 

General Methods.  All reactions were performed at room temperature (unless 

otherwise stated), under an atmosphere of dry nitrogen, either in a glovebox, or using 

standard Schlenk techniques.  Nuclear magnetic resonance experiments were performed 

on Varian Inova 700, Varian Inova 500 and Inova 400 spectrometers at the following 

frequencies: 
1
H 700 MHz, 500 MHz or 400 MHz; 

11
B and 

11
B{

1
H} 225 MHz, 160 MHz 

or 128 MHz; 
13

C{
1
H} 176 MHz, 126 MHz or 101 MHz; 

19
F 471 MHz or 377 MHz; 

31
P 

162 MHz.  All spectra were recorded in CDCl3, CD2Cl2, d5-PhBr, or d8-PhMe and 

referenced to the 
1
H signal of internal Me4Si according to IUPAC recommendations,

27
 

using a  (referencing parameter) of 32.083974 for BF3·OEt2 (
11

B), a  of 25.145020 for 

Me4Si (
13

C), a  of 94.094011 for CCl3F (
19

F), and a  of 40.480742 for H3PO4 (
31

P).  

When the internal Me4Si reference could not be used, residual solvent peaks in 
1
H NMR 

spectra were referenced instead.  Toluene was distilled over CaH2; CH2Cl2, THF and 

hexanes were dried by passing through a column of activated alumina.  Toluene, CH2Cl2 

and hexanes used in sensitive reactions were further dried by storing over activated 3Å 

molecular sieves in the glovebox.  Commercially available NMR grade deuterated 

solvents (Cambridge Isotope Laboratories), as well as benzene and fluorobenzene were 

not distilled; instead they were simply dried over a large amount of activated 3Å 

molecular sieves in the glovebox.  All other reagents were used as received from 

commercial suppliers. 
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Preparation of Borylation Substrates 

1-Neopentylpyrrolidine Borane (21) 

A solution of pivalyl chloride (2.5 mL, 2.5 g, 21 mmol) in 10 mL of anhydrous 

CH2Cl2 was added slowly to a stirred solution of pyrrolidine (5.0 mL, 4.4 g, 62 mmol) in 

15 mL CH2Cl2 (exotherm!). The resulting mixture was stirred at room temperature for 1 

h, and then washed with 25 mL 10% aqueous NaOH solution. The organic layer was 

separated, the aqueous layer was extracted with 2x25 mL CH2Cl2, and the combined 

CH2Cl2 phases were dried with MgSO4. Filtration and concentration of the solution 

provided a white solid, which was dissolved in 20 mL of anhydrous THF. Treatment of 

the solution with Me2S-BH3 (3.5 mL, 35 mmol) resulted in an exothermic reaction after a 

short induction period. After the exothermic reaction had ceased, the reaction mixture 

was refluxed for 1h, and then filtered through a pad of silica gel (eluted with CH2Cl2) to 

decompose residual Me2S-BH3. Aqueous workup can also be used at this stage. 

Crystallization from hexanes provided 2.2 g (67%) of white crystals. 

1
H NMR (500 MHz, CDCl3): δ = 3.38-3.32 (m, 2H), 2.73 (s, 2H), 2.73-2.66 (m, 2H), 

2.29-2.18 (m, 2H), 1.90-1.80 (m, 2H), 2.1-1.3 (br m, 3H), 1.18 ppm (s, 9H). 
11

B NMR 

(128 MHz, CDCl3): δ -12.0 ppm (q, J = 96 Hz). 
13

C NMR (101 MHz, CDCl3): δ 76.5, 

63.8, 33.7, 30.5, 22.6 ppm. HRMS (ES+): m/z calculated for C9H22BNNa [M+Na]
+
 

178.1735, found 178.1743 (+4 ppm). IR (CDCl3, NaCl): 2962, 2388, 1460, 1370, 1166, 

1093 cm
-1

. m.p. 78-79 °C (from hexanes). 

N,N-Dimethylneopentylamine Borane (41) 
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Neat pivalyl chloride (5.0 mL, 4.9 g, 41 mmol) was added slowly to 40% aqueous 

HNMe2 (50 mL, 0.41 mol) while keeping the solution at an ambient temperature 

(exothermic reaction!). The amide was isolated and converted to 41 as described in the 

preparative procedure for compound 21. 

1
H NMR (400 MHz, CDCl3): δ = 2.85 (s, 2H), 2.74 (s, 6H), 2.3-1.2 (br m, 3H), 1.13 ppm 

(s, 9H). 
11

B NMR (128 MHz, CDCl3): δ -6.8 ppm (q, J = 97 Hz). 
13

C NMR (101 MHz, 

CDCl3): δ 74.5, 52.2, 33.8, 30.5 ppm. HRMS (ES+): m/z calculated for C7H20BNNa 

[M+Na]
+
 152.1586, found 152.1579 (-5 ppm). IR (CDCl3, NaCl): 2964, 2375, 2324, 

1487, 1465, 1370, 1168, 1005 cm
-1

. m.p. 32 °C (after vacuum distillation). 

N,3-Dimethylpiperidine Borane (43) 

To a solution of N,3-dimethylpyridinium iodide (10.3 g, 43.9 mmol) in MeOH (50 

mL) was added PtO2 hydrate (200 mg), and the mixture was shaken in a Parr vessel under 

H2 atmosphere (5 bar) overnight. Following filtration, the solution was concentrated in 

vacuum, producing a yellowish solid. The solid was treated with 10% aqueous NaOH (40 

mL), and the resulting two-layer mixture was extracted with CH2Cl2 (3x40 mL). The 

combined extracts were dried with MgSO4, filtered, and then treated with neat Me2S-BH3 

(4.4 mL, 44 mmol) at room temperature. After stirring for 5 min, the solvent was 

removed in vacuum. The crude product was then dissolved in hexanes (25 mL), filtered, 

and left at -20 °C for 2 days. The product crystals were filtered out, and then washed with 

cold hexanes (10 mL). The procedure afforded 3.81 g (68%) of the product after prompt 

vacuum drying. NMR assay indicated that the product was obtained as a single 

diastereomer (Diastereomer 1). The pure diastereomer can be converted to a roughly 1:1 

diastereomer mixture upon thermal equilibration. 
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Diastereomer 1: 
1
H NMR (500 MHz, CDCl3): δ = 3.08-2.98 (m, 1H), 2.98-2.91 (m, 1H), 

2.60 (s, 3H), 2.45-2.34 (m, 1H), 2.34-2.23 (m, 2H), 2.0-1.2 (br m, 3H), 1.94 (t, J = 11.6 

Hz, 1H), 1.87-1.80 (m, 1H), 1.59-1.49 (m, 1H), 0.90-0.80 (m, 1H), 0.85 ppm (d, J = 6.7 

Hz, 3H). 
11

B NMR (128 MHz, CDCl3): δ -13.0 ppm (q, J = 96 Hz). 
13

C NMR (101 MHz, 

CDCl3): δ 67.9, 60.7, 56.6, 31.9, 26.8, 21.8, 19.4 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C7H17BN [M-H]
+
 126.1454, found 126.1452 (-2 ppm). IR (CDCl3, NaCl): 

2962, 2378, 2339, 1470, 1454, 1198, 1178, 1160 cm
-1

. 

Diastereomer 2 (Not separated; signals determined in the 1:1 mixture): 
1
H NMR (700 

MHz, CDCl3): δ = 2.98-2.92 (m, 1H), 2.90-2.81 (m, 2H), 2.58 (s, 3H), 2.52 (t, J = 13.0, 

1H) , 2.0-1.2 (br m, 3H), 1.84-1.77 (m, 2H), 1.76-1.67 (m, 1H), 1.63-1.58 (m, 1H), 0.96 

(dd, J = 13.6, 4.2 Hz, 1H), 0.88 ppm (d, J = 6.3 Hz, 3H). 
11

B NMR (225 MHz, CDCl3): δ 

-8.0 ppm (q, J = 97 Hz). 
13

C NMR (176 MHz, CDCl3): δ 65.8, 58.7, 44.9, 31.4, 25.7, 

20.4, 19.3 ppm. 

N,N-Dimethyl-1-(1-methylcyclohexyl)methanamine Borane (45) 

1-Methyl-1-cyclohexanecarboxylic acid (3.02 g, 21.2 mmol) was added in 

portions to SOCl2 (15 ml, 25 g, 0.21 mol), and the resulting solution was refluxed for 2 

hours. Excess SOCl2 was distilled off, and the remaining liquid was added slowly to 40% 

aqueous HNMe2 (27 ml, 0.21 mol) while keeping the solution at an ambient temperature 

(exothermic reaction!). After stirring the solution for 1h at room temperature, the amide 

was isolated and converted to 42 as described above for the preparation of 21. The 

procedure afforded 2.58 g (72%) of a colorless oil after vacuum distillation. 
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1
H NMR (500 MHz, CDCl3): δ = 2.85 (s, 2H), 2.76 (s, 6H), 2.2-1.4 (br m, 3H), 1.59-1.35 

(m, 9H), 1.30-1.21 (m, 1H), 1.20 ppm (s, 3H). 
11

B NMR (128 MHz, CDCl3): δ -6.6 ppm 

(q, J = 97 Hz). 
13

C NMR (101 MHz, CDCl3): δ 75.0, 52.7, 38.1, 36.4, 25.9, 24.1, 21.5 

ppm. HRMS (EI+ 70 eV): no M
+
 observed, only [M-3H]

+
. IR (neat, NaCl): 2930, 2861, 

2374, 2321, 2274, 1458, 1168, 1015, 1004, 798 cm
-1

. 

Preparation of N,N,2-trimethyl-2-phenylpropanamide 

2-Methyl-2-phenylpropanoic acid (2.23 g, 15.4 mmol) was added in portions to 

SOCl2 (15 mL, 25 g, 0.21 mol), and the resulting solution was refluxed for 5 h. Excess 

SOCl2 was distilled off, the residue was dissolved in 10 mL CH2Cl2, and the solution was 

added slowly to 40% aqueous HNMe2 (20 mL, 0.l6 mol) (exothermic reaction!). After 

stirring at room temperature for 1h, the organic phase was separated, and the aqueous 

phase was extracted with CH2Cl2. The combined extracts were washed with 1M aqueous 

NaOH solution, then dried with MgSO4, filtered and concentrated, providing 2.72 g 

(92%) of a brown oil. 

1
H NMR (500 MHz, CDCl3): δ = 7.35-7.30 (m, 2H), 7.24-7.19 (m, 3H), 2.93 (br s, 3H), 

2.50 (br s, 3H), 1.54 ppm (s, 6H). 
13

C NMR (101 MHz, CDCl3): δ 176.2, 146.6, 128.9, 

126.2, 124.8, 47.0, 38.1, 37.2, 28.2 ppm. HRMS (EI+ 70 eV): m/z calculated for 

C12H17NO [M]
+
 191.1310, found 191.1319 (+5 ppm). IR (neat, NaCl): 2976, 2929, 1629, 

1496, 1447, 1391, 1262, 1116, 1096, 771, 703, 616 cm
-1

. 

N,N,2-Trimethyl-2-phenylpropan-1-amine Borane (48) 

The compound was prepared starting with N,N,2-trimethyl-2-phenylpropanamide 

(2.58 g, 13.5 mmol) and Me2S-BH3 (2.3 mL, 23 mmol) as described above for the 
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preparation of 21. The crude product was crystallized from hexanes to obtain 1.42 g 

(55%) of a white solid. 

1
H NMR (500 MHz, CDCl3): δ = 7.42-7.38 (m, 2H), 7.37-7.32 (m, 2H), 7.26-7.21 (m, 

1H), 3.35 (s, 2H), 2.35 (s, 6H), 2.1-1.2 (br m, 3H), 1.49 ppm (s, 6H). 
11

B NMR (128 

MHz, CDCl3): δ -6.3 ppm (q, J = 93 Hz). 
13

C NMR (101 MHz, CDCl3): δ 146.1, 128.6, 

126.5, 125.9, 73.8, 51.7, 39.5, 30.2 ppm. HRMS (ES+): m/z calculated for C12H22BNNa 

[M+Na]
+
 214.1743, found 214.1739 (-2 ppm). IR (CDCl3, NaCl): 2972, 2376, 2322, 

1462, 1168, 1027 cm
-1

. m.p. 76 °C (from hexanes). 

Preparation of N,N,2,2-tetramethyl-3-phenylpropanamide 

Neat N,N-dimethylisobutyramide (1.0 mL, 0.90 g, 7.8 mmol) was added dropwise 

to a solution of 8.6 mmol lithium diisopropylamide in 15 mL of anhydrous THF at -30 

°C. No significant exotherm was observed. The mixture was warmed up to 0 °C, stirred 

at that temperature for 2 h, and then cooled to -50 °C. Then, benzyl bromide (1.0 mL, 1.5 

g, 8.6 mmol) was added dropwise. Again, no substantial exotherm was observed. The 

reaction mixture was warmed up to room temperature, and then stirred overnight. 

Concentration and purification by flash chromatography (2/1 Hexanes/EtOAc, 200 mL 

silica gel) afforded 0.926 g (58%) of a pale yellow oil. 

1
H NMR (500 MHz, CDCl3): δ = 7.28-7.23 (m, 2H), 7.23-7.18 (m, 1H), 7.13-7.09 (m, 

2H), 3.04 (s, 6H), 2.94 (s, 2H), 1.27 ppm (s, 6H). 
13

C NMR (101 MHz, CDCl3): δ 176.5, 

138.2, 130.1, 128.0, 126.4, 46.0, 43.6, 38.6, 26.5 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C13H19NO [M]
+
 205.1467, found 205.1472 (+2 ppm). IR (neat, NaCl): 

2969, 2930, 1628, 1495, 1473, 1391, 1364, 1251, 1102, 763, 740, 702 cm
-1

. 
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N,N,2,2-Tetramethyl-3-phenylpropan-1-amine Borane (51) 

The compound was prepared in the manner described above for the preparation of 

21 using 0.904 g (4.40 mmol) of N,N,2,2-tetramethyl-3-phenylpropanamide. Yield of the 

product after crystallization from hexanes: 0.760 g (84%). 

1
H NMR (500 MHz, CDCl3): δ = 7.32-7.21 (m, 3H), 7.16-7.12 (m, 2H), 2.93 (s, 2H), 

2.77 (s, 6H), 2.69 (s, 2H), 2.2-1.4 (br m, 3H), 1.13 ppm (s, 6H). 
11

B NMR (128 MHz, 

CDCl3): δ -7.0 ppm (br q, J = 94 Hz). 
13

C NMR (101 MHz, CDCl3): δ 137.4, 130.9, 

127.9, 126.4, 74.2, 53.0, 49.4, 37.3, 27.1 ppm. HRMS (ES+): m/z calculated for 

C13H24BNNa [M+Na]
+
 228.1899, found 228.1904 (+2 ppm). IR (CDCl3, NaCl): 2963, 

2380, 2325, 1455, 1168, 1029, 1009 cm
-1

. m.p. 48 °C (from hexanes). 

Intramolecular Borylation of 21 Using Stoichiometric Ph3C
+
 [B(C6F5)4]

−
 

A dry J. Young NMR tube was charged with a solution of 21 (9.2 mg, 59 μmol) in 

0.6 mL C6D5Br, followed by a solution of Ph3C
+
 [B(C6F5)4]

−
 (28 mg, 30 μmol) in 2x0.2 

mL C6D5Br. NMR assay after thorough shaking of the tube indicated clean formation of 

H-bridged cation 22 and Ph3CH. 

22: 
1
H NMR (700 MHz, CDCl3): δ = 3.2-2.0 (br m, 4H), 2.92-2.85 (m, 4H), 2.62-2.55 

(m, 4H), 2.45 (s, 4H), 1.71-1.62 (m, 4H), 1.61-1.51 (m, 4H), 0.86 (s, 18H), -2.27 ppm (br 

s, 1H). 
11

B NMR (225 MHz, CDCl3): δ -1.1 ppm (br s, whh = 700 Hz), -16.1 ppm (s). 

To the solution, another portion of Ph3C
+
 [B(C6F5)4]

−
 (28 mg, 30 μmol) in 2x0.2 

mL C6D5Br was added, gas liberation was observed. After 10 minutes at room 

temperature NMR assay indicated essentially complete conversion to the cyclic cation 

salt 24, Ph3CH and H2. 
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24: 
1
H NMR (700 MHz, CDCl3): δ = 5.3-4.2 (br m, 1H), 2.78-2.71 (m, 2H), 2.59 (s, 2H), 

2.49-2.42 (m, 2H), 1.65-1.68 (m, 2H), 1.52-1.45 (m, 2H), 1.27 (s, 2H), 0.64 ppm (s, 6H). 

11
B NMR (225 MHz, CDCl3): δ 69.3 ppm (br s, whh = 690 Hz), -16.2 ppm (s). 

Quenching the reaction mixture with excess n-Bu4NBH4 resulted in clean 

formation of the cyclic amine borane 25, consistent with the NMR data presented below. 

In a separate preparative experiment, a mixture of solid 21 (19.2 mg, 0.124 mmol) 

and Ph3C
+
 [B(C6F5)4]

−
 (0.103 g, 0.112 mmol) was dissolved in 1 mL PhF. After 1 h at 

room temperature the reaction mixture was quenched by adding excess of solid n-

Bu4NBH4 under N2 atmosphere. The mixture was then filtered through a short plug of 

silica, eluting with CHCl3. The crude product was first purified by preparative TLC (1/1 

CH2Cl2/Hexanes), followed by flash chromatography (3/1 Hexanes/CHCl3), affording 

14.1 mg (82%) of the desired cyclic amine borane as a colorless oil. The theoretical yield 

of the product was calculated based on the amount of [Ph3C][B(C6F5)4] used (0.9 equiv). 

Intramolecular Borylation Using Catalytic Tf2NH. A General Procedure 

A dry 12 mL thick-walled Schlenk tube fitted with a teflon stopper was charged 

with a mixture of solid amine borane (1.32 mmol) and Tf2NH (18.6 mg, 66.2 μmol). 

Solvent (3 mL) was then added, and some minor frothing due to gas formation was 

observed. The gas formed during the initial activation stage was identified as H2 in an in 

situ NMR study. After H2 liberation ceased, and the gas was allowed to escape the 

reaction vessel, the tube was sealed and heated at 160 °C (bath) for the indicated time. 

When liquid amine borane complexes were used, the substrate was first dissolved in 1 

mL of the solvent, and then Tf2NH and the additional solvent were added. The reaction 

mixture was quenched by adding solid n-Bu4NBH4 (~30 mg) under N2 atmosphere. The 
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mixture was then diluted with CH2Cl2, and filtered through a short plug of silica, eluting 

with CH2Cl2 or CHCl3. The products were isolated by concentrating the solution. 

Borylation of 21. 3,3-Dimethyl-5-aza-1-boraspiro[4.4]nonane (25) 

PhF solvent, 14 h reaction time. The product was isolated as a colorless oil in 

75% yield after flash chromatography (2/1 Hexanes/EtOAc, 30 mL silica gel) to remove 

traces of unreacted 21. 

1
H NMR (500 MHz, CDCl3): δ = 3.32-3.23 (m, 2H), 2.76-2.68 (m, 2H), 2.71 (s, 2H), 2.4-

1.6 (br m, 2H), 2.15-2.04 (m, 2H), 1.93-1.82 (m, 2H), 1.12 (s, 6H), 0.75 ppm (t, J = 5.7 

Hz, 2H). 
11

B NMR (128 MHz, CDCl3): δ -4.2 ppm (t, J = 96 Hz). 
13

C NMR (101 MHz, 

CDCl3): δ 75.7, 61.7, 37.7, 32.4-30.1 (br m), 31.8, 22.7 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C9H19BN [M-H]
+
 152.1611, found 152.1616 (+3 ppm). IR (neat, NaCl): 

2954, 2338, 1459, 1362, 1310, 1236, 1193, 1137, 1063, 870 cm
-1

. 

Borylation of 41. 1,1,4,4-Tetramethyl-1,2-azaborolidine (42) 

PhH solvent, 14 h reaction time. Colorless oil, 96% yield. 

1
H NMR (400 MHz, CDCl3): δ = 2.64 (s, 6H), 2.63 (s, 2H), 2.5-1.5 (br m, 2H), 1.14 (s, 

6H), 0.80 ppm (t, J = 5.6 Hz, 2H). 
11

B NMR (128 MHz, CDCl3): δ -2.9 ppm (t, J = 97 

Hz). 
13

C NMR (101 MHz, CDCl3): δ 77.7, 52.4, 38.7, 33.0-30.3 (br m), 32.6 ppm. HRMS 

(EI+ 70 eV): m/z calculated for C7H17BN [M-H]
+
 126.1454, found 126.1450 (-3 ppm). IR 

(neat, NaCl): 2949, 2338, 1460, 1361, 1248, 1175, 1192, 1141, 1103, 1071, 1001, 851, 

758 cm
-1

. 

Borylation of 43. 1-Methyl-1-aza-7-borabicyclo[3.2.1]octane (44) 
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PhF solvent, 14 h reaction time. ~20% conversion according to crude 
1
H NMR. 

The product was isolated as a white solid in 14% yield after flash chromatography 

(benzene, 30 mL silica gel, long column), 63% of the starting material recovered. 37% 

yield based on recovered starting material. 

The results of the above experiment were essentially the same no matter whether 

a pure diastereomer or a 1:1 mixture of diastereomers of 43 was used. In all cases the 

starting material was recovered as a mixture of diastereomers, suggesting fast 

equilibration under the reaction conditions. Extended reaction times and higher Tf2NH 

loadings did not improve the yield of the borylation product. The amounts of the 

recovered starting material were lower, however. 

In an attempt to improve the yield of the borylation product, the following 

experiments were performed starting with a single diastereomer of 43. Two identical 

reactions were performed in parallel as described in the general procedure, using PhF 

solvent and 10 mol% of Tf2NH. During the course of the reaction (60.5 h at 160 °C) one 

of the two vessels was periodically cooled to room temperature, then vented and flushed 

with nitrogen in a glovebox to remove H2 byproduct (vented 4 times total). The other 

reaction vessel was identically cooled and heated, although never vented before the 

completion of the reaction time. The isolated yield of the borylation product in the former 

experiment (with periodic H2 removal) was 25% (35% of 43 recovered), as compared to 

13% in the latter case (45% of 43 recovered). 

1
H NMR (700 MHz, CDCl3): δ = 2.92-2.88 (m, 1H), 2.88-2.85 (m, 1H), 2.59 (s, 3H), 

2.60-2.51 (m, 1H), 2.47-2.42 (m, 1H), 2.39-2.34 (m, 1H), 2.34-2.26 (m, 1H), 2.3-1.5 (br 

m, 2H), 1.54-1.46 (m, 2H), 1.43-1.36 (m, 1H), 1.11-1.03 (m, 1H), 0.48-0.42 (m, 1H). 
11

B 
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NMR (225 MHz, CDCl3): δ -5.0 ppm (t, J = 97 Hz). 
13

C NMR (176 MHz, CDCl3): δ 

67.8, 61.9, 50.7, 35.1, 30.2, 19.7, 19.4-18.2 ppm (br m). HRMS (ES+): m/z calculated for 

C7H15BN [M-H]
+
 124.1292, found 124.1291 (-1 ppm). IR (CDCl3, NaCl): 2914, 2319, 

1455, 1200, 1155, 1135, 1110, 1003 cm
-1

. 

Borylation of 45 

PhMe solvent, 14 h reaction time. A mixture of isomeric products 46 and 47 was 

isolated in 78% yield after flash chromatography to remove traces of unreacted 45. An 

analytical sample of the major product (46) was isolated by repeated crystallization of the 

crude mixture from hexanes at -78 °C. The mother liquor after several successive 

crystallizations of 46 served as an enriched sample for 47 characterization. 

2,2-Dimethyl-2-aza-3-boraspiro[4.5]decane (46) 

1
H NMR (700 MHz, CDCl3): δ = 2.64 (s, 2H), 2.63 (s, 6H), 2.3-1.7 (br m, 2H), 1.61-1.54 

(m, 2H), 1.54-1.49 (m, 2H), 1.46-1.31 (m, 5H), 1.31-1.23 (m, 1H), 0.76 (t, J = 5.5 Hz, 

2H). 
11

B NMR (225 MHz, CDCl3): δ -3.5 ppm (t, J = 96 Hz). 
13

C NMR (176 MHz, 

CDCl3): δ 76.9 (from gHSQCAD), 52.3, 42.6, 41.0, 28.3-26.7 (br m), 26.0, 23.6 ppm. 

HRMS (EI+ 70 eV): m/z calculated for C10H21BN [M-H]
+
 166.1767, found 166.1760 (-4 

ppm). IR (CDCl3, NaCl): 2924, 2838, 2328, 1463, 1448, 1207, 1187, 1162, 1118, 1096, 

1022 cm
-1

. 

2,2,3a-trimethyloctahydro-1H-benzo[c][1,2]-1,2-azaborole (47) 

1
H NMR (700 MHz, CDCl3): δ =2.89 (d, J = 12.5 Hz, 1H), 2.72 (s, 3H), 2.66 (s, 3H), 

2.61 (d, J = 12.6 Hz, 1H), 2.5-1.7 (br m, 2H), 1.84 (td, J = 10.4, 4.3 Hz, 1H), 1.7-1.2 (m, 
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6H), 1.17-1.13 (m, 1H), 1.10 (s, 3H), 1.05 (m, 1H). 
11

B NMR (225 MHz, CDCl3): δ -0.6 

ppm (t, J = 96 Hz). 
13

C NMR (176 MHz, CDCl3): δ 78.0, 56.4, 56.2, 41.8, 37.1-35.7 (br 

m), 35.3, 27.6, 25.6, 23.6, 23.3 ppm. 

Borylation of 48 

PhMe solvent, 14 h reaction time. A mixture of isomeric products 49 and 50 

(20:1) was isolated in 95% yield. An analytical sample of the major product (49) was 

isolated by crystallization of the crude mixture from hexanes. The minor product (50) 

was isolated from the mother liquor by repeated preparative TLC (9/1 Hexanes/EtOAc, 

followed by 2/1 Hexanes/CH2Cl2). 

2,2,4,4-Tetramethyl-2,1-benzazaborinane (49) 

1
H NMR (500 MHz, CDCl3): δ = 7.30-7.26 (m, 1H), 7.25-7.22 (m, 1H), 7.15-7.08 (m, 

2H), 2.95 (s, 2H), 2.9-2.2 (br m, 2H), 2.68 (s, 6H), 1.41 (s, 6H). 
11

B NMR (128 MHz, 

CDCl3): δ -4.8 ppm (t, J = 94 Hz). 
13

C NMR (101 MHz, CDCl3): δ 147.1-144.4 (br m), 

144.1, 133.1, 125.3, 125.2, 124.6, 72.6, 52.1, 36.8, 33.0 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C12H19BN [M-H]
+
 188.1611, found 188.1613 (+1 ppm). IR (CDCl3, NaCl): 

3051, 2962, 2940, 2329, 1481, 1458, 1249, 1199, 1171, 1130, 1090, 855 cm
-1

. 

1,1,4-Trimethyl-4-Phenyl-1,2-azaborolidine (50) 

1
H NMR (500 MHz, CDCl3): δ = 7.44-7.40 (m, 2H), 7.33-7.28 (m, 2H), 7.17-7.14 (m, 

1H), 3.33 (d, J = 11.9, 1H), 3.03 (d, J = 11.9, 1H), 2.75 (s, 3H), 2.6-1.7 (br m, 2H), 2.44 

(s, 3H), 1.61-1.52 (m, 1H), 1.45 (s, 3H), 1.09 (ddd, J = 2.6, 5.6, 13.6 Hz, 1H). 
11

B NMR 

(128 MHz, CDCl3): δ -2.8 ppm (t, J = 96 Hz). 
13

C NMR (101 MHz, CDCl3): δ 152.4, 
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128.2, 125.9, 125.4, 76.9, 53.4, 52.3, 47.0, 34.2, 30.4-28.0 (br m) ppm. HRMS (EI+ 70 

eV): m/z calculated for C12H19BN [M-H]
+
 188.1611, found 188.1612 (+1 ppm). IR 

(CDCl3, NaCl): 2952, 2338, 1465, 1215, 1098 cm
-1

. 

Borylation of 51 

PhMe solvent, 14 h reaction time. A mixture of isomeric products 52, 53 and 54 

(25:6.8:1) was isolated in 89% yield. Analytical samples of the major (52) and tricyclic 

(53) products were isolated by repeated flash chromatography (9/1 Hexanes/EtOAc). The 

minor product (54) was isolated by preparative TLC (9/1 Hexanes/EtOAc) of the 

overlapping fractions. 

4-Benzyl-1,1,4-trimethyl -1,2-azaborolidine (52) 

1
H NMR (500 MHz, CDCl3): δ = 7.29-7.25 (m, 3H), 7.23-7.26 (m, 2H), 2.89 (d, J = 12.3 

Hz, 1H), 2.76 (d, J = 13.1 Hz, 1H), 2.68 (d, J = 13.1 Hz, 1H), 2.64 (s, 3H), 2.56 (s, 3H), 

2.49 (d, J = 12.3 Hz, 1H), 2.4-1.6 (br m, 2H), 1.14 (s, 3H), 1.03 (td, J = 6.1, 13.6 Hz, 1H), 

0.69 ppm (td, J = 4.9, 13.6 Hz, 1H). 
11

B NMR (128 MHz, CDCl3): δ -3.2 ppm (t, J = 92 

Hz). 
13

C NMR (101 MHz, CDCl3): δ 139.7, 130.6, 127.8, 125.9, 75.4, 52.9, 52.7, 50.3, 

43.2, 30.5-28.8 (br m), 29.9 ppm. HRMS (EI+ 70 eV): m/z calculated for C13H21BN [M-

H]
+
 202.1767, found 202.1772 (+2 ppm). IR (neat, NaCl): 3026, 2950, 2921, 2339, 1602, 

1495, 1461, 1373, 1246, 1197, 1132, 1099, 1000, 853, 755, 704 cm
-1

. 

Tricyclic product 53 

1
H NMR (500 MHz, CDCl3): δ = 7.34 (dd, J = 1.1, 7.0 Hz, 1H), 7.13-7.09 (m, 1H), 7.08-

7.04 (m, 1H), 7.01-6.98 (m, 1H), 2.95 (d, J = 16.7 Hz, 1H), 3.0-2.0 (br m, 1H), 2.75-2.71 
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(m, 4H), 2.69-2.62 (m, 2H), 2.22 (s, 3H), 1.20 (s, 3H), 1.07-1.01 (m, 1H), 0.74 (d, J = 

12.8 Hz, 1H). 
11

B NMR (128 MHz, CDCl3): δ 1.9 ppm (d, J = 95 Hz). 
13

C NMR (101 

MHz, CDCl3): δ 149.0-146.6 (br m), 141.1, 135.8, 127.7, 126.2, 124.6, 75.1, 53.7, 50.4, 

49.7, 42.1, 31.4-29.4 (br s), 30.7 ppm. HRMS (EI+ 70 eV): m/z calculated for C13H20BN 

[M]
+
 201.1689, found 201.1692 (+1 ppm). IR (CDCl3, NaCl): 3022, 2950, 2917, 2366, 

2347, 1463, 1242, 1180, 1078, 1039, 854 cm
-1

. 

1,1,4,4-Tetramethyl-3-phenyl-1,2-azaborolidine (54) 

1
H NMR (500 MHz, CDCl3): δ = 7.31-7.27 (m, 2H), 7.23-7.18 (m, 2H), 7.12-7.07 (m, 

1H), 2.93 (d, J = 12.3 Hz, 1H), 2.82 (d, J = 12.3 Hz, 1H), 2.78 (s, 3H), 2.75 (s, 3H), 2.7-

1.8 (m, 2H), 2.38 (dd, J = 5.4, 9.2 Hz, 1H), 1.06 (s, 3H), 0.85 (s, 3H). 
11

B NMR (128 

MHz, CDCl3): δ -1.6 ppm (br t, J = 85 Hz). 
13

C NMR (101 MHz, CDCl3): δ 143.8, 131.0, 

127.3, 124.5, 79.0, 54.9, 54.7, 49.2-47.3 (br m), 42.3, 30.4, 25.7 ppm. HRMS (EI+ 70 

eV): m/z calculated for C13H21BN [M-H]
+
 202.1767, found 202.1763 (-2 ppm). IR 

(CDCl3, NaCl): 3022, 2948, 2355, 1463, 1384, 1245, 1094 cm
-1

. 

Reaction of Triethylamine Borane with B(C6F5)3.  In Situ NMR Study 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The reaction was set up in a dry J. Young NMR tube under N2 

atmosphere in a glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C 

overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Commercial grade B(C6F5)3 and Et3N–BH3 were used without further purification.  

Commercial grade CD2Cl2 (Cambridge Isotope Laboratories) was not distilled, but rather 

simply dried with freshly activated molecular sieves in the glovebox. 
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The reaction tube was charged with a solution of B(C6F5)3 (27.0 mg, 52.7 μmol) 

in 0.6 mL CD2Cl2.  To this solution neat Et3N–BH3 (14.7 μL, 0.100 mmol) was added via 

a microsyringe in one portion.  No substantial exotherm was observed, potentially due to 

the small scale of the reaction.  The tube was immediately sealed with the fitted Teflon 

valve, and then shaken vigorously for ca. 1 min.  The NMR assay performed within the 

first 30 minutes following mixing the reagents indicated clean formation of salt 72.  The 

sealed reaction tube was then heated at 40 °C for 1 h.  Formation of disproportionation 

product 73 was observed according to 
11

B NMR assay. 

72: 
1
H NMR (400 MHz, CD2Cl2): δ 4.1-1.9 (br m, 5H), 2.93 (q, J = 7.3 Hz, 12H), 1.23 (t, 

J = 7.3 Hz, 17H), −2.0-−3.3 ppm (br s, 1H). 
11

B NMR (128 MHz, CD2Cl2): δ −3.0 (unres 

t), −25.4 ppm (d, J = 80 Hz). 
13

C NMR (101 MHz, CD2Cl2): δ 150.3-146.9 (m), 140.2-

136.6 (m), 138.6-135.2 (m), 127.1-123.7 (br m), 52.4, 8.3 ppm. 
19

F NMR (377 MHz, 

CD2Cl2): δ −134.0 (s), −164.7 (s), −167.6 ppm (s). 

Preparation of Amine and Phosphine Pentafluorophenylborane Complexes 

General Procedure.  Every possible effort was made to protect the reaction 

mixtures from exposure to air and moisture.  The reactions were performed under N2 

atmosphere in a glovebox.  Disposable glassware flame-dried at the glass softening 

temperature was used.  Commercial grade B(C6F5)3 (Aldrich) was used without further 

purification.  Methylene chloride was dried by passing through a column of activated 

alumina, and then further dried with freshly activated molecular sieves in the glovebox.  

Fluorobenzene was not distilled; instead it was simply dried over a large amount of 

activated molecular sieves in the glovebox. 
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In the glovebox, a dry 4 mL scintillation vial was charged with a mixture of solid 

amine borane or phosphine borane and B(C6F5)3.  The solid mixture was then dissolved 

by adding the specified solvent to the vial in one portion at rt, the vial was sealed and 

then heated as indicated below.  No special precautions were necessary when isolating 

the products, since they were found to be reasonably stable to both air and moisture.  

Passing the reaction mixture through a short (3-4 cm) plug of silica while flushing with 

CHCl3 afforded pure products in all cases except when Ph3P–BH3 was used as the 

starting material.  In that case the product was purified as indicated below.   

74: Prepared following the general procedure using B(C6F5)3 (0.211 g, 0.412 mmol) and 

Me3N–BH3 (83.2 mg, 1.14 mmol) in 1 mL of anhydrous CH2Cl2.  Heated in a sealed vial 

at 50 °C for 1 h.  Isolated as described above providing 0.264 g (97%) of a white solid. 

1
H NMR (400 MHz, CDCl3): δ 3.0-1.8 (br m, 2H), 2.62 ppm (s, 9H). 

11
B NMR (128 

MHz, CDCl3): δ −9.6 ppm (t, J = 100 Hz). 
13

C NMR (101 MHz, CDCl3): δ 150.3-147.0 

(m), 141.7-138.5 (m), 138.5-135.2 (m), 117.8-115.3 (br m), 52.4 ppm. 
19

F NMR (377 

MHz, CDCl3): δ −129.6 (m), −157.5 (m), −164.0 ppm (m). HRMS (EI+): m/z calculated 

for C9H10BF5N [M−H]
+
 238.0826, found 238.0829 (+1 ppm). IR(CDCl3, NaCl): 2418, 

2358, 1641, 1483, 1466, 1283, 1150, 1101, 1085 cm
−1

. m.p. 99 °C (from CH2Cl2). 

73: Prepared following the general procedure using B(C6F5)3 (43.0 mg, 84.0 μmol) and 

Et3N–BH3 (34.4 μL, 0.233 mmol) in 0.5 mL of anhydrous PhF.  Since Et3N–BH3 is a 

liquid at rt, it was added via a microsyringe to the solution of B(C6F5)3.  Heated in a 

sealed vial at 50 °C for 3 h.  Isolated as described above providing a colorless oil in 

quantitative yield. 
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1
H NMR (400 MHz, CDCl3): δ 2.9-1.7 (br m, 2H), 2.76 (q, J = 7.2 Hz, 6H), 1.26 ppm (t, 

J = 7.2 Hz, 9H). 
11

B NMR (128 MHz, CDCl3): δ −14.2 ppm (t, J = 100 Hz). 
13

C NMR 

(101 MHz, CDCl3): δ 150.7-147.8 (m), 141.3-137.8 (m), 138.8-135.4 (m), 118.5-115.7 

(br m), 50.5, 8.4 ppm. 
19

F NMR (377 MHz, CDCl3): δ −128.4 (m), −158.0 (t, J = 20 Hz), 

−164.2 ppm (m). HRMS (EI+): m/z calculated for C12H16BF5N [M−H]
+
 280.1296, found 

280.1295 (0 ppm). IR(CDCl3, NaCl): 2990, 2431, 2383, 1641, 1512, 1394, 1281, 1131, 

1085 cm
−1

. 

75: Prepared following the general procedure using B(C6F5)3 (43.0 mg, 84.0 μmol) and 

BnMe2N–BH3 (34.7 mg, 0.233 mmol) in 0.5 mL of anhydrous PhF.  Heated in a sealed 

vial at 50 °C for 1 h.  Isolated as described above providing a white solid in quantitative 

yield. 

1
H NMR (500 MHz, CDCl3): δ 7.45-7.38 (m, 3H), 7.30-7.24 (m, 2H), 4.00 (s, 2H), 

3.0-2.0 (br m, 2H), 2.45 ppm (s, 6H). 
11

B NMR (128 MHz, CDCl3): δ −8.8 ppm (unres t). 

13
C NMR (101 MHz, CDCl3): δ 150.4-147.2 (m), 141.7-138.6 (m), 138.6-135.4 (m), 

132.4, 130.1, 129.4, 128.7, 117.7-115.3 (br m), 65.9, 47.4 ppm. 
19

F NMR (377 MHz, 

CDCl3): δ −129.0 (m), −157.2 (t, J = 20 Hz), −163.8 ppm (m). HRMS (EI+): dissociates 

to BnNMe2 and C6F5BH2 under EI-MS conditions. m/z calculated for C6F5BH2 [M]
+
 

180.0170, found 180.0163 (−4 ppm); m/z calculated for C9H13N [M]
+
 135.1048, found 

135.1042 (−4 ppm). IR(CDCl3, NaCl): 3010, 2957, 2418, 2358, 1641, 1513, 1466, 1283, 

1155, 1086, 1036 cm
−1

. m.p. 79 °C (from CH2Cl2). 

76: Prepared following the general procedure using B(C6F5)3 (43.0 mg, 84.0 μmol) and 

Ph3P–BH3 (64.3 mg, 0.233 mmol) in 0.5 mL of anhydrous CH2Cl2.  Heated in a sealed 
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vial at 40 °C for 1 h.  The reaction mixture was passed through a short plug of silica gel 

while eluting with CHCl3.  Concentration of the solution provided the crude product as a 

white solid.  Double crystallization from cyclohexane provided 73 mg (71%) of a white 

crystalline solid. 

1
H NMR (500 MHz, CDCl3): δ 7.65-7.48 (m, 9H), 7.46-7.41 (m, 6H), 3.2-2.2 ppm (br m, 

2H). 
11

B NMR (128 MHz, CDCl3): δ −31.3 ppm (m). 
13

C NMR (101 MHz, CDCl3): δ 

150.0-146.6 (m), 140.6-137.4 (m), 138.4-135.1 (m), 133.4 (d, J = 9 Hz), 131.7, 128.9 (d, 

J = 10 Hz), 127.0 (d, J = 59 Hz), 116.5-114.2 ppm (br m). 
19

F NMR (377 MHz, CDCl3): 

δ −128.1 (m), −159.5 (dt, J = 6.8, 20 Hz), −164.7 ppm (m). 
31

P NMR (162 MHz, CDCl3): 

δ 12.8 ppm. HRMS (EI+): m/z calculated for C24H16BF5P [M−H]
+
 441.1003, found 

441.1001 (0 ppm). IR(CDCl3, NaCl): 2420, 2394, 2253, 1511, 1470 cm
−1

. 
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Chapter 3 

Borenium and Boronium Salts Derived from 9-BBN and Their Application toward 

Electrophilic Aromatic Borylation 

Introduction 

The borylation reactions of tricoordinate B–H borenium ions discussed in the 

previous chapter are most reasonably rationalized as occurring via a C–H insertion 

mechanism.  This mechanism suggests that in the C–B bond forming process the formally 

empty p-orbital at boron acts as the acceptor of the electron pair of the C–H bond, while 

the H atom at B acts as a base responsible for scavenging the C–H hydrogen atom.  In 

other cases, such as in the classical Friedel–Crafts reaction, the attack of the Lewis acid 

on the substrate and the C–H deprotonation step are performed by two different species.  

A brief survey of C–H borylations reported in the literature reveals that at least in some 

cases, such as in the classical study on borylation of benzene with BCl3 in presence of Al 

metal reported by Muetterties in 1960 some variations of the Friedel–Crafts mechanism 

might operate (eq 1).
1
 This methodology has seen relatively little development until very 

recently, however.  The main reasons for that include limited electrophilicity of boron 

compounds,
2
 but more importantly the instability of the borylation products under the 

typical electrophilic aromatic substitution conditions.  The reverse of the electrophilic 

aromatic borylation reaction, protodeboronation, is typically very facile under the 

reaction conditions due to the formation of the acid byproduct, which must be neutralized 
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in some way to drive the reaction toward the borylated compound.  On the other hand, 

neutralization of the acid byproduct without deactivation of the boron electrophile 

becomes challenging, which explains the unusual choice of Al metal as the acid 

scavenger in the Muetterties protocol.
1
 

 

Electrophilic Aromatic Borylation of Electron-Rich Arenes and Heteroarenes 

During our studies on amine borane activation with Tf2NH we noticed that boron 

bistriflimide 1 (as a mixture of N- and O-bound species, see Chapter 1) is sufficiently 

electrophilic to react with electron-rich heteroarenes such as N-methylindole (2) (eq 2).  

Interestingly, while the reaction between 1 and N-methylindole (2) led to the formation of 

a new C–B bond, the byproduct of the transformation was found to be the 

triethylammonium salt 3 rather than H2 gas as detected by 
1
H NMR, which sharply 

contrasts with the borylation processes described in Chapter 2.  While the exact structure 

of the borylation product arising from 1 and 2 is unknown, the stoichiometry of the 

reaction suggests that a BH fragment is delivered to 2 during the course of the reaction, 

and thus the product structure was tentatively assigned as 4.  The regiochemistry of the 

borylation reaction was established by converting 4 to the isolable boronic ester 5, 

although the efficiency of the process was found to be rather low (ca. 20-30% isolated 

yield of 5), and a substantial amount of the starting indole 2 was recovered.  Since in situ 

NMR experiments indicated full consumption of 2 in the initial borylation step, the low 

yield of the isolated product 5 is apparently explained by the facile protodeboronation of 
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borylated indoles under the quenching conditions.  Additionally, NMR monitoring of the 

reaction progress suggested that disproportionation processes leading to products with 

multiple indole units connected to a single B atom might be taking place under the 

reaction conditions.  Since the disproportionation process presents a major complication 

on the way to improving the yields of the borylated indole 5, the reactivity of 

B-substituted analogs of 1 was explored. 

 

 

 

In our search for a more reliable protocol for the electrophilic borylation of 

electron-rich substrates, the previously unreported boron bistriflimide 6 was prepared in 

one step from commercially available 9-borabicyclo[3.3.1]nonane (9-BBN) and Tf2NH 

(eq 3) upon heating in toluene.  Unlike amine adduct 1, tricoordinate boron bistriflimide 6 

possesses no built-in basic fragment, and thus an external non-nucleophilic base is 

necessary.  In principle, a suitable base might be 1,8-bis(dimethylamino)naphthalene (7), 

a hindered and exceptionally basic aniline that finds numerous applications as a basic 

catalyst or reagent due to its legendary lack of nucleophilicity.
3,4

 Strong electrophiles 

interact weakly, if at all, with the amine nitrogens, and very few examples are known 

where stable bonds to nitrogen can be formed between 7 and electrophilic groups larger 
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than hydrogen.
3,5–8

 Among these exceptional cases, cyclic boronium structures 8 and 9 

are relatively stable because the subunits BH2 and BF2 have minimal steric requirements, 

and while the BCl2 analog has been claimed, no definitive evidence has been reported.
6
 

However, the more hindered BMe2 derivative 10 has not been detected and no analogous 

BR2 structures are known.
6a

 In view of this long history, we were somewhat surprised to 

find that an adduct is readily formed simply upon mixing 7 with the 9-BBN bistriflimide 

reagent 6 despite the transannular steric demands of the 9-BBN core and the need to form 

adjacent quaternary bonds to boron as well as nitrogen.
9,10

 

Combination of the bulky tricoordinate boron reagent 6 with a stoichiometric 

amount of 7 in CD2Cl2 at room temperature formed a deep red solution that turned 

colorless within seconds of mixing the reagents.  Analysis of the resulting solution by 

11
B NMR spectroscopy revealed a signal at δ 16.2 ppm, suggesting that a single 

tetracoordinate
11

 boron atom is present in the product.  The 
19

F NMR spectrum showed a 

single peak at δ −79.4 ppm (δ −79.4 ppm at −80 C), which is characteristic of 

bistriflimide anion,
12

 so the boron-containing fragment was thus identified to be a cation.  

For comparison, the covalent bistriflimide 6 gives rise to a signal at δ −70.0 ppm.  The 

1
H NMR spectrum suggested that the solution structure of the cation is highly 

symmetrical on the NMR timescale at room temperature.  Only four groups of protons 

corresponding to the diamine subunit 7 were observed, including one sharp singlet for all 

four methyl groups, and a well-resolved (at 500 MHz) AMX system for the aromatic 

protons.  Other peaks in the 
1
H and 

13
C NMR spectra were also consistent with a 

symmetrical time-averaged structure for the cation (for example, a single 
13

C methyl peak 

at δ 57.1 ppm, and only 3 peaks for the 9-BBN cage carbons).  Since the covalent adduct 
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11 is ruled by observation of the bistriflimide anion, and the tricoordinate cationic 

borenium structure 12 is not consistent with the observed 
11

B NMR chemical shift, the 

most plausible structure for the species formed from 6 and 7 is the exceptionally hindered 

boronium salt 13.  Several mechanistic alternatives for the formation of 13 may be 

possible, such as the logical sequence in Scheme 3-1, an equivalent electron transfer 

process, a process involving dicoordinate borinium intermediates, or a direct 

displacement mechanism from 6 and 7 via a transition state that resembles 12.  Formation 

of >95% 13 depends on the low nucleophilicity of the counterion, and only partial 

conversion to the boronium ion was observed when 14 was used instead of 6.  Thus, 

when equimolar 7 and the triflate reagent 14 were mixed in CD2Cl2, the resulting solution 

showed both the starting 7 and the product 15 (ca. 1.2:1 ratio by 
1
H NMR assay). 

Scheme 3-1.  Formation of Boronium 13 

 

The low temperature 
1
H NMR behavior of 13 in CD2Cl2 is complex and indicates 

the presence of unsymmetrical species.  Decreasing the temperature broadens the 
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1
H NMR singlet corresponding to the N-methyl groups, until it turns into a broad set of at 

least three maxima that are not fully resolved even at -80°C.  Additional information 

about the solution structure is provided by the very different shielding of the two 

bridgehead hydrogen atoms of the 9-BBN cage observed in the low temperature 
1
H NMR 

spectra.  While the spectrum taken at room temperature shows only one peak for both 

bridgehead protons, two distinct resonances are observed at -80 °C.  One of the 

bridgehead hydrogens gives rise to a peak at an unremarkable δ 1.57 ppm, while the other 

hydrogen appears at δ 0.33 ppm.  Such prominent shielding by the aromatic ring is 

consistent with the 9-BBN cage being tilted toward one side of the naphthalene plane to 

place the shielded proton above the aromatic π-system. 

Slow cooling of the solution of 13 in a mixture of CH2Cl2 and hexanes produced 

large platelike crystals, suitable for X-ray diffraction studies (see Appendix A). Due to 

strain imposed by the hindered environment, the structure of 13 is non-symmetrical, the 

B–N bonds are very long, and both the 9-BBN cage and the 

bis(dimethylamino)naphthalene unit are severely twisted.  While the C15–B1–C19 angle 

(106°) and C-B bond lengths (1.63 Å, B1–C15; 1.61 Å, B1–C19) are within the expected 

range for 9-BBN derivatives,
9a,13

 the C20–C19–C15–C22 and C18–C19–C15–C16 

dihedral angles are in excess of 10°.  Furthermore, strong distortion of the diamine base is 

evidenced by the N2–C9–C1–N1 dihedral angle of 28.9°, compared to 20.3° in 7.
14

 On 

the other hand, the aniline N∙∙∙N distance in 13 (2.65 Å) is substantially shorter than that 

reported for 7 (2.79 Å), and only slightly exceeds that in salts of protonated 7, such as the 

sulfonimide salt 7∙HNMs2 (2.60 Å).
15
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Figure 3-1.  X-Ray structure of 13 (cation only, 50% probability ellipsoids) 

 

The arrangement of the 9-BBN cage in crystals of 13 is also noteworthy.  The 

bridgehead carbons C15 and C19 are quite distinct, and C15 is pseudo-axial with respect 

to the distorted half-chair boron heterocycle.  This places C15–H above the aromatic 

π-system, consistent with the low temperature 
1
H NMR result indicating substantial 

shielding of one of the bridgehead protons.  Another prominent structural detail is the 

length of the B–N bonds (B1–N1 1.72 Å; B1–N2 1.73 Å), compared to values of 1.58–

1.60 Å in simpler boronium cations such as [H2B(NMe3)(MeIm)]
+
 or 

[H2B(NH2Me)(MeIm)]
+
 (MeIm = 1-methylimidazole).

16,17
 Since the 1.72–1.73 Å 

distance greatly exceeds the sum of covalent radii for B and N atoms (1.55 Å),
18

 the 

calculated Pauling bond order for both B–N bonds in 13 is only ca. 0.55.
19

 

The unusual structural features prompted computational modeling of the cation 

13.
20

 Gas phase geometry optimization at the M06-2X/6-31G(d,p) level produced a 

structure that is in close agreement with the X-ray data (for example, B–N bond lengths 
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are within 0.01 Å of the experimental values).  NBO analysis
20c

 performed on the 

optimized structure indicates that the boron atom carries the bulk of the positive charge 

(NBO charge 0.97), and Wiberg bond orders of the two B–N bonds are 0.52 and 0.53. 

It was also of interest to compare the interactions of other amines with the potent 

Lewis acid 6 in solution.  When triethylamine was combined with 6 in CD2Cl2, clean 

formation of the borenium ion 17 was observed (Scheme 3-2).  No evidence for a 

boronium structure 18 was detected, even when excess triethylamine was used.  The 

borenium character of 17 is substantiated by a strongly deshielded 
11

B NMR peak at 

δ 85.1 ppm, as well as the bistriflimide anion peak at δ −79.5 ppm in the 
19

F NMR 

spectrum,
12

 evidence that rules out the alternative structure 16.  For simplicity, 16 is 

tentatively shown as a precursor of 17, although direct conversion from 6 is not ruled out. 

Scheme 3-2.  Generation of Borenium Salts from 6 

 

In contrast to triethylamine, 4-(dimethylamino)pyridine (DMAP) reacted with a 

stoichiometric amount of 6 to afford mostly the isolable boronium cation 21 according to 

the 
11

B NMR shift of δ 3.0 ppm (CD2Cl2, rt) along with traces of the borenium cation 20 

(δ 66.5 ppm).
21

 A much better way to generate 20 in situ was to protonate the amine 

borane complex 19 with Tf2NH.  This method confirmed the chemical shift of 20 and 

afforded solutions also containing relatively minor amounts of the boronium salt 21 (ca. 



 130 

7-11:1 20:21).  However, the more hindered 2,6-di-tert-butyl-4-methylpyridine did not 

interact with 6 at room temperature according to 
1
H and 

11
B NMR assay. 

The most remarkable feature of the borenium salt 17 is the absence of any 

stabilizing π-donor or n-donor substituents at boron, in contrast to 20 and to all 

previously reported persistent borenium ions generated in the condensed phase.
22

 A 

comparison of 
11

B NMR shifts for 17 (δ 85.1 ppm) and 20 (δ 66.5 ppm) indicates 

extensive cation stabilization by π delocalization between DMAP and the boron atom.  

Other π-stabilized borenium cations have been observed in the 
11

B chemical shift range 

of δ 58.2 to 66 ppm,
22

 suggesting that 17 may be an exceptionally electrophilic member 

of the borenium family of structures. 

High electrophilicity of boron cations is crucial for potential applications in 

electrophilic aromatic borylation.
22,23

 Thus, different combinations of the bistriflimide 6 

with basic amines generated reagents that react with electron-rich heterocycles to provide 

B-heteroaryl 9-BBN derivatives along with the protonated amines.  The reagent 

consisting of 6 and the non-complexing 2,6-di-tert-butyl-4-methylpyridine was the most 

reactive, and borylated N-methylindole in seconds at room temperature to afford 23a 

(>95% conversion by NMR spectroscopy), while the cationic reagents 13 and 17 required 

several hours at 50 °C for similar conversion.  No added base was needed with 13 or 17 

because both reagents already contain a “built-in” base (proton sponge 7 and 

triethylamine, respectively) to neutralize the HNTf2 that forms during borylation.  On the 

other hand, neither 20 nor 21 reacted with N-methylindole under these conditions. 

While the boronium salt 13 is less potent than the reagent from 6 and 2,6-di-tert-

butyl-4-methylpyridine, 13 is a far more convenient borylating agent.  Practical access to 
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13 on gram scale is possible using a one-pot procedure from 9-BBN, 7, and HNTf2 

without having to isolate the highly sensitive 6 (see Experimental).  Crystallized 13 is 

much easier to handle compared to 6, and even survives up to a month of exposure to dry 

air (dessicator over Drierite), in contrast to 6 or 17.  Furthermore, the aromatic borylation 

products obtained using 13 are easy to isolate (eq 4, Table 3-1).  Crystalline products 

23a–d were obtained in high purity simply by extracting the reaction mixtures with 

hexanes, where neither the unreacted 13 nor the byproduct 7∙HNTf2 is soluble, followed 

by solvent evaporation.  This procedure minimizes the risk of competing 

protodeboronation using 13, but it is not feasible with the reagent from 6 and 2,6-di-tert-

butyl-4-methylpyridine due to differences in reagent solubility. 

 

Table 3-1.  Borylation of Nitrogen Heterocycles Using 13
a
 

Het–H Product, Het–BBN Time Yield, % 

 

 

1.5 h 96 

 

 

1.5 h 98 
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3.5 h 97
b
 

 

 

5.5 d 97
b
 

a
1.05 equiv of 13; CH2Cl2; 50 °C. 

b
2.10 equiv of 13 

The structures of boranes 23a-d were established by multinuclear NMR 

spectroscopy, as well as X-ray crystallography in the case of 23a (Figure 3-2, also see 

Appendix A).  Borylation of N-methylindole afforded exclusively the 3-substituted 

regioisomer, in sharp contrast to the previously reported reaction with B(C6F5)3, which 

produces the 2-borylated N-methylindole.
24

 Pyrrole 22c gave a mixture of mono-

borylated regioisomers along with some of the diborylated 23c using one equivalent of 13 

(ca. 80% conversion of 22c), but two equivalents of the borylating agent cleanly 

produced the diborylated pyrrole 23c.  In the reaction with unsubstituted indole, the 

known N-borylation product was produced first,
25

 followed by much slower 

C3-borylation to afford 23d. 
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Figure 3-2.  X-Ray structure of 23a (50% probability ellipsoids) 

 

Several reactions of 13 suggest that it is in equilibrium with the starting 6 and 7.  

Thus, equimolar 13 and Tf2NH produced the protonated diamine (7∙HNTf2) and released 

6 (NMR assay).  Furthermore, reaction of 13 with triethylammonium bistriflimide 

(Et3NH
+
 Tf2N

−
) yielded 7∙HNTf2 and the tricoordinate cation 17, representing an unusual 

route from boronium to borenium ions involving the formal migration of the 9-BBN 

fragment to a different amine.  These events can be understood if dissociation of 13 to 6 + 

7 is the first step.  The same dissociative mechanism may also help explain the 

borylations of Table 3-1, although the identity of the key boron electrophile is not clear.  

Depending on the timing of bond dissociation and borylation events, a role for the 

tricoordinate borenium ion 12 or even a dicoordinate borinium ion
23

 cannot be ruled out 

at this point.  The equilibrium between 23 and 6 + 7 is not directly observable by 
1
H 

NMR spectroscopy, but the analogous process does occur in the related system 15 and 

7 + 14, containing the more nucleophilic triflate anion (vide supra). 
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The hindered boronium salt 13 cautions against interpreting the name  “proton 

sponge” too literally: in fact, this study proves that 7 can act as a chelating ligand for 

species much larger than a proton.  Also, the unusual structure of 13 raises a rhetorical 

question: is there a distinct boundary between the cationic species called “boronium” 

(tetra-substituted B), “borenium” (tri-substituted B), and “borinium” (di-substituted B), 

according to Nöth's terminology?
22a

 While 13 should be most appropriately called a 

boronium salt, the long B-N distances increase the “borinium-like” character, and the 

unusual reactivity adds a small hint of a borenium ion (12).  Aside from the structural 

features of 13, the chemoselectivity of its formation also deserves attention.  In view of 

earlier reports that strong electrophiles attack the aromatic system of 7
2
 or abstract 

hydride from one of the N-methyl groups,
2a,26

 it is quite intriguing that the reaction 

between 6 and 7 proceeds to form 13, the most hindered of all plausible products. 

Summary 

To summarize, the covalent boron bistriflimide 6 was used to access the unusual 

boron salts 13 and 17, as well as borenium 20 by exploiting the excellent leaving group 

ability of bistriflimide anion.  The structure of the hindered boronium 13 was established 

using X-ray crystallography.  The triethylamine-derived 17 expands the range of 

borenium salts observed in the condensed phase, proving that resonance delocalization of 

the positive charge is not required for a persistent borenium cation.  Amine-based 

borocations 13 and 17, as well as the combination of 6 with 2,6-di-tert-butyl-4-

methylpyridine serve as potent borylating agents, capable of reacting with electron-rich 

aromatic systems. 
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Experimental 

General Methods.  All reactions were performed at room temperature (unless 

otherwise stated), under an atmosphere of dry nitrogen, either in a glovebox, or using 

standard Schlenk techniques.  Nuclear magnetic resonance experiments were performed 

on Varian Inova 500 and Inova 400 spectrometers at the following frequencies: 
1
H 

500 MHz or 400 MHz; 
11

B and 
11

B{
1
H} 128 MHz; 

13
C{

1
H} 101 MHz; 

19
F 377 MHz.  All 

spectra were recorded in CD2Cl2 and referenced to the 
1
H signal of internal Me4Si 

according to IUPAC recommendations,
27

 using a  (referencing parameter) of 32.083974 

for BF3·OEt2 (
11

B), a  of 25.145020 for Me4Si (
13

C), and a  of 94.094011 for CCl3F 

(
19

F).  IR spectra were acquired in CCl4 or CD2Cl2 solutions using a CaF2 cell.  UV 

spectra were acquired using a Shimadzu UV-1601 spectrophotometer.  Toluene and Et3N 

were distilled over CaH2; CH2Cl2 and hexanes were dried by passing through a column of 

activated alumina.  Then, the solvents and Et3N were further dried by storing over 

activated 3Å molecular sieves in the glovebox.  Commercially available NMR grade 

CD2Cl2 (Cambridge Isotope Laboratories) was not distilled; instead it was simply dried 

over a large amount of activated 3Å molecular sieves in the glovebox.  All other reagents 

were used as received from commercial suppliers. 

Preparation of 9-BBN Bistriflimide 6 

Every possible effort was made to protect the reaction mixture from exposure to 

air and moisture.  The glassware used in this experiment was dried in a heating oven at 

ca. 200 °C overnight.  Toluene was distilled over CaH2, and then further dried by storing 

over activated 3Å molecular sieves in the glovebox.  In the glovebox, a dry round-bottom 
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flask fitted with a reflux condenser was charged with a mixture of solid 

9-borabicyclo[3.3.1]nonane dimer (0.868 g, 7.11 mmol of the monomer) and 

bis(trifluoromethanesulfonyl)imide (2.00 g, 7.11 mmol).  Dry toluene (1 mL) was added 

to the solid mixture at rt, the apparatus was capped with a rubber septum, removed from 

the glovebox, and connected to a nitrogen line.  The reaction mixture was then heated at 

90 °C for 40 min.  Intensive gas liberation was observed while heating (adequate venting 

must be provided), and a clear solution was formed.  The resulting solution was distilled 

in vacuum, and a fraction boiling at 108 °C (1.5 Torr) was collected.  Boron bistriflimide 

6 is a very dense (d = 1.49 g/cm
3
), viscous liquid and is highly air-sensitive. 

1
H NMR (400 MHz, CD2Cl2): δ 2.07-1.81 (m, 10H), 1.59-1.52 (m, 2H), 1.52-1.42 ppm 

(m, 2H). 
11

B NMR (128 MHz, CD2Cl2): δ 59.2 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): 

δ 119.4 (q, JC–F = 325 Hz), 33.6, 29.6-28.0 (m), 22.9 ppm. 
19

F NMR (377 MHz, CD2Cl2): 

δ −70.0 ppm (br s). HRMS (EI+): m/z calculated for C10H14BF6NO4S2 [M]
+
 401.0362, 

found 401.0347 (−4 ppm). IR (CCl4, CaF2): 1437, 1417, 1359, 1325, 1121 cm
−1

. 

Preparation of Boronium Salt 13 

Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The glassware used in this experiment was either dried in a heating 

oven at ca. 200 °C overnight (for method A), or disposable glassware flame-dried at the 

glass softening temperature was used (for method B).  Toluene was distilled over CaH2, 

and hexanes were dried by passing through a column of activated alumina.  The solvents 

were further dried by storing over activated 3Å molecular sieves in the glovebox before 

use. 
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Method A.  In the glovebox, a dry round-bottom flask fitted with a reflux 

condenser was charged with a mixture of solid 9-borabicyclo[3.3.1]nonane dimer (0.461 

g, 3.78 mmol of the monomer) and bis(trifluoromethanesulfonyl)imide (0.966 g, 3.44 

mmol).  Dry toluene (5 mL) was added to the solid mixture at rt, the apparatus was 

capped with a rubber septum, removed from the glovebox, and connected to a nitrogen 

line.  The reaction mixture was then heated at reflux for 1 h under nitrogen atmosphere.  

Intensive gas liberation was observed while heating (adequate venting must be provided), 

and a clear solution was formed.  The reaction apparatus was transferred back into the 

glovebox, where the reaction mixture along with 2x1 mL of dry toluene was slowly 

added to a solution of 1,8-bis(dimethylamino)naphthalene (0.737 g, 3.44 mmol) in 3 mL 

of dry toluene at rt.  Upon mixing the reagents the reaction mixture developed a striking 

red color that persisted for a few seconds.  A small exotherm was observed, and 

precipitation of a pale yellow oil began immediately.  The oil crystallized within a few 

minutes of stirring at rt, the resulting crystals were isolated by filtration, and then washed 

with 2x1 mL of dry toluene followed by 2 mL of dry hexanes.  Drying the resulting solid 

in the glovebox yielded 2.04 g (96%) of the desired product.  The resulting crystals of 13 

if thoroughly dried are very stable in dry air, although solutions of the product are very 

sensitive. 

Method B.  Alternatively, the boronium salt 13 was prepared by mixing equimolar 

amounts of the boron bistriflimide reagent 6 and 1,8-bis(dimethylamino)-naphthalene in 

dry CH2Cl2 followed by evaporation of the solvent.  The reaction was essentially 

instantaneous, but the product prepared in this manner was contaminated with the 
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bis(trifluoromethanesulfonyl)imide salt of 1,8-bis(dimethylamino)naphthalene due to 

Tf2NH impurity in the boron reagent 6. 

1
H NMR (500 MHz, CD2Cl2): δ 8.01 (dd, J = 8.3 Hz, 0.5 Hz, 2H), 7.90 (dd, J = 8.0 Hz, 

0.5 Hz, 2H), 7.74 (t, J = 8.0 Hz, 2H), 3.48 (s, 12H), 2.31-2.13 (m, 4H), 2.19-2.05 (m, 

2H), 1.81-1.67 (m, 6H), 1.02-0.91 ppm (br s, 2H). 
11

B NMR (128 MHz, CD2Cl2): δ 16.2 

ppm (s). 
13

C NMR (101 MHz, CD2Cl2): δ 142.9, 135.0, 129.5, 127.7, 120.3 (q,  

JC–F = 322 Hz), 120.1, 119.7, 57.1, 34.6, 21.0-19.9 (m), 20.3 ppm. 
19

F NMR (377 MHz, 

CD2Cl2): δ −79.4 ppm (s). HRMS (ES+): m/z calculated for C22H32BN2 [M]
+
 335.2653, 

found 355.3655 (+1 ppm). IR(CD2Cl2, CaF2): 2874, 1603, 1576, 1492, 1435, 1342, 1142 

cm
−1

. m.p. 128 °C (sealed capillary); decomposition begins ca. 100 °C. 

Generation of Borenium Salt 17 

Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The reaction was set up in a dry J. Young NMR tube under N2 

atmosphere in a glovebox.  Commercially available NMR grade CD2Cl2 was dried over a 

large amount of activated 3Å molecular sieves in the glovebox.  .  Triethylamine was 

distilled over CaH2, and then further dried by storing over activated 3Å molecular sieves 

in the glovebox.  The NMR tube was dried in a heating oven at ca. 200 °C overnight, and 

the fitted Teflon valve was dried in a dessicator over Drierite.  The reaction tube was 

charged with a solution of boron bistriflimide 6 (30.0 L, 0.111 mmol) in 0.6 mL of dry 

CD2Cl2. Neat triethylamine (15.5 L, 0.112 mmol) was added via a microsyringe in one 

portion at rt.  The tube was immediately sealed with the fitted Teflon valve, and then 
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shaken vigorously for ca. 1 min.  NMR analysis indicated clean formation of borenium 

salt 17. 

1
H NMR (400 MHz, CD2Cl2): δ 3.51 (q, J = 7.4 Hz, 6H), 2.35-2.26 (m, 4H), 2.25-2.12 

(m, 2H), 2.07-1.94 (m, 4H), 1.87-1.80 (m, 2H), 1.66-1.56 (m, 2H), 1.35 ppm (t, J = 7.4 

Hz, 9H). 
11

B NMR (128 MHz, CD2Cl2): δ 85.1 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): 

δ 120.4 (q, JC–F = 322 Hz), 50.0, 36.3, 30.4-29.1 (m), 22.5, 9.6 ppm. 
19

F NMR (377 MHz, 

CD2Cl2): δ −79.5 ppm (s). 

Preparation of Amine Borane 19 

The reaction was performed under N2 atmosphere in a glovebox.  In a dry 4 mL 

scintillation vial a mixture of solid 9-borabicyclo[3.3.1]nonane dimer (82.2 mg, 0.674 

mmol of the monomer) and 4-(dimethylamino)pyridine (82.3 mg, 0.674 mmol) was 

dissolved in 1 mL of anhydrous CH2Cl2, and the resulting clear solution was stirred at rt 

overnight. A white precipitate appeared on stirring, and the slurry was concentrated to 

afford 19 as a white solid in quantitative yield. 

1
H NMR (500 MHz, CD2Cl2): δ 8.11-8.06 (m, 2H), 6.62-6.58 (m, 2H), 3.09 (s, 6H), 2.77-

2.00 (m, 1H), 1.96-1.72 (m, 6H), 1.56-1.48 (m, 3H), 1.48-1.39 (m, 2H), 1.29-1.21 (m, 

1H), 1.13-1.04 ppm (m, 2H). 
11

B NMR (128 MHz, CD2Cl2): δ −3.2 ppm (d, JB–H = 

60 Hz). 
13

C NMR (101 MHz, CD2Cl2): δ 155.1, 144.8, 106.9, 39.6, 35.4, 29.5, 25.9, 25.5, 

24.6-23.0 ppm (m). IR(CD2Cl2, CaF2): 2269, 2239, 1635, 1547, 1444, 1344, 1229, 1202 

cm
−1

. The compound has no distinct melting point; partial melting ca. 163 °C (sealed 

capillary) with decomposition. 

Generation of Borenium Salt 20 and Boronium Salt 21 
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Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The reactions were performed under N2 atmosphere in a glovebox.  

Commercially available NMR grade CD2Cl2 was dried over a large amount of activated 

3Å molecular sieves in the glovebox.  The NMR tube was dried in a heating oven at ca. 

200 °C overnight, and the fitted Teflon valve was dried in a dessicator over Drierite.  

Other glassware was flame-dried at the glass softening temperature. 

Solid bis(trifluoromethanesulfonyl)imide (23.8 mg, 84.8 μmol) was added in 

small portions to a stirred solution of amine-borane complex 19 (20.7 mg, 84.8 μmol) in 

1 mL of dry CD2Cl2.  Intensive gas liberation was observed.  The resulting clear solution 

was then transferred to a dry J. Young NMR tube.  NMR assay of the solution showed 

formation of borenium salt 20, along with minor amounts of the boronium salt 21 and 

DMAP·HNTf2 (typically 7-11:1 20:21).  Addition of an extra equivalent of 

4-(dimethylamino)pyridine (10.4 mg, 84.8 μmol) cleanly produced boronium salt 21, as 

evidenced by NMR spectroscopy. 

Alternatively, complex 21 was prepared by carefully treating a solution of 

4-(dimethylamino)pyridine (27.1 mg, 0.222 mmol) in 0.5 mL of anhydrous CH2Cl2 with 

neat boron bistriflimide 6 (30.0 L, 0.111 mmol). Concentration of the resulting solution 

afforded a white crystalline solid in quantitative yield. 

20: 
1
H NMR (500 MHz, CD2Cl2): δ 8.37-8.33 (m, 2H), 6.99-6.95 (m, 2H), 3.37 (s, 6H), 

2.14-1.98 (m, 8H), 1.93-1.84 (m, 4H), 1.45-1.37 ppm (m, 2H). 
11

B NMR (128 MHz, 

CD2Cl2): δ 66.5 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): δ 159.2, 142.6, 120.3 (q, JC–F = 

322 Hz), 108.8, 41.2, 34.4, 28.0-26.2 (m), 23.2 ppm. 
19

F NMR (377 MHz, CD2Cl2): δ 

−79.4 ppm (s). 
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21: 
1
H NMR (500 MHz, CD2Cl2): δ 8.07-8.03 (m, 4H), 6.69-6.65 (m, 4H), 3.11 (s, 12H), 

1.97-1.85 (m, 2H), 1.85-1.78 (m, 4H), 1.62-1.58 (m, 2H), 1.58-1.48 (m, 4H), 1.38-1.31 

ppm (m, 2H). 
11

B NMR (128 MHz, CD2Cl2): δ 3.0 ppm (s). 
13

C NMR (101 MHz, 

CD2Cl2): δ 156.3, 142.8, 120.4 (q, JC–F = 322 Hz), 108.1, 39.9, 30.4, 23.7, 21.5-20.5 ppm 

(m). 
19

F NMR (377 MHz, CD2Cl2): δ −79.5 ppm (s). HRMS (ES+): m/z calculated for 

C22H34BN4 [M]
+
 365.2871, found 365.2873 (+1 ppm). IR(CD2Cl2, CaF2): 2891, 2851, 

1635, 1557, 1444, 1350, 1138 cm
−1

. The compound has no distinct melting point; partial 

melting ca. 208 °C (sealed capillary) with decomposition. UV/Vis (CH2Cl2): λmax(ε) = 

295 (24000), 283 nm (21000). 

Indole and Pyrrole Borylation with 13 

Every possible effort was made to protect the reaction mixtures from exposure to 

air and moisture.  The reactions were performed under N2 atmosphere in a glovebox.  

Disposable glassware flame-dried at the glass softening temperature was used. 

Small Scale Procedure.  In the glovebox, a dry 4 mL scintillation vial was 

charged with a solution of the desired substrate (0.16-0.17 mmol) and boronium salt 13 

(1.05 equivalents per each 9-BBN unit introduced) in dry CH2Cl2 (0.5 mL per each 

9-BBN unit introduced).  The reaction vessel was sealed and heated at 50 °C for the 

amount of time indicated below.  The reaction mixture was then diluted with dry hexanes 

(1 mL per each 9-BBN unit introduced) and left at rt for 1–2 hours to allow the byproduct 

to precipitate.  Following decantation of supernatant, the solids were washed with 4x0.5 

mL of dry hexanes, and the combined solutions were evaporated to dryness to give crude 

material.  The pure product was obtained by extracting the crude material with 4x0.5 mL 

of dry hexanes followed by concentration of the extracts.  All of the resulting borylated 
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heterocycles were found to be extremely sensitive to water and air.  UV spectra of the 

borylated heterocycles were acquired in 0.83% (v/v) solution of NEt3 in hexanes.  Very 

rapid protodeboronation precludes acquisition of UV spectra in the absence of NEt3. 

Large Scale Procedure. Compound 23a was also prepared on a larger scale using 

a modified procedure.  A dry 12 mL thick-walled Schlenk tube (dried in a heating oven at 

ca. 200 °C overnight) fitted with a teflon stopper was charged with a mixture of 

N-methylindole (206 L, 0.218 g, 1.66 mmol) and boronium salt 13 (1.07 g, 1.74 mmol) 

in 3 mL of dry CH2Cl2.  The reaction vessel was sealed and then heated at 50 
o
C for 2 h.  

The reaction mixture was then diluted with 5 mL of dry hexanes and left at room 

temperature for 1-2 hours to allow the byproduct to precipitate.  Following decantation of 

supernatant, the solids were washed with 3x1 mL of dry hexanes, and the combined 

extracts were evaporated to dryness to give crude material.  The pure product (0.415 g) 

was obtained in essentially quantitative yield by extracting the crude material with 5 

portions of dry hexanes (total solvent volume 12 mL) followed by concentration of the 

extracts. 

23a: Reaction time 1.5 hours, 96% yield of a colorless crystalline solid. 
1
H NMR (500 

MHz, CD2Cl2): δ 8.04 (d, J = 8.0 Hz, 1H), 7.74 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.27-

7.23 (m, 1H), 7.20-7.16 (m, 1H), 3.83 (s, 3H), 2.38-2.29 (m, 2H), 2.07-1.95 (m, 6H), 

1.94-1.82 (m, 4H), 1.40-1.31 ppm (m, 2H). 
11

B NMR (128 MHz, CD2Cl2): δ 72.6 ppm 

(s). 
13

C NMR (101 MHz, CD2Cl2): δ 141.7, 139.8, 133.5, 122.9, 122.2, 121.2, 116.2-

114.9 (m), 110.0, 34.3, 33.5, 30.0-28.8 (m), 24.0 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C17H22BN [M]
+
 251.1845, found 251.1850 (+2 ppm). IR(CCl4, CaF2): 
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1675, 1511, 1465, 1421, 1364, 1333, 1159, 1132, 1109 cm
−1

. m.p. 106-108 °C (sealed 

capillary). UV/Vis (0.83% v/v NEt3 in hexanes): λmax(ε) = 291 nm (15000). 

23b: Reaction time 1.5 hours, 98% yield of a colorless crystalline solid. 
1
H NMR (500 

MHz): δ 6.21 (q, J = 0.9 Hz, 1H), 3.41 (s, 3H), 2.43 (s, 3H), 2.20 (s, 3H), 2.11-2.05 (m, 

2H), 2.01-1.86 (m, 6H), 1.82-1.73 (m, 4H), 1.35-1.25 ppm (m, 2H). 
11

B NMR (128 MHz, 

CD2Cl2): δ 72.2 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): δ 140.5, 129.0, 120.0-118.3 (m), 

112.7, 34.2, 30.6, 29.8-29.0 (m), 24.0, 13.4, 12.6 ppm. HRMS (EI+ 70 eV): m/z 

calculated for C15H24BN [M]
+
 229.2002, found 229.2002 (0 ppm). IR(CCl4, CaF2): 2915, 

2837, 1503, 1433, 1405, 1372, 1350, 1172, 1115 cm
−1

. m.p. 120 °C (sealed capillary). 

UV/Vis (0.83% v/v NEt3 in hexanes): λmax(ε) = 286 nm (6100). 

23c: Reaction time 3.5 hours, 97% yield of a colorless crystalline solid. 
1
H NMR (500 

MHz, CD2Cl2): δ 7.60 (d, J = 1.6 Hz, 1H), 7.55 (dd, J = 1.6 Hz, 0.4 Hz, 1H), 3.92 (t, J = 

0.4 Hz, 3H), 2.23-2.18 (m, 2H), 2.08-1.90 (m, 14H), 1.90-1.73 (m, 8H), 1.41-1.25 ppm 

(m, 4H). 
11

B NMR (128 MHz, CD2Cl2): δ 73.0 (s), 70.2 ppm (s). 
13

C NMR (101 MHz, 

CD2Cl2): δ 142.8, 141.2-140.0 (m), 134.4, 124.0-123.1 (m), 38.4, 34.4, 34.3, 29.9-

29.1(m), 29.1-28.3 (m), 24.0, 23.8 ppm. HRMS (EI+ 70 eV): m/z calculated for 

C21H33B2N [M]
+
 321.2799, found 321.2811 (+4 ppm). IR(CCl4, CaF2): 1656, 1486, 1450, 

1422, 1362, 1325, 1150, 1112 cm
−1

. m.p. 133-135 °C (sealed capillary). UV/Vis (0.83% 

v/v NEt3 in hexanes): λmax(ε) = 290 nm (22000). 

23d: Reaction time 5.5 days, 97% yield of a colorless crystalline solid. 
1
H NMR (500 

MHz, CD2Cl2): δ 8.22 (s, 1H), 8.03-7.99 (m, 1H), 7.93-7.88 (m, 1H), 7.28-7.23 (m, 2H), 

2.70-2.21 (m, 4H), 2.16-1.83 (m, 20H), 1.50-1.41 (m, 2H), 1.41-1.32 ppm (m, 2H). 
11

B 
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NMR (128 MHz, CD2Cl2): δ 75.7 (s), 62.0 ppm (s). 
13

C NMR (101 MHz, CD2Cl2): δ 

143.5, 143.3, 137.4, 123.5, 123.2, 122.9, 122.7-122.0 (m), 116.0, 34.3, 34.1, 30.7-29.6 

(m), 28.2-26.3 (m), 23.9, 23.5 ppm. HRMS (EI+ 70 eV): m/z calculated for C24H33B2N 

[M]
+
 357.2799, found 357.2814 (+4 ppm). IR(CCl4, CaF2): 1694, 1487, 1471, 1449, 

1405, 1334, 1292, 1135, 1108 cm
−1

. m.p. 204-206 °C (sealed capillary). 
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Appendix A 

X-Ray Crystal Structures 
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X-Ray Structure of 1-24a ([B(C6F5)4]
−
 salt) 

See Figure 1-2 for an ORTEP plot of 1-24a.  A crystal of dimensions 

0.44x0.14x0.12 mm was mounted on a Bruker SMART APEX CCD-based X-ray 

diffractometer equipped with a low temperature device and fine focus Mo-target X-ray 

tube ( = 0.71073 Å) operated at 1500 W power (50 kV, 30 mA).  The X-ray intensities 

were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the 

crystal.  A total of 5190 frames were collected with a scan width of 0.5 in  and 0.45 in 

φ with an exposure time of 25 s/frame.  The integration of the data yielded a total of 

76588 reflections to a maximum 2 value of 56.74 of which 8372 were independent and 

7015 were greater than 2(I).  The final cell constants (triclinic, a = 10.3435(9) Å; α = 

76.7247(13)°; b = 12.4348(11) Å; β = 81.6108(13)°; c = 13.7303(12) Å; 

γ = 78.5633(13)°; V = 1675.3(3) Å
3
) were based on the xyz centroids of 9736 reflections 

above 10(I).  Analysis of the data showed negligible decay during data collection; the 

data were processed with SADABS and corrected for absorption.  The structure was 

solved and refined with the Bruker SHELXTL (version 2008/3) software package, using 

the space group P1 with Z = 2 for the formula C30H23B3N2F20.  All non-hydrogen atoms 

were refined anisotropically with the hydrogen atoms placed in idealized or refined 

positions.  The cation is partially disordered with a (CH3)3NBH2 fragment occupying two 

orientations.  Full matrix least-squares refinement based on F
2
 converged at R1 = 0.0371 

and wR2 = 0.0968 [based on I > 2σ(I)], R1 = 0.0451 and wR2 = 0.1025 for all data. 

Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 

2008;  Sheldrick, G.M. SADABS, v. 2008/1.  Program for Empirical Absorption 
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Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008; 

Saint Plus, v. 7.53a, Bruker Analytical X-ray, Madison, WI, 2008. 

 

      Table 1.  Crystal data and structure refinement for 1-24a. 

  

  

      Empirical formula                 C30H23B3F20N2 

  

      Formula weight                    823.93 

  

      Temperature                       85(2) K 

  

      Wavelength                        0.71073 Å 

  

      Crystal system, space group       Triclinic,  P-1 

  

      Unit cell dimensions              a = 10.3435(9) Å, α = 76.7247(13)°. 

                                        b = 12.4348(11) Å, β = 81.6108(13)°. 

                                        c = 13.7303(12) Å, γ = 78.5633(13)°. 

  

      Volume                            1675.3(3) Å
3
 

  

      Z, Calculated density             2,  1.633 Mg/m
3
 

  

      Absorption coefficient            0.173 mm
−1
 

  

      F(000)                            824 

  

      Crystal size                      0.44 x 0.14 x 0.12 mm 

  

      Theta range for data collection   1.53 to 28.36°. 

  

      Limiting indices                  -13<=h<=13, -16<=k<=16, -18<=l<=18 

  

      Reflections collected / unique    76588 / 8372 [R(int) = 0.0293] 

  

      Completeness to θ = 28.36         99.7 % 

  

      Absorption correction             Semi-empirical from equivalents 

  

      Max. and min. transmission        0.9795 and 0.9278 

  

      Refinement method                 Full-matrix least-squares on F
2
 

  

      Data / restraints / parameters    8372 / 8 / 578 

  

      Goodness-of-fit on F
2
             1.033 

  

      Final R indices [I>2σ(I)]         R1 = 0.0371, wR2 = 0.0968 

  

      R indices (all data)              R1 = 0.0451, wR2 = 0.1025 

  

      Largest diff. peak and hole       0.444 and -0.315 e·Å
−3
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         Table 2.  Atomic coordinates ( x 10
4
) and equivalent isotropic 

         displacement parameters (Å
2
 x 10

3
) for 1-24a. 

         U(eq) is defined as one third of the trace of the orthogonalized 

         Uij tensor. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          F(1)         7197(1)       2952(1)       4231(1)       33(1) 

          F(2)         8292(1)       4431(1)       4812(1)       49(1) 

          F(3)        10005(1)       5622(1)       3491(1)       52(1) 

          F(4)        10561(1)       5284(1)       1568(1)       43(1) 

          F(5)         9445(1)       3865(1)        959(1)       30(1) 

          F(6)         6644(1)       4349(1)        820(1)       28(1) 

          F(7)         6570(1)       4561(1)      -1140(1)       38(1) 

          F(8)         7515(1)       2767(1)      -2037(1)       45(1) 

          F(9)         8475(1)        745(1)       -881(1)       43(1) 

          F(10)        8487(1)        496(1)       1078(1)       30(1) 

          F(11)       10234(1)       1398(1)       1870(1)       26(1) 

          F(12)       11612(1)       -446(1)       2920(1)       31(1) 

          F(13)       10470(1)      -1606(1)       4652(1)       37(1) 

          F(14)        7870(1)       -901(1)       5280(1)       38(1) 

          F(15)        6441(1)        829(1)       4208(1)       32(1) 

          F(16)        5830(1)        834(1)       2200(1)       31(1) 

          F(17)        3204(1)       1050(1)       2546(1)       42(1) 

          F(18)        1730(1)       2913(1)       3123(1)       43(1) 

          F(19)        2975(1)       4597(1)       3292(1)       38(1) 

          F(20)        5568(1)       4438(1)       2892(1)       33(1) 

          N(1)         5532(1)       7584(1)       3651(1)       26(1) 

          N(2)         7252(2)       7654(2)        435(2)       27(1) 

          N(2A)        7236(10)      7758(6)        462(5)       27(4) 

          C(1)         5205(2)       6448(2)       3781(2)       58(1) 

          C(2)         5945(2)       7690(2)       4609(1)       55(1) 

          C(3)         4334(2)       8430(1)       3415(1)       40(1) 

          C(4)         6528(2)       8790(2)          2(2)       43(1) 

          C(5)         7433(2)       6924(2)       -320(1)       33(1) 

          C(6)         8589(3)       7781(5)        643(3)       32(2) 

          C(6A)        8598(13)      7848(17)       649(16)      37(8) 

          C(7)         8217(1)       3342(1)       2557(1)       23(1) 

          C(8)         8022(1)       3525(1)       3534(1)       27(1) 

          C(9)         8586(1)       4279(1)       3860(1)       35(1) 

          C(10)        9435(1)       4890(1)       3195(1)       36(1) 

          C(11)        9700(1)       4723(1)       2227(1)       32(1) 

          C(12)        9099(1)       3965(1)       1929(1)       26(1) 

          C(13)        7616(1)       2425(1)       1061(1)       22(1) 

          C(14)        7119(1)       3428(1)        426(1)       24(1) 

          C(15)        7068(1)       3562(1)       -593(1)       29(1) 

          C(16)        7538(1)       2660(1)      -1045(1)       33(1) 

          C(17)        8024(1)       1642(1)       -457(1)       31(1) 

          C(18)        8039(1)       1543(1)        569(1)       25(1) 

          C(19)        8247(1)       1207(1)       2950(1)       21(1) 

          C(20)        9589(1)        827(1)       2696(1)       22(1) 

          C(21)       10336(1)       -111(1)       3234(1)       24(1) 

          C(22)        9760(1)       -706(1)       4107(1)       27(1) 

          C(23)        8449(1)       -354(1)       4414(1)       27(1) 

          C(24)        7729(1)        573(1)       3834(1)       25(1) 

          C(25)        5867(1)       2599(1)       2565(1)       22(1) 

          C(26)        5162(1)       1790(1)       2479(1)       25(1) 

          C(27)        3805(1)       1874(1)       2656(1)       30(1) 

          C(28)        3053(1)       2823(1)       2936(1)       31(1) 

          C(29)        3680(1)       3670(1)       3011(1)       29(1) 

          C(30)        5055(1)       3550(1)       2814(1)       25(1) 

          B(1)         6745(2)       7776(2)       2824(1)       31(1) 

          B(2)         6450(2)       7055(2)       1405(2)       31(1) 

          B(2A)        6068(8)       8341(7)       1143(6)       31(2) 

          C(4A)        7006(8)       8322(7)       -601(5)       38(2) 

          C(5A)        7155(8)       6543(6)        586(6)       36(2) 

          B(3)         7495(1)       2392(1)       2282(1)       21(1) 

         ________________________________________________________________ 
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           Table 3.  Bond lengths [Å] and angles [°] for 1-24a. 

           _____________________________________________________________ 

  

            F(1)-C(8)                     1.3570(16) 

            F(2)-C(9)                     1.3457(18) 

            F(3)-C(10)                    1.3380(16) 

            F(4)-C(11)                    1.3489(18) 

            F(5)-C(12)                    1.3554(16) 

            F(6)-C(14)                    1.3521(15) 

            F(7)-C(15)                    1.3430(16) 

            F(8)-C(16)                    1.3411(16) 

            F(9)-C(17)                    1.3468(16) 

            F(10)-C(18)                   1.3542(15) 

            F(11)-C(20)                   1.3532(14) 

            F(12)-C(21)                   1.3419(14) 

            F(13)-C(22)                   1.3426(14) 

            F(14)-C(23)                   1.3483(15) 

            F(15)-C(24)                   1.3588(14) 

            F(16)-C(26)                   1.3579(15) 

            F(17)-C(27)                   1.3457(17) 

            F(18)-C(28)                   1.3428(15) 

            F(19)-C(29)                   1.3418(15) 

            F(20)-C(30)                   1.3472(16) 

            N(1)-C(3)                     1.4802(17) 

            N(1)-C(1)                     1.482(2) 

            N(1)-C(2)                     1.482(2) 

            N(1)-B(1)                     1.581(2) 

            N(2)-C(4)                     1.495(2) 

            N(2)-C(6)                     1.497(2) 

            N(2)-C(5)                     1.497(3) 

            N(2)-B(2)                     1.575(3) 

            N(2A)-C(4A)                   1.498(4) 

            N(2A)-C(6A)                   1.499(4) 

            N(2A)-C(5A)                   1.499(4) 

            N(2A)-B(2A)                   1.579(5) 

            C(1)-H(1A)                    0.9800 

            C(1)-H(1B)                    0.9800 

            C(1)-H(1C)                    0.9800 

            C(2)-H(2A)                    0.9800 

            C(2)-H(2B)                    0.9800 

            C(2)-H(2C)                    0.9800 

            C(3)-H(3A)                    0.9800 

            C(3)-H(3B)                    0.9800 

            C(3)-H(3C)                    0.9800 

            C(4)-H(4A)                    0.9800 

            C(4)-H(4B)                    0.9800 

            C(4)-H(4C)                    0.9800 

            C(5)-H(5A)                    0.9800 

            C(5)-H(5B)                    0.9800 

            C(5)-H(5C)                    0.9800 

            C(6)-H(6A)                    0.9800 

            C(6)-H(6B)                    0.9800 

            C(6)-H(6C)                    0.9800 

            C(6A)-H(6D)                   0.9800 

            C(6A)-H(6E)                   0.9800 

            C(6A)-H(6F)                   0.9800 

            C(7)-C(12)                    1.3854(18) 

            C(7)-C(8)                     1.3915(19) 

            C(7)-B(3)                     1.6528(19) 

            C(8)-C(9)                     1.381(2) 

            C(9)-C(10)                    1.377(2) 

            C(10)-C(11)                   1.373(2) 

            C(11)-C(12)                   1.3881(19) 

            C(13)-C(18)                   1.3838(18) 

            C(13)-C(14)                   1.3987(17) 

            C(13)-B(3)                    1.6542(19) 

            C(14)-C(15)                   1.3783(19) 

            C(15)-C(16)                   1.377(2) 

            C(16)-C(17)                   1.380(2) 

            C(17)-C(18)                   1.3882(19) 
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            C(19)-C(24)                   1.3851(18) 

            C(19)-C(20)                   1.3954(17) 

            C(19)-B(3)                    1.6585(17) 

            C(20)-C(21)                   1.3846(17) 

            C(21)-C(22)                   1.3776(19) 

            C(22)-C(23)                   1.3747(19) 

            C(23)-C(24)                   1.3894(17) 

            C(25)-C(26)                   1.3887(18) 

            C(25)-C(30)                   1.3891(17) 

            C(25)-B(3)                    1.6541(18) 

            C(26)-C(27)                   1.3769(18) 

            C(27)-C(28)                   1.379(2) 

            C(28)-C(29)                   1.371(2) 

            C(29)-C(30)                   1.3922(18) 

            B(1)-H(1)                     1.296(17) 

            B(1)-H(1D)                    1.10(2) 

            B(1)-H(1E)                    1.07(2) 

            B(2)-H(1)                     1.295(15) 

            B(2)-H(2D)                    1.05(2) 

            B(2)-H(2E)                    1.10(3) 

            B(2A)-H(1)                    1.287(15) 

            B(2A)-H(2F)                   1.25(9) 

            B(2A)-H(2G)                   0.98(9) 

            C(4A)-H(4D)                   0.9800 

            C(4A)-H(4E)                   0.9800 

            C(4A)-H(4F)                   0.9800 

            C(5A)-H(5D)                   0.9800 

            C(5A)-H(5E)                   0.9800 

            C(5A)-H(5F)                   0.9800 

  

            C(3)-N(1)-C(1)              109.09(14) 

            C(3)-N(1)-C(2)              108.89(12) 

            C(1)-N(1)-C(2)              108.59(15) 

            C(3)-N(1)-B(1)              112.05(11) 

            C(1)-N(1)-B(1)              111.65(12) 

            C(2)-N(1)-B(1)              106.47(12) 

            C(4)-N(2)-C(6)              108.2(3) 

            C(4)-N(2)-C(5)              109.09(18) 

            C(6)-N(2)-C(5)              108.8(2) 

            C(4)-N(2)-B(2)              112.06(19) 

            C(6)-N(2)-B(2)              111.9(2) 

            C(5)-N(2)-B(2)              106.67(19) 

            C(4A)-N(2A)-C(6A)           109.4(10) 

            C(4A)-N(2A)-C(5A)           107.7(7) 

            C(6A)-N(2A)-C(5A)           108.7(10) 

            C(4A)-N(2A)-B(2A)           105.7(7) 

            C(6A)-N(2A)-B(2A)           114.8(11) 

            C(5A)-N(2A)-B(2A)           110.3(7) 

            N(1)-C(1)-H(1A)             109.5 

            N(1)-C(1)-H(1B)             109.5 

            H(1A)-C(1)-H(1B)            109.5 

            N(1)-C(1)-H(1C)             109.5 

            H(1A)-C(1)-H(1C)            109.5 

            H(1B)-C(1)-H(1C)            109.5 

            N(1)-C(2)-H(2A)             109.5 

            N(1)-C(2)-H(2B)             109.5 

            H(2A)-C(2)-H(2B)            109.5 

            N(1)-C(2)-H(2C)             109.5 

            H(2A)-C(2)-H(2C)            109.5 

            H(2B)-C(2)-H(2C)            109.5 

            N(1)-C(3)-H(3A)             109.5 

            N(1)-C(3)-H(3B)             109.5 

            H(3A)-C(3)-H(3B)            109.5 

            N(1)-C(3)-H(3C)             109.5 

            H(3A)-C(3)-H(3C)            109.5 

            H(3B)-C(3)-H(3C)            109.5 

            N(2)-C(4)-H(4A)             109.5 

            N(2)-C(4)-H(4B)             109.5 

            H(4A)-C(4)-H(4B)            109.5 

            N(2)-C(4)-H(4C)             109.5 

            H(4A)-C(4)-H(4C)            109.5 
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            H(4B)-C(4)-H(4C)            109.5 

            N(2)-C(4)-H(2G)              93(3) 

            H(4A)-C(4)-H(2G)            127.7 

            H(4C)-C(4)-H(2G)            105.9 

            N(2)-C(5)-H(5A)             109.5 

            N(2)-C(5)-H(5B)             109.5 

            H(5A)-C(5)-H(5B)            109.5 

            N(2)-C(5)-H(5C)             109.5 

            H(5A)-C(5)-H(5C)            109.5 

            H(5B)-C(5)-H(5C)            109.5 

            N(2A)-C(6A)-H(6D)           109.5 

            N(2A)-C(6A)-H(6E)           109.5 

            H(6D)-C(6A)-H(6E)           109.5 

            N(2A)-C(6A)-H(6F)           109.5 

            H(6D)-C(6A)-H(6F)           109.5 

            H(6E)-C(6A)-H(6F)           109.5 

            C(12)-C(7)-C(8)             113.13(12) 

            C(12)-C(7)-B(3)             127.35(12) 

            C(8)-C(7)-B(3)              119.39(11) 

            F(1)-C(8)-C(9)              115.96(13) 

            F(1)-C(8)-C(7)              119.14(12) 

            C(9)-C(8)-C(7)              124.88(14) 

            F(2)-C(9)-C(10)             120.25(14) 

            F(2)-C(9)-C(8)              120.50(15) 

            C(10)-C(9)-C(8)             119.24(14) 

            F(3)-C(10)-C(11)            120.67(15) 

            F(3)-C(10)-C(9)             120.66(15) 

            C(11)-C(10)-C(9)            118.67(13) 

            F(4)-C(11)-C(10)            119.97(13) 

            F(4)-C(11)-C(12)            119.91(14) 

            C(10)-C(11)-C(12)           120.11(14) 

            F(5)-C(12)-C(7)             121.30(12) 

            F(5)-C(12)-C(11)            114.78(12) 

            C(7)-C(12)-C(11)            123.93(13) 

            C(18)-C(13)-C(14)           113.23(12) 

            C(18)-C(13)-B(3)            128.16(11) 

            C(14)-C(13)-B(3)            118.28(11) 

            F(6)-C(14)-C(15)            116.02(11) 

            F(6)-C(14)-C(13)            119.11(11) 

            C(15)-C(14)-C(13)           124.87(12) 

            F(7)-C(15)-C(16)            120.29(13) 

            F(7)-C(15)-C(14)            120.48(13) 

            C(16)-C(15)-C(14)           119.23(13) 

            F(8)-C(16)-C(15)            120.65(14) 

            F(8)-C(16)-C(17)            120.63(14) 

            C(15)-C(16)-C(17)           118.71(13) 

            F(9)-C(17)-C(16)            119.78(13) 

            F(9)-C(17)-C(18)            120.20(13) 

            C(16)-C(17)-C(18)           120.02(13) 

            F(10)-C(18)-C(13)           121.14(12) 

            F(10)-C(18)-C(17)           114.96(12) 

            C(13)-C(18)-C(17)           123.89(12) 

            C(24)-C(19)-C(20)           113.07(11) 

            C(24)-C(19)-B(3)            127.00(11) 

            C(20)-C(19)-B(3)            119.54(11) 

            F(11)-C(20)-C(21)           116.24(11) 

            F(11)-C(20)-C(19)           119.24(10) 

            C(21)-C(20)-C(19)           124.52(12) 

            F(12)-C(21)-C(22)           119.59(11) 

            F(12)-C(21)-C(20)           120.95(12) 

            C(22)-C(21)-C(20)           119.46(12) 

            F(13)-C(22)-C(23)           120.67(12) 

            F(13)-C(22)-C(21)           120.54(12) 

            C(23)-C(22)-C(21)           118.78(11) 

            F(14)-C(23)-C(22)           120.09(11) 

            F(14)-C(23)-C(24)           120.20(12) 

            C(22)-C(23)-C(24)           119.71(12) 

            F(15)-C(24)-C(19)           121.36(11) 

            F(15)-C(24)-C(23)           114.24(11) 

            C(19)-C(24)-C(23)           124.40(12) 

            C(26)-C(25)-C(30)           113.00(11) 
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            C(26)-C(25)-B(3)            118.96(11) 

            C(30)-C(25)-B(3)            127.82(11) 

            F(16)-C(26)-C(27)           115.80(12) 

            F(16)-C(26)-C(25)           119.28(11) 

            C(27)-C(26)-C(25)           124.91(12) 

            F(17)-C(27)-C(26)           120.84(13) 

            F(17)-C(27)-C(28)           119.75(12) 

            C(26)-C(27)-C(28)           119.41(13) 

            F(18)-C(28)-C(29)           120.94(13) 

            F(18)-C(28)-C(27)           120.18(14) 

            C(29)-C(28)-C(27)           118.87(12) 

            F(19)-C(29)-C(28)           120.12(12) 

            F(19)-C(29)-C(30)           120.29(13) 

            C(28)-C(29)-C(30)           119.57(12) 

            F(20)-C(30)-C(25)           121.04(11) 

            F(20)-C(30)-C(29)           114.80(11) 

            C(25)-C(30)-C(29)           124.15(13) 

            N(1)-B(1)-H(1)              101.1(8) 

            N(1)-B(1)-H(1D)             112.6(10) 

            H(1)-B(1)-H(1D)             102.1(11) 

            N(1)-B(1)-H(1E)             112.2(11) 

            H(1)-B(1)-H(1E)             110.1(12) 

            H(1D)-B(1)-H(1E)            117.0(15) 

            N(2)-B(2)-H(1)              105.2(7) 

            N(2)-B(2)-H(2D)             110.5(12) 

            H(1)-B(2)-H(2D)             112.6(13) 

            N(2)-B(2)-H(2E)             108.5(13) 

            H(1)-B(2)-H(2E)              99.5(15) 

            H(2D)-B(2)-H(2E)            119.2(18) 

            N(2A)-B(2A)-H(1)            101.7(8) 

            N(2A)-B(2A)-H(2F)           109(4) 

            H(1)-B(2A)-H(2F)             96(4) 

            N(2A)-B(2A)-H(2G)           105(5) 

            H(1)-B(2A)-H(2G)            117(5) 

            H(2F)-B(2A)-H(2G)           125(7) 

            N(2A)-C(4A)-H(4D)           109.5 

            N(2A)-C(4A)-H(4E)           109.5 

            H(4D)-C(4A)-H(4E)           109.5 

            N(2A)-C(4A)-H(4F)           109.5 

            H(4D)-C(4A)-H(4F)           109.5 

            H(4E)-C(4A)-H(4F)           109.5 

            N(2A)-C(5A)-H(2D)            97.5(10) 

            N(2A)-C(5A)-H(5D)           109.5 

            N(2A)-C(5A)-H(5E)           109.5 

            H(5D)-C(5A)-H(5E)           109.5 

            N(2A)-C(5A)-H(5F)           109.5 

            H(5D)-C(5A)-H(5F)           109.5 

            H(5E)-C(5A)-H(5F)           109.5 

            C(7)-B(3)-C(25)             113.39(10) 

            C(7)-B(3)-C(13)             113.29(10) 

            C(25)-B(3)-C(13)            101.31(9) 

            C(7)-B(3)-C(19)             102.36(9) 

            C(25)-B(3)-C(19)            112.69(10) 

            C(13)-B(3)-C(19)            114.30(10) 

           _____________________________________________________________ 

  

           Symmetry transformations used to generate equivalent atoms: 
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    Table 4.  Anisotropic displacement parameters (Å
2
 x 10

3
) for 1-24a. 

    The anisotropic displacement factor exponent takes the form: 

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] 

  

    _______________________________________________________________________ 

  

              U11        U22        U33        U23        U13        U12 

    _______________________________________________________________________ 

  

    F(1)     31(1)      38(1)      27(1)      -8(1)      -2(1)       0(1) 

    F(2)     43(1)      61(1)      51(1)     -36(1)     -16(1)       6(1) 

    F(3)     35(1)      40(1)      94(1)     -35(1)     -26(1)       1(1) 

    F(4)     28(1)      28(1)      74(1)      -3(1)      -9(1)     -10(1) 

    F(5)     26(1)      29(1)      33(1)       0(1)      -1(1)      -7(1) 

    F(6)     28(1)      19(1)      31(1)       0(1)      -4(1)       2(1) 

    F(7)     35(1)      41(1)      30(1)       9(1)      -9(1)      -1(1) 

    F(8)     47(1)      65(1)      24(1)      -9(1)      -6(1)     -11(1) 

    F(9)     49(1)      45(1)      40(1)     -24(1)      -2(1)      -5(1) 

    F(10)    32(1)      21(1)      36(1)      -9(1)      -5(1)       1(1) 

    F(11)    20(1)      24(1)      30(1)      -2(1)       1(1)      -2(1) 

    F(12)    18(1)      26(1)      46(1)      -8(1)      -7(1)       4(1) 

    F(13)    33(1)      24(1)      47(1)       6(1)     -18(1)       3(1) 

    F(14)    35(1)      37(1)      32(1)      12(1)      -5(1)      -7(1) 

    F(15)    22(1)      34(1)      31(1)       4(1)       2(1)       1(1) 

    F(16)    23(1)      18(1)      50(1)      -6(1)      -5(1)      -1(1) 

    F(17)    24(1)      29(1)      69(1)       6(1)     -12(1)      -8(1) 

    F(18)    16(1)      46(1)      51(1)      12(1)      -1(1)       5(1) 

    F(19)    31(1)      38(1)      36(1)      -9(1)      -1(1)      17(1) 

    F(20)    30(1)      25(1)      44(1)     -14(1)      -8(1)       6(1) 

    N(1)     26(1)      21(1)      26(1)      -4(1)      -4(1)       4(1) 

    N(2)     22(2)      25(1)      29(2)      -3(1)      -4(1)       3(1) 

    N(2A)    39(9)      30(6)      17(6)     -15(5)       7(5)     -15(5) 

    C(1)     73(1)      31(1)      62(1)     -12(1)      29(1)     -16(1) 

    C(2)     32(1)     101(2)      32(1)     -26(1)      -7(1)       8(1) 

    C(3)     27(1)      43(1)      36(1)       0(1)      -2(1)      13(1) 

    C(4)     45(1)      34(1)      39(1)      -2(1)      -8(1)      12(1) 

    C(5)     34(1)      37(1)      27(1)      -9(1)       0(1)      -3(1) 

    C(6)     28(3)      37(3)      30(2)      -9(2)       5(2)      -8(2) 

    C(6A)    23(10)     17(7)      66(14)     11(7)     -27(8)       0(6) 

    C(7)     20(1)      17(1)      29(1)      -4(1)      -6(1)       2(1) 

    C(8)     23(1)      25(1)      33(1)      -7(1)      -7(1)       4(1) 

    C(9)     29(1)      34(1)      44(1)     -20(1)     -14(1)       9(1) 

    C(10)    24(1)      25(1)      66(1)     -20(1)     -20(1)       5(1) 

    C(11)    20(1)      18(1)      56(1)      -4(1)     -11(1)       0(1) 

    C(12)    21(1)      19(1)      34(1)      -3(1)      -7(1)       2(1) 

    C(13)    17(1)      20(1)      26(1)      -3(1)      -2(1)      -2(1) 

    C(14)    20(1)      23(1)      27(1)      -3(1)      -2(1)      -2(1) 

    C(15)    23(1)      33(1)      28(1)       2(1)      -5(1)      -4(1) 

    C(16)    30(1)      47(1)      22(1)      -6(1)      -3(1)     -10(1) 

    C(17)    28(1)      36(1)      32(1)     -15(1)      -1(1)      -6(1) 

    C(18)    21(1)      24(1)      29(1)      -5(1)      -2(1)      -3(1) 

    C(19)    20(1)      16(1)      26(1)      -3(1)      -4(1)       0(1) 

    C(20)    21(1)      18(1)      26(1)      -3(1)      -2(1)      -3(1) 

    C(21)    18(1)      21(1)      35(1)      -7(1)      -6(1)       1(1) 

    C(22)    27(1)      18(1)      34(1)       1(1)     -13(1)       1(1) 

    C(23)    29(1)      24(1)      27(1)       3(1)      -5(1)      -5(1) 

    C(24)    19(1)      23(1)      29(1)      -2(1)      -2(1)      -1(1) 

    C(25)    20(1)      19(1)      22(1)       0(1)      -2(1)       2(1) 

    C(26)    21(1)      18(1)      32(1)       1(1)      -4(1)       2(1) 

    C(27)    22(1)      24(1)      37(1)       7(1)      -6(1)      -3(1) 

    C(28)    16(1)      34(1)      31(1)       8(1)      -1(1)       4(1) 

    C(29)    24(1)      28(1)      25(1)      -1(1)      -1(1)      11(1) 

    C(30)    25(1)      22(1)      25(1)      -3(1)      -4(1)       3(1) 

    B(1)     25(1)      34(1)      32(1)      -9(1)      -2(1)       2(1) 

    B(2)     27(1)      37(1)      28(1)      -9(1)       1(1)      -6(1) 

    B(2A)    26(4)      26(4)      36(4)      -5(3)      -3(3)       5(3) 

    C(4A)    36(4)      50(5)      27(4)      -6(3)       2(3)     -12(3) 

    C(5A)    35(4)      26(4)      45(4)      -9(3)       6(3)      -4(3) 

    B(3)     19(1)      15(1)      25(1)      -2(1)      -2(1)       1(1) 

    _______________________________________________________________________ 
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         Table 5.  Hydrogen coordinates ( x 10
4
) and isotropic 

         displacement parameters (Å
2
 x 10

3
) for 1-24a. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          H(1A)        4513          6330          4345          86 

          H(1B)        6000          5885          3921          86 

          H(1C)        4885          6380          3164          86 

          H(2A)        5243          7530          5156          83 

          H(2B)        6105          8455          4549          83 

          H(2C)        6761          7156          4756          83 

          H(3A)        4057          8370          2780          59 

          H(3B)        4535          9182          3353          59 

          H(3C)        3617          8299          3957          59 

          H(4A)        7068          9140          -588          64 

          H(4B)        6357          9257           508          64 

          H(4C)        5683          8717          -199          64 

          H(5A)        7932          7265          -938          50 

          H(5B)        6563          6848          -472          50 

          H(5C)        7922          6182           -44          50 

          H(6A)        9085          8094            13          47 

          H(6B)        9074          7045           940          47 

          H(6C)        8481          8285          1114          47 

          H(6D)        9261          7430           225          56 

          H(6E)        8723          7533          1359          56 

          H(6F)        8702          8638           487          56 

          H(1)         6250(17)      7732(8)       2022(13)      35(4) 

          H(1D)        6930(19)      8647(17)      2657(15)      45(5) 

          H(1E)        7580(20)      7123(17)      2956(15)      47(5) 

          H(2D)        6990(20)      6264(18)      1701(16)      34(6) 

          H(2E)        5420(20)      7120(20)      1242(18)      46(6) 

          H(2F)        5020(90)      8030(80)      1070(70)      30(20) 

          H(2G)        6200(80)      9120(70)      1020(60)      30(20) 

          H(4D)        7680          7968         -1063          56 

          H(4E)        7065          9118          -706          56 

          H(4F)        6123          8248          -729          56 

          H(5D)        6285          6475           428          54 

          H(5E)        7276          6156          1282          54 

          H(5F)        7851          6202           129          54 

         ________________________________________________________________ 

 

X-Ray Structure of 1-37e ([Al2Br7]
−
 salt) 

See Figure 1-3 for an ORTEP plot of 1-37e.  A crystal of dimensions 

0.14x0.10x0.10 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-007HF Cu-target 

micro-focus rotating anode ( = 1.54187 Å) operated at 1.2 kW power (40 kV, 30 mA).  

The X-ray intensities were measured at 85(1) K with the detector placed at a distance 

42.00 mm from the crystal.  A total of 3750 images were collected with an oscillation 
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width of 1.0 in  The exposure time was 2 sec. for the low angle images, 6 sec. for 

high angle.  The integration of the data yielded a total of 26707 reflections to a maximum 

2 value of 136.46 of which 3680 were independent and 3490 were greater than 2(I).  

The final cell constants (Table 1) were based on the xyz centroids of 17391 reflections 

above 10(I).  Analysis of the data showed negligible decay during data collection; the 

data were processed with CrystalClear 2.0 and corrected for absorption.  The structure 

was solved and refined with the Bruker SHELXTL (version 2008/4) software package, 

using the space group P1 with Z = 2 for the formula C14H28B2N4Al4Br14.  Full matrix 

least-squares refinement based on F
2
 converged at R1 = 0.0371 and wR2 = 0.0909 [based 

on I > 2σ(I)], R1 = 0.0394 and wR2 = 0.0926 for all data.  Additional details are 

presented in Table 1. 

Sheldrick, G.M. SHELXTL, v. 2008/4; Bruker Analytical X-ray, Madison, WI, 

2008.  CrystalClear Expert 2.0 r12, Rigaku Americas and Rigaku Corporation (2011), 

Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

 

      Table 1.  Crystal data and structure refinement for 1-37e.  

   

   

      Empirical formula                 C14H28Al4B2Br14N4 

   

      Formula weight                    1500.68  

   

      Temperature                       85(2) K  

   

      Wavelength                        1.54178 Å  

   

      Crystal system, space group       Triclinic,  P-1  

   

      Unit cell dimensions              a = 9.4348(2) Å, α = 98.386(7)°. 

                                        b = 9.4885(2) Å, β = 92.646(7)°. 

                                        c = 11.5808(8) Å, γ = 93.785(7)°. 

   

      Volume                            1021.78(8) Å
3
  

   

      Z, Calculated density             1,  2.439 Mg/m
3
  

   

      Absorption coefficient            17.238 mm
−1
  

   

      F(000)                            692  



 159 

   

      Crystal size                      0.14 x 0.10 x 0.10 mm  

   

      Theta range for data collection   4.70 to 68.23°.  

   

      Limiting indices                  -11<=h<=11, -11<=k<=11, -13<=l<=13  

   

      Reflections collected / unique    26707 / 3680 [R(int) = 0.0745]  

   

      Completeness to theta = 68.23     98.2%  

   

      Absorption correction             Semi-empirical from equivalents  

   

      Max. and min. transmission        0.2775 and 0.1964  

   

      Refinement method                 Full-matrix least-squares on F
2
  

   

      Data / restraints / parameters    3680 / 0 / 184  

   

      Goodness-of-fit on F
2
             1.085  

   

      Final R indices [I>2σ(I)]         R1 = 0.0371, wR2 = 0.0909  

   

      R indices (all data)              R1 = 0.0394, wR2 = 0.0927  

   

      Largest diff. peak and hole       1.132 and -0.818 e·Å
−3
 

  

  

  

          Table 2.  Atomic coordinates ( x 10
4
) and equivalent isotropic  

         displacement parameters (Å
2
 x 10

3
) for 1-37e.  

         U(eq) is defined as one third of the trace of the orthogonalized  

         Uij tensor.  

   

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          Br(1)         697(1)       6078(1)       2111(1)       23(1)  

          Br(2)        2526(1)       3062(1)        493(1)       30(1)  

          Br(3)        3305(1)       4037(1)       3761(1)       21(1)  

          Br(4)        4648(1)       6274(1)       1535(1)       17(1)  

          Br(5)        4736(1)      10223(1)       1873(1)       27(1)  

          Br(6)        7610(1)       8378(1)       3280(1)       23(1)  

          Br(7)        3862(1)       8258(1)       4448(1)       23(1)  

          Al(1)        2656(1)       4816(2)       2071(1)       14(1)  

          Al(2)        5237(1)       8457(2)       2928(1)       14(1)  

          N(1)         1533(4)      -2114(5)      -1629(4)       22(1)  

          N(2)           22(4)      -1339(5)      -2789(4)       21(1)  

          C(1)          523(5)      -1161(6)      -1681(5)       26(1)  

          C(2)         1650(5)      -2883(5)      -2722(4)       17(1)  

          C(3)          690(5)      -2386(6)      -3448(4)       17(1)  

          C(4)         2367(7)      -2307(9)       -583(5)       42(2)  

          C(6)          365(6)      -2853(7)      -4731(5)       26(1)  

          C(7)        -1095(6)       -534(6)      -3295(6)       29(1)  

          C(11)        2662(6)      -3988(7)      -2960(6)       31(1)  

          B(1)           -9(7)         57(8)       -760(6)       31(2)  

         ________________________________________________________________  

  

  

  

           Table 3.  Bond lengths [Å] and angles [°] for 1-37e.  

           _____________________________________________________________  

   

            Br(1)-Al(1)                   2.2662(16)  

            Br(2)-Al(1)                   2.2778(14)  

            Br(3)-Al(1)                   2.2635(16)  

            Br(4)-Al(1)                   2.4178(14)  

            Br(4)-Al(2)                   2.4479(14)  

            Br(5)-Al(2)                   2.2742(17)  
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            Br(6)-Al(2)                   2.2656(14)  

            Br(7)-Al(2)                   2.2564(14)  

            N(1)-C(1)                     1.361(8)  

            N(1)-C(2)                     1.379(6)  

            N(1)-C(4)                     1.455(8)  

            N(2)-C(1)                     1.330(8)  

            N(2)-C(3)                     1.368(6)  

            N(2)-C(7)                     1.489(8)  

            C(1)-B(1)                     1.579(8)  

            C(2)-C(3)                     1.360(8)  

            C(2)-C(11)                    1.470(8)  

            C(3)-C(6)                     1.499(7)  

            C(4)-H(4A)                    0.9800  

            C(4)-H(4B)                    0.9800  

            C(4)-H(4C)                    0.9800  

            C(6)-H(6A)                    0.9800  

            C(6)-H(6B)                    0.9800  

            C(6)-H(6C)                    0.9800  

            C(7)-H(7A)                    0.9800  

            C(7)-H(7B)                    0.9800  

            C(7)-H(7C)                    0.9800  

            C(11)-H(11A)                  0.9800  

            C(11)-H(11B)                  0.9800  

            C(11)-H(11C)                  0.9800  

            B(1)-B(1)#1                   1.778(14)  

            B(1)-H(1A)                    1.25(6)  

            B(1)-H(1B)                    1.20(7)  

   

            Al(1)-Br(4)-Al(2)           113.27(5)  

            Br(3)-Al(1)-Br(1)           115.82(6)  

            Br(3)-Al(1)-Br(2)           113.04(7)  

            Br(1)-Al(1)-Br(2)           111.26(6)  

            Br(3)-Al(1)-Br(4)           107.72(6)  

            Br(1)-Al(1)-Br(4)           108.99(6)  

            Br(2)-Al(1)-Br(4)            98.44(5)  

            Br(7)-Al(2)-Br(6)           116.47(7)  

            Br(7)-Al(2)-Br(5)           115.56(6)  

            Br(6)-Al(2)-Br(5)           111.75(6)  

            Br(7)-Al(2)-Br(4)           105.52(5)  

            Br(6)-Al(2)-Br(4)           102.09(6)  

            Br(5)-Al(2)-Br(4)           103.30(6)  

            C(1)-N(1)-C(2)              109.8(4)  

            C(1)-N(1)-C(4)              125.6(5)  

            C(2)-N(1)-C(4)              124.6(5)  

            C(1)-N(2)-C(3)              110.6(5)  

            C(1)-N(2)-C(7)              126.8(5)  

            C(3)-N(2)-C(7)              122.6(5)  

            N(2)-C(1)-N(1)              106.1(4)  

            N(2)-C(1)-B(1)              120.3(6)  

            N(1)-C(1)-B(1)              133.4(5)  

            C(3)-C(2)-N(1)              106.2(4)  

            C(3)-C(2)-C(11)             130.7(5)  

            N(1)-C(2)-C(11)             123.1(5)  

            C(2)-C(3)-N(2)              107.3(4)  

            C(2)-C(3)-C(6)              128.7(5)  

            N(2)-C(3)-C(6)              124.0(5)  

            N(1)-C(4)-H(4A)             109.5  

            N(1)-C(4)-H(4B)             109.5  

            H(4A)-C(4)-H(4B)            109.5  

            N(1)-C(4)-H(4C)             109.5  

            H(4A)-C(4)-H(4C)            109.5  

            H(4B)-C(4)-H(4C)            109.5  

            C(3)-C(6)-H(6A)             109.5  

            C(3)-C(6)-H(6B)             109.5  

            H(6A)-C(6)-H(6B)            109.5  

            C(3)-C(6)-H(6C)             109.5  

            H(6A)-C(6)-H(6C)            109.5  

            H(6B)-C(6)-H(6C)            109.5  

            N(2)-C(7)-H(7A)             109.5  

            N(2)-C(7)-H(7B)             109.5  

            H(7A)-C(7)-H(7B)            109.5  
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            N(2)-C(7)-H(7C)             109.5  

            H(7A)-C(7)-H(7C)            109.5  

            H(7B)-C(7)-H(7C)            109.5  

            C(2)-C(11)-H(11A)           109.5  

            C(2)-C(11)-H(11B)           109.5  

            H(11A)-C(11)-H(11B)         109.5  

            C(2)-C(11)-H(11C)           109.5  

            H(11A)-C(11)-H(11C)         109.5  

            H(11B)-C(11)-H(11C)         109.5  

            C(1)-B(1)-B(1)#1            122.3(8)  

            C(1)-B(1)-H(1A)             108(3)  

            B(1)#1-B(1)-H(1A)            44(3)  

            C(1)-B(1)-H(1B)             121(3)  

            B(1)#1-B(1)-H(1B)           116(3)  

            H(1A)-B(1)-H(1B)            110(4)  

           _____________________________________________________________  

   

           Symmetry transformations used to generate equivalent atoms:  

           #1 -x,-y,-z      

  

  

  

    Table 4.  Anisotropic displacement parameters (Å
2
 x 10

3
) for 1-37e.  

    The anisotropic displacement factor exponent takes the form:  

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  

   

    _______________________________________________________________________  

   

              U11        U22        U33        U23        U13        U12  

    _______________________________________________________________________  

   

    Br(1)    11(1)      35(1)      24(1)       7(1)       6(1)       3(1)  

    Br(2)    35(1)      27(1)      23(1)     -11(1)      12(1)     -17(1)  

    Br(3)    19(1)      27(1)      19(1)       7(1)       5(1)       0(1)  

    Br(4)    12(1)      22(1)      14(1)      -2(1)       5(1)      -7(1)  

    Br(5)    26(1)      24(1)      31(1)       9(1)       0(1)      -1(1)  

    Br(6)     8(1)      32(1)      27(1)      -4(1)      -2(1)      -3(1)  

    Br(7)    20(1)      26(1)      20(1)      -5(1)       9(1)      -8(1)  

    Al(1)    10(1)      18(1)      14(1)      -1(1)       4(1)      -4(1)  

    Al(2)     8(1)      18(1)      16(1)       2(1)       1(1)      -2(1)  

    N(1)     15(2)      38(3)      13(2)       4(2)       2(2)     -10(2)  

    N(2)     14(2)      15(2)      32(3)      -1(2)       9(2)      -2(2)  

    C(1)     17(2)      31(3)      24(3)      -9(2)       8(2)     -12(2)  

    C(2)     11(2)      21(3)      17(2)       3(2)       5(2)      -8(2)  

    C(3)      8(2)      26(3)      17(2)      -2(2)       7(2)      -6(2)  

    C(4)     28(3)      82(5)      15(3)      13(3)      -2(2)      -4(3)  

    C(6)     17(2)      46(4)      16(3)       6(2)       2(2)       1(2)  

    C(7)     18(3)      27(3)      41(3)      -1(3)       4(2)       1(2)  

    C(11)    19(3)      34(3)      39(3)       3(3)      -1(2)       7(2)  

    B(1)     24(3)      42(4)      26(3)       1(3)       8(3)      -2(3)  

    _______________________________________________________________________  

  

  

  

         Table 5.  Hydrogen coordinates (x 10
4
) and isotropic  

         displacement parameters (Å
2
 x 10

3
) for 1-37e.  

   

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          H(4A)        2689         -1371          -141          63  

          H(4B)        3195         -2835          -807          63  

          H(4C)        1780         -2845           -96          63  

          H(6A)         986         -3600         -5017          40  

          H(6B)         527         -2035         -5149          40  

          H(6C)        -631         -3229         -4866          40  

          H(7A)       -1989          -694         -2918          44  

          H(7B)       -1237          -867         -4137          44  

          H(7C)        -795           487         -3163          44  
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          H(11A)       2553         -4408         -3787          46  

          H(11B)       2473         -4735         -2473          46  

          H(11C)       3635         -3559         -2779          46  

          H(1A)        -810(60)      -520(60)      -100(50)      26(16)  

          H(1B)        -540(80)      1070(80)     -1060(60)      40(20)  

         ________________________________________________________________  

 

X-Ray Structure of 2-4 

See Figure 2-1 for an ORTEP plot of 2-4.  A crystal of dimensions 

0.23x0.19x0.19 mm was mounted on a Bruker SMART APEX CCD-based X-ray 

diffractometer equipped with a low temperature device and fine focus Mo-target X-ray 

tube ( = 0.71073 Å) operated at 1500 W power (50 kV, 30 mA).  The X-ray intensities 

were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the 

crystal.  A total of 5190 frames were collected with a scan width of 0.5 in  and 0.45 in 

φ with an exposure time of 10 s/frame.  The integration of the data yielded a total of 

151618 reflections to a maximum 2 value of 72.76 of which 6882 were independent 

and 5395 were greater than 2(I).  The final cell constants (Table 1) were based on the 

xyz centroids of 9701 reflections above 10(I).  Analysis of the data showed negligible 

decay during data collection; the data were processed with SADABS and corrected for 

absorption.  The structure was solved and refined with the Bruker SHELXTL (version 

2008/4) software package, using the space group Pbam with Z = 4 for the formula 

C10H15B12NCl.  All non-hydrogen atoms were refined anisotropically with the hydrogen 

atoms placed in a mix of idealized and refined positions.  Both the borolidine cation and 

carba-closo-dodecaborate anion lie on mirror planes in the crystal lattice.  The borolidine 

cation is disordered.  Full matrix least-squares refinement based on F
2
 converged at R1 = 

0.0398 and wR2 = 0.0923 [based on I > 2(I)], R1 = 0.0570 and wR2 = 0.1005 for all 

data.  Additional details are presented in Table 1. 
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Sheldrick, G.M. SHELXTL, v. 2008/4; Bruker Analytical X-ray, Madison, WI, 

2008.  Saint Plus, v. 7.60A, Bruker Analytical X-ray, Madison, WI, 2009.  Sheldrick, 

G.M. SADABS, v. 2008/1.  Program for Empirical Absorption Correction of Area 

Detector Data, University of Gottingen: Gottingen, Germany, 2008. 

 

      Table 1.  Crystal data and structure refinement for 2-4. 

  

  

      Empirical formula                 C10H14B12Cl11N 

  

      Formula weight                    667.89 

  

      Temperature                       85(2) K 

  

      Wavelength                        0.71073 Å 

  

      Crystal system, space group       Orthorhombic,  Pbam 

  

      Unit cell dimensions              a = 14.1671(3) Å, α = 90°. 

                                        b = 20.0121(5) Å, β = 90°. 

                                        c = 9.5338(2) Å, γ = 90°. 

  

      Volume                            2702.96(11) A
3
 

  

      Z, Calculated density             4,  1.641 Mg/m
3
 

  

      Absorption coefficient            1.137 mm
−1
 

  

      F(000)                            1312 

  

      Crystal size                      0.23 x 0.19 x 0.19 mm 

  

      Theta range for data collection   1.76 to 36.38°. 

  

      Limiting indices                  -23<=h<=23, -33<=k<=33, -15<=l<=15 

  

      Reflections collected / unique    151618 / 6882 [R(int) = 0.0574] 

  

      Completeness to θ = 36.38         99.9 % 

  

      Absorption correction             Semi-empirical from equivalents 

  

      Max. and min. transmission        0.8130 and 0.7800 

  

      Refinement method                 Full-matrix least-squares on F
2
 

  

      Data / restraints / parameters    6882 / 86 / 219 

  

      Goodness-of-fit on F
2
             1.039 

  

      Final R indices [I>2σ(I)]         R1 = 0.0398, wR2 = 0.0923 

  

      R indices (all data)              R1 = 0.0570, wR2 = 0.1005 

  

      Largest diff. peak and hole       0.816 and -0.367 e·Å
−3
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         Table 2.  Atomic coordinates (x 10
4
) and equivalent isotropic 

         displacement parameters (Å
2
 x 10

3
) for 2-4. 

         U(eq) is defined as one third of the trace of the orthogonalized 

         Uij tensor. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          N(1)         1614(1)       3919(1)       5111(2)       17(1) 

          C(1)         1004(1)       3309(1)       5006(8)       27(1) 

          C(2)         1021(1)       4539(1)       4936(6)       26(1) 

          B(1)         2359(2)       3928(1)       3881(2)       26(1) 

          C(3)         3300(1)       4008(1)       4575(2)       22(1) 

          C(4)         4221(2)       4057(1)       4014(3)       36(1) 

          C(5)         4966(1)       4133(1)       4918(6)       40(1) 

          C(6)         4810(1)       4188(1)       6372(3)       37(1) 

          C(7)         3906(1)       4146(1)       6944(2)       26(1) 

          C(8)         3165(1)       4042(1)       6020(2)       19(1) 

          C(9)         2155(1)       3945(1)       6442(2)       21(1) 

          C(10)        3802(1)       1966(1)          0          18(1) 

          Cl(1)        2748(1)       3281(1)          0          26(1) 

          Cl(2)        1004(1)       2226(1)       1910(1)       26(1) 

          Cl(3)         793(1)        640(1)          0          28(1) 

          Cl(4)        3127(1)       -173(1)          0          23(1) 

          Cl(5)        4792(1)        946(1)       1836(1)       25(1) 

          Cl(6)        3528(1)       2384(1)       3039(1)       25(1) 

          Cl(7)        2336(1)        740(1)       3124(1)       25(1) 

          B(2)         2762(1)       2400(1)          0          18(1) 

          B(3)         1961(1)       1881(1)        941(1)       18(1) 

          B(4)         1856(1)       1107(1)          0          18(1) 

          B(5)         2991(1)        706(1)          0          16(1) 

          B(6)         3781(1)       1233(1)        933(1)       18(1) 

          B(7)         3152(1)       1955(1)       1521(1)       18(1) 

          B(8)         2600(1)       1156(1)       1521(1)       18(1) 

         ________________________________________________________________ 

 

 

 

           Table 3.  Bond lengths [Å] and angles [°] for 2-4. 

           _____________________________________________________________ 

  

            N(1)-C(9)                     1.483(3) 

            N(1)-C(1)                     1.4988(18) 

            N(1)-C(2)                     1.5082(18) 

            N(1)-B(1)                     1.577(3) 

            B(1)-C(3)                     1.497(3) 

            C(3)-C(8)                     1.392(3) 

            C(3)-C(4)                     1.413(3) 

            C(4)-C(5)                     1.370(4) 

            C(5)-C(6)                     1.408(6) 

            C(6)-C(7)                     1.394(3) 

            C(7)-C(8)                     1.387(3) 

            C(8)-C(9)                     1.498(3) 

            C(10)-B(2)                    1.7093(18) 

            C(10)-B(6)#1                  1.7155(13) 

            C(10)-B(6)                    1.7156(13) 

            C(10)-B(7)#1                  1.7173(11) 

            C(10)-B(7)                    1.7173(11) 

            Cl(1)-B(2)                    1.7647(13) 

            Cl(2)-B(3)                    1.7792(9) 

            Cl(3)-B(4)                    1.7712(13) 

            Cl(4)-B(5)                    1.7698(12) 

            Cl(5)-B(6)                    1.7677(9) 

            Cl(6)-B(7)                    1.7663(10) 

            Cl(7)-B(8)                    1.7791(10) 

            B(2)-B(3)#1                   1.7809(15) 

            B(2)-B(3)                     1.7809(15) 

            B(2)-B(7)                     1.7885(12) 

            B(2)-B(7)#1                   1.7886(12) 
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            B(3)-B(7)                     1.7822(13) 

            B(3)-B(3)#1                   1.7940(19) 

            B(3)-B(4)                     1.7961(14) 

            B(3)-B(8)                     1.7987(13) 

            B(4)-B(3)#1                   1.7962(14) 

            B(4)-B(8)                     1.7963(12) 

            B(4)-B(8)#1                   1.7963(12) 

            B(4)-B(5)                     1.7972(18) 

            B(5)-B(6)                     1.7771(14) 

            B(5)-B(6)#1                   1.7771(14) 

            B(5)-B(8)                     1.7941(12) 

            B(5)-B(8)#1                   1.7941(12) 

            B(6)-B(8)                     1.7711(13) 

            B(6)-B(6)#1                   1.7790(19) 

            B(6)-B(7)                     1.7869(13) 

            B(7)-B(8)                     1.7805(13) 

  

            C(9)-N(1)-C(1)              112.6(3) 

            C(9)-N(1)-C(2)              110.7(2) 

            C(1)-N(1)-C(2)              109.92(12) 

            C(9)-N(1)-B(1)              106.87(14) 

            C(1)-N(1)-B(1)              110.2(3) 

            C(2)-N(1)-B(1)              106.3(2) 

            C(3)-B(1)-N(1)              105.59(16) 

            C(8)-C(3)-C(4)              119.85(19) 

            C(8)-C(3)-B(1)              108.62(17) 

            C(4)-C(3)-B(1)              131.53(19) 

            C(5)-C(4)-C(3)              118.7(3) 

            C(4)-C(5)-C(6)              120.4(2) 

            C(7)-C(6)-C(5)              121.7(2) 

            C(8)-C(7)-C(6)              117.1(2) 

            C(7)-C(8)-C(3)              122.11(17) 

            C(7)-C(8)-C(9)              124.85(18) 

            C(3)-C(8)-C(9)              113.03(17) 

            N(1)-C(9)-C(8)              105.52(15) 

            B(2)-C(10)-B(6)#1           114.78(7) 

            B(2)-C(10)-B(6)             114.78(7) 

            B(6)#1-C(10)-B(6)            62.46(7) 

            B(2)-C(10)-B(7)#1            62.93(5) 

            B(6)#1-C(10)-B(7)#1          62.73(5) 

            B(6)-C(10)-B(7)#1           114.66(7) 

            B(2)-C(10)-B(7)              62.93(5) 

            B(6)#1-C(10)-B(7)           114.66(7) 

            B(6)-C(10)-B(7)              62.74(5) 

            B(7)#1-C(10)-B(7)           115.16(9) 

            C(10)-B(2)-Cl(1)            121.13(9) 

            C(10)-B(2)-B(3)#1           104.69(7) 

            Cl(1)-B(2)-B(3)#1           125.15(7) 

            C(10)-B(2)-B(3)             104.69(7) 

            Cl(1)-B(2)-B(3)             125.15(7) 

            B(3)#1-B(2)-B(3)             60.49(8) 

            C(10)-B(2)-B(7)              58.76(5) 

            Cl(1)-B(2)-B(7)             120.07(5) 

            B(3)#1-B(2)-B(7)            108.37(8) 

            B(3)-B(2)-B(7)               59.91(5) 

            C(10)-B(2)-B(7)#1            58.76(5) 

            Cl(1)-B(2)-B(7)#1           120.07(5) 

            B(3)#1-B(2)-B(7)#1           59.91(5) 

            B(3)-B(2)-B(7)#1            108.37(8) 

            B(7)-B(2)-B(7)#1            108.30(9) 

            Cl(2)-B(3)-B(2)             121.40(6) 

            Cl(2)-B(3)-B(7)             121.87(6) 

            B(2)-B(3)-B(7)               60.26(5) 

            Cl(2)-B(3)-B(3)#1           121.27(3) 

            B(2)-B(3)-B(3)#1             59.76(4) 

            B(7)-B(3)-B(3)#1            108.07(4) 

            Cl(2)-B(3)-B(4)             122.05(7) 

            B(2)-B(3)-B(4)              107.70(6) 

            B(7)-B(3)-B(4)              107.76(7) 

            B(3)#1-B(3)-B(4)             60.04(4) 

            Cl(2)-B(3)-B(8)             122.48(6) 
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            B(2)-B(3)-B(8)              107.71(7) 

            B(7)-B(3)-B(8)               59.63(5) 

            B(3)#1-B(3)-B(8)            107.93(4) 

            B(4)-B(3)-B(8)               59.96(5) 

            Cl(3)-B(4)-B(3)             121.67(7) 

            Cl(3)-B(4)-B(3)#1           121.67(7) 

            B(3)-B(4)-B(3)#1             59.92(7) 

            Cl(3)-B(4)-B(8)             121.85(5) 

            B(3)-B(4)-B(8)               60.09(5) 

            B(3)#1-B(4)-B(8)            107.93(8) 

            Cl(3)-B(4)-B(8)#1           121.85(5) 

            B(3)-B(4)-B(8)#1            107.93(8) 

            B(3)#1-B(4)-B(8)#1           60.09(5) 

            B(8)-B(4)-B(8)#1            107.70(9) 

            Cl(3)-B(4)-B(5)             121.67(8) 

            B(3)-B(4)-B(5)              108.11(7) 

            B(3)#1-B(4)-B(5)            108.11(7) 

            B(8)-B(4)-B(5)               59.90(5) 

            B(8)#1-B(4)-B(5)             59.90(5) 

            Cl(4)-B(5)-B(6)             121.44(7) 

            Cl(4)-B(5)-B(6)#1           121.44(7) 

            B(6)-B(5)-B(6)#1             60.07(7) 

            Cl(4)-B(5)-B(8)             122.14(5) 

            B(6)-B(5)-B(8)               59.46(5) 

            B(6)#1-B(5)-B(8)            107.53(7) 

            Cl(4)-B(5)-B(8)#1           122.14(5) 

            B(6)-B(5)-B(8)#1            107.53(7) 

            B(6)#1-B(5)-B(8)#1           59.46(5) 

            B(8)-B(5)-B(8)#1            107.89(9) 

            Cl(4)-B(5)-B(4)             122.76(8) 

            B(6)-B(5)-B(4)              107.38(7) 

            B(6)#1-B(5)-B(4)            107.38(7) 

            B(8)-B(5)-B(4)               60.02(5) 

            B(8)#1-B(5)-B(4)             60.02(5) 

            C(10)-B(6)-Cl(5)            121.09(6) 

            C(10)-B(6)-B(8)             104.81(7) 

            Cl(5)-B(6)-B(8)             125.64(6) 

            C(10)-B(6)-B(5)             105.00(6) 

            Cl(5)-B(6)-B(5)             124.18(6) 

            B(8)-B(6)-B(5)               60.75(5) 

            C(10)-B(6)-B(6)#1            58.77(4) 

            Cl(5)-B(6)-B(6)#1           119.17(3) 

            B(8)-B(6)-B(6)#1            108.47(4) 

            B(5)-B(6)-B(6)#1             59.97(4) 

            C(10)-B(6)-B(7)              58.68(5) 

            Cl(5)-B(6)-B(7)             120.92(6) 

            B(8)-B(6)-B(7)               60.05(5) 

            B(5)-B(6)-B(7)              108.82(7) 

            B(6)#1-B(6)-B(7)            108.27(4) 

            C(10)-B(7)-Cl(6)            121.61(6) 

            C(10)-B(7)-B(8)             104.33(7) 

            Cl(6)-B(7)-B(8)             124.70(6) 

            C(10)-B(7)-B(3)             104.29(7) 

            Cl(6)-B(7)-B(3)             125.47(6) 

            B(8)-B(7)-B(3)               60.64(5) 

            C(10)-B(7)-B(6)              58.58(6) 

            Cl(6)-B(7)-B(6)             120.00(6) 

            B(8)-B(7)-B(6)               59.53(5) 

            B(3)-B(7)-B(6)              107.93(6) 

            C(10)-B(7)-B(2)              58.32(6) 

            Cl(6)-B(7)-B(2)             121.02(6) 

            B(8)-B(7)-B(2)              108.18(7) 

            B(3)-B(7)-B(2)               59.83(6) 

            B(6)-B(7)-B(2)              107.58(7) 

            B(6)-B(8)-Cl(7)             120.81(6) 

            B(6)-B(8)-B(7)               60.41(5) 

            Cl(7)-B(8)-B(7)             120.82(6) 

            B(6)-B(8)-B(5)               59.79(6) 

            Cl(7)-B(8)-B(5)             121.69(6) 

            B(7)-B(8)-B(5)              108.35(7) 

            B(6)-B(8)-B(4)              107.68(7) 
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            Cl(7)-B(8)-B(4)             122.99(6) 

            B(7)-B(8)-B(4)              107.83(7) 

            B(5)-B(8)-B(4)               60.07(6) 

            B(6)-B(8)-B(3)              107.90(6) 

            Cl(7)-B(8)-B(3)             122.34(6) 

            B(7)-B(8)-B(3)               59.73(5) 

            B(5)-B(8)-B(3)              108.13(7) 

            B(4)-B(8)-B(3)               59.95(6) 

           _____________________________________________________________ 

  

           Symmetry transformations used to generate equivalent atoms: 

           #1 x,y,-z     

 

 

 

    Table 4.  Anisotropic displacement parameters (Å
2
 x 10

3
) for 2-4. 

    The anisotropic displacement factor exponent takes the form: 

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] 

  

    _______________________________________________________________________ 

  

              U11        U22        U33        U23        U13        U12 

    _______________________________________________________________________ 

  

    N(1)     21(1)      20(1)      10(1)      -2(1)       1(1)       2(1) 

    C(1)     32(1)      19(1)      29(1)      -9(2)      11(2)      -3(1) 

    C(2)     27(1)      20(1)      30(1)       3(2)      -4(2)       2(1) 

    B(1)     36(1)      23(1)      18(1)      -4(1)       2(1)       3(1) 

    C(3)     24(1)      19(1)      24(1)      -1(1)       5(1)       1(1) 

    C(4)     32(1)      30(1)      46(1)      -4(1)      17(1)       0(1) 

    C(5)     23(1)      39(1)      57(1)       1(2)      15(2)      -1(1) 

    C(6)     22(1)      31(1)      59(1)      11(1)      -5(1)      -4(1) 

    C(7)     22(1)      22(1)      34(1)       6(1)      -6(1)      -4(1) 

    C(8)     20(1)      14(1)      23(1)       2(1)       2(1)       2(1) 

    C(9)     19(1)      26(1)      17(1)       0(1)      -2(1)      -1(1) 

    C(10)    18(1)      14(1)      21(1)       0          0         -2(1) 

    Cl(1)    38(1)      12(1)      28(1)       0          0          3(1) 

    Cl(2)    24(1)      26(1)      27(1)      -3(1)       6(1)       8(1) 

    Cl(3)    19(1)      26(1)      38(1)       0          0         -7(1) 

    Cl(4)    28(1)      11(1)      30(1)       0          0          1(1) 

    Cl(5)    22(1)      25(1)      29(1)       1(1)      -7(1)       4(1) 

    Cl(6)    31(1)      23(1)      22(1)      -7(1)      -4(1)       0(1) 

    Cl(7)    28(1)      26(1)      22(1)       8(1)       4(1)       2(1) 

    B(2)     23(1)      13(1)      19(1)       0          0          2(1) 

    B(3)     18(1)      16(1)      20(1)      -1(1)       1(1)       2(1) 

    B(4)     18(1)      16(1)      21(1)       0          0         -2(1) 

    B(5)     18(1)      12(1)      19(1)       0          0          1(1) 

    B(6)     18(1)      15(1)      20(1)       0(1)      -2(1)       1(1) 

    B(7)     21(1)      15(1)      18(1)      -1(1)       0(1)       1(1) 

    B(8)     20(1)      15(1)      18(1)       2(1)       2(1)       0(1) 

    _______________________________________________________________________ 

 

 

 

         Table 5.  Hydrogen coordinates (x 10
4
) and isotropic 

         displacement parameters (Å
2
 x 10

3
) for 2-4. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          H(1A)         528          3318          5751          40 

          H(1B)        1396          2908          5107          40 

          H(1C)         690          3302          4090          40 

          H(2A)         778          4559          3974          38 

          H(2B)        1408          4935          5123          38 

          H(2C)         491          4526          5596          38 

          H(1)         2236          3891          2905          31 

          H(4)         4322          4038          3030          43 

          H(5)         5591          4148          4560          47 
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          H(6)         5333          4255          6978          45 

          H(7)         3803          4186          7925          31 

          H(9A)        2079          3524          6976          25 

          H(9B)        1937          4322          7033          25 

          H(10)        4359(12)      2229(9)          0          25(4) 

         ________________________________________________________________ 

  

 

X-Ray Structure of 3-13 

See Figure 3-1 for an ORTEP plot of 3-13.  A crystal of dimensions 

0.37x0.37x0.025 mm was mounted on a Bruker SMART APEX CCD-based X-ray 

diffractometer equipped with a low temperature device and fine focus Mo-target X-ray 

tube ( = 0.71073 Å) operated at 1500 W power (50 kV, 30 mA).  The X-ray intensities 

were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the 

crystal.  A total of 2790 frames were collected with a scan width of 0.5 in  and 0.45 in 

φ with an exposure time of 25 s/frame.  The integration of the data yielded a total of 

61663 reflections to a maximum 2 value of 56.58 of which 6437 were independent and 

5096 were greater than 2(I).  The final cell constants (Table 1) were based on the xyz 

centroids of 9873 reflections above 10(I).  Analysis of the data showed negligible decay 

during data collection; the data were processed with SADABS and corrected for 

absorption.  The structure was solved and refined with the Bruker SHELXTL (version 

2008/3) software package, using the space group P21/c with Z = 4 for the formula 

C24H32BF6N3O4S2.  All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions.  Full matrix least-squares refinement based 

on F
2
 converged at R1 = 0.0493 and wR2 = 0.1158 [based on I > 2(I)], R1 = 0.0671 and 

wR2 = 0.1255 for all data.  Additional details are presented in Table 1 
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Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 

2008. Sheldrick, G.M. SADABS, v. 2008/1.  Program for Empirical Absorption 

Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008.  

Saint Plus, v. 7.53a, Bruker Analytical X-ray, Madison, WI, 2008. 

 

      Table 1.  Crystal data and structure refinement for 3-13. 

  

  

      Empirical formula                 C24H32BF6N3O4S2 

  

      Formula weight                    615.46 

  

      Temperature                       85(2) K 

  

      Wavelength                        0.71073 Å 

  

      Crystal system, space group       Monoclinic,  P2(1)/c 

  

      Unit cell dimensions              a = 12.0734(12) Å, α = 90°. 

                                        b = 26.951(3) Å, β = 100.946(2)°. 

                                        c = 8.1362(8) Å, γ = 90°. 

  

      Volume                            2599.2(4) A
3
 

  

      Z, Calculated density             4,  1.573 Mg/m
3
 

  

      Absorption coefficient            0.287 mm
−1
 

  

      F(000)                            1280 

  

      Crystal size                      0.37 x 0.37 x 0.03 mm 

  

      Theta range for data collection   1.72 to 28.29°. 

  

      Limiting indices                  -16<=h<=16, -35<=k<=35, -10<=l<=10 

  

      Reflections collected / unique    61663 / 6437 [R(int) = 0.0771] 

  

      Completeness to θ = 28.29         99.8 % 

  

      Absorption correction             Semi-empirical from equivalents 

  

      Max. and min. transmission        0.9929 and 0.9013 

  

      Refinement method                 Full-matrix least-squares on F
2
 

  

      Data / restraints / parameters    6437 / 0 / 365 

  

      Goodness-of-fit on F
2
             1.067 

  

      Final R indices [I>2σ(I)]         R1 = 0.0493, wR2 = 0.1158 

  

      R indices (all data)              R1 = 0.0671, wR2 = 0.1255 

  

      Largest diff. peak and hole       0.695 and -0.454 e·Å
−3
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         Table 2.  Atomic coordinates (x 10
4
) and equivalent isotropic 

         displacement parameters (Å
2
 x 10

3
) for 3-13. 

         U(eq) is defined as one third of the trace of the orthogonalized 

         Uij tensor. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          B(1)         2703(2)        782(1)       5262(3)       17(1) 

          N(1)         3823(1)       1025(1)       4493(2)       17(1) 

          N(2)         1618(1)        899(1)       3584(2)       16(1) 

          N(3)         8030(1)       1207(1)      10503(2)       22(1) 

          C(1)         3649(2)       1568(1)       4388(2)       17(1) 

          C(2)         4444(2)       1906(1)       5094(2)       22(1) 

          C(3)         4273(2)       2417(1)       4738(3)       25(1) 

          C(4)         3353(2)       2573(1)       3620(3)       24(1) 

          C(5)         2503(2)       2232(1)       2887(2)       21(1) 

          C(6)         1569(2)       2382(1)       1651(3)       24(1) 

          C(7)          790(2)       2041(1)        917(3)       23(1) 

          C(8)          846(2)       1547(1)       1488(2)       20(1) 

          C(9)         1710(2)       1393(1)       2739(2)       16(1) 

          C(10)        2613(2)       1723(1)       3375(2)       18(1) 

          C(11)        5003(2)        896(1)       5391(2)       21(1) 

          C(12)        3874(2)        846(1)       2732(2)       20(1) 

          C(13)         498(2)        948(1)       4178(3)       21(1) 

          C(14)        1418(2)        475(1)       2330(2)       20(1) 

          C(15)        2497(2)       1067(1)       6947(2)       17(1) 

          C(16)        3602(2)       1062(1)       8257(2)       19(1) 

          C(17)        4047(2)        533(1)       8717(2)       20(1) 

          C(18)        3893(2)        138(1)       7297(2)       19(1) 

          C(19)        2894(2)        206(1)       5770(2)       18(1) 

          C(20)        1827(2)        -16(1)       6307(3)       21(1) 

          C(21)        1526(2)        251(1)       7832(3)       22(1) 

          C(22)        1571(2)        824(1)       7797(2)       20(1) 

          C(23)        7562(2)       2013(1)      11951(3)       25(1) 

          C(24)        8154(2)       1307(1)       7216(3)       22(1) 

          S(1)         6923(1)       1442(1)      10981(1)       21(1) 

          S(2)         8030(1)        873(1)       8924(1)       19(1) 

          F(1)         7968(1)       2293(1)      10859(2)       37(1) 

          F(2)         6772(1)       2274(1)      12521(2)       36(1) 

          F(3)         8399(1)       1919(1)      13232(2)       34(1) 

          F(4)         8288(1)       1048(1)       5868(2)       35(1) 

          F(5)         9052(1)       1600(1)       7644(2)       30(1) 

          F(6)         7251(1)       1594(1)       6796(2)       31(1) 

          O(1)         6568(1)       1181(1)      12322(2)       34(1) 

          O(2)         6078(1)       1601(1)       9601(2)       32(1) 

          O(3)         9089(1)        613(1)       9156(2)       23(1) 

          O(4)         7010(1)        602(1)       8327(2)       23(1) 

         ________________________________________________________________ 

 

 

 

           Table 3.  Bond lengths [Å] and angles [°] for 3-13. 

           _____________________________________________________________ 

  

            B(1)-C(19)                    1.612(3) 

            B(1)-C(15)                    1.631(3) 

            B(1)-N(1)                     1.724(3) 

            B(1)-N(2)                     1.732(3) 

            N(1)-C(1)                     1.477(3) 

            N(1)-C(11)                    1.513(2) 

            N(1)-C(12)                    1.523(2) 

            N(2)-C(9)                     1.511(3) 

            N(2)-C(14)                    1.522(2) 

            N(2)-C(13)                    1.525(2) 

            N(3)-S(2)                     1.5690(18) 

            N(3)-S(1)                     1.5923(18) 

            C(1)-C(2)                     1.370(3) 

            C(1)-C(10)                    1.423(3) 
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            C(2)-C(3)                     1.413(3) 

            C(3)-C(4)                     1.362(3) 

            C(4)-C(5)                     1.421(3) 

            C(5)-C(6)                     1.419(3) 

            C(5)-C(10)                    1.429(3) 

            C(6)-C(7)                     1.368(3) 

            C(7)-C(8)                     1.408(3) 

            C(8)-C(9)                     1.376(3) 

            C(9)-C(10)                    1.426(3) 

            C(15)-C(16)                   1.542(3) 

            C(15)-C(22)                   1.565(3) 

            C(16)-C(17)                   1.543(3) 

            C(17)-C(18)                   1.556(3) 

            C(18)-C(19)                   1.570(3) 

            C(19)-C(20)                   1.555(3) 

            C(20)-C(21)                   1.537(3) 

            C(21)-C(22)                   1.543(3) 

            C(23)-F(1)                    1.328(3) 

            C(23)-F(3)                    1.331(2) 

            C(23)-F(2)                    1.337(2) 

            C(23)-S(1)                    1.831(2) 

            C(24)-F(6)                    1.328(2) 

            C(24)-F(5)                    1.333(2) 

            C(24)-F(4)                    1.336(2) 

            C(24)-S(2)                    1.844(2) 

            S(1)-O(1)                     1.4311(17) 

            S(1)-O(2)                     1.4319(16) 

            S(2)-O(4)                     1.4357(15) 

            S(2)-O(3)                     1.4384(15) 

  

            C(19)-B(1)-C(15)            106.00(15) 

            C(19)-B(1)-N(1)             112.06(16) 

            C(15)-B(1)-N(1)             112.40(16) 

            C(19)-B(1)-N(2)             115.36(16) 

            C(15)-B(1)-N(2)             111.28(15) 

            N(1)-B(1)-N(2)               99.91(13) 

            C(1)-N(1)-C(11)             111.39(15) 

            C(1)-N(1)-C(12)             106.81(15) 

            C(11)-N(1)-C(12)            100.32(14) 

            C(1)-N(1)-B(1)              106.55(14) 

            C(11)-N(1)-B(1)             118.00(15) 

            C(12)-N(1)-B(1)             113.31(14) 

            C(9)-N(2)-C(14)             111.87(15) 

            C(9)-N(2)-C(13)             102.43(15) 

            C(14)-N(2)-C(13)            103.89(15) 

            C(9)-N(2)-B(1)              114.19(14) 

            C(14)-N(2)-B(1)             112.98(15) 

            C(13)-N(2)-B(1)             110.42(14) 

            S(2)-N(3)-S(1)              123.98(11) 

            C(2)-C(1)-C(10)             121.05(19) 

            C(2)-C(1)-N(1)              123.71(18) 

            C(10)-C(1)-N(1)             115.07(17) 

            C(1)-C(2)-C(3)              119.97(19) 

            C(4)-C(3)-C(2)              120.4(2) 

            C(3)-C(4)-C(5)              120.9(2) 

            C(6)-C(5)-C(4)              121.9(2) 

            C(6)-C(5)-C(10)             119.30(19) 

            C(4)-C(5)-C(10)             118.82(19) 

            C(7)-C(6)-C(5)              120.4(2) 

            C(6)-C(7)-C(8)              120.33(19) 

            C(9)-C(8)-C(7)              120.78(19) 

            C(8)-C(9)-C(10)             120.02(18) 

            C(8)-C(9)-N(2)              119.42(17) 

            C(10)-C(9)-N(2)             120.08(16) 

            C(1)-C(10)-C(9)             123.64(19) 

            C(1)-C(10)-C(5)             117.95(18) 

            C(9)-C(10)-C(5)             118.29(18) 

            C(16)-C(15)-C(22)           106.72(16) 

            C(16)-C(15)-B(1)            109.06(16) 

            C(22)-C(15)-B(1)            114.17(16) 

            C(15)-C(16)-C(17)           113.07(17) 
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            C(16)-C(17)-C(18)           117.65(16) 

            C(17)-C(18)-C(19)           118.33(16) 

            C(20)-C(19)-C(18)           106.63(15) 

            C(20)-C(19)-B(1)            110.84(16) 

            C(18)-C(19)-B(1)            111.40(16) 

            C(21)-C(20)-C(19)           112.51(17) 

            C(20)-C(21)-C(22)           116.00(17) 

            C(21)-C(22)-C(15)           117.23(17) 

            F(1)-C(23)-F(3)             108.08(18) 

            F(1)-C(23)-F(2)             108.12(19) 

            F(3)-C(23)-F(2)             108.31(18) 

            F(1)-C(23)-S(1)             111.61(15) 

            F(3)-C(23)-S(1)             111.86(16) 

            F(2)-C(23)-S(1)             108.74(15) 

            F(6)-C(24)-F(5)             108.09(18) 

            F(6)-C(24)-F(4)             108.31(17) 

            F(5)-C(24)-F(4)             107.72(17) 

            F(6)-C(24)-S(2)             112.58(15) 

            F(5)-C(24)-S(2)             110.91(14) 

            F(4)-C(24)-S(2)             109.10(15) 

            O(1)-S(1)-O(2)              118.22(11) 

            O(1)-S(1)-N(3)              112.11(10) 

            O(2)-S(1)-N(3)              115.72(10) 

            O(1)-S(1)-C(23)             104.34(11) 

            O(2)-S(1)-C(23)             105.43(10) 

            N(3)-S(1)-C(23)              97.78(10) 

            O(4)-S(2)-O(3)              118.77(9) 

            O(4)-S(2)-N(3)              115.79(9) 

            O(3)-S(2)-N(3)              108.08(9) 

            O(4)-S(2)-C(24)             104.77(9) 

            O(3)-S(2)-C(24)             102.18(9) 

            N(3)-S(2)-C(24)             105.42(10) 

           _____________________________________________________________ 

  

           Symmetry transformations used to generate equivalent atoms: 

            

 

 

 

    Table 4.  Anisotropic displacement parameters (Å
2
 x 10

3
) for 3-13. 

    The anisotropic displacement factor exponent takes the form: 

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] 

  

    _______________________________________________________________________ 

  

              U11        U22        U33        U23        U13        U12 

    _______________________________________________________________________ 

  

    B(1)     11(1)      26(1)      12(1)       1(1)       2(1)      -1(1) 

    N(1)     11(1)      28(1)      12(1)       0(1)       3(1)       0(1) 

    N(2)     13(1)      24(1)      13(1)      -1(1)       3(1)       0(1) 

    N(3)     13(1)      34(1)      19(1)      -4(1)       4(1)       2(1) 

    C(1)     14(1)      27(1)      12(1)       1(1)       6(1)      -2(1) 

    C(2)     15(1)      34(1)      17(1)       1(1)       1(1)      -3(1) 

    C(3)     23(1)      30(1)      21(1)      -1(1)       2(1)      -9(1) 

    C(4)     25(1)      25(1)      23(1)       3(1)       3(1)      -4(1) 

    C(5)     19(1)      28(1)      16(1)       1(1)       4(1)      -2(1) 

    C(6)     23(1)      25(1)      22(1)       4(1)       4(1)       2(1) 

    C(7)     18(1)      34(1)      17(1)       4(1)       0(1)       2(1) 

    C(8)     15(1)      28(1)      18(1)      -1(1)       4(1)      -1(1) 

    C(9)     15(1)      22(1)      14(1)       0(1)       6(1)       1(1) 

    C(10)    14(1)      27(1)      13(1)       1(1)       5(1)       0(1) 

    C(11)    12(1)      33(1)      17(1)       2(1)       3(1)       2(1) 

    C(12)    16(1)      31(1)      13(1)      -1(1)       6(1)       1(1) 

    C(13)    11(1)      32(1)      20(1)       2(1)       6(1)      -1(1) 

    C(14)    18(1)      27(1)      14(1)      -4(1)       0(1)      -2(1) 

    C(15)    14(1)      23(1)      14(1)       0(1)       5(1)       0(1) 

    C(16)    19(1)      26(1)      12(1)      -2(1)       4(1)       0(1) 

    C(17)    18(1)      29(1)      12(1)       1(1)       2(1)       0(1) 

    C(18)    17(1)      25(1)      15(1)       2(1)       2(1)       3(1) 

    C(19)    15(1)      25(1)      12(1)      -1(1)       3(1)       1(1) 
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    C(20)    18(1)      25(1)      19(1)       2(1)       4(1)      -2(1) 

    C(21)    19(1)      30(1)      20(1)       2(1)       8(1)      -2(1) 

    C(22)    18(1)      28(1)      15(1)       0(1)       8(1)       1(1) 

    C(23)    18(1)      32(1)      25(1)      -2(1)       4(1)       2(1) 

    C(24)    16(1)      31(1)      19(1)      -2(1)       1(1)       0(1) 

    S(1)     14(1)      28(1)      23(1)      -3(1)       6(1)       0(1) 

    S(2)     13(1)      26(1)      16(1)      -1(1)       2(1)       1(1) 

    F(1)     35(1)      35(1)      42(1)       7(1)      10(1)      -6(1) 

    F(2)     28(1)      42(1)      40(1)     -16(1)       7(1)       7(1) 

    F(3)     26(1)      46(1)      26(1)      -9(1)      -4(1)       5(1) 

    F(4)     42(1)      45(1)      18(1)      -3(1)      10(1)       1(1) 

    F(5)     21(1)      39(1)      30(1)       5(1)       4(1)      -7(1) 

    F(6)     20(1)      38(1)      32(1)      10(1)       0(1)       4(1) 

    O(1)     30(1)      36(1)      42(1)       6(1)      23(1)       0(1) 

    O(2)     16(1)      46(1)      32(1)     -10(1)      -1(1)       7(1) 

    O(3)     15(1)      31(1)      22(1)      -1(1)       4(1)       4(1) 

    O(4)     15(1)      29(1)      24(1)      -2(1)       1(1)      -2(1) 

    _______________________________________________________________________ 

 

 

 

         Table 5.  Hydrogen coordinates (x 10
4
) and isotropic 

         displacement parameters (Å
2
 x 10

3
) for 3-13. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          H(2A)        5111          1798          5822          26 

          H(3B)        4803          2653          5283          30 

          H(4A)        3279          2914          3326          29 

          H(6A)        1484          2721          1333          28 

          H(7A)         209          2138            16          28 

          H(8A)         281          1317          1004          24 

          H(11A)       5553          1086          4900          31 

          H(11B)       5136           541          5273          31 

          H(11C)       5085           980          6580          31 

          H(12A)       3217           972          1945          29 

          H(12B)       3871           483          2710          29 

          H(12C)       4566           970          2410          29 

          H(13A)        505          1251          4847          31 

          H(13B)        391           659          4864          31 

          H(13C)       -120           965          3207          31 

          H(14A)        785           557          1427          30 

          H(14B)       1243           172          2895          30 

          H(14C)       2099           422          1861          30 

          H(15A)       2280          1419          6658          20 

          H(16A)       3474          1231          9283          23 

          H(16B)       4185          1250          7813          23 

          H(17A)       3670           408          9614          24 

          H(17B)       4863           558          9195          24 

          H(18A)       3801          -189          7808          23 

          H(18B)       4602           125          6856          23 

          H(19A)       3061            15          4790          21 

          H(20A)       1181             8          5358          25 

          H(20B)       1959          -372          6578          25 

          H(21A)       2048           135          8847          27 

          H(21B)        754           150          7940          27 

          H(22A)       1683           944          8966          24 

          H(22B)        826           946          7214          24 

         ________________________________________________________________ 
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X-Ray Structure of 3-23a 

See Figure 3-2 for an ORTEP plot of 3-23a.  A crystal of dimensions 

0.37x0.24x0.24 mm was mounted on a standard Bruker SMART-APEX CCD-based 

X-ray diffractometer equipped with a low temperature device and fine focus Mo-target 

X-ray tube ( = 0.71073 A) operated at 1500 W power (50 kV, 30 mA).  The X-ray 

intensities were measured at 85(2) K; the detector was placed at a distance 5.055 cm from 

the crystal.  A total of 2333 frames were collected with a scan width of 0.5 in  and 

0.45in φ with an exposure time of 25 s/frame.  The frames were integrated with the 

Bruker SAINT software package with a narrow frame algorithm.  The integration of the 

data yielded a total of 19089 reflections to a maximum 2 value of 48.34 of which 2510 

were independent and 2007 were greater than 2(I).  The final cell constants (Table 1) 

were based on the xyz centroids of 7767 reflections above 10(I).  Analysis of the data 

showed negligible decay during data collection; the data were processed with SADABS 

and corrected for absorption.  The structure was solved and refined with the Bruker 

SHELXTL (version 2008/4) software package, using the space group C2/m with Z = 8 

for the formula C17H22BN.  All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions.  There are two crystallographically 

independent molecules in the asymmetric unit, each lying on a mirror plane.  Full-matrix 

least-squares refinement based on F
2
 converged at R1 = 0.0579 and wR2 = 0.1697 [based 

on I > 2σ(I)], R1 = 0.0705 and wR2 = 0.1822 for all data.  Additional details are 

presented in Table 1. 

Sheldrick, G.M. SHELXTL, v. 2008/4; Bruker Analytical X-ray, Madison, WI, 

2008.  Saint Plus, v. 7.60A, Bruker Analytical X-ray, Madison, WI, 2009.  Sheldrick, 
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G.M. SADABS, v. 2008/1.  Program for Empirical Absorption Correction of Area 

Detector Data, University of Gottingen: Gottingen, Germany, 2008. 

 

      Table 1.  Crystal data and structure refinement for 3-23a. 

  

  

      Empirical formula                 C17H22BN 

  

      Formula weight                    251.17 

  

      Temperature                       250(2) K 

  

      Wavelength                        0.71073 Å 

  

      Crystal system, space group       Monoclinic,  C2/m 

  

      Unit cell dimensions              a = 20.122(2) Å, α = 90°. 

                                        b = 7.1578(8) Å, β = 115.372(6)°. 

                                        c = 22.560(2) Å, γ = 90°. 

  

      Volume                            2935.9(5) Å
3
 

  

      Z, Calculated density             8,  1.136 Mg/m
3
 

  

      Absorption coefficient            0.064 mm
−1
 

  

      F(000)                            1088 

  

      Crystal size                      0.37 x 0.24 x 0.24 mm 

  

      Theta range for data collection   2.24 to 24.17°. 

  

      Limiting indices                  -22<=h<=22, -8<=k<=8, -25<=l<=25 

  

      Reflections collected / unique    19089 / 2510 [R(int) = 0.0269] 

  

      Completeness to θ = 24.17         97.8 % 

  

      Absorption correction             Semi-empirical from equivalents 

  

      Max. and min. transmission        0.9848 and 0.9767 

  

      Refinement method                 Full-matrix least-squares on F
2
 

  

      Data / restraints / parameters    2510 / 0 / 213 

  

      Goodness-of-fit on F
2
             1.039 

  

      Final R indices [I>2σ(I)]         R1 = 0.0579, wR2 = 0.1697 

  

      R indices (all data)              R1 = 0.0705, wR2 = 0.1822 

  

      Largest diff. peak and hole       0.240 and -0.154 e·Å
−3
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         Table 2.  Atomic coordinates (x 10
4
) and equivalent isotropic 

         displacement parameters (Å
2
 x 10

3
) for 3-23a. 

         U(eq) is defined as one third of the trace of the orthogonalized 

         Uij tensor. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          N(1)         7474(1)      10000          5411(1)       66(1) 

          N(2)         1943(1)          0          -496(1)       64(1) 

          C(1)         7875(2)      10000          6126(1)       84(1) 

          C(2)         7792(1)      10000          4974(1)       60(1) 

          C(3)         8533(2)      10000          5102(2)       77(1) 

          C(4)         8704(2)      10000          4578(2)       88(1) 

          C(5)         8155(2)      10000          3938(2)       80(1) 

          C(6)         7422(1)      10000          3811(1)       64(1) 

          C(7)         7225(1)      10000          4337(1)       55(1) 

          C(8)         6524(1)      10000          4390(1)       61(1) 

          C(9)         6739(2)      10000          5061(1)       69(1) 

          C(10)        5045(2)      10000          4051(2)      102(1) 

          C(11)        4604(2)       8203(5)       3764(2)      129(1) 

          C(12)        4393(2)       7865(5)       3049(2)      126(1) 

          C(13)        5000(2)       8198(5)       2845(1)      112(1) 

          C(14)        5445(2)      10000          3116(2)       89(1) 

          C(15)        1615(2)          0         -1213(1)       83(1) 

          C(16)        2691(2)          0           -91(1)       56(1) 

          C(17)        3279(2)          0          -260(2)       73(1) 

          C(18)        3976(2)          0           243(2)       79(1) 

          C(19)        4087(2)          0           889(2)       75(1) 

          C(20)        3500(1)          0          1059(1)       64(1) 

          C(21)        2786(1)          0           567(1)       53(1) 

          C(22)        2051(1)          0           554(1)       54(1) 

          C(23)        1586(2)          0          -111(1)       62(1) 

          C(24)        2281(2)          0          1849(1)       91(1) 

          C(25)        2134(2)       1790(5)       2142(1)      118(1) 

          C(26)        1341(2)       2133(5)       1988(2)      125(1) 

          C(27)         818(2)       1800(5)       1277(2)      113(1) 

          C(28)         957(2)          0           974(2)       81(1) 

          B(1)         5730(2)      10000          3880(2)       70(1) 

          B(2)         1788(2)          0          1092(2)       61(1) 

         ________________________________________________________________ 

 

 

 

           Table 3.  Bond lengths [Å] and angles [°] for 3-23a. 

           _____________________________________________________________ 

  

            N(1)-C(9)                     1.345(4) 

            N(1)-C(2)                     1.388(4) 

            N(1)-C(1)                     1.460(3) 

            N(2)-C(23)                    1.343(4) 

            N(2)-C(16)                    1.386(3) 

            N(2)-C(15)                    1.462(3) 

            C(2)-C(3)                     1.391(4) 

            C(2)-C(7)                     1.401(4) 

            C(3)-C(4)                     1.366(5) 

            C(4)-C(5)                     1.393(5) 

            C(5)-C(6)                     1.378(4) 

            C(6)-C(7)                     1.403(4) 

            C(7)-C(8)                     1.467(4) 

            C(8)-C(9)                     1.384(4) 

            C(8)-B(1)                     1.516(4) 

            C(10)-C(11)#1                 1.539(4) 

            C(10)-C(11)                   1.539(4) 

            C(10)-B(1)                    1.583(5) 

            C(11)-C(12)                   1.501(4) 

            C(12)-C(13)                   1.499(4) 

            C(13)-C(14)                   1.539(3) 

            C(14)-C(13)#1                 1.539(3) 
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            C(14)-B(1)                    1.566(5) 

            C(16)-C(17)                   1.391(4) 

            C(16)-C(21)                   1.414(4) 

            C(17)-C(18)                   1.375(4) 

            C(18)-C(19)                   1.376(4) 

            C(19)-C(20)                   1.390(4) 

            C(20)-C(21)                   1.390(4) 

            C(21)-C(22)                   1.466(3) 

            C(22)-C(23)                   1.387(4) 

            C(22)-B(2)                    1.518(4) 

            C(24)-C(25)#2                 1.528(4) 

            C(24)-C(25)                   1.528(4) 

            C(24)-B(2)                    1.564(4) 

            C(25)-C(26)                   1.500(4) 

            C(26)-C(27)                   1.513(4) 

            C(27)-C(28)                   1.539(3) 

            C(28)-C(27)#2                 1.539(3) 

            C(28)-B(2)                    1.576(4) 

  

            C(9)-N(1)-C(2)              107.9(2) 

            C(9)-N(1)-C(1)              126.6(3) 

            C(2)-N(1)-C(1)              125.5(2) 

            C(23)-N(2)-C(16)            107.8(2) 

            C(23)-N(2)-C(15)            127.0(3) 

            C(16)-N(2)-C(15)            125.2(3) 

            N(1)-C(2)-C(3)              129.1(3) 

            N(1)-C(2)-C(7)              108.0(2) 

            C(3)-C(2)-C(7)              122.9(3) 

            C(4)-C(3)-C(2)              117.7(3) 

            C(3)-C(4)-C(5)              121.1(3) 

            C(6)-C(5)-C(4)              121.2(3) 

            C(5)-C(6)-C(7)              119.3(3) 

            C(2)-C(7)-C(6)              117.8(2) 

            C(2)-C(7)-C(8)              107.8(2) 

            C(6)-C(7)-C(8)              134.4(2) 

            C(9)-C(8)-C(7)              103.2(2) 

            C(9)-C(8)-B(1)              124.4(3) 

            C(7)-C(8)-B(1)              132.4(2) 

            N(1)-C(9)-C(8)              113.2(3) 

            C(11)#1-C(10)-C(11)         113.4(3) 

            C(11)#1-C(10)-B(1)          107.6(2) 

            C(11)-C(10)-B(1)            107.6(2) 

            C(12)-C(11)-C(10)           115.7(3) 

            C(13)-C(12)-C(11)           114.3(2) 

            C(12)-C(13)-C(14)           115.1(3) 

            C(13)#1-C(14)-C(13)         113.8(3) 

            C(13)#1-C(14)-B(1)          108.26(19) 

            C(13)-C(14)-B(1)            108.26(19) 

            N(2)-C(16)-C(17)            129.2(3) 

            N(2)-C(16)-C(21)            108.1(2) 

            C(17)-C(16)-C(21)           122.7(3) 

            C(18)-C(17)-C(16)           117.4(3) 

            C(17)-C(18)-C(19)           121.3(3) 

            C(18)-C(19)-C(20)           121.5(3) 

            C(21)-C(20)-C(19)           119.3(3) 

            C(20)-C(21)-C(16)           117.9(2) 

            C(20)-C(21)-C(22)           134.8(2) 

            C(16)-C(21)-C(22)           107.3(2) 

            C(23)-C(22)-C(21)           103.2(2) 

            C(23)-C(22)-B(2)            124.1(2) 

            C(21)-C(22)-B(2)            132.6(2) 

            N(2)-C(23)-C(22)            113.5(2) 

            C(25)#2-C(24)-C(25)         114.0(3) 

            C(25)#2-C(24)-B(2)          108.83(18) 

            C(25)-C(24)-B(2)            108.83(18) 

            C(26)-C(25)-C(24)           114.9(2) 

            C(25)-C(26)-C(27)           114.0(2) 

            C(26)-C(27)-C(28)           115.2(2) 

            C(27)-C(28)-C(27)#2         113.7(3) 

            C(27)-C(28)-B(2)            107.84(17) 

            C(27)#2-C(28)-B(2)          107.84(17) 
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            C(8)-B(1)-C(14)             127.3(3) 

            C(8)-B(1)-C(10)             123.9(3) 

            C(14)-B(1)-C(10)            108.8(3) 

            C(22)-B(2)-C(24)            126.7(2) 

            C(22)-B(2)-C(28)            124.9(3) 

            C(24)-B(2)-C(28)            108.4(3) 

           _____________________________________________________________ 

  

           Symmetry transformations used to generate equivalent atoms: 

           #1 x,-y+2,z    #2 x,-y,z     

 

 

 

    Table 4.  Anisotropic displacement parameters (Å
2
 x 10

3
) for 3-23a. 

    The anisotropic displacement factor exponent takes the form: 

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] 

  

    _______________________________________________________________________ 

  

              U11        U22        U33        U23        U13        U12 

    _______________________________________________________________________ 

  

    N(1)     65(1)      76(2)      50(1)       0         20(1)       0 

    N(2)     73(1)      60(1)      57(1)       0         28(1)       0 

    C(1)     97(2)      88(2)      52(2)       0         17(2)       0 

    C(2)     53(1)      63(2)      59(2)       0         20(1)       0 

    C(3)     49(2)      87(2)      80(2)       0         13(2)       0 

    C(4)     50(2)     109(3)     106(3)       0         35(2)       0 

    C(5)     65(2)      96(2)      92(2)       0         48(2)       0 

    C(6)     53(1)      82(2)      62(2)       0         28(1)       0 

    C(7)     46(1)      63(2)      56(1)       0         22(1)       0 

    C(8)     51(1)      82(2)      52(1)       0         25(1)       0 

    C(9)     61(2)      92(2)      59(2)       0         30(1)       0 

    C(10)    56(2)     183(4)      75(2)       0         36(2)       0 

    C(11)    74(2)     159(3)     153(3)      60(2)      47(2)      -1(2) 

    C(12)    89(2)      90(2)     171(3)       0(2)      30(2)      -8(2) 

    C(13)    86(2)     128(2)      98(2)     -20(2)      17(1)      28(2) 

    C(14)    47(2)     157(4)      65(2)       0         25(1)       0 

    C(15)   105(2)      83(2)      53(2)       0         26(2)       0 

    C(16)    68(2)      43(1)      66(2)       0         38(1)       0 

    C(17)    90(2)      67(2)      81(2)       0         55(2)       0 

    C(18)    71(2)      83(2)     100(2)       0         53(2)       0 

    C(19)    53(2)      82(2)      95(2)       0         37(2)       0 

    C(20)    57(2)      67(2)      68(2)       0         28(1)       0 

    C(21)    56(1)      42(1)      63(2)       0         28(1)       0 

    C(22)    51(1)      56(2)      54(1)       0         22(1)       0 

    C(23)    59(2)      63(2)      64(2)       0         26(1)       0 

    C(24)    51(2)     169(4)      58(2)       0         28(1)       0 

    C(25)   134(2)     147(3)      89(2)     -33(2)      62(2)     -60(2) 

    C(26)   174(3)      90(2)     152(3)     -24(2)     110(2)      -3(2) 

    C(27)   108(2)     127(2)     131(2)      38(2)      77(2)      47(2) 

    C(28)    50(2)     132(3)      65(2)       0         26(1)       0 

    B(1)     54(2)      96(3)      67(2)       0         31(2)       0 

    B(2)     51(2)      73(2)      61(2)       0         25(1)       0 

    _______________________________________________________________________ 

 

 

 

         Table 5.  Hydrogen coordinates (x 10
4
) and isotropic 

         displacement parameters (Å
2
 x 10

3
) for 3-23a. 

  

         ________________________________________________________________ 

  

                         x             y             z           U(eq) 

         ________________________________________________________________ 

  

          H(1A)        8091          8778          6273         126 

          H(1B)        7538         10287          6318         126 

          H(1C)        8261         10935          6259         126 

          H(3A)        8903         10000          5535          92 

          H(4A)        9200         10000          4651         105 
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          H(5A)        8288         10000          3586          95 

          H(6A)        7057         10000          3376          77 

          H(9A)        6406         10000          5252          83 

          H(10A)       5220         10000          4533         122 

          H(11A)       4895          7135          4013         155 

          H(11B)       4154          8243          3831         155 

          H(12A)       4224          6571          2945         151 

          H(12B)       3978          8682          2791         151 

          H(13A)       4787          8240          2365         134 

          H(13B)       5338          7133          2988         134 

          H(14A)       5874         10000          3009         107 

          H(15A)       1101          -355         -1381         124 

          H(15B)       1873          -886         -1364         124 

          H(15C)       1652          1240         -1369         124 

          H(17A)       3204             0          -701          87 

          H(18A)       4385             0           144          95 

          H(19A)       4570             0          1222          90 

          H(20A)       3585             0          1503          77 

          H(23A)       1070             0          -277          74 

          H(24A)       2803             0          1923         109 

          H(25A)       2416          1742          2620         142 

          H(25B)       2317          2853          1982         142 

          H(26A)       1286          3427          2102         149 

          H(26B)       1201          1314          2264         149 

          H(27A)        850          2866          1018         136 

          H(27B)        316          1761          1241         136 

          H(28A)        639             0           496          98 

         ________________________________________________________________ 
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Appendix B 

Selected NMR Spectra 
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