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ABSTRACT

Tax-Revenue Volatility
and

Dynamic Systems of Cities

by

Nathan Seegert

Chair: Jim Hines

With the increased demands of state and local governments, economists have been addressing

a number of new research questions for example; new tradeo�s in taxation, the changing roles

of supplying public goods in a federal system, and the impacts of state and local government

policies on the distribution of population across cities and rural areas. Motivated by the

empirical puzzle that state tax-revenue volatility increased 500 percent in the 2000s, relative

to previous decades, my dissertation considers volatility of tax revenue as a new tradeo�

in optimal taxation. The increased demands for state tax revenue and state governments'

inability to smooth volatile revenue streams, due to self-imposed balanced budget rules,

magni�es budget crises in state governments. I also demonstrate the policies governments

enact, speci�cally taxation and zoning laws, impact the distribution of population across

cities. The policies are evaluated within a system of cities model to consider the impacts not

only on the population of levels of heterogeneous cities but also the number and set of cities

created within a system of cities.

xi



CHAPTER I

Introduction

The following dissertation, in its current form, is a combination of two dissertations; one

on tax-revenue volatility and one on dynamic systems of cities. Chapters 2-4 encompass

the tax-revenue volatility dissertation. In this dissertation I produce a wide range of results

on tax-revenue volatility which I hope become the foundation for future research on the

subject. The analysis begins with a motivational empirical puzzle; �What caused tax-revenue

volatility at the U.S. state level to become more volatile in the 2000s." By adapting empirical

decomposition methods to my model of tax revenue volatility I demonstrate changes in

tax rates explains most of the increase in tax revenue volatility. This result motivates

understanding how governments optimally can set tax rates to reverse the increase in tax

revenue volatility they have experienced.

The third chapter investigates the welfare consequences of tax revenue volatility conclud-

ing the optimal tax policy needs to consider tax revenue volatility both locally and globally.

In chapter two the optimal tax policy is characterized by the volatility-adjusted Ramsey

rule which demonstrates governments trade o� deadweight loss and tax revenue volatility.

Chapter three demonstrates between these two considerations only tax revenue volatility

is of �rst-order importance, hence locally tax revenue volatility is important. To compare

the magnitudes of the costs between tax revenue volatility and deadweight loss a standard

log-utility model is calibrated. This calibration demonstrates the cost of tax revenue volatil-

1



ity are large, $600 billion dollars a year large, and larger than costs from deadweight loss.

Therefore the third chapter provides compelling evidence that understanding tax revenue

volatility is, as in the words of Harberger describing deadweight loss almost �fty-years ago,

"so interesting, so relevant, so central to our understanding of the economy we live in," that

understanding, measuring, and devising policy to mitigate these costs will be an important

area of research for years to come.1

The fourth chapter creates a method of estimating a government's minimum-variance

frontier by formalizing optimal government portfolio analysis. The previous chapters ap-

proached the problem of optimal taxation with uncertainty from the prospective of the

government maximizing a representative individual's utility. In contrast, the fourth chapter

approaches the problem from an optimal portfolio problem where the government minimizes

the welfare costs of volatility for the optimal mean level of public good production. In this

approach each tax base the government is able to tax is considered a separate asset the

government can hold in its portfolio. Through this analysis traditional portfolio analysis is

updated to account for the unique position the government holds, as a large agent, in con-

trast to the traditional small investor assumption. The theoretical model produces a method

for estimating minimum-variance frontiers for governments. The method is demonstrated

using data from U.S. state governments. A brief analysis of the minimum-variance frontiers

of state governments demonstrates the heterogeneity in mean-variance tradeo�s across states

and across time within a state.

Chapters 5-7 encompass the dynamic systems of cities dissertation starting with two solo

authored papers focusing on the creation of cities and their growth path and ending with

a joint paper with David Albouy on the optimal size of a city. This dissertation makes an

important contribution to the urban economics literature by creating models to discuss the

creation and growth of cities built from aggregating individual choices.

The �fth chapter creates a positive model of city creation and growth that is surprisingly

1Harberger (1964)
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general yet able to match the stylized facts that cities continue to grow through time, cities

experience sequential periods of accelerated growth, and that some cities experience rushes of

migration. The key mechanism in the model is the intuitive trade o� individuals face between

remaining in established cities, which provide public goods and high wages, with starting

or moving to a developing city, which provides new opportunities. The bene�ts from public

goods and wages a city provides is a function of the population of the city. The opportunities

in the city depend on a rank function such that earlier migrants are given more opportunities

capturing the fact early migrants can start the �rst bank, have a disproportionate role in

setting up the institutions of the city, and are able to claim the best lot of land. The results

are proved in general and demonstrated with a microfounded model where cities grow in a

spiral away from the central business district. The microfounded model demonstrates the

e�ects of income and property taxation on the growth of cities and the size of possible rushes

of migration to the city.

The sixth chapter demonstrates, in a dynamic model of city creation, a market mechanism

able to create the e�cient number and set of heterogeneous cities. This paper focuses on

how barriers to migration ( e.g. information costs, moving costs, zoning laws) a�ect systems

of cities. Speci�cally, how the population size, the number, and set of heterogeneous cities

changes with di�erent levels of barriers to migration. I �nd that no barriers to migration

cause �better" cities to become oversized leading to less cities being created and interestingly

productive cities rather than high quality of life cities to be created. In contrast, high barriers

to migration cause cities to become undersized leading to more cities being created and high

quality of life rather than productive cities to be created. Surprisingly, if the barriers to

migration mimic a pricing mechanism for additional migrants the size, number, and set of

cities created becomes e�cient.

The seventh chapter demonstrates federal taxes and land rents may cause cities to become

ine�ciently small. This chapter demonstrates in a general model the ability of across-

city wedges, such as federal taxes and land rents, to distort the distribution of population

3



in away that may cause cities to become ine�ciently small. The paper then creates a

microfounded model which is calibrated to demonstrate the magnitude of these across-city

wedges and the welfare loss from them. This chapter provides substantial evidence that

despite conventional wisdom that cities are always too large the largest cities in the United

States may be ine�ciently small.

The goal of both of these dissertations is to make an important contribution to the

respective literatures by taking a step forward in answering hard questions. In the public

�nance literature, speci�cally the optimal taxation literature, the hope is chapters 2 - 4

demonstrate the importance of tax revenue volatility and begins to provide policy revelent

answers to mitigate this cost. In the urban literature, speci�cally the optimal city literature,

the hope is chapters 5 - 7 provide a new type of urban model, using game theory, to expand

the focus to considering systems of cities where heterogeneity, spill-overs, and barriers to

migration matter.

4



CHAPTER II

Optimal Taxation with Volatility

A Theoretical and Empirical Decomposition

2.1 Introduction

Governments around the world are experiencing budget crises. The severity of these

budget crises may be magni�ed by the recent increase in the volatility of tax revenue. For

example, U.S. state governments experienced a 500 percent increase in volatility in the

2000s relative to previous decades, according to my metrics explained below. With limited

opportunities to borrow, often by statute, sudden dramatic declines in revenues have caused

state governments to make large cuts in expenditures.1 Year-over-year shocks to U.S. state

tax revenues increased by nearly $20 billion in the 2000s. The increase in uncertainty in state

�nances led to increased uncertainty in the economy and increased uncertainty of individuals'

tax payments.2 Not only has tax revenue volatility increased dramatically in the last decade

but its negative impact has also increased for governments around the world because the

cost of borrowing has increased, especially for countries in Europe. This paper analyzes

the increase in tax revenue volatility experienced by U.S. state governments and the policy

1State governments' inability to smooth volatile revenue is a consequence of self-imposed balanced budget
rules which 49 states impose explicitly, though with varying strictness.

2The second of four maxims described by Adam Smith with regards to taxation is certainty. He claims,
�The certainty of what each individual ought to pay is, in taxation, a matter of so great importance, that a
very considerable degree of inequality, it appears, I believe, from the experience of all nations, is not near so
great an evil as a very small degree of uncertainty." The Wealth of Nations p. 778.
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mechanisms that exist to stabilize tax revenues.

The empirical analysis quanti�es the three possible causes of the increased volatility

identi�ed by the theoretical model: changes in tax rates (which change the tax bases states

rely on), economic conditions, or tax bases (e.g., what types of consumption are taxable). I

collect data on tax rates and economic conditions from numerous sources to create a panel of

all �fty states from 1951-2010. I adapt empirical decomposition methods by Oaxaca (1973),

Blinder (1973), and DiNardo, Fortin, and Lemieux (1996) to quantify the contribution of

changes in economic conditions, tax rates, and tax bases in explaining the increase in tax

revenue volatility. These methods, appropriately adapted, allow me to quantify tax base

changes, which are otherwise nearly impossible to quantify because they are nearly impossible

to observe completely.3 I �nd that changes in tax rates alone explain seventy percent of the

increase in tax revenue volatility, despite important tax base changes, such as the rise of

e-commerce, and ampli�ed business cycles in the 2000s. This means the increase in tax

revenue volatility can be reversed by appropriate tax reform, motivating the question, �how

should governments set tax rates when the volatility of tax revenue is considered."

I develop a normative model of taxation to determine the optimal tax policy when eco-

nomic production, tax revenues, and therefore public and private consumption are volatile.

Standard optimal taxation models consider deterministic economic environments. In these

environments, lump sum taxation is optimal because it eliminates deadweight loss. Re-

markably, introducing uncertainty about tax revenue collections - a salient feature of the

real-world decision facing state governments - can overturn this result. I show that a govern-

ment facing volatile economic conditions from aggregate production risk should choose to tax

state-dependent tax bases instead of using lump sum taxes. By taxing state-dependent tax

bases the government is able to distribute the aggregate production risk between public and

private consumption. Lump sum taxes are suboptimal because they concentrate all economic

volatility in private consumption. I derive the volatility-adjusted Ramsey rule which charac-

3The change I quantify as tax base changes is the structural change or �treatment e�ect" in the empirical
decomposition.
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terizes the optimal tax policy with volatile economic conditions. This optimality condition

nests the traditional Ramsey rule and generalizes it to account for uncertainty.

Empirically, the tax bases state governments rely on have changed over the last 60 years,

with an increased reliance on income taxes. For example, between 1952 and 2008 the reliance

on income tax increased from 5 percent to 23 percent as a percentage of total state and local

tax revenue. In comparison, the reliance on the sales tax remained steady, accounting for

33 percent in 1952 and 34 percent in 2008.4 To determine if the empirical shift toward the

income tax is optimal I estimate a su�cient condition derived from the volatility-adjusted

Ramsey rule. I �nd twenty-six states relied too heavily on the income tax in 2005, an increase

of twelve states from 1965. In contrast, only ten states relied too heavily on the sales tax in

2005, a decrease of two states from 1965. In total thirty-six states in 2005 exposed their tax

revenues to unnecessary levels of risk by ine�ciently relying on the income or sales tax.

This paper makes four contributions to the literature. First, I document a large increase in

volatility in tax revenue at the state level. Second, I show this increased tax revenue volatility

is mostly due to changes in tax rates. Third, I derive a novel condition for optimal tax

policy, and fourth, I test whether states meet this condition. Through these contributions,

this paper �nds strong evidence that the 500 percent increase in tax revenue volatility state

government's recently experienced is due to changes in tax rates, causing states to expose

their revenues to unnecessary levels of risk.

2.2 Literature Review

Two recent papers discuss the dramatic increase in tax revenue volatility in the 2000s

at the state level. Boyd and Dadayan (2009), discussing this fact, claim �Tax revenue is

highly related to economic growth, but there also is signi�cant volatility in tax revenue that

4This paper focuses on the income, sales, and corporate taxes because they are the main tax bases relied
on by state and local governments. Property taxes are also important, but data for these tax rates do not
exist because the property tax is typically administered at a local level. The reliance on the property tax
decreased from 45 percent in 1952 to 31 percent in 2008.
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is not explained solely by one broad measure of the economy." They conclude by quoting

the National Conference of State Legislatures (NCSL) on the �scal situation at the state

level, �The �scal challenges are enormous, widespread and, unfortunately, far from over."5

McGranahan and Mattoon's 2012 research lead them to conclude, �State governments are

facing a period of �scal turbulence," and suggest understanding the dynamics of state tax

revenue collections is imperative to keeping the boat from capsizing.

This paper o�ers a structural framework to analyze the increase in shocks to uncertainty

(2nd moments) of tax revenue volatility. Bloom's 2009 paper studies the impact to the

business cycle of shocks to uncertainty due to events such as the Cuban missile crisis, the

assassination of JFK, the OPEC I oil price shock, and the 9/11 terrorist attacks. In Bloom's

model �rm's region of inaction expands with uncertainty. This causes a drop in reallocation

of capital and labor from low to high productivity �rms slowing productivity growth. Tax

revenue provides an interesting feedback loop to these shocks of uncertainty. First, tax

revenue will be a�ected by the productivity growth shocks through their impact on wages,

pro�ts, and consumption, depending on the factors discussed in this paper. Second, tax

revenue shocks increase the uncertainty of government expenditures and tax policy leading to

increased uncertainty for �rms. Therefore understanding how tax policy a�ects the resulting

magnitude of tax revenue volatility due to wage, pro�t, and consumption shocks is important

in dampening this feedback loop.

Empirically, this paper demonstrates that changes in tax policy caused tax revenue

volatility to increase more than the underlying volatility in the economy. This empirical

work extends empirical work based on Groves and Kahn (1952) paper on optimal tax port-

folios. Early work focused on the short-run elasticity of di�erent tax revenue streams with

respect to personal income as a measure of variability (Wilford, 1965; Legler and Shapero,

1968; Mikesell, 1977). Later work considered growth in revenues or the long-run elasticity

of di�erent tax revenue streams with respect to personal income (Williams and Lamb, 1973;

5�State Budget Update: July 2009," National Conference of State Legislatures.
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White, 1983; Fox and Campbell, 1984). Recent work has focused on improving these esti-

mates (Dye and McGuire, 1991; Bruce, Fox, and Tuttle, 2006). In addition to extending

this empirical work my paper extends Groves and Kahn's theoretical model to produce a

volatility-adjusted Ramsey rule.

I demonstrate volatility is an important consideration in optimal taxation. Previous op-

timal taxation studies extend the basic model that minimizes aggregate deadweight loss to

account for distributional considerations (Mirrlees, 1971), externalities and complementar-

ities (Corlett and Hague, 1953; Diamond and Mirrlees, 1971; Green and Sheshinski, 1979),

administrative costs and tax avoidance (Allingham and Sandmo, 1972; Yitzhaki, 1974; An-

dreoni, Erard, and Feinstein, 1998), and dynamic considerations (Chamley, 1986; Judd, 1985;

Summers, 1981). The normative model in this paper provides an additional consideration:

costs due to volatility.

My paper considers the optimal tax policy with uncertain economic conditions in contrast

to the literature, which considers the optimal uncertain tax policy. Stiglitz (1982) demon-

strates using random tax rates can decreases excess burden, if the excess burden for an

individual as a function of revenue raised is concave. Barro (1979), making the assumption

that excess burden is convex in the amount of revenue raised, demonstrates the expected

value of a tax rate tomorrow should be equal to the current tax rate. Skinner (1988) demon-

strates the welfare gain from removing all uncertainty about future tax policy is 0.4 percent

of national income. This literature focuses on the accumulated deadweight loss occurring

with uncertainty. In contrast, my paper focuses on the costs of volatility in public and pri-

vate consumption as a result of tax policy and trading these costs o� with the costs from

deadweight loss.
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2.3 Facts About Tax Revenue Volatility

2.3.1 Data

For this paper I collect data from numerous sources to be able to cross check inconsis-

tencies due to the timing of policy changes. Income (both top and bottom rates), corporate,

and sales tax rates for all states between the years 1951-2010 are collected from the Book of

States, the World Tax Database, the Advisory Commission on Intergovernmental Relations

biannual report �Signi�cant Features in Fiscal Federalism," and the Tax Foundation. Data

on tax revenues for all state and local governments for the years 1951 through 2010 are

collected from the Book of States and the U.S. Census of Governments.6 Data on property

tax rates are unavailable because the rates are typically imposed at a local level.7 The anal-

ysis focuses on the income, sales, and corporate tax because these are the most important

revenue sources for state governments.

The aggregated state and local tax revenues are used in this paper to account for di�erent

levels of decentralization across states. Data on state level economic conditions such as state

level GDP and personal income are collected from the Bureau of Economic Analysis and exist

for all states in all years between 1963 and 2010. Data on state populations are collected

from the U.S. Census Bureau and are used as a control.8

Table 2.1 and �gure 2.1 demonstrates the frequency and balance of the 1108 tax rate

changes across 3000 state-year observations in the sample. These changes are roughly evenly

divided between the tax bases; the sales tax rate changes the fewest times (252 times) and

the top income tax rate changes the most (326 times). Of these changes, 603 are tax rate

6Approximately a dozen inconsistencies between the Book of States and the U.S. Census of Governments
were found. When inconsistencies were found the data from the Book of States were used, though the
analysis is robust to using the other sources.

7Data on property tax revenue is collected. In robustness speci�cations property tax revenue is used as
an additional control variable to account for any possible horizontal externalities between the property tax
and other tax bases. In these speci�cations these horizontal externalities do not appear to be important.

8All of the estimations are done in real aggregate terms controlling for population. Instead the estimations
could have been run in real per capita terms without controlling for population. The �rst strategy is preferred
because the second unnecessarily constrains the coe�cient on population in the estimates.
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Table 2.1: State Tax Rate Changes

Observations Years with

Tax Rate Changes Increases Decreases At Least Increase and
One Change Decrease

Sales Tax 252 214 38 56 22
Corporate Tax 272 94 178 55 33
Top Income Tax 326 165 161 57 38

Bottom Income Tax 358 130 128 56 36
Data 1951-2010 tax rates by state collected by author from Book of States, the World

Tax Database, the Tax Foundation, and the Advisory Commission on Intergovernmental

Relations biannual report.

The 1108 tax rate changes across 3000 state-year observations demonstrate the

variation used in the empirical analysis.

increases and 505 are tax rate decreases. The tax rate changes are spread across the years

in the sample such that there is a tax rate change by at least one state for each tax base in

over ninety-percent of the years observed. Furthermore, in about half of the years observed,

at least one state increases a given tax rate and another state decreases the same tax rate.

Despite the political climate, �gure 2.1 provides little evidence that state governments

changed tax rates fewer times in the 2000s relative to other decades. The number of increases

and decreases in tax rates are misleading because tax rate increases tend to be larger than

tax rate decreases. For example, the bottom income tax rate is increased 130 times and

decreased 128 times but the average tax rate between 1950 and 2000 is 1.46 compared with

the average rate of 2.14 between 2000 and 2010. Similarly the top income tax rate increased

from 4.87 to 5.30, the sales tax from 3.15 to 4.82, and the corporate rate from 5.19 to 6.60.

These changes in tax rates changed the relative importance of the income and sales tax in

total tax revenues. Between 1952 and 2008 reliance on income tax revenues increased from

5 percent to 24 percent in contrast to the sales tax which increased only slightly from 33

percent to 34 percent.

The empirical design in this paper groups observations into years before the increase in

volatility and those after. The groups are de�ned by a structural break found using a Quandt
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Figure 2.1: Tax Rate Changes
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(a) Bottom Income Tax Rate
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(b) Top Income Tax Rate
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(c) Sales Tax Rate
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(d) Corporate Tax Rate
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likelihood ratio (QLR) test (Quandt, 1958). Formally, the QLR, or sup-Wald, test statistic

identi�es structural breaks without presupposing in which year they occurred by performing

repeated Chow tests, typically on all dates in the inner seventy-percent.9,10 The maximum

QLR occurs in 2002 for the sales and corporate tax revenues and in 2000 for the income tax

revenue. For all three tax revenues, the maximum QLR value (12.26 corporate, 17.78 sales,

and 31.09 income) are larger than the critical value at the one percent level, 3.57. Following

these tests the before years are de�ned as 1963-2001 for the sales and corporate tax bases

and 1963-1999 for the income tax base.

2.3.2 Basic Facts

Figure 2.2 demonstrates the increase in volatility in the 2000s by graphing tax revenue

aggregated across states and its deviations from a time trend.11 For the rest of the paper,

I de�ne volatility as the squared deviations from trend which is a short-run measure of

variability and produces a data point for each state-year observation.12The absolute value

of deviations from trend increased by $19.1 billion in the 2000s and volatility increased by

$712 billion.

If state tax revenues became more correlated in the 2000s this could explain the increase

in volatility. However, as �gure 2.3 demonstrates tax revenues became less correlated in

the 2000s. Figure 2.3 graphs the moving average of the coe�cient of variation across states

for each year between 1951 and 2010, demonstrating tax revenues began converging in the

9Figure A.1 in the appendix plots the QLR for the income, sales, and corporate tax revenues for all years
between 1970 and 2003.

10The inner seventy-percent of years correspond to the years between 1970 and 2003 which is the suggested
amount of observations for the QLR test.

11The time trend is estimated using a cubic time trend.
12Volatility in variable x is de�ned as x̃ = (xt − x̄time trend)2. This measures the short-run variability

which is the focus of the paper. The variance of tax revenue, σR = (Rt − R̄)2 con�ates short-run variability
and di�erences due to a time trend. For example, making a state's time trend steeper would increase the
variance but would not change the short-run variability. The time trend, estimated for each state separately,
in the baseline case is a cubic time trend. The results are robust to di�erent time trends including a Hodrick-
Prescott �lter with a bandwidth of 6.25, as recommended by Ravn and Uhlig (2002) for yearly data, which
is shown in table 2.3 and time trends with autoregressive processes, semi-parametric power series estimators,
and moving averages.
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Figure 2.2: Sum Income, Sales, Corporate Tax Revenue Deviations From Trend.
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1960s but in the late 1990s began diverging.13 The increase in volatility is robust to di�erent

speci�cation and has been noted previously by Mattoon and McGranahan (2012) and Boyd

and Dadayan (2009).

Volatility, as a percent of tax revenue, increased in the 2000s for forty �ve states mapped

in �gure 2.4. Tax revenue volatility increased per person in the 2000s for all �fty states, in

levels. The trends depicted in the aggregate data hold for a majority of states and are not

driven by a few outliers.

The increase in tax revenue volatility is especially important for state governments be-

cause of their self-imposed balanced budget rules. The rules di�er in strictness and in some

cases restrict the use of rainy day funds to smooth volatile revenue streams. The inability of

state governments to smooth volatile tax revenues is demonstrated in �gure 2.5 which plots

the deviations from trend of aggregate state expenditures and tax revenues.14 Tax revenue

volatility leads expenditure volatility, which is con�rmed by a Granger causality test (Hiem-

13The moving average uses a seven year window on either side and includes the speci�c year.
14Figure 2.2 plots the deviations from trend of income, sales, and corporate tax revenue while �gure 2.5

uses total tax revenue to compare with total expenditures.
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Figure 2.3: State Tax Revenue Begins Diverging In 2000s.
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Figure 2.4: 45 States Experienced Increases in Volatility.
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Figure 2.5: State Expenditure and Total Tax Revenue Deviations From Trend.
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stra and Jones, 1994; Baek and Brock, 1992).15 Expenditure volatility is especially costly

at the state level because due to prior commitments, expenditure volatility is concentrated

in a few items such as education, the timing causes state expenditures to be pro-cyclical

which is costly to the extent state expenditures should be counter-cyclical, and swings in

state government expenditures adds salient uncertainty to the economy.

15While tax revenue volatility Granger causes expenditure volatility the reverse is not true. The Granger
causality test is not a test of causality but a descriptive statistic.
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2.4 Model

In this section the government uses taxes to produce a public good in order to maximize

a representative individual's utility in an economy with uncertainty. A technology shock

generates uncertainty in the model and the representative individual has rational expecta-

tions over this shock. The technology shock is assumed to a�ect wages and pro�ts di�erently

causing wages and pro�ts not to be perfectly correlated. The extent to which wages and

pro�ts are correlated determines the correlation between wage income and consumption in

the model. The fact wage income and consumption are not perfectly correlated produces

an incentive for the government to hedge wage income and consumption speci�c risk by

taxing both sources. The purpose of this model is twofold; �rst to derive an equation for the

variance of tax revenue which can be used in the empirical decomposition (section 2.5) and

second to setup a normative model to determine the optimal tax policy in the environment

where tax revenue volatility is costly (section 2.7).

A. Technology. The single-intermediate good, X, in the model is assumed to be pro-

duced by a single-input factor labor, L, and costlessly transformed into private and public

consumption goods. The e�ciency with which a representative �rm converts the labor into

the intermediary-output di�ers with the state of nature, θ.16

X(L, θ) = θf(L) = θLγ

θ = µt + vt vt ∼ Log −N(0, σ2
v)

µt = φµt−1 + (1− φ)µ̄+ ut ut ∼ Log −N(0, σ2
u)

The technology shock is given by a combination of two shocks, a persistent shock and a transi-

tory shock. These shocks are assumed to a�ect wages and pro�ts di�erently depending on the

value of ω. Labor is paid its marginal product w = θwγL
γ−1 where θw = µt+ωvt. The repre-

16Writing intermediate production in this way implicitly assumes that an increase in the input increases
the output by the same percentage in all states of nature.
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sentative individual owns and receives the pro�ts of the representative �rm π = θπ(1− γ)Lγ

where θπ = µt + (1− γω)/(1− γ)vt. The exogenous parameter ω determines the correlation

between wage income and pro�t such that when ω = 1 they are perfectly correlated. In the

model ω is used to model the empirical fact wages and pro�ts are not perfectly correlated,

hence there is a di�erence between taxing wage income and consumption.

B. Individual Behavior. The individual has utility over the supply of labor L, the public

good g, and total private consumption c, which is split between taxed goods, βc, and untaxed

goods, (1− β)c. The individual chooses c, L, and β to maximize utility

maxc,L,β u = U(c, β, L, g)

subject to

c = (1− τcβ)((1− τw)w(θ)L+ π) = (1− τcβ)y

where τc and τw are the tax rates on consumption and wage income respectively. The

correlation between wage income and pro�t determines the correlation between consumption

and income. In �gure 2.6 wage income, pro�t income, and consumption are characterized

by vectors with lengths equal to their standard deviation. Using the law of cosines, the

correlation between two vectors is depicted as the cosine of the angle between any two

vectors. For example, if the vectors are parallel the variables are perfectly correlated and if

the vectors are perpendicular the variables are independent.17 In the example depicted, if

the standard deviation of pro�t income increased, holding wage income's standard deviation

�xed, then the length and angle between consumption and wage income would both become

17First, let τc = τw = 0 for simplicity, allowing c = wL+ π. Consumption can be represented as a vector
equal to the sum of the vectors of wage and pro�t income where the lengths of all of the vectors equal
the standard deviation of the variable. The cosine of the angle between wage income and consumption,
using the law of cosines, can be written as cos(θ) = (σ2

c + σ2
wL − σ2

π)/(2σwLσc). The numerator can be
reduced to 2cov(wL, c) using the variance formula var(π) = var(c−wL) = var(c) + var(wL)− 2cov(wL, c).
Therefore the cosine of the angle between wage and pro�t income is equal to the correlation between them;
cos(θ) = cov(wL, c)/(σwLσc) = ρwL,c.
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Figure 2.6: Vector Representation of Shocks
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larger. In this example increasing the standard deviation of pro�t income causes the standard

deviation of consumption to increase and causes the correlation between consumption and

wage income to decrease.18

Utility maximization requires: i) the marginal disutility from supplying labor equals the

marginal utility of the income it produces and ii) the ratio of marginal utilities from total

consumption c and β is equal to the consumption tax rate times income net of taxes. When

the consumption tax rate is zero there is no distortion between consumption goods, and

the expected marginal utility with respect to β is zero. Composing utility in terms of total

consumption c and a composition parameter β simpli�es the exposition of deadweight loss

because β encompasses all behavioral responses (substitution e�ects) between goods.19

U1(c, β, L)(1− τcβ)(1− τw)w = U3 (2.1)

U2

U1

= τc((1− τw)wL+ π) (2.2)

C. Government The government produces the public good G and �nances its production

18If pro�t income and wage income were negatively correlated increasing the standard deviation of pro�t
income could decrease the standard deviation of consumption. Therefore, even if pro�t is more volatile than
wage income consumption may be less volatile than wage income.

19For more details see the appendix.
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with taxes on consumption and wage income. Two assumptions are made for expository

convenience: i) the supply of the public good is set equal to the tax revenue, g = R and

ii) the utility function is additive such that U1,2 = 0.20 The expected utility of the indi-

vidual can be completely characterized by the moments of private and public consumption.

The analysis below focuses on the �rst two moments, which is su�cient if the production

shocks are distributed with a joint distribution characterized fully by their �rst two moments

(e.g. normal, log-normal, and uniform distributions) or if the utility function is quadratic,

but the results are consistent with cases where expected utility is characterized by higher

moments.21,22 The level of social welfare can be written as

E[u] =
Z
U(c, g)f(c, R, σ2

R, σ
2
c ) ≡M(C, σ2

c , β, L) +G(R, σ2
R) (2.3)

M1 ≥ 0, G1 ≥ 0,M4 ≤ 0,M2 ≤ 0, G2 ≤ 0

where R and c are the mean levels of the private and public consumption, σ2
c and σ2

R are

the variances of private and public consumption respectively, and G represents the expected

utility from public consumption.23 The variance of tax revenue is a function of the tax rates,

the tax bases, and the economic conditions.24,25

σ2
R = τ 2

wL
2σ2

w + τ 2
c β

2σ2
y + 2τwτcβLσy,w (2.4)

20Assuming the government must have a balanced budget abstracts away from debt issues which are not
the focus of this paper. This assumption may be less of an abstraction for state governments, forty-nine of
which have balanced budget requirements. In practice these balanced budget requirements do not preclude
state debt but they do add additional costs. In this model the ability of the government to smooth revenue
is modeled in its risk attitude.

21In the case where two moments are su�cient, the indi�erence curves can be shown to be quasi-concave
as long as U ′′ < 0.

22Analysis in the appendix considers expected utility which is characterized by higher moments.
23The shape of M can di�er from the shape of G, allowing for di�erent attitudes of risk in public and

private consumption.
24σ2

c = (1− τcβ)2((1− τw)2L2σw + σπ + 2(1− τw)Lσw,π
25Base factors L, β are choice variables allowed to vary with the state of nature. For expository ease they

have been treated as constants but their variance can be included.
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The variance of tax revenue given in equation (2.4) provides a structural equation for

the empirical decomposition. First, aggregate tax revenue can be decomposed into its parts;

income tax revenue volatility, sales tax revenue volatility, and the covariance of income and

sales tax revenue. Second, each of these parts can be decomposed into its parts; the tax rate,

the tax base, and the economic conditions as demonstrated in equation (2.5) for the sales

tax. In equation (2.5) the sales tax revenue volatility, the sales tax rate, and the volatility of

the economy are observed but the base β is unobserved because it is a complex combination

of economic conditions, tax rates, and tax laws. The base is estimated in equation (2.5.1) as

a function of tax rate variables τ and economic condition variables x.26 The tax variables

include tax rates from other bases (to account for tax shifting), information on the tax base

(such as the number of brackets in the tax schedule), and τc. The economic variables include

the volatility of state level GDP, personal income, population.

log(σ2
Rc) = 2log(τc) + 2log(β) + log(σ2

y) (2.5)

log(β) = δ0 + log(τ )ψ1 + log(x)ψ2 + ν (2.5.1)

log(σ2
Rc) = δ0 + log(τ )δ1 + log(x)δ2 + ε (2.5.2)

For the empirical analysis the volatility is measured as the squared deviations from trend

to focus on the short-run variability, discussed previously in the descriptive statistics section.

Therefore, the volatility of state level GDP included in x in equation (2.5.2) is given by

σ2
gdp,t = (gdpt − gdptime trend)2.

26The equation for the income tax base assumes the unobservable characteristics ε is additively separable
from the observable characteristics. This assumption is loosened in the empirical decomposition by using a
weighting method.
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2.5 Empirical Decomposition

The theoretical model demonstrates the increase in tax revenue volatility is due to changes

in tax rates, ampli�ed volatility in economic conditions, or tax base changes. Tax rates,

economic conditions, and tax revenues are observable; however, tax base changes, such as the

increase in e-commerce, are unobservable, which complicates the empirical decomposition.

Adapting empirical decomposition methods pioneered by Oaxaca (1973), Blinder (1973), and

DiNardo, Fortin, and Lemieux (1996) allows me to quantify tax base changes in a similar

way as they quantify discrimination in pay or the e�ect of unions, which are also unobserved.

The baseline model is estimated using a weighting method similar to DiNardo, Fortin, and

Lemieux (1996) which can be thought of as a weighted extension of the decomposition method

described by Oaxaca (1973) and Blinder (1973). For this reason I explain the method in

terms similar to Oaxaca (1973).27

Intuitively, the contributions of these factors are determined by comparing predicted tax

revenue volatility in di�erent counterfactual scenarios. For example, the contribution of

tax factors is quanti�ed by the di�erence between the actual tax revenue volatility in the

2000s with the predicted tax revenue volatility in the 2000s if the tax factors in the 2000s

were equal to their values in the previous decades.28 Similarly, the contribution of economic

conditions can be quanti�ed using the observed di�erence in economic volatility. Changes

in the tax base are captured by changes in the regression coe�cients of the tax rates and

economic conditions.29 The di�erence between the coe�cients estimated in the before and

after periods estimates the change in the relationship between tax revenue volatility and the

27The weighting method, described in the appendix, is chosen as the baseline case because a test of
nonlinearity in the Oaxaca (1973) estimate suggests nonlinearities exist. In this case the weighting method
is preferred because it controls for nonlinearities and is asymptotically more e�cient than matching or
regression models, (Hirano, Imbens, and Ridder, 2003). In this context controlling for nonlinearities will
decrease the upward bias in the structural factor estimates from the Oaxaca (1973) analysis.

28Therefore the contribution of the base changes is the increase in volatility unexplained by the observed
characteristics, similar to the treatment on the treated (TOT).

29The empirical decomposition compares the observable characteristics and the relationship between ob-
servable characteristics between the before and after period. The identifying assumption states that on
average di�erences in the residuals cancel, leaving only the observable characteristics and their relationships.
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explanatory tax rates and economic conditions, which is the di�erence in the tax base.

2.5.1 Method

Equation (2.6) decomposes the three groups of factors where η1 is an indicator function

for the years after the structural break, ηstate indicates the state �xed e�ects, and τ and

x are matrices of all of the tax and economic factors respectively. This equation nests the

following equations which estimate the volatility separately for the before and the after years

denoted by x|0 and x|1 respectively.30 In equation 2.6 δ1 = γ1 and δ2 = γ2. The coe�cients

on the economic and tax variables interacted with the time group dummy, δ3 and δ4, are

equal to the di�erence between the coe�cients from the two separate equations, γ1−φ1 and

γ2 − φ2 respectively.

log(σ2
Ri

) = δ0 + log(x)δ1 + log(τ )δ2 + (η1 ∗ log(x))δ3 + (η1 ∗ log(τ ))δ4 + η1 + ηstate + ε

(2.6)

log(σ2
Ri|1) = γ0 + log(x|1)γ1 + log(τ|1)γ2 + ηstate + ε|1

log(σ2
Ri|0) = φ0 + log(x|0)φ1 + log(τ|0)φ2 + ηstate + ε|0

The estimated di�erence in volatility is given in equation 2.7 and decomposed by rearranging

terms and adding and subtracting x̄|1φ̂1 + τ̄|1φ̂2, where x̄|1 denotes the average value in

the after period. The contribution of tax base changes is captured by the �rst three terms

in equation 2.7 which encompass the change in intercept and the change in coe�cients.

The di�erences attributed to observable di�erences in economic conditions and tax rates are

30The before and after years represent the years before and after the structural break found by doing a
Quandt likelihood ratio test. For more information on the Quandt likelihood ratio test see the appendix.
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captured by the fourth and �fth terms respectively.31

∆̂ = Ûlog(σ2
Ri|1)−Ûlog(σ2

Ri|0) (2.7)

= γ̂0 + log(x̄|1)γ̂1 + log(τ̄|1)γ̂2 − φ̂0 − log(x̄|0)φ̂1 − log(τ̄|0)φ̂2

= γ̂0 − φ̂0 + log(x̄|1)(γ̂1 − φ̂1) + log(τ̄|1)(γ̂2 − φ̂2)

+ (log(x̄|1)− log(x̄|0))φ̂1

+ (log(τ̄|1)− log(τ̄|0))φ̂2

= η̂1 + log(x|1)δ̂3 + log(τ |1)δ̂4| {z }
Tax Base

+ (log(x|1)− log(x|0))δ̂1| {z }
Economic Conditions

+ (log(τ |1)− log(τ |0))δ̂2| {z }
Tax Rates

2.5.2 Identi�cation and Speci�cation Checks

This decomposition relies on the conditional mean of the error being zero. This assump-

tion allows the counterfactual volatility to be written as φ0 +E[x|η1 = 1]φ1 +E[τ |η1 = 1]φ2

because the error term conveniently drops out. Intuitively, this assumption assigns the dif-

ference in tax revenue volatility between the before and after periods to either di�erences

in the observable characteristics (tax policy or economic conditions) or di�erences in the

estimated coe�cients (tax base) but not unobservable characteristics.

Identifying Assumption:

The conditional mean of the error is equal to zero, E[ε|x, τ, η1, ηstate] = 0

The identi�cation in this decomposition is threatened if there are endogenous or omitted

variables which cause the identifying assumption not to hold. The panel data is useful both

for providing additional controls and for allowing a series of speci�cation checks. First, to

check for omitted variables the regressions are run with and without state-neighbor interacted

with time �xed e�ects. These additional controls check for common unobservable variables

31The formulas in equation 2.7 are more complicated in the two robustness speci�cations run and reported
in the appendix. First, when state �xed e�ects are allowed to di�er between the two groups the term does
not drop out. However, an F-test fails to reject the null all coe�cient estimates are the same when the state
�xed e�ects are allowed to di�er. Second, when state-neighbor �xed e�ects are included these terms would
not drop out. These additional variables would be included in the unobserved group.
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across groups of states for example, unobserved shocks that would a�ect both state GDP and

tax revenues in the Northeast. Di�erent state-neighbor groups are used and the estimated

coe�cients are robust to these controls. This speci�cation test alleviates some concern of

omitted variables but is unable to account for state-year speci�c shocks.

Second, the importance of state spill-over e�ects is checked by including the tax rates and

economic variables from neighboring states. Third, concerns of simultaneity of tax revenue

volatility and tax policy are checked by replacing the tax rates with their two year lags. The

contemporaneous tax rate is highly correlated with the tax rate from two years prior but the

contemporaneous volatility of tax revenue could not be used to in�uence the tax rate from

two years earlier. Intuitively, the volatility of tax revenue is de�ned as the squared deviations

from trend, or transitory shocks, which makes conditioning policies on them di�cult.32 The

estimated coe�cients are robust to both of these speci�cation checks, further alleviating

concerns of the validity of the identifying assumption.

Finally, the importance of tax base measures are checked by including controls for the

number of tax brackets a state's income and corporate taxes have. Intuitively and statis-

tically, the number of brackets in a given tax code is an important factor in the tax base.

In addition, the number of brackets is an independent variable highly correlated with other

variables, speci�cally tax rates. Therefore measuring the change in coe�cients from omitting

the controls for tax brackets provides an estimate of the e�ect of omitting other time varying

tax policy changes which can be complex and nuanced.33 Time invariant state speci�c tax

laws are controlled for with the state �xed e�ects. The robustness of the estimates to this

speci�cation check alleviates concerns over the impact of other time varying tax law changes.

The ability to causally interpret the decomposition depends on three key factors. First,

32As an additional robustness check an autoregressive process is estimated to �lter out any time correlation
leaving only transitory shocks. The estimates are reasonably robust to this speci�cation.

33For example, in Milwaukee County, Wisconsin marshmallows are subject to the local food
and beverage tax unless they contain �our and in 2009 Wisconsin changed the law such that
ice cream sandwiches sold in grocer's frozen food section are no longer subject to this tax.
(http://www.revenue.wi.gov/faqs/pcs/expo.html. Tax 11.51 Guidelines "Marshmallows unless they contain
�our.")
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the identifying assumption must hold. Second, empirical decompositions su�er from general

equilibrium e�ects when the counterfactual of interest is out of sample, for example changes

in the counterfactual world without unions. However, the counterfactuals of interest in

this paper are policies in previous decades, meaning the counterfactuals are within sample.

Finally, decompositions of di�erences between non-manipulatable groups, such as the before

and after years in this analysis, are subject to Holland's (1986) choice critique. However,

the grouping in this analysis fundamentally di�ers from race and gender, which Holland

refers to, because this analysis observes the same states in both before and after groups,

thus alleviating some of these concerns.

2.6 Results

Aggregate tax revenue volatility increased, on average, by $712 billion in the 2000s. The

�rst stage of the decomposition given in equation (2.8) reports 52 percent of the aggregate

increase in tax revenue volatility is due to increases in the volatility of the income tax, 20

percent due to the sales tax, 14 due to the corporate income tax, and the remaining 14 percent

due to the covariances. The �rst stage decomposition is consistent with the explanation tax

revenue volatility increased due to an increase in the reliance on the income tax.

∆̂A = ∆̂I
(52%)

+ ∆̂S
(20%)

+ ∆̂C
(14%)

+ ∆̂I,S
(7%)

+ ∆̂I,C
(4%)

+ ∆̂S,C
(3%)

(2.8)

Column (1) of Table 2.2 reports the second stage decomposition of aggregate tax revenue

volatility into tax rates, economic conditions, and tax base changes. Changes in tax rates are

the most important factors explaining aggregate tax revenue volatility, explaining 70.26 per-

cent of the increase. Changes in the economic conditions explain 28.95 percent and changes

in the tax base explain only 0.78 percent. The ninety-�ve percent con�dence intervals are

calculated by bootstrapping the sample, clustering by state, and reporting the 2.5 and 97.5

percentiles. These estimates are robust to extreme outliers and produce asymmetric con-

26



Table 2.2: Results

Percent Explain Income Sales Corporate

∆ Tax Rates 70.26 % 66.18 % 52.08 % 84.14 %
[ 58.42 , 88.49 ] [ 50.62 , 72.56 ] [ -40.99 , 67.43 ] [ 73.18 , 88.78 ]

∆ Economic Conditions 28.95 % 33.04 % 47.35 % 15.04 %
[ 10.69 , 40.69 ] [ 18.93 , 39.59 ] [ 9.99 , 66.77 ] [ 4.66 , 19.74 ]

∆ Tax Base 0.78 % 0.80 % 0.69 % 0.82 %
[ 0.70 , 0.87 ] [ 0.70 , 0.83 ] [ 0.14 , 0.81 ] [ 0.76 , 0.84 ]

State FE Yes Yes Yes Yes
Observations 2350 2350 2350 2350

Bootstrapped 95 percentile con�dence interval (3000 replications) clustered by state.

Base Case: cubic time trend and kernel matching to produce weights.

Weighted estimates of equation 2.6.

Volatility of revenue and economic variables calculated as (x− xtime trend)2.

�dence intervals. An F-test rejects the null that changes in economic conditions are more

important than changes in tax rates in explaining the increase in tax revenue volatility, con-

�rming the intuition from the ninety-�ve percent con�dence intervals. Columns (2) through

(4) report the decomposition separately for the income, sales, and corporate tax respectively.

Similar to the changes in aggregate tax revenue volatility, changes in income and corporate

tax revenue volatility is explained principally by changes in tax rates followed by changes

in economic conditions. In contrast, the evidence that tax rate changes explain the increase

in sales tax revenue volatility is weaker because the ninety-�ve percent con�dence interval

includes zero.

Intuitively, the con�dence intervals are determined by the variation across states in how

much each factor explains the increase in tax revenue volatility. For the tax base, the

con�dence intervals are very precise implying there is very little variation across states in

the amount of the increase in tax revenue volatility explained by changes in tax base. In
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contrast, the con�dence intervals for tax rate changes for the sales tax are large. Intuitively,

there is a lot of variation across states in the changes in sales tax rates because of the

variation in how states implement the sales tax. Therefore, the estimate of the importance

of changes in tax rates for the sales tax varies across bootstrap samples depending on the

states in the sample, causing a large con�dence interval.

Changes in the tax base are not economically important in explaining the tax revenue

volatility. Intuitively, for changes in the tax base to be an important factor, the changes in

the tax base would have to change the volatility of the base. For example, if online shopping

caused the sales tax base to be left with only large durable goods, such as cars, then this

change in the tax base would have caused a large increase in tax revenue volatility because

large durable goods are more volatile than the sales tax base as a whole. In contrast, if the

consumption goods being bought online are a representative bundle of the sales tax base, at

least with respect to volatility, then even if the sales tax base decreased signi�cantly because

of online shopping the volatility of the base may not change. These results suggest changes

in the tax base have not changed the volatility of the tax base.

Columns (2) and (3) of Table 2.3 report two alternative methods for estimating tax

revenue volatility. The baseline case given in the �rst column estimates a cubic time trend

and uses a kernel estimation to produce weights. The second column reports the results

with inverse probability weights estimated by a probit. The third column reports the results

with a time trend estimated by a Hodrick-Prescott �lter (Hodrick and Prescott, 1997). The

results are qualitatively and quantitatively similar in both of the alternative methods.
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Table 2.3: Alternative Model Speci�cations

Baseline IPW HP Filter
Income

∆ Tax Rates 66.18 % 64.19 % 80.88 %
[ 50.62 , 72.56 ] [ 35.38 , 71.68 ] [ 61.5 , 89.83 ]

∆ Economic Conditions 33.04 % 35.06 % 18.26 %
[ 18.93 , 39.59 ] [ 19.08 , 44.28 ] [ -7.19 , 26.91 ]

∆ Tax Base 0.8 % 0.76 % 0.87 %
[ 0.7 , 0.83 ] [ 0.64 , 0.82 ] [ 0.82 , 0.89 ]

Sales
∆ Tax Rates 52.08 % 50.44 % 49.38 %

[ -40.99 , 67.43 ] [ -62.15 , 66.75 ] [ 26.81 , 57.58 ]

∆ Economic Conditions 47.35 % 48.98 % 49.82 %
[ 9.99 , 66.77 ] [ 0.23 , 72.25 ] [ 30.58 , 58.07 ]

∆ Tax Base 0.69 % 0.63 % 0.79 %
[ 0.14 , 0.81 ] [ -0.04 , 0.78 ] [ 0.66 , 0.84 ]

Corporate
∆ Tax Rates 84.14 % 83.79 % 73.23 %

[ 73.18 , 88.78 ] [ 71.35 , 88.6 ] [ 58.17 , 80.71 ]

∆ Economic Conditions 15.04 % 15.45 % 25.97 %
[ 4.66 , 19.74 ] [ 4.14 , 20.66 ] [ 6.25 , 32.84 ]

∆ Tax Base 0.82 % 0.78 % 0.79 %
[ 0.76 , 0.84 ] [ 0.71 , 0.82 ] [ 0.72 , 0.82 ]

Bootstrapped 95 percentile con�dence interval (3000 replications) clustered by state.

Bootstrap clustered by state.

Inverse probability weights constructed from probit estimates.

Weighted estimates of equation 2.6 with di�erent model speci�cations.

Volatility of revenue and economic variables calculated as (x− xtime trend)2.
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2.7 Ramsey Problem Decomposition

The government's objective function di�ers from those in traditional optimal taxation

because the mean and variance of both private and public consumption enters explicitly. The

government maximizes the expected utility of the representative individual who has utility

over both private and public consumption. Previously in this paper it was shown that the

expected utility function can be written as a function of the mean and variance of public

and private consumption with minimal additional assumptions.34 Aggregate production

uncertainty, which is assumed to be uninsurable, enters the individual's income through

uncertainty in wages and pro�ts such that wages and pro�ts are not perfectly correlated. The

aggregate production uncertainty is split between public and private consumption depending

on the tax rates on wage income and consumption.

This section begins with the full government's problem, which consists of costs from

volatile public and private consumption as well as the typical costs from behavioral changes

by the representative individual due to the use of distortionary taxes. This analysis pro-

duces a volatility-adjusted Ramsey rule which characterizes the government's optimal tax

rates when uncertainty and behavioral distortions exist. The analysis then turns to three

cases which decompose this condition into its separate parts. These cases are depicted in the

box below. The �rst case considers the planner's problem of distributing certain aggregate

production between public and private consumption. The second case considers the planner's

problem of distributing uncertain aggregate production between public and private consump-

tion. Finally, the third case considers the government's problem of taxing the representative

individual's certain wage income and consumption to provide public consumption.

34The expected utility function can be written as a function of the higher moments of public and private
consumption. When the distribution functions of public and private consumption are characterized by the
�rst two moments (e.g. normal, log-normal, and uniform distributions) the expected utility function reduces
to a function of the mean and variance of public and private consumption. This is discussed previously in
the model section.
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Certain Uncertain

Planner Case 1 Case 2

Pareto Optimum Volatility Modi�ed

Competitive Case 3 Full Model

Behavioral Changes

(PF literature)

The timing of the model di�ers between the certain and uncertain cases as given below.

In the certain cases (cases 1 and 3) nature decides the aggregate production state of the world

before the government or individual makes their decisions. In the uncertain case (case 2) the

government must make its state-independent decision before the aggregate production state

is determined, causing uncertainty for the government. In both the certain and uncertain

cases the individual's decisions are made after the aggregate production state of the world

is determined; hence, there is no uncertainty for the individual in any case.

Certain Case Uncertain Case

Order of Decisions Choices Order of Decisions Choices

1st - Nature θ 1st - Government τ or ρ

2nd - Government τ 2nd - Nature θ

3rd - Individual c, L, β 3rd - Individual c, L, β

4th - Production occurs 4th - Production occurs

5th - Utility realized 5th - Utility realized

Full Government's Problem. The government chooses the tax rates on wage income and

consumption before the state is realized and the individual chooses the amount of labor to

supply and the consumption composition after the state is realized. Each of the government's

tax bases are state-dependent, meaning conventional approaches to evaluating alternative
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tax structures (e.g., deadweight loss for equal revenue streams) encounter complications

because di�ering tax structures will change the pattern of returns across states of nature. If

the government is risk neutral comparing the expected loss of utility for an expected level

of revenue will be su�cient. However, if the government is sensitive to both the level and

volatility associated with a revenue stream, then comparing expected utility losses will be

inadequate. The government's attitude toward risk depends upon the individual's preferences

and the ability of the government to smooth revenue.35

maxτc,τw M(c, σ2
c , β, L) +G(R, σ2

R)

subject to

c = (1− τcβ)(wL(1− τw) + π) σ2
c = (1− τcβ)2σ2

y

R = τcβ(wL(1− τw) + π) + τwwL σ2
R = τ 2

c β
2σ2

y + τ 2
wL

2σ2
w + 2τcβτwLσy,w

The government's �rst-order conditions given in equations (SCτc) and (SCτw) encompass

the full tradeo� between the costs from volatile public and private consumption and the

deadweight loss due to behavioral changes by the individual in response to distortionary

taxes. The �rst-order conditions can be broken into three parts; the marginal bene�t of

public and private consumption, the loss due to behavioral changes, and the loss due to

volatility.

The loss due to behavioral changes consists of the weighted sum of the elasticities of

labor and β with respect to the given tax rate where the weights scale the elasticities by

their impact on utility.36 Similarly, the loss due to volatility consists of the weighted sum of

the elasticities of the variance of private and public consumption with respect to the given

tax rate.37 The losses due to behavioral changes and volatility create wedges that cause

35y = wL(1− τw) + π and σy = (1− τw)2L2σ2
w + σ2

π + 2(1− τw)Lσw,π
36Weights on the base elasticities: ωβ,τc = G1, ωL,τc = G1wL(τcβ(1−τw)+τw)

τcβy
, ωβ,τw = G1τcβy

(1−τcβ)wLτw
, ωL,τw =

G1wL(τcβ(1−τw)+τw)
(1−τcβ)wLτw

.

37Weights on the variance elasticities: ωσ2
c ,τc

=
−M2σ

2
c

τcβy
, ωσ2

R
,τc =

−G2σ
2
R

τcβy
, ωσ2

c ,τw
=

−M2σ
2
c

(1−τcβ)wLτw
, ωσ2

R
,τw =
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the marginal bene�t of public consumption to di�er from the marginal bene�t of private

consumption.

FOCτc : G1 = M1−ωβ,τcεβ,τc − ωL,τcεL,τc| {z }
Behavioral

+ωσ2
c ,τc
εσ2

c ,τc
+ ωσ2

R,τc
εσ2

R,τc| {z }
Volatility

(SCτc)

FOCτw : G1 = M1 − ωβ,τwεβ,τw − ωL,τwεL,τw + ωσ2
c ,τw

εσ2
c ,τw

+ ωσ2
R,τw

εσ2
R,τw

(SCτw)

The wedge due to behavioral changes is always nonnegative but the wedge due to volatility

can be positive or negative because the variance of tax revenue is U-shaped with respect to

an individual tax rate. Therefore, the marginal cost from volatility with respect to a given

tax rate is positive if the tax rate is relatively larger than the other tax rates, causing it to

be on the upward sloping part of the tax revenue curve.

The e�cient provision of public consumption is determined by the volatility-adjusted

Samuelson conditions given in equations (SCτc) and (SCτw) which di�ers from the tradi-

tional Samuelson condition by the presence of the two wedge terms. The provision of public

consumption with these two wedge terms can be greater or less than the provision without

the wedge terms because the wedge due to volatility can be positive or negative. If the

volatility wedge is su�ciently negative then the e�cient public good provision is larger than

in the case without these wedges (e.g. case 1).38 The volatility wedge becomes more negative

as the individual becomes more risk averse with respect to private consumption. When this

occurs, the government has an incentive to raise its tax rates to shift risk into the public

good, but raising the tax rates also increases the provision of public consumption.

The optimal tax rates are characterized by the volatility-adjusted Ramsey rule given in

equation (2.9) and produced by combining the �rst-order conditions in equations (SCτc)

and (SCτw). The volatility-adjusted Ramsey rule states the sum of the elasticity of the tax

−G2σ
2
R

(1−τcβ)wLτw
.

38The volatility wedge is su�ciently negative when the sum of the volatility wedge and the behavioral
wedge is negative.

33



base and the elasticity of the cost from volatility, both with respect to a given tax rate and

weighted by their contribution to utility, should be equal across tax rates.39,40 The utility

weights determine the relative importance of behavioral changes and volatility. The welfare

weight on volatility encompasses the risk preferences of the representative individual. These

risk preferences can be thought of as encompassing the relative ability of the individual and

government to smooth volatile income streams which, for simplicity, has been left out of this

model.

ωB,τcεB,τc + ωσ,τcεσ,τc = ωB,τwεB,τw + ωσ,τwεσ,τw (2.9)

This condition nests the traditional Ramsey rule, which in a special case reduces to setting

tax rates that are inversely proportional to their elasticities of demand. Similar intuition

holds in the volatility-adjusted Ramsey rule. A tax base will be taxed relatively higher as

the individual becomes less responsive to the tax rate, captured by the base elasticities. In

addition, the volatility-adjusted Ramsey rule demonstrates that the tax base with smaller

costs due to volatility will be taxed relatively higher, captured by the volatility elasticities.

There are two considerations with the costs of volatility. First, changing the tax rates on

wage income and consumption changes the distribution of risk between public and private

consumption. Therefore, by taxing state-dependent tax bases the government is able to

share some of the aggregate production risk within public good consumption. Second, the

government is able to hedge some of the idiosyncratic risk involved with a given tax base

by taxing multiple tax bases. Therefore, it is possible to decrease the volatility of public

consumption by raising a tax rate.

To decompose the volatility-adjusted Ramsey rule the analysis turns to three special

cases. Each of these cases highlights a di�erent part of the full tradeo� faced by the govern-

ment.

Case 1: Planner's Problem with Certainty. In this case the planner chooses L, c, R, and

39The Ramsey rule expanded:
−ωL,τcεL,τc−ωβ,τcεβ,τc +ωσ2

c ,τc
εσ2

c ,τc
+ωσ2

R
,τcεσ2

R
,τc = −ωL,τwεL,τw−ωβ,τwεβ,τw +ωσ2

c ,τw
εσ2

c ,τw
+ωσ2

R
,τwεσ2

R
,τw

40ωB,τi = −ωβ,τi , ωσ,τi = ωσ2
c ,τi

, εB,τi = εβ,τi +(ωL,τi/ωβ,τi)εL,τi , and εσ,τi = εσ2
c ,τi

+(ωσ2
R
,τi/ωσ2

c ,τi
)εσ2

R
,τi
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β (labor, the level of public and private consumption, and the composition of private con-

sumption) after the state of nature is realized. The planner produces the e�cient allocation

without losses due to behavioral changes and there is no uncertainty to result in costs from

volatility.

maxc,β,R,L M(c, σ2
c , β, L) +G(R, σ2

R)

subject to

θf(L) = c+R

The �rst-order condition with respect to labor states the marginal cost of supplying labor

should equal the marginal bene�t. The �rst-order condition with respect to β states the

marginal bene�t should be zero, implying that a shift of consumption either towards or away

from taxable consumption would decrease utility. The �rst-order conditions with respect

to public consumption dictate the marginal bene�ts from public and private consumption

should be equal.41

FOCL : M4(c, σ2
c , β, L) = M1(c, σ2

c , β, L)θf ′(L)

FOCβ : M3 = 0

FOCR : G1(R, σ2
R) = M1(c, σ2

c , β, L) (SC.1)

The last �rst-order condition, given by equation (SC.1), is the Samuelson condition charac-

terizing the e�cient provision of public consumption. In contrast to the Samuelson condition

given in the full government's problem this condition does not have the wedges due to be-

havioral or volatility costs. The behavioral wedge can be thought of as an additional cost

41Equal marginal bene�ts between public and private goods results from the assumption of a representative
individual and the assumption that the intermediate good is costless to transform into public and private
consumption.
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to the government from transforming private consumption into public consumption. The

volatility wedge can be either an additional cost or an additional bene�t of transforming pri-

vate consumption into public consumption. Therefore, the provision of public consumption

in this case could be greater or smaller than in the full government's problem depending on

the magnitudes of the wedges in the full government problem.

Case 2: Planner's Problem with Uncertainty. In this case the planner chooses ρ, L,

and β (the fraction of uncertain production to allocate to the public sector, labor, and the

composition of private consumption). The planner allocates resources without losses due

to behavioral changes but incurs a cost from volatility due to the uncertainty in aggregate

production.

maxρ,L,β M(c, σ2
c , β, L) +G(R, σ2

R)

subject to

c = (1− ρ)θf(L) σ2
c = (1− ρ)2f(L)2σ2

θ

R = ρθf(L) σ2
R = ρ2f(L)2σ2

θ

The �rst-order condition with respect to labor states that the marginal cost of supplying

labor should equal the marginal bene�t, where the change in volatility is included. The �rst-

order condition with respect to β states the marginal bene�t should be zero, which is the

same as in the �rst case and therefore omitted below. Finally, the �rst-order condition with

respect to ρ states the marginal bene�t of public consumption should equal the marginal

bene�t of private consumption plus the marginal cost due to volatility from shifting aggregate
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production from private consumption to public consumption.

FOCL : M4 =
�
(1− ρ)M1 + ρG1

�
θf ′(L) +

�
(1− ρ)2M2 + ρ2G2

�
2f(L)f ′(L)σθ

FOCρ : G1 = M1 +
2ρσ2

θ

RεR,ρ

�
(1− ρ)M2 − ρG2

�
(SC.2)

The last �rst-order condition given in equation (SC.2) is the Samuelson condition, in this

case with uncertainty. In this case, the provision of public consumption can be greater or less

than the case with certainty (case 1) depending on the bene�ts of risk sharing. Speci�cally,

if the marginal cost from private consumption volatility is larger than the marginal cost from

public consumption volatility then the government has an additional incentive to increase

the provision of public consumption.42

Table 2.4 demonstrates the marginal e�ects on the mean and variance of private and

public consumption as production is shifted to the public sector. Because the planner can

shift production without loss due to behavioral changes, the marginal e�ects cancel for the

mean, shown in the �rst column of table 2.4. The variance of public and private consumption

is convex in production meaning a shift in production can increase or decrease the sum of

the variances.43 For example, if the risk preferences for public and private consumption are

represented by the same linear function, the best allocation of risk occurs when ρ = 1/2 and

the cost of risk increases convexly away from this point as demonstrated in �gure 2.7.

42This can be seen by noting that the provision of public consumption is larger in this case than in the �rst
case when the marginal bene�t of public consumption is less than the marginal bene�t of private consumption
G1 < M1. This occurs when the volatility wedge is negative. The volatility wedge is negative when the
marginal cost from private consumption volatility is larger than the marginal cost from public consumption
volatility [−(1− ρ)M2] > [−ρG2], given that M2 < 0 and G2 < 0.

43Notice however volatility in the economy does not depend on ρ since volatility in the economy is simply
σ2
θ . This is also apparent if public and private consumption are considered perfect substitutes, in which case,

the planner would care about the variance of c+R. The variance of c+R is the variance of c plus the variance
of R plus 2 times the covariance. In this case: σ2

c + σ2
R + 2σc,R = (1− ρ)2σ2

θ + ρ2σ2
θ + 2(1− ρ)ρσ2

θ = σ2
θ .
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Table 2.4: Shifting Production Income and Risk E�ects

∂
∂ρ

∂σ2
i

∂ρ

C −E[θf(L)] −2(1− ρ)σ2
θ

R E[θf(L)] 2ρσ2
θ

Total 0 −2σ2
θ + 4ρσ2

θ

Figure 2.7: Risk is U-shaped With Respect To ρ
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Case 3: Government's Problem with Certainty. In this case the government and repre-

sentative individual make their choices after the state of nature is realized. The government

chooses the tax rates and the individual chooses both β and L. The government's objective

function is given below.

maxτc,τw M(c, σ2
c , β, L) +G(R, σ2

R)

subject to

c = (1− τcβ)(wL(1− τw) + π)

R = τcβ(wL(1− τw) + π) + τwwL

The �rst-order conditions with respect to the consumption and wage income tax rates

are the Samuelson conditions for this case and state that the marginal bene�t of public

consumption should equal the marginal bene�t of private consumption plus the marginal

cost from behavioral changes. The wedge due to the marginal cost from behavioral changes

is nonnegative and hence, in this case the provision of public consumption is less than the

provision in the �rst case.44 The wedge consists of the elasticities of the tax base factors β and

L which characterize the responsiveness of the individual to a given tax. If the individual is

very responsive to a tax rate change the elasticities will be large in magnitude.45 The utility

weights ωβ and ωL scale the changes in β and labor by their impact on utility.

FOCτc : G1 = M1 − ωβ,τcεβ,τc − ωL,τcεL,τc (SC.3τc)

FOCτw : G1 = M1 − ωβ,τwεβ,τw − ωL,τwεL,τw (SC.3τw)

The result that tax rates should be set proportional to the inverse of their price elasticities is

a special case of equations (SC.3τc) and (SC.3τc) where the cross-price elasticities are equal

to zero. Below, this result is demonstrated for the consumption tax rate and its distortion on

β from equation (SC.3τc). However, this could also be done with equation (SC.3τw) for the

44The wedge is nonnegative because ωβ,τi > 0, ωL,τi > 0, εβ,τi < 0 and εL,τi < 0.
45The elasticities are negative; hence, the more responsive the individual is to a tax rate change the more

negative the elasticity is.
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wage income tax rate. The price of β captures the di�erence in prices between the taxed and

untaxed set of consumption goods, assumed to be one in this model.46 Although this result

holds only in the special case where the cross-price elasticity is equal to zero and there is

certainty in aggregate production, the intuition that tax bases with larger elasticities should

be taxed at a lower level holds generally.

G1 = M1 − ωβ,τcεβ,τc − ωL,τcεL,τc ωβ,τc = G1, assume εL,τc = 0

G1 = M1 −G1
∂β

∂Pβ

τc
β

Pβ
Pβ

Multiply by
Pβ
Pβ

M1 −G1

G1

=
∂β

∂Pβ

Pβ
β

τc
Pβ

v = εβ,Pβ
τc
Pβ

v

εβ,Pβ
=

τc
Pβ

Combining the two �rst-order conditions produces the Ramsey rule in the case of certain

aggregate production, given in equation (2.10) below. The Ramsey rule states the marginal

distortion caused by a given tax should be equal across tax bases. The Ramsey rule is

a generalization of the inverse elasticity rule demonstrated above. The Ramsay rule for

this case (certainty in aggregate production) is generalized to the case with uncertainty in

aggregate production in the full government's problem by volatility-adjusted Ramsey rule.

ωβ,τcεβ,τc + ωL,τcεL,τc| {z }
ωB,τwεB,τw

= ωβ,τwεβ,τw + ωL,τwεL,τw| {z }
ωB,τwεB,τw

(2.10)

2.8 Imbalanced State Government Portfolios

This section produces a su�cient condition for determining whether a government in-

e�ciently relies on a given tax base by rewriting the volatility-adjusted Ramsey rule. The

su�cient condition is then estimated using data from U.S. states to determine which states

46The elasticity of β with respect to its price is negative, as is v, therefore the left hand side is positive.

40



ine�ciently rely on the income and sales tax bases. The previous section writes the volatility-

adjusted Ramsey rule in terms of the elasticities of labor and β to highlight the behavioral

costs from taxation. This section writes the volatility-adjusted Ramsey rule in terms of the

elasticity of tax revenue with respect to a tax rate to produce a su�cient condition that does

not depend on the functional form of utility.

The volatility-adjusted Ramsey rule can be written as the weighted sum of the weighted

elasticities of tax revenue and the variance of tax revenue as in equation (2.11).47 The

weighted elasticities are the elasticities weighted by the relative amount of tax revenue col-

lected by that base.48 The welfare weights in this equation are the same for the consumption

and wage income tax rates but depend on the functional form of utility.49 However, if the

weighted elasticities of both tax revenue and the variance of tax revenue are larger in magni-

tude for a given tax base relative to another tax base then the volatility-adjusted Ramsey rule

is violated irrespective of the welfare weights. Therefore, it is su�cient to demonstrate that

the weighted elasticities are both larger for a given tax base to demonstrate a government

ine�ciently relies on that tax base.

ωRε̂R,τc + ωσ2
R
ε̂σ2

R,τc
= ωRε̂R,τw + ωσ2

R
ε̂σ2

R,τw
(2.11)

The four elasticities in equation (2.11) are estimated to determine whether a government

relies ine�ciently on a given tax base. This section estimates the elasticity of tax revenue

and the elasticity of the variance of tax revenue with respect to the income and sales tax

47The additional assumption that ε̂σc,τc = ε̂σc,τw is made for simplicity. This assumes the variance of
private consumption depends on the amount of revenue collected but not how it is collected. Without this
assumption, another elasticity for each tax base would need to be estimated to determine the su�cient
condition.

48The weighted elasticities are given by the following expressions: ε̂R,τc = R
τcβy

εR,τc , ε̂σ2
R
,τc =

σ2
R

τcβy
εσ2

R
,τc ,

ε̂R,τw = R
τwwL(1−τcβ)εR,τw , ε̂σ2

R
,τw =

σ2
R

τwwL(1−τcβ)εσ2
R
,τw .

49The welfare weights in the volatility-adjusted Ramsey rule are: ωR = G1 and ωσ2
R

= G2.
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rate for each U.S. state.50

log(Ri) = π0 + log(τi)π1 + log(τ )π2 + log(x)π3 (2.12)

The elasticity of tax revenue with respect to a tax rate is π1. From equation 2.13 the

elasticity of the variance of tax revenue with respect to the tax rate can be estimated in

a similar manner where εσR,τi = ξ1. Finally, both of these elasticities are appropriately

weighted to produce the weighted elasticities in the volatility-adjusted Ramsey rule.

log(σ2
Ri

) = ξ0 + log(τi)ξ1 + log(τ)ξ2 + log(x)ξ3 (2.13)

I estimate equations (2.12) and (2.13) using a three step process. The �rst step estimates

inverse probability weights which estimate the similarity between states in their observable

characteristics.51 The second step estimates a weighted, seemingly unrelated regression of

equations (2.12) and (2.13) for each state. These equations could be estimated for each

state using only data from the state for the years 1963-2010 but other state's experiences

are informative and are used to supplement the state's data by weighting other states based

on how informative its experience is. For example, Wisconsin's data has a high weight in

Minnesota's estimation but a low weight in California's because Wisconsin and Minnesota

are more similar than Wisconsin and California.

The third and �nal step uses the estimated elasticities and calculates time-varying elas-

ticities. The time-varying elasticities are calculated by multiplying the estimated mean elas-

ticities by the mean of the ratio of the dependent and independent variables and the ratio of

the independent and dependent variable for a given year, shown in equation (2.14).52 These

50This section focuses on the income and sales tax because they are the two major sources of tax revenue
for most states.

51The weights can be calculated parametrically using a probit or semi-parametrically using a kernel esti-
mation. The baseline results reported use a probit and the results are robust to using a kernel estimation.

52This �nal step assumes the derivative in the elasticity is constant over time.
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calculations produce four elasticities for each state for all years between 1963 through 2010.53

Comparing these elasticities determines whether the su�cient condition for imbalance is met

for a given state in a given year.

εσ2
R,τi,t

= ε̂σ2
R,τi

τ̄i
σ̄2
Ri

σ2
Ri,t

τi,t
εR,τi,t = ε̂R,τi

τ̄i
R̄i

Ri,t

τi,t
(2.14)

In 1965 fourteen states relied too heavily on the income tax and twelve relied too heavily

on the sales tax, with the remainder not satisfying the su�cient condition for imbalance,

mapped in �gure 2.8. The number of states that ine�ciently relied on the income tax

increased by twelve between 1965 and 2005. In contrast, the number of states that reliedg

ine�ciently on the sales tax decreased by two in the same time period. Figure 2.9 maps the

twenty-six states that relied too heavily on the income tax and the ten states that relied too

heavily on the sales tax in 2005. Comparing these two maps reinforces the result that tax

policy is important in explaining the increase in volatility by demonstrating the increased

reliance on the income tax between 1965 and 2005.54

State governments expose their tax revenues to unnecessary levels of risk when they rely

ine�ciently on one tax base. In decades with little economic volatility, tax revenue from

states that rely ine�ciently on a tax base look similar to those that do not. However, in

decades with increased economic volatility, such as the 2000s, states that rely ine�ciently

on a tax base experience elevated levels of tax revenue volatility. I �nd a positive correlation

between states that hold imbalanced tax portfolios and states with the largest increases in

volatility in the 2000s. The correlation is positive for both states that ine�ciently rely on the

income tax and those that ine�ciently rely on the sales tax, demonstrating the importance

of balance and not just stable tax bases.

53These calculations produce 9400 elasticities. The weighted tax rates and revenues are used to impute
tax rates and revenues that are zero.

54To determine whether a state's tax portfolio is imbalanced two sets of elasticities are compared. The
di�erences are reported in �gures 2.8 and 2.9. These di�erences are statistically signi�cant at the �ve
percent level for all states except for Kentucky, Mississippi, Missouri, North Dakota, Arkansas, and New
Mexico for the variance elasticities and California, Kansas, Montana, North Dakota, New York, Oklahoma,
and Wisconsin for the base elasticities.
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Figure 2.8: Imbalanced State Tax Portfolios 1965.

Figure 2.9: Imbalanced State Tax Portfolios 2005.
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2.9 Conclusion

The main contribution of this paper is to provide theoretic and empirical evidence of the

importance of tax revenue volatility. Empirically, tax revenue volatility at the state level

has increased dramatically in the 2000s. This paper provides strong evidence that changes

in tax policy, speci�cally the increased reliance on the income tax base, explains most of the

increase in tax revenue volatility.

An optimal tax system must consider the costs of revenue volatility. I update the Ramsey

rule to include the costs of volatility, demonstrating the tradeo� governments face between

costs from volatility and deadweight loss due to behavioral changes. The volatility-adjusted

Ramsey rule is applied to the data to test whether state governments set their tax rates

e�ciently. Between 1965 and 2005 the number of states that set their tax rates ine�ciently

increased by almost forty percent such that by 2005 almost three-fourths of all states could

change their tax portfolios to lower the costs from volatility and deadweight loss due to

behavioral changes without decreasing their level of tax revenue.

The methods in this paper can be applied to other governments and can help diagnose the

causes of their tax revenue volatility allowing them to create policies to dampen it. Damp-

ening tax revenue volatility may be even more important for developing countries because of

the capital market frictions they face which make smoothing tax revenue shocks costly. The

empirical test of the volatility-adjusted Ramsey rule provides governments with a benchmark

to test whether they are ine�ciently relying on a given tax base. E�ciently relying on dif-

ferent tax bases is important because it may dampen the feedback loop between government

uncertainty and production uncertainty which can cause slow productivity growth.

This paper focused on tax policy which is only one of three important ways governments

can handle uncertainty. The interplay between tax policy and government expenditures and

savings (through the use of rainy day funds) remains an important area of research. For ex-

ample, the extent to which tax revenues should be procyclical depends crucially on whether

government expenditures are complements or substitutes to private consumption. It would
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be interesting to know whether governments that spend more on goods and services com-

plementary to private consumption have tax revenues that are more procyclical. My paper

serves as a starting point for these investigations into how governments manage uncertainty

to minimize its negative impacts to the economy.
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CHAPTER III

Welfare Consequences of Volatile Tax Revenue

Recent increases in tax revenue volatility, especially at the state level in the United

States, have led to an increased discussion of the impact of volatility on optimal taxation,

optimal levels of public goods, and societal welfare. Tax policy has been shown to be an

important mechanism for explaining the increase in state tax revenue volatility in the 2000s,

even considering the signi�cant increases in economic volatility and important changes in

tax bases (Seegert, 2012). This paper quanti�es the importance of considering tax revenue

volatility when setting tax policy in two ways. First, following Harberger's 1964 paper which

shows deadweight loss is of second-order importance, I show the cost of volatility is of �rst-

order importance with respect to a tax rate change. Second, by calibrating a stochastic

general equilibrium model the welfare cost of policy-makers ignoring volatility while setting

tax policy is estimated to be $600 billion per year, which is four times greater than the cost

of ignoring deadweight loss.

The government has two concerns when considering the optimal response to tax revenue

volatility. First, the government must consider how to distribute the underlying production

risk in the economy.1 The government could employ lump-sum taxes, but this concentrates

risk in private consumption. By taxing di�erent state-dependent bases, such as income or

consumption, the government can instead absorb some of the production risk in the public

1The production risk is modeled as shocks to technology, which a�ect both the wage and pro�t received
by the representative individual. The shock, and therefore the wage and pro�t, is unknown at the time the
government makes its decision.
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good. Diversifying the risk between public and private consumption is welfare improving

and thus, lump-sum taxes are not e�cient when production risk exists.

Second, the government must consider the balance between tax bases. By taxing di�erent

bases the government can hedge some of the idiosyncratic risk associated with a given tax

base. The ability of the government to hedge idiosyncratic risk depends on the variance-

covariance matrix of the available tax bases.

The government must tradeo� these concerns of volatility with the cost of deadweight loss

caused by imposing taxes that distort people's behavior. In this tradeo� between volatility

and deadweight loss, deadweight loss is of second-order importance. In contrast, volatility

is of �rst-order importance. Harberger's 1954 paper demonstrates that deadweight loss is of

second-order importance by taking a Taylor expansion of the di�erence between expenditure

functions before and after a tax rate change. Volatility is demonstrated to be of �rst-order

importance by taking a Taylor expansion of the di�erence between expected utility functions

before and after a tax rate change in a manner similar to Harberger (1964).

The order of importance characterizes the likelihood a small deviation from the optimum

will cause a welfare loss. There will be no loss in welfare due to a su�ciently small deviation

for costs that are second-order importance. In contrast, for costs that are of �rst-order

importance even small deviations from the optimum will cause welfare losses.

Although volatility is of �rst-order importance and deadweight loss is of second-order

importance, �rst-order costs are not always larger in magnitude than second-order costs.

Second-order costs can become large in magnitude if the deviation is large and the objective

function is relatively nonlinear. For this reason, a simple model is calibrated to quantify

the costs of volatility and deadweight loss. The model, calibrated to the United States from

the years 1970-2010, demonstrates that the cost of volatility is larger than the costs due to

deadweight loss.
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3.1 Model

This section presents the model in this paper using the parameterized functions from

the calibrated model. However, for the analysis of �rst and second order importance the

functions are left general. Each period begins with the government's choice of tax rates and

the provision of the public good. Second, nature chooses the production state of the world.

Third, the representative individual chooses her labor supply and consumption. Finally,

production and utility are realized. The model is discussed using backwards induction,

starting with the realization of production and utility and ending with the government's

optimal choice of tax rates and public good provision.

A. Production An intermediate good is transformed without cost into public and private

consumption. The intermediate good is produced with labor, L, and a production technology,

θ, according to the production function in equation (3.1). The production function exhibits

decreasing returns to scale with respect to labor, γ < 1, and constant returns to scale

with respect to production technology. Production technology is subject to transitory and

persistent shocks according to equation (3.2).

x = f(θt, Lt) = θtL
γ
t (3.1)

θt = µt + εt µt = φµt−1 + (1− φ)µ̄+ vt ε ∼ Log −N(0, σ2
ε), v ∼ Log −N(0, σ2

v), σε,v

(3.2)

wt = γLγ−1
t (µt + ωεt) πt = (1− γ)Lγt (µt + χεt) χ =

1− γω
1− γ

(3.3)

These shocks a�ect the wage and pro�t according to equation (3.3). The ω parameter

determines the extent to which wages are subject to transitory shocks.2 In this way the

variance of the wage is allowed to di�er from the variance of pro�ts. In addition, the

correlation between wages and pro�ts are determined by ω. Wages and pro�ts are perfectly

correlated when ω is equal to one and can be positively or negatively correlated when ω di�ers

2Note that χ is determined mechanically from f(L) = wL+ π.
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from one.3 The calibrated model estimates ω using data on the correlation and variances of

wage and pro�t income in the United States.

B. Individual Behavior The representative individual has log utility over the amount of

labor to supply, L, public consumption, g, and private consumption, c. Private consumption

is divided into goods that are taxed, βc, and untaxed, (1 − β)c.4 Individuals maximize

utility by choosing their labor supply and division of private consumption captured by β.

Individuals use their wage income, taxed at the rate τw, and untaxed pro�t income, π, to

pay for private consumption. The wage they receive is subject to production shocks known

to the individual before she makes her labor supply decision.

U(c, β, L; g) = α1log(βc) + α2log((1− β)c) + α3log(g) + α4log(1− L) (3.4)

c = (1− τcβ)[(1− τw)wL+ π] = (1− τcβ)y

The individual optimization produces equations for labor and β from the �rst-order condi-

tions in equations (3.5) and (3.6). In equation (3.5) U2, the derivative of utility with respect

to β, is equal to zero when the consumption tax rate is zero. In this case there is no distortion

between consumption goods because there is no consumption tax. When the consumption

tax rate is not zero, the ratio of the marginal bene�ts of private consumption and β is equal

to τcy, which is the additional tax revenue the government collects due to a marginal change

in β. In the parameterized model, labor is a function of the income tax rate, the wage,

pro�t, and utility parameters and β is a function of the consumption tax rate and utility

parameters.5

U2

U1

= τcy (3.5)

3The ω is a reduced-form parameter encompassing bargaining and other frictions in the labor market.
4The budget constraint can be written as (1− τw)wL+ π = (1 + tc)c1 + c2. First, make the consumption

good substitutions; c1 = βc and c2 = (1− β)c. Second, rearrange the budget constraint such that the right
hand side equals c(1−tcβ). Third, de�ne τc = tc/(1+tcβ) and substitute into the budget constraint. Finally,
rearrange to get the budget constraint in the text.

5

L =
(α1 + α2)(1− τw)w − α4π

(α4 + α1 + α2)(1− τw)w
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−U3

U2

= (1− τcβ)(1− τw)w (3.6)

C. Government The government maximizes the expected value of the indirect utility

function, found by substituting the equations for labor, β, and consumption into the repre-

sentative individual's utility function. Two assumptions are made for expository convenience:

i) the supply of the public good is set equal to the tax revenue and ii) the utility function

is additively separable such that U1,4 = 0.6 These assumptions allow the social welfare

function to be written as in equation (4.3), where c̄ and R̄ are the mean levels of private

and public consumption and σ2
c and σ

2
R are the variances of private and public consumption

respectively. The function M(·) represents the expected utility from private consumption,

including leisure, and the function G(·) represents the expected utility from public consump-

tion. The shape of these functions quanti�es the costs from volatility, implicitly de�ning the

risk attitudes of public and private consumption.7

E[U(β, c, L; g)] =
Z
U(c, β, L; g)f(θ) ≡M(c̄, σ2

c , β, L, σ
2
L) +G(R̄, σ2

R) (3.7)

=α1log(βc̄) + α2log((1− β)c̄) + α3log(ḡ) + α4log(1− L̄)

−
(α1 + α2)σ2

log(c)

2
−
α3σ

2
log(g)

2
−
α4σ

2
log(L)

2

R = g = τcβy + τwwL σ2
g = τ 2

c β
2σ2

y + τ 2
wσ

2
wL + 2(τcβτwτwσwL,y)

In general, the expected utility function is characterized by a function of the moments of

the variables in the utility function (e.g. mean, variance, skewness). In the parameterized

β =
(α1 + α2)(1 + τc) + α1τc −

�
−8α1(α1 + α2)τc + ((α1 + α2)(1 + τc) + α1τc)

2
�1/2

4(α1 + α2)τc

6Assuming that the government must have a balanced budget abstracts away from debt issues which are
not the focus of this paper. This assumption may be less of an abstraction for state governments, forty-nine
of which have balanced budget requirements. In practice these balanced budget requirements do not preclude
state debt but they do add additional costs. In this model the ability of the government to smooth revenue
is modeled in its risk attitude.

7M1 ≥ 0, G1 ≥ 0,M2 ≤ 0, G2 ≤ 0
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example the expected utility function M(·) + G(·) is reduced to a function of the �rst two

moments because the shocks in the model are assumed to be log-normal. Therefore, the

following section assumes the expected utility function is a function of the �rst two moments

only, however the results are robust to including higher moments.

3.2 Order of Importance of Volatility and Deadweight loss

This section considers the welfare costs due to tax rate changes on consumption goods.

The producer price for good i, pi, is assumed to be �xed and the consumer price for good i

is assumed to equal qi = pi + ti, where ti is the tax rate. The welfare costs can be broken

into three parts; deadweight loss, income e�ects, and volatility. Deadweight loss is de�ned

as the costs from individuals' behavioral responses or the substitution e�ect. The income

e�ects capture the change in utility due to shifting consumption between private and public

consumption.8 Finally, the volatility costs captures the loss to risk-averse individuals of

volatile private and public consumption.9

The total loss function due to tax rate changes can be constructed as the di�erence

between an individual's expenditure functions, utility functions, or expected utility functions

before and after the tax rate changes. The literature has focused on expenditure functions

because it produces an approximation which can be empirically estimated however, this

measure ignores costs to volatility which are captured by the expected utility function.

Constructing the loss function as the di�erence in utility functions provides intuition, based

on the envelope theorem, for the result that deadweight loss is of second-order importance.

The di�erence in expenditure functions before and after the tax rate changes is the

additional income needed to compensate an individual for the tax rate changes (Harberger,

8With lump-sum taxes the e�cient split of consumption sets the marginal bene�ts of public and private
consumption equal. If the consumption split is not e�cient a shift of consumption toward the e�cient split
increases welfare and a shift away decreases welfare.

9For example, with lump-sum taxes consumption volatility is concentrated in private consumption, how-
ever the government can distribute some of the volatility to public consumption by taxing state-dependent
tax bases.
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1964; Diamond and McFadden, 1974; Green and Sheshinski, 1979). To isolate the deadweight

loss the literature sets the income e�ects to zero by assuming the tax revenues collected are

rebated lump-sum back to the individual. This is done by subtracting the tax revenue

collected from the di�erence in the expenditure functions.

Harberger approximates this loss function using a Taylor series approximation and demon-

strates deadweight loss can be estimated by the second-order term in the Taylor series expan-

sion. This approximation is useful because the utility function would have to be known to

estimate the loss with expenditure functions but, the second-order approximation depends

only on the slope of the demand function. This result also implies deadweight loss is of

second-order importance because there are no �rst-order terms in the Taylor series expan-

sion due to deadweight loss.10 Hence, to a linear approximation of a small change in the tax

rate there is no welfare loss due to deadweight loss.

The di�erence in expected utility functions before and after the tax rate changes is the

additional expected utility needed to compensate an individual for the tax rate changes. For

a risk-averse individual these costs include changes in the volatility of public and private

consumption induced by the tax rate changes. The expected utility function captures this

cost because it is a function of the variance of public and private consumption, as shown in

the previous section.

As an intermediary step the welfare costs are constructed as the di�erence in utility

functions. An application of the envelope theorem demonstrates deadweight loss is of second-

order importance and that this result does not depend on the absence of other distortions or

taxes in the economy. This contrasts with the fact that costs from volatility are of �rst-order

importance, which is shown using the expected utility formula for loss.

10There are �rst-order terms in the Taylor series expansion of the loss function corresponding to the income
e�ects however, the literature assumes these e�ects cancel.
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3.2.1 Expenditure Function Loss Function

Deadweight loss can be written as the di�erence in expenditure functions for prices that

exist before and after a tax change, E(p + t, u) − E(p, u), minus the change in tax revenue

collected, T (p + t, p, u), where p and t are price and tax vectors. The second line in equa-

tion (3.8) approximates the loss function, L(p + t, p, u), using a second-order Taylor series

expansion.11 The �rst term in the second line of equation (3.8) is the �rst-order term of the

Taylor series expansion. Using Shepard's lemma the �rst-order term reduces to the quantity

demanded multiplied by the tax rate which cancels with the tax revenue collected. Hence,

the �rst-order term captures the income e�ect which is not part of deadweight loss. Dead-

weight loss is captured by the substitution e�ect which is approximated as the second-order

term of the Taylor series expansion given in line 3 of equation (3.8) and hence is of second-

order importance. This derivation demonstrates deadweight loss can be approximated by

a function of only the slopes of the compensated demand functions, suggested by Hotelling

(1938), Hicks (1939), and Harberger (1964).

L(p+ t, p, u) = E(p+ t, u)− E(p, u)− T (p+ t, p, u)

≈ ∂E(p, u)

∂t
((p+ t)− p)| {z }
x(p,u)t

+
1

2

∂2E(p, u)

∂t2| {z }
si,j

((p+ t)− p)2 − T (p+ t, p, u)| {z }
x(p,u)t

(3.8)

= −1

2

NX
i=1

NX
j=1

si,jtitj

The cancelation of the �rst-order terms depends on the assumption that there were no

previous tax distortions. In their 1979 paper Green and Sheshinski show that if there are

taxes previous to a change in tax revenue there would be a �rst-order term representing

the change in the previous tax revenue. Stiglitz and Dasgupta (1971) demonstrate the �rst-

order term is negative if the tax rate change is on goods complementary to other taxed goods

11This approximation is done in Harberger (1964); Diamond and McFadden (1974); Green and Sheshinski
(1979).
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and positive if the taxed goods are substitutes.12 In these cases the �rst-order term does

not represent deadweight loss, de�ned as the utility loss due to behavioral responses, but

represents changes in tax revenue. To provide additional intuition for why the �rst-order

e�ects are not due to behavioral responses the loss function is constructed in terms of utility

functions.

3.2.2 Utility Function Loss Function

Deadweight loss can be constructed as the di�erence in utility before and after a tax

change as in the �rst line in equation (E.1). The utility change from the change in public

consumption, g, due to the change in tax rates is given by U3
∂g1
∂t
. The �rst-order Taylor

series approximation is given in line 2 of equation (E.1).

L̂ = U(x2, y2; g2)− U(x1, y1; g1)

≈
 
U1
∂x1

∂p
+ U2

∂y1

∂t
+ U3

∂g1

∂t

!
(p+ t1 − p− t2)| {z }

∆t

= ∆t(U1sx − U1
∂x1

∂m
x1 + U2sy − U2

∂y1

∂m
y1| {z }

Slutsky Decomposition

+U3
∂g1

∂t
) (3.9)

= ∆t(U1sx + U2sy)| {z }
Deadweight Loss

+ ∆t

�
U3
∂g1

∂t
− U1

∂x1

∂m
x1 − U2

∂y1

∂m
y1

�
| {z }

Income E�ect =0

= ∆tU1(sx +
U2

U1|{z}
1/px

sy|{z}
−pxsx

) = ∆tU1(sx − sx) = 0

The Slutsky decomposition given in line 3 of equation (E.1) separates the approximation into

the income and substitution e�ects where sx represents the derivative of the compensated

demand for good x. The income e�ect, given in line 4 of equation (E.1), compares the utility

from public consumption, the �rst term in the income e�ect, and private consumption, the

12The �rst-order term may also have di�erent signs due to horizontal and vertical externalities. For
example, the �rst-order term could be negative due to a negative vertical externality on federal income tax
revenue caused by a change in the state level income tax rate.
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second and third terms in the income e�ect. In this case without volatility the income

e�ect equals the FOC from the government's optimization, therefore if the Taylor series

approximation is taken around the optimum the income e�ect is zero. In this case without

volatility if the Taylor series approximation is taken around the optimum the income e�ect

is zero because the income e�ect equals the FOC from the government's optimization.13

The �rst-order approximation of deadweight loss (substitution e�ect) is zero for any set

of tax rates not only the optimal set. Line 5 of equation (E.1) demonstrates the individual's

optimization, speci�cally the FOC U2

U1
= 1/px, causes the deadweight loss �rst-order term

to be zero.14 Therefore, deadweight loss being of second-order importance does not depend

on the government's optimization or on the absence of other distortions in the economy but

only on the individual's optimization.

An application of the envelope theorem in this case con�rms the �rst-order term is zero.

For example, plot the utility of the individual against the relative price. If the individual

always consumes the old bundle regardless of the relative price, assuming she has enough

income to buy the old bundle, the utility would be represented as a horizontal line in utility

relative-price space.15 Separately plot the maximized utility for each relative price. This

curve lies weakly above the horizontal line, touching at the old relative price which made the

old bundle the optimal bundle. Therefore, by the envelope theorem there is no �rst-order

e�ect from the relative price change.

3.2.3 Expected Utility Function Loss Function

Finally, the appropriate measure of the total loss resulting from tax rate changes include

deadweight loss, income e�ects, and volatility. Constructing the total loss function as the

di�erence in expected utility functions before and after the change in tax rates, given in

13The income e�ect is also zero if, following the literature, there is no public good and the tax revenues
are rebated lump-sum back to the individual.

14Line 5 of equation (E.1) totally di�erentiates the budget constraint to get sy = −pxsx and uses the
individual's �rst order condition to get U2/U1 = 1/px.

15The individual does have enough income to always buy the old bundle if the tax revenue is returned to
her with a lump-sum transfer.
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equation (3.10), captures all three of theses costs. As shown in the previous section, expected

utility can be written as M(c̄2, σ
2
c,2, β2) + G(R̄2, σ

2
R,2) where M(·) is the expected utility in

private consumption and G(·) is the expected utility in public consumption. For risk-averse

individuals these functions include higher moments. For simplicity, the expected utility

functions have been restricted to the cases in which they can be fully characterized by their

�rst two moments (mean and variance) but the results are robust to allowing for additional

moments.16 The loss function is estimated using a �rst-order Taylor series approximation

given in line 2 of equation (3.10) to demonstrate the �rst-order approximation of the cost

from volatility is not zero.

L̄ = M(c̄2, σ
2
c,2, β2) +G(R̄2, σ

2
R,2)−M(c̄1, σ

2
c,1, β1)−G(R̄1, σ

2
R,1) (3.10)

≈ (p+ t1 − p− t2)(M2

∂σ2
c,1

∂t
+G2

∂σ2
R,1

∂t| {z }
6= 0

+M3
∂β1

∂t
+M1

∂c̄1

∂t
+G1

∂R̄1

∂t
)

The �rst-order term representing deadweight loss is given by the utility cost of the individual

shifting between taxed and untaxed goods. In equation (3.10) this term is given by M3
∂β1
∂p

which by the FOC of the individual given in equation (3.5) equals zero if τc = 0. If τc 6= 0

then M3
∂β1
∂p

= τcy which is a �rst-order term accounting for the change in tax revenue but

not a cost from behavioral changes. Therefore, once again the �rst-order approximation of

deadweight loss is zero because of the individual's optimization.

In contrast, the �rst-order approximation of the cost from volatility given by the changes

in the variances of private and public consumption is not zero. In equation (3.10) the costs

from volatility are given byM2
∂σ2
c,2

∂p
+G2

∂σ2
R,2

∂p
. At the optimum the government trades o� costs

from deadweight loss and volatility, hence the cost from volatility is not minimized because

the government accepts a higher cost of volatility in order to lower the cost of deadweight

loss. If deadweight loss did not exist the government would minimize the cost of volatility

16Let the expected utility be given by M(c̄2, σ
2
c,2, β2,Ωc,2) + G(R̄2, σ

2
R,2,Ωg,2) where Ωc,2 and Ωg,2 are

vectors of higher moments of private and public consumption. The last line in equation (3.10 would then be

(p2 − p1)(M3
∂β2

∂t +M2
∂σ2

c,2

∂t +G2
∂σ2

R,2

∂t +M4
∂Ωc,2

∂t +G4
∂ΩR,2

∂t ).
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and the �rst-order term would be zero at the optimum. Even though the cost of deadweight

loss is also not minimized at the optimum the �rst-order term for deadweight loss is still zero

because of the individual's optimization. In contrast, the individual's optimization does not

minimize the cost of volatility. Therefore, the cost from volatility is of �rst-order importance

around the optimum and at any point at which the cost from volatility is not minimized.

Figures (3.1) and (3.2) demonstrate the intuition graphically for why volatility is of �rst-

order importance and deadweight loss is of second-order importance. Figure (3.1) depicts

utility with respect to β. The Taylor series expansion is taken around the optimum values,

represented by the peak of the concave function due to the individual's optimization. Even

if the Taylor series expansion were taken around tax rates that were not optimal, the indi-

vidual's optimization would still cause the Taylor series expansion to be taken at values at

the peak of the concave function. At the peak, the linear approximation to a change in β is

zero.

Figure (3.2) depicts the utility cost of volatility (captured byM(·, σ2
c (τ), ·, ·)+G(·, σ2

g(τ)))

with respect to a tax rate. The cost is U-shaped meaning an increase in the tax rate decreases

the cost of volatility for small values of the tax rate and increases the cost for large values.

The Taylor expansion is taken around the optimum values, away from the nadir because

the government trades o� some additional cost to volatility for less deadweight loss. In this

example, the linear approximation to a change in the tax rate is positive.

The linear approximation of deadweight loss and volatility depend on the slope at which

the Taylor series approximation is taken. If the approximation is taken at the peak and

nadir of the two curves the linear approximations of deadweight loss and volatility are both

zero. In contrast, if the approximation is taken away from the peak and nadir of the two

curves the linear approximations of deadweight loss and volatility are both not zero. The

individual's optimization causes the approximation to be taken at the peak of the curve

for deadweight loss, for any tax rates the approximation is taken around. In contrast, the

individual's optimization does not cause the approximation to be taken around the nadir
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Figure 3.1: Deadweight Loss Is Of Second-Order Importance.
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Figure 3.2: Volatility Is Of First-Order Importance.
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of the cost of volatility. In addition, if the Taylor series approximation is taken around the

optimal tax rates then by the government's FOCs the approximation will not be around the

nadir and hence, the cost of volatility is of �rst-order importance.

Figures (3.1) and (3.2) highlight the fact that the total cost of deadweight loss could be

larger than volatility in magnitudes despite the fact that deadweight loss is of second-order

importance and volatility is of �rst-order importance. In the following section a calibrated

model is used to quantify and compare the magnitudes of the costs due to volatility and

deadweight loss.
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3.3 Calibrated Model

3.3.1 Volatility-unaware and volatility-conscious governments.

This subsection calculates the �rst-order conditions for a government that does not take

into account the costs of volatility (�volatility-unaware") and a government that does ac-

count for the costs of volatility (�volatility-conscious"). The volatility-unaware government

maximizes utility of the representative individual. The government is constrained to collect

an exogenously given level of expected revenue g. This constraint is a common constraint

in the optimal taxation literature but it abstracts from the costs of volatility. In contrast,

the volatility-conscious government maximizes the representative individual's expected util-

ity. In this case, the variances of public and private consumption enter the government's

objective function directly.

C.1 Volatility-Unaware Government. The volatility-unaware government sets the income

and consumption tax rates to maximize utility subject to the constraint that government

revenues, on average, equal an exogenous level of revenue g used to produce the public good.

The government maximizes the indirect utility function, which substitutes the equilibrium

values for β, L, c from the individual's optimization into the utility function.

U(τw, τc; g) = α1log(βc) + α2log((1− β)c) + α3log(g) + α4log(1− L)

g = τcβE[y] + τwE[wL]

First-order conditions for the volatility-unaware government.

∂τc :

"
α1

β
− α2

1− β
− α1 + α2

c
τcy

#
| {z }

= 0 envelope theorem

β

∂τc
− α1 + α2

c
βy +

α3

g

∂g

∂τc
= 0 (3.11)

The use of the envelope theorem in simplifying the �rst-order condition of the volatility-

unaware government provides additional intuition for why deadweight loss is of second order
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importance. The e�ects of raising the consumption tax rate can be split into an income e�ect,

transferring income from the individual to the government, and a substitution e�ect due to

changes in the individual's consumption behavior, captured by ∂β/∂τc. The individual's

�rst-order condition with respect to β is the term that multiplies ∂β/∂τc causing this term

to be zero, at least to a �rst-order approximation. Therefore, the welfare cost of raising

the consumption tax rate due to behavioral changes in consumption is mitigated by the

individual's maximization and drops out of the �rst-order condition for the government.

∂τw :
α3

g
wL+

α3

g
τw
∂wL

∂τw| {z }
Leakage

+
α3

g
τcβ

∂y

∂τw| {z }
Horizontal
Externality

−α1 + α2

c
(1− τcβ)wL

= −α1 + α2

c

�
∂c

∂π

∂π

∂τw
− ∂c

∂w

∂w

∂τw

�
| {z }

GE e�ects

−α1 + α2

c

∂L

∂τw

�
∂c

∂L
+
α4

L

�
| {z }
=0 envelope
theorem

(3.12)

The typical considerations in optimal taxation are present in the �rst-order conditions for

the volatility-unaware government. The �rst term on both sides of equation (3.12) represent

the income e�ect, transferring income from the individual to the government weighted by the

marginal utility of private and public consumption. The second term on the left hand side

represents the leakage from the income transfer due to behavioral responses of the individual.

The leakage increases the cost of providing the public good because some income is lost to

both the individual and government when the government uses distortionary taxes to raise

revenue. The third term on the left hand side captures the interplay between taxes, the

horizontal externality. In this model, raising the income tax rate causes the individual to

spend less, thus decreasing the consumption tax revenue. Finally, the second term on the

right hand side captures the general equilibrium e�ects taxes have on wages and pro�ts.

The volatility-conscious government has these same considerations but also considers how

tax rates change the volatility of public and private consumption.

C.2 Volatility-Conscious Government. The volatility-conscious government sets the in-
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come and consumption tax rates to maximize the expected utility of the representative

individual. The government is constrained by a budget constraint and the resulting vari-

ance of public consumption. Notice the objective function for the government includes the

variances of log labor and public and private consumption.

E[U(τw, τc; g)] =α1log(βc̄) + α2log((1− β)c̄) + α3log(ḡ) + α4log(1− L̄)

−
(α1 + α2)σ2

log(c)

2
−
α3σ

2
log(g)

2
−
α4σ

2
log(L)

2

g = τcβy + τwwL σ2
g = τ 2

c β
2σ2

y + τ 2
wσ

2
wL + 2τcτwβσy,wL

The �rst-order conditions for the volatility-conscious government includes the variances of

public and private consumption and their derivatives with respect to the tax rates.17

∂τc :
α3

ḡ

�
β̄ + τc

∂β

∂τc

�
ȳ − α3

2(ḡ2 + σ2
g)

∂σ2
g

∂τc| {z }
+/-

=
α1 + α2

c
β̄ȳ +

α1 + α2

2(c̄2 + σ2
c )

∂σ2
c

∂τc| {z }
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(3.13)
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(3.14)

In equation (3.13) ∂σ2
c/∂τc is negative. In equation (3.13) ∂σ

2
g/∂τc can be positive or negative.

This derivative is negative when the consumption tax is being used relatively less than the

income tax. In this case the bene�t from hedging income tax-speci�c risk is high. When

∂σ2
g/∂τc is positive the additional terms to equation (3.13) are both negative. The relative

17
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magnitudes of these additional terms quantify the bene�ts of the government absorbing some

of the production risk.

3.3.2 Calibration

A model period is calibrated to be one year in length. All parameters of the model are set

internally using simulated generalized method of moments. There are four utility function

parameters, α1, α2, α3, and α4, and �ve production function parameters, γ, µ, σ2
ε , σ

2
u, and ω.

The production function parameters de�ne the level of output, share of output to labor and

pro�t, and the variances of the technological shocks. These nine parameters are calibrated

using simulated method of moments.

The �rst moment is the share of private consumption that is taxable, captured in the

model by β. Mikesell (Mar. 5, 2012) estimates the average taxable share of private consump-

tion to be 46.7 percent between 1970 and 2010 at the state level. In contrast, he �nds the

taxable share to be 34.5 percent in 2010, representing a signi�cant decrease in the consump-

tion tax base. He also �nds considerable heterogeneity across states in their average tax base

between 1970 and 2010. Massachusetts has the smallest average tax base, at 27.2 percent,

and Hawaii has the largest, at 106 percent. The baseline calibration uses 46.7 percent to

constrain β and the sensitivity analysis considers β ∈ [27.2, 106].

The literature surveyed by Domeij and Floden (2006) on the Frisch labor supply elasticity

suggests a range between 0 and .5 although the authors argue these estimates are likely to

be biased downwards by up to 50 percent suggesting a range between 0 and 1. Kimball and

Shapiro (2008) estimate a Frisch elasticity of close to 1, which has been used in other public

�nance calibrations (e.g., House and Shapiro (2006) and Trabandt and Uhlig (2011)). For

the log utility speci�cation used in this paper, a Frisch elasticity close to 1 implies a labor

supply of 0.5 because ηFrisch = 1/L− 1. The second moment in the baseline calibration uses

a labor supply of 0.5.

The Bureau of Economic Analysis reports that state and local expenditures are 11 percent
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of gross domestic product. In the model, gross domestic product is given by the sum of public

and private consumption. Therefore the third moment sets the ratio of public consumption

to total consumption to be .11 and characterizes α3 relative to α1 and α2. The fourth moment

normalizes the utility parameters to be shares by setting their sum to one.

The following �ve moments calibrate production in the model using data from the Bureau

of Economic Analysis. First, wage income per person is calculated to be $15, 214.59, which is

the mean wage income from the Bureau of Economic Analysis Personal Income and Outlays

section in real terms chained to 2005 dollars. Similarly, pro�t income is calculated to be

$8860.90 per person. These two moments inform the values of the labor share of production,

γ, and the level of technology state, µ. The variance and covariance of wage and pro�t income

are used as moments to calibrate the variance of the shocks σ2
u and σ

2
ε and the parameter ω.

The wage income coe�cient of variation (the ratio of the standard deviation to the mean) is

0.034. The coe�cient of variation for pro�t income is 0.083, meaning income from pro�ts is

more volatile than wage income. The correlation between wage and pro�t income is 0.227.

All but one simulated moment, listed in Table 3.1, is within 3 percent of its target. Five

of the nine simulated moments are within 1 percent of their target: the labor supply, utility

normalization, the coe�cient of variation for wage and pro�t income, and the correlation be-

tween wage income and pro�ts. The share of government expenditures to total consumption

is 8 percent below its target simulated moment and is the furthest moment from its target.

The simulated wage income is 1.8 percent higher than its target and the simulated pro�t is

1.8 percent below its target. Finally, β is 2.2 percent higher than its target.

The parameters from the calibration are given in Table 3.2. When the consumption tax

rate is zero β equals the ratio of α1 to the sum of α1 and α2. Therefore the nondistorted β is

0.496, which is 6 percent larger than the target distorted β. The labor production share, γ is

close to its stylized fact value of 0.66. The coe�cient of variation of the production technology

is .0017 which implies that a one standard deviation shock to production is .17 percent (less
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Table 3.1: Calibrated Targets and Moments

Moment Symbol Target Value
Share private consumption β 0.467 0.4775
Labor supply L 0.5000 .5000
Share public consumption g/(c+ g) 0.11 0.1013
Utility normalization α1 + α2 + α3 + α4 1 1
Wage income wL $15, 214 $15, 490
Pro�t income π $8, 860 $8, 700
Coe�cient of variation wage income cv(wL) σwL/w̄L̄ 0.0340 0.0341
Coe�cient of variation pro�t income cv(π) σπ/π̄ 0.083 0.0826
Correlation of wage and pro�t income σ2

π,wL/(σπσwL) 0.2265 0.2266

Table 3.2: Calibrated Parameters
Parameter Meaning Value Reason
α1 Share taxable consumption 0.2945 Mikesell (2012)
α2 Share untaxable consumption 0.2992 Mikesell (2012)
α3 Share public consumption 0.0421 Government expenditures (BEA)
α4 Share leisure 0.3642 Frisch elasticity
γ Share labor 0.6406 Wage and pro�t income (BEA)
µ Production technology 37, 692 Wage and pro�t income (BEA)
σv Persistent shock 1, 148.8 Variance wage and pro�t income (BEA)
σ2
ε Temporary shock 2, 539.8 Variance wage and pro�t income (BEA)
ω Wage smoothing 0.0226 Correlation wage and pro�t income (BEA)

than one percent) of the mean production technology.18 Therefore, the calibrated shocks in

the model are moderate to small.

18Coe�cient of variation equals standard deviation over mean. The standard deviation of the production

technology shock is equal to the σθ =
q

σ2
v

1−φ2 + σ2
ε + 2σu,ε
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Table 3.3: Quantifying Volatility and Deadweight Loss

Government Consideration Uncertainty Utility Percent U1

U1 Volatility and deadweight loss Yes 5.600153 100%
U2 Deadweight loss No 5.650754 100.9%
U3 Lump-sum taxes No 5.700688 100.8%
U4 Deadweight loss only Yes 5.550783 99.1%
U5 Volatility only Yes 5.590296 99.8%
U6 Lump-sum Yes 5.580723 99.7%
Cost Comparison % Private Consumption Aggregate
Traditional

Volatility U2 − U1 8.897% $603 Billion
Deadweight loss U3 − U2 8.773% $594 Billion

New
Volatility U1 − U4 8.671% $587 Billion
Deadweight loss U1 − U5 1.674% $113 Billion

Additional
E�cient vs Lump-sum U1 − U6 3.327% $225 Billion

U.S. population 311,591,917 US Census Bureau, July 2011.

Cost calculations based on equation (3.17) with simulated average consumption $21, 739.55.

3.4 Results

3.4.1 Calculating Welfare Costs.

This section quanti�es the costs of volatility and compares it to deadweight loss with two

separate methods. The �rst method compares utility with and without the speci�c cost. For

example, the cost of volatility is quanti�ed comparing utility with and without production

risk. The second method compares utility given tax rates that are calculated considering

di�erent costs (e.g., with or without volatility costs and/or deadweight loss). The �rst

method follows cost estimates from Musgrave (1959), Feldstein (2008), and others in tax

incidence. The second method quanti�es the costs from policy makers ignoring important

aspects of optimal taxation, speci�cally deadweight loss and volatility.

Table 3.3 lists the six utilities calculated and the �ve comparisons of utilities that quantify

the costs of volatility and deadweight loss. The �rst comparison quanti�es the cost of

volatility comparing utility with and without production risk ((U1) and (U2) respectively).
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In both cases the tax rates are set using the optimal tax rates calculated using the �rst-

order conditions (3.13) and (3.14), but the tax rates di�er because the setting di�ers.19 The

second comparison quanti�es the cost of deadweight loss comparing utility with lump-sum

taxes (U3) and utility with distortionary taxes (U2), both in a setting without production

risk. These comparisons are between utility with and without volatility in the �rst case, and

between utility with and without deadweight loss in the second case.

The third comparison quanti�es the cost of volatility comparing utility with the e�cient

tax rates (taking into account volatility costs and deadweight loss) and tax rates set con-

sidering deadweight loss only (ignoring the costs from volatility). The fourth comparison

quanti�es the cost of deadweight loss comparing utility with the e�cient tax rates and tax

rates set considering volatility costs only (ignoring deadweight loss). The tax rates in these

two cases are calculated accounting for di�erent sets of terms in the �rst-order conditions

from the volatility-conscious government in equations (3.15) and (3.16).
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g
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Each of these utility comparisons can be stated in terms of private consumption by �nding the

additional private consumption needed to provide the same level of utility. The calculation

below demonstrates this calculation for utility with distortionary taxes (U2) and utility with

lump-sum taxes (U3). The percentage of additional private consumption needed in the case

19The �rst-order conditions (3.13) and (3.14) reduce to the �rst-order conditions (3.11) and (3.12) in the
absence of production risk.
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of distortionary taxes to equal the utility with lump-sum taxes is given by x. A similar

calculation is made for each of the utility comparisons.

U2(c(1 + x), β, L; g) =U3(c, β, L; g)

(α1 + α2)log(1 + x) =U3(c, β, L; g)− Udistort(c, β, L; g)

x =exp

 
U3(c, β, L; g)− U2(c, β, L; g)

(α1 + α2)

!
− 1

⇒ xc =U3(c, β, L; g)− U2(c, β, L; g) (3.17)

Table 3.3 reports the welfare cost of volatility and deadweight loss for both the traditional

and new methodologies. Using the traditional method, the welfare cost of volatility and

deadweight loss are both approximately $600 billion dollars a year. Using the new method,

the welfare cost of volatility is $587 billion dollars per year and the cost of deadweight loss is

$113 billion dollars per year. The di�erence between the optimal tax rates and the tax rates

set while ignoring the costs of volatility is larger than the di�erence between the optimal

tax rates and the tax rates set while ignoring the costs of deadweight loss. Because the

deviation from the optimal tax rates caused by ignoring the costs of volatility is larger than

the deviation from ignoring deadweight loss, the welfare cost is larger for volatility than

deadweight loss.

While both methods quantify the costs of volatility and deadweight loss they ask funda-

mentally di�erent questions. The traditional method asks what `would the bene�t to society

be if volatility and deadweight loss were eliminated'. The welfare estimates of approximately

$600 billion for volatility and deadweight loss demonstrate that both of these are signi�cant

costs in the economy. The new method asks what `would the bene�t to society be from

having policy makers set tax rates considering the costs of deadweight loss and volatility'.

These welfare estimates demonstrate that policymakers should be more concerned with the

costs of volatility than deadweight loss because the potential welfare costs from ignoring

volatility are 4 times larger than the costs of ignoring deadweight loss.
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The �nal comparison given in Table 3.3 quanti�es the bene�t of distributing the produc-

tion risk across public and private consumption. This compares optimal tax rates, accounting

for both volatility and deadweight loss, with lump-sum taxes, both in a setting with pro-

duction risk. The optimal tax rates distribute some of the risk between public and private

consumption but produce deadweight loss by using distortionary taxes. In contrast, lump-

sum taxes concentrate the production risk in private consumption but produce no deadweight

loss. The result demonstrates that the government's optimal tax rates provide substantial,

$225 billion per year, bene�t over lump-sum taxes, reinforcing the result that volatility costs

are larger in magnitude than deadweight loss.

3.4.2 Sensitivity Analysis

The sensitivity of the calibration to the weighting matrix, in the simulated method of

moments, is determined by running the calibration with 1000 random weighting matrices

where each weight is allowed to take on a value between 1 and 100.20 The penalty function for

each of the moments di�ers with their relative weights. For example, allowing the weighting

function to di�er from the identity matrix (the baseline weighting function) by changing

the �rst value on the diagonal to equal 100, as opposed to 1, increases the penalty function

on only the �rst moment. The resulting simulated method of moments decreases the error

between the simulated and target moment for the �rst moment at the cost of allowing other

simulated moments to di�er more from their targets. The simulated moments remained

within 15 percent of their target in all of the 1000 random weighting functions used and the

resulting calibrations were qualitatively similar.

The sensitivity of the calculated utilities to the calibration is determined by calculating

the utilities 3000 times with varying calibration. The utilities are calculated using parameters

drawn from a normal distribution with a mean equal to their calibrated value and a standard

20The baseline calibration is determined by running simulated method of moments with the identity matrix
as the weighting matrix.
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deviation equal to �ve percent of their calibrated value.21 The standard deviation of the

resulting 3000 utility calculations is 1.2 percent of the baseline calculation. Therefore the

calibration is relatively robust to the weighting matrix used and the utilities are relatively

robust to errors in the calibration.

3.5 Conclusion

Costs from volatility have largely been ignored in the optimal taxation literature because

the unique characteristics of the U.S. federal government make these costs negligible. How-

ever, for other governments, especially state governments, volatility is a real and important

cost. This paper demonstrates theoretically the importance of considering volatility, in both

public and private consumption, for governments setting tax rates. Optimally governments

tradeo� costs from volatility and deadweight loss, but this paper shows that, of these two

considerations, only volatility is of �rst-order importance.

The magnitude of the costs from volatility is estimated using a model calibrated to the

United States using data from 1970 - 2010. Although volatility is of �rst-order importance

and deadweight loss is of second-order importance, either of these two costs could have had

a larger magnitude than the other. The results from the calibrated model demonstrate that

the magnitude of the cost from volatility is larger than the cost due to deadweight loss. In

terms of private consumption, the magnitude of the cost from setting tax rates ignoring the

costs of volatility is $600 billion. Therefore, volatility is of utmost importance for policy

makers to consider when setting tax policy.

This paper focuses on the tradeo� between volatility and deadweight loss; however, there

are other important tradeo�s considered in the optimal taxation literature. One of these

tradeo�s is distributional concerns across heterogenous individuals. The e�ect of tax revenue

volatility across individuals in the income distribution may be heterogeneous depending on

21The parameters are constrained in two ways; �rst, to be positive if necessary, and in the case of the
utility parameters to sum to one.
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how governments respond to shocks to their revenue streams. Empirically, how governments

respond to these shocks and the resulting distributional e�ects remain an open question in the

literature. Therefore, although I've demonstrated the importance of tax revenue volatility in

setting tax policy there are more aspects of the interplay between volatility and tax policy

to be explored.
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CHAPTER IV

Optimal Tax Portfolios

An Estimation of Government Tax Revenue

Minimum-Variance Frontiers

Government budget crises in the 2000s were magni�ed by an increase in tax revenue

volatility. For example, state governments in the United States experienced a 500 per-

cent increase in volatility in the 2000s relative to previous decades. State governments are

particularly sensitive to tax revenue volatility because of their balanced budget rules and

other frictions which make smoothing tax revenues di�cult. Governments can decrease the

variance of their tax revenues by holding the e�cient �portfolio" of taxes. In this conceptu-

alization, each tax base is a potential asset held by the government and the tax rate on a

given base is the weight the government puts on the asset. Conceptualizing government �-

nances as an optimal portfolio problem highlights the ability of governments to hedge risk by

taxing di�erent bases, but this method must be adapted to account for numerous di�erences

between a government and an individual investor.

The �rst of these di�erences results from the obvious disparity in size between individual

investors and governments. When an individual investor increases her holdings of a given

asset, the mean return of the asset is not a�ected. However, when the government increases

the weight on a given asset by increasing the tax rate, the asset's mean return decreases
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because the tax base shrinks as a result of individual behavioral responses to the tax increase.

The decreased return is the leakage caused by behavioral responses by individuals.

The second di�erence occurs because, in contrast to the individual investor, the assets

in the government's portfolio are interdependent. When a government increases its income

tax rate, this a�ects sales tax and corporate tax returns. For example, individual behavioral

responses of how much to consume and how much income to shift between income and

corporate tax bases depends on the income tax rate. The e�ect of a given tax rate on other

tax bases is a horizontal externality that complicates government �nance.

The third di�erence occurs because, in contrast to the individual investor, the govern-

ment's objective function is not to minimize the variance of tax revenue for a given expected

rate of return but to maximize expected utility. One aspect that needs to be considered when

maximizing expected utility is the cost from volatile tax revenue streams. Other aspects the

government must consider include costs due to deadweight loss and the e�cient risk-sharing

between public and private consumption.

This paper conducts the analysis of the mean-variance tradeo� made by governments

within a utility framework. The analysis demonstrates the tradeo�s governments face be-

tween volatility and deadweight loss and between public and private consumption volatility.

Therefore, the government aims to optimize, not minimize, tax revenue volatility.

The theoretical model is applicable to governments that are constrained, in some way,

from perfectly smoothing their revenue causing their expenditures to be exposed to risk in

revenue. For example, U.S. state governments are limited in their ability to smooth revenue

because of self-imposed balanced budget rules. In addition, European governments' expen-

ditures are currently exposed to additional risk in revenues because of limits in borrowing

caused by the Euro-zone debt crises. Borrowing constraints can also cause developing coun-

tries' expenditures to be exposed to risk in their revenue streams. In fact, all governments

are exposed to revenue shocks to some extent because of their uncertainty about whether an

observed shock is temporary or permanent. Therefore, explaining tax revenue volatility and
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the ways in which tax policy can be used to stabilize government expenditures is important

for governments world-wide.

As an application of the theoretical model, I create a method to estimate the minimum

variance governments can achieve for a given expected level of tax revenue: a minimum-

variance frontier. Following the results of the theoretical model, each tax base-rate pair is

considered a separate asset. To implement this method, counterfactual portfolio returns �rst

had to be estimated because data exist for only one portfolio in any given year (the actual

portfolio held by the government).

I demonstrate the method with a few examples using data from U.S. state governments.

Estimating state-speci�c minimum-variance frontiers allows for across-state analysis of the

relative mean-variance tradeo�s. In addition, the di�erent historic portfolios held by gov-

ernments can be plotted to determine how government portfolios have changed over time

relative to the minimum-variance frontier.

4.1 Literature

This paper contributes to the optimal taxation literature by formalizing the tradeo� of

tax revenue volatility within the context of portfolio analysis. Uncertainty has been discussed

in many di�erent contexts within the optimal taxation literature. Mossin (1969) and Stiglitz

(1969) study the e�ect of taxes on risk taking by individuals. Varian (1980) discusses the

potential for taxation to act as social-insurance. tax revenue volatility, which is the focus of

this paper, is a separate consequence of uncertainty.

This paper also contributes to the literature started by Groves and Kahn (1952) on tax

portfolios by formalizing optimal portfolio theory for governments. This literature has fo-

cused on the income elasticities and stability of state and local taxes noting that elasticities

change over time (Groves and Kahn, 1952) and with the business cycle (Fox and Campbell,

1984; Otsuka and Braun, 1999). Dye and McGuire (1991) compare state sales and income

taxes in an attempt to determine which tax base is more stable, but �nd that their stabil-
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ities cannot be systematically di�erentiated. Sobel and Holcombe (1996) extend Dye and

McGuire's analysis by including more tax instruments in a new time series technique but

�nd similar ambiguities. Bruce, Fox, and Tuttle (2006) use disaggregated data to re�ne

the literatures results. Their results suggest that neither the personal income tax nor the

sales tax is universally more volatile than the other. Instead of comparing individual tax

bases, my paper adapts optimal portfolio theory to demonstrate that a mix of tax bases may

provide the most stabile tax revenues.

4.2 Model Setup

A Timing The economy is assumed to be a one period snapshot of a dynamic model

where the state of nature within the period is uncertain ex ante. The timing is given below,

but note the government moves before the state of nature is realized, causing uncertainty

from the government's point of view; in contrast, the individual does not face uncertainty

because she moves after the state of nature is realized. The government does not know the

realization of the wage and pro�t, but is assumed to know the distribution.

Order of Decisions Choices

1st - Government τc, τw

2nd - Nature w, π

3rd - Individual c, L, β

4th - Production occurs

5th - Utility realized

B. Individual Behavior. The individual has utility over her supply of labor L, the public

good g, and total private consumption c, which is split between goods that are taxed, c1 ≡ βc,

and goods that are untaxed c2 ≡ (1− β)c. The individual chooses c, L, and β to maximize

utility

maxc,β,L u = U(c, β, L,G, ) subject to y = c(1 + tcβ)
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where tc is the tax rate on consumption and y = (1 − tw)wL + π is income net of the

wage income tax.1 Wages and pro�ts are assumed to be stochastic, resulting in stochastic

consumption and wage income. Consumption and its mean and variance can be written as,

c =(1− τcβ)((1− tw)wL+ π) where τc = tc/(1− tcβ)

c̄ =(1− τcβ)((1− tw)w̄L̄+ π̄) σ2
c = (1− τcβ)2((1− tw)2σ2

wL + σ2
π + 2(1− tw)σwL,π)

Consumption and wage income will not be perfectly correlated as long as wages and pro�ts

are not perfectly correlated, which can be seen in �gure 4.1. Figure 4.1 represents consump-

tion as a vector equal to the sum of the vectors of wage and pro�t income where the lengths

of all of the vectors equal the standard deviation of the variable. Using the law of cosines,

the correlation between two vectors is depicted as the cosine of the angle between any two

vectors. For example, if the vectors are parallel the variables are perfectly correlated and if

the vectors are perpendicular the variables are independent.

The ability of the government to hedge idiosyncratic risk between consumption and wage

income tax bases depends on the correlation of these two variables.2 In this example if

the standard deviation of the pro�t shock increases, the correlation between consumption

and wage income decreases. This can be seen graphically by increasing the length of the

pro�t vector extending from the end of the wage income vector, which results in a larger

angle between consumption and wage income (and also decreases the cosine of the angle and

therefore the correlation).3

1wL(1− tw) + π = y = (1− β)c+ βc(1 + tc) = c(1 + tcβ)
2First, let τc = tw = 0 for simplicity, allowing c = wL+ π. The cosine of the angle between wage income

and consumption, using the law of cosines, can be written as cos(θ) = (σ2
c + σ2

wL − σ2
π)/(2σwLσc). The

numerator can be reduced to 2cov(wL, c) using the variance formula var(π) = var(c − wL) = var(c) +
var(wL) − 2cov(wL, c). Therefore the cosine of the angle between wage and pro�t income is equal to the
correlation between them; cos(θ) = cov(wL, c)/(σwLσc) = ρwL,c.

3In this example increasing the standard deviation of pro�t income increases the standard deviation of
consumption. However, if pro�t income and wage income were negatively correlated, increasing the standard
deviation of pro�t income could decrease the standard deviation of consumption.
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Figure 4.1: Vector Representation of Shocks
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Utility maximization requires that: i) the marginal disutility from supplying labor equals

the marginal utility of the income it produces and ii) the ratio of marginal utilities from total

consumption c and β is equal to the consumption tax rate multiplied by net income. When

the consumption tax rate is zero there is no distortion between consumption goods, and the

marginal utility with respect to β is zero. Composing utility in terms of total consumption,

c, and β simpli�es the composition of deadweight loss because β encompasses all behavioral

responses between goods.

U1(c, β, L,G)(1− τcβ)(1− tw)w = U3 (4.1)

U2

U1

= τc((1− tw)wL+ π) (4.2)

C. Government The government produces the public good g and �nances its produc-

tion with taxes on consumption and wage income. Both of the government's tax bases are

state-dependent and uncertain when the government makes its decision. Therefore, the gov-

ernment maximizes the expected utility of the representative individual, which generally

can be written as a function of the moments (e.g. mean, variance, skewness) of the state-

dependent variables. This analysis restricts attention to the cases where expected utility

is fully characterized by a function of the �rst two moments (mean and variance), but is
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robust to considering higher moments. This restriction holds if the joint distribution of the

state-dependent variables is normal or any distribution fully characterized by the �rst two

moments (e.g. log-normal and uniform).4 The utility function is assumed to be additively

separable such that U1,4 = 0 so the level of social welfare can be written as

E[u] =
Z
U(c, g)f(c, R, σ2

R, σ
2
c ) ≡M(C, σ2

c , β, L) +G(R, σ2
R) (4.3)

M1 ≥ 0, G1 ≥ 0,M4 ≤ 0,M2 ≤ 0, G2 ≤ 0

σ2
g = t2cβ

2σ2
c + t2wL

2σw + 2(tcβtwtwLσw,c)

where c̄ and R̄ are the mean levels of the private and public consumption, σ2
c and σ

2
R are the

variances of private and public consumption respectively, and G(·) represents the expected

utility from public consumption and M(·) represents the expected utility from private con-

sumption. The shape ofM(·) can di�er from the shape ofG(·), allowing for di�erent attitudes

towards volatility in public and private consumption. Speci�cally, the relative magnitudes

of M2 and G2 determine the relative bene�t of stable public or private consumption. There-

fore, even though the government and individual are not allowed to smooth shocks through

saving, the relative magnitudes of M2 and G2 can be thought of as the relative ability of the

government and individual to smooth public and private consumption. For example, if the

individual is able to perfectly smooth private consumption her utility could be written as

being linear in private consumption and M2 = 0.

4.3 Tax Portfolio Analysis

The government's optimal portfolio problem di�ers from traditional optimal portfolio

analysis in three important ways. First, the government is a large relative to the market,

4Assuming the representative individual's utility function is quadratic is another example of when the
expected utility function would be characterized fully by the �rst two moments of the state dependent
variables and is used frequently in the �nance literature.
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meaning the weight it puts on an asset a�ects the asset's returns along with other assets'

returns. For example, as the government increases its tax rate on wage income, individuals

supply less labor causing the wage income tax base to decrease. In addition, as the govern-

ment increases its tax rate on wage income, the individual has less income to consume thus

decreasing the consumption tax base. Second, the government, in maximizing the represen-

tative individual's utility, considers the welfare cost of volatility in both public and private

consumption. Finally, the government, in maximizing the representative individual's utility,

trades o� the costs from volatility (in both public and private consumption) with deadweight

loss caused by the government using taxes that distort individual's behavior.

This section begins with the general government's optimal portfolio problem which is

written as minimizing the welfare cost of public and private volatility. The analysis then turns

to a series of special cases that demonstrate the additional complexities in the government's

optimal portfolio problem. In all of the special cases the government is constrained to

bring in a given level of mean revenue, abstracting away from di�erences in �rst moments

(deadweight loss). First, the government's optimal portfolio problem is considered when the

representative individual is risk-neutral with respect to the private good. In this case the

government's objective function reduces to minimizing the variance of the public good.

In the second case the government's optimal portfolio problem is considered when the

representative individual has the same risk attitude over public and private consumption. In

this case the government's objective function reduces to minimizing the sum of the variances

of public and private consumption. Finally, the government's optimal portfolio problem

is considered when the representative individual's risk attitude di�ers between public and

private consumption. This case di�ers from the full problem only by abstracting from changes

in the �rst moments of public and private consumption.

Full Government's Optimal Portfolio Problem In the full model the government mini-

mizes the negative welfare impact of volatility with endogenous levels of public and private

consumption. In other words, the government minimizes the negative of utility which is the
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dual of the Ramsey problem from Seegert (2012). Equation (4.4) provides the condition for

the optimal pair of consumption and wage income tax rates. The condition demonstrates the

three key di�erences of the government's optimal portfolio analysis from traditional optimal

portfolio analysis.

First, the elasticities of the variance of public consumption with respect to a tax rate

encompasses the ways in which the tax bases change according to the government's weight

on each of the tax bases. Second, the welfare cost of both public and private consumption

volatility is captured by the numerators of the two terms on the left-hand side of equation

(4.4). The welfare weights ωM and ωG weight the elasticities in the numerator based on the

risk preferences between public and private consumption. For example, if the representative

individual prefers stable private consumption over stable public consumption ωM > ωG and

if the government is su�ciently better at smoothing tax revenues than the representative

individual is at smoothing her private consumption ωM < ωG. Finally, the tradeo� with

deadweight loss is demonstrated by the two terms on the right-hand side.

mintw,τc −
�
M(c, σ2

c ) +G(R, σ2
R)
�

ωMεσ2
c ,τc

+ ωGεσ2
R,τc

εR,τc
−
ωMεσ2

c ,tw
+ ωGεσ2

R,tw

εR,tw
=
ωβεβ,τc + ωLεL,τc

εR,τc
− ωβεβ,tw + ωLεL,tw

εR,tw| {z }
Deadweight Loss

(4.4)

The condition in equation (4.4) can be broken up into four parts; two depicting the marginal

costs of the consumption tax and two the wage income tax (the �rst and second terms of both

sides respectively) and two the costs from volatility and two the costs from deadweight loss

(the left-hand side and the right-hand side respectively). The two parts on the left-hand side

quantify the marginal costs due to changes in the variance of public and private consumption.

The �rst term on the left hand side is made up of three elasticities. The elasticities in the

numerator are the elasticity of the variances of public and private consumption with respect

to the consumption tax rate. These elasticities are weighted by their marginal importance
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on utility. For example, ωM = −M2(σ2
c/R) where −M2 = ∂M(C, σ2

c , β, L)/∂σ2
c is positive

and equal to the marginal welfare of changes in the variance of private consumption. The

elasticity in the denominator is the elasticity of tax revenue with respect to the consumption

tax rate. Therefore together this �rst term provides the marginal welfare cost of increasing

the consumption tax rate on the variance of public and private consumption relative to

its change in tax revenue. Similarly, the second term provides the marginal welfare cost

of increasing the wage income tax rate on the variance of public and private consumption

relative to its change in tax revenue.

The right-hand side of equation (4.4) is the welfare cost due to deadweight loss of the

consumption and wage income tax rates. The �rst term on the right-hand side is the marginal

change in deadweight loss of increasing the consumption tax rate relative to the change in

tax revenue. Intuitively, increasing the consumption tax rate a�ects the individual's decision

on which goods to consume (β) and how much labor to supply (L). The welfare cost of these

changes are quanti�ed by the numerator of the �rst term on the right-hand side where

ωβ = −M3(β/R) is the welfare weight applied to the elasticity of β with respect to the

consumption tax rate and ωL = −M4(L/R) is the welfare weight applied to the elasticity of

labor with respect to the consumption tax rate. Similarly, the second term on the right-hand

side is the marginal change in deadweight loss of increasing the wage income tax rate relative

to its change in tax revenue.

The government's e�cient pair of consumption and wage income tax rates equalize the

marginal welfare costs due to the variance of public and private consumption (the left-hand

side of equation (4.4)) with the marginal welfare costs due to deadweight loss (the right-hand

side of equation (4.4)).

C.1 Risk Neutral Preferences with respect to Private Consumption. In this case the

government's objective function reduces to minimizing the variance of tax revenue. Here,

the government is constrained to producing a mean level of revenue which abstracts from
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�rst moment considerations.

mintw,τc σ2
R = t2cβ

2σ2
c + t2wL

2σ2
w + 2twLtcβσc,w (4.5)

Subject to: R̄ = τcβc̄+ twLw̄

This optimization di�ers from typical optimal portfolio analysis because an individual in-

vestor is a small player while the government is a large player. When an individual investor

increases her holdings of a given asset the mean return of the asset is not a�ected. When the

government increases its weight on a given asset, by increasing the tax rate, the asset's mean

return decreases. The decrease is the leakage caused by behavioral responses by individuals.

Similarly, because the government is a large player, the weight the government places on a

given asset a�ects the other assets in its portfolio as well. For example, lowering the income

tax rate may induce individuals to shift income from the corporate tax base to the income

tax base. Therefore the government must consider the ways asset returns change due to

a change in the tax rate. For this example, some of these terms are assumed to simplify.

Speci�cally, pro�t, wages, and labor are assumed to be independent of the consumption tax

rate and β is assumed to be independent of the wage income tax rate.

The �rst-order conditions given in equations (4.6) and (4.7) demonstrate the additional

complexity of the government's optimal portfolio analysis. In traditional portfolio analysis

the assets' returns do not change with the weights, and hence only the direct e�ect would be

included. The government's optimal portfolio problem must consider the ways asset returns

change with the weight due to leakage, horizontal externalities, and second moment e�ects.

In equation (4.6) the leakage is captured by including the elasticity of labor supply with

respect to the wage income tax rate. The second term represents the horizontal externality,

where λ is the Lagrangian multiplier. This term considers the change in consumption due

to a change in the wage income tax rate. Finally, the ways the variances and covariance

of consumption and wage income change, due to a change in the wage income tax rate, is
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captured by the second moment e�ects.

∂σ2
R

∂tw
= (2twL

2σ2
w + 2tcβσw,c − λwL)| {z }

Direct

(1 + εL,tw| {z }
Leakage

)−λ tc
tw
βcεc,tw| {z }

Horizontal

(4.6)

+ t2cβ
2∂σ

2
c

∂tw
+ t2wL

2∂σ
2
w

∂tw
+ 2tcβtwL

∂σw,c
∂tw| {z }

2nd moment

∂σ2
R

∂tc
= (2tcβ

2σ2
c + 2βtwLσw,c − λβc)(1 + εβ,tc) (4.7)

The optimal wage income and consumption tax rates can be found from these �rst-order

conditions. If the government does not consider the leakage, horizontal externalities, and

second moment e�ects associated with each tax base, the government will incorrectly set

the tax rates given by t∗w and t∗c . However, if the government does consider the leakage,

horizontal externalites, and second moment e�ects, the government will optimally set the

tax rates given by t∗∗w and t∗∗c where θw = 1 + εw,tw which is one plus the elasticity of

the wage with respect to the wage income tax rate; similarly θwL = 2 + εw,tw + εL,tw and

θL = 1 + εL,tw . When governments fail to account for the leakage, horizontal externalities,

and second moment e�ects they underestimate the added volatility associated with a revenue

increase and expose their revenues to unnecessary levels of risk.

t∗w =
w̄σ2

c − ȳσw,c
L[c̄2σ2

w − 2c̄w̄σc,w + σ2
c w̄

2]
R̄ t∗∗w =

θwLw̄σ
2
c − θwc̄σw,c

L[θwLc̄2σ2
w − (θwL + θL)c̄w̄σc,w + θwLσ2

c w̄
2]
R̄

t∗c =
c̄σ2

w − w̄σ2
c,w

β[c̄2σ2
w − 2c̄w̄σc,w + σ2

c w̄
2]
R̄ t∗∗c =

θLc̄σ
2
w − θwLw̄σw,c

β[θwLc̄2σ2
w − (θwL + θL)c̄w̄σc,w + θwLσ2

c w̄
2]
R̄

In this special case the tax rate pairs on the minimum-variance frontier are characterized

by the condition in equation (MVF.1). This condition states that the ratio of the elasticity

of the variance and the elasticity of the mean of tax revenue with respect to the tax rate

are equal across tax rates. In �nance, the minimum-variance frontier is often called the

e�cient frontier, but through this series of special cases the analysis demonstrates for the
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government's optimal portfolio problem the minimum-variance frontier may not be e�cient.

εσ2
R,τc

εR,τc
=
εσ2

R,tw

εR,tw
(MVF.1)

C.2 Homogeneous Risk Attitudes Over Public and Private Consumption. In this case the

government's objective function reduces to minimizing the sum of the variances of public and

private consumption for a given expected level of public and private consumption. When

combined, the �rst-order conditions produce the condition for the minimum-variance frontier

in equation (MVF.2).

mintw,τc σ2
R + σ2

c (4.8)

Subject to: R̄ = τcβc̄+ twLw̄

In this case the minimum-variance frontier provides the minimum of the sum of the

variances of public and private consumption for a given mean level of tax revenue. Compared

to case one, the minimum-variance frontier in this case adds the elasticity of the variance of

private consumption with respect to the tax rate.

εσ2
R,τc

+ εσ2
c ,τc

εR,τc
=
εσ2

R,tw
+ εσ2

c ,tw

εR,tw
(MVF.2)

C.3 Heterogeneous Risk Attitudes Over Public and Private Consumption. In this case the

government's objective function generalizes case two, by allowing the risk attitude to di�er

between public and private consumption. The �rst-order conditions, when combined, pro-

duce the condition for the minimum-variance frontier in equation (MVF.3). In this case,

the minimum-variance frontier provides the minimum welfare cost of public and private

consumption for a given mean level of tax revenue.

mintw,τc − [M(·, σ2
R, ·, ·) +G(·, σ2

c )] (4.9)

Subject to: R̄ = τcβc̄+ twLw̄
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Compared to case two, the minimum-variance frontier in this case adds welfare weights

to the elasticities in the numerator. The welfare weight on the elasticity of the variance of

private consumption with respect to a tax rate is the negative of the derivative of utility

with respect to the variance of private consumption multiplied by the ratio of the variance of

private consumption and tax revenue, ωM = −M2σ
2
c/R. Similarly, the welfare weight on the

elasticity of the variance of public consumption with respect to a tax rate is ωG = −G2σ
2
R/R.

ωMεσ2
c ,τc

+ ωGεσ2
R,τc

εR,τc
−
ωMεσ2

c ,tw
+ ωGεσ2

R,tw

εR,tw
= 0 (MVF.3)

The minimum-variance frontier in this case is the same as the minimum-variance frontier in

the full government's optimal portfolio problem. However, the e�cient condition in the full

government's problem, given in equation (4.4), di�ers from the minimum-variance frontier.

Speci�cally, the right-hand side of the full government's condition in equation (4.4) is not

zero because of the utility cost of deadweight loss. The optimal tax rates characterized by

the condition in equation (4.4) tradeo� utility from tax revenue with the cost of deadweight

loss and volatility. Hence, a government with the e�cient tax rates could change its tax

rates to decrease the welfare cost of volatility but would cause an increase in deadweight loss

larger than the decrease in the cost of volatility. Therefore, in general, the e�cient portfolio

for the government will not be on the minimum-variance frontier.

4.4 Empirical Method

In �nance, the e�cient frontier is estimated using historical returns with the implicit as-

sumption that the mean return and variance-covariance matrix are invariant to the portfolio

that is held. While this is a reasonable assumption in �nance because investors are small

relative to the market, the previous section demonstrates it is not reasonable when applied

to governments. Therefore, this section adapts �nance theory to produce a method for es-

timating the e�cient frontier in a way that allows both the mean and variance-covariance
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matrix to depend on the portfolio that is held.

The returns of a portfolio can be written, as in equation 4.10, as the weighted sum of the

returns of the possible assets. The objective is to �nd weights to minimize the variance of

the portfolio for a given mean return. The minimum-variance frontier is found by calculating

the e�cient portfolio for di�erent mean returns.

R = w1r1 + w2r2 + ... = rw (4.10)

The e�cient weights are found by solving the �rst-order condition of the objective function

with respect to the weights. The e�cient weights, with some rearranging, are equal to the

ordinary-least-squares coe�cient from a regression of a constant R̄ on the returns of the

possible assets through time. The e�cient weights can be determined by a simple ordinary-

least-squares regression without a constant and weighting the coe�cients to sum to one.5

minw σ2
R = E[(rw)2]− (E[rw])2 subject to E[rw] = R̄

2wE[r2] = 2(E[r]) (E[wr])| {z }
= R̄

Use constraint

w = (E[r2])−1(R̄E[r])

= (
1

T

TX
t=1

rtr
′
t)
−1(

1

T

TX
t=1

R̄rt) Sample analogue

= (r′r)−1(r′R̄)

= wOLS

The ordinary-least-squares regression is biased without an intercept term; therefore, the

mean of the portfolio is equal to the predicted average return, which may not equal the

5The result that the e�cient weights on a portfolio can be determined by a simple ordinary-least-squares
regression was �rst shown by Britten-Jones (1999).
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average return used in the regression µ = R̂ 6= R̄ and the variance of the portfolio is given

by the residual's variance.6

To adapt this method to governments, the leakage, horizontal externalities, and second

moment e�ects need to be accounted for to produce the actual mean-variance tradeo�.

To account for leakage, each tax rate-base pair is considered its own asset. For example,

the returns to a �ve percent income tax and a three percent income tax are considered

separate assets because their mean and variance di�ers. Therefore, the assets from which

the government chooses are expanded from three (income, sales, and corporate tax bases)

to 3xN where N represents the number of di�erent tax rates considered. However, the

government is constrained to hold only one asset per tax base (e.g. the government cannot

simultaneously hold a �ve percent income tax and a three percent income tax). The bene�t

of de�ning government assets in this way is that it allows the returns from a three percent

income tax to di�er from the returns of a �ve percent income tax in a less than proportional

way, accounting for individuals' behavioral responses. The drawback of this approach is

that the returns from all of these di�erent assets are unobserved empirically and need to be

estimated.

Horizontal externalities cause the returns of a given asset (e.g. a �ve percent income tax)

to di�er with the other assets held by the government (e.g. a three percent sales tax or a four

percent sales tax). To account for these horizontal externalities the returns of a given asset

are estimated conditional on the other assets held by the government. Therefore, to account

for horizontal externalities the returns of an entire portfolio (e.g. a �ve percent income tax,

a three percent sales tax, and a one percent corporate tax) are estimated. The bene�t of

estimating the returns at the portfolio level is that the horizontal externalities and second

moment e�ects are taken into account. The drawback is that the weights estimated using

the procedure above de�ne the mix between portfolios rather than the mix between assets.

6µ = R̄− ū = R̄− (R̂− R̄) = R̂
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4.5 Application: State-Level Minimum-Variance Frontiers

This section demonstrates the method and bene�t of estimating minimum-variance fron-

tiers. First, the data are described using simplices to depict how tax portfolios in the data

have changed over time. Second, the portfolio returns are estimated using a weighted re-

gression. Finally, the estimated portfolio returns are used to estimate minimum-variance

frontiers which quantify the mean-variance tradeo� faced by governments. The analysis

demonstrates the ability to compare the mean-variance tradeo� across governments and

within a government across time.

4.5.1 Data and Basic Facts

Data from U.S. state governments is used to demonstrate the method of estimating

minimum-variance frontiers. This data provides a balanced panel of �fty states through

forty-eight years (1963-2010). Data on tax rates (top income, bottom income, sales, and cor-

porate), tax revenues, and tax base characteristics are collected for all states from the Book

of States and cross-checked with the Advisory Commission on Intergovernmental Relations

biannual report �Signi�cant Features in Fiscal Federalism," and the Tax Foundation. State

level economic conditions such as state level GDP and personal income are used as controls

and are collected from the Bureau of Economic Analysis.

Graphing state government's tax portfolios onto a 2-simplex demonstrates how much a

government relies on each tax bases. A 2-simplex is a triangle drawn in two-space that

represents three-space. In this case, the dimensions are tax revenues collected from income,

sales, and corporate tax bases as a percent of the sum of these three tax bases.7 Figure

4.2 is an example of a 2-simplex that depicts the percent of tax revenue from income, sales,

and corporate tax bases (three-space) in two-space. The nodes of the simplex denoted by

A, B, and C represent tax portfolios that rely on only one tax base.8 Point A represents

7The simplex is characterized by ∆2 = {(sincome, ssales, scorporate ∈ R3|sincome+ ssales+ scorporate = 1)},
where sincome is the percent of revenue collected from the income tax.

8Each node of the triangle represents a portfolio made up entirely of one tax base with nodes at
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a tax portfolio that relies only on the sales tax, point B a tax portfolio that relies only on

the income tax, and C only the corporate tax. Interior points represent mixtures between

the three tax bases. Point D represents a tax portfolio that relies equally on all three tax

bases. Point E represents a tax portfolio that relies �fty percent on corporate tax revenue

and �fty percent on income tax revenue. Movements along the dashed lines xx, yy, and zz

represent changes in the reliance of two of the three tax bases. For example moving along

the dashed line zz shifts the reliance on sales and income taxes but keeps the reliance on the

corporate tax �xed. Similarly, moving along the line yy shifts the reliance on the sales and

income taxes but for a a tax portfolio that relies less on the corporate tax than portfolios

along the line zz. Finally, moving along the line xx represents tax portfolios shifting between

the income and corporate tax holding �xed the reliance on the sales tax.

Figure 4.3 plots the aggregate state and local tax portfolios for each year between 1951

and 2010. Between 1951 and 2010 the aggregate tax portfolio shifted away from the sales

tax and toward the income tax (the horizontal-axis). In this same period, the aggregate tax

portfolio shifted away from the corporate tax (the vertical-axis). Figure 4.4 plots each state's

tax portfolio in 1955 and 2005 to demonstrate the disaggregated shift in tax portfolios. The

disaggregated data in �gure 4.4 demonstrate that a large number of states shifted their tax

portfolios to rely more heavily on income taxes and less heavily on sales taxes. Despite

this general trend, there are still seven states without an income tax in 2005.9 In contrast,

reliance on corporate tax revenue decreased signi�cantly for a few states but the majority

of states made only minor changes to their reliance on the corporate tax. The general trend

between 1955 and 2005 was for states to become more similar in how heavily they rely on

corporate taxes.

(0, 0), (1, 0), and (.5, .866) corresponding to a portfolio entirely of sales, income, or corporate tax revenue
respectively.

9States without income taxes: FL, NV, SD, TN, TX, WA, WY.
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Figure 4.2: Simplex Example.
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Figure 4.3: Aggregate State Tax Portfolios Over Time.
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Simplex: Top node 100 percent corporate tax revenue (.5,.866),
left node 100 percent sales tax (0,0), right node 100 percent income tax (1,0).
Data: State tax revenue from the US Census.
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Figure 4.4: State Tax Portfolios 1955 and 2005.
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4.5.2 Estimating Minimum-Variance Frontiers

The �rst step in calculating minimum-variance frontiers is estimating the portfolio re-

turns. Panel data is advantageous for calculating portfolio returns because it helps with the

limitation that data exist for only one tax portfolio for a given state-year observation (i.e., the

tax portfolio that actually existed for that state-year). With panel data additional portfolios

can be formed by appropriately weighting observations from other states according to the

inverse probability weights. Inverse probability weights calculate the probability that any

state-year observation could have been observed in a given state, based on the characteristics

of the state-year observation. For example, the probability that observations in Wisconsin

could have been observed in Minnesota is higher than the probability that observations in

Wisconsin could have been observed in California. The inverse probability weights are cal-

culated using a probit model with a dependent variable described by an indicator function

equal to one if the observation occurred in a given state, and tax rate and economic variables

as the independent variables. A separate probit is run for each state calculating �fty weights,

one for each state, for each state-year observation.

Tax revenue returns for di�erent portfolios are calculated using coe�cients estimated from

the weighted regression in 4.11 where β3 and β4 are vectors of coe�cients for the tax and

economic variables respectively and Ttβ1 is a vector of time trend variables.
10 In principal, an

unlimited number of portfolio returns can be calculated from this regression by substituting

di�erent sets of tax rates. In practice, the number of portfolios depend on how many values

a given tax rate is allowed to take. If the number of di�erent values is constant across the

four di�erent tax rates the number of portfolios is given by 4n where n is the number of

values each tax rate can take. For this application each tax rate is allowed to take on ten

di�erent values that are evenly spaced between zero and the maximum tax rate observed

in the data, producing 1, 048, 576 di�erent portfolios. The regression method calculates the

optimal mix of the calculated portfolio returns estimating a continuous minimum-variance

10Including the time trend variables is equivalent to detrending the variables with respect to time.

93



frontier from discrete choices of portfolios.

log(Ri,t) = β0 + ttβ1 + log(τi,t)β3 + log(xi,t)β4 + ε (4.11)

4.5.3 Analysis of Minimum-Variance Frontiers

Figure 4.5 graphs the estimated minimum-variance frontiers for Idaho (solid line) and

Nevada (dashed line). Idaho's minimum-variance frontier is considerably steeper than Nevada's

implying Idaho's tax base is less volatile than Nevada's. Estimating minimum-variance fron-

tiers for state governments is useful for understanding an individual state's mean-variance

tradeo� and for comparing mean-variance tradeo�s across states. This comparison is par-

ticularly useful in considering the costs to di�erent states due to changes in federal policies.

For example, consider the costs to state governments from a decrease in intergovernmental

transfers from the federal government. Even if this decrease was proportional across states

the costs may not be because the increase in volatility caused by states responses di�ers

across states. In this example, Nevada faces larger costs in terms of volatility than Idaho

does due to the increase in tax revenue collections.

Figure 4.6 graphs California's estimated minimum-variance frontier and the actual port-

folios (open circles) in the past 48 years. The horizontal distance between a portfolio and

the e�cient frontier is the additional variance the portfolio has relative to a portfolio with

the same mean on the minimum-variance frontier. Similarly, the vertical distance between

a portfolio and the minimum-variance frontier is how much less mean revenue the portfolio

has relative to a portfolio with the same variance on the minimum-variance frontier.

Through time California has increased both the mean and variance of the tax revenues

it collects. The arch formed by the actual portfolios held by California in the past 48 years

is �atter than the estimated minimum-variance frontier. Hence, California has exposed its

revenues to ine�cient levels of risk, quanti�ed by the distance between the actual portfolio

and the minimum-variance frontier. Although other considerations of optimal taxation may

94



cause state governments to choose portfolios o� of the minimum-variance frontier, comparing

these portfolios with the estimated minimum-variance frontier quanti�es the cost in terms

of additional volatility (or lower mean) from choosing such a portfolio.

This paper focuses on the tradeo� between volatility and deadweight which causes gov-

ernments to e�ciently choose portfolios that are not on their minimum-variance frontier.

In general, tradeo�s involving redistribution may also cause governments to be o� of their

minimum-variance frontier, which may help explain the di�erence between California's minimum-

variance frontier and actual portfolios. However, volatility is an additional cost state gov-

ernments need to consider when making their decisions on redistribution.
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Figure 4.5: Idaho and Nevada Estimated Minimum-Variance Frontiers.
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Figure 4.6: California Minimum-Variance Frontier and Actual Portfolios.
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4.6 Conclusion

The economics literature has long understood that states have �few if any of the unique

powers that make �uctuating tax yields a matter of minor concern to the federal government"

(Groves and Kahn, 1952). This paper considers the desire of stable tax revenues for state

and local governments through an optimal portfolio analysis within a utility framework. The

optimal portfolio analysis demonstrates the ability of governments to hedge idiosyncratic risk

involved with a given tax base. Traditional portfolio analysis is adapted to account for the

unique position of a government as a large player. The utility framework demonstrates the

tradeo�s faced by governments between volatility and deadweight loss and between public

and private consumption volatility. Therefore, in general the government's objective is to

produce the optimal level of tax revenue volatility, but not necessarily to minimize tax

revenue volatility.

This paper develops a method for estimating the minimum-variance frontier for govern-

ments, which have assets that respond to the weight placed on them. Data from U.S. state

governments are used to demonstrate the method, providing a comparison of state tax port-

folios across states and historically within states. This analysis quanti�es the cost in terms

of forgone mean levels of revenue (or additional variance) of the portfolios state governments

have held historically. Groves and Kahn in their 1952 paper discuss the tradeo� between

stability in tax revenue and the desire for redistribution of wealth. With the method from

this paper of estimating government minimum-variance frontiers governments can quantify

the cost of additional volatility caused by their redistribution policies which is necessary for

them to make an informed decision on what level of redistribution to implement.
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CHAPTER V

A Sequential Growth Model of Cities with Rushes

The dynamic model of city creation and growth, created in this paper, provides a uni�ed

model able to explain the empirical evidence that cities grow sequentially, continue to grow

overtime, and can be formed by rushes of migration. Recent empirical studies have discovered

that cities tend to grow in sequence, each experiencing a period of accelerated growth one

after another (Cuberes, 2009). Despite the in�ux of empirical evidence of the robustness of

this phenomenon across time and systems of cities the underlying reasons remain an open

question. This paper provides a theoretical framework in which individual choices in a self-

organized economy produces dynamics of city creation and growth consistent with the three

stylized facts mentioned above.

Rushes of migration are a fundamental aspect of dynamic city growth empirically but

absent in most theoretical work. Most urban models are static in nature and therefore unable

to capture the dynamics necessary to explain rushes of migration. The dynamic model in this

paper incorporates rushes of migration within a city growth model providing a mechanism

for rushes of migration and characterizing the size of these rushes. Rational and optimizing

individuals in the model rush into a city to take advantage of opportunities in new and

growing cities while giving up income and bene�ts of the cities they previously resided in.

Therefore, how fast the opportunities decrease with respect to population is an important

factor in determining whether a rush of migration will exist and if it does how large it will
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be.

The model is based upon three fundamental aspects of a system of cities. The �rst is

that individuals are the key economic actor in population allocations across cities and the

formation of new cities. The history of cities, especially in the United States, is full of

pioneers moving west to create initial outposts. As waves of migrants moved out of existing

cities these outposts sprang into towns and eventually new cities. In the model, a large set of

homogeneous individuals act as perfectly competitive entrepreneurs deciding when to create

and populate new cities.

Second, established cities provide higher incomes, more public goods, and other bene�ts

newly created cities cannot provide. Individuals migrating out of established cities give up

these bene�ts of city life which growing cities are unable to provide, at least immediately.

Finally, there are opportunities for individuals in growing cities not existent in established

cities which compensate migrants. The initial settlers of a town are able to choose the best

land, have larger impacts on the types of institutions within the city, and collect monopoly

rents from newcomers. Creation of, and migration to, new cities in this model is determined

by individuals making the tradeo� between the bene�ts provided in established cities and

the opportunities that exist in new ones.

The model produces an endogenous life-cycle of a city characterized by three phases.

In the �rst stage a city is created either by a single speculator or a rush of migration. In

the second stage cities enter a period of accelerated growth driven by the opportunities it

provides to migrants. Finally, cities enter a phase of steady state growth where migration

depends upon free mobility of the exogenously growing population in the system of cities.

This paper characterizes the self-organized life-cycle of cities in full generality (section

5.2). This model demonstrates the generality of the key mechanisms of city growth. The

general model is solved explicitly in a parametric model (section 5.3) which is used to compare

with an e�cient growth path characterized by Fujita in his 1978 work. Finally, comparative

statistics of the parametric model provide predictions of how city growth is a�ected by
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property and income taxes (section 5.4)

5.1 Literature

Krugman in his 1996 paper suggests that the focus of new city creation should be on

self-organization. However, the literature, often for simplicity, has used large agents such as

developers (Henderson, 1974; Rossi-Hansberg and Wright, 2007; Helsley and Strange, 1997)

or public governments (Henderson and Venables, 2009) to create new cities. The use of large

agents circumvents a coordination problem that exists with self-organized cities. In previous

models of self-organized cities, individuals create cities only in the unrealistic scenario when

the bene�t of being in a city of size one is the same as being in an established city (Anas,

1992). This caused cities to grow into Malthusian mega-cities which would bifurcate when

a new city was formed. These models are unattractive because they predict city dynamics

that are not empirically supported.

In contrast, this paper provides a self-organized system of cities that is able to match the

three stylized facts of city growth found in the empirical literature: 1) almost all cities grow

every decade (Black and Henderson, 2003; Henderson and Wang, 2005) 2) city growth follows

a sequential growth path (Cuberes, 2004) 3) some cities experience rushes in migration.

5.2 Model

Each city produces Ni ∗ yi(Ni) where Ni is the city's population and yi is the average

product which each city resident is assumed to receive. Average product in a city is assumed

to be continuous and single-peaked with respect to population capturing the economies

and diseconomies of scale with respect to population. For cities with small populations

the average product is increasing in population because the economies of scale outweigh the

diseconomies of scale and conversely for cities with large populations. Cities are heterogenous

in how much they produce for a given level of population. Cities that produce more for all
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common levels of population are de�ned as being superior.

When migrants enter a city, they are assigned a rank in the order they arrive; the �rst

person in a city is given rank one, the second rank two, and so forth. Upon entering the

city, migrants are each given a bene�t based on their individual rank R(k).1 This function

is a general function accounting for all of the bene�ts of being an early migrant to a city.

Individuals forgo their rank bene�t when they migrate our of a city and receive instead the

rank bene�t according to their rank in the new city. The rank bene�t may be positive or

negative, but for simplicity the slope of the rank function is assumed to change signs no more

than once and at some rank kΘ, the rank function remains constant for all further ranks.

The following characterization of a city's life cycle is conducted within the context of

one initial city, city 1, growing according to steady state growth and from which a new city,

city 2, will be formed. This simpli�cation is used for notational purposes only. The initial

city can be thought of as a composite city of many cities. For notational purposes it is

also useful to assume that the exogenous population growth, η(t), occurs in the initial city,

even after the new city has formed. The exogenous population growth η(t) is allowed to be

non-monotonic but for simplicity is assumed to be known. New residents to city 1 receive

the average product of the city but because city 1 is in steady state growth their rank is

greater than kΘ and the rank bene�t is constant and is normalized to zero. Therefore, the

homogeneous population in the initial city has no rank bene�t and will be potential migrants

to the new city.2

Although these simpli�cations are merely for notation, this context lends itself to an

1One natural realization of the bene�t of moving to a city early is that early migrants may be given
land to live on. Earlier migrants receive land closer to the central business district (CBD) in a monocentric
city. Later migrants receive land further away from the CBD and as a result spend more of their income on
commuting costs. Migrants with rank greater than kΘ would not be given land and would have to buy or
rent land within the city. In the next section individuals will have utility over the lot of land they receive,
both in its distance from the CBD and its area. The rank function will then be microfounded as the utility
individuals receive from the lot of land they are given when they migrate to the new city. In this section the
rank function will remain a general function.

2Residents of the initial city that do not receive a rank bene�t will forgo fewer bene�ts in migrating to
the new city than residents with rank bene�ts. Therefore, residents without rank bene�ts will be willing to
migrate to a new city under circumstances that other residents will not be willing to migrate under.
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example from the United States' early history, where the initial city is New York City, which

receives an exogenous amount of population from immigration. As New York grows, a group

of people eventually move west and form a new city, which continues to receive migrants

from New York.

5.2.1 General Life Cycle of a City

This subsection characterizes the general life cycle of a city in full generality through a

series of results. The initial population in the existing city is assumed to be a continuum of

population with measure N̄(0) and is assumed to be perfectly mobile. The average product

produced within the existing city is y(N̄(0)). The payo� an individual in the initial city

without a rank bene�t receives for staying in the city is equal to the present value of the

average production in the initial city.

S(η, q(t)) =

∞Z
0

e−rty1(N1(t))dt (5.1)

Production in the initial city is a function of its population, N1(t), which increases by the rate

of urban population growth η(t) and decreases by the rate of migration out of the city q(t).

A migrant to the new city receives the average product in the new city y2(N2(t)) and rank

bene�t R(k). This function depends upon when the individual arrived in the new city relative

to other migrants, the individual's rank k. The functional form of R(τ) is left as general

as possible in this section but is assumed to be continuous, continuously di�erentiable, and

have a slope that changes signs no more than once. In this model, a migrant to the new

city has no incentive to move back to city 1 because they would forgo their rank bene�t in

the new city. An individual who migrates to the new city at time τ with rank k receives the

present value of the stream of average products in cities 1 and 2, depending on when she
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migrates, plus her rank bene�t.

M(τ, k) =

τZ
0

e−rty1(N1(t))dt+

∞Z
τ

e−rt(y2(N2(t)) +R(k(τ))dt (5.2)

The formation and life cycle of a new city can be characterized by a symmetric Nash equilib-

rium.3 The symmetric Nash equilibrium is a mixed equilibrium where all potential migrants

play a mixed strategy according to the CDF Q : [τ , τ̄ ]→ [0, λ] which is non-decreasing and

right-continuous.4 This CDF determines the �ow of migration q(t). The �ow of migration

may experience discontinuous jumps of masses of people all migrating at the same time. In

this case, individuals are randomly given a rank and individuals have rational expectations

of what rank they will be.

The symmetric Nash equilibrium is found using an indi�erence condition and two bound-

ary conditions. The indi�erence condition, which is a necessary condition for equilibrium,

equates the payo�s in the entire support of Q(t) ensuring that individuals are indi�erent

about when to migrate. The indi�erence condition, given in equation 5.3 is found by taking

the derivative of equation (5.2) with respect to τ and setting it equal to zero for τ ∈ [τ , τ̄ ].

Using Leibniz's rule, this derivative produces the condition at time τ the average production

in the initial city must equal the average production in the new city plus the rank bene�t

for an individual who is rank k(τ) plus the present value bene�t of being rank k, as opposed

to rank k + 1.

y1(N1(τ)) = y(N2(τ)) +R(k(τ))−
∞Z
τ

e−rt
∂R(k(τ))

∂τ
dt (5.3)

The two boundary conditions endogenously determine τ and τ̄ which determine when the

new city is created and when it enters steady state growth respectively. The �rst boundary

condition (5.5) ensures that at τ potential migrants are indi�erent between migrating and

staying in the initial city. If this boundary condition did not hold, there would be an incentive

3The set of equilibria is limited to symmetric equilibria because all potential migrants from the existing
city are initially identical.

4There is also a pure strategy equilibrium where individuals move with certainty at a given time. However,
the aggregate migration pattern q(t) will be the same in this equilibrium, leaving the analysis unchanged.
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for early migrants to deviate from the equilibrium path and migrate earlier or later. The

second boundary condition (5.6) ensures migrants at time τ̄ are indi�erent between migrating

before and after τ̄ .5
∞Z
τ

e−rt(y2(N2) +R(1))dt =

∞Z
τ

e−rty1(N1) (5.5)

y2(N2(τ̄ − dt)) +

∞Z
τ̄

e−rtR(k(τ̄ − dt))dt = y1(N1(τ̄)) (5.6)

The τ border condition ensures the new city is created when the present value of the income

in city 1 is equal to the bene�t of starting (and living in) a new city. The present value of

income in city 1 increases and then decreases with respect to time as population in the city

increases from the exogenous population growth. The bene�t of starting a city depends on

the rank bene�t of being the �rst person and the income growth path in the new city which

is �xed with respect to time. This implies it is possible for the τ border condition to be met

at two points, one where the present value of income in city 1 is increasing and one where it

is decreasing. However, if the new city is created when the present value of income in city 1

is increasing there exists an incentive for individuals to pre-empt the creation of the new city

start the city earlier. Therefore in equilibrium the average product in city 1 is decreasing

with respect to population.6

5The �rst border condition (5.5) can be rewritten noting that at τ̄ the new city enters steady state growth
and y2(N2) + Θ2 = y1(N1), Θ2 is the present value of the rank bene�t in city 2 of migrants of rank greater
than kΘ. De�ne R̄(JI) as the rank bene�t either of the lone speculator, R̄(JI) = R(1), or the average rank

bene�t in the initial rush of people size JI , R̄(JI) =
R JI

0 R(k)/JIdk. Intuitively, the rewritten �rst border
condition states that the present value of the rank bene�t of creating a city must equal the present value of
the di�erences in incomes in the two cities at τ .

∞Z
τ

e−rtR(JI)dt =

τ̄Z
τ

e−rt(y1(N1)− y2(N2))dt+ Θ2 (5.4)

6When the present value of income in city 1 is decreasing individuals do not have an incentive to imme-
diately pre-empt the creation of the new city.
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5.2.2 Life-Cycle Results

A city is formed either by a single speculator or a mass of people in a rush at time τ ,

endogenously pinned down by the border condition in equation 5.5. For a city to form the

single speculator, or mass of people in a rush, must not have an incentive to deviate and

migrate later. The incentives for individuals to create and migrate to the new city depend

on the income and opportunities the city o�ers. The opportunities in a city compensate

early migrants for forgoing higher incomes in established cities. As the new city grows the

di�erence between incomes in the new and established cities decreases meaning later migrants

do not need as many opportunities in the new city to compensate them for migrating.

If the opportunities in the city are smaller for later migrants then the migration pattern

endogenously ensures the loss in income is exactly compensated for by the opportunities in

the new city. The migration pattern does this by varying the time path of income in the

new city which depends on population. If the opportunities in a city are always increasing

for later migrants then this city will not be formed. When the opportunities are always

increasing for later migrants there is always be an incentive for migrants to deviate and

migrate later forgoing less income and receiving better opportunities. This example provides

the intuition for the necessary condition for a city to be formed.

Necessary Condition for City Formation: For a city to form, its rank function must be less

than or equal to the average rank function for some rank greater than one.

The necessary condition ensures the opportunities are smaller for later migrants during

the accelerated growth period. If the opportunities are initially increasing for later migrants

the necessary condition ensures at some point the opportunities become smaller for later

migrants. In this case the following section demonstrates the city will be created by a rush

of migration and the size of the rush is large enough such that the opportunities are smaller

for migrants after the rush of migration.

After creation, the city experiences a period of accelerated growth between time τ and
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τ̄ according to q(t) given in equation 5.9. The population growth in the accelerated growth

period is found by taking the integral of the last term of the indi�erence condition (5.3)

and rearranging.7 This condition produces an ordinary di�erential equation in q(t) and Q(t)

which will be solved in the following section given functional forms. Even without functional

forms the migration pattern can be characterized by this condition.

q(t) =
y2r +Rr − y1r

R′
(5.7)

During the accelerated growth period the opportunities in the city are decreasing for later

migrant. However, the income in the new city is increasing at a rate to keep migrants

indi�erent between when to migrate to the new city. The accelerated growth period ends

when rank kΘ
i is reached and may end in a rush of migration. The rush of migration at the

end of the accelerated growth period ensures the income in the new city, net of the constant

rank bene�ts Θ2, is equal to the income in the initial city. Therefore, in steady state incomes

are decreasing with respect to population.

Result 1 Sequential Growth: A new city is not started until all existing city have reached

steady state growth.

Although people in the model are forward looking, the new city is not started until exist-

ing cities have reached their peak populations. Result 1 states that the model endogenously

provides constraints to `excessive speculation' by individuals. In addition, result 1 de�nes

the population dynamic of the model where cities take turns growing at an accelerated rate.

Result 1 follows from the τ boundary condition ensuring the new city is created at a point

at which the initial city's income is decreasing with respect to population which occurs only

in steady state.

In steady state migration to and from cities ensure the payo� individuals receive, the

average product plus the rank bene�t constant Θi, is equalized across all cities. Once a city

7All of the math for this section can be found in the Appendix.
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reaches steady state growth it is assumed to remain in steady state growth forever.8

Result 2 Continued City Growth: Existing cities continue to grow by η(t) − q(t) after they

reach steady state growth.

Result 2 is an important characteristic of city growth that almost all cities grow every

decade. The growth of existing cities depends on the shape of the average product curve.

When there are multiple existing cities they split the population η(t)−q(t) such that average

product remains constant across cities. Even though average product remains constant if

cities are heterogeneous then their growth in steady state can also be heterogenous. Cities

that have average product curves with respect to population that have steeper slopes will

grow slower. Section 5.4 investigates how income and property taxes a�ect the average

product curves and thus city growth.

5.2.3 Rushes of Migration

Rushes of migration occur in the model because individuals move across cities instanta-

neously to take advantage of arbitrage opportunities that arise from changes in opportunities

in new cities and di�erences in income across cities. The size of the rush depends on the size

of the arbitrage opportunity. There are two possible times a city may experience a rush of

migration. The �rst is when a city is created, τ , due to opportunities in the new city. The

second, is when a city enters steady state, τ̄ , due to di�erences in income produced in city

1 and city 2.

Result 3 Initial Rush: A new city is formed by a rush of people if and only if the rank function

is initially increasing and later decreasing.

Although the average product in the new city is smaller than in the initial city, the

di�erence shrinks over time, providing a bene�t to migrating later. However, the bene�t of

8An extension of the current model would allow amenity levels to change over time according to a poisson
process. This change to the city would allow it to break out of steady state growth while it adjusted to its new
steady state growth path. The rust belt in the United States may have experienced a negative production
amenity shock causing these mature cities to enter a period of adjustment to lower levels of population.
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migrating earlier is a higher rank bene�t which will compensate for initial losses in average

product. In the case where there is not a rush in population and the rank bene�t is initially

increasing and later decreasing function, the earliest migrants will have an incentive to

deviate, waiting to migrate later and receiving both a higher average product and higher rank

bene�ts. Therefore any mixed-strategy equilibria must be characterized by a discontinuous

jump in population at τ where the expected rank bene�t compensates for lower average

product.

To ensure rushing migrants, {1, J I}, do not have an incentive to wait and migrate `late'

at time τ rush +dt, the expected rank payo� must be greater than or equal to the rank payo�

for migrant J I +dk. Similarly, to ensure that migrants who do not participate in the rush do

not have an incentive to migrate early (i.e., with the rush) the rank payo� for the migrant

J I + dk must be greater than or equal to the expected rank payo� of the rush. Therefore,

the expected rank payo� of the rush must equal the rank payo� of the last member of the

rush.

1

J I

JIZ
0

R(k)dk = R(J) for some J > 1 (5.8)

It must also be true that no one has an incentive to pre-empt the rush and migrate at time

τ − dt, which would ensure an early migrant the rank bene�t for the �rst migrant. To

ensure that no one has an incentive to pre-empt the rush, the expected rank bene�t must

be greater than the rank bene�t for the �rst migrant. For condition (5.8) to hold, the rank

function's slope must change signs. The following argument is depicted in �gures (5.1) and

(5.2). De�ne point J I as the point at which the average rank bene�t equals the rank bene�t

of J I . De�ne point H as the point at which the rank bene�t switches signs. De�ne point E

as the point at which the rank bene�t is equal to the rank bene�t of the �rst migrant. If

the rank function is initially decreasing, the average rank payo� at any point h less than H

is greater than the rank bene�t at point h. In addition, the average rank payo� at point E

is less than the rank payo� at point E. Therefore, by continuity, point J I is smaller than

point E and the rank payo� of the �rst migrant is greater than the rank payo� at point J I .
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Therefore, there is no rush if the rank function is initially decreasing. However, if the rank

function is initially increasing, the average rank payo� at any point h less than H is less

than the rank bene�t at point h and the average rank payo� at point E is greater than the

rank payo� at point E. Therefore by continuity, point J I is less than point E and the rank

payo� of the �rst migrant is less than the rank payo� at point J I . This ensures that no one

has an incentive to pre-empt the rush of migration to the new city. Therefore, a rush implies

that the rank function is initially increasing and decreases after a �nite argument such that

there exists a �nite argument, J I , where the function equals its average.9

The second time a city may experience a rush of migration occurs when the city enters

steady state characterized by the τ̄ border condition. This condition equates the average

product in city 1 and the average product in city 2, net of the constant rank bene�t. If

just prior to the beginning of steady state, τ̄ − dt, the average products in the two cities,

adjusted by Θ, are not converging, there will be a jump in income in the second city at time

τ̄ . For migrants to remain indi�erent, the jump in income must be o�set by a jump in the

expected rank bene�t. However, since the rank function is continuous, a jump in expected

rank bene�ts implies a rush of migration.

Result 4: Terminal Rush: The new city experiences a rush of population at τ̄ if the average

product in the new city at τ̄ is not equal to the average product in the new city at τ̄ − dt.

5.2.4 Characterization of Migration

The general model characterizes the dynamic growth of cities according to the migration

function q(t). This section characterizes the migration function with a series of comparative

statistics. Speci�cally, how the growth of a city changes with respect to the di�erence in

opportunities between ranks is the main result of this section. Other comparative statistics

demonstrate how the growth of a city changes; as the opportunities in the new city become

9Under very speci�c conditions a city may be formed by a rush of migration and enter directly into steady
state. These conditions are given in the appendix. When these conditions do not hold a rush of migration
large enough to put a city in steady state is not an equilibrium.
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better, as the change in income with respect to population decreases, as individuals become

more patient, and as the exogenous rate of population growth increases.

The comparative statistics come from the migration function q(t) given in equation 5.7.

Another formation of the migration function comes from taking the derivative of the indif-

ference condition with respect to τ , using Leibnitz's rule, given in equation 5.9.

q(t) =
y′1ηr +R′′q2 +R′q′

y′1r + y′2r +R′r
(5.9)

It is natural to think migration to a new city would increase as the bene�t of being the

k person relative to being the k + 1 person in a city increases, counter to result 5. This

counterintuitive comparative statistic comes from the indi�erence condition which states

migrants must be indi�erent across all migrating times in the accelerated growth period.

To maintain indi�erence, the cost of being the kth person must increase as the bene�t of

being the kth person increases. Slowing the migration rate increases the cost of being the

kth person by decreasing the present value of income received by the kth person. Therefore,

increasing the bene�t between two ranks decreases the migration rate. This result is depicted

in �gure (5.4).

Comparative Statistic 1: The migration to a city decreases as the di�erence in opportunities

between two ranks increases.

In the limiting case where only the �rst person receives a rank bene�t, the �rst person

will form a city and wait for a rush of migration that will bring the city into steady state.

The �rst person will wait in the city until the entire bene�t of being �rst is `eaten away' by

the prolonged period of low income in the new city.

In the limiting case where all migrants receive the same rank bene�t, the city will be

formed and immediately enter steady state by one large rush. Since all migrants receive

the same bene�t they must receive the same cost to remain indi�erent. The only way the

migrants can receive the same present value stream of average products is if they all migrate
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at the same time. This limiting case corresponds to the previous literature that implicitly

had a constant rank function.

Comparative Statistic 2: Increasing all opportunities in a city by the same amount causes

the new city to be formed earlier, but the rate of migration in the accelerated growth period

to be the same.

Increasing all opportunities in a city causes the bene�t of creating the city to become

larger. The �rst border condition (5.5) ensures individuals are indi�erent between creating

the new city and staying in the established city. To ensure indi�erence, the cost of starting

the city must also increase. This implies that the new city must be started earlier causing

the di�erence in incomes at the time the new city is created to be larger.10

In the limiting case where the bene�t of being rank one in the new city is increased,

leaving the bene�ts to all other migrants unchanged, then the new city will be started

earlier but only the migration of the �rst migrant will change.11 When the bene�t of being

the �rst migrant increases migration occurs earlier, for the same reasons as comparative

statistic 2. However, because the rank bene�ts did not change for any of the other migrants

their migration pattern will not change, to ensure they remain indi�erent between migrating

and staying in the established city. Interestingly, to ensure that individuals are indi�erent

between being the �rst migrant and some later migrant, the entire added bene�t of being

rank one will be `eaten away' by the cost of moving to the new city earlier. Therefore, a

policy of giving a lump sum of money to the creator of a city, aimed at rising welfare by

creating an incentives to start cities earlier, will cause the city to be formed earlier but will

have no e�ect on welfare.12

10This can be seen algebraically by rearranging the �rst border condition (5.5) placing
R∞
τ e−rtR(1)dt on

one side and
R∞
τ e−rty1(N1) − y2(N2)dt on the other side. Because the rank function remained unchanged

other than a positive shift, the migration pattern in the accelerated growth period will remain unchanged,
causing

R∞
τ e−rty2(N2)dt to be the same. Therefore, the average bene�t in the established city, which will

be foregone by the migrants, must be greater to counter the increase in the bene�t of starting the new city.
This implies the new city will be formed earlier because the average bene�t in the established city decreases
as the population increases.

11This claim follows from the �rst two comparative statistics.
12A lump sum may not be a realistic policy instrument, but tax breaks and other incentives do exist for
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Comparative Statistic 3: The rate of migration to a city increases as migrants become less

patient.

When migrants are less patient the cost of moving to a new city increases and the bene�t

of moving to a new city decreases because the rank bene�t pays o� over time. To ensure

migrants are indi�erent, the migration rate must increase, lowering the cost of migrating

early.

Comparative Statistic 4: Migration to a new city increases as the exogenous rate of population

growth increases.

This comparative statistic follows directly from the second migration condition (5.9).

Intuitively, as the exogenous rate of population growth increases, the di�erence in costs

between migrating at time τ and time τ + dt increases. Increasing migration to the new city

decreases the di�erence in costs associated with migrating at time τ relative to time τ + dt.

Therefore, migration to the new city increases as the exogenous rate of population growth

increases, ensuring that migrants remain indi�erent between migrating at time τ and τ +dt.

Note however an exogenous growth rate of zero at some point in time does not imply there

will be no migration at that time.

Comparative Statistic 5: The rate of migration to a city decreases as the di�erence in income

with respect to population of a city decreases.

As the di�erence in income decreases with respect to population, the change in cost of

migrating at time τ and time τ + dt decreases. In this case migration to the city decreases,

increasing the cost of migrating at time τ relative to time τ +dt, thus maintaining migrants'

indi�erence. This result is important in understanding di�erences in migration patterns

between cities. Consider two heterogenous cities, A and B, depicted in �gure (5.3), which

di�er in the level of income at each level of population but are maximized at the same

population level. Because the cities' average products are maximized at the same population

developers of new cities.
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level, the marginal average product must be larger in the city with the greater average

product at its peak, city A. Therefore, by comparative statistic 5, city A grows faster in its

accelerated growth period than city B.

This section has produced and characterized a self-organized model of city formation.

This is the �rst model, to the author's knowledge, that has produced a self-organized model

of city formation that can match the empirical facts that cities tend to grow sequentially

(result 1), some cities experience population rushes (results 3 and 4), and virtually all cities

increase in size through time (result 2). Migration was characterized in full generality with

this model, allowing the reader to consider in what manner heterogeneous cities would grow.

Therefore, this model is well suited to explain di�erent growth patterns as a result of het-

erogeneous natural amenities and policies that de�ne cities. The following section provides

a microfoundation for city formation that provides a tangible example for the results in this

section.

5.3 Microfoundations of City formation

Each city is broken into individual lots of land with P lots in the center used for produc-

tion in the central business district (CBD) and all other lots reserved for residential use. The

city is modeled as a spiral, with lots ordered from the center. Cities are not literally a spiral,

but the spiral framework produces a few nice properties. First, modeling a city as a spiral

allows individual lots of land to di�er in area and distance from the CBD. Second, the area

of each lot increases with distance from the CBD, modeling a decrease in density away from

the CBD. Third, the di�erences in area and distance are continuous functions making the

rank function smooth.13 It is convenient to use an Archimedean spiral where the radius for

a given angle θ is given by r = bθ. The spiral is broken into lots where each lot is bounded

by two lines radiating from the center of the city. All lots are assumed to be bounded by two

13In contrast, the typical assumption in urban literature is that cities are linear, or monocentric and grow
in rings. These assumptions would cause the rank function to be a step function because lots within a ring
would all be identical.

114



lines that form a constant angle θ̄ = 2π/s, where s is the number of lots per rotation. Figure

(5.6) depicts the arrangement of lots within a city, for notational simplicity P = s+ 1, such

that the CBD is the �rst rotation of plots plus one lot in the city and s = 2bπ.

A composite good c is produced within the city by �rms that have constant-returns-to-

scale technology in labor employed, and are subject to city-wide scale externalities. With

constant returns to scale in labor, each individual can be considered their own �rm without

loss of generality. Each �rm bene�ts from urban scale economies through interactions with

other �rms via learning spill-overs, causing per-worker output to rise with city population.14

The production of �rms is given by f(A,L) = AN ξL, which is a function of a production

amenity level A, labor employed L, and city population N , where ξ ≤ 1 represents the urban

scale economies.

Production of the composite good c also produces pollution p(F (A,N))ψ which is an

increasing and convex function of city-wide production, F (A,N), where ψ > 1, in a manner

consistent with Tolley's 1974 description.15. Therefore, each individual earns income in the

city equal to the average net product of the city, given in equation (5.10) where β = ξψ and

B = pAψ. 16

y(N) = AN ξ −BNβ (5.10)

Individuals supply one unit of labor inelastically to their �rm and receive the average product

in the city in exchange. Individuals also receive income from their land holdings, which is

an exogenously chosen combination of land within the city they live in, and land in all

other cities, following Albouy and Seegert (2010). From this income, individuals pay for

their consumption of the composite good c, a commuting cost mrφ, where r is the distance

14For further microfoundations of urban scale economies see Duranton and Puga (2004).
15�The nature of pollution and congestion is that extra pollutants and vehicles do not shift production

functions at all at low amounts, and extra amounts have increasingly severe e�ects as levels are raised until
ultimately fumes kill and there are so many vehicles that tra�c cannot move." Tolley (1974). Therefore,
pollution is modeled as being convex in production.

16Average production is a concave function because ψ > 1. The population within the city that produces
the greatest average product is given by Npeak = ((ξA)/(βB))(1/(β−ξ).
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from the CBD to where the individual lives, and rent if they do not own their lot of land.17

This gives the budget constraint given in equation (5.12) where ρ is the fraction of land the

individual holds as investment in the city they live in, (1 − ρ) is the fraction of land the

individual holds in all other cities, and δ and ∆ are the average rents within the city they

live in and the average rent across all cities respectively. Individuals have utility over their

consumption of the composite good c and the area of the lot of land, α that they live on

according to the utility function given below.

U(c, α) = d αγ + c (5.11)

y(N) + ρδ + (1− ρ)∆ = c+ rent(r, α) +mrφ (5.12)

The city grows as individuals move into the next open lot in the spiral of lots. The �rst kΘ

migrants to the city are given their lots for free. Therefore, the �rst migrants bene�t from

having the lots closest to the CBD and not having to pay rent. All other migrants are forced

to pay rent which depends on the distance from the center, the area of the lot, and the last

inhabited lot in the city such that migrants are indi�erent about which lot they live on. The

rent gradient given in equation (5.13) can be found by rearranging the indi�erence condition

between any lot k and the last occupied lot in the city k̄.

δ(k) = πγd((2k + P )γ − (2k̄ + P )γ)−m(kφ − k̄φ) (5.13)

Utility can be written in terms of the area of an individual's lot of land and its distance from

the CBD, as well as their income, by substituting the composite consumption good from the

budget constraint (5.12) into the utility function (5.11). The rank function, which captures

the bene�ts of being an early migrant, is given by the utility a migrant receives from the lot

17In the urban literature there has been an increasing acknowledgement that commuting costs do not
increase linearly with population or distance. To account for this, the commuting cost increases at a rate rφ

where φ captures the rate of increase with respect to distance.
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of land they are given. The rank bene�t for all migrants that rent will be identical and have

a present value equal to Θi for city i.
18

U(r, α,N) = d α(k)γ −mr(k)φ − δ(r, α)| {z }
Rank Function

+y(N) + ρδ + (1− ρ)∆ (5.14)

The area of lot k is found by integrating between the two curves bθ and b(θ − 2π) in polar

coordinates between the angles θ̄k and θ̄(k − 1). The distance of the lot from the CBD

is given by the point in the lot closest to the city center. Given the simpli�cations that

production uses the �rst rotation of lots, plus one, P = s + 1, and the number of lots per

rotation is given by s = 2bπ, the lot area as a function of rank is given by π(2k + P ) and

the distance from the CBD is given by k. The rank function for migrants that are given a

lot of land is given in equation 5.15.

R(k) = dπγ(2k + P )γ −mkφ (5.15)

Result 3 demonstrates that a city will be formed by a rush if the rank function is initially

increasing and later decreasing. In this microfounded example there is a rush of migration if

γ is small relative to φ, speci�cally γ < φ(1− p/2k)− p/2k. Allowing γ = 1 and φ = 2, the

su�cient condition is met and the size of the rush, J , can be solved for analytically using

equation (5.8). The rush is depicted in �gure (5.5).

J =
3dπ

2m
(5.16)

The size of the jump increases with the utility weight of land, d, and decreases with the

commuting cost m. Intuitively, an increase in the bene�t of the area of land will increase the

bene�t for later migrants who receive larger lots of land. Increasing d increases the rank that

18Θi =
R∞
t e−ρt(darea(k))γ − mr(k)φ − rent(r, area))dt =

R∞
t e−ρt(darea(k̄)γ − mr(k̄)φ)dt. From this

combination of the rank function it is clear that the rank function is constant for all ranks greater than Θi.
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achieves the peak rank bene�t, kpeak = dπ/m, and increases the slope of the rank bene�t

function, ∂R(K)/∂k = 2dπ − 2mk, both of which cause the size of the rush to increase.

Similarly, decreasing m increases kpeak and the slope of the bene�t function causing the size

of the rush to increase.

An analytical solution of the ordinary di�erential equation in condition (5.7) can be found

when it can be rearranged into the linear ordinary di�erential equation form q(t)+h(t)Q(t) =

g(t). When ξ = φ = γ = 1, β = 2 and η(t) = v,the migration condition can be rearranged in

the appropriate form. For notational ease, let τ = 0 and let N1 = N0 + vt−Q(t), where N0

is the level of population in city 1 at which τ city 2 is formed. Using the linear di�erential

equation, the closed form solution for population in city 2 is given below.

Q(t) =

R
e
R
h(t)g(t)dt+ c

e
R
h(t)

(5.17)

h(t) =
r

R′(k)

�
R′(k) + y′(N0) + y′(vt)

�
g(t) =

−r
R′(k)

(dπp− y(N0 + vt))

From this condition the results of the previous section can be con�rmed. The following sec-

tions provide some applications of the microfounded model. The �rst application compares

the self-organized economy with the social planner problem.

5.4 Applications

5.4.1 Social Planner

In 1978, Fujita wrote a book the optimal distribution of population across cities as the

total population increased. In contrast, this paper's model is a positive model of how a

self-organized system distributes population across cities. However, it is useful to compare

the self-organized allocation presented in this paper with the socially optimal allocation of

population. The objective of the social planner is to maximize the present value of the total
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product in the economy over all time, subject to the fact that the total population must be

allocated across all cities. In addition, there is an optional constraint that is sometimes used,

stating that city population can never decrease. This condition is justi�ed when there exists

an external cost, such as the cost of housing stock as in Henderson and Venables (2009).

∞Z
0

e−rt
X
i

Niyi(Ni)dt (5.18)

subject to X
i

Ṅi = η(t) (5.19)

Ṅi ≥ 0 (5.20)

With only the �rst constraint, the necessary Euler equation states that the marginal product,

mpi = Ni∂yi/∂Ni + yi, must be equal across all cities that have positive population. This is

a very restrictive condition that would not allow cities to grow slowly over time. Essentially,

the socially optimal creation of cities would consist of cities formed by rushes large enough

to bring cities directly into steady state such that the marginal products across all cities were

equal.

−λ̇ = e−rtmpi (5.21)

The additional constraint that population in a city cannot decrease rules out a rush large

enough to bring a city into steady state because such an increase in population in one city

would cause other cities' populations to decrease. The new Euler equation states that if two

cities are growing at the same time their marginal products must be equal. This condition

rules out the creation of a new city when another city has not yet reached steady state. This

optimality condition also holds in the self-organized system by result 1.

λ̇− µ̇ = e−rtmpi (5.22)
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When this condition is include, the Euler equation can be integrated, producing a condition

about the shadow value of an additional worker in a city. For the migration pattern to be

optimal, the shadow value of placing an additional worker in the new city has to equal the

value of the worker in the existing cities at the time the new city is created and must be

greater than the value of the worker in the existing city until the new city stops growing.

e−rτ (λ(τ)− µ(τ)) =

∞Z
τ

e−r(t−τ)mpidt (5.23)

This condition allows for cities to grow slowly over time but rules out any rushes in popu-

lation. Therefore optimal migration is either characterized by a large rush that brings cities

into steady state or by a continuous function void of any rushes. In the case where cities

are optimally formed by largerushes the self-organized migration in general will be too slow

relative to the optimum. However in the case that optimality rules out rushes, it could

be that self-organized migration is too fast or too slow. Self-organized migration depends

crucially on the rank function to determine the speed of migration. The optimum migration

is determined by the marginal product by a given city. Therefore, by comparing the rank

function and the resulting self-organized migration pattern with the marginal product in a

city and the optimal migration pattern the social planner could decide how to manipulate

the rank function as to align the self-organized and optimal migration patterns.

5.4.2 City Growth and Taxation

The rank bene�t in the microfounded example is ownership of better land. Property tax

levels depend upon the structure of revenue sharing between local and state governments.

Therefore across states, local governments have di�erent property tax revenue requirements.

An individual that creates a city in a state with high property tax revenue requirements will

receive less bene�t from their lot of land. Therefore, the rank function will be shifted down

in high property tax states. In addition, if the property tax is assessed as a proportion of
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land value, the rank function will become �atter because the earlier migrants will have to

pay relatively more in property tax than later migrants. By results 5 and 6 we know that

a city created in a state with higher than average property taxes will be formed later and

experience faster migration than the average city.

With an income tax, the average bene�t provided in a city is given by (1− t)AN ξ−BNβ.

As the income tax increases, the average bene�t decreases and the slope of the average bene�t

decreases. The income tax produces a wedge that causes cities to bene�t less from increased

population. Therefore, by result 10, cities that are created in states with high income taxes

will experience slower migration.

5.5 Conclusion

This paper has produced a theoretical framework that characterizes a self-organized city's

life cycle from creation to steady state growth. The advantage of the model in this paper

is that even though cities are created and populated by individuals without developers, the

self-organized system of cities does not su�er from a coordination problem. This allows the

model to produce an endogenous pattern of growth for cities that is consistent with the

empirical evidence.

The model presented in this paper also produced useful applications. The self-organized

system of cities was compared with the socially e�cient system of cities, as described by

Fujita et al. (1978). In addition, the model produced testable hypotheses about the e�ects

of property and income taxes on the growth of cities. The main contribution of this paper

is to provide a new framework of self-organized cities. Further research is needed both

theoretically and empirically to expand and test the implications of this model.
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Figure 5.1: There is not an initial rush when the rank function is initially decreasing.

Figure 5.2: There is an initial rush when the rank function is initially increasing.
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Figure 5.3: City A Grows Faster Than City B (Production Di�erences)

Figure 5.4: City A Grows Faster Than City B (Rank Di�erences)
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Figure 5.5: Size of a Rush to Form a City

Figure 5.6: Lots of Land in a City
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CHAPTER VI

Barriers to Migration in a System of Cities

The mobility of individuals in a country a�ects whether urban population is concentrated

in a few cities or dispersed among many cities. The distribution of population fundamentally

a�ects the economic growth in a country. Hence, creating the e�cient level of mobility within

a country is crucial for economic growth especially if in the next 40 years urban population

increases by 2.8 billion, or 80 percent, as the United Nations projects. This paper considers

the e�cient level of mobility within a system of cities and contrasts the resulting distribution

of population with systems of cities with di�erent levels of mobility. This paper considers

the distribution of population across cities (the intensive margin) as well as the number and

set of heterogeneous cities a system of cities creates (the extensive margin).

Barriers to migration limit the ability of individuals to move across cities. The barriers

may be moving costs, information, or explicit policies such as zoning laws. These barriers

may be bene�cial in limiting the over-population of cities which occurs when individuals do

not internalize the externalities they cause on current residents. In contrast, these barriers

may be costly if they allow clubs to monopolize the heterogeneous amenities cities o�er. This

paper characterizes the barriers to migration a benevolent social planner sets to e�ciently

distribute population within a system of cities and explores mechanisms that can create this

distribution within a competitive equilibrium.

This paper proposes a two-stage model of city formation and population distribution
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where individuals create cities in the �rst stage and move across cities in the second stage.

The model compares the distribution of population with four levels of barriers to migration.

The �rst distribution of population is chosen by a social planner that maximize the total

bene�t produced in the system of cities. The second distribution results from a competitive

equilibrium with free mobility across cities. The third distribution of population results from

a competitive equilibrium with cities able to set population limits. The fourth distribution

of population results from a competitive equilibrium where cities are able to charge migrants

a fee to enter the city.

In the second stage individuals move across cities to maximize their individual bene�t,

disregarding any externalities their choices may have. Each individual is assumed to receive

the average bene�t produced within the city in which they reside. When there is free mobility

across cities individuals move to equalize the average bene�t across cities causing cities to

become ine�ciently over-populated. The intuition is the same as in the two-road example

proposed by Pigou (1952), where one road is slow but provides a constant speed independent

of the number of drivers on it and the other is fast (if empty) but congestible. E�ciency

requires that the marginal bene�t of an additional car on each of these two roads to be equal.

However, uncoordinated individuals equalize the average bene�ts, causing too much tra�c

on the congestible road, and hence the need for a �Pigouvian tax".

If migrants are charged a fee set by a revenue-maximizing city planner the distribution of

population across cities is e�cient. This result is identical to the response in Knight (1924) to

Pigou (1952) in which he demonstrates the toll set by a revenue-maximizing toll-setter causes

the distribution of cars across the two roads to be e�cient. This paper extends this intuition

of the intensive margin to the extensive margin to determine whether revenue-maximizing

city planners create the e�cient number and set of heterogeneous cities.

Section 6.1 de�nes the model and the four levels of barriers to migration within a system

of cities. Section 6.2 solves for and compares the distribution of population across cities in

the four cases. Similarly, sections 6.3 and 6.4 solve for and compare the number and set
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of cities created. Section ACW extends the analysis to the case when there are spill-overs

across cities.

6.1 Model

6.1.1 Foundations of the Model

Much of the current urban research is built upon Henderson's seminal paper on city sizes

and types. The model presented in Henderson's 1974 paper has been extended to systems of

cities by Henderson (1986), Ioannides (1979), and Henderson and Ioannides (1981). The goal

of these extensions is to determine what causes some systems to have growth concentrated in

one major city while in other systems growth is dispersed by the creation of new cities. While

these models have provided a variety of interesting results they have proven cumbersome.

In these models new cities are created by land developers that cap city size. Each

city's population is capped at the population that maximizes the per resident utility. Cities

accommodate additional population only when the total population can not be divided into

cities with their utility-maximizing populations. New cities are created as soon as the total

population is large enough to populate all cities with their utility-maximizing populations.1

The main result from these models is that cities will be created with time intervals that

become shorter as total population increases.

Further developments in modeling city growth and formation attempted to compare

laissez-faire and planned city creation in Anas (1992). These extensions found that a system

of cities characterized by laissez-faire policies would create cities at a slower rate than a

system of cities organized by a planner. In addition, the laissez-faire system of cities would

be characterized by �panic-migrations," as Anas stated in his 1992 paper. These cycles of

booms and busts are caused by a coordination failure amongst individuals who are unwilling

to create a new city unilaterally until current cities are grossly-overpopulated. Given the dire

1This constraint on creating a new city is an equilibrium stability condition.
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patterns of laissez-faire city creation this model requires periodic government intervention

to improve welfare.

Given the undesirable aspects of city growth inherent in laissez-faire systems of cities,

subsequent literature focused on �large agents" such as land developers to create cities.

Helsley and Strange in their 1994 paper introduced the idea that durable capital could

be used by land developers to solve the coordination problem amongst individuals. Later

dynamic models by Cuberes , Venables, and Henderson used this idea from Helsley and

Strange's static model to solve the coordination problem.

Despite the tractability of using land developers Krugman in his 1996 paper emphasizes

the desirability of creating urban models solely as a result of individuals' choices. Follow-

ing this emphasis Seegert's 2011 paper creates a model of forward-looking individuals that

tradeo� bene�ts that exist in established cities with opportunities that exist in new cities,

which when aggregated characterizes the dynamic growth of cities. In the following model

individuals create cities and move across them in a two stage game. The dynamic choices of

individuals aggregate to characterize which cities are created and the population that resides

within them.

6.1.2 Setup of the Model

Cities combine positive and negative externalities through higher wages and higher costs

of living. These forces characterize a total bene�t function, TBj, for each city j, that is

increasing in population, convex for small populations, and concave for large populations

with only one in�ection point. Therefore, the average bene�t is single peaked with respect

to population and is maximized at the point the marginal bene�t intersects the average.

The di�erence between the average and the marginal bene�t is de�ned as the within-city

wedge, WCW , which is zero at the peak of the average bene�t curve, positive to the right,

and negative to the left. The within city wedge represents the canonical wedge in economics
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that exists when individuals consider the average instead of the marginal e�ects.

WCWj(Nj) = SABj(Nj)− SMBj(Nj) (6.1)

At the outset, there is an empty plane of J potential city sites and a hinterland indexed

by 0 which provides a constant payo�, regardless of the number of individuals inhabiting

it. There is an exogenous amount of population, N tot, that is assumed to be homogeneous

with no preference for a given city site. Population in any given city is assumed to be any

nonnegative real number, abstracting from indivisibility problems.2 Population is distributed

across an endogenous number K ⊂ J of inhabited cities, which may include the hinterland.

This model is a two-stage game with complete information with sequential moves in each

stage.3 Individuals know the order of moves and observe the choices made by everyone else.

The equilibrium concept of this two-stage model is a trembling-hand perfect equilibrium

and is solved by backwards induction. The trembling-hand perfect equilibrium concept is a

re�nement of subgame perfect equilibrium which in this context excludes unstable equilibria.

In the �rst stage cities and barriers to migration are created. The model analyzes four

cases with di�erent possible barriers to migration; a tax set by the social planner, free

mobility, a city speci�c population cap, and a fee set by the city creator. In the second stage

individuals move across cities to maximize their payo�. An individual's payo� is the average

bene�t produced in the city they reside in minus any taxes or fees they must pay for living

in the city.

In the �rst case a total bene�t maximizing social planner creates the e�cient distribution

of population. The planner does this by creating cities and setting city speci�c taxes in the

�rst stage. In the second stage individuals sequentially decide which city to move to after

observing the set of cities and taxes created by the planner in the �rst stage.

In the second case there is free mobility because individuals lack the ability to create

2This assumption is justi�ed when populations are large.
3The order in which individual's move is random between the two stages but known to everyone before

the game begins.
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barriers to migration. In the �rst stage individuals choose sequentially which, if any, city

to create. Individuals that create a city in the �rst stage are obliged to live in the city

they create in the second stage. All other individuals in the second stage sequentially decide

which city to reside in.

The third case models a system of cities created by individuals with a quantity mechanism

which allows individuals that create cities to set the maximum population in their city. In

the �rst stage individuals choose sequentially which, if any, city to create and the maximum

population. In the second stage individuals sequentially decide which city to reside in.

In the fourth case individuals create cities and are able to set a fee all other individuals

must pay to reside in the city. In the �rst stage individuals choose sequentially which, if

any, city to create and the fee others must pay to enter. In the second stage individuals

sequentially decide which city to reside in knowing the menu of fees charged by each city.

The following sections determine, by backwards induction, the distribution of population

(section 6.2), the number of cities created (section 6.3), and which cities are created (section

6.4) for each of the four cases.

6.2 Stage Two Analysis: Distribution of Population

In this section the distribution of population across cities is determined assuming the

number and set of cities inhabited is exogenous and that the exogenous total population

is large enough that the hinterland is populated in equilibrium and in all cases. The full

equilibrium problem is solved by backwards induction starting with the distribution of pop-

ulation in stage-two. Therefore this section, which determines the population distribution

across cities, is the �rst step in solving the full problem.
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6.2.1 Case One: Planner Optimization

A benevolent social planner maximizes total bene�t created by setting a city speci�c

lump-sum tax, τj, which is paid by all individuals residing in the city.4 The full planner's

problem, given in equation (6.2), is a mixed integer problem where the tax rate τj is any real

number and xj ∈ {0, 1} is equal to one if the city is inhabited and zero otherwise. In this

section the planner takes as given the set of cities K that are inhabited. After observing the

set of cities created and their associated taxes individuals move across cities equalizing the

payo� they receive, the planner's mobility condition given in equation (6.3). The planner

is able to determine the population in each city by setting the city speci�c tax rates and

is constrained to ensure that the sum of populations across inhabited cities is equal to the

total population,
PJ
j=0 xjNj = N tot.

maxτj

JX
j=0

xjNj(τj)SABj(Nj(τj)) (6.2)

SABj(Nj)− τj = SABk(Nk)− τk ∀j, k ∈ K (6.3)

The �rst order conditions for all inhabited cities with respect to the tax rates are SMBj(Nj,1) =

λ, where λ is the lagrangian multiplier, j indexes city, and 1 indexes population in case 1.

Therefore, the planner sets the tax rates to equalize the marginal bene�ts in each inhabited

city.5

6.2.2 Case Two: No Mechanism-Free Mobility

In the system of cities with with no mechanism to limit migration there is free mobility

in the second stage. In equilibrium all individuals must be content with their choice of

residence which in this case implies that all individuals must receive the same payo�. If this

4Tax revenue is redistributed evenly to all resident.
5The �rst order conditions for all inhabited cities with respect to the tax rates are xj(∂Nj/∂τj)SABj +

xj(∂Nj/∂τj)Nj(∂SABj/∂Nj) = λxj(∂Nj/∂τj) which can be reduced to SABj +Nj(∂SABj/∂Nj) = λ. To
get the �rst order condition given in the text note that SABj +Nj(∂SABj/∂Nj) = SMBj .
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were not the case some individuals would have an incentive, ex post, to move to a di�erent

city. Therefore in equilibrium with free mobility all inhabited cities produce the same average

bene�t according to the free-mobility mobility condition given in equation (6.4) where j, k

index cities, K represents the set of inhabited cities, and 2 indexes the equilibrium population

for case 2.

SABj(Nj,2) = SABk(Nk,2) ∀j, k ∈ K (6.4)

6.2.3 Case Three: Quantity Mechanism-Limited Mobility

City creators in the �rst stage with the ability to cap population do so to maximize their

bene�t which is the per-resident bene�t produced within the city. The per-resident bene�t

is maximized when the average bene�t is equal to the marginal bene�t. In equilibrium

these limits are binding for all cities causing the average bene�t produced in each city to be

heterogeneous. Individuals may want to migrate to a di�erent city if the bene�t they receive

in their current city is less than that in another city. However, the population cap for the

given city restricts additional migrants from moving into the city.6

SABj(Nj,3) = SMBj(Nj,3) ∀j ∈ K (6.5)

6.2.4 Case Four: Price Mechanism-Intermediate Mobility

In this case individuals are able to move across cities freely but must pay a fee to enter the

city. In equilibrium all individuals must be content with their choice of residence implying

the average bene�t produced in a city minus the fee they must pay to enter the city must

be equal across inhabited cities, the price-mechanism mobility condition given in equation

(6.6).

SABj(Nj,4)− fj = SABk(Nk,4)− fk ∀j, k ∈ K (6.6)

6If the maximum per-resident bene�t produced in a city is less than the bene�t produced in the hinterland
then the city will be empty in equilibrium.
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The city creator sets the fee in the �rst stage to maximize the pro�t from the fees.7 The

equilibrium fee is found by substituting the condition in equation (6.6) into the city creator's

objective function in equation (6.7) and taking the �rst order condition with respect to the

fee noting that the population Nj,4(fj) is a function of the fee.8

maxfj fjNj (6.7)

The fee charged in equilibrium for all inhabited cities is the within-city wedge, fj = WCWj.

The condition in equation (6.8) is the equilibrium condition for a system of cities with a price

mechanism and is found by substituting the equilibrium fee into the price mechanism mobility

condition given in equation (6.6). This condition states that the fees set by decentralized

pro�t maximizing individuals cause individuals in the second stage to move across cities in

a way that equalizes the marginal bene�t across all inhabited cities.

SMBj(Nj,4) = SMBj(Nj,4) ∀j, k ∈ K (6.8)

6.2.5 Population Distribution Analysis

Figure 6.1 graphs the average and marginal bene�t of a given city with respect to pop-

ulation with the equilibrium populations in the four cases marked. Across the four cases

the population residing in the hinterland di�ers such that the population in all cities for a

7Maximizing the pro�t from fees is the correct objective function for the city creator because population is

assumed to be a real number. To see this consider the more general objective function Ω(ω)SABj
�
Nj,4(f)

�
+

f
�
Nj,4(f)− Ω(ω)

�
where Ω is the density function of population and Ω(ω) represents the density at point

ω which represents the city creator. In the case where population is an integer Ω(ω) = 1 representing a unit
mass for each individual. However, in the case where population is a real number Ω(ω) = 0. Substituting
Ω(ω) = 0 into the more general objective function we note that it reduces to maximizing the pro�t from the
fees.

8The new objective function is (SABj − SABk + fk)Nj . The �rst order condition is
(∂SABj/∂Nj)(∂Nj/∂fj)Nj+(∂Nj/∂fj)(SABj−SABk+fk) = 0. Rearranging (∂SABj/∂Nj)Nj+SABj =
SABk − fk which is fk = SABk −SMBj . Substituting fk and fj from the �rst order conditions into condi-
tion 6.6 gives SABj(Nj,4)− (SABj − SMBk) = SABk(Nk,4)− (SABk − SMBj) which gives the condition
SMBk = SMBj in the text. The fee is found by noting the �rst order condition with the condition that the
marginal bene�ts be equal imply that SMBj = SABj − fj .
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given case can be less than the equilibrium populations in a di�erent case. For example,

Figure 6.1 demonstrates a city able to cap its population chooses a population level less than

the other cases, and this holds for all cities. Therefore, there is more population living in

the hinterland in the system of cities able to cap city populations. In contrast, when there

is free mobility across cities every city has its largest equilibrium population. Finally, the

equilibrium population resulting from city creators setting fees is the e�cient population set

by social planner.

Result 1: For a given number of inhabited cities and a large population such that the hinter-

land is inhabited; a system of cities with free mobility has cities that are all over-populated,

a system of cities with the quantity mechanism has cities that are all under-populated, and

a system of cities with fees has cities that are all e�ciently populated.

Result 1 demonstrates the ability of the price mechanism to solve the ine�ciency in the

allocation of population across cities that occurs when the system of cities have access to

either a quantity mechanism or no mechanism to limit migration. This result is surprising

and encouraging because it implies that if cities use zoning optimally to set a fee for migrants,

the population distribution may be e�cient on the intensive margin.9

The fact that a system of cities with free mobility has cities that are over-populated

follows from the equilibrium conditions.

9There is a special case where the population in each city is the same across all cases. In this special case
all cities are homogeneous, the total population is divisible by the shared population that maximizes average
product in a city, and the hinterland is uninhabited. In this special case each city has the capped population,
the average bene�ts are equal, the marginal bene�ts are equal, and the fee in all cities in equilibrium is zero.
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Proof

SABj(Nj,2) = SAB0 by case 2 equilibrium condition

= SMB0 by de�nition hinterland

= SMBj(Nj,1) by planner equilibrium condition

= SABj(Nj,1) +Nj,1
∂SABj(Nj,1)

∂N
by de�nition SMB and SAB

⇒ SABj(Nj,2) ≤ SABj(Nj,1)

⇒ Nj,2 ≥ Nj,1

The result that the system of cities with free mobility over-populates cities relative to

other cases is well documented in the literature. Arnott in his 1979 paper proposes that �no

stable equilibrium exists in which some cities are less than optimal size."10

The result that the population distribution created by the planner can also be created

in a competitive equilibrium where fees are charged by city creators is similar to Knight's

optimal highway toll. Knight demonstrated that the e�cient distribution of tra�c between a

slow uncongestible road and a fast congestible road could be achieved by allowing the owner

of the congestible road to charge a toll. The toll the pro�t-maximizing entrepreneur charges

is exactly the tax Pigou suggested to align private and social incentives. Similar intuition

holds in this paper as well, the planner sets the distribution across cities to equalize the

marginal bene�ts by setting a tax, and this distribution can be decentralized by allowing

city creators, similar to Knight's entrepreneur's, to charge a fee. The model extends this

intuition in the following sections by investigating the distribution of population when the

number and set of cities inhabited are endogenous.

10However, recently Albouy and Seegert in their 2010 paper loosen Arnott's assumptions that cities are
homogeneous and that the total bene�t produced within a city is consumed within a city to demonstrate
that cities can be ine�ciently small even with free mobility. The assumption that the total bene�t produced
within a city is consumed within a city is maintained in this section but loosened in section ACW.
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6.3 Extensive Margin: How Many Cities to Create

Individuals in the �rst stage make a binary decision between creating a city or not based

on their expected utilities in either case. The order in which cities are created is taken as

given in this section and is determined in section 6.4. An individual's expected utility of

creating or not creating a city depends on the second stage outcomes, hence the number

of cities created can be heterogeneous across cases because the second stage outcomes are

heterogeneous across cases.

6.3.1 Case One: Planner Optimization

The planner creates K cities when the total bene�t produced by e�ciently allocating the

population across K cities is larger than the total bene�t produced by e�ciently allocating

the population across K − 1 cities or K + 1 cities.

6.3.2 Case Two: No Mechanism-Free Mobility

In this case the second stage ensures the per-resident bene�t each individual receives is

equal across all inhabited cities. Individuals decide to create a city if by doing so increases

the equilibrium per-resident bene�t. Therefore, this case creates the number of cities that

maximize the shared per-resident bene�t.

6.3.3 Case Three: Quantity Mechanism-Limited Mobility

In this case individuals compare the per-resident bene�t they would receive in the second

stage with the maximum per-resident bene�t in the city they would create. In this case

there are two subcases, either the hinterland is inhabited or it is not. If the hinterland is not

inhabited the maximum number of cities is created, given the exogenous total population.

Each city, with the exception of one, has population that maximizes its per-resident bene�t.

The possible exception is for the last city created which could have a population less than

its per-resident bene�t maximum if it is able to produce a per-resident bene�t greater than
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the hinterland. If the hinterland is inhabited either the population living in the hinterland

is less than the population that maximizes the per-resident bene�t in the next possible city

or the maximum per-resident bene�t in the next city is less than the hinterland bene�t.

6.3.4 Case Four: Price Mechanism-Intermediate Mobility

Individuals in a system of cities with a price mechanism have an incentive to create cities

in the �rst stage as long as the equilibrium fee they would be able to charge is nonnegative.

The equilibrium fee is the within-city wedge which is zero at the capped population and

positive for larger populations.

6.3.5 How Many Cities Analysis

Intuitively, the third case with the ability to cap populations creates the most cities

and the second case with free mobility creates the fewest cities because in equilibrium the

third case under-populates its cities and the second case over-populates its cities. However,

whether the price mechanism in case four is able to create the e�cient number of cities is not

obvious. In the second stage allowing city creators to set a fee aligned the social and private

incentives but in the �rst stage the public and private incentives do not seem to be aligned.

However, to be able to create an additional city and charge a positive fee necessitates an

increase in total bene�t produced within the system of cities. Therefore, the price mechanism

is able to create the e�cient number of cities.

Result 2: For a given ordering of city creation; a system of cities with free mobility creates

the fewest cities, a system of cities with the quantity mechanism creates the most cities, and

a system of cities with the price mechanism creates the e�cient number of cities.

The intuition for result 2 is formalized in the appendix (section J) and demonstrated

below by simulating the number of cities each case produces.
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6.3.6 System of Cities Simulation

Result 2 is demonstrated by simulating the number of cities that each case produces as

total population increases.11 The calibrated model is a general function representing the

economies and diseconomies of scale given in equation (6.9). Cities are heterogeneous in

the level of Ai, a multiplicative factor on the economies of scale, and in Qi, an additively

separable factor. Following Albouy and Seegert (2010), the multiplicative factor represents

production amenities and the additively separable factor represents consumption amenities.

A wide range of parameter values for this functional form are used in the simulations, only

constrained such that the average bene�t is a single-peaked function. The simulation is

performed using an algorithm similar to the add-routine algorithm described in Kuehn and

Hamburger's 1963 paper ; details are provided in the appendix (section K)

SABi(Ni) = AiN
α
i −BN

β
i +Qi (6.9)

Figure 6.2 plots the number of cities created as total population increases in the cases with

the quantity mechanism, free mobility, and the social planner. For small levels of total

population, the di�erence in the number of cities among cases is small. However, as the

total population increases the di�erence in cities created diverges. In the special case where

all cities are homogenous each case creates the same number of cities. However, as cities

become more heterogeneous the di�erence between the number of cities created in each case

increases.

11The simulations are done for 10, 000 di�erent values of total population and 10, 000 di�erent parameter
values. In addition the simulation is run with the microfounded calibrated model in Albouy and Seegert
(2010).
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6.4 Extensive Margin: Which Cities to Create

This section determines the order cities are inhabited.12 City sites are modeled to be

heterogeneous in their production amenities Aj and quality of life amenities Qj according

to equation (6.9). The bene�t that a city or system of cities receives from these amenity

levels depends on the ability of the city to limit migration. Therefore, individuals value the

production amenities and quality of life amenities based on their ability to limit migration.

Cities in this model are heterogeneous in two-dimensions, but to order the cities, the

two-dimensional space must be projected into a one-dimensional e�ective bene�t space. This

section produces two mappings from Aj x Qj space to Ãj space that are similar to the equiva-

lent and compensating variation introduced by John Hicks in 1939 . The equivalent variation

maps points in price-wealth space onto a �xed price line. Similarly, the �rst mapping in this

section maps production and quality-of-life-amenity space onto a �xed quality of life line,

holding population �xed. Therefore, this mapping gives the amount of change in quality of

life amenities needed to o�set a change in production amenities such that the individuals

would receive the same bene�t with the same level of population. The projection in this

mapping is the indi�erence curve between production and quality of life amenities, given

below in equation (6.10).13

Qj = C̄ − AjNα
j,i +BNβ

j,i (6.10)

The slope of the indi�erence curve is Nα
j,i which, by result 1, implies that the indi�erence

curve is steepest for the system of cities with free mobility and �attest in the system with

the quantity mechanism. The indi�erence curves, drawn in Figure 6.3, demonstrate that

barriers to migration cause individuals and the social planner to value amenities di�erently.

12In the static model presented here, it could be welfare improving to create multiple cities lower on the
priority list instead of a city higher on the priority list. However, these equilibria are eliminated because they
are not robust to dynamic models where the total population in the city is increasing with the assumption
that once a city is created it cannot be uninhabited or to do so would incur a large cost.

13The equivalent variation and the indi�erence curve projection are well suited for individual comparisons.
However, changes in amenity levels change the fee the city creator is able to charge in case four, which is
not an individual level comparison but a city wide comparison as shown in the compensating variation.
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Result 3: Systems of cities with the quantity mechanism over-value quality of life amenities

and systems of cities with free mobility over-value production amenities.

The second mapping compares the equilibrium level of bene�t for two di�erent production

amenity levels allowing equilibrium populations to di�er. This is similar to the compensating

variation that compares utility levels, allowing individuals to choose di�erent bundles for

di�erent relative prices. The compensating and equivalent variation bene�ts for systems of

cities with free mobility and the system with the quantity mechanism are graphed in Figures

6.4 and 6.5. The compensating variation for the system of cities with free mobility is zero

because population in equilibrium perfectly compensates for di�erences in amenity levels.

In contrast, the compensating variation is larger than the equivalent variation for systems

of cities with the quantity mechanism because individuals capitalize the full bene�t of the

additional amenities by adjusting the cap on population.

The compensating variation for the system with the price mechanism compares the dif-

ference in the fees collected by the city creator. The fees collected increase with the level

of production amenities because both the fee and the number of migrants paying the fee

increases. The increase in fees collected is given by the di�erence in the two rectangles

depicted in Figure 6.8.

The compensating variation for the social planner can be conceptualized for a single

person or for all individuals. For comparison with systems of cities with free mobility and

the quantity mechanism, the single person compensating variation is used and depicted in

Figure 6.6. When the social planner is considering the next city to create, the objective is to

maximize the total bene�t and the relevant comparison is across all individuals. When a city

with more production amenities is created, it provides a higher level of average bene�t for

more individuals, resulting in a total bene�t that is represented graphically as two rectangles

in Figure 7.4. Figure 6.8 demonstrates that the compensating variations for the system of

cities with the price mechanism and the social planner are the same, which implies that

although they have di�erent objectives, they value production and quality of life amenities
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in the same way.

Result 4: Systems of cities with the price mechanism value amenity levels in the same way

as the social planner and produce the same ranking of cities.

The compensating and equivalent variation projections provide an ordering of cities given

estimates of the quality of life and production amenities that characterize each city. Table 1

lists the ordering using the equivalent variation projection for the system of cities with the

planner, free mobility, and the quantity mechanism. The population of the city in each case

is given in columns 1 and 2. Population is estimated using the calibrated model from Albouy

and Seegert (2010) and the amenity levels from Albouy (2009) . The cities in Table 1 are

ordered by which cities case 2 (the quantity mechanism) most over-values (relative to the

social planner). The �rst city in Table 1 is Portland, Maine, which is the most over-valued

city in a system with the quantity mechanism relative to the social planner. The e�ective

bene�t, given in dollars, of each city is given in columns 3, 5, and 7. The ranks of each city

for each case are given in columns 4, 6, and 8 and the di�erences in ranks among the cases

are given in columns 9, 10, and 11.

Columns 1 and 2 demonstrate result 3 that the cities over-valued by systems with the

quantity mechanism are those with relatively large quality of life amenities relative to their

production amenities. For example, Houston, Texas is valued most highly by systems of

cities with free mobility, but is valued least by systems with the quantity mechanism. The

social planner values Houston at an intermediate level. This ranking re�ects the fact that

Houston has relatively more production amenities than quality of life amenities.

In contrast, Portland, Oregon is ranked higher by the system of cities with the quantity

mechanism than the system of cities with free mobility. This ranking holds even though

Portland, Oregon has an estimated level of production amenities that is higher than its

quality of life amenities. However, relative to the indi�erence curve, Portland has higher

quality of life amenities. These two cities are of particular interest because they are often

used as examples of the extremes in land-use policies; Houston has very few zoning laws and
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Portland is noted for its strong land-use planning. The relative rankings in Table 1 suggest

that the strength of these cities' zoning laws may not be a coincidence but a result of the

relative preference of individuals.

Figure 6.3 plots a few cities and their amenity levels and possible indi�erence curves

for the social planner, system of cities with free mobility and system of cities with the

quantity mechanism all going through San Luis Obispo, CA. San Luis Obispo, CA has slightly

more production amenities than Denver, CO and signi�cantly more quality of life amenities.

Therefore in all three cases San Luis Obispo, CA is preferred over Denver, CO. In contrast,

Seattle, WA and San Diego, CA are preferred over San Luis Obispo, CA even though they

have less quality of life amenities (but make up for it with signi�cantly more production

amenities). Honolulu, HI has more quality of life amenities than San Luis Obispo, CA but less

production amenities. The social planner prefers San Luis Obsipo, CA over Honolulu, HI but

systems of cities with the quantity mechanism prefer Honolulu, HI. The quantity mechanism

prefers Honolulu, HI because it over-values (relative to the social planner) the quality of

life amenities that Honolulu, HI o�ers. Similarly, Stockton, CA is preferred over San Luis

Obispo, CA by systems of cities with free mobility but not by the social planner because

systems of cities with free mobility over-value (relative to the social planner) production

amenities.

6.5 Across-City Wedge

This section allows for across-city externalities by relaxing the assumption (maintained in

the previous sections) the bene�ts produced within a city remain in the city. There are many

real-world examples where bene�ts produced within cities are combined into a common pool

from which cities receive bene�ts; examples include federal income taxation and land rents

if land owners do not live in the city where they own land. The transfer of bene�ts from

some cities to others is de�ned as the across-city wedge (ACW ). This section demonstrates

that if across-city wedges exist then the price mechanism is unable to solve the ine�ciencies
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in a system of cities.

The across-city wedge is de�ned in equation (6.11) where PAB is the average bene�t in

the city net the across-city wedge and is assumed to be single-peaked. The across-city wedge

is allowed to di�er with population and across cities; therefore, there are cities that are net

bene�ciaries and cities that are net providers. Let cities that are net providers be in the set

S = {1, 2, 3...I} and cities that are net bene�ciaries be in the set Sc = {I+1, I+2, I+3...J}.

PABj(Nj) = SABj(Nj)− ACWj(Nj) (6.11)

Result 5: For a given number of inhabited cities and a total population large enough such

that the hinterland is inhabited in all cases, if the across-city wedge is positive for city j

then the social planner allocates more population to city j than the system of cities with the

price mechanism, and if the across-city wedge is negative for city j then the social planner

allocates less population to city j than the system of cities with the price mechanism.

Proof:

PMBj(Nj,4) = SAB0 Equilibrium condition for case 4.

= SMBj(Nj,p) Equilibrium condition for planner.

SMBj(Nj,4)− ACWj = SMBj(Nj,p) De�nition across-city wedge

SMBj(Nj,4) > SMBj(Nj,p) Given j ∈ S

⇒ Nj,4 < Nj,p

SMBj(Nj,4) < SMBj(Nj,p) Given j ∈ Sc

⇒ Nj,4 > Nj,p

When across-city wedges exist the price mechanism is no longer able to e�ciently distribute

population across a given number of cities. Similarly, when the across-city wedge exists
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individuals with the price mechanism value cities di�erently than the social planner. As a

result individuals may create a di�erent set of cities both in number and type. For example,

the system of cities the with price mechanism values cities that create large surpluses to

individuals and have small across-city wedges. Therefore, the across-city wedge di�erentiates

how individuals with the price mechanism value cities in comparison to the social planner.14

If the across-city wedge is federal taxation, this implies that the system of cities with the

price mechanism over-values cities with large quality of life amenities and under-value cities

with large production amenities relative to the social planner.

6.5.1 Second Best World

If across-city wedges encompass fundamental aspects of society, such as federal taxation

and land rents, then limiting the across-city wedge may not be possible. The across-city

wedge decreases the equilibrium population of net provider cities and increase the equilib-

rium population of net bene�ciary cities. Therefore, if across-city wedges cannot be limited

then cities within a system should be given di�erent abilities to limit migration to counter

the e�ects of the across-city wedge. Speci�cally, cities that are net providers should be con-

strained in their ability to limit migration and cities that are net bene�ciaries should be

encouraged to limit migration.

Result 6: For a given number of inhabited cities and a total population large enough such

that the hinterland is inhabited in all cases, the equilibrium population levels Nj,2, Nj,3, and

Nj,4 are nonincreasing functions of the across-city wedge.

Result 6 follows directly from the equilibrium conditions and the de�nition of the across-

city wedge.

Implication 1: Cities that are net providers should have a restricted set of zoning policy tools

to allow more mobility to these cities to counter the e�ects of the across-city wedge.

Implication 2: Cities that are net bene�ciaries should be allowed a wide range of zoning policy

14The social planner does not consider across-city wedges because they are transfers across cities and do
not change the total production in the system of cities.
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tools to create more restrictive mobility to these cities to counter the e�ects of the across-city

wedge.

6.6 Conclusion

This paper proposes a tractable strategic urban model in which individuals endogenously

create and move among cities to maximize their own bene�t. The model emphasizes the

importance of barriers to migration on individual's incentives. If able, individuals limit the

population of the city in which they live. Doing so can maximize the per-resident bene�t

to individuals within the city, but not the total bene�t across cities, causing cities to be

ine�ciently small in equilibrium. In contrast, if individuals are unable to limit migration,

cities become ine�ciently large. The e�cient population for a city can be achieved by a

decentralized system of individuals able to charge a fee to migrants entering the city. Con-

ceptually, residents of a city may charge a fee to migrants by arti�cially limiting housing

supply with land-use policies. These results describing how to e�ciently distribute popu-

lation for a given number of cities corresponds to the economic intuition from Pigou and

Knight and are similar to results in the urban literature (Anas, 1992; Arnott, 1979).

This model extends the results in the urban literature, producing solutions to how many

and which cities should be created. Di�erent barriers to migration cause di�erent numbers

of cities and di�erent sets of cities to be created. When there are large barriers to migration,

individuals produce too many cities. When there are no barriers to migration individuals

produce too few cities. When the barriers to migration are capitalized in fees charged to

migrants, the e�cient number of cities are produced. This result is both surprising and

encouraging because it suggests that self-interested individuals with the ability to create

barriers to migration through a price mechanism do so e�ciently.

The model also demonstrates that the value of production and quality of life amenities

are valued di�erently depending on the type of barriers to migration that exist. Quality of

life amenities are valued highly by systems of cities that have large barriers to migration,
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whereas production amenities are valued highly by systems of cities that have no barriers

to migration. When barriers to migration consist of fees to migrants, quality of life and

production amenities are valued in the same was as the benevolent social planner. These

results imply that land-use policies may act as a market for migrants among cities, causing

population to be optimally distributed across the optimal number and set of cities.

This model provides a framework for further research on the extensive margin of city

formation. For example, the model is built using homogeneous agents but could be extended

to heterogeneous agents. In addition, this paper (and most migration models) focus on

wages and cost of living as the sole determinants of migration. However, this model could

be extended to allow the proximity of individuals to di�erent cities both geographically

and in preference-space to enter the model. Geographic proximity can be an important

factor in structuring migration patterns among cities. For instance, Chicago is a productive

city which o�ers high wages and a reasonable cost of living, which should encourage in-

migration from across the entire United States but receives migrants disproportionately from

the immediately adjacent states. This regionalism which is unaddressed in most models may

have important rami�cations for city creation and growth.
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Figure 6.1: Equilibrium Populations

Figure 6.2: Simulated Number of Cities Created

147



Table 6.1: Free Mobility and Social Planner Ranking of Cities

Amenity Estimate Quantity Mech. Social Planner Free Market Di�erence Rank

City Population QOL Production Value Rank Value Rank Value Rank 4- 6 6 - 8 4 - 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Portland, ME 243537 0.058 -0.056 9174 114 9072 121 9037 122 -7 1 -8

Norfolk�Virginia Beach 1569541 0.03 -0.092 8485 175 8413 180 8382 180 -5 0 -5

-Newport News, VA�NC

non-metropolitan areas, OR 1194699 0.057 -0.036 9498 77 9390 81 9355 83 -4 2 -6

Sarasota�Bradenton, FL 589959 0.073 -0.045 9408 88 9293 92 9257 93 -4 1 -5

Provo�Orem, UT 368536 0.013 -0.047 9163 116 9080 120 9051 120 -4 0 -4

Honolulu, HI 876156 0.165 0.049 11269 14 11080 17 11032 17 -3 0 -3

non-metropolitan areas, HI 335651 0.111 -0.016 10016 42 9873 45 9831 45 -3 0 -3

non-metropolitan areas, VT 608387 0.064 -0.041 9441 84 9331 87 9295 89 -3 2 -5

Bellingham, WA 166814 0.063 -0.045 9372 92 9263 95 9228 97 -3 2 -5

non-metropolitan areas, AZ 942343 0.035 -0.041 9339 96 9243 99 9211 99 -3 0 -3

Savannah, GA 293000 0.021 -0.053 9092 125 9007 128 8977 128 -3 0 -3

non-metropolitan areas, MT 774080 0.059 -0.062 9079 127 8979 130 8944 131 -3 1 -4

Albuquerque, NM 712738 0.048 -0.064 9008 135 8914 138 8880 139 -3 1 -4

Tucson, AZ 843746 0.054 -0.089 8620 165 8534 168 8500 168 -3 0 -3

Charlottesville, VA 159576 0.053 -0.089 8616 166 8531 169 8497 169 -3 0 -3

Flagsta�, AZ�UT 122366 0.085 -0.105 8469 180 8378 183 8339 184 -3 1 -4

Bloomington, IN 120563 0.026 -0.105 8258 197 8196 200 8165 201 -3 1 -4

non-metropolitan areas, AK 367124 0.011 0.007 10042 39 9947 41 9919 41 -2 0 -2

Santa Fe, NM 147635 0.115 -0.02 9964 45 9820 47 9778 48 -2 1 -3

non-metropolitan areas, NH 1011597 0.018 -0.006 9853 50 9757 52 9728 52 -2 0 -2

non-metropolitan areas, CO 924086 0.088 -0.024 9804 53 9676 55 9637 56 -2 1 -3

Salt Lake City�Ogden, UT 1333914 0.019 -0.016 9693 63 9598 65 9569 65 -2 0 -2

Fort Collins�Loveland, CO 251494 0.064 -0.03 9621 69 9507 71 9472 71 -2 0 -2

Tampa-St. Petersburg 2395997 0.013 -0.051 9097 124 9015 126 8986 127 -2 1 -3

-Clearwater, FL

Colorado Springs, CO 516929 0.053 -0.062 9058 130 8961 132 8926 134 -2 2 -4

Iowa City, IA 111006 0.027 -0.072 8802 151 8721 153 8691 153 -2 0 -2

Fort Pierce�Port St. Lucie, FL 319426 0.022 -0.076 8719 160 8642 162 8612 162 -2 0 -2

San Diego, CA 2813833 0.108 0.096 11840 9 11679 10 11638 10 -1 0 -1

Barnstable�Yarmouth, MA 162582 0.086 0.04 10846 22 10705 23 10667 23 -1 0 -1

West Palm Beach- 1131184 0.03 0.044 10716 26 10605 27 10575 27 -1 0 -1

Boca Raton, FL

Naples, FL 251377 0.098 0.024 10625 28 10480 29 10441 29 -1 0 -1

Milwaukee�Racine, WI C 1689572 -0.007 0.039 10505 31 10414 32 10389 32 -1 0 -1

Madison, WI 426526 0.05 -0.018 9769 56 9659 57 9625 57 -1 0 -1

non-metropolitan areas, CA 1249739 0.044 -0.017 9764 57 9657 58 9624 59 -1 1 -2

non-metropolitan areas, WA 1063531 0.034 -0.022 9647 67 9546 68 9515 70 -1 2 -3

Des Moines, IA 456022 -0.011 -0.023 9472 79 9394 80 9369 80 -1 0 -1

Rochester, NY 1098201 -0.026 -0.021 9452 82 9381 83 9358 82 -1 -1 0

non-metropolitan areas, UT 531967 0.014 -0.032 9412 87 9324 88 9296 87 -1 -1 0

non-metropolitan areas, FL 1222532 0.018 -0.039 9312 101 9224 102 9194 102 -1 0 -1

non-metropolitan areas, ME 1033664 0.021 -0.041 9289 102 9201 103 9171 104 -1 1 -2

non-metropolitan areas, ID 863855 0.008 -0.04 9260 104 9177 105 9149 105 -1 0 -1

non-metropolitan areas, WY 493849 0.012 -0.042 9241 106 9157 107 9128 108 -1 1 -2

non-metropolitan areas, VA 1640567 -0.028 -0.035 9215 108 9148 109 9125 109 -1 0 -1

Visalia�Tulare�Porterville, CA 368021 -0.024 -0.038 9180 112 9112 113 9088 114 -1 1 -2

non-metropolitan areas, NM 783050 0.006 -0.047 9138 122 9058 123 9030 123 -1 0 -1

Greensboro�Winston 1251509 -0.018 -0.049 9020 133 8952 134 8928 133 -1 -1 0

-Salem�High Point, NC

Chico�Paradise, CA 203171 0.047 -0.07 8906 145 8815 146 8781 146 -1 0 -1

Greenville�Spartanburg- 962441 -0.019 -0.062 8803 150 8740 151 8715 151 -1 0 -1

Anderson, SC

Yuba City, CA 139149 -0.001 -0.067 8785 153 8715 154 8688 154 -1 0 -1

Redding, CA 163256 0.039 -0.077 8763 156 8679 157 8646 157 -1 0 -1

Eugene�Spring�eld, OR 322959 0.08 -0.086 8761 157 8661 158 8623 158 -1 0 -1

Medford�Ashland, OR 181269 0.09 -0.099 8585 170 8487 171 8448 171 -1 0 -1

Tulsa, OK 803235 -0.014 -0.082 8493 174 8435 175 8410 175 -1 0 -1

Wilmington, NC 233450 0.071 -0.102 8468 181 8382 182 8345 183 -1 1 -2

Tallahassee, FL 284539 0.028 -0.095 8429 184 8359 185 8328 185 -1 0 -1

Evansville�Henderson, IN�KY 296195 -0.026 -0.091 8302 191 8254 192 8230 192 -1 0 -1

Yuma, AZ 160026 0.004 -0.098 8294 193 8237 194 8210 194 -1 0 -1

Tuscaloosa, AL 164875 -0.009 -0.096 8281 194 8228 195 8202 195 -1 0 -1

Melbourne�Titusville- 476230 0.005 -0.101 8249 200 8193 201 8165 200 -1 -1 0

Palm Bay, FL

Bryan�College Station, TX 152415 0.033 -0.116 8102 205 8046 206 8015 206 -1 0 -1

Knoxville, TN 687249 -0.007 -0.111 8042 210 7999 211 7973 211 -1 0 -1

Montgomery, AL 333055 0.001 -0.114 8021 213 7977 214 7951 215 -1 1 -2

Rocky Mount, 143026 -0.024 -0.109 8014 214 7976 215 7953 214 -1 -1 0

Lincoln, NE 250291 0.021 -0.12 7994 216 7947 217 7918 217 -1 0 -1

Gainesville, FL 217955 0.035 -0.129 7897 225 7854 226 7823 229 -1 3 -4

Hickory�Morganton� 341851 -0.004 -0.121 7888 226 7854 227 7828 228 -1 1 -2

Lenoir, NC

Punta Gorda, FL 141627 0.058 -0.142 7768 237 7732 238 7700 238 -1 0 -1

Grand Junction, CO 116255 0.07 -0.148 7712 243 7682 244 7650 246 -1 2 -3

Amarillo, TX 217858 -0.001 -0.137 7637 248 7626 249 7605 248 -1 -1 0
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Table 6.2: Free Mobility and Social Planner Ranking of Cities

Amenity Estimate Quantity Mech. Social Planner Free Market Di�erence Rank

City Population QOL Production Value Rank Value Rank Value Rank 4- 6 6 - 8 4 - 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

San Francisco� 7039362 0.114 0.285 14966 1 14784 1 14745 1 0 0 0

Oakland�San Jose, CA

New York�Northern 21199864 0.033 0.21 13456 2 13328 2 13298 2 0 0 0

New Jersey�Long Island

Santa Barbara- 399347 0.158 0.156 12997 3 12799 3 12753 3 0 0 0

-Santa Maria�Lompoc, CA

Los Angeles�Riverside 16373645 0.065 0.143 12464 4 12322 4 12288 4 0 0 0

�Orange County, CA

Boston-Worcester-Lawrence 5819100 0.045 0.145 12428 5 12297 5 12266 5 0 0 0

MA�NH�ME�CT

Salinas-Monterey-Carmel, CA 401762 0.126 0.125 12378 6 12203 6 12160 6 0 0 0

Chicago�Gary- 9157540 0.004 0.131 12056 7 11950 7 11924 7 0 0 0

-Kenosha, IL�IN�WI

Hartford, CT 1183110 -0.029 0.134 11992 8 11904 8 11882 8 0 0 0

Detroit�Ann Arbor 5456428 -0.037 0.115 11652 11 11569 11 11548 11 0 0 0

�Flint, MI

Seattle�Tacoma- 3554760 0.049 0.094 11604 12 11476 12 11443 12 0 0 0

-Bremerton, WA

Philadelphia�Wilmington- 6188463 -0.036 0.1 11408 13 11326 13 11305 13 0 0 0

Atlantic City, PA-NJ-DE-MD

San Luis Obispo� 246681 0.115 0.058 11242 15 11081 15 11040 16 0 1 -1

Atascadero�Paso Robles, CA

Sacramento�Yolo, CA 1796857 0.025 0.072 11159 18 11047 18 11017 18 0 0 0

Las Vegas, NV�AZ 1563282 -0.023 0.077 11075 19 10988 19 10964 19 0 0 0

Minneapolis-St. Paul, MN-WI 2968806 -0.023 0.075 11042 20 10955 20 10932 20 0 0 0

Denver�Boulder- 2581506 0.045 0.058 10998 21 10877 21 10845 21 0 0 0

-Greeley, CO C

Portland-Salem, OR-WA 2265223 0.041 0.044 10754 24 10638 24 10606 25 0 1 -1

Reno, NV 339486 0.05 0.042 10753 25 10632 25 10598 26 0 1 -1

Phoenix�Mesa, AZ 3251876 0.018 0.035 10527 30 10423 30 10394 31 0 1 -1

Austin�San Marcos, TX 1249763 0.029 0.026 10417 33 10309 33 10279 33 0 0 0

Raleigh�Durham- 1187941 0.01 0.019 10236 34 10139 34 10111 34 0 0 0

-Chapel Hill, NC

non-metropolitan areas, CT 1350818 -0.013 0.022 10205 35 10119 35 10094 35 0 0 0

Cincinnati-Hamilton, OH-KY-IN 1979202 -0.039 0.026 10180 36 10107 36 10085 36 0 0 0

Miami�Fort Lauderdale, FL 3876380 0.046 0.007 10165 37 10051 37 10019 37 0 0 0

non-metropolitan areas, RI 258023 0.035 0.006 10110 38 10003 38 9971 39 0 1 -1

Columbus, OH 1540157 -0.027 0.015 10040 40 9963 40 9940 40 0 0 0

non-metropolitan areas, NV 285196 -0.011 0.003 9899 48 9816 48 9791 47 0 -1 1

non-metropolitan areas, MA 569691 0.021 -0.005 9880 49 9782 49 9753 50 0 1 -1

Allentown-Bethlehem 637958 -0.029 -0.004 9721 59 9648 59 9625 58 0 -1 1

-Easton, PA

non-metropolitan areas, MD 666998 -0.03 -0.005 9701 60 9629 60 9606 60 0 0 0

Kansas City, MO�KS 1776062 -0.03 -0.005 9701 61 9629 61 9606 61 0 0 0

Richmond�Petersburg, VA 996512 -0.031 -0.005 9698 62 9626 62 9603 62 0 0 0

St. Louis, MO�IL 2603607 -0.031 -0.006 9681 64 9610 64 9587 64 0 0 0

Albany-Schenectady- 875583 -0.021 -0.01 9651 66 9575 66 9551 66 0 0 0

Troy, NY

non-metropolitan areas, DE 158149 0.001 -0.019 9580 72 9495 72 9468 72 0 0 0

Lancaster, PA 470658 -0.018 -0.017 9546 73 9470 73 9446 73 0 0 0

Fresno, CA 922516 -0.012 -0.019 9534 74 9456 74 9431 74 0 0 0

Merced, CA 210554 -0.018 -0.018 9530 75 9454 75 9429 75 0 0 0

Green Bay, WI 226778 -0.009 -0.021 9512 76 9433 76 9407 76 0 0 0

non-metropolitan areas, SC 1616255 -0.02 -0.026 9391 90 9318 90 9294 90 0 0 0

Yakima, WA 222581 -0.01 -0.03 9361 93 9284 93 9258 92 0 -1 1

Orlando, FL 1644561 0.012 -0.035 9356 94 9270 94 9241 94 0 0 0

non-metropolitan areas, NY 1744930 -0.021 -0.03 9322 98 9250 98 9226 98 0 0 0

non-metropolitan areas, NC 2632956 -0.005 -0.034 9313 100 9234 100 9208 101 0 1 -1

non-metropolitan areas, WV 1809034 -0.056 -0.031 9182 110 9127 110 9107 110 0 0 0

Toledo, OH 618203 -0.038 -0.035 9180 111 9117 111 9095 111 0 0 0

Louisville, KY�IN 1025598 -0.02 -0.046 9063 129 8994 129 8970 129 0 0 0

Baton Rouge, LA 602894 -0.026 -0.05 8975 139 8912 139 8888 138 0 -1 1

non-metropolitan areas, OK 1862951 -0.033 -0.05 8951 140 8890 140 8867 140 0 0 0

non-metropolitan areas, ND 521239 -0.035 -0.05 8943 141 8884 141 8861 141 0 0 0

non-metropolitan areas, NE 878760 -0.018 -0.054 8938 142 8872 142 8847 142 0 0 0

non-metropolitan areas, SD 629811 -0.001 -0.058 8933 143 8860 143 8833 143 0 0 0

Lexington, KY 479198 -0.002 -0.059 8913 144 8840 144 8814 144 0 0 0

New Orleans, LA 1337726 0.016 -0.065 8878 147 8800 147 8770 147 0 0 0

Charleston-North Charleston, SC 549033 0.05 -0.073 8867 148 8776 148 8742 148 0 0 0

Jacksonville, FL 1100491 0.008 -0.066 8833 149 8759 149 8731 149 0 0 0

Omaha, NE�IA 716998 -0.007 -0.067 8763 155 8697 155 8670 155 0 0 0

Fort Myers�Cape Coral, FL 440888 0.058 -0.082 8749 159 8657 159 8622 159 0 0 0

Boise City, ID 432345 0.008 -0.077 8653 163 8583 163 8555 163 0 0 0

Cedar Rapids, IA 191701 0 -0.076 8641 164 8574 164 8547 165 0 1 -1

Spring�eld, IL 201437 -0.029 -0.078 8505 172 8452 172 8429 172 0 0 0

Benton Harbor, MI 162453 -0.027 -0.079 8495 173 8442 173 8419 173 0 0 0

Dover, DE 126697 -0.013 -0.083 8480 177 8422 177 8397 178 0 1 -1

Canton�Massillon, OH 406934 -0.029 -0.08 8472 178 8420 178 8397 177 0 -1 1
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Table 6.3: Free Mobility and Social Planner Ranking of Cities

Amenity Estimate Quantity Mech. Social Planner Free Market Di�erence Rank

City Population QOL Production Value Rank Value Rank Value Rank 4- 6 6 - 8 4 - 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Davenport�Moline- 359062 -0.02 -0.082 8471 179 8416 179 8392 179 0 0 0

-Rock Island, IA�IL

Spokane, WA 417939 0.002 -0.091 8402 186 8342 186 8314 187 0 1 -1

Lake Charles, LA 183577 -0.06 -0.079 8378 187 8338 187 8319 186 0 -1 1

Augusta�Aiken, GA�SC 477441 -0.044 -0.083 8370 188 8325 188 8304 188 0 0 0

San Antonio, TX 1592383 -0.016 -0.091 8337 189 8285 189 8260 189 0 0 0

Wausau, WI 125834 -0.046 -0.086 8313 190 8270 190 8250 190 0 0 0

Little Rock-North Little 583845 -0.003 -0.098 8269 196 8215 196 8189 196 0 0 0

Jackson, TN 107377 -0.048 -0.092 8207 202 8168 202 8148 202 0 0 0

State College, PA 135758 0.04 -0.113 8177 203 8115 203 8082 203 0 0 0

Tyler, TX 174706 -0.013 -0.103 8151 204 8105 204 8080 204 0 0 0

Roanoke, VA 235932 -0.015 -0.107 8079 207 8036 207 8011 207 0 0 0

Glens Falls, NY 124345 -0.015 -0.108 8062 208 8020 208 7996 209 0 1 -1

Lafayette, LA 385647 -0.03 -0.105 8058 209 8020 209 7997 208 0 -1 1

Scranton-Wilkes- 624776 -0.031 -0.107 8022 212 7985 212 7963 213 0 1 -1

Barre-Hazleton, PA

Athens, GA 153444 0.019 -0.12 7987 218 7941 218 7912 218 0 0 0

Sioux Falls, SD 172412 0.007 -0.118 7977 219 7934 219 7907 220 0 1 -1

La Crosse, WI�MN 126838 -0.003 -0.116 7974 220 7934 220 7908 219 0 -1 1

Asheville, NC 225965 0.055 -0.13 7953 221 7900 221 7867 222 0 1 -1

Erie, PA 280843 -0.036 -0.112 7922 222 7891 222 7870 221 0 -1 1

Lakeland- 483924 -0.014 -0.117 7919 223 7884 223 7859 223 0 0 0

Winter Haven, FL

Oklahoma City, OK 1083346 -0.003 -0.12 7908 224 7872 224 7847 224 0 0 0

Mans�eld, OH 175818 -0.049 -0.112 7875 228 7850 228 7830 226 0 -2 2

St. Cloud, MN 167392 -0.049 -0.112 7875 229 7850 229 7830 227 0 -2 2

Shreveport- 392302 -0.029 -0.118 7848 230 7821 230 7799 230 0 0 0

Bossier City, LA

Muncie, IN 118769 -0.035 -0.117 7843 231 7817 231 7796 231 0 0 0

Columbus, GA�AL 274624 -0.008 -0.123 7841 232 7810 232 7786 232 0 0 0

Mobile, AL 540258 -0.009 -0.123 7837 233 7807 233 7783 233 0 0 0

Panama City, FL 148217 0.031 -0.133 7817 234 7782 234 7752 234 0 0 0

Eau Claire, WI 148337 -0.025 -0.122 7797 235 7772 235 7750 235 0 0 0

Binghamton, NY 252320 -0.047 -0.118 7784 236 7763 236 7745 236 0 0 0

Fayetteville- 311121 0.005 -0.132 7741 239 7716 239 7692 241 0 2 -2

Springdale-Rogers, AR

Auburn�Opelika, AL 115092 -0.019 -0.127 7736 240 7716 240 7694 239 0 -1 1

Monroe, LA 147250 -0.029 -0.125 7733 241 7714 241 7694 240 0 -1 1

Sioux City, IA�NE 124130 -0.025 -0.126 7731 242 7712 242 7691 242 0 0 0

Williamsport, PA 120044 -0.035 -0.126 7695 245 7680 245 7662 243 0 -2 2

Waterloo�Cedar Falls, IA 128012 -0.019 -0.13 7687 246 7671 246 7651 245 0 -1 1

Myrtle Beach, SC 196629 0.042 -0.146 7644 247 7628 247 7603 249 0 2 -2

Longview-Marshall, TX 208780 -0.036 -0.132 7593 250 7590 250 7579 250 0 0 0

Pensacola, FL 412153 0.014 -0.144 7577 251 7574 251 7565 251 0 0 0

Topeka, KS 169871 -0.018 -0.139 7543 252 7543 252 7543 252 0 0 0

Lynchburg, VA 214911 -0.031 -0.138 7513 253 7513 253 7513 253 0 0 0

Odessa�Midland, TX 237132 -0.049 -0.135 7497 254 7497 254 7497 254 0 0 0

Terre Haute, IN 149192 -0.06 -0.134 7474 255 7474 255 7474 255 0 0 0

El Paso, TX 679622 -0.032 -0.141 7460 256 7460 256 7460 256 0 0 0

Florence, AL 142950 -0.04 -0.143 7399 257 7399 257 7399 257 0 0 0

Pueblo, CO 141472 0 -0.152 7395 258 7395 258 7395 258 0 0 0

Lubbock, TX 242628 0.003 -0.153 7389 259 7389 259 7389 259 0 0 0

Fort Walton Beach, FL 170498 0.067 -0.171 7326 260 7326 260 7326 260 0 0 0

Fargo-Moorhead, ND-MN 174367 -0.008 -0.156 7301 261 7301 261 7301 261 0 0 0

Sharon, PA 120293 -0.034 -0.151 7289 262 7289 262 7289 262 0 0 0

Columbia, MO 135454 0.025 -0.165 7272 263 7272 263 7272 263 0 0 0

Johnson City-Kingsport- 480091 -0.022 -0.156 7250 264 7250 264 7250 264 0 0 0

Bristol, TN�VA

Ocala, FL 258916 -0.003 -0.162 7221 265 7221 265 7221 265 0 0 0

Fayetteville, NC 302963 0.03 -0.171 7192 266 7192 266 7192 266 0 0 0

Gadsden, AL 103459 -0.072 -0.149 7185 267 7185 267 7185 267 0 0 0

Billings, MT 129352 0.011 -0.168 7173 268 7173 268 7173 268 0 0 0

Altoona, PA 129144 -0.05 -0.155 7166 269 7166 269 7166 269 0 0 0

Jamestown, NY 139750 -0.063 -0.155 7119 270 7119 270 7119 270 0 0 0

St. Joseph, MO 102490 -0.026 -0.165 7088 271 7088 271 7088 271 0 0 0

Alexandria, LA 126337 -0.025 -0.168 7043 272 7043 272 7043 272 0 0 0

Danville, VA 110156 -0.056 -0.162 7029 273 7029 273 7029 273 0 0 0

Spring�eld, MO 325721 0.002 -0.176 7010 274 7010 274 7010 274 0 0 0

Goldsboro, NC 113329 -0.003 -0.175 7008 275 7008 275 7008 275 0 0 0

Fort Smith, AR�OK 207290 -0.018 -0.175 6954 276 6954 276 6954 276 0 0 0
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Table 6.4: Free Mobility and Social Planner Ranking of Cities

Amenity Estimate Quantity Mech. Social Planner Free Market Di�erence Rank

City Population QOL Production Value Rank Value Rank Value Rank 4- 6 6 - 8 4 - 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Hattiesburg, MS 111674 -0.024 -0.176 6915 277 6915 277 6915 277 0 0 0

Sumter, SC 104646 -0.026 -0.177 6891 278 6891 278 6891 278 0 0 0

Las Cruces, 174682 0.027 -0.19 6871 279 6871 279 6871 279 0 0 0

Clarksville- 207033 0.012 -0.192 6784 280 6784 280 6784 280 0 0 0

Hopkinsville, TN-KY

Dothan, AL 137916 -0.033 -0.183 6768 281 6768 281 6768 281 0 0 0

Killeen�Temple, TX 312952 0.04 -0.208 6626 282 6626 282 6626 282 0 0 0

Anniston, AL 112249 -0.048 -0.189 6615 283 6615 283 6615 283 0 0 0

Laredo, TX 193117 0.009 -0.207 6529 284 6529 284 6529 284 0 0 0

Johnstown, PA 232621 -0.064 -0.193 6491 285 6491 285 6491 285 0 0 0

Wichita Falls, TX 140518 0.012 -0.212 6457 286 6457 286 6457 286 0 0 0

Abilene, TX 126555 0.014 -0.221 6318 287 6318 287 6318 287 0 0 0

Brownsville�Harlingen- 335227 -0.041 -0.227 6018 288 6018 288 6018 288 0 0 0

-San Benito, TX

McAllen�Edinburg�Mission, TX 569463 -0.069 -0.229 5882 289 5882 289 5882 289 0 0 0

Joplin, MO 157322 -0.01 -0.246 5821 290 5821 290 5821 290 0 0 0

Washington�Baltimore, 7608070 -0.012 0.12 11820 10 11724 9 11699 9 1 0 1

DC�MD�VA�WV C

Stockton�Lodi, CA 563598 -0.008 0.08 11176 17 11081 16 11056 15 1 -1 2

Atlanta, GA 4112198 -0.032 0.063 10813 23 10732 22 10710 22 1 0 1

Dallas�Fort Worth, TX C 5221801 -0.033 0.057 10711 27 10631 26 10609 24 1 -2 3

Modesto, CA 446997 -0.016 0.047 10605 29 10518 28 10494 28 1 0 1

Houston�Galveston- 4669571 -0.06 0.049 10485 32 10420 31 10402 30 1 -1 2

-Brazoria, TX C

Providence�Fall River- 1188613 -0.008 0.009 10008 43 9923 42 9897 42 1 0 1

-Warwick, RI�MA

Charlotte�Gastonia- 1499293 -0.009 0.009 10005 44 9920 43 9894 43 1 0 1

-Rock Hill, NC�SC

Cleveland�Akron, OH C 2945831 -0.017 0.005 9911 47 9831 46 9806 46 1 0 1

Memphis, TN�AR�MS 1135614 -0.044 0.007 9850 51 9782 50 9761 49 1 -1 2

Indianapolis, IN 1607486 -0.038 0.005 9838 52 9767 51 9746 51 1 0 1

Bakers�eld, CA 661645 -0.058 0.006 9784 54 9723 53 9704 53 1 0 1

Bloomington�Normal, IL 150433 -0.064 0.007 9780 55 9721 54 9703 54 1 0 1

Nashville, TN 1231311 -0.001 -0.015 9639 68 9554 67 9527 67 1 0 1

Lansing�East Lansing, MI 447728 -0.043 -0.008 9606 70 9541 69 9519 68 1 -1 2

Grand Rapids�Muskegon- 1088514 -0.044 -0.008 9603 71 9537 70 9517 69 1 -1 2

-Holland, MI

Harrisburg�Lebanon- 629401 -0.033 -0.018 9477 78 9408 77 9386 77 1 0 1

-Carlisle, PA

Janesville�Beloit, WI 152307 -0.045 -0.017 9451 83 9388 82 9367 81 1 -1 2

Reading, PA 373638 -0.052 -0.017 9427 85 9367 84 9347 84 1 0 1

non-metropolitan areas, IN 1791003 -0.055 -0.017 9416 86 9358 85 9338 85 1 0 1

non-metropolitan areas, GA 2744802 -0.039 -0.026 9324 97 9260 96 9238 95 1 -1 2

non-metropolitan areas, LA 1415540 -0.061 -0.026 9247 105 9193 104 9174 103 1 -1 2

non-metropolitan areas, IL 2202549 -0.056 -0.029 9215 107 9159 106 9140 106 1 0 1

non-metropolitan areas, KY 2828647 -0.063 -0.028 9207 109 9154 108 9135 107 1 -1 2

non-metropolitan areas, IA 1863270 -0.029 -0.037 9178 113 9112 112 9089 112 1 0 1

non-metropolitan areas, TN 2123330 -0.036 -0.036 9170 115 9107 114 9085 115 1 1 0

non-metropolitan areas, MN 1565030 -0.043 -0.035 9162 117 9102 116 9081 116 1 0 1

York, PA 381751 -0.041 -0.036 9153 119 9092 118 9070 118 1 0 1

non-metropolitan areas, TX 4030376 -0.039 -0.038 9127 123 9065 122 9044 121 1 -1 2

non-metropolitan areas, AR 1607993 -0.027 -0.046 9038 132 8973 131 8950 130 1 -1 2

Peoria�Pekin, IL 347387 -0.063 -0.04 9009 134 8959 133 8940 132 1 -1 2

Appleton�Oshkosh- 358365 -0.02 -0.05 8996 136 8930 135 8906 135 1 0 1

-Neenah, WI

non-metropolitan areas, KS 1366517 -0.02 -0.05 8996 137 8930 136 8906 136 1 0 1

Pittsburgh, PA 2358695 -0.038 -0.047 8982 138 8923 137 8901 137 1 0 1

non-metropolitan areas, MO 1798819 -0.021 -0.056 8894 146 8830 145 8806 145 1 0 1

Columbia, SC 536691 -0.003 -0.071 8712 161 8645 160 8618 161 1 1 0

Sheboygan, WI 112646 -0.024 -0.067 8703 162 8644 161 8620 160 1 -1 2

Beaumont� 385090 -0.093 -0.063 8525 171 8492 170 8477 170 1 0 1

Port Arthur, TX

Greenville, NC 133798 -0.024 -0.084 8424 185 8372 184 8348 182 1 -2 3

Decatur, AL 145867 -0.069 -0.082 8297 192 8261 191 8244 191 1 0 1

Jackson, MS 440801 -0.02 -0.095 8258 198 8209 197 8185 197 1 0 1

Chattanooga, TN�GA 465161 -0.021 -0.095 8254 199 8206 198 8182 199 1 1 0

Albany, GA 120822 -0.06 -0.097 8082 206 8051 205 8032 205 1 0 1

Duluth-Superior, MN-WI 243815 -0.065 -0.099 8032 211 8003 210 7985 210 1 0 1

Houma, LA 194477 -0.048 -0.105 7994 217 7962 216 7943 216 1 0 1

Biloxi-Gulfport- 363988 -0.008 -0.128 7759 238 7735 237 7712 237 1 0 1

Pascagoula, MS
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Table 6.5: Free Mobility and Social Planner Ranking of Cities

Amenity Estimate Quantity Mech. Social Planner Free Market Di�erence Rank

City Population QOL Production Value Rank Value Rank Value Rank 4- 6 6 - 8 4 - 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Daytona Beach, FL 493175 0.032 -0.14 7706 244 7683 243 7655 244 1 1 0

Utica�Rome, NY 299896 -0.057 -0.125 7633 249 7626 248 7612 247 1 -1 2

Anchorage, AK 260283 0.024 0.075 11205 16 11093 14 11063 14 2 0 2

Kokomo, IN 101541 -0.111 0.032 10027 41 9988 39 9976 38 2 -1 3

Richland�Kennewick- 191822 -0.049 0.015 9964 46 9897 44 9877 44 2 0 2

-Pasco, WA

Spring�eld, MA 591932 -0.007 -0.007 9749 58 9666 56 9640 55 2 -1 3

Rochester, MN 124277 -0.06 0 9678 65 9619 63 9600 63 2 0 2

non-metropolitan areas, MI 2178963 -0.05 -0.015 9467 80 9405 78 9385 78 2 0 2

Birmingham, AL 921106 -0.032 -0.019 9464 81 9395 79 9373 79 2 0 2

non-metropolitan areas, WI 1866585 -0.025 -0.025 9390 91 9319 89 9296 88 2 -1 3

Dayton�Spring�eld, OH 950558 -0.031 -0.028 9320 99 9252 97 9229 96 2 -1 3

non-metropolitan areas, PA 2023193 -0.054 -0.025 9288 103 9230 101 9211 100 2 -1 3

Kalamazoo�Battle Creek, MI 452851 -0.053 -0.034 9143 121 9087 119 9067 119 2 0 2

Bu�alo�Niagara Falls, NY 1170111 -0.045 -0.039 9090 126 9031 124 9010 124 2 0 2

Huntsville, AL 342376 -0.055 -0.055 8791 152 8741 150 8721 150 2 0 2

Syracuse, NY 732117 -0.061 -0.055 8769 154 8722 152 8703 152 2 0 2

Lafayette, IN 182821 -0.009 -0.067 8756 158 8690 156 8664 156 2 0 2

Fort Wayne, IN 502141 -0.059 -0.065 8612 167 8567 165 8548 164 2 -1 3

South Bend, IN 265559 -0.042 -0.069 8607 168 8556 166 8534 166 2 0 2

Champaign�Urbana, IL 179669 -0.006 -0.077 8603 169 8540 167 8513 167 2 0 2

Wichita, KS 545220 -0.044 -0.076 8485 176 8437 174 8416 174 2 0 2

Corpus Christi, TX 380783 -0.019 -0.083 8458 183 8403 181 8379 181 2 0 2

Decatur, IL 114706 -0.086 -0.08 8269 195 8239 193 8224 193 2 0 2

Youngstown�Warren, OH 594746 -0.052 -0.089 8242 201 8204 199 8184 198 2 -1 3

Lima, OH 155084 -0.066 -0.1 8012 215 7984 213 7966 212 2 -1 3

Waco, TX 213517 -0.037 -0.114 7885 227 7857 225 7836 225 2 0 2

non-metropolitan areas, OH 2548986 -0.057 -0.018 9393 89 9335 86 9316 86 3 0 3

non-metropolitan areas, AL 1504381 -0.068 -0.03 9156 118 9106 115 9088 113 3 -2 5

Saginaw�Bay City- 403070 -0.066 -0.031 9147 120 9096 117 9078 117 3 0 3

-Midland, MI

non-metropolitan areas, MS 1869256 -0.062 -0.036 9079 128 9027 125 9008 125 3 0 3

Rockford, IL 371236 -0.069 -0.018 9350 95 9298 91 9281 91 4 0 4

Jackson, MI 158422 -0.068 -0.036 9058 131 9008 127 8991 126 4 -1 5

Macon, GA 322549 -0.058 -0.074 8467 182 8425 176 8406 176 6 0 6

Figure 6.3: Equivalent Variation Indi�erence Curves
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Figure 6.4: Free Mobility: Equivalent and Compensating Variation

153



Figure 6.5: Quantity Mechanism: Equivalent and Compensating Variation
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Figure 6.6: Social Planner: Equivalent and Compensating Variation
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Figure 6.7: Social Planner Total Population: Compensating Variation
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(a) Market Mechanism Fees Collected Pre-
Shock

(b) Market Mechanism Fees Collected Post
Shock

(c) Market Mechanism Compensating Variation (d) Social Planner Compensating Variation
Total Population

Figure 6.8: Compensating Variation Social Planner and Market Mechanism
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CHAPTER VII

The Optimal Population Distribution Across Cities and

the Private-Social Wedge

Cities de�ne civilization and yet are often perceived as too large. Positive urban ex-

ternalities from human capital spillovers � seen by Lucas (1988) as the key to economic

growth � and from greater matching and sharing opportunities (Duranton and Puga, 2004),

provide the agglomeration economies that bind �rms and workers together in cities. These

centripetal forces are countered by centrifugal forces that keep the entire population from

agglomerating into one giant megacity. Such centrifugal forces include the urban disameni-

ties of congestion, crime, pollution, and contagious disease, all thought to increase with

population size. Many economists, including Tolley (1974); Arnott (1979); Upton (1981);

Abdel-Rahman (1988); Fenge and Meier (2002), have argued that because migrants to cities

do not pay for the negative externalities that they cause, free migration will cause cities

to become ine�ciently large from a social point of view. This view is presented as fact in

O'Sullivan's (2003) Urban Economics textbook, and is easily accepted as it reinforces an-

cient (e.g. Biblical) negative stereotypes of cities. Ultimately, this view provides support

for policies to limit urban growth, such as land-use restrictions, and disproportionate federal

transfers towards rural areas.

The canonical argument explaining why cities are too large is analogous to the argu-

ment explaining why free-access highways become overly congested, �rst presented in Knight

158



(1924). The cost migrants pay to enter a city is equal to the social average cost rather than

the social marginal cost. This is illustrated in Figure 1, except that costs are translated to

bene�ts using a minus sign. The social marginal bene�t curve, drawn in terms of population,

crosses the average bene�t curve at its maximum, A, and thus the marginal bene�t curve is

lower than the average bene�t curve beyond this size. Migrants, who ignore externalities and

thus respond to the average bene�t, will continue to enter a city until the average bene�t of

migration equals the outside option at B. This population level is only stable when bene�ts

are falling with city size, and thus cities can never be too small.

The analogy of a city to a simple highway, which obviously appeals to urban economists,

is misleading for three fundamental reasons. First, the land sites that cities occupy may

di�er in the natural advantages they o�er to households and �rms, such as a mild climate

or proximity to water. Thus, in a multi-site economy it may be e�cient to add population

to an advantageous site beyond its isolated optimum at A when the alternative is to add

population to an inferior site. Analogously, it makes sense to over-congest a highway when

the alternative is a dirt road. Thus, the outside marginal bene�t from residing in another

city may be below the peak bene�t at A, so that the social optimum is at a point such as

C, where the social marginal bene�t is equal to the lower outside bene�t.

Second, access to a city and its employment or consumption advantages is not free:

migrants must purchase land services and bear commuting costs to access these advantages.

Thus, unlike a free-access highway, migrants must pay a toll to access a city's opportunities,

and this toll is highest in cities o�ering the best opportunities. Thus many of the bene�ts of

urbanization are appropriated by pre-existing land owners rather than by incoming migrants,

whose incentive to move may be below the social average bene�t.

Third, workers must pay federal taxes on their wage incomes, which increase with a

city's advantages to �rms but decrease with a city's advantages to households (Haurin, 1980;

Roback, 1982). Thus, federal taxes create a toll that is highest in areas o�ering the most

to �rms and the least to households, slowing migration to these areas. These e�ects are
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modeled by Albouy (2009) with exogenous amenities, but are modeled here with amenities

that are endogenous to city population. If urban size bene�ts �rms but harms households,

then federal taxes impose tolls that are highest in the largest cities, strongly discouraging

migration to them.

Land income and federal taxes together drive a wedge between the private and social

gains that accrue when a migrant enters a city. Migrants respond to the private average

bene�t, illustrated by the dotted line in �gure 1, putting the city population at point E with

free migration, or point D if migrants manage to maximize private bene�ts in the city. In

this example, cities can be vastly undersized, producing a welfare loss seen as large as the

shaded area.

To the extent that individuals pay for land services and federal taxes, payments to land

and labor may be viewed as common resources. Because both rents and wages increase

with city size, cities can be too small in a stable market equilibrium as migrants have

no incentive to contribute to these common resources: migrants will arti�cially prefer less

advantageous sites to avoid paying higher land rents and federal taxes. In essence, inter-

city migration decisions involve cross-city �scal externalities, which un-internalized, lead to

ine�ciently small cities. This may be ampli�ed if big-city residents have greater positive net

externalities than small-city residents for non-�scal reasons, e.g. if big-city residents have

lower greenhouse-gas emissions than small-city residents (Glaeser and Kahn, 2010).

We begin our argument in section 7.1 using a basic representation of cities, which may

be viewed as clubs with external spillovers. In section 7.2 we provide a microeconomic

foundation to this representation with a system of cities based on the monocentric-city model

of Alonso (1964); Muth (1969); Mills (1967) to give form to our functions and concreteness

to our simulations. Urban economies of scale are modeled through inter-�rm productivity

spillovers that lead to increasing returns at the city level, while urban diseconomies are

modeled through generalized commuting costs.1 In addition, city sites are heterogeneous in

1This model can be expanded to incorporate other realistic features of cities, e.g. non-central �rm
placement in Lucas and Rossi-Hansberg (2002), without losing the main point.
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the natural advantages they provide to �rms in productivity or to households in quality

of life. This model is calibrated as realistically as possible to demonstrate the theoretical

results concretely and to illustrate their plausibility in the reality. Section 7.3.3 improves on

existing work by allowing the number of cities to vary, analyzing di�erences on the �extensive"

margin, i.e. the number of sites occupied, as well as on the �intensive" margin, i.e. on how

the population is distributed across a �xed number of occupied sites. The distribution of

natural advantages across sites is modeled using Zipf's Law.

Throughout the analysis we consider four types of population allocations. We begin with

the standard problem of how a city planner maximizes the average welfare of the inhabitants

of a single city, ignoring the e�ects on the outside population and internalizing any cross-city

externalities. Second, we consider the welfare optimum for an entire population, whereby a

federal planner allocates individuals across heterogenous sites, determining the number and

size of cities. We put particular emphasis on the case where individuals are equally well o�

in all cities, as would be implied by free mobility. Third, we look at the equilibrium that

occurs when populations are freely mobile, but in a private ownership economy where they

must rent land and pay federal taxes. Fourth, we consider political equilibria in a private

ownership economy that could arise when local governments restrict population �ows into

their city, ignoring the e�ects on other cities. These four cases share a symmetry illustrated

below:

Multiple Authority Single Authority

Planned Economy City Planner Federal Planner

Private Ownership Political Equilibrium Competitive Equilibrium

We �nd that the e�cient population distribution tends to concentrate the population in the

fewest number of cities, fewer than would be allocated by isolated city planners. Meanwhile,

equilibrium forces disperse the population ine�ciently, causing inferior sites to be inhabited,

with local political control potentially exacerbating this problem. Examples throughout the
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paper are illustrated graphically using the calibrated model from section 7.2. The simula-

tion, which allows the number of cities to be endogenous, demonstrates that there may be

(roughly) 40 percent too many occupied sites, with welfare costs equal to 1 percent of GDP.

There is a substantive literature on systems of cities or regions, pioneered by Buchanan

and Goetz (1972); Flatters, Henderson, and Mieszkowski (1974), developed extensively by

Henderson (1977), and given comprehensive treatments by Fujita (1989); Abdel-Rahman and

Anas (2004). Helpman and Pines (1980) argues that it is best to assume that households

own a diversi�ed portfolio of land across cities and model sites that di�er in their inherent

quality of life, but treat output per worker as �xed. Hochman and Pines (1997) model federal

taxes in cities that o�er di�erent �xed wage levels.

Our work attempts to improve on this literature by carefully de�ning social and pri-

vate bene�ts at both intra and inter-urban scale, and their associated solution concepts.

The cities in the system are remarkably heterogeneous as they may di�er in both natural

advantages to �rms (inherent productivity) and households (quality of life), and �exibly

incorporate increasing returns to scale, through an arbitrary agglomeration parameter, and

decreasing returns to scale, through an arbitrary commuting-cost parameter.2 The quantita-

tively important institutions of land ownership and federal taxation are also simultaneously

addressed. Perhaps the most interesting aspect of this research is that it provides some

empirical content to an issue that has largely remained completely theoretical.

2The modeling of natural advantages helps to �ll in a gap in the literature mentioned by Arnott (2004,
p. 1072). regarding the Henry George Theorem:

The HGT is derived on the assumption that land is homogenous, but in reality locations
di�er in terms of fertility, natural amenities such as visual beauty and climate, and natural
accessibility such as access to the sea or a navigable river. How do these Ricardian di�erences in
land a�ect the Theorem qualitatively? To my knowledge, this question has not been investigated
in the literature.
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7.1 Basic Model

7.1.1 Planned Economy

A homogenous population, numbering NTOT , must be allocated across a set of sites, J̄

= {0, 1, 2, ..., J̄}, indexed by j, with the population at each site given by Nj, such that

J̄X
j=0

Nj = NTOT , Nj ≥ 0 for all j (7.1)

The non-negativity conditions re�ect that some sites may be uninhabited. The population

allocation is written in vector form as N = (N0, N1, ..., NJ). Assume that the social welfare

function can be written as an additively separable function

W (N) =
J̄X
j=0

SBj(Nj) (7.2)

where SBj(Nj) is the social bene�t, net of costs, of having Nj people living on site j,

normalized such that an uninhabited site produces no bene�t SBj(0) = 0. The social

bene�t includes the value of goods produced by residents and the amenities they enjoy net

of the disamenities they endure such as commuting costs. Some bene�ts only a�ect residents

inside the city � such as climate amenities, transportation costs, or congestion � while

others � such as global pollution, technological innovations, and federal tax payments �

may a�ect residents of other cities. Region j = 0 is assumed to be a non-urban area with

SB0(N) = b0N , where b0 is a constant.

By de�nition, the social average bene�t of residing in city j, SABj(Nj) ≡ SBj(Nj)/Nj.

The social average bene�t is assumed to be twice continuously di�erentiable, strictly quasi-

concave, and

∂SABj(N
cp
j )

∂N
= 0 for some �nite N cp

j > 0, for all j (7.3)

making the SABj function single-peaked. Urban scale economies dominate diseconomies for

populations less than N cp while the opposite holds for populations greater than N cp. This
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single peak at N cp
j designates the choice of a city planner (hence �cp") whose objective is to

maximize the social average bene�t within the city, assuming all city bene�ts are internalized.

The social marginal bene�t of residing in city j is given by the identity

SMBj(N) ≡ ∂SBj(N)

∂N
= SABj(N) + N

∂SABj(N)

∂N| {z }
Within-City Wedge

(7.4)

where the within-city wedge, the second term, captures the e�ect of an additional migrant

on infra-marginal inhabitants of city j through scale economies. Therefore SMBj is larger

than SABj when SABj is increasing, smaller than SABj when it is decreasing, and equal

at N cp
j .

SMBj(N
cp
j ) = SABj(N

cp
j ) (CP)

City planners are solely concerned with their city and do not coordinate with other city

planners. An integer problem arises if the city planner optima do not add up to the total

population, i.e.
P
j∈J N

cp
j 6= NTOT , for J ⊆ J̄ . We focus here on situations where NTOT is

large relative N cp
j , making integer problems unimportant.

The federal optimum, which determines the e�cient population distribution, maximizes

the social welfare in (7.2) subject to the constraints in (7.1). The necessary condition is

given by

SMBj(N
fp
j ) = SMBk(N

fp
k ) = µ (FP)

across any two sites j and k that are inhabited, where µ ≥ 0 is the multiplier on the

population constraint, and N fp
j refers to the population chosen by the federal planner.

Conditions CP and FP characterize the city and federal planner equilibria on the inten-

sive margin or how population is distributed across cities. This paper adopts the extensive

margin, how many cities are created, algorithm created in Seegert (2011a) where planners

inhabit and populate cities in a two-stage game. In the �rst stage planners decide (simul-

taneously for the city planners) which cities to create. In the second stage population is
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distributed according to conditions CP and FP respectively. The subgame perfect equi-

librium of this dynamic game characterizes the extensive margin which can be found by

backward induction.34

In the model cities are heterogenous in the amount of social bene�t they produce for a

given population level. Modeling systems of cities with heterogeneity is important because

the city planner's system, which is often used in the literature, di�ers from the federal

planner's when heterogeneity exists.5

DEFINITION: City j is superior to city k if SBj(Ni) > SBk(Ni) for all Ni

RESULT 1: When cities are heterogeneous, in that some cities are superior to others, the

city planner optimum is not e�cient.

SMBk(N
cp
k ) = SABk(N

cp
k ) De�nition N cp

k .

SABk(N
cp
k ) < SABj(N

cp
k ) City j superior to city k.

< SABj(N
cp
j ) De�nition N cp

j .

= SMBj(N
cp
j ) De�nition N cp

j .

⇒SMBk(N
cp
k ) < SMBj(N

cp
j )

COROLLARY 1: When cities are heterogeneous, in that some cities are superior to

others, the city planner optimum allocates too few people to superior cities.

3The federal planner e�ciently inhabits sites J fp using a backward induction algorithm: for every J ⊆
J̄ , the e�cient population allocation Ñfp(J ) can be determined using (FP), and the associated second-order
conditions; then the J that maximizes W [Ñfp(J )] over the power set, P (J̄ ), determines the solution J fp

and Nfp= Ñ
fp

(J fp).
4Given constraint (7.1) the federal planner chooses the e�cient set of cities to inhabit and allocation

across these cities, therefore the solution does not have an integer problem.
5However, when cities are homogeneous the planner systems coincide. To show this, let N cp satisfy (7.3)

for all, then by homogeneity, all cities will have the same SMBj(N
cp),and through the absence of an integer

problem N cp/NTOT = J∗, the optimal number of cities. With homogeneity, and equal allocation of N will
satisfy (FP), however the global optimum also maximizes each individual SAB.
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From the city planner system of cities welfare can be improved by moving a resident away

from the inferior city k to the superior city j, since SABj(N
cp
j ) > SABk(N

cp
k ), therefore

N fp
j > N cp

j .6 Figure 1 illustrates this di�erence: here SAB1 is given by the solid curve and

SAB2, by the outside option, where point A gives the city planner solution, and point C,

the federal planner. Figure 2 illustrates an example with 2 cities where city 1 is superior to

city 2, and where N fp
1 > N cp

1 = NTOT/2 = N cp
2 > N fp

2 . The city planner solution is given by

points A and B, and the federal planner by point C. In both �gures, the deadweight loss of

the city planner solution is equal to the area between the SMP curves, from the e�cient to

the ine�cient population levels.

7.1.2 Private Ownership and Individual Incentives

Residency in a city may a�ect the income or the amenities of residents in other cities

because of across-city spill-overs. This produces a wedge between the average social and

private bene�t of residing in a city, which we de�ne as the across-city wedge:

ACWj(N) ≡ SABj(N)− PABj(N) (ACW)

where PABj(N) is the private average bene�t, which like the SAB is assumed to be twice

continuously di�erentiable, strictly quasi-concave, and single-peaked as in (7.3). The across-

city wedge may distort PAB relative to SAB even if the magnitude of the wedge is zero.

For example, federal income taxes create a wedge between the social and private average

bene�ts by distorting the marginal bene�t of income by (1 − τ). Even if the amount each

city was taxed was rebated lump sum back to the city the distortion would remain because

the observed marginal e�ect is distorted. We normalize the sum of across-city wedges to zero

6When N cp
k = 0, then Nfp

j ≥ N
cp
j trivially.
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such that the sum of the private average bene�ts equal the sum of social average bene�ts.7

X
j

NjACWj(Nj) = 0 (7.5)

In the competitive equilibrium all individuals are mobile across cities. Therefore the across-

city mobility condition, equation CE, and the stability condition, equation 7.6, characterize

the competitive equilibrium. The across-city mobility condition ensures no individual can

be made better o� by moving across cities. The stability condition rules out population

distributions that are not robust to a slight deviation.8

PABj(N
ce
j ) = PABk(N

ce
k ) for all inhabited cities j and k (CE)

∂PABj(N
ce
j )

∂N
+
∂PABk(N

ce
k )

∂N
≤ 0 (7.6)

The competitive equilibrium may not maximize the welfare of city residents. We de�ne a

political equilibrium, denoted with �pe", as the population level existing residents or city

developers would limit the size of a city to maximize private average bene�t levels within a

city. The political equilibrium is given by point D in �gure 1 and is analogous to the city

planner optimum, except that across-city externalities are internalized.9

PABj(N
pe
j ) = PMBj(N

pe
j ) (PE)

Conditions CE, 7.6, and PE characterize the competitive and political equilibria on the

intensive margin. This paper adopts the extensive margin algorithm created in Seegert

(2011a) where individuals create and populate cities in a two stage game.10 In the �rst

7This normalization assumes that the across-city wedge is shifts production but does not create or destroy
production in the economy.

8The stability condition can be replaced by restricting the set of allowable equilibria to be trembling hand
perfect, as demonstrated by Seegert (2011a).

9As with the city-planner problem, the political equilibrium is subject to integer problems.
10For a dynamic model of city formation see Seegert (2011b).
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stage individuals decide simultaneously whether to create a city and which city to create.

In the second stage individuals in the competitive equilibrium move across cities such that

conditions CE and 7.6 hold and in the political equilibrium such that condition PE holds.

The subgame perfect equilibrium of this dynamic game characterizes the extensive margin

which can be found by backward induction.

7.1.3 Private versus E�cient Incentives

The competitive equilibrium condition CE equalizes the private average bene�ts while the

federal planner equalizes the social marginal bene�ts across cities. Equation 7.7 decomposes

the di�erence between the e�cient and the competitive allocation into the di�erence between

the social and private average bene�ts, de�ned as the across-city wedge, and the di�erence

between the marginal and average bene�t, de�ned as the within-city wedge. Collectively

these two wedges de�ne the private-social wedge.

Private− Social Wedge = SMBj(N)− PABj(N) = WCWj(N) + ACWj(N) (7.7)

These two wedges are illustrated in �gure 3 to the right of N cp where both wedges are

positive. The previous literature emphasizes the locational e�ciency gains from eliminating

the within-city wedge however this point no longer holds in a system of heterogeneous cities,

see result one. With homogeneity and ignoring integer problems, locational ine�ciencies arise

because all points to the right of N cp = N fp are potentially stable competitive equilibria

while no points to the left are. This leads to the textbook maxim that "cities are not too

small" (O'Sullivan 2009) while they can be too big. However, result two demonstrates this

point breaks down when across-city wedges exist.

RESULT 2: If the across-city wedge is increasing with population and cities are homoge-

neous then the stable competitive equilibrium is ine�ciently small.

In the competitive equilibrium cities are created until adding a new city would lower
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the shared private average bene�t. When cities are homogeneous this implies the unique

competitive equilibrium is the political equilibrium depicted as point B in �gure 4. The

e�cient population occurs at A because homogeneity implies N cp = N fp. If the across-city

wedge is increasing in population point B is to the left of point A. Therefore the competitive

equilibrium, at point B, is smaller than the e�cient population level, given by point A.

Despite the fact that across-city wedges distort the private average bene�t total produc-

tion in the system of cities remains constant.11 If a single city is given the population N cp its

PAB will be given by point C which is lower than its SAB, and its across-city wedge given

by the distance between A and C. If all cities coordinate to achieve point A the across-city

wedge will cause the PAB curve to rise. In this scenario each city would bene�t from lim-

iting its population and attain point D to maximize its private average bene�t while still

receiving the spillover bene�ts from larger cities. Yet, if all cities did this the equilibrium

will return to point B as the spill-overs are lost and the PAB curve shifts back down.

COROLLARY 2: If the across-city wedge is increasing with population and cities are

homogeneous then the competitive equilibrium produces too many cities.

When cities are homogeneous the federal planner's optimum is the city planner's optimum

and the number of cities the federal planner produces is J fp = Ntot/N
cp. As noted above the

competitive equilibrium produces cities with populations that equal the political equilibrium

which produces J ce = Ntot/N
pe. Therefore Npe < N cp implies that J ce > J fp.

RESULT 3: If the private-social wedge at the federal planner optimum is larger for supe-

rior cities then the competitive equilibrium will produce superior cities that are ine�ciently

small.

Let cities be ordered by their superiority such that city 1 is superior to city 2 and

city i is superior to city j. Assume toward contradiction that the competitive equilibrium

11Federal income taxes are an intuitive example of an across-city wedge that distorts the economies of
scale within a city but that could be rebated lump sum to the cities such that the total bene�t produced
within a city is retained.
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population is larger than the federal planner population for some city i while the reverse is

true for some city j such that city i is superior to city j. This condition can be written as

PABi(N
fp
i ) > PABi(N

ce
i ) and PABj(N

fp
j ) < PABj(N

ce
j ) because the stability condition

ensures populations are to the right of the peak of the private average bene�t.

PABj(N
fp
j ) > PABi(N

fp
i ) by assumption PSWi > PSWj.

> PABi(N
ce
i ) by assumption toward contradiction.

= PABj(N
ce
j ) de�nition competitive equilibrium.

> PABj(N
fp
j ) by assumption toward contradiction.

Contractiction

Therefore when the private-social wedge at the federal planner optimum is larger for

superior cities, cities {1, 2, ...h}, for some 1 ≤ h ≥ J , in the competitive equilibrium are

ine�ciently small while cities {h+ 1, 2, ...J} are ine�ciently large.

The following section creates a parametric system where economies of scale, urban costs,

and the private-social wedge are modeled explicitly to determine under what conditions

superior cities are ine�ciently small in the competitive equilibrium. Result three demon-

strates that the private-social wedge being larger for superior cities is a su�cient condition

for superior cities to be ine�ciently small. The parametric model uses the canonical Alonso-

Muth-Mills monocentric city model to provide insights into result three, explicitly showing

how federal income taxes and land rent produce an across-city wedge that can lead to inef-

�ciently small superior cities in the competitive equilibrium.
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7.2 Parametric System of Monocentric Cities

7.2.1 City Structure, Commuting, Production, and Natural Advantages

In each city, individuals reside around a central business district (CBD) where all urban

production takes place. The city expands radially from the CBD with the conventional

assumptions that urban costs are a function of distance z from the CBD. Each resident

demands a lot size with a �xed area, normalized to one, so that a city of radius z contains

a population N = π(z)2.

The urban costs in the city are modeled as a time cost of commuting. The time an

individual uses to commute comes out of the single unit of labor the individual supplies

to the market. An individual who lives at a distance z supplies h(z) = 1 − c̃hzχh units of

labor where c̃h is a positive scalar and χh is the nonnegative elasticity of the time cost of

commuting with respect to distance. The aggregate labor supply in a circular city is given

by H(N) = N − chN1+φh where ch ≡ c̃hπ
−1/2(1 + φh)

−1 and φj = 2χh is the elasticity with

respect to population. We extend traditional models that implicitly assume the elasticities

with respect to distance, χh = 1 by allowing it to be �exible. This �exibility accounts for

�xed costs, variable density, and other factors that cause the observed elasticity to di�er

from unity. Additional urban costs such as a material cost of commuting and a depreciation

of average land quality within the city are easily included according to equation 7.8 where w

is the wage in the city and I represents the number of urban costs that are denoted in terms

of the numeraire. These additional costs are left out of this section for notational ease but

are included in the calibrated section.

chN
φhw +

IX
i

ciN
φi (7.8)

The wage re�ects the scale economies within the city and are modeled with an agglomeration

parameter α following Dixit (1973) but which encompasses local information spill-overs and

search and matching economies as reviewed in Duranton and Puga (2004).
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Aggregate city production is F (Aj, N) = AjN
αH(N), where Aj is the natural advantage

of city j in productivity. The local scale economies are given by Nα, with α ∈ (0, 1/2) which

are external to �rms but internal to cities, such that �rms exhibit constant returns but cities

exhibit increasing returns. Therefore �rms make zero pro�t and pay a wage w = AjN
α.

Individuals consume land, the produced good x which is tradeable across cities and has a

price normalized to one, and the level of quality of life amenities within the city, Qj. Utility

is given by U(x,Qj), which is strictly increasing and quasi-concave in both arguments. The

level of quality of life amenities is assumed to be uniform within a city and independent

of city size.12 It is convenient to write utility U(xj, Qj) = U(xj) + xQj where xQj is the

compensating di�erential in terms of the numeraire.

7.2.2 Planned Economies

The city planner and federal planner tradeo� the economies of scale and urban costs

within cities, though with di�erent objectives. The city planner chooses the population for

their city that maximizes the social average bene�t at the point at which the economies of

scale exactly equal the urban costs.13

SAB(Aj, N) ≡ AjN
α
j

�
1− chNφh

j

�
+ xQj (7.9)

The population at the peak of the social average bene�t occurs at the point where the

social marginal bene�t intersects the social average bene�t. The social marginal bene�t is

the sum of four terms; FMP is the marginal product that accrues to the �rm; AEj is the

agglomeration externality, which goes to �rms for which the household does not work; and

12The model is robust to allowing quality of life amenities to depend on population.
13The microfounded social average bene�t satis�es the three assumptions in the theory section that it is

twice continuously di�erentiable, strictly quasi-concave, and single peaked.
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CCEj is the increase in average urban costs.

SMBj = AjN
α
j| {z }

FMP

+αAjN
α
j| {z }

AE

− chAjNα
j N

φh
j| {z }

CCE

+xQ (7.10)

The federal planner concerned with maximizing the total bene�t across cities equalizes the

social marginal bene�t across all cities. The di�erence between the federal planner and the

city planner is the di�erence between the marginal and the average bene�t de�ned as the

within-city wedge.

WCWj = αAjN
α
j − αAjchN

α+φh
j − φhAjchNα+φh

j (7.11)

7.2.3 Private Ownership and Individual Incentives

With private ownership, individuals receive income from labor and land, and pay for

taxes, rent, and tradable consumption. Firms pay a wage wj = AjN
α
j per labor unit,

because factor and output markets are competitive, and a worker at distance z supplies

h(z) units of labor. Labor income is taxed at the federal rate of τ ∈ [0, 1] leaving workers

with (1− τ)AjN
γh(z).14 Federal taxes are redistributed in the form of federal transfers Tj,

which may be location dependent. When federal transfers are not tied to local wage levels,

federal taxes turn a fraction τ of labor income into a common resource, reducing individuals'

incentive to move to areas with high wages.15

The rent gradient within the city is determined by the within-city mobility condition

which states in equilibrium the location costs, the urban costs plus the land rent, must be

14It is appropriate to use the marginal tax rate since we are considering marginal changes in labor income
due to migration decisions. See Albouy (2009) for further discussion.

15Empirically, Albouy (2009) �nds that federal transfers are not strongly correlated with wage levels in
the United States, however Albouy (2012) �nds that they are negatively related in Canada, increasing the
size of the across-city �scal spill-overs.
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equal across all distances z within a city.1617

rj(z) = wc̃h(z
χh − zχh) (7.12)

The rent at the central business district, rj(0), gives the full location cost, given by the height

of the cylinder in �gure ??. Figure 5 depicts the rent gradient, which declines to rj(zj) = 0

at the edge of the city, where we normalize the opportunity cost of land to zero.18 The rental

income of residents in city j is

Rj = (1− ρ)r̄j + ρR̄ (7.13)

where R̄ = 1
Ntot

PJ
j=0 Nj r̄j is the average rent paid in all cities, and ρ ∈ [0, 1] is an exogenously

�xed parameter that captures the proportion of an individual's portfolio that is diversi�ed

across all cities, as opposed to the land holdings only within the city the individual lives.

Much of the previous literature has focused on the special case where ρ = 0 implying in-

dividuals receive the average rental income in the city they live in. This assumption while

seemingly innocuous actually imposes unrealistic distortions in mobility across cities. For

example, a new migrant to city j inherits a free plot of land at the average distance and

gives up any other land holdings without payment. Consequently, this assumption provides

a perverse incentive for individuals to move to cities with high average rent because they

16Because land is not used in production, wages do not negatively capitalize consumption amenities as in
Roback (1982) � see Albouy (2009) for details. However, when not all sites are inhabited, individuals may
choose to reside in areas with high Qj but low Aj which can produce a negative correlation between wages
and consumption amenities.

17

Location Cost =wc̃hz
χh + c̃mz

χm + c̃lz
χl + r(z)

= wc̃hz
χh + c̃mz

χm + c̃lz
χl

= r(0) Downtown rent

18More generally, we discuss land rents that are di�erential land rents. Assuming that the opportunity
cost of land is greater than zero adds little to the model unless the opportunity cost varies with Q or A.
For instance it may be possible that sunnier land is more amenable to urban residents, but also contributes
to agricultural productivity, raising the opportunity cost as well. Given the low value of agricultural land
relative to residential land, these e�ects are likely to be of small consequence.

174



inherit the land for free. When ρ = 1, migrants to a city have to pay rent on any plot they

occupy, but still receive income from land, albeit in an amount unrelated to their location

decision. This assumption treats individuals anonymously and causes migrants to pay rent

to access the advantages of a city. As ρ increases a higher share of rent is redistributed across

cities, rather than only within the city, and land income can be thought of as a common

(federal) resource.19

Income net of location costs is equal for all individuals within a city causing them to

consume the same level of the tradeable good x and the quality of life consumption xQ. This

level of consumption is de�ned as the private average bene�t within the city.

PABj = (1− τ)AjN
α
j

�
1− (1 + ρφh)chN

φh
�

+ ρR̄ + Tj + xQj (7.14)

The competitive equilibrium is characterized by the across-city mobility condition which en-

sures individuals do not have an incentive to move. Therefore in the competitive equilibrium

the private average bene�t is equal across all cities. The political equilibrium is de�ned as

the peak of the private average bene�t which occurs at the point that the private marginal

bene�t intersects the private average bene�t. When cities are heterogeneous in their pro-

duction and quality of life amenities the political equilibrium and competitive equilibrium

19If migrants owned plots of land in an origin city, they would still sell the land when moving to the
destination city, since they can only live in one city at a time. This would unnecessarily complicate the
analysis through income e�ects, and require us to consider the origin as well as destination of migrants. The
situation with ρ = 1 may also be characterized as one of a migrant from a typical city in the economy, as R̄
denotes the average rent on a plot of land anywhere. One could also assume that land is owned by the federal
government or absentee landlords. In these cases rental earnings are the same and zero for all individuals.
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di�er.20

7.2.4 Private versus E�cient Incentives

Notice that when ρ and τ equal zero the private average bene�t, equation 7.14 equals

the social average bene�t, equation 7.1. In this case the population allocation of the city

planner and political equilibrium are the same but may not be e�cient as they may di�er

from the federal planner's population allocation. When ρ or τ are not zero some of the

bene�t produced within a city is distributed across all cities either through tax transfers or

land rent income. In this case the social average bene�t and private average bene�t will

di�er by the across-city wedge.

Across-City Wedge = τAjN
α
j − τ(1 + ρφh)chAjN

α+φh
j + (ρφh)chAjN

α+φh
j

The federal planner equalizes the social marginal bene�t across cities while the competitive

equilibrium equalizes the private average bene�t across cities. The di�erence between the

social marginal bene�t and the private average bene�t is de�ned as the social-private wedge.

The private-social wedge is the combination of the within-city wedge and the across-city

wedge.

Private-Social Wedge = SMBj − PABj = WCWj + ACWj

= (α + τ)AjN
α
j − (τ(1 + ρφh) + α + φh(1− ρ))chAjN

α+φh
j − ρR̄− Tj

20The di�erence between the private average bene�t and the private marginal bene�t is de�ned as the
private within-city wedge.

Private Marginal Product =

(α+ 1)AjN
γ
j (1− τ)− (1 + α+ φh)(1− τ)

1 + ρφh
1 + φh

chAjN
φh+α
j + Tj + ρR̄

PWCW = α(1− τ)AjN
α
j − (α+ φh)(1− τ)

1 + ρφh
1 + φh

chAjN
φh+α
j
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From this equation we can solve for the e�cient governmental transfer; Tj = AEj+τAjN
α
j −

r̄j +ρ
�
r̄j − R̄

�
. This transfer subsidizes the agglomeration externality AEj and punishes for

higher urban costs represented by the average rent r̄j. In addition the transfer rebates the

�scal externality the city provides to the common resource through taxes, τAjN
α
j and land

rent, ρ
�
r̄j − R̄

�
.21 When ρ and τ equal zero the across-city wedge is zero and the private-

social wedge equals the within-city wedge.

Private-Social Wedge(ρ = o, τ = 0) = SMBj − PABj = WCWj

= αAjN
α
j − αchAjN

α+φh
j| {z }

AE

−φhchAjNα+φh
j| {z }

Average Rent

In this case the private-social wedge equals the agglomeration externality, AE, minus the

average rent in the city. This result is the Henry George theorem (Arnott and Stiglitz,

1979) which states that land taxes are a su�cient tax to produce the optimal level of public

good. In this model the public good is the agglomeration externality given by AE. In this

case without a land tax population could grow to any population level greater than the

city planner's optimum as individuals consider the average and not marginal bene�t within

the city. The con�scatory land tax limits the competitive equilibrium population size to

the city planner level. The literature has focused on this condition because when cities are

homogenous (and there is no across-city wedge) con�scatory land taxes provide the e�cient

allocation of population. However, if cities are heterogeneous with respect to production

and consumption amenities and all cities impose con�scator land taxes the competitive

equilibrium population levels are ine�ciently small for the superior cities, see result one.

When taxes or intercity land income are introduced into the model the private-social

wedge is the combination of the across-city and within-city wedge and therefore is no longer

21In a closed-city context, Wildasin (1985) notes that the time costs of commuting are implicitly deducted
from federal taxes, although the material costs are not, and argues that taxes lead to excessive sprawl by
reducing the time-cost of commuting. This mechanism does not work in a closed-city setting with �xed lot
sizes, but it does matter in an open-city setting by leveling the slope of the wage gradient, causing it to hit
zero at a further distance, implying a larger population.
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the simple combination of the public good and land rents. In a system of heterogeneous

cities the superior cities will be undersized in the competitive equilibrium if the private-

social wedge is increasing with the level of amenities provided, by result three. Taking the

partial derivative of the private-social wedge with respect to the production amenity level Aj

provides a partial equilibrium condition for when this condition and therefore result three

holds.2223

α + τ

1− ρ(1− τ)
≥ φhchN

φh

(1− chNφh)

τ |ρ=0 >
φhchN

φh
j

1− chNφh
j

− α

ρ|τ=0 > 1−
α(1− chNφh

j )

φhchN
φh
j

In the parametric example the su�cient condition from result three holds when the tax rate,

τ , or the land income portfolio diversi�cation parameter, ρ, exceed their threshold values

given in equation 7.2.4. The following section calibrates this parametric model to determine

in a realistic environment whether taxes and land rent income are large enough forces to

cause superior cities to become undersized.

22In the calibration section a condition is provided from taking the total derivative.
23

PSW = (α+ τ)AjN
α
j − (τ(1 + ρφh) + α+ φh(1− ρ))chAjN

α+φh

j − ρR̄− Tj

0 >
∂PSW

∂Aj

= (α+ τ)Nα
j − (τ(1 + ρφh) + α+ φh(1− ρ))chN

α+φh

j

0 < (α+ τ)− (τ(1 + ρφh) + α+ φh(1− ρ))chN
φh

j

φhchN
φh(1− ρ(1− τ)) < (α+ τ)(1− chNφh)

φhchN
φh

(1− chNφh)
<

α+ τ

1− ρ(1− τ)
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7.3 Calibrated Model

7.3.1 Calibration

To test whether the private-social wedge satis�es the conditions in result 3 the model is

calibrated using data from the Census Bureau, the Bureau of Labor Statistics, the American

Community Survey (ACS), the Survey of Income and Program Participation (SIPP), and

empirical studies by Rosenthal and Strange (2004); Albouy and Ehrlich (2011). The model

is fully calibrated by nine parameters. The economies of scale in the model are calibrated by

the agglomeration factor α, the population of the typical city, and the wage in the typical

city. The urban costs in the model are split between commuting costs as a fraction of income

and the elasticities with respect to population φi, where we consider three urban costs the

time commuting cost, the material commuting cost, and the land depreciation cost.

According the to bureau of labor statistics May 2009 Occupational Employment and

Wage Estimates in the United States the average annual salary is $43, 460. From Rosenthal

and Strange (2004) survey on agglomeration they de�ne a consensus range between .03 and

.08, from which α is chosen to equal .05. The typical urban resident, the median resident,

lives in Cleveland, OH with a population of 2, 091, 286 according to the census bureau's

annual estimates of population. From these three points the scalar A is found by taking the

average annual wage and dividing by the typical city size to the agglomeration parameter α,

A = Average Annual Wage
Typical City Sizeα .

About 10 percent of the working day and 5 percent of income is spent commuting accord-

ing to the American Community Survey and Survey of Income and Program Participation.

The authors' calculations �nd the elasticity of commuting with respect to population to

be .1 implying φh = φm = .1. The cost parameters are found by setting chN
φh = .1 and

cmN
φm = .045 ∗ Average Annual Wage. The land depreciation elasticity and cost parame-

ters are calculated to match the land rent gradient and land share of income which by the

authors' calculation are .216 and .05 respectively.
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As a robustness check the elasticity and and cost parameters for the land depreciation

urban cost is calculated for di�erent land rent gradients and land share of incomes. In table

XX the land share of income is increased from 2.5% to 6% holding �xed the land rent gradient

at .216. As the land share of income is increased the elasticity φl decreases and the cost

parameter cl increases. In addition the within-city wedge decreases, the across-city wedge

increases, and the resulting private-social wedge decreases. In table XX the land share of

income is increased holding �xed the land gradient at .5 and all of the previous results hold.

In table XX the elasticity of land value with respect to population is varied from .2 to .7

holding the land share of income �xed at 4.4%. As the elasticity increases φl increases and cl

decreases. The within-city wedge in levels is �at but in percentage decreases, the across-city

wedge increases, and the resulting private-social wedge increases. In table XX the elasticity

of land value with respect to population is increased over the same range with the land share

of income �xed at 2.5% and all of the previous results hold.

7.3.2 Calibrated Microfounded Model

The superior cities in a system of heterogeneous cities will be undersized in the competi-

tive equilibrium if the private-social wedge is increasing with the level of amenities within the

city. In the micro-foundation section a partial equilibrium condition was derived by taking

the partial derivative of the private-social wedge. In this section the calibration produces

a range of values for τ and ρ such that private-social wedge is increasing with the level of

amenities.

dPrivate-Social Wedge :
∂PSW

∂A
dA+

∂PSW

∂N
dN > 0

Given the calibration ∂PSW
∂A

> 0 for all values of ρ ∈ [0, 1] and τ ∈ [0, 1]. Allowing dA > 0

and assuming that dN > 0 then ∂PSW
∂N

> 0 is a su�cient condition for the private-social

wedge to be larger for superior cities. Figure ?? graphs the level of ρ and τ such that

∂PSW
∂N

> 0. From this �gure if ρ > .812 then for all values of τ the condition is satis�ed.
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Similarly, if τ > .216 the condition holds for all values of ρ.

7.3.3 Calibrated System of Heterogeneous Cities

In this section we simulate a system of heterogenous cities using the calibrated model. The

simulation demonstrates how the private-social wedge skews the distribution of population

across cities (intensive margin) and the distribution of cities that are inhabited (extensive

margin). When the private-social wedge is large the competitive equilibrium will inhabit

more cities and underpopulate them relative to the federal planner. The misallocation of

population in the competitive equilibrium leads to a deadweight loss of $170 billion or around

4% of income with the baseline calibration.

A. City Formation. The distribution of population across cities is calculated following

Seegert (2011a) which focuses on the impact of migration constraints on the distribution of

cities. The process of creating and inhabiting cities is done with a two-stage dynamic game

where the resulting population distribution is a subgame perfect equilibrium. In the �rst

stage the federal planner decides how many cities to inhabit. In the second stage the federal

planner decides the population distribution across the cities equalizing the social marginal

bene�t. By backward induction the federal planner chooses the number of cities in the �rst

stage that maximizes total production given the population distribution that will obtain in

the second stage.

In the competitive equilibrium's �rst stage individuals simultaneously decide whether

to create a new city in which they must live or wait and migrate to an existing city in

stage two. In the second stage individuals simultaneously decide which city to live in. By

backward induction the resulting distribution of population in the second stage will equalize

the private average bene�t, otherwise some individual could have done better and moved

to the city with the larger private average bene�t. In the �rst stage individuals considering

the resulting distribution of population in the second stage continue to create new cities to

maximize the resulting equalized private average bene�t.
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B. Heterogeneity Calibration. The heterogeneity in city amenities is calculated using the

actual distribution of cities in the United States. The distribution of amenities is calculated

to provide each city in the data the same level of private average bene�t. This distribution

is then used to determine the amenity levels for the next 200 hypothetical cities'.

The actual distribution of cities in the United States follows Zipf's law. The underlying

economics of why the distribution follows Zipf's law remains an open question. Krugman

in his 1996 paper conjectures that the reason cities follow Zipf's law is that the underlying

distribution of amenities follow Zipf's law. The simulated distribution of amenities in this

paper support this conjecture as the distribution of amenities follows Zipf's law.

log(Rank) = 11.332− 1.073
(−77.06)

log(population/1000) (7.15)

log(Rank) = 280− 30.258
(−112.96)

log(Aj) (7.16)

C. Extensive Margin Results. The baseline calibration, ρ = 1 and τ = .33, leads to a stark

di�erence between the distribution of cities in the competitive equilibrium and the e�cient

allocation and is reported in table XX column 1. The competitive equilibrium inhabits 361

cities and the largest city is about 19 million. In contrast, the e�cient distribution inhabits

only 20 cities with the largest being 68 million. The di�erent calibrations are reported in

columns 2 through 7 and demonstrate this stark contrast is a result of the large wedge caused

by ρ = 1 and τ = .33 and a relatively low level of urban costs. The relatively low level of

urban costs creates an incentive for the federal planner to create fewer cities with larger

populations than the competitive equilibrium.

The creation and growth of cities is an important research area that is relatively un-

derstudied. The notable exceptions are Fujita, Anderson, and Isard (1978) which produces

normative models, Seegert (2011a) discussed above, and Seegert (2011b) which creates a

positive dynamic model based solely on individual incentives.

182



7.4 Conclusion

The above analysis does not prove that cities are necessarily too small, but it does call

into question the necessity of cities being too large in an economy where federal taxes are

paid and residential land must be purchased. As a result, the ability of local governments

to reduce city sizes by restricting development through impact fees, green belts, and zoning

may do much to reduce overall welfare, as they will likely neglect across-city spillovers, �scal

and otherwise, and allow a small minority to monopolize the best sites, forcing others to

occupy naturally less superior sites.

Many other factors certainly play a role in determining e�cient city sizes, among them,

the ability of governments to provide adequate regulation, public goods, and infrastructure to

make a large city function well. This may be a particular challenge in developing countries,

where rapidly growing cities su�er disproportionately from negative externalities such as

dirty air, infectious disease, and debilitating tra�c. Moreover, in these cities the marginal

resident, perhaps a poor rural migrant, may not pay federal taxes or for their land costs by

working in the informal sector and squatting on land they have no property rights to. Thus,

the problem of under-sized cities may be a relatively new one historically, seen primarily

in the developed world, but one that will become increasingly important as property rights

develop, federal governments tax increasingly, and urbanization rises.
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Figure 7.1: Social Average Bene�t and Social Marginal Bene�t
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(a) Baseline Estimates
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(b) Land Depreciation
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(c) Commuting Costs Increased

100,000 1,000,000 10,000,000
$15,800

$15,900

$16,000

$16,100

$16,200

$16,300

$16,400

$16,500

$16,600

$16,700

Population

In
co

m
e 

N
et

 U
rb

an
 C

os
ts

 

 

Social Average Benefit
Social Marginal Benefit
Private Average Benefit

(d) Agglomeration Increased

Figure 7.2: Robustness
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Figure 7.3: Two City Example
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Figure 7.4: Equilibrium Concepts
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(a) ρ = τ = 0
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Figure 7.5: Across-City Wedge: Taxes and Land Rents
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Figure 7.6: Robustness Vary Land Quality
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Figure 7.7: Zipf's Law
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Table 7.1: Production Amenities

Observed
Case Baseline 135 City Large Urban φ = .5 τ = .2

Case Case Costs Case Case
Economic Parameters (0) (1) (2) (3) (4) (5)
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050
Commuting Parameter φ 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.250 0.600 0.250 0.250
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.150 0.150 0.150 0.150
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($1000s) 22.000 22.000 22.000 22.000 22.000
Fixed PAB 14500 14500 14500 12000 12000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.200
Land ownership parameter ρ 1.000 1.000 1.000 0.500 1.000
Implied Values

Competitive Population Largest City 19,069,796 19,110,000 18,580,000 19,090,000 19,110,000 19,110,000
E�cient Population Largest City 68,620,000 65,640,000 38,000,000 51,270,000 44,550,000
Competitive Population Smallest City 55,176 80,000 120,000 100,000 80,000 90,000
E�cient Population Smallest City 1,560,000 4,580,000 560,000 670,000 550,000
Competitive Population Median City 244,694 240,000 400,000 260,000 240,000 250,000
E�cient Population Median City 7,365,000 9,100,000 2,600,000 3,195,000 3,040,000

Number of Competitive Cities 366 361 212 352 362 358
Number of E�cient Cities 20 14 51 38 42

Net Production Competitive Cities 3.747E+12 3.505E+12 3.749E+12 3.231E+12 3.097E+12
Net Production E�cient Cities 3.921E+12 3.646E+12 3.960E+12 3.196E+12 3.163E+12
Deadweight Loss Level (Di�erence) 1.732E+11 1.408E+11 2.107E+11 9.661E+10 6.600E+10
Deadweight Loss Percentage (Di�erence) 4.623% 4.018% 5.622% 2.990% 2.131%

Table 7.2: Quality of Life Amenities

Observed
Case Baseline Large Urban φ = .5 τ = .2 Large Costs

Case Costs Case Case φ = .5
Economic Parameters (0) (1) (2) (3) (4) (5)
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050
Commuting Parameter φ 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.600 0.250 0.250 0.600
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.150 0.150 0.150 0.150
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000
Fixed PAB 15000 15000 15000 15000 15000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.200 0.330
Land ownership parameter ρ 1.000 1.000 0.500 1.000 0.500
Implied Values

Competitive Population Largest City 19,069,796 19,250,000 19,160,000 19,220,000 19,220,000 19,020,000
E�cient Population Largest City 41,680,000 22,500,000 32,950,000 34,850,000 16,540,000
Competitive Population Smallest City 55,176 190,000 340,000 330,000 350,000 240,000
E�cient Population Smallest City 3,250,000 1,050,000 2,960,000 2,990,000 1,240,000
Competitive Population Median City 244,694 325,000 450,000 450,000 520,000 650,000
E�cient Population Median City 8,850,000 1,980,000 5,890,000 6,060,000 2,365,000

Number of Competitive Cities 366 300 234 234 219 152
Number of E�cient Cities 24 79 32 31 54

Net Production Competitive Cities 4.157E+12 4.136E+12 4.152E+12 4.070E+12 3.517E+12
Net Production E�cient Cities 4.244E+12 4.167E+12 4.210E+12 4.129E+12 3.526E+12
Deadweight Loss Level (Di�erence) 8.689E+10 3.082E+10 5.725E+10 5.862E+10 9.381E+09
Deadweight Loss Percentage (Di�erence) 2.090% 0.745% 1.379% 1.440% 0.267 %
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Figure 7.8: Transit Time and Metro Population
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Figure 7.9: Average Annual Work Hours and Metro Population
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Figure 7.10: Inferred Land Rents and Metro Population
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Figure 7.11: Measured Land Rents and Metro Population
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Table 7.3: Land Share Robustness

Benchmark Land Land Land Land Land
case Share 2.5 % Share 4.3% Share 5 % Share 6.3% Share 8%

(1) (2) (3) (4) (5) (6)
Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.286 0.246 0.241 0.235 0.217
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.056 0.146 0.182 0.248 4.018
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.330 0.330
Land ownership parameter ρ 1.000 1.000 1.000 1.000 1.000 1.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.025 0.043 0.050 0.063 0.800
Elasticity of land value to population εr,N 0.220 0.216 0.216 0.216 0.216 0.216
Commuting share of rent 0.328 0.580 0.337 0.290 0.230 0.018

Typical Within-City Social Wedge (SMB-SAB) 50.000 434.000 73.998 -65.999 -326.002 -15065.961
Typical Across-City Wedge (SAB-PAB) 1,349.62 1,222.20 1,338.29 1,383.24 1,466.65 6,188.39
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1,656.19 1,412.29 1,317.24 1,140.65 -8,877.57
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 1,717.55 1,279.79 1,109.55 793.39 -17,130.40

Top Within-City Social Wedge (SMB-SAB) 180.55 909.40 243.84 -16.67 -501.11 -28,017.56
Top Across-City Wedge (SMB-PAB) 2,922.56 2,450.29 2,871.94 3,037.40 3,345.25 20,843.49
Top Social-Private Wedge (SMB-PAB) 3,103.11 3,359.69 3,115.78 3,020.74 2,844.14 -7,174.07
Top Within-City Private Wedge (PMB-PAB) 1,233.08 2,121.51 1,316.95 1,000.80 412.41 -33,045.73

Typical City-Planner Population (millions) 2.802 49.703 3.268 1.440 0.399 0.001
Typical Political Equilibrium Population (millions) 0.142 3.554 0.161 0.066 0.016 0.001

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 2.393% 0.448% -0.416% -2.220% 28.147%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 6.740% 8.102% 8.712% 9.988% -11.561%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 9.133% 8.550% 8.296% 7.768% 16.586%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 9.471% 7.748% 6.988% 5.403% 32.004%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 4.805% 1.536% -0.114% -4.030% 24.376%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 12.946% 18.095% 20.704% 26.905% -18.135%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 17.750% 19.631% 20.591% 22.874% 6.242%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 11.209% 8.298% 6.822% 3.317% 28.751%
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Table 7.4: Land Share Robustness With Elasticity = 0.5

Benchmark Land Land Land Land Land
case Share 2.5 % Share 4.3% Share 5 % Share 6.3% Share 8%

(1) (2) (3) (4) (5) (6)
Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.800 0.630 0.607 0.580 0.505
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.028 0.075 0.093 0.128 2.136
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.330 0.330
Land ownership parameter ρ 1.000 1.000 1.000 1.000 1.000 1.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.025 0.043 0.050 0.063 0.800
Elasticity of land value to population εr,N 0.220 0.500 0.500 0.500 0.500 0.500
Commuting share of rent 0.328 0.580 0.337 0.290 0.230 0.018

Typical Within-City Social Wedge (SMB-SAB) 50.000 434.000 74.000 -66.000 -325.996 -15066.028
Typical Across-City Wedge (SAB-PAB) 1,349.62 1,321.76 1,541.66 1,625.49 1,780.42 10,494.19
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1,755.76 1,615.66 1,559.49 1,454.43 -4,571.83
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 1,575.55 1,035.55 825.55 435.56 -21,674.50

Top Within-City Social Wedge (SMB-SAB) 180.55 -1,249.86 -2,392.91 -2,943.31 -3,999.11 -66,416.40
Top Across-City Wedge (SMB-PAB) 2,922.56 4,709.11 5,712.05 6,206.29 7,157.03 63,548.06
Top Social-Private Wedge (SMB-PAB) 3,103.11 3,459.25 3,319.15 3,262.98 3,157.92 -2,868.34
Top Within-City Private Wedge (PMB-PAB) 1,233.08 -2,090.37 -3,479.61 -4,271.53 -5,819.52 -99,359.33

Typical City-Planner Population (millions) 2.802 6.780 2.491 1.806 1.086 0.004
Typical Political Equilibrium Population (millions) 0.142 1.686 0.502 0.351 0.202 0.001

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 2.314% 0.409% -0.370% -1.883% 124.267%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 7.047% 8.522% 9.121% 10.283% -86.558%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 9.361% 8.931% 8.751% 8.400% 37.709%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 8.401% 5.724% 4.632% 2.516% 178.775%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% -7.082% -16.066% -21.413% -34.524% 58.586%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 26.684% 38.351% 45.152% 61.786% -56.056%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 19.602% 22.285% 23.739% 27.262% 2.530%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% -11.845% -23.362% -31.076% -50.239% 87.645%
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Table 7.5: Wedges Free Land Under Alternate Calibrations

Benchmark Land Land Land Land Land
case Share 2.5 % Share 4.3% Share 5 % Share 6.3% Share 8%

(1) (2) (3) (4) (5) (6)
Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.286 0.246 0.241 0.235 0.217
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.056 0.146 0.182 0.248 4.018
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.330 0.330
Land ownership parameter ρ 1.000 0.000 0.000 0.000 0.000 0.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.025 0.043 0.050 0.063 0.800
Elasticity of land value to population εr,N 0.220 0.216 0.216 0.216 0.216 0.216
Commuting share of rent 0.328 0.580 0.337 0.290 0.230 0.018

Typical Within-City Social Wedge (SMB-SAB) 50.000 434.00 74.00 -66.00 -326.00 -15065.96
Typical Across-City Wedge (SAB-PAB) 1,349.62 1065.51 1065.51 1065.51 1065.51 1065.51
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1499.51 1139.51 999.51 739.51 -14000.45
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 1675.04 1315.04 1175.05 915.04 -13824.92

Top Within-City Social Wedge (SMB-SAB) 180.55 909.40 243.84 -16.67 -501.11 -28017.56
Top Across-City Wedge (SMB-PAB) 2,922.56 1836.12 1836.12 1836.12 1836.12 1836.12
Top Social-Private Wedge (SMB-PAB) 3,103.11 2745.52 2079.96 1819.45 1335.01 -26181.45
Top Within-City Private Wedge (PMB-PAB) 1,233.08 2112.62 1447.06 1186.56 702.12 -26814.34

Typical City-Planner Population (millions) 2.802 49.703 3.268 1.440 0.399 0.001
Typical Political Equilibrium Population (millions) 0.142 10.450 0.495 0.204 0.052 0.001

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 2.393% 0.448% -0.416% -2.220% 28.147%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 5.876% 6.451% 6.711% 7.256% -1.991%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 8.269% 6.899% 6.295% 5.036% 26.156%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 9.237% 7.961% 7.400% 6.231% 25.828%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 4.805% 1.536% -0.114% -4.030% 24.376%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 9.701% 11.569% 12.516% 14.767% -1.597%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 14.505% 13.105% 12.402% 10.737% 22.779%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 11.162% 9.117% 8.088% 5.647% 23.330%
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Table 7.6: Wedges No Tax Under Alternate Calibrations

Benchmark Land Land Land Land Land
case Share 2.5 % Share 4.3% Share 5 % Share 6.3% Share 8%

(1) (2) (3) (4) (5) (6)
Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.329 0.257 0.249 0.240 0.218
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.039 0.127 0.162 0.228 3.997
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.000 0.000 0.000 0.000 0.000
Land ownership parameter ρ 1.000 1.000 1.000 1.000 1.000 1.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.025 0.043 0.050 0.063 0.800
Elasticity of land value to population εr,N 0.220 0.216 0.216 0.216 0.216 0.216
Commuting share of rent 0.328 0.580 0.337 0.290 0.230 0.018

Typical Within-City Social Wedge (SMB-SAB) 50.000 500.00 140.00 0.00 -260.00 -15000.03
Typical Across-City Wedge (SAB-PAB) 1,349.62 755.05 872.03 917.08 1000.58 5722.58
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1255.06 1012.03 917.08 740.58 -9277.45
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 2862.97 2425.21 2254.97 1938.81 -15985.07

Top Within-City Social Wedge (SMB-SAB) 180.55 997.17 340.29 80.54 -403.13 -27918.13
Top Across-City Wedge (SMB-PAB) 2,922.56 1226.60 1640.45 1805.25 2112.42 19609.38
Top Social-Private Wedge (SMB-PAB) 3,103.11 2223.76 1980.74 1885.79 1709.29 -8308.75
Top Within-City Private Wedge (PMB-PAB) 1,233.08 3720.61 2933.20 2618.50 2031.59 -31423.62

Typical City-Planner Population (millions) 2.802 50.000 4.880 2.091 0.553 0.001
Typical Political Equilibrium Population (millions) 0.142 26.013 1.627 0.689 0.180 0.001

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 2.708% 0.829% 0.000% -1.726% 28.234%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 4.090% 5.164% 5.643% 6.642% -10.771%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 6.798% 5.993% 5.643% 4.916% 17.462%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 15.508% 14.362% 13.875% 12.870% 30.088%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 5.119% 2.066% 0.527% -3.089% 24.425%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 6.296% 9.958% 11.815% 16.188% -17.156%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 11.415% 12.023% 12.342% 13.098% 7.269%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 19.098% 17.805% 17.138% 15.568% 27.492%
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Table 7.7: Wedges No Tax Free Land Under Alternate Calibrations

Benchmark Land Land Land Land Land
case Share 2.5 % Share 4.3 % Share 5 % Share 6.3 % Share 8 %

Economic Parameters
Agglomeration Parameter γ (1) (2) (3) (4) (5) (6)
Commuting Parameterφ
Land Heterogeneity Parameter α 0.050 0.050 0.050 0.050 0.050 0.050
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.250 0.329 0.257 0.249 0.240 0.218
Heterogeneous Land weight 0.100 0.100 0.100 0.100 0.100 0.100
Size of typical city (millions) 0.045 0.045 0.045 0.045 0.045 0.045
Avg. value of labor ($ 1000s) 0.150 0.039 0.127 0.162 0.228 3.997
Tax/Ownership Parameters 2.091 2.091 2.091 2.091 2.091 2.091

Marginal tax rate τ 22.000 22.000 22.000 22.000 22.000 22.000
Land ownership parameter ρ
Implied Values 0.330 0.000 0.000 0.000 0.000 0.000

Share of income to di�erential land rents sR 1.000 0.000 0.000 0.000 0.000 0.000
Elasticity of land value to population εr,N
Commuting share of rent 0.044 0.025 0.043 0.050 0.063 0.800

0.220 0.216 0.216 0.216 0.216 0.216
Typical Within-City Social Wedge (SMB-SAB) 0.328 0.580 0.337 0.290 0.230 0.018
Typical Across-City Wedge (SAB-PAB)
Typical Social-Private Wedge (SMB-PAB) 50.000 500.00 140.00 0.00 -260.00 -15,000.03
Typical Within-City Private Wedge (PMB-PAB) 1,349.62 600.00 600.00 600.00 600.00 600.00

1,399.62 1,100.00 740.00 600.00 340.00 -14,400.03
Top Within-City Social Wedge (SMB-SAB) 1,247.45 2,746.34 2,386.34 2,246.34 1,986.34 -12,753.70
Top Across-City Wedge (SMB-PAB)
Top Social-Private Wedge (SMB-PAB) 180.55 997.17 340.29 80.54 -403.13 -27,918.13
Top Within-City Private Wedge (PMB-PAB) 2,922.56 600.00 600.00 600.00 600.00 600.00

3,103.11 1,597.17 940.29 680.54 196.87 -27,318.13
Typical City-Planner Population (millions) 1,233.08 3,610.71 2,953.84 2,694.09 2,210.42 -25,304.58
Typical Political Equilibrium Population (millions)

2.802 50.000 4.880 2.091 0.553 0.001
Typical Within-City Social Wedge Percent (SMB-SAB) 0.142 50.000 4.880 2.091 0.553 0.001
Typical Across-City Wedge Percent (SAB-PAB)
Typical Social-Private Wedge Percent (SMB-PAB) 0.304% 2.708% 0.829% 0.000% -1.726% 28.234%
Typical Within-City Private Wedge Percent (PMB-PAB) 8.199% 3.250% 3.553% 3.692% 3.983% -1.129%

8.503% 5.959% 4.382% 3.692% 2.257% 27.104%
Top Within-City Social Wedge Percent (SMB-SAB) 7.579% 14.877% 14.132% 13.822% 13.185% 24.005%
Top Across-City Wedge Percent (SMB-PAB)
Top Social-Private Wedge Percent (SMB-PAB) 1.150% 5.119% 2.066% 0.527% -3.089% 24.425%
Top Within-City Private Wedge Percent (PMB-PAB) 18.620% 3.080% 3.642% 3.927% 4.598% -0.525%

19.770% 8.198% 5.708% 4.454% 1.509% 23.900%
7.856% 18.534% 17.930% 17.632% 16.938% 22.138%
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Table 7.8: Elasticity of Rent

Benchmark Elasticity Elasticity Elasticity Elasticity Elasticity
case Rent, Pop Rent, Pop Rent, Pop Rent, Pop Rent, Pop

0.2 0.216 0.3 0.4 0.5
(1) (2) (3) (4) (5) (6)

Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.225 0.246 0.360 0.495 0.630
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.158 0.146 0.109 0.087 0.075
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.330 0.330
Land ownership parameter ρ 1.000 1.000 1.000 1.000 1.000 1.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.043 0.043 0.043 0.043 0.043
Elasticity of land value to population εr,N 0.220 0.200 0.216 0.300 0.400 0.500
Commuting share of rent 0.328 0.337 0.337 0.337 0.337 0.337

Typical Within-City Social Wedge (SMB-SAB) 50.000 73.998 73.998 74.001 74.000 74.000
Typical Across-City Wedge (SAB-PAB) 1,349.62 1,322.14 1,338.29 1,413.53 1,485.30 1,541.66
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1,396.14 1,412.29 1,487.53 1,559.30 1,615.66
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 1,293.55 1,279.79 1,207.55 1,121.55 1,035.55

Top Within-City Social Wedge (SMB-SAB) 180.55 322.41 243.84 -259.85 -1,120.58 -2,392.91
Top Across-City Wedge (SMB-PAB) 2,922.56 2,777.22 2,871.94 3,450.88 4,383.37 5,712.05
Top Social-Private Wedge (SMB-PAB) 3,103.11 3,099.63 3,115.78 3,191.02 3,262.79 3,319.15
Top Within-City Private Wedge (PMB-PAB) 1,233.08 1,441.22 1,316.95 484.76 -1,045.51 -3,479.61

Typical City-Planner Population (millions) 2.802 3.411 3.268 2.840 2.613 2.491
Typical Political Equilibrium Population (millions) 0.142 0.135 0.161 0.285 0.405 0.502

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 0.455% 0.448% 0.427% 0.415% 0.409%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 8.127% 8.102% 8.155% 8.337% 8.522%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 8.581% 8.550% 8.582% 8.752% 8.931%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 7.951% 7.748% 6.967% 6.295% 5.724%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 2.052% 1.536% -1.611% -7.110% -16.066%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 17.673% 18.095% 21.391% 27.813% 38.351%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 19.725% 19.631% 19.780% 20.703% 22.285%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 9.171% 8.298% 3.005% -6.634% -23.362%
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Table 7.9: Elasticity of Rent With No Tax

Benchmark Elasticity Elasticity Elasticity Elasticity Elasticity
case Rent, Pop Rent, Pop Rent, Pop Rent, Pop Rent, Pop

0.2 0.216 0.3 0.4 0.5
(1) (2) (3) (4) (5) (6)

Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.233 0.257 0.384 0.535 0.686
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.137 0.127 0.093 0.074 0.064
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.000 0.000 0.000 0.000 0.000
Land ownership parameter ρ 1.000 1.000 1.000 1.000 1.000 1.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.043 0.043 0.043 0.043 0.043
Elasticity of land value to population εr,N 0.220 0.200 0.216 0.300 0.400 0.500
Commuting share of rent 0.328 0.337 0.337 0.337 0.337 0.337

Typical Within-City Social Wedge (SMB-SAB) 50.000 140.00 140.00 140.00 140.00 140.00
Typical Across-City Wedge (SAB-PAB) 1,349.62 856.17 872.03 944.96 1012.76 1064.54
Typical Social-Private Wedge (SMB-PAB) 1,399.62 996.17 1012.03 1084.96 1152.76 1204.54
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 2438.97 2425.21 2352.97 2266.97 2180.97

Top Within-City Social Wedge (SMB-SAB) 180.55 421.15 340.29 -190.47 -1136.43 -2599.50
Top Across-City Wedge (SMB-PAB) 2,922.56 1543.73 1640.45 2244.14 3257.91 4772.75
Top Social-Private Wedge (SMB-PAB) 3,103.11 1964.88 1980.74 2053.67 2121.47 2173.25
Top Within-City Private Wedge (PMB-PAB) 1,233.08 3061.89 2933.20 2046.46 333.24 -2537.26

Typical City-Planner Population (millions) 2.802 5.317 4.880 3.700 3.152 2.881
Typical Political Equilibrium Population (millions) 0.142 1.721 1.627 1.379 1.279 1.243

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 0.840% 0.829% 0.795% 0.776% 0.766%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 5.140% 5.164% 5.364% 5.616% 5.827%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 5.980% 5.993% 6.159% 6.392% 6.593%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 14.642% 14.362% 13.357% 12.570% 11.938%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 2.578% 2.066% -1.145% -7.045% -17.216%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 9.448% 9.958% 13.495% 20.196% 31.610%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 12.026% 12.023% 12.350% 13.151% 14.393%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 18.740% 17.805% 12.306% 2.066% -16.804%
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Table 7.10: Elasticity of Rent With Free Land Assumption

Benchmark Elasticity Elasticity Elasticity Elasticity Elasticity
case Rent, Pop Rent, Pop Rent, Pop Rent, Pop Rent, Pop

0.2 0.216 0.3 0.4 0.5
(1) (2) (3) (4) (5) (6)

Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.225 0.246 0.360 0.495 0.630
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.158 0.146 0.109 0.087 0.075
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.330 0.330 0.330 0.330 0.330
Land ownership parameter ρ 1.000 0.000 0.000 0.000 0.000 0.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.043 0.043 0.043 0.043 0.043
Elasticity of land value to population εr,N 0.220 0.200 0.216 0.300 0.400 0.500
Commuting share of rent 0.328 0.337 0.337 0.337 0.337 0.337

Typical Within-City Social Wedge (SMB-SAB) 50.000 74.00 74.00 74.00 74.00 74.00
Typical Across-City Wedge (SAB-PAB) 1,349.62 1065.51 1065.51 1065.51 1065.51 1065.51
Typical Social-Private Wedge (SMB-PAB) 1,399.62 1139.51 1139.51 1139.51 1139.51 1139.51
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 1315.04 1315.04 1315.05 1315.04 1315.04

Top Within-City Social Wedge (SMB-SAB) 180.55 322.41 243.84 -259.85 -1120.58 -2392.91
Top Across-City Wedge (SMB-PAB) 2,922.56 1836.12 1836.12 1836.12 1836.12 1836.12
Top Social-Private Wedge (SMB-PAB) 3,103.11 2158.53 2079.96 1576.26 715.54 -556.79
Top Within-City Private Wedge (PMB-PAB) 1,233.08 1525.63 1447.06 943.37 82.65 -1189.68

Typical City-Planner Population (millions) 2.802 3.411 3.268 2.840 2.613 2.491
Typical Political Equilibrium Population (millions) 0.142 0.429 0.495 0.783 1.025 1.194

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 0.455% 0.448% 0.427% 0.415% 0.409%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 6.549% 6.451% 6.147% 5.981% 5.890%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 7.004% 6.899% 6.574% 6.396% 6.299%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 8.083% 7.961% 7.587% 7.381% 7.269%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 2.052% 1.536% -1.611% -7.110% -16.066%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 11.684% 11.569% 11.381% 11.650% 12.328%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 13.736% 13.105% 9.771% 4.540% -3.738%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 9.708% 9.117% 5.848% 0.524% -7.988%
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Table 7.11: Elasticity of Rent With No Tax and Free Land

Benchmark Elasticity Elasticity Elasticity Elasticity Elasticity
case Rent, Pop Rent, Pop Rent, Pop Rent, Pop Rent, Pop

0.2 0.216 0.3 0.4 0.5
(1) (2) (3) (4) (5) (6)

Economic Parameters
Agglomeration Parameter γ 0.050 0.050 0.050 0.050 0.050 0.050
Commuting Parameterφ 0.100 0.100 0.100 0.100 0.100 0.100
Land Heterogeneity Parameter α 0.250 0.233 0.257 0.384 0.535 0.686
Avg. share of time lost to commuting 0.100 0.100 0.100 0.100 0.100 0.100
Avg. share of material cost of commuting 0.045 0.045 0.045 0.045 0.045 0.045
Heterogeneous Land weight 0.150 0.137 0.127 0.093 0.074 0.064
Size of typical city (millions) 2.091 2.091 2.091 2.091 2.091 2.091
Avg. value of labor ($ 1000s) 22.000 22.000 22.000 22.000 22.000 22.000
Tax/Ownership Parameters

Marginal tax rate τ 0.330 0.000 0.000 0.000 0.000 0.000
Land ownership parameter ρ 1.000 0.000 0.000 0.000 0.000 0.000
Implied Values

Share of income to di�erential land rents sR 0.044 0.043 0.043 0.043 0.043 0.043
Elasticity of land value to population εr,N 0.220 0.200 0.216 0.300 0.400 0.500
Commuting share of rent 0.328 0.337 0.337 0.337 0.337 0.337

Typical Within-City Social Wedge (SMB-SAB) 50.000 140.00 140.00 140.00 140.00 140.00
Typical Across-City Wedge (SAB-PAB) 1,349.62 600.00 600.00 600.00 600.00 600.00
Typical Social-Private Wedge (SMB-PAB) 1,399.62 740.00 740.00 740.00 740.00 740.00
Typical Within-City Private Wedge (PMB-PAB) 1,247.45 2,386.34 2,386.34 2,386.34 2,386.34 2,386.34

Top Within-City Social Wedge (SMB-SAB) 180.55 421.15 340.29 -190.47 -1,136.43 -2,599.50
Top Across-City Wedge (SMB-PAB) 2,922.56 600.00 600.00 600.00 600.00 600.00
Top Social-Private Wedge (SMB-PAB) 3,103.11 1,021.15 940.29 409.53 -536.43 -1,999.50
Top Within-City Private Wedge (PMB-PAB) 1,233.08 3,034.70 2,953.84 2,423.07 1,477.11 14.04

Typical City-Planner Population (millions) 2.802 5.317 4.880 3.700 3.152 2.881
Typical Political Equilibrium Population (millions) 0.142 5.317 4.880 3.700 3.152 2.881

Typical Within-City Social Wedge Percent (SMB-SAB) 0.304% 0.840% 0.829% 0.795% 0.776% 0.766%
Typical Across-City Wedge Percent (SAB-PAB) 8.199% 3.602% 3.553% 3.406% 3.327% 3.284%
Typical Social-Private Wedge Percent (SMB-PAB) 8.503% 4.443% 4.382% 4.201% 4.103% 4.051%
Typical Within-City Private Wedge Percent (PMB-PAB) 7.579% 14.326% 14.132% 13.546% 13.232% 13.062%

Top Within-City Social Wedge Percent (SMB-SAB) 1.150% 2.578% 2.066% -1.145% -7.045% -17.216%
Top Across-City Wedge Percent (SMB-PAB) 18.620% 3.672% 3.642% 3.608% 3.719% 3.974%
Top Social-Private Wedge Percent (SMB-PAB) 19.770% 6.250% 5.708% 2.463% -3.325% -13.243%
Top Within-City Private Wedge Percent (PMB-PAB) 7.856% 18.574% 17.930% 14.571% 9.157% 0.093%
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APPENDIX A

Statistical Tests

Figure A.1 depicts the Quandt Likelihood Ratio which determines the structural break

for the model. This �gure demonstrates the break occurred in the early 2000s and is sta-

tistically signi�cant. Figure A.2 demonstrates that the regressions contain variables that

are stationary. The volatility measures are stationary because they are measures that have

�ltered out the time trend and the Adjusted Dickey-Fuller test formally shows this. Finally,

�gure A.3 is a scatter plot of the corporate tax rate by year for all states. This �gure demon-

strates the data before and after 2000 look similar and formally have enough overlap to run

the weighted regressions.
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Figure A.1: Quandt Likelihood Ratio: Finding Structural Breaks

Figure A.2: Adjusted Dickey-Fuller Test Statistics: Stationarity
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Figure A.3: Scatter Corporate Tax Rate by Year
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APPENDIX B

Weighting Decomposition

The decomposition method introduced by DiNardo, Fortin, and Lemieux (1996) provides

a method for estimating counterfactual distributions without assuming linearity (assumption

1). Similarly to the regression decomposition the estimated counterfactual distributions of

the volatility are used to decompose the contribution of each of the factors. The actual and

counterfactual distributions, given in equation B.1, di�er by the densities they are integrated

over.1

Actual Distribution f 1
1 (Log(Revenuei,t)) ≡

Z
f(Log(Revenuei,t)|z)h(z|D = 1)dz

(B.1)

Counterfactual Distribution f 1
0 (Log(Revenuei,t)) ≡

Z
f(Log(Revenuei,t)|z)h(z|D = 0)dz

The important insight of DiNardo, Fortin, and Lemieux (1996) is that the counterfactual

distribution can be written as a weighted function of the actual distribution. The weight

is the ratio of the conditional density functions which by Bayes' rule can be rewritten as

the ratio of propensity scores normalized by the number of observations in each group,

1In equation B.1 z represents all observable characteristics, tax and economic.
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ω = P (D = 1|z)/P (D = 0|z))(P (D = 1)/P (D = 0)).2 This realization by DiNardo,

Fortin, and Lemieux (1996) transforms a possibly impossible problem of integration over

many variables into a simple reweighting problem where the weights can be estimated by a

logit or probit model.

Counterfactual Distribution f 1
0 (Log(Revenuei,t)) ≡

Z
ωf(Log(Revenuei,t)|z)h(z|D = 1)dz

The increase in volatility of tax revenue can be decomposed using di�erent counterfactual

distributions. The increase that cannot be explained by di�erences in observable charac-

teristics is again attributed to the structural change, which captures the second hypothesis.

Formally, this is given by the di�erence between the mean of the actual distribution of the

years after the structural break and the mean of the counterfactual distribution that would

have occurred if all of the observable characteristics had been similar to those after the

structural break. This is similar to the e�ect of the treatment on the treated (TOT).

The rest of the increase in volatility is what can be explained by observable characteristics.

The marginal e�ect that can be explained by economic factors is given by the di�erence in the

means of the counterfactual distribution that would have occurred if all observable variables

would have been similar to the characteristics in the years after the structural break and the

counterfactual that would have occurred if only the tax variables would have been similar to

the characteristics of the states after the structural break. Similarly, the marginal tax e�ect

can be found by the di�erence of the means of the two counterfactual distributions formally

given in equation B.2. The conditional weights ωx = P (D = 1|τ)/P (D = 0|τ))(P (D =

1)/P (D = 0)) and ωτ = P (D = 1|x)/P (D = 0|x))(P (D = 1)/P (D = 0)) are used to

2The weight is h(z|D = 0)/h(z|D = 1) where h(z|D = 1) = h(zj = z0)P (D = 0|zj = z0)/P (D = 0) by
Bayes' rule.
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calculate the other two counterfactual distributions.

Tax Base Factors
Z
Log(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz

−
Z
ωLog(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz

Business Cycle Factors
Z
ωLog(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz (B.2)

−
Z
ωxLog(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz

Tax Policy Factors
Z
ωLog(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz

−
Z
ωτLog(Revenuei,t)f(Log(Revenuei,t)|z)h(z|D = 1)dz

This method controls for nonlinearities and is asymptotically more e�cient than matching or

regression models (?). In this context controlling for nonlinearities will decrease the upward

bias in the structural factor estimates from the regression analysis. The typical concern

with this method is a selection bias, for example, when individuals choose their group based

on unobservable characteristics. This selection bias is a violation of the second assumption

above, E[ε|x, τ,D, I.state] = 0. While the selection bias is not an issue in this context

because states cannot choose their groups, the second assumption may still be violated

if endogenous variables are included. Finally, this method depends on the occurrence of

observations that �look similar" in both groups of years, formally that there is su�cient

overlap of independent variables. Overlap would be a problem if the set of state tax rates in

the early years were disjoint from the set of tax rates in the later years. Figure 4 is a scatter

plot of the corporate tax rates for all states for the year 1963 to 2010 and demonstrates

graphically su�cient overlap.
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APPENDIX C

Higher Moments

In the text the expected utility is assumed to be fully characterized by the �rst two

moments of the public and private good, which is su�cient when the goods are jointly

normally distributed or when the utility function is quadratic. Generally, the expected utility

can be written as in equation C.1 below where Ω consists of the second moment and higher

that is necessary to fully characterize the joint distribution between public and private goods.

This composition of the expected utility is much more general than the case where the joint

distribution is normal but is not fully general because not every distribution can be uniquely

characterized by its moments. However, in the case that the joint distribution is normal the

distribution can be fully characterized by the �rst two moments and Ω consists solely of the

second moments of the private and public good. If the utility function is additive, such that

U1,2 = 0, then the level of social welfare can be written as the second line in the equation

below.

Z
U(c(θ), G)f(c̄, R̄,Ω) ≡M((c̄, R̄,Ω)

(C.1)

= M((c̄,Ωc) +G((R̄,ΩR) When U1,2 = 0

(C.2)

210



To generalize the formulas in the text to the case where higher moments are needed to

characterize the expected utility replace all of the partial derivatives of the second moment

with the partial derivative of Ω.

To demonstrate this transformation consider a Cobb Douglas utility where total con-

sumption is assumed to be distributed uniformly with mean µ and standard deviation σ.

Writing the utility function in terms of total consumption c and the shift parameter β gives

the following form where the density function is 1
2σ
√

3
for c ∈ [−

√
3σ,
√

3σ] and zero every-

where else.

E[U(c, β)] = E[log(c) + αlog(β) + (1− α)log(1− β)]

= E[log[c]] + αlogβ + (1− α)log(1− β)

=

√
3σZ

−
√

3σ

logc
1

2σ
√

3
dc+ αlogβ + (1− α)log(1− β)

M(µ, σ2, β) =
(σ
√

3 + µ)(log(µ+ σ
√

3)− 1) + (σ
√

3− µ)(log(µ− σ
√

3)− 1)

2σ
√

3

+ αlogβ + (1− α)log(1− β)

The preceding line is a function of the mean, standard deviation, and β alone.
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APPENDIX D

Consumption Base Decomposition

In the text private consumption of the representative agent is decomposed into con-

sumption that is taxed and consumption that is untaxed such that the fraction β of total

consumption is taxed and (1−β) is untaxed. This decomposition changes the variables from

two consumption goods into total consumption and the fraction spent on taxable items. This

section demonstrates the change of variables and its bene�ts.

First, start with two goods B,N such that the consumption of B is taxed and the

consumption of N is not taxed and the representative agent has utility V (B,N) over the

two goods. By de�nition B = βc and N = (1−β)c. The utility function can be written as a

function of β and c by substituting these equations in for B and N .1 The budget constraint

is given below written both as a function of B and N and β and c.

W = (1 + τc)B +N

= (1 + τc)βc+ (1− β)c

= c(1 + βτc)

1If the utility function is homothetic then the utility function can be written as V (B,N) = v(β)U(c)
otherwise V (B,N) = U(c, β).
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Now we want to know the welfare impact of a tax change. We can separate the impact into

the income e�ect and the substitution e�ect where the substitution e�ect is the deadweight

loss from the behavioral responses.

∂V (B,N)

∂τc
= V1

∂B

∂τc
+ V2

∂N

∂τc

= V1(SB,τc −
∂B

∂W
B) + V2(SN,τc −

∂N

∂W
B) Slutsky Decomposition

= V1SB,τc + V2SN,τc| {z }
Substitution E�ect

−
�
V1
∂B

∂W
B + V2

∂N

∂W
B

�
| {z }

Income E�ect

The bene�t of writing the utility in terms of β and c is that U1
∂c
∂τc

captures the income e�ect

and U2
∂β
∂τc

captures the behavioral response and deadweight loss.

−
�
V1
∂B

∂W
B + V2

∂N

∂W
B

�
| {z }

Income E�ect

= V1
B

c

∂c

∂τc
+ V2

B(1− β)

cβ

∂c

∂τc

= V1β
∂c

∂τc
+ V2(1− β)

∂c

∂τc

= U1
c

τc

The �rst equality holds because of the following.

∂B

∂W
=
∂βc

∂W

= β
∂c

∂W

=
β

1 + τcβ
where c =

W

1 + τcβ

= − ∂c

∂τc

1

c
where

∂c

∂τc
= − Wβ

(1 + τcβ)2
= − cβ

(1 + τcβ)
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∂N

∂W
=
∂(1− β)c

∂W

= (1− β)
∂c

∂W

=
(1− β)

1 + τcβ
where c =

W

1 + τcβ

= − ∂c

∂τc

(1− β)

βc
where

∂c

∂τc
= − Wβ

(1 + τcβ)2
= − cβ

(1 + τcβ)

The last equality holds because of the following.

U1 = V1
∂B

∂c
+ V2

∂N

∂c
= V1β + V2(1− β)

Now show the deadweight loss calculation.

V1SB,τc + V2SN,τc| {z }
Substitution E�ect

= 0

U2
∂β

∂τc
=
∂β

∂τc

 
V1
∂B

∂β
+ V2

∂N

∂β

!
=
∂β

∂τc

 
V1

c

1 + βτc
− V2

c(1 + τc)

1 + βτc

!
=
∂β

∂τc

�
V1

"
c

1 + βτc
− V2

V1

c(1 + τc)

1 + βτc

#�

=
∂β

∂τc

�
V1

"
c

1 + βτc
− c

1 + βτc

#�

= 0

where from totally di�erentiating the budget constraint ∂B
∂β

= c
1+βτc

, ∂N
∂β

= − c(1+τc)
1+βτc

, and
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from the individual's optimization V2
V1

= 1
1+τc

.

∂B

∂β
= c+ β

∂c

∂β
Total Di�erentiate B.C. 0 = (1 + τcβ)dc+ τccdβ

= c− c βτc
1 + βτc

dc/dβ = −τcc/(1 + τcβ)

=
c

1 + βτc

∂N

∂β
= −c+ (1− β)

c

β

= −c− c(1− β)τc
1 + βτc

= −c(1 + τc)

1 + βτc
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APPENDIX E

Calculations First and Second Order Importance

This appendix produces the deadweight loss calculations in the text.

Harberger Expenditure Function

L(p+ t, p, u) = E(p+ t, u)− E(p, u)− T (p+ t, p, u)

≈ E(p+ t, u) +
∂E(p+ t, u)

p
((p+ t)− (p+ t)) +

1

2

∂2E(p+ t, u)

p
((p+ t)− (p+ t))2

− E(p+ t, u) +
∂E(p+ t, u)

p
(p− (p+ t)) +

1

2

∂2E(p+ t, u)

p
(p− (p+ t))2

− T (p+ t, p, u)

=
∂E(p+ t, u)

p
((p+ t)− p)| {z }

x(p+t,u)t

+
1

2

∂2E(p+ t, u)

p| {z }
si,j

((p+ t)− p)2 − T (p+ t, p, u)| {z }
x(p+t,u)t

= −1

2

NX
i=1

NX
j=1

si,jtitj

Utility Representation
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L̂ = U(x2, y2)− U(x1, y1)−G(R1, R2)

≈
 
U1
∂x1

∂p
+ U2

∂y1

∂p

!
(p2 − p1)−G(R1, R2)

= (p2 − p1)

�
U1sx + U1

∂x1

∂m
x1 + U2sy + U2

∂y1

∂m
y1

�
−G(R1, R2) Slutsky Decomposition

(E.1)

= (p2 − p1)(U1sx + U2sy)| {z }
Substitution E�ect

+ (p2 − p1)(U1
∂x1

∂m
x1 + U2

∂y1

∂m
y1)−G(R1, R2)| {z }

0

= (p2 − p1)U1(sx +
U2

U1|{z}
1/p2

sy|{z}
−p2sx

) = (p2 − p1)U1(sx − sx) = 0 Total derivative budget constraint

Expected Utility Representation

L̄ = M(c2, σ
2
c,2, β2) +G(R2, σ

2
R,2)−M(c1, σ

2
c,1, β1)−G(R1, σ

2
R,1)

≈M(c2, σ
2
c,2, β2) +G(R2, σ

2
R,2) + (p2 − p2)

�
M1

∂c2

∂p
+M2

∂σ2
c,2

∂p
+M3

∂β2

∂p
+G1

∂R2

∂p
+G2

∂σ2
R,2

∂p

�

−M(c2, σ
2
c,2, β2) +G(R2, σ

2
R,2) + (p1 − p2)

�
M1

∂c2

∂p
+M2

∂σ2
c,2

∂p
+M3

∂β2

∂p
+G1

∂R2

∂p
+G2

∂σ2
R,2

∂p

�

= (p2 − p1)

�
M1

∂c2

∂p
+M2

∂σ2
c,2

∂p
+M3

∂β2

∂p
+G1

∂R2

∂p
+G2

∂σ2
R,2

∂p

�

= (p2 − p1)(M3|{z}
0

∂β2

∂p
+M2

∂σ2
c,2

∂p
+G2

∂σ2
R,2

∂p| {z }
risk e�ect

)
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APPENDIX F

Calculations Welfare Consequences Chapter

This appendix provides the calculations for the government optimization for the welfare

consequences of tax revenue volatility chapter.

The �rst order conditions for the volatility-unaware government.

∂τc :

 
α1

β
− α2

1− β

!
∂β

∂τc
+
α1 + α2

c

∂c

∂τc
+
α3

g

∂g

∂τc
= 0

∂τw :
α1 + α2

c

∂c

∂τw
+
α3

g

∂g

∂τw
− α4

I

∂I

∂τw
= 0

∂τc :

 
α1

β
− α2

1− β

!
∂β

∂τc
− α1 + α2

c

�
β + τc

∂β

∂τc

�
y| {z }

∂c
∂τc

+
α3

g

∂g

∂τc
= 0

"
α1

β
− α2

1− β
− α1 + α2

c
τcy

#
| {z }

= 0 envelope theorem

β

∂τc
− α1 + α2

c
βy+

α3

g

∂g

∂τc
= 0

α3

g

�
β + τc

∂β

∂τc

�
y =

α1 + α2

c
βy
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The use of the envelope theorem in simplifying the �rst order condition of the volatility-

unaware government provides additional intuition for why deadweight loss is of second order

importance. The e�ects of raising the consumption tax rate can be split into an income e�ect,

transferring income from the individual to the government and a substitution e�ect due to

changes in the individual's consumption behavior, captured by ∂β ∂τc. The individual's

�rst order condition with respect to β is the term that multiplies ∂β ∂τc causing this term

to be zero, at least to a �rst order approximation. Therefore, the welfare cost of raising

the consumption tax rate due to behavioral changes in consumption is mitigated by the

individual's maximization and drops out of the �rst order condition for the government.

∂τw :
α1 + α2

c

�
∂c

∂I

∂I

∂τw
+
∂c

∂π

∂π

∂τw
+
∂c

∂w

∂w

∂τw
− (1− τcβ)wI

�
| {z }

∂c
∂τw

+
α3

g

∂g

∂τw
− α4

I

∂I

∂τw
= 0

α1 + α2

c

∂I

∂τw

�
∂c

∂I
− α4

I

�
| {z }
=0 envelope
theorem

+
α1 + α2

c

�
∂c

∂π

∂π

∂τw
+
∂c

∂w

∂w

∂τw

�
| {z }

GE e�ects

−α1 + α2

c
(1− τcβ)wI +

α3

g

∂g

∂τw
= 0

α1 + α2

c

�
∂c

∂π

∂π

∂τw
+
∂c

∂w

∂w

∂τw

�
−α1 + α2

c
(1−τcβ)wI+

α3

g
wI+

α3

g
τw
∂wI

∂τw| {z }
Leakage

+
α3

g
τcβ

∂y

∂τw| {z }
=0 Horizontal
Externality

= 0
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APPENDIX G

Conditions for Large Rushes

Corollary 1 provides the extreme case in which a city maybe formed and enter steady

state with one large rush may be an equilibrium of the model. It follows directly from result

3 and the rush condition (5.8). While this large rush is possible it is a very extreme case.

Corollary 1: A city is formed and enters steady state with one large rush if and only if

1) the rank function is initially increasing and later decreasing,

2) the constant present value of the rank function Θ for ranks greater than kθ is equal to

the average rank bene�t of the rush, and

3) the size of the rush J equals the population level such that population in the new city

produces the level of average product that equals the level of average product in the existing

city plus Θ or there is no rank function because all migrants receive the same bene�t.
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APPENDIX H

Finding Migration Pattern

Taking the derivative of the payo� for a migrant (5.2) with respect to the time a person

migrates τ , it is possible to solve for the migration pattern to city 2. We know that for

migrants to be willing to mix over when to migrate to city 2 they must be indi�erent between

their options of migrating. This implies that the derivative of the payo� to migrants with

respect to migrating time must be zero for all migrating times in the accelerated growth

period. The derivative is found using Liebnitz's rule and noting that the rank function is a

function of migrating time but that the average product y is a function of time not migrating

time.

e−rτy1(N1(τ))− e−rτy(N2(τ))− e−rτR(k(τ), N2(τ)) +

∞Z
τ

−e−rt∂R(k(τ))

∂τ
dt = 0 (H.1)

Now we integrate the last term noting that ∂R(k(τ))
∂τ

= ∂R(k(τ))
∂k

∂k
∂τ

is not a function of time.

e−rτy1(N1(τ))− e−rτy(N2(τ))− e−rτR(k(τ), N2(τ)) +
1

r
− e−rτ ∂R(k(τ))

∂k
q(τ) = 0 (H.2)

From this condition we can cancel out e−rτ and rearrange to get q(t) on one side, which
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provides the condition (5.7) in the paper.

q(t) =
r(y2(N2) +R(k)− y1(N1))

∂R(k)/∂k
(H.3)

To produce the second migration condition (5.9) in the paper take the derivative of the

indi�erence condition (5.3) with respect to the migrating time τ .

 
∂y1(N1)

∂N1

+
∂y2(N2)

∂N2

+
∂R(k)

∂k

!
q(t) =

1

r

∂2R(k)

∂k2
q(t)2 +

1

r

∂R(k)

∂k
q′(t) +

∂y1(N1)

∂N1

η(t) (H.4)

q(t) =

∂y1(N1)
∂N1

η(t) + ∂2R(k)
∂k2

q(t)2

r
+ ∂R(k)

∂k
q′(t)
r

∂y1(N1)
∂N1

+ ∂y2(N2)
∂N2

+ ∂R(k)
∂k

(H.5)
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APPENDIX I

Microfoundations for Sequential Growth of Cities

The �rst kΘ residents to a city receive a plot of land. The plot of land the resident receives

depends upon when they migrated to the city relative to other migrants, the resident's rank.

The city grows in a spiral around the central business district which uses P lots of land

for production. For tractability the city grows according to a simple Archimedean spiral

characterized by r = bθ, where r is the radius, θ is the angle, and b is a parameter. Each

plot of land is assumed to be formed by two lines radiating from the spiral's pole. The angle

between the two radiating lines is assumed to be constant and is denoted by θ̄ = 2π/s, where

s is the number of plots in a given rotation. The area of the plot of land given to resident

with rank k is given by the following expression. 1

Areak =

8>><>>:
1
2

R θ̄(P+k)

θ̄(P+k−1)
b2θ2 if k ≤ s− P

2πb2 R θ̄(P+k)

θ̄(P+k−1)
θ − πdθ if k > s− P

1The area given between two curves, r1 and r2, in between the angles a and b is given by 1/2
R a
b r

2
1−r2

2dθ.
For the �rst integral r2 = 0 and the second integral has been reduced according to the following expression.
1
2

R θ̄(P+k)

θ̄(P+k−1)
r2
1 − r2

2dθ = 1
2

R θ̄(P+k)

θ̄(P+k−1)
b2θ2 − b2(θ − 2π)2dθ = 2πb2

R θ̄(P+k)

θ̄(P+k−1)
θ − πdθ.
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Integrating provides:

Areak =

8>><>>:
b2θ̄
6

(1 + 3p2 + 6kp− 3p+ 3k2 − 3k) if k ≤ s− P
4b2π3

s2
(2k + s+ 1) if k > s− P

This gives the area of the plot of land for resident with rank k in terms of k and parameters.

Residents of a city must travel to the CBD to work. The expression below gives the distance

of a resident's commute, which is given by the shortest distance between their plot of land

and the pole of the spiral.

radiusk =

8>><>>:
0 if k ≤ s+ 1− P
b2π
s

(k − s− 1 + P ) if k > s+ 1− P

Residents have utility over both the area and distance to the CBD of their plot of land. This

utility is quanti�ed in the rank function R(k). To calculate the rank function substitute

the resident's budget constraint, distance from the CBD and area of land into their utility

function.

Ui,k(Areak, Ck) = d

"
4b2π3

s2
(2k + s+ 1)

#γ
−m(

b2π

s
(k − s− 1 + P ))φ| {z }

Rank Function R(k)

+y(Ni) (I.1)

R(k) =

8>>>><>>>>:
d
�
b2θ̄
6

(1 + 3p2 + 6kp− 3p+ 3k2 − 3k)
�γ

if k ≤ s+ 1

d
�

4b2π3

s2
(2k + 1 + s)

�γ
−m( b2π

s
(k − s− 1 + P ))φ if Ω > k > s+ 1− P

Θi for k > Θi

When the rank function is 'hill-shaped' being the �rst migrant is not as bene�cial as being

the second migrant. When this is the case by proposition 2 the new city is formed by a rush

of migrants. With the assumption that production in the CBD uses P = s+ 1 plots of land,
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s = 2bπ, and γ = 1 provides a rank function that can be written as follows.

R(k) = dπP + 2dπk −mkφ (I.2)

Given that the city is formed by a rush, the number of migrants that form the rush and

the time τ will be uniquely determined. Each migrant in the rush has rational expectations

and expects to receive the average rank bene�t. To ensure the rushing migrants, {1, J I},

do not have an incentive to deviate from rushing and migrate 'late' at time τ rush + dt the

expected rank payo� must be greater than or equal to the rank payo� for migrant J I + dk.

Similarly, to ensure that migrants not in the rush do not have an incentive to migrate early

with the rush the the rank payo� for the migrant J I + dk must be greater than or equal to

the expected rank payo� of the rush. Therefore the expected rank payo� of the rush must

equal the rank payo� of the last rusher.

1

J I

JIZ
0

R(k)dk = R(J) (I.3)

To �nd the size of the rush J �rst �nd the average rank payo� at point J , the left hand side

of condition (5.8).

1

J

JZ
0

R(k)dk = dπP + dπJ − m

φ+ 1
Jφ (I.4)

Set this equal to the rank bene�t of being migrant J .

dπP + dπJ − m

φ+ 1
Jφ = dπP + 2dπJ −mJφ (I.5)

Rearranging provides the following result.

J =

 
dπ(1 + φ)

mφ

! 1
φ−1

(I.6)

With this closed form solution for the number of rushers it is possible to do comparative
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statics, to understand when rushes will be large and when rushes will small. Given the

constraint that φ > γ the following comparative statics hold.

∂J

∂m
< 0

∂J

∂d
> 0

∂J

∂b
> 0 if 2γ > φ and < 0 if 2γ < φ

∂J

∂s
> 0 if 2γ < φ and < 0 if 2γ > φ

∂J

∂φ
ambigous

∂J

∂γ
ambigouos

Substituting the example in the microfoundations section where γ = 1 and φ = 2, the size

of the rush is given by

J =
3dπ

2m
(I.7)

which is the equation provided in the paper.

The migration pattern in equation 5.17 can be further simpli�ed.

Q(t) =

R
e
R
h(t)g(t)dt+ c

e
R
h(t)

(I.8)

h(t) =
r

∂R(k)/∂k

 
∂R(k)

∂k
+
∂y(N0)

∂N
+
∂y(vt)

∂N

!

g(t) =
−r

∂R(k)/∂k
(dπp− y(N0 + vt))

The population in city 2 can be simpli�ed by allowing the production amenity level A =

−∂R(k)/∂k = m− 2dπ and using the boundary condition Q(t) = 0.

Q(t) =
g(t)− v
h(t)

+ ce−
R
h(t) (I.9)
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c =
(2dπ −m)v − r(BN2

o + dπp− AN0)

r(m− 2dπ − 2A+ 2BN0)
(I.10)
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APPENDIX J

Barriers Result 2

Result 2: For a given ordering of city creation; a system of cities with free mobility creates

the fewest cities, a system of cities with the quantity mechanism creates the most cities, and

a system of cities with the price mechanism creates the e�cient number of cities.

Result 2 follows from the following arguments which demonstrate the planner produces

at least as many cities as the system of cities with free mobility and creates the same number

of cities as the system of cities with the price mechanism.

The planner produces at least as many cities as the system of cities with free mobility.

Assume toward contradiction that the planner produces K−n cities and the system of cities

with free mobility produces K cities. In equilibrium if K cities are created in the system

with free mobility then the per-resident bene�t with K cities must be larger than with K−n

cities. This implies the total bene�t produced in the system of cities with K cities is greater

than the system with K − n a contradiction. Therefore, the planner produces at least as

many cities as the system of cities with free mobility.

The system of cities with the price mechanism creates the e�cient number of cities.

First, the distribution of population across a given number of cities is the same for the price

mechanism and the social planner. Second, assume toward contradiction the case where

social planner creates more cities than the system with the price mechanism. In this case the
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equilibrium fee that would be charged in the system with the price mechanism by de�nition

is negative. The equilibrium fee is negative when the population in the city is less than the

capped population. In the second stage there is no trembling hand perfect equilibria where

the population of a city is positive and less than the capped population, a contradiction.

Third, consider toward contradiction the case where the social planner creates fewer cities

than the system with the price mechanism. In this case the equilibrium fee that is charged

in the additional cities is positive by de�nition. However, if the fee is positive there is excess

total bene�t that is not being realized when the social planner creates the cities, which is

contradiction of the social planner's objective. Therefore the system of cities with the price

mechanism creates the e�cient number of cities.1

1In two special cases the number of cities created is the same in all cases. The �rst case is when all cities
are homogeneous. The number of cities created is the same because the population in the cities is the same
for all cases except for the system able to cap city sizes. The second case is when the total population is
large enough such that the maximum average bene�t in the K + 1 city is less than the hinterland bene�t.
In this case the hinterland and K cities are inhabited but the population distribution across cities di�er.
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APPENDIX K

Simulation Algorithm

The simulation uses an algorithm that solves the integer problem of how many cities to

create by reframing the intensive margin in a way that ensures a solution in a �xed number

of steps. The �rst step solves the population in each city for a given shared level of bene�t.

The population in each city is calculated for all values of the shared bene�t equal to the

discrete bene�ts calculated for city 1. This step produces a matrix with rows representing

each value of the shared bene�t and each column representing a di�erent city.

The second step constrains this matrix such that the sum of the populations across all

created cities is less than or equal to the total population. This constricts the matrix down

to a vector with rows representing each level of shared bene�t and each entry giving the

number of cities that would be created.

The third step performs the extensive margin optimization for each case. The social

planner's objective is to maximize the total bene�t produced. Therefore the algorithm

chooses the marginal bene�t level from the constrained set that produces the largest total

bene�t. Individuals with free mobility create the number of cities in the �rst stage that

maximizes the shared average bene�t from the constrained set. Individuals that are able to

cap city size produces the maximum number of cities in the constrained set. Individuals that

are able to set fees create the number of cities in the �rst stage such that the equilibrium fee
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charged in all cities is nonnegative.
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APPENDIX L

Endogenous Quality of Life

The model so far has taken quality of life, Qj, as exogenous, although it may depend

on the population level, N . The relationship could be negative, if higher population levels

bring about urban disamenities such as pollution, crime, congestion, or disease. At the

same time, a higher population level should increase the availability of non-tradeable private

goods, as well as public goods, through greater inter-jurisdictional choices, as in Tiebout

(1956). Theoretically, it is ambiguous whether a higher city population reduces quality

of life, although it is generally assumed: in this case, higher population leads to a lower

within-city-wedge.1

For now consider the simple case where Qj = Q0
jN

κ, for some constant κ. In this case,

the social marginal bene�t gains an additional term

SMBj(Nj) = SMP (Aj, Nj)− xQ(Qj, u
fp)−

∂xQj
∂Q

κQj (L.1)

In the case where κ < 0, the social marginal bene�t is made lower by κ(−∂xQj /∂Q)Qj,

which should be added to the within-city wedge. Analyzing the quality of life of U.S. cities,

Albouy (2008) estimates that κ is close to zero, although it cannot control for whether

1It is also possible that a higher population could a�ect amenities in other cities, such as through lower
average levels of global pollution, or through greater shopping externalities.
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populations disproportionately inhabit sites with greater amenities not measured in the

data. Nevertheless, it seems unlikely that κ takes on a large negative values and so we

calibrate the model in the third row of �gure 6 in the case where κ = −.02. This adjustment

actually increases the tax wedge slightly, making the the disparity between the e�cient and

equilibrium population levels very small.
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