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ABSTRACT 

 

Two laboratory tests using image-based methods to determine particle size distribution of soil 

were developed. The Sediment Imaging or “Sedimaging” test determines size distribution of soil 

having particle diameters between 0.075 mm and 2 mm. A Translucent Segregation Table (TST) 

test determines size distribution of soil having particle diameter larger than 2 mm. Both tests 

produce particle size distributions that compare well with results by sieving. 

The Sedimaging test utilizes a statistical method based on wavelet transformation of 

images to produce a particle size distribution. The wavelet transformation method requires 

images of relatively uniform particle sizes, thus sedimentation of a soil specimen through a 

column filled with water is implemented in the Sedimaging test device to segregate particles by 

size. An image of the sedimented soil is analyzed incrementally by overlapping 128 pixel × 128 

pixel areas yielding thousands of values of a wavelet index (CA). The CA values are converted to 

particle sizes in units of pixels per particle diameter (PPD) through a previously established 

calibration curve. The calibration curve is an empirical fit to CA versus PPD data obtained from 

images of pre-sieved soils. The PPD is converted to sieve opening size using the known camera 

magnification.  

The TST test utilizes a deterministic method facilitated by watershed segmentation. The 

watershed segmentation requires thresholded images, thus a translucent plate and a backlight 

table are implemented in the TST system to provide a bright and uniform grayscale contrast to 
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the soil particles. Particles are introduced at the top of the inclined TST and are allowed to pass 

beneath the series of bridges having decreasing underpass heights. The bridges prevent small 

particles from hiding beneath large particles. After capturing an image of roughly segregated 

particles from above, touching particles in the image are segmented by the watershed 

segmentation. For each segmented particle, the largest and intermediate dimensions are 

computed by fitting an ellipse to the particle. The smallest dimension, which is not shown in the 

TST image, is estimated from the average of two bounding bridge heights between which each 

particle comes to rest on the TST. To correct the intermediate dimension to sieve opening size, a 

correction factor is derived based on the ratio between the intermediate and smallest dimensions.  
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CHAPTER I 

Introduction: Advantages of Image-Based Methods Over Sieving 

 

1.1 Introduction 

Traditionally, grain size distribution of soil particles larger than U.S. Standard Sieve No. 200 

(0.075 mm openings) is determined by a sieving test. While it would be impossible to accurately 

estimate the number of sieve tests performed annually worldwide, the number must surely be at 

least in the tens of thousands. With the possible exception of water content tests, it is the most 

common soil test performed. Along with the Atterberg limits tests, sieving is requisite for soil 

classification of coarse-grained soils. It is also the basis for quality control of aggregate materials 

placed beneath pavements and for concrete. 

 However, sieving is energy intensive, time consuming and relatively costly in terms of 

equipment maintenance and replacement of damaged or worn sieves. Sieving is also unattractive 

from the perspective of the laboratory environment; it is noisy, dusty, consumes water and 

generates vibrations which may affect nearby operations of sensitive laboratory equipment. By 

contrast, image-based techniques are rapid, environmentally friendly and sustainable as they do 

not wear out of damage hardware and require less water and energy consumption. 
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1.2 The Sieving Sequence and Testing Time 

A typical sieve test sequence begins with specimen drying to obtain its dry weight. The specimen 

is then washed over a No. 200 sieve to obtain the percentage of fines and, or to collect the fines 

for hydrometer testing. The wash times for samples can range from 5 minutes for uniform clean 

sands to more than an hour for well graded silty of clayey materials or crushed concrete. After 

washing, the specimen must again be dried to compute the “percentage loss by wash”. Drying is 

performed in ovens or in pans over gas burners or electric coils. The duration of drying may 

range from 20 minutes for sand to several hours for slags. After drying, the soils must cool to 

room temperature prior to sieving to prevent sieve damage and heat injuries to lab personnel. The 

actual sieving through a stack of 6 sieves takes 10 to 11 minutes. Each sieve is then weighed and 

the weights are recorded. Each sieve must be cleaned with a brush appropriate for its mesh to 

remove lodged particles. The cleaning and weighing requires 2 to 3 minutes per sieve.  

 Overall, the minimum time required for performing a sieve test is easily more than 30 

minutes excluding the time required for drying, cooling, initial weighing, washing, re-drying and 

re-cooling. With these additional steps, the average test time easily exceeds 1 hour per test. 

 

1.3 Damage to Sieves and System Maintenance 

Damage to sieves commonly occurs during cleaning by brushing. No. 200 sieves are the mostly 

commonly damaged as they have the finest thread diameters. However, sieves as large as the No. 

30 sieves (0.600 mm openings) also become damaged with time. Besides damage during 

brushing, sieve openings may be stretched due to overloading. To prevent overloading, scalper 

screens (sieves placed between specification sieves) are occasionally used to reduce the 
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maximum weight retained on any one sieve. Specimens with very poor gradations may need to 

be broken up into smaller portions and hand shaken.  

 Maintaining the sieves’ dimensional specifications for accuracy of results is essential. 

Thus, sieve tolerances are checked every six months or whenever there is a question regarding 

accuracy. Sieves not meeting specifications must be discarded and replaced. The costs of sieving 

must also include maintenance of shakers and annual (or more frequent if there is a question of 

accuracy) calibration of laboratory scales. 

 

1.4 Environmental Concerns Associated with Sieving 

Besides the obvious power consumption associated with running sieve shakers, the volume of 

water required for washing ranges from 7.56 liters (2 gallons) to more than 37.8 liters (10 gallons) 

per specimen depending on soil type. Thus, both energy and considerable water is consumed in 

sieving. There is also a potential health hazard from emission and inhalation of dust. Even pre-

washed specimens can generate dust due to abrasion and breakage of fines from coarser particles 

during shaking. Using enclosed shakers, ventilation systems or respirators may somewhat abate 

the concern for dust inhalation. However, the production of dust also raises the question of test 

accuracy. Simply put, if the dust particles are a result of the abrasion of coarser particles then the 

resulting grain size distribution is slightly inaccurate. This may be particularly important in 

crushed limestones and crushed concretes to be used for aggregate. This problem is exacerbated 

by the fact that sieve analysis typically provides only eight points for a gradation curve and that 

modification of a single point on the curve could significantly amplify inaccurate classifications 

of soils. 
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1.5 Evaluation of Vibration and Noise due to Sieving 

The levels of vibration and noise due to typical sieve shaking in a laboratory were evaluated in 

the Geotechnical Engineering Laboratory at the University of Michigan. Figure 1.1 illustrates the 

testing setup. 

 

Figure 1.1 Testing setup to evaluate vibration and noise from sieve shakers 

 

Four sieve shakers were used. To measure vibrations from the sieve shakers, nine 4.5 Hz 

geophones were placed in a radial pattern (Figure 1.2). Additionally, a digital sound meter was 

used to measure noise levels. Peak ground velocity (PGV) and noise were recorded from the 

simultaneous use of four sieve shakers. The PGV at about 3 feet from 4 shakers operating 

simultaneously was measured as 0.04 cm/sec (0.016 in/sec) and noise levels were measured as 

89 to 90 dB. Considering that construction vibration damage criteria is 0.5 in/sec in PGV for 
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reinforced-concrete building and 0.12 in/sec in PGV for buildings extremely susceptible to 

vibration damage (Hanson et al. 2006), the vibrations from sieve shakers would not cause any 

damage to buildings.  

 

Figure 1.2 A plan view of the testing setup for vibration monitoring 

 

However, the vibration and noise from sieve shakers to human perception may not be 

insignificant. Even relatively low levels of vibration may be problematic in extremely sensitive 

laboratory situations in which vibration-sensitive equipment such as electron microscopes are 

used. Also, noise pollution can cause health problems such as hearing damage, cardiovascular 

disease, sleep disorder, and metal health. 
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1.6 Grain Size Distribution by Image Analysis 

Image analysis is widely adopted by pharmaceutical industries, powder technology, and food 

industries to determine particle size distributions for quality control purposes. This dissertation 

presents two tests using image-based methods to determine particle size distribution of soil. 

Sediment Imaging or Sedimaging test determines particle size distribution for particles in the 

range between U.S. Standard Sieve No. 200 (0.075 mm openings) and U.S. Standard Sieve No. 

10 (2.00 mm openings). Translucent Segregation Table or TST test determines particle size 

distribution for particles in the range between U.S. Standard Sieve No. 10 (2.00 mm openings) 

and U.S. Standard Sieve 1 ½ in. (35 mm openings) or more. 

 The advantages of determination of grain size distribution by image analysis over sieving 

include shorter testing time, lower energy consumption and improvement to the laboratory 

environment. The Sedimaging test takes a total 15 to 20 minutes to perform. If the percentage of 

fines does not need to be determined the soil sample does not have to be dried or weighed and 

the testing time is even less. If, however, the percent of fines must be determined, the soil sample 

does have to be dried (but only once) and weighed. Preparation of the soil for the Sedimaging 

test requires much less time than what the sieve test requires for drying, cooling, washing, drying 

and cooling again, all prior to actual sieving.  

 By contrast to sieving, the Sedimaging test creates no noise or vibration. Also by contrast 

to sieving and subsequent cleaning of the sieves, there is no dust created during Sedimaging. The 

Sedimaging test is also much more efficient than the sieve test in terms of energy. The only 

power consumption is by a computer controlled camera. Only about 7.56 liters (2 gallons) of 

water are used in the Sedimaging test to fill a sedimentation column, make a soil-water mixture, 
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and clean the column. This is much less than the amount of water consumed in determining loss 

by wash in the sieve test. A 5 cent rubber balloon is used to create a vacuum inside the pre-

segregation tube. This is the only material consumed in the Sedimaging test, but even it can be 

reused several times. There is no wear on the aluminum sedimentation column and an aluminum 

sediment accumulator when cleaning the device.  

 Sedimaging also improves significantly the quality assurance of the data by minimizing 

the potential for measurement, copying or calculation errors as well as other errors associated 

with transportation and handling of the samples from the sieves to the scales. Another advantage 

of Sedimaging over sieving is that it provides a permanent visual record of the soil. The image 

provides a visible profile of the segregated soil column which shows particle colors, shapes and 

textures. About 5,000 data points are obtained in a Sedimaging test compared to typically 8 by 

sieving. The Sedimaging software automatically computes grain size distribution metrics 

including the coefficients of uniformity and gradation without interpolation between points. 

Eventually, Sedimaging software may yield information on particle shapes and fabric, neither of 

which is obtainable by sieving. 

 Finally, while sieving systems come in a variety of arrangements and features such that 

their system costs are somewhat variable, the typical average cost is certainly higher than that of 

a Sedimaging system. In the future, as the price of digital cameras continues to drop the 

economic advantage of Sedimaging will continue to increase. 
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1.7 Scope of Study 

Chapter I compares the sieving and Sedimaging tests in terms of time, cost, environmental issues 

including noise and vibration. This work resulted in a paper titled “Sustainable Soil Particle Size 

Characterization through Image Analysis” (Ohm et al. 2012) and published in the Proceedings of 

the 17th Great Lakes Geotechnical and Geoenvironmental Conference.  

Chapter II includes evaluation of commercial systems for grain size distribution 

determination of soil and image analysis methods to determine particle size and shape of soil. 

This work was part of a report titled “Feasibility of Digital Imaging to Characterize Earth 

Materials” (Hryciw and Ohm 2012). 

Chapter III covers the Sedimaging apparatus, test procedures, and wavelet transformation 

for image analysis. Particle size distributions obtained from sieving and the Sedimaging are 

compared. Effects of surface textures on a calibration curve, correlation between energy ratio 

and particle orientation, and segmentation using mean-shift clustering are also discussed. This 

chapter resulted in several papers including “Particle Shape Determination in a Sedimaging 

Device” (Ohm and Hryciw 2012) published in the Proceedings of the 2012 World Congress on 

Advances in Civil, Environmental, and Materials Research, “The Theoretical Basis for Optical 

Granulometry by Wavelet Transformation” (Hryciw et al. 2013) submitted to the Journal of 

Computing in Civil Engineering, “Size Distribution of Coarse-Grained Soil by Sedimaging” 

(Ohm and Hryciw 2013b) submitted to the Journal of Geotechnical and Geoenvironmental 

Engineering, and “Soil Fabric Characterization by Wavelet Transformation of Images” (Ohm 

and Hryciw 2014) abstract submitted to Geo-Congress 2014. 
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Chapter IV covers the Translucent Segragation Table apparatus, test procedure, and 

watershed segmentation for image analysis. Particle size distributions obtained from sieving and 

the TST are compared. Over-segmentation from watershed segmentation results, volume-based 

distribution using bridge heights, and a correction factor applied to the minor axis dimension are 

also discussed. This work will be published as a paper titled “The Translucent Segregation Table 

Test for Sand and Gravel Particle Size Distribution” (Ohm and Hryciw 2013c) in the ASTM 

Geotechnical Testing Journal. 

Chapter V suggests future directions including a higher magnification camera on image-

based methods, a linear calibration curve by wavelet transformation, and morphological opening 

as an alternative to wavelet transformation to analyze sedimented soil images. This chapter 

yielded several papers including “Enhanced Soil Characterization through Advances in Imaging 

Technology” (Ohm and Hryciw 2013a) submitted to the proceedings of the 18th International 

Conference on Soil Mechanics and Geotechnical Engineering, and “Morphological Opening to 

Determine Particle Size Distributions of Sedimented Soil Images” (Ohm et al. 2014) prepared for 

submission to the Powder Technology.  
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CHAPTER II 

Literature Review 

 

2.1 Commercial Systems for Determination of Particle Size Distributions 

In recent decades new particles-sizing techniques have been developed that utilize advanced 

technologies: 1) x-ray absorption, 2) electrical sensing zone, 3) laser diffraction, 4) single 

particle optical sizing, and 5) image analysis (Abbireddy and Clayton 2009). Figure 2.1 shows 

the particle size range that can be determined using various systems that utilize these 

technologies.  

X-ray absorption technique measures the concentration of particles with time as they 

sediment through liquid (Stein 1985). Particle size is determined based on Stokes’ law just as 

with hydrometer test. One system utilizing x-ray absorption technique (SediGraph III 5120 by 

micromeritics) determines particle sizes ranging from 0.1 µm to 300 µm.  

 The electrical sensing zone method measures the change in resistance when a particle 

passes through a small aperture (Jackson et al. 1995) The volume of the particle passing through 

the aperture is proportional to the amplitude of the measured electrical impedance. A system 

utilizing the electrical sensing zone technique (Elzone II 5390 by micromeritics) determines 

particle sizes ranging from 0.4 µm to 240 µm. 
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Figure 2.1 Comparison of particle sizing ranges for various systems 

 

 The laser diffraction method is based on the principle that particles of a given size 

diffract light through an angle that increases with decreasing particle size (Hayton et al. 2001). 

Particle size is then determined by Mie theory that describes the relationship between the angular 

distribution of light intensity and particle radius (Wen et al. 2002). A system utilizing laser 

diffraction method (Saturn DigiSizer II by micromeritics) determines particle sizes ranging from 

0.04 µm to 2500 µm.   
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 The single particle optical sizing method detects individual particles as they fall through a 

detection zone and through a laser beam (White 2003). The magnitude of the scattered or 

blocked light received by the detector is then related to the diameter of the particle. A system 

utilizing single particle optical sizing method (Agilent 7080 AccuSizer by Agilent Technologies) 

determines particle sizes ranging from 0.5 µm to 2500 µm. 

 Some methods based on image analysis utilize cameras to capture images of particles 

while they fall from a conveyer belt (dynamic image analysis) or while lying down on a flat table 

(static image analysis). A commercial system utilizing dynamic image analysis (CAMSIZER by 

Retsch Technology) determines particle sizes ranging from 30 µm to 30 mm  and one utilizing 

static image analysis (PSA300 by HORIBA) determines particle sizes ranging from 0.5 µm to 

1000 µm. 

 One of the main advantages of image analysis over other particles-sizing techniques 

described here is that not only particle size but also particle shape can be determined. Because of 

that, researchers working in pavement applications developed a system utilizing image analysis 

to characterize particle shape, angularity, and surface roughness and correlate them to pavement 

performance. The Aggregate Image Measurement System (AIMS) uses a variable magnification 

microscope-camera system to characterize shape for particles ranging from 0.075 mm to 37.5 

mm in size (Gates et al. 2011). The thickness of a particle is obtained by focusing on a table first 

and moving the camera up to focus on the particle surface (Fletcher et al. 2003). The particle 

shape, angularity, and surface roughness were quantified by AIMS and correlated to pavement 

performance (Masad et al. 2000; Masad et al. 2001; Fletcher et al. 2002; Chandan et al. 2004; 

Al-Rousan et al. 2005; Al-Rousan et al. 2007; Mahmoud and Masad 2007; Mahmoud et al. 2010).  
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 The University of Illinois Aggregate Image Analyzer (UIAIA) uses three orthogonally 

captured images to characterize shape for particles ranging from 0.075 mm to 25 mm size 

(Tutumluer et al. 2005). The particle shape, angularity, and surface roughness were quantified by 

the UIAIA and correlated to pavement performance (Rao and Tutumluer 2000; Tutumluer et al. 

2000; Rao et al. 2001; Rao et al. 2002; Tutumluer et al. 2005; Pan and Tutumluer 2006; Pan et al. 

2006; Tutumluer and Pan 2008; Mishra et al. 2010). A review of imaging methods for 

characterizing aggregates shape texture and angularity based on test repeatability, reproducibility, 

accuracy and applicability is provided by Masad and Tutumluer (2007). 

 The new image-based particle size analyzers, Sedimaging and TST, developed at the 

University of Michigan aim to reduce costs compared to the CAMSIZER and to reduce the time 

required for sample preparation compared to the AIMS or UIAIA systems. It should be noted 

that the AIMS and UIAIA systems characterize individual particles whereas Sedimaging and 

TST do not require physical separation of particles by taking advantage of uniquely developed 

image analysis methods. 

 

2.2 Image-Based Methods for Determination of Particle Size Distributions 

Image-based methods for determination of soil particle size distribution are divided into two 

broad categories: deterministic methods and statistical methods (Shin and Hryciw 2004). 

Deterministic methods use edge detection or gray scale thresholding for segmenting particles and 

counting the pixels in the segmented particles, whereas statistical methods represent an image by 

index values based on image texture. Texture is defined by the repeating patterns in an image. 
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 When deterministic methods are used for non-contacting particles, the particles are 

placed on a translucent flat surface and a backlight intensity is adjusted so that the background of 

the soil image is pure white (Raschke and Hryciw 1997).  This enables easy thresholding to 

segment the soil particles. Prior to photographing, the soil particles have to be detached from one 

another, otherwise touching particles would be interpreted as larger single particles. 

 To eliminate the need for detaching the particles, watershed segmentation was proposed 

to segment the particles when they are touching each other (Ghalib and Hryciw 1999). To 

increase the sample size, images of adjacent fields of view may be stitched along their image 

boundaries to create a single global mosaic image (Ghalib and Hryciw 1999).  

Still, the particle size distribution in an assembly of soil images containing contacting and 

overlapping soil particles cannot be easily determined by deterministic methods and the problem 

may be impossible to overcome if the particles have a significant size range. Statistical methods 

were therefore developed to determine particle size distribution in a 3-D assembly of particles. 

One of the statistical methods called wavelet transformation decomposes a soil image of 2n × 2n 

pixels size into n decomposition levels (Shin and Hryciw 2004). The energy of a transform 

coefficient matrix represents texture information at each wavelet decomposition level. The 

number of pixel per particle diameter (PPD) was introduced by Ghalib et al. (1998) to express 

the perceived size of soil particle in an image. As the PPD increases, the concentration of energy 

moves toward higher decomposition levels. The centroid of the area beneath the normalized 

energy profiles with respect to the vertical axis or wavelet index (CA) was correlated to PPD to 

produce a calibration curve (Hryciw et al. 2006; Hryciw et al. 2009). The TST utilizes a 

deterministic method for image analysis based on watershed analysis while the Sedimaging test 

utilizes a statistical method for image analysis based on wavelet transformation. 
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Other statistical methods, edge pixel density (EPD) and mathematical morphology, were 

proposed for determination of soil particle size from images of relatively uniform contacting 

particles (Jung 2010). EPD is defined as the ratio of edge pixels to total pixels in an image. The 

edge pixels are obtained by utilizing the Canny edge detection modified by removal of short 

false edges caused by internal texture. A correlation between EPD and PPD was found just as 

between CA and PPD from wavelet transformation. Morphological opening is defined as erosion 

followed by dilation in mathematical morphology. The morphological opening removes objects 

smaller than a structuring element. The pattern spectrum value (PSV) is defined as the difference 

of the summation of all pixel values in an image obtained by opening the original image using a 

consecutive structuring element size (SES). SES corresponding to a peak PSV was correlated 

with PPD. Chapter 5.4 will discuss mathematical morphology in more detail. 

 

2.3 Conventional Particle Shape Determination 

As mentioned earlier, one of the main advantages of use of image analysis on particle sizing 

might be its capability of determining particle shape. Particle shape can be characterized by its 

scale into three categories: form, roundness, and surface texture (Barrett 1980) as shown in 

Figure 2.3. Form is the largest scale property that reflects variations at the particle level. 

Roundness is the intermediate scale property that reflects variations at the particle corners. 

Surface texture is the smallest scale property that reflects variations at the particle surfaces 

between corners or superimposed on corners. Form, roundness, and surface texture are 

essentially independent measures of shape that can vary widely without affecting the other two 

properties.  
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 The form and the roundness of the particle can be described by two common 

dimensionless parameters: sphericity and roundness (Wadell 1932). Sphericity is defined as the 

ratio of the diameter of a sphere of equal volume to the diameter of a circumscribing sphere, 

while roundness is defined as the ratio of the average radius of curvature of surface features to 

the radius of the maximum sphere that can be inscribed within a particle’s perimeter.  

 

Figure 2.2 Particle shape characterized at three orders of scale (After Mitchell and Soga 2005) 

 

 Particle shape also been described by observing individual particles and comparing their 

geometry against a chart such as shown in Figure 2.4 (Krumbein and Sloss 1963). This chart has 

organized particle shapes with respect to sphericity and roundness. The charts are a rapid method 

to identify the particle shape of a few particles, but it would not be practical to repeat this method 

for many particles at many sizes. Furthermore, observational subjectivity might not be avoided. 
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Figure 2.3 Chart for visual estimation of sphericity and roundness of particles (Krumbein and 
Sloss 1963) 

 

2.4 Image-Based Particle Shape Determination 

To remove the observational subjectivity associated with using a particle shape chart, several 

methods for the quantification of particle shape using image analysis have been proposed (Clark 

1981; Kuo and Freeman 2000; Sukumaran and Ashmawy 2001; Bowman et al. 2001). Kuo and 

Freeman (2000) have proposed imaging indices such as formfactor, angularity, and roughness. 

The formfactor is defined as the square of the ratio of the perimeter of an equivalent circle to the 

perimeter of the particle. The equivalent circle is defined as a circle having the same area as the 

particle. The area of the particle is the sum of pixels present within the particle boundary (Figure 

2.5(a)). The perimeter of the particle is defined as the sum of pixels on the particle boundary 

(Figure 2.5(b)). The angularity is defined as the square of the ratio of the perimeter of the 

bounding polygon to the perimeter of an equivalent ellipse. The bounding polygon is found using 
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the feret diameter. The feret diameter refers to a straight line measurement made between two 

tangents (Figure 2.5(c)). By rotating the coordinate axes, the feret diameter in any direction can 

be found. For instance, with 16 rotation steps, a bounding polygon with 32 corners and sides can 

be obtained (Figure 2.5(d)). The equivalent ellipse is defined as an ellipse having the same area 

and aspect ratio as the particle. Finally, the roughness is defined as the square of the ratio of the 

perimeter of the particle to the perimeter of the bounding polygon. 

 

Figure 2.4 Measurements for imaging indices: (a) a projected particle area, (b) a boundary of a 
projected particle, (c) typical feret measurements, (d) perimeter of a bounding polygon (Kuo and 

Freeman 2000) 

 

Sukumaran and Ashmawy (2001) have proposed a method that compares the discretized 

particle outline with a circle (Figure 2.5). The projection of a particle and a circle around the 

particle are discretized using the same sampling interval. Then the distortion angles α between 

each corresponding pair of chords for the particle and the circle and the internal angles β of the 

particle are obtained. Shape factor is defined as the sum of the absolute values of the distortion 
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angles, which is an indication of the particle outline’s deviation from the circular shape. 

Angularity factor is defined as the sum of the difference between 180 degrees and the internal 

angles. 

 

Figure 2.5 Measurements for shape and angularity factor: (a) a particle and a circle discretized 
with same sampling interval, (b) distortion angle α and internal angle β (Sukumaran and 

Ashmawy 2001) 

 

Fourier series has been used to describe particle shape by unrolling an outline of a particle and 

expressing the discrete points on the polar coordinates R and θ (Clark 1981; Bowman et al. 2001). 

However, if the particle outline has a concave shape, two possible values of R(θ) can exist. To 

solve this problem, Fourier shape descriptors have been proposed where the outline of the 
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particle is considered to be a complex function generated by a point moving around the boundary. 

Bowman et al. (2001) have shown that lower order descriptor numbers provide the measures of 

elongation, trignularity, squareness and particle irregularity, while higher order descriptor 

numbers provide measures of local roughness. 

 

2.5 Engineering Properties from Particle Size and Shape 

Particle size and shape determined from image analysis are correlated with performance of 

pavement in transportation engineering as well as engineering properties such as minimum and 

maximum densities, critical state friction angle, and groutability in geotechnical engineering. 

Koerner (1969) proposed an empirical expression for maximum and minimum densities of dry 

quartz powders in terms of effective particle size D10, particle size distribution defined by 

coefficient of uniformity Cu, particle shape defined by sphericity. Koerner (1970) also proposed 

an angle of shear resistance of cohesionless soils in terms of particle shape, effective particle size, 

particle size distribution, relative density, and type of mineral. Chang and Woods (1992) found 

that effective particle size and coefficient of uniformity are the most important properties of soils 

controlling the number of inter-particle contacts in sand. Kuo et al. (1996) captured a projection 

of three dimensions of a gravel size particle using a sample tray that can hold the particle and 

rotate it 90 degrees. Later using this device, particle shape, angularity and surface roughness of 

particles were quantified (Kuo and Freeman 2000) and Kuo (2002) found strong correlation 

between the permanent deformation properties of Hot Mix Asphalt (HMA) mixtures and particle 

shape indices. Sukumaran and Ashmawy (2001) used a sand size particle’s two-dimensional 

projection to quantify particle shape and angularity. Later, they correlated particle shape and 
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angularity obtained from particle images with hopper flow rate as well as pluviated void ratio 

(Sukumaran and Ashmawy 2003). Bowman et al. (2001) also used two dimensional 

morphological characteristics of a sand size particle to quantify particle shape based on Fourier 

shape descriptors. Later, this method was used to quantify change in particle shape from 

microstructure of dense sands during one-dimensional creep obtained from an optical 

microscopy (Bowman and Soga 2003). Kokusho et al. (2004) performed a series of undrained 

triaxial tests on granular soils with different particle size distributions to investigate the effect of 

the particle gradation on the undrained shear characteristics. Ozgurel and Vipulanandan (2005) 

found that particle size distribution and fines content influenced the strength, modulus, and 

stress-strain relationship of grouted sand. Also, Vipulanandan and Ozgurel (2009) proposed a 

model to predict the grouting pressures required to grout the soils based on particle size 

distribution and fines content. Cho et al. (2006) quantified sphericity and roundness of a sand 

size particle based on a chart for visual estimation of particle shape proposed by Krumbein and 

Sloss (1963). They found that decrease in sphericity or roundness leads to increase in minimum 

and maximum void ratios, decrease in small strain stiffness, increase in compressibility, increase 

in constant volume critical state friction angle, and increase in critical state line intercept (Cho et 

al. 2006). Bareither et al. (2008) proposed a regression model that can be used to predict friction 

angle of compacted sands based on effective particle size, maximum dry unit weight, and 

roundness.  

Particle shape obtained from image analysis is also used in Discrete Element Method 

(DEM) simulations to correlate particle shape with engineering properties. Ashmawy et al. (2003) 

obtained images of representative particles from different types of soils and built a corresponding 

shape library for each material. The liquefaction response of different particle shapes was 
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compared by numerical analysis utilizing the shape library. Mahmoud et al. (2010) combined 

DEM and image processing techniques where DEM input parameters such as particle shape and 

gradation were determined by imaging and were correlated with pavement resistance to fracture. 

Qian et al. (2011) proposed an image-aided DEM approach to quantify individual effects of 

various geogrid products on particles with different size and shape.  
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CHAPTER III 

Sedimaging 

 

3.1 Introduction 

This chapter describes a rapid, clean, low-energy image-based test for determining the grain size 

distribution of soil. The test is called sediment imaging or sedimaging. It develops the grain size 

distribution for particles in the range between 2.0 mm (No. 10 sieve opening) and 0.075 mm (No. 

200 sieve opening). In addition, the percentage of fines (particles passing the No. 200 sieve) is 

also determined. The system utilizes a sedimentation column for rapidly sorting a soil specimen 

by particle size, a high resolution digital SLR camera for capturing an image of the sedimented 

soil column and software for interpreting the soil image and producing its particle size 

distribution.  

 

3.2 Sedimaging Apparatus 

The sedimaging hardware consists of eight major parts shown in Figure 3.1: (1) a sedimentation 

column, (2) a support tower and base, (3) a positioning system, (4) a pre-segregation tube and its 

adaptor, (5) a connector and drainage system, (6) a sediment accumulator, (7) a camera, and (8) 

computer.  
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Figure 3.1 Sedimaging hardware 

 

The sedimentation column is a 64 mm (2.5 in.) × 64 mm (2.5 in.) × 2134 mm (7 ft.) 

aluminum square tube of 6.4 mm (0.25 in.) wall thickness. The sedimentation column is filled 

with water and the soil specimen is introduced at its top. The particles settle down through this 

column and into a sediment accumulator below. The support tower is a 102 mm (4 in.) × 152 

mm (6 in.) × 1981 mm (6.5 ft.) aluminum I-beam bolted to a 457 mm (1.5 ft.) × 914 mm (3 ft.) × 

13 mm (0.5 in.) aluminum base plate.  Together, they provide resistance to overturning of the 

sedimentation column.  
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The positioning system consists of 2 brackets and 5 positioning clamp screws per bracket 

(Figure 3.2). The two brackets are 102 mm (4 in.) × 102 mm (4 in.) × 76 mm (3 in.) long 

aluminum square tubes of 6.4 mm (0.25 in.) wall thickness. Two 6.4 mm (0.25 in.) diameter 

positioning clamp screws attach each bracket to the support tower. Three other positioning clamp 

screws have 16 mm (0.625 in.) diameter hard rubber contact pads on their ends to position the 

sedimentation column vertically and immobilize it. The sedimentation column could also be 

wall-mounted to eliminate the support tower and base.  

 

Figure 3.2 The positioning system 

 

An acrylic “pre-segregation tube” is used to mix a soil sample with water, to have soil 

particles roughly segregated by size in the tube, and to release soil-water mixture into the column 

(Figure 3.3 and 3.4). It is 457 mm (18 in.) long with a 64 mm (2.5 in.) outside diameter and 6.4 

mm (0.25 in.) wall thickness. One end of the tube is open and the other end is permanently 

capped by an acrylic circular disk of 13 mm (0.5 in.) thickness and 76 mm (3 in.) diameter. A 13 
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mm (0.5 in.) diameter vacuum vent and its cap are located at the center of the circular disk. A 

pre-segregation tube adaptor mates the circular pre-segregation tube to the square sedimentation 

column. 

 

Figure 3.3 Ancillary tools for the sedimaging 
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Figure 3.4 The pre-segregation tube and its adaptor 

 

The connector which is located between the sedimentation column and the sediment 

accumulator, consists of a 76mm (3 in.) × 76 mm (3 in.) outer square aluminum tube of 6.4 mm 

(0.25 in.) wall thickness and a 64 mm (2.5 in.) × 64 mm (2.5 in.) inner square aluminum tube 

with the same wall thickness (Figure 3.5). A drainage valve with a socket cap screw for a valve 

stem has a 13 mm (0.5 in.) thread diameter and 44 mm (1.75 in.) length. The valve stem passes 

through the connector and the tip of the stem is flush with the inside wall of the connector when 

in the closed position. When the valve is opened by unscrewing it, water drains from the system 

through a flexible tube.  
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Figure 3.5 The connector and the sediment cartridge 

 

The sediment accumulator, shown in Figure 3.5, consists of a sediment cartridge, a 

cartridge pedestal, a cartridge support and lower and upper accumulator clamps. The sediment 

cartridge is a 64 mm (2.5 in.) × 64 mm (2.5 in.) × 305 mm (1 ft.) long aluminum tube of 6.4 mm 

(0.25 in.) wall thickness. It has two 3.2 mm (0.125 in.) thick glass windows attached over 

openings on opposite sides of the sediment cartridge. Images of the sedimented soils are taken 

through these windows. The largest soil particles which settle at the bottom of the sediment 

cartridge sit on top of the cartridge pedestal which is milled down from a 64 mm (2.5 in.) × 64 

mm (2.5 in.) × 57 mm (2.25 in.) square aluminum bar. The cartridge pedestal sits atop the 
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cartridge support which is a 64 mm (2.5 in.) × 64 mm (2.5 in.) × 178 mm (7 in.) aluminum tube 

of 6.4 mm (0.25 in.) wall thickness. The two lower accumulator clamps hold the sediment 

cartridge, the cartridge pedestal, and the cartridge support together while the two upper 

accumulator clamps hold the sediment column, connector and the sediment cartridge together 

during a test.  

A 16.2 megapixels Nikon D7000 camera with an AF-S Micro Nikkor 60 mm f/2.8G ED 

camera lens is used to capture the images (Figure 3.6). The camera is connected to a computer 

and is controlled remotely by NKRemote software be Breeze Systems. Design drawings of the 

Sedimaging device can be found in Appendix B. 

 

Figure 3.6 The camera system 
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3.3 Test Procedures 

A sedimaging test typically takes 15 minutes when the percentage of fines needs to be 

determined and 10 min when there are no fines in the soil.  The test is performed in ten steps: (1) 

filling the column with water, (2) pre-segregation, (3) sedimentation, (4) column drainage, (5) 

tapping the accumulator to level the soil surface, (6) image capture, (7) removal of dirty water 

from the accumulator and refilling it to a specific height, (8) weighing the accumulator, (9) 

analyzing the image and printing the results, (10) emptying, rinsing and reattaching the 

accumulator.  

Soil and the sedimentation column preparation are shown in Figure 3.7 and 3.8. A soil 

canister is filled with a dry specimen. For soils with a typical specific gravity of 2.65 this will be 

approximately 450 g. The weight of soil is then recorded. The sedimentation column is filled 

with 6000 mL of water. The square gasket, the pre-segregation tube adaptor, and the circular 

gasket are placed on top of the sedimentation column. 
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Figure 3.7 Soil and sedimentation column preparation 

 

Figure 3.8 Assembling the pre-segregation tube adaptor 
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The pre-segregation procedure is illustrated in Figure 3.9, 3.10, 3.11 and 3.12. To begin a 

test, water and soil are placed into the pre-segregation tube. The open end of the pre-segregation 

tube is covered by a stretched rubber membrane. A small vacuum is created in the tube by 

pressing down on the center of the stretched membrane thereby allowing some air to escape. This 

results in a concave membrane surface. The pre-segregation tube containing the soil-water 

mixture is shaken several times until the particles are well mixed. While holding the tube 

vertically with the membrane on the bottom, the membrane is rolled off of the end of the tube. 

The vacuum in the tube prevents the soil from slipping out. The pre-segregation tube is then 

placed into the adaptor on top of the sedimentation column. Lastly, the soil-water mixture is 

released into the sedimentation column by opening the pre-segregation tube’s vent cap. 

 

Figure 3.9 Placing water and soil into the pre-segregation tube 



33 
 

 

Figure 3.10 Installing the rubber membrane on the pre-segregation tube 
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Figure 3.11 Soil pre-segregation 
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Figure 3.12 Soil release into sedimentation column 

 

Sedimentation of the soil particles takes about 5 minutes if the specimen contains only 

sands and 10 minutes if fines are present. The operator can observe a magnified view of the soil 

accumulation on a monitor so he knows when it has been completed. After the requisite time for 

sedimentation passes, the water from the sedimentation column is released by opening the 

drainage valve (Figure 3.13). Since the drainage valve is located above the accumulator the soil 

remains saturated. Following drainage, the top surface of the accumulated soil is leveled with 

one sharp tap applied to the accumulator which liquefies the loose soil (Figure 3.14). This 

leveling is necessary to capture a rectangular image of the soil but it has no effect on the test 

results. The image is captured (Figure 3.15) and the accumulator is immediately detached from 

the column by pulling down the two upper accumulator clamps (Figure 3.16). The fines in 

suspension that have not settled down inside the accumulator are removed using a syringe and 
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the accumulator is refilled with water to a mark (Figure 3.17). The accumulator with the soil-

water mixture is weighed. It is then emptied and reattached to the column for the next test. 

 

Figure 3.13 Draining the sedimentation column 

 

 

Figure 3.14 Tapping the column 
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Figure 3.15 Focusing and capturing an image 
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Figure 3.16 Detaching connector and accumulator, removing water with fines 
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Figure 3.17 Refilling with clean water, removing connector and weighing 
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3.4 Wavelet Transformation  

3.4.1 Wavelet Transformation in Optical Granulometry 

Sedimaging utilizes wavelet transformation to analyze the image of the sedimented soil and 

determine its grain size distribution. Wavelet transformation has previously been employed to 

characterize the shape, angularity and surface texture of individual aggregate or percentage of 

fines from assemblies of contacting particles. Kim et al. (2002) laser-scanned 22 mm to 58 mm 

particles dispersed on a flat surface. They obtained descriptors of shape, angularity and texture 

based on the wavelet energies computed at different scales (decomposition levels) for each 

descriptor. Chandan et al. (2004) used wavelet decomposition for surface texture analysis of 

aggregate. They observed different “energy signatures” for highly textured blast furnace slag 

than for natural rounded gravel. Amankwah and Aldrich (2011) used wavelet transforms along 

with morphological operations to extract features (objects) from images of assemblies of 

contacting particles. Their goal was to detect the percentage of fines on conveyor belts carrying 

mined coal. However, they found that standard segmentation of image features to be difficult 

when a large range of particle sizes was encountered in a contacting assembly. Therefore they 

recommended an approach using multivariate image analysis methods instead of wavelet 

transformation alone. 

The research efforts of Shin and Hryciw (2004); Jung et al. (2008); Hryciw et al. (2009) 

and the present work are somewhat related to Amankwah and Aldrich’s in that the analysis is 

performed on images of contacting three-dimensional particle assemblies. However, there is one 

major fundamental difference: The wavelet transformation method described in this paper is used 
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on images or parts of images containing nearly uniform-sized particles such as shown in Figure 

3.18.  

 

Figure 3.18 Images of 10 nearly uniform-grained soil specimens with PPD ranging from 4.1 to 
58.5 

 
Since most natural soils contain a range of particle sizes typically spanning at least an 

order of magnitude or more in diameter, a hydraulic sedimentation system initially suggested by 

Hryciw and Jung (2009) and improved by Hryciw and Ohm (2012) is used to rapidly sort the 

particles by size. Three soil specimens sorted this way are shown in Figure 3.19. The images are 

analyzed piece-wise by small areas having the size of the colored squares at the bottom of the 

images. By virtue of their small size relative to the overall specimen, each analysis square 

contains particles of relatively uniform size. Empirical calibration curves originally proposed by 

Shin and Hryciw (2004) and later updated by Hryciw et al. (2009) relate a “wavelet index” to the 

average particle size in an analysis square. The information from thousands of overlapping 

squares are combined to yield the particle size distribution of the entire specimen. Fortunately, 

Hryciw and Jung (2008) found that there are no significant variations in porosity through the 

sedimented soil columns. As such, each square analysis area represents an equal percentage of 

the total volume of solids. This greatly simplifies the analysis to produce grain size distributions.  
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Figure 3.19 Soil specimens sorted by sedimentation through water: (a) Griffin, IN, (b) Rincon, 
NM, (c) Scotts Valley, CA 

 

3.4.2 Normalized Energy Distribution and Soil Particle Size 

Wavelet transformation decomposes a soil image of 2k × 2k pixel size into k decomposition levels. 

The seven successive levels for a 27 × 27 pixel image are shown in Figure 3.20.  
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Figure 3.20 Seven levels of downscaling beginning with a 128 × 128 image at PPD = 13.2 

 

The sum of the Energies in the three directions at each level is computed as: 

i Hi Vi DiE E E E    
     

(3.1) 

where Ei is the Energy of the i-th decomposition, EHi, EVi, and EDi are Energies in 

horizontal, vertical, and diagonal directions, respectively. This Energy is a measure of the 

magnitude of the differences between average grayscale values of adjacent regions in an image. 

At the first decomposition level, each pixel is compared to its nearest neighbors. At the second 

level, each 2 × 2 pixel region is compared to its neighboring 2 × 2 regions; at the third level, 4 × 

4 regions are compared, then 8 × 8 regions and so on. For very large images the values of Ei 

become correspondingly very large. The actual Ei values are obviously not very useful since they 

merely increase with image size. However, the distribution of Energy by decomposition level is.  

Recognizing this, Shin and Hryciw (2004) expressed the Energy at each level as a percentage of 

the sum of Energies at all levels and termed it the Normalized Energy, Eni: 
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where n = number of decomposition levels. Figure 3.21 shows the resulting Normalized Energies by 

decomposition level corresponding to Figure 3.20. 

 

Figure 3.21 Normalized energy distribution for the soil in Figure 3.20 

 

Shin and Hryciw (2004) sought a single parameter or index value to represent the 

complete Normalized Energy distribution for correlation to PPD.  They defined a wavelet index, 

CA as the first moment of the Normalized Energy distribution with respect to the Normalized 

Energy axis. In other words, CA is the average weighted decomposition level where the 

weighting factor is the Normalized Energy (“CA” is also the “center of area” beneath the 

Normalized Total Energy curve as shown in Figure 3.21): 
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Shin and Hryciw (2004) showed that as the average number of pixels per soil particle 

diameter (PPD) (Ghalib et al. 1998) increases, the concentration of Energy shifts to higher 

decomposition levels (Figure 3.22).  

 

Figure 3.22 Normalized Energies for various PPDs (Jung 2012) 

 

As more data became available for a larger number of sands over a wider range of PPD 

values, an apparent nonlinear relationship between CA and PPD developed as shown in Figure 

3.23. Remarkably, the data in Figure 3.23 is based on images of sands with various particle sizes, 

angularities, grain colors, color uniformities and camera magnifications. Later, it was found that 

when images are taken of saturated soil contained behind a 0.125 in. glass pane, as opposed to 

dry soil on a flat surface, the curve shifts upward slightly, particularly at higher PPD levels as 

shown in Figure 3.24. An empirical fit to the CA vs PPD data or a calibration curve was given 

by Hryciw et al. (2009):  

2.4

A
CA

PPD    
 

         (3.4) 
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where the coefficient A is 5.1 for saturated soil behind a glass window and 5.9 for dry soil. 

 

Figure 3.23 CA vs PPD for various soils (Jung 2010) 

 

 

Figure 3.24 CA vs PPD for saturated soil (Hryciw et al. 2009) 
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Once the CA is determined for an image containing nearly uniform sized grains, the PPD 

is computed by Equation (3.4) and the actual particle size can be computed as: 

PPD
D

M
       (3.5) 

where D is the average actual diameter of soil particles (mm) and M is the camera magnification 

(pix/mm). 

 

3.4.3 CA vs PPD Calibration and Particle Size Distribution  

It is noted that the data for calibration (Figure 3.23 and 3.24) was collected using 128 × 128 areas 

of relatively uniform sized particles that were obtained by pre-sieving the soil through successive 

sieves with closely spaced opening sizes. Nevertheless, even the particles retained between two 

successive standard US sieves vary by 50% to 100% in diameter. Furthermore, even for an 

assembly of “uniform sized” soil grains, the observed CA values show some scatter due to the 

random fabric, pore spaces, particle angularities etc. Therefore, there will naturally be some 

statistical variation in computed particle sizes between different 128 × 128 regions of the same 

“uniform sized” soil specimen. Figure 3.25 illustrates the CA versus PPD data scatter for a soil 

called “2NS” by the Michigan Department of Transportation. The rectangular blocks have 

horizontal dimensions corresponding to the range between sieve openings from which specimens 

were collected and the vertical dimension of each rectangle represents plus or minus one 

standard deviation (σ) of observed CA values for each size range.   
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Figure 3.25 Ranges of CA and PPD values for 2NS soil 

 

In light of the statistical variations in CA values, to obtain a reasonable estimate of the 

particle size distribution of a soil specimen, a large number of 128 × 128 areas of an image must 

be analyzed. For example, for each of the images in Figure 3.19 approximately 5000 overlapping 

128 × 128 areas were used to develop the particle size distributions. The 10 colored squares at 

the bottoms of the sorted soil columns in Figure 3.19 show the size of the 128 × 128 areas which 

scan vertically through the specimen. Because of their small size relative to the full image, the 

analysis areas contain soil grains of similar size. CA is computed for each analysis area and 

converted to PPD and D by Equations (3.4) and (3.5) respectively. All of the data is then sorted 

by particle size to produce the final grain size distribution shown in Figure 3.26. 
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Figure 3.26 Particle size distributions of soils in Figure 3.19 
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3.5 Percentage of Fines Determination 

With future advances in DSLR camera technology, a single sedimaging photographic will be 

able to size particles over a larger range than the current 2.0 mm to 0.075 mm. Indeed, at their 

current development trajectory, commercial DSLR cameras could size particles down to 0.020 

mm within five to ten years (Ohm and Hryciw 2013a).  

For now, the percentage of fines in a soil specimen can still be determined in the 

Sedimaging test. The procedure combines some small volume of fines observed in the image 

(soil particles in the sedimented soil column found above the level at which 0.075 mm particles 

are detected) with the weight of soil solids removed during sedimentation column drainage (see 

Chapter 3.3). The latter component is termed the partial percentage of fines (P%F) and computed 

by: 

% 100(%)s sa

s

W W
P F

W

 
  
 

          (3.6) 

where Ws is the dry weight of the test specimen and Wsa is the weight of soil deposited in the accumulator. 

Wsa is computed by: 

1
s s wf a a w

sa
s

G W W
W

G
    


          (3.7) 

where Ws+wf+a is the combined weight of the soil in the accumulator, the water in the accumulator 

and accumulator itself; Wa+w is the weight of the accumulator filled with water; and Gs is the 

specific gravity of the specimen solids. 
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3.6 Comparison of Sieving and Sedimaging Particle Size Distribution 

Tests were performed on nine different soils to compare Sedimaging grain size distributions to 

sieving. The soil colors and particle shapes were determined by visual observation and are listed 

in Table 3.1 and sample images are shown in Figure 3.27.  

Table 3.1 Soil description of different soils 

Soil Name Soil Color Particle Shape Color Uniformity 

2NS Light brown Subrounded to subangular Uniform to non-uniform 

Capitola, CA Light brown Subrounded to subangular Uniform to non-uniform 

Class IIA Very light brown Subangular Uniform 

Costa Rica Black Subrounded Non-Uniform 

Griffin, IN Light brown Subrounded to subangular Non-Uniform 

Rincon, NM Light reddish Subrounded to subangular Uniform 

Scotts Valley, CA Grey Subangular Uniform to non-uniform 

Upper Peninsula, MI Reddish Subrounded to subangular Uniform to non-uniform 

Oakland Co., MI Light brown Subangular Uniform 
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Figure 3.27 Sample soil images: (a) 2NS, (b) Capitola, (c) ClassIIA, (d) Costa Rica, (e) Griffin, 
(f) Rincon, (g) Scotts Valley, (h) Upper Peninsula, and (i) Oakland Co. 

 

Typical Sedimaging results are shown in Figure 3.28 and 3.29. Since Sedimaging images 

such as shown on Figure 3.28 (a) and 3.29 (a) contain particles sorted by size, the image is 

analyzed incrementally with height to produce the complete grain size distribution. The areas of 

analysis are 128 pixels × 128 pixels as shown by the colorful squares at the bottom of the image. 

Because of their small size relative to the full image, the analysis areas contain soil grains of 

similar size. The analysis squares scan up through the image in 10 adjacent non-overlapping 

columns moving vertically eight pixels at a time. At each elevation the CA is computed and 

successively converted to PPD and D. This yields about 5,500 values of D from the 1,280 (H) × 

4,500 (V) pixels image. The vertical dimension is the full height of the soil column but the 

horizontal dimension is cropped down from a slightly wider image of the full accumulator 
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window. A random but representative 20% of the data points are shown in Figure 3.28 (b) and 

3.29 (b). All of the data is then sorted by particle size to produce the final grain size distribution 

shown in Figure 3.28 (c) and 3.29 (c). Since variations in void ratio in the column have been 

shown to be insignificant (Hryciw and Jung 2008; Hryciw and Jung 2009), each data point 

represents an equal percentage of the specimen by volume.  

 

Figure 3.28 Typical Sedimaging result: 2NS soil 
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Figure 3.29 Typical Sedimaging result: Rincon soil 

 

The values of D85, D60, D50, D30, D10 and the coefficient of uniformity, D60 / D10 determined by 

sieving and Sedimaging are tabulated in Table 3.2. The weights of the soil specimens used both 

in Sedimaging and sieving ranged from 400 g to 500 g. The same soil specimens were used for 

both tests to eliminate any randomness that could result from soil splitting. The results are 

compared graphically in Figure 3.30. For both tests only the data points are shown with no curve 

fitting. The differences in appearance of the two data sets is due to the fact that sieving provides 

only 10 to 11 data points compared to over 5,000 by Sedimaging. Finally, the data from Table 

3.2 is compared graphically in Figure 3.31. Complete Sedimaging results can be found in 

Appendix C. 
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Table 3.2 Comparisons between sieve and Sedimaging results of different soils 

Soil 
Name 

Sieving    Sedimaging 
D85 

(mm) 
D60 

(mm) 
D50 

(mm) 
D30 

(mm) 
D10 

(mm) 
Cu  

D85 
(mm) 

D60 
(mm) 

D50 
(mm) 

D30 
(mm) 

D10 

(mm) 
Cu 

2NS 1.00 0.57 0.50 0.38 0.25 2.28  0.92 0.62 0.54 0.42 0.30 2.07 

Capitola, 
CA 

0.47 0.36 0.35 0.30 0.23 1.57  0.56 0.44 0.4 0.35 0.29 1.52 

Class IIA 0.38 0.26 0.24 0.18 0.11 2.36  0.34 0.22 0.19 0.15 0.11 2.00 

Costa 
Rica 

0.18 0.16 0.15 0.12 0.10 1.60  0.20 0.16 0.14 0.12 0.11 1.45 

Griffin, 
IN 

1.00 0.68 0.60 0.45 0.30 2.27  0.96 0.67 0.59 0.45 0.34 1.97 

Rincon, 
NM 

0.74 0.42 0.36 0.26 0.14 3.00  0.69 0.39 0.33 0.23 0.14 2.79 

Scotts 
Valley, 

CA 
0.45 0.34 0.33 0.27 0.22 1.55  0.41 0.31 0.29 0.25 0.21 1.48 

Upper 
Peninsula, 

MI 
1.10 0.68 0.60 0.41 0.24 2.83  0.91 0.58 0.45 0.32 0.20 2.90 

Oakland 
Co., MI 

0.48 0.35 0.31 0.26 0.22 1.59  0.46 0.31 0.28 0.23 0.19 1.63 
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Figure 3.30 Sedimaging test results: (a) 2NS, (b) Capitola, (c) ClassIIA, (d) Costa Rica, (e) 
Griffin, (f) Rincon 
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Figure 3.30 (Continued) Sedimaging test results: (g) Scotts Valley, (h) Upper Peninsula, (i) 
Oakland Co. 
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Figure 3.31 Comparison between Sedimaging and sieving 
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Because the CA versus PPD calibration curve was developed from images of pre-sieved soils 

and because their PPDs were computed from known sieve openings, the Sedimaging test does 

not redefine particle size. Instead, it essentially mimics sieving. As such, despite some slight 

variations, excellent agreement was observed between Sedimaging and sieving results in almost 

all nine tests. This is only surprising given that the colors, shapes and gradations of the tested 

soils were chosen based on their variability. The image processing for all nine Sedimaging tests 

used the same calibration curve that was developed on entirely different soils some years ago. 

Nevertheless, if Sedimaging is to be used for quality control purposes where soil with the same 

geological origin were to be tested repeatedly (such as for borrow from a quarrying operation), it 

is recommended that a site (geology) specific calibration curve be used to insure a perfect match 

between sieve and Sedimaging results and it will be discussed in Chapter 3.7. 
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3.7 Effects of Surface Textures on a Calibration Curve 

For the majority of natural soils the relationship between CA and PPD can be expressed by 

Equation (3.4). However, for soils with rough, pitted or mottled particles, the size distribution by 

Sedimaging when using Equation (3.4) tends to deviate from the size distribution by sieving. 

Figure 3.32 and 3.33 show calibration curves for “30A” and “Gabbro” soils that have rough, 

pitted or mottled particles. Each data point represents the average CA at the average PPD. The 

error bars in the vertical direction indicate plus or minus one standard deviation in CA, while the 

error bars in the horizontal direction indicate the two bounding sieve sizes. 

 

Figure 3.32 A calibration curve for 30A soil 
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Figure 3.33 A calibration curve for Gabbro soil 

 

Figure 3.32 and 3.33 show that data points obtained from 10 different pre-sieved 30A and 

Gabbro soils deviate from the calibration curve for 2NS soil. For 30A soil, all of the data points 

shift downward, while for Gabbro soils more deviation from the calibration curve for 2NS is 

observed at higher PPD. Figure 3.34 shows particles at about the same size for the three soils. 

The 30A and Gabbro soil particles have more internal texture than 2NS particles. Internal 

particle texture is interpreted as smaller particles by image analysis thereby causing Sedimaging 

to underestimate the actual particle sizes. Therefore, at the same PPD, CA will be smaller for soil 

with more internal texture causing a shift in the calibration curve downward. 
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Figure 3.34 Soil image of different soils: (a) 2NS, (b) 30A, (c) Gabbro (PPD = 53.3 ~ 59.6) 

 

If Sedimaging is to be used for quality control purposes for soil particles with erratic internal 

textures (intraparticle color variations or particle roughnesses), soil-specific calibration curves 

should be developed to insure a better match between sieve and Sedimaging results such as 

Figure 3.32 and 3.33. Modified Sedimaging results using these soil-specific calibration curves 

(Figure 3.32 and 3.33) are shown in Figure 3.35 and 3.36. 

 

Figure 3.35 Grain size distributions using the calibration curve for 2NS and 30A 
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Figure 3.36 Grain size distributions using the calibration curve for 2NS and Gabbro 
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3.8 Correlation between Energy Ratio and Particle Orientation 

As discussed earlier in Chapter 3.4, Energy is defined as a measure of the magnitude of the 

differences between average grayscale values of adjacent regions in an image. Since the Energy 

can be considered separately for horizontal, vertical, and diagonal directions, more information 

about the soil such as particle shape, particle orientation and fabric can be obtained. To this end, 

an Energy Ratio (F) is defined to compare wavelet decomposition Energies in the horizontal and 

vertical directions: 

for EHi > EVi 

1
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            (3.9) 

where F is the Energy Ratio and EHi and EVi are Energies in the horizontal and vertical directions, 

respectively. Thus, F values greater than +1 are indicative of particles oriented with their long 

axes horizontally, while F values smaller than -1 indicate vertical orientation of the long axes. 

The absolute value of F is an indicator of overall particle sphericity with |F| ≈ 1 for very 

spherical particles. 
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 Images of 2NS soil of different size ranges were taken with different camera 

magnifications in the Sedimaging accumulator and on a flat surface. Values of F were computed 

to analyze the effects of particle shape and orientation on F. Figure 3.37 and 3.38 show typical 

results obtained from the Sedimaging and the flat surface tests. 

 

Figure 3.37 Typical Energy Ratio distributions of soils in the Sedimaging soil accumulator 

SOIL NAME: 2NS

TEST TYPE: SED

GRAIN SIZE RANGE(mm): 1.19-2.00

MAGNIFICATION(pix/mm): 36.7

PPD RANGE(pixels): 43.7-73.4

WINDOW SIZE(pixels): 512x512

DATE OF TEST: 04/15/12

PERFORMED BY: HS

MEAN F: 0.93

MEAN |F|: 1.22

MEDIAN F: 1.20

STD F: 0.80
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Figure 3.38 Typical Energy Ratio distributions of soils in the flat surface test 

 

As shown in Figure 3.37 and 3.38, more F values greater than +1 were observed in the 

Sedimaging accumulator, while F values are distributed in both greater than +1 and less than -1 

in the flat surface test. Obviously, soil particles in the Sedimaging are oriented with their long 

axes horizontally (F > 1), whereas soil particles placed on the flat surface are randomly oriented 

because there is no sedimentation through water. 15 tests were performed (Table 3.3) and the 

mean value of F and the mean absolute value of F were compared (Figure 3.39 and 3.40). 

 

 

 

 

SOIL NAME: 2NS

TEST TYPE: FLAT

GRAIN SIZE RANGE(mm): 1.00-1.19

MAGNIFICATION(pix/mm): 35.9

PPD RANGE(pixels): 35.9-42.7

WINDOW SIZE(pixels): 512x512

DATE OF TEST: 04/15/12

PERFORMED BY: HS
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Table 3.3 Energy Ratio analysis on 15 tests 

Different Soil Sizes with Same Camera Magnification in Sedimaging Test 

PPD 58.6 37.3 26.4 18.6 13.2 

Mean F 0.93 1.21 1.23 1.22 1.16 

Mean 
Absolute F 

1.22 1.26 1.23 1.22 1.18 

Same Soil Sizes with Different Camera Magnifications in Sedimaging Test 

PPD 71.0 56.5 46.8 39.9 34.8 

Mean F 0.98 1.11 1.29 1.25 1.30 

Mean 
Absolute F 

1.28 1.19 1.29 1.25 1.30 

Same Soil Sizes with Different Camera Magnifications on a Flat Surface 

PPD 39.3 28.9 23.0 18.9 16.3 

Mean F 0.23 -0.27 -0.14 -0.33 -0.12 

Mean 
Absolute F 

1.10 1.06 1.07 1.05 1.05 
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Figure 3.39 The mean value of F from the Sedimaging and the flat test 

 

 

Figure 3.40 The mean value of absolute F from the Sedimaging and the flat test 

 

Different sizes of sieved 2NS soil (1.19 ~ 2.00 mm, 0.84 ~ 1.19 mm, 0.60 ~ 0.84 mm, 0.42 ~ 

0.60 mm and 0.30 ~ 0.42 mm) were used with the same magnification (36.7 pix/mm) in the 

Sedimaging test, while same sizes of sieved 2NS soil (1.19 ~ 2.00 mm in the Sedimaging test 

and 1.00 ~ 1.19 mm in the flat surface test) were used with different magnifications (44.5, 35.4, 
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29.3, 25.0 and 21.8 pix/mm in the Sedimaging and 35.9, 26.4, 21.0, 17.2 and 14.9 pix/mm in the 

flat test). The mean value of F in the Sedimaging test is around 1.2, while the mean value of F in 

the flat surface test is around -0.1. The mean of the absolute F in the Sedimaging test is around 

1.24, while the absolute value of F in the flat surface test is around 1.07. As discussed earlier, 

soil particles are oriented with their longest axes horizontally in the Sedimaging apparatus 

making the mean F values larger than 1, while soil particles spread on a flat surface have 

randomly distributed orientations making the mean F values around 0. Soil particles in the 

Sedimaging test will typically show their longest and shortest axis, while in the flat surface test 

will typically show their longest and intermediate axis. Thus, the mean absolute value of F in the 

Sedimaging test is higher than the mean absolute value of F in the flat surface test. These 

observations show that the mean of F could be an indicator of particle orientation or fabric, 

whereas the mean of absolute F could be an indicator of particle shape or sphericity. Overall, the 

F values obtained by the Sedimaging could be an excellent indicator of particle shape and the 

potential for development of an oriented soil fabric. It needs to be correlated with particle 

sphericity and more fundamental soil properties such as anisotropic stiffness and strength.      
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3.9 Segmentation Using Mean-Shift Clustering  

3.9.1 Image Segmentation 

Not only image-based methods for particle size distribution determination but also for particle 

shape determination can be categorized into deterministic methods and statistical methods. 

Statistical approach to determine particle shape such as the method using Energy Ratio gives an 

overall trend in particle shape within an image analysis area. Deterministic approach to 

determine particle shape may need to delineate individual particles prior to determining the 

particle shape. A potential deterministic method to quantify particle shapes from the images of 

the sedimented soil is discussed in this chapter. Image segmentation is used to delineate 

individual particles by dividing the image into components sharing a common characteristic such 

as a gray scale value. Two image segmentation methods, k-means clustering and mean-shift 

clustering are introduced. Then, a method for particle segmentation in an image is proposed. 

 

3.9.2 k-means Clustering 

Digital images consist of a matrix of pixels in the x-y coordinate space. For black and white 

photos, each pixel has a gray scale intensity value from 0 to 255 (in 8-bit images). Pixel intensity 

values can be plotted as the z-coordinate for an image location defined by the x-y spatial 

coordinates. Image segmentation methods then assign these x-y-z points to a group whose 

coordinates are relatively close to each other in the three dimensional space. k-means clustering 

shown in Figure 3.41 is one of these image segmentation methods (Forsyth and Ponce 2003). 

The steps for k-means clustering are: 



71 
 

1) A k-value is chosen equal to the number of objects (particles) expected in an image. 

These are called “seeds” (Figure 3.41 (a)). 

2) The k number of seeds are placed at random locations on the image. 

3) The distances between each seed and all pixel points in the image are computed 

(Figure 3.41 (b)). 

4) Each pixel in the image is assigned to a group containing the seed nearest to the 

image pixel. In other words, all image points “cluster” around their nearest seed. 

5) The location of the seed is moved to the geometric centroid of its cluster (Figure 3.41 

(c)). 

6) The distances between each seed in its new location and all pixel points in the image 

are computed. 

7) All image points are reassigned to their nearest seed. 

8) The location of the seed is moved to the new geometric centroid of its cluster. 

9) Step 6) to 8) are repeated until the differences between the new centroid location and 

the precious centroid location are negligible.  
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Figure 3.41 The concept of k-means clustering 
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3.9.3 Mean-shift Clustering 

The main drawbacks of k-means clustering are the need to pre-estimate the number of required 

seeds (k) and the effect of the initial placement of the seeds on the segmentation results. To solve 

these problems, mean-shift clustering shown in Figure 3.42 was proposed by Comaniciu and 

Meer (2002). Mean-shift clustering finds locations of the highest densities of points in the three 

dimensional space where the z-coordinates are again the gray-scale intensity values. The steps 

for mean-shift clustering are: 

1) A pixel point in the three dimensional space of an image is randomly chosen (Figure 

3.42 (a)). 

2) A centroid (an old centroid) of pixel points that are located within a radius R from the 

selected pixel point is computed. Note that the radius R is selected arbitrary. 

3) A centroid (a new centroid) of pixel points that are located within a radius R from the 

old centroid is computed (Figure 3.42 (b)). 

4) Step 2) and 3) are repeated until the difference between the old centroid and the new 

centroid is negligible (Figure 3.42 (c)). 

5) This process is then repeated using every point in the entire image.  

6) All of the original image points that ultimately end up having the same (common) 

final centroid are assigned to their own unique “group”. 
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Figure 3.42 The concept of mean-shift clustering 
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The groups of pixel points reveal zones of similar gray scale value. In a sedimented soil image 

from the Sedmaging, these may be parts of a particle having similar internal shades of gray, 

voids between soil particles, entire individual soil particles, or combinations of two (or more) 

adjacent soil particles having similar gray scales. Obviously, it would be best if the group 

reflected only “entire particles” rather than parts of particles, voids or agglomerations of 

adjoining particles. 

 

3.9.4 Window Radius R and Particle Shape Determination 

Mean-shift clustering requires one parameter that a user needs to select – the window radius R 

which may also be termed as the “resolution of the analysis”. Figure 3.43 shows a soil image and 

the results of segmentation of the image by the mean-shift clustering using different R values.  

 

Figure 3.43 Results of mean-shift clustering on a 256 × 256 soil image 

Original Image R = 15  MEAN AREA = 402 R = 20  MEAN AREA = 790

R = 25  MEAN AREA = 1130 R = 30  MEAN AREA = 1524 R = 35  MEAN AREA = 1725
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A small R causes over-segmentation of the soil particles, while a large R causes under-

segmentation. Also, as discussed earlier, segmented objects in an over-segmented image are 

mostly internal textures, voids, or color variations within soil particles, whereas segmented 

objects in an under-segmented image are mostly combined two adjacent soil particles that have 

similar gray scale values. In order to obtain good segmentation reflecting the actual particles, an 

estimate of R may be obtained by wavelet transformation.  

 Because the average particle size in every 256 pixels by 256 pixels area of the original 

image is known from the wavelet transformation, an R value can be estimated as half of the 

diameter of a soil particle i.e. the PPD. After the first estimate of R is used, mean-shift clustering 

is performed using a range of R values close to the first estimate. Even though an appropriate R 

value is determined from wavelet transformation, manual selection of well-segmented particles is 

required. After selecting well-segmented particles, the aspect ratio of those particles is computed 

as shown in Figure 3.44. 

 

Figure 3.44 Aspect ratios of manually selected well-segmented particles 

Original Image R = 18  MEAN AREA = 624

ASPECT RATIO: 1.32

ASPECT RATIO: 1.47

ASPECT RATIO: 1.32

R = 19  MEAN AREA = 712

ASPECT RATIO: 1.25

ASPECT RATIO: 1.17

ASPECT RATIO: 1.41

R = 20  MEAN AREA = 728

ASPECT RATIO: 1.29

ASPECT RATIO: 1.29

ASPECT RATIO: 1.37

R = 21  MEAN AREA = 809

ASPECT RATIO: 1.28

ASPECT RATIO: 1.36

ASPECT RATIO: 1.33

R = 22  MEAN AREA = 886

ASPECT RATIO: 1.45

ASPECT RATIO: 1.32

ASPECT RATIO: 1.36
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Manual selection of the well-segmented particles can be automated by knowing that: 1) the most 

visible particles will generally have the largest exposed areas at their given elevations in the 

sediment accumulator, 2) they will also generally contain a high percentage of edges that are 

concave with respect to the center of the particle, and 3) they will be better illuminated if they 

are in contact with the glass pane. 
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CHAPTER IV 

Translucent Segregation Table 

 

4.1 Introduction 

A complementary image-based system that determines particle size distributions of soils in the 

range between 2.0 mm (No. 10 sieve opening) and 35 mm (1½ in. sieve opening) is described in 

this chapter. The test is called the Translucent Segregation Table (TST) test. The TST is 

conceptually simple: coarse sand and gravel is spread out on a well backlit translucent surface 

and photographed from above. To insure that all particles are in camera view, the TST is 

designed to provide rapid segregation of particles by size so that small particles cannot be hidden 

from view behind larger ones. However, most importantly for TST test expediency and 

practicality, the particles need not be physically separated from one another since the image 

analysis methods will delineate all particle boundaries and therefore “digitally detach” the 

particles. This chapter details the TST system hardware, test procedures and image analysis 

methods for developing particle size distributions. TST results are compared with sieving results. 

Particle shape will be addressed only to the extent needed for determining “sieve-equivalent” 

particle size distributions. 
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4.2 Translucent Segregation Table Apparatus 

The Translucent Segregation Table (TST) hardware consists of: 1) a camera system, 2) a 

computer and monitor, 3) the Translucent Segregation Table (TST), and 4) ancillary supplies 

which is shown in Figure 4.1. The camera system is a 16.2 megapixels Nikon D7000 SLR 

camera with a 60 mm macro lens (AF-S Micro NIKKOR 60 mm f/2.8G ED). The camera is 

mounted on the laboratory ceiling as shown in Figure 4.2. The vertical distance between the 

ceiling-mounted camera lens and the surface of the TST is 7.6 ft (2.3 m). At  this distance, the 

field of view is 3 ft. (0.9 m) by 2 ft. (0.6 m) corresponding to the bottom two-thirds of the TST. 

The camera is leveled using a bi-directional bubble level attached on the camera’s flash shoe. A 

computer and monitor are used to control the camera and remotely capture images using 

NKRemote software by Breeze Systems. The computer system also analyzes the images and 

produces the particle size distribution.  

 



80 
 

 

Figure 4.1 Translucent Segregation Table (TST) system overview 

 

 

Figure 4.2 TST camera system 
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The Translucent Segregation Table (TST) is the centerpiece of the system (Figure 4.3). 

Its main component is a 3 ft (0.9 m) by 3 ft (0.6 m) translucent plate made of white acrylic 

having a 0.375 in. (9.5 mm) thickness. The plate is fixed atop a 3 ft (0.9 m) by 3 ft (0.6 m) 

transparent base of a clear acrylic with a 0.5 in. (12.7 mm) thickness. The transparent base 

stiffens the plate system. By increasing the plate rigidity, displacements of the translucent plate 

caused by its self-weight and the weight of soil are minimized. The translucent plate acts as a 

diffuser for light coming from a light box below to provide a bright and uniform background for 

the soil image.  

 

Figure 4.3 Translucent segregation table and bridges 

 

Attached above and around the perimeter of the translucent plate are a top wall, a bottom 

wall and two side walls. The top and bottom walls are 35 in. (889.0 mm) by 2 in. (50.8 mm) 

aluminum plates of 0.5 in. (12.7 mm) thickness. The top wall has two handles for lifting and 
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inclining the plate assembly. The top wall can be removed to allow the soil to be swept out after 

testing. The bottom wall has two hinges that connect it to a light box and allow the plate 

assembly to incline while remaining attached to the light box. The two side walls are 36 in. 

(914.4 mm) by 2 in. (50.8 mm) slotted aluminum plates with a 0.5 in. (12.7 mm) thickness.  

The side walls contain nine matched pairs of slots to hold a series of bridges as shown in 

Figure 4.4. The bridges have different underpass clearances to allow different sized particles to 

pass beneath them. Not all of the bridge slots must be used in any one test but the large number 

of available slots and bridge affords the flexibility to collect comparable volumes of soil in the 

areas between bridges. The six  bridges are 36 in. (914.4 mm) by 0.375 in. (9.5 mm) aluminum 

plates with underpass heights equivalent to sieve opening sizes of: 1 in. (25.4 mm), 0.75 in. (19.1 

mm), 0.5 in. (12.7 mm), 0.375 in. (9.5 mm), No. 4 (4.75 mm) and No. 8 (2.36 mm). After being 

placed into the slots, the bridges are immobilized using two cover bars. Two 23 in. (584.2 mm) 

long L-channels serve as support feet for the inclined plate assembly.  
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Figure 4.4 TST side walls 

 

Once the specimen is introduced at the top of the slope as shown in Figure 4.5, the 

translucent plate is inclined. The particles slide and roll down the incline passing beneath the 

series of bridges having decreasing underpass heights on the way down the incline. This allows 

the particles to segregate by size. Design drawings of the TST device can be found in Appendix 

B. 
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Figure 4.5 Raised TST and lighting system 

 

 

Figure 4.6 TST system supplies 
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4.3 Test Procedures 

Preparation of a soil specimen by the TST consists of the 6 steps: (1) placing soil on the 

translucent plate above the topmost bridge (Figure 4.7), (2) lifting the top end of the TST plate 

and immobilizing the inclined plate, thereby allowing the soil particles to slide or roll down the 

incline (Figure 4.8), (3) lightly brushing beneath the bridges to break soil blockages (Figure 4.9), 

(4) lowering the plate and distributing the soil particles over the area between the segregation 

bridges (Figure 4.10), (5) removing the segregation bridges (Figure 4.11), and (6) capturing the 

image (Figure 4.12).  

To elaborate on step 4, after lowering the plate to its horizontal position, the soil particles 

may still be piled up behind some bridges. Therefore, they must be distributed over the area 

between the bridges so that none sit on top of one another. This takes only a few minutes and is 

accomplished by tapping the TST with a rubber mallet and, or gently brushing the particles. 

After the image is captured, the soil particles can be swept out through an opening created by 

removal of the top wall of the TST (Figure 4.13). The maximum amount of soil that the TST can 

test is about 1.3 kg. This amount of soil occupies about 30% of an image. For reference, 1.3 kg 

corresponds to about 400 particles of 25 mm (1 in.) diameter or about 44,000 particles of 2.36 

mm (No. 8 sieve) diameter. If more than 1.3 kg of soil is to be sized, it is split for into two or 

more lifts and the collected data is combined to produce one composite size distribution. 
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Figure 4.7 Introducing specimen and table raising 
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Figure 4.8 Immobilizing the inclined table 
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Figure 4.9 Brushing 

 

Figure 4.10 Tapping down 
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Figure 4.11 Removing the bridges 
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Figure 4.12 Image capture 
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Figure 4.13 Specimen removal and cleaning 
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4.4 Watershed Segmentation 

Following particle segregation and image capture, a TST image is analyzed to “segment” the 

particles. Segmentation is the process of identifying individual objects (i.e. particles) in an image. 

Ghalib and Hryciw (1999) showed how this can be accomplished for contacting soil particles 

using a multistep process termed watershed segmentation (Beucher and Lantuejoul 1979; Meyer 

and Beucher 1990; Vincent and Soille 1991). Today, the popular public domain image 

processing program developed at the National Institute of Health (NIH) called ImageJ contains a 

watershed segmentation routine. Because of its ease of use and universal acceptance, ImageJ was 

adopted for this research.  

To illustrate the watershed segmentation procedure, Figure 4.14 zooms in on a small 

section of a TST image. Because of the bright TST backlighting, the particles appear black in the 

original image as shown in Figure 4.14 (a). The original color image is converted to an 8-bit 

grayscale image (not shown). Because of the bright back-illumination from five 24 in. (609.6 

mm) fluorescent light bulbs in the box beneath the translucent plate, the grayscale image can 

easily be converted to a binary image (Figure 4.14 (b)) using an automatic thresholding feature in 

ImageJ. Next, a Euclidian distance map (EDM) is created (Figure 4.14 (c)) by replacing each 

foreground (particle) pixel with a pixel value equal to that pixel’s distance from the nearest 

background (light table) pixel. The EDMs can be viewed as concave drainage basins or 

“watersheds” with each drainage basin representing the projected area of a particle. Each basin 

possesses local minima or ultimate eroded points (UEPs) shown in Figure 4.14 (d). At each UEP, 

water is envisioned to begin filling the drainage basin in a process called dilation. An 

intermediate step in the dilation process is illustrated in Figure 4.14 (e). The watersheds continue 

to expand (dilate) until a previously known edge of the particle is reached or until the dilating 
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object hits the edge of the region of another UEP. The final result of the watershed segmentation 

is shown in Figure 4.14 (f). Following watershed segmentation, the perimeters, projected areas 

and locations of every individual particle in the TST image are known. 

 

Figure 4.14 Watershed segmentation in ImageJ: (a) section of a TST image, (b) binary image, (c) 
Euclidean Distance Map, (d) Ultimate Eroded Points, (e) dilation, and (f) completed 

segmentation 
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4.5 Volume-Based Size Distribution by TST Using Bridge Heights 

It should be recognized that the particle size found by sieving will generally be different from 

that found by the TST as illustrated in Figure 4.15. 

 

Figure 4.15 Difference in grain size as defined by sieving compared to the TST: (a) typical TST 
view, (b) particle passing through sieve opening 

 

In Figure 4.15, particles are idealized as ellipsoids having axial dimensions d1 > d2 > d3.  Since 

particles in the TST are more likely to lie with the short dimension (d3) vertical, the d1 and d2 

dimensions dictate the apparent area of particles observed in TST images (Figure 4.15 (a)). By 

contrast, the sieve-based particle size is most closely related to d2 (Figure 4.15 (b)). For this 

reason, particle sizes defined by image-based method and sieve analysis are different and will be 

discussed in Chapter 4.6. Another main difference between image-based method and sieving is 

that image-based method determines volume-based particle size distribution, whereas sieving 

determines weight-based particle size distribution. Therefore, the specific gravity of soil particles 
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is assumed to be constant over the particle size range to compare volume-based particle size 

distribution by the TST to weight-based particle size distribution by sieving. 

As mentioned earlier, the TST bridges were designed to prevent small particles from 

hiding beneath large particles. To illustrate their importance two initial tests were performed. In 

the first test, a soil specimen was spread out on the light table without passing beneath the 

bridges prior to image capture. The same soil specimen was then allowed to segregate using the 

TST bridges. A comparison of the test results shown in Figure 4.16 confirms that some smaller 

particles must have been hidden and therefore unaccounted for. The particle size distribution 

curve shifted in the finer soil direction when the bridges were used. In these two preliminary 

tests, for purposes of computing particle volumes it was assumed that the smallest particle 

dimension (d3) was the same as d2. Particle volumes were therefore computed as d1 × d2
2.  This is 

an obvious initial oversimplification. To better match sieving results, a better estimate for d3 was 

needed. 
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Figure 4.16 Comparison of grain size distribution by sieving and by TST: (a) TST 
without segregation by bridges, (b) TST with segregation by bridges, (c) TST with segregation 

and volume computation using the third dimension (d3), and (d) sieving 

 

 Since the smallest particle dimension (d3) would generally be the height of the particle as 

it rested on the TST, it could not be determined from the images. However, d3 can be estimated 

from the average underpass height of the two bridges between which each particle comes to rest 

on the TST. The third grain size distribution shown in Figure 4.16 assumed this average value for 

d3 and particle volumes were computed as d1 × d2 × d3. This resulted in some additional 

improvement towards matching the sieve results. 
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4.6 Correction Factor Applied on Minor Axis Dimension (d2) 

As discussed in Chapter 4.5, particle size definitions are different by image-based method and 

sieving. Ghalib and Hryciw (1999) defined the particle size as the diameter of a circle having the 

same area as in the projected area of a particle in an image. Their results had to be corrected to 

match sieving results through an empirical factor based on particle angularity. The same factor 

was applied to all of the particles in the specimen. Tutumluer et al. (2000) also originally took an 

“equivalent sphere” approach to define the particle diameter and suggested a shift of the particle 

size distribution curve to match sieving data. Later, Tutumluer et al. (2005) used the d2 

dimension to define particle size. 

 Although d2 is the dimension most closely related to sieve size (d), there will naturally be 

some effect of d3 on the sieve opening through which a particle will pass. Kumara et al. (2012) 

used a correction factor on the d2 dimension to match the sieve size. They found that the 

correction factor is controlled by d3 and is typically 0.86. Altuhafi et al. (2012) used the 

minimum feret diameter as an image-based particle size. The feret diameter is the distance 

between two tangents on opposite sides of the particle.  

Referring again to Figure 4.15 it is easy to see that for perfectly spherical particles (d1 = 

d2 = d3) we will have d = d2. At the other extreme, for a perfectly flat particle (d3 ≈ 0) we have d 

= d2/√2. For intermediate situations (0 < d3 < d2), the exact relationship between d2 and d can be 

determined analytically by fitting an ellipse to the square sieve opening shown in Figure 4.17.  
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Figure 4.17 Elliptical particle fitted to a square sieve opening 

 

The equation of an ellipse with its longer axis rotated an angle  counter-clockwise from 

the x–axis as shown in Figure 4.17 is: 

   2 2

2 2

2 3

cos sin sin cos
1

2 2

x y x y

d d

    
 

         

        (4.1) 

The largest ellipse that could pass through a square of dimension d × d, would have an 

orientation of Therefore,  
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Implicit differentiation of Equation 4.3 yields: 
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which is solved for dy/dx: 
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At point (x, y) in Figure 4.17 the ellipse is tangent to the square. As such, dy/dx is zero here 

meaning that: 

2 2
3 2( ) ( ) 0d x y d x y         (4.6) 

Solving for x we find: 

1

1

F
x y

F





       (4.7) 

 where 

2

2

3

d
F

d

 
  
 

       (4.8) 

Equation 4.7 may be inserted into Equation 4.3 to give: 
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Since d=2y Equation 4.9 becomes: 
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Equation 4.10 is plotted in Figure 4.18 and hereafter is referred to as the “d2 correction factor”. 

Equation 4.10 was also verified by graphically by fitting ellipses with 1 < d2/d3 < 8 to a square. 

The sieve opening (d), as well as d2 and d3 were measured digitally using a 2D object drawing 

program. The resulting d/d2 ratios agreed perfectly with the analytical solution as shown by the 

five data points in Figure 4.18. In summary, the TST image and elliptical fitting of particles 

provide the d2 value for each particle in a specimen. The equivalent sieve opening size through 

which each particle would pass is obtained by multiplying d2 by the d2 correction factor. The 

volume of each particle is again computed as d1 × d2 × d3. 

 

Figure 4.18 Correction factor applied to d2 to account for effect of the smallest ellipsoid 
dimension (d3) on equivalent sieve opening size (d) 
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4.7 Comparison between Sieving and Translucent Segregation Table 

Twenty soil samples provided by the Michigan Department of Transportation (MDOT) were 

tested by the TST and sieving. The dry weights of the samples varied between 1.9 kg and 2.6 kg. 

Because these sample weights exceeded the current maximum TST specimen weight of 1.3 kg, 

each sample was divided and tested in two lifts. The first ten specimens (T1-T10) were made by 

dividing a large batch of soil into 10 portions, whereas the second ten samples (T11-T20) were 

made to specific gradations from large batches of pre-sieved material. TST and sieve tests were 

performed for each sample. Figure 4.19 shows a typical TST test result. Original images 

obtained from the TST are shown in Figure 4.19 (a), the particle aspect ratios (d1/d2) are plotted 

in Figure 4.19 (b) and particle size distribution is shown in Figure 4.19 (c).  

 

Figure 4.19 A typical TST test result 
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The results of tests T1 to T20 are compared in Figure 4.20 and 4.21. For comparison, the 

TST results are plotted both with and without use of the d2 correction factor. In general, the 

agreement between sieving and TST results is very good. It is noted that the uncorrected TST 

curves plot slightly to the left (coarser) than by sieving while the corrected TST curves plot 

slightly to the right (finer). Most of the sieve points fall between the two TST curves suggesting 

that the two TST curves bracket the sieve data. At second glance it appears that the corrected 

TST curve better matches the sieve data for larger particles (d > 10 mm) while the uncorrected 

TST is a better match for smaller particles (d < 10 mm). Complete TST results can be found in 

Appendix D. 

However, particle distribution curves are “cumulative” and thus a disparity at the top of 

the curve causes a divergence between the curves that continues as two parallel lines even if 

there is perfect agreement through the remainder of the size spectrum. Therefore, in Figure 4.22 

the data is plotted by particle size increment rather than by the customary cumulative particle 

size distribution. It confirms that the largest disagreement between sieve results and the 

uncorrected TST is in the largest (37.5 mm to 25 mm) size range. The d2 correction by Equation  

(4.10) brought the TST and sieve results to much better agreement in this size range. It is also 

noted that for particles larger than about 10 mm, the corrected TST data better agreed with sieve 

data while the uncorrected TST data was in better agreement with sieve data for particles smaller 

than about 10 mm. The data used to compare particle size distribution by sieving and TST is 

listed in Table 4.1, 4.2, 4.3 and 4.4. Table 4.1 and 4.2 correspond to Figure 4.20 and 4.21 while 

Tables 4.3 and 4.4 provide the numerical values used to create Figure 4.22.       
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Figure 4.20 Comparison of TST and sieving results: (a) T1, (b) T2, (c) T3, (d) T4, (e) T5, (f) T6 
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Figure 4.20 (Continued) Comparison of TST and sieving results: (g) T7, (h) T8, (i) T9, (j) T10 
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Figure 4.21 Comparison of TST and sieving results: (a) T11, (b) T12, (c) T13, (d) T14, (e) T15, 
(f) T16 
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Figure 4.21 (Continued) Comparison of TST and sieving results: (g) T17, (h) T18, (i) T19, (j) 
T20 
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Figure 4.22 Comparison of TST corrected and uncorrected results by size intervals (T1 to T20): 
(a) 37.5 mm - 25 mm, (b) 25 mm - 19 mm, (c) 19 mm - 12.5 mm, (d) 12.5 mm - 9.5 mm, (e) 9.5 

mm - 4.75mm, (f) 4.75 mm - 2.36 mm 
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Table 4.1 Percent of soil passing different sieve opening sizes  

Specimen 
Number 

Opening Size 

1" 3/4" 1/2" 3/8" No. 4 No. 8 

25 mm 19 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 

T1 100.0 75.5 47.3 26.0 15.8 0.1 

T2 95.9 77.4 51.9 30.1 21.2 0.3 

T3 100.0 83.2 48.3 29.3 14.5 0.2 

T4 100.0 94.1 62.4 41.3 20.8 0.3 

T5 96.9 82.4 52.4 32.3 16.3 0.3 

T6 100.0 87.5 53.8 29.2 10.7 0.1 

T7 98.9 84.6 52.6 30.9 15.7 0.2 

T8 98.6 79.9 50.5 31.2 15.2 0.2 

T9 100.0 84.7 50.4 34.4 18.2 0.2 

T10 96.8 82.1 51.6 32.9 20.3 0.3 

T11 100.0 78.8 58.6 38.4 20.9 0.3 

T12 100.0 85.4 19.9 12.9 7.0 0.1 

T13 100.0 94.6 79.5 14.9 7.2 0.1 

T14 100.0 90.4 84.0 66.2 7.0 0.1 

T15 100.0 90.6 84.4 77.4 63.5 0.5 

T16 100.0 91.1 46.6 4.0 1.3 0.0 

T17 100.0 95.7 88.1 40.7 1.3 0.1 

T18 100.0 98.4 95.6 84.2 43.3 0.3 

T19 100.0 94.4 50.1 43.1 1.4 0.0 

T20 100.0 87.7 63.3 45.6 26.9 0.4 
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Table 4.2 Percent passing different equivalent opening sizes by the TST 

Specimen 
Number 

Opening Size 

1" 3/4" 1/2" 3/8" No. 4 No. 8 

25 mm 19 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 

T1 100.0 83.4 49.3 33.1 19.2 0.6 

T2 100.0 83.1 57.8 40.5 25.4 1.8 

T3 100.0 85.6 52.9 36.5 17.9 0.7 

T4 100.0 96.1 66.0 47.3 21.4 1.0 

T5 100.0 86.1 57.4 39.2 19.8 0.9 

T6 99.5 91.4 57.2 37.2 13.8 0.4 

T7 98.8 86.8 55.9 38.2 18.7 0.4 

T8 98.6 82.7 54.0 36.6 16.8 0.4 

T9 98.7 89.4 56.6 39.6 19.9 0.5 

T10 98.2 85.3 56.1 38.2 22.3 1.1 

T11 100.0 80.7 60.1 44.5 22.2 1.0 

T12 100.0 88.1 27.7 15.7 7.9 0.3 

T13 100.0 95.0 84.7 30.0 8.5 0.4 

T14 100.0 92.2 84.5 73.4 8.6 0.3 

T15 100.0 92.6 85.0 79.4 62.2 2.5 

T16 100.0 95.9 55.0 13.5 1.6 0.1 

T17 100.0 97.0 91.3 52.6 2.7 0.1 

T18 100.0 98.2 94.7 91.0 44.7 1.8 

T19 100.0 96.6 52.2 45.8 3.0 0.1 

T20 98.8 88.5 67.5 53.5 31.5 0.9 
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Table 4.3 Percent of specimen found between different sieve opening sizes  

Specimen 
Number 

Opening Size 

> 1" 
1" - 
3/4" 

3/4" - 
1/2" 

1/2" - 
3/8" 

3/8" - 
No. 4 

No. 4 - 
No. 8 

> 25 mm 
25-19 
mm 

19-12.5 
mm 

12.5-9.5 
mm 

9.5-4.75 
mm 

4.75-2.36 
mm 

T1 0.0 24.5 28.2 21.3 10.2 15.7 

T2 4.1 18.5 25.6 21.7 9.0 20.8 

T3 0.0 16.8 35.0 18.9 14.9 14.3 

T4 0.0 5.9 31.6 21.1 20.5 20.5 

T5 3.1 14.5 30.0 20.1 15.9 16.1 

T6 0.0 12.5 33.7 24.6 18.5 10.6 

T7 1.1 14.3 32.0 21.7 15.2 15.5 

T8 1.4 18.7 29.4 19.3 16.0 15.0 

T9 0.0 15.3 34.4 15.9 16.2 17.9 

T10 3.2 14.7 30.5 18.7 12.6 20.0 

T11 0.0 21.2 20.2 20.2 17.5 20.6 

T12 0.0 14.6 65.5 7.1 5.9 6.9 

T13 0.0 5.4 15.1 64.6 7.8 7.0 

T14 0.0 9.6 6.4 17.8 59.3 6.9 

T15 0.0 9.4 6.2 7.0 13.9 63.0 

T16 0.0 8.9 44.5 42.6 2.7 1.3 

T17 0.0 4.3 7.5 47.5 39.4 1.3 

T18 0.0 1.6 2.9 11.4 40.9 42.9 

T19 0.0 5.6 44.3 7.0 41.7 1.4 

T20 0.0 12.3 24.3 17.8 18.7 26.5 
 

 

  



111 
 

Table 4.4 Percent found between different equivalent opening sizes by the TST 

Specimen 
Number 

Sieve Opening Size 

> 1" 
1" - 
3/4" 

3/4" - 
1/2" 

1/2" - 
3/8" 

3/8" - 
No. 4 

No. 4 - 
No. 8 

> 25 mm 
25-19 
mm 

19-12.5 
mm 

12.5-9.5 
mm 

9.5-4.75 
mm 

4.75-2.36 
mm 

T1 0.0 16.6 34.1 16.2 13.9 18.6 

T2 0.0 16.9 25.3 17.3 15.1 23.6 

T3 0.0 14.4 32.7 16.4 18.6 17.2 

T4 0.0 3.9 30.1 18.7 25.9 20.4 

T5 0.0 13.9 28.7 18.2 19.4 18.9 

T6 0.5 8.1 34.2 20.0 23.4 13.4 

T7 1.2 12.0 30.9 17.7 19.5 18.3 

T8 1.4 15.9 28.7 17.4 19.8 16.4 

T9 1.3 9.3 32.8 17.0 19.7 19.4 

T10 1.8 12.9 29.2 17.9 15.9 21.2 

T11 0.0 19.3 20.6 15.6 22.3 21.2 

T12 0.0 11.9 60.4 12.0 7.8 7.6 

T13 0.0 5.0 10.3 54.7 21.5 8.1 

T14 0.0 7.8 7.7 11.1 64.8 8.3 

T15 0.0 7.4 7.6 5.6 17.2 59.7 

T16 0.0 4.1 40.9 41.5 11.9 1.5 

T17 0.0 3.0 5.7 38.7 49.9 2.6 

T18 0.0 1.8 3.5 3.7 46.3 42.9 

T19 0.0 3.4 44.4 6.4 42.8 2.9 

T20 1.2 10.3 21.0 14.0 22.0 30.6 
 

In addition to the d2/d3 ratio effect, there are additional factors that could contribute to 

differences in particle size distributions determined by sieving and by the TST. First, the 

assumption that the thickness (d3) of a particle is the average of two bounding bridge heights is 

approximate. All of the particles are effectively assumed to have one of only five possible d3 

values. Both the AIMS and UI-AIA systems do a better job of resolving d3. In the AIMS system, 

the thickness of aggregates is determined by the amount of required auto-focusing. In the UI-

AIA system three video cameras are used to obtain three orthogonal views of each particle. 

Naturally, both methods will analyze many fewer particles per unit time than the TST does. 
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Therefore, even an approximate assumption for d3 achieves the TST objective of obtaining 

particle size distributions of coarse sand and gravel inexpensively and rapidly compared to 

traditional sieving and other imaging techniques. Nevertheless, to improve the d3 estimate, more 

bridges can be used to narrow the ranges between successive bridges.  

Secondly, in the present work no consideration was given to the effect that d1 may have 

on passage of particles through sieve openings. Longer particles are likely to find it more 

difficult to pass through a tight opening than shorter particles possessing the same d2 and d3. 

Next, soil particles come in an endless variety of shapes and few are ideally ellipsoidal as was 

assumed for the derivation of the d2 correction factor.  

Finally, even the highest resolution cameras do have a finite resolution. In the present 

testing program the largest particles contained 135 pixels per particle diameter (PPD) while the 

smallest particles contained only 10.8 PPD. Thus, the elliptical fitting to obtain d1 and d2 is less 

precise for the smaller particles than for the largest ones. Ohm and Hryciw (2013a) discuss how 

future advances in camera technology will eliminate this possible problem and lead to more 

accurate particle sizing over a larger range of sizes. Regardless of the differences between the 

TST and sieving, the test results compared in Figure 4.20 and 4.21 demonstrate that the TST 

provides a consistent and reasonable size distribution for coarse sand and gravel. 
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4.8 Over-Segmentation from Watershed Segmentation Results 

TST images should require little additional segmentation beyond the previously mentioned 

watershed analysis. However, there is an occasional segmentation problem associated with 

elongated particles, particularly if they have both convex and concave perimeter segments. Such 

“peanut shaped” particles are occasionally over-segmented by the watershed method. The result 

is that a single particle is interpreted as being two as shown in Figure 4.23. 

 

Figure 4.23 Over-segmentation: (a) an original image from the TST, (b) a binary image, and (c) 
watershed segmentation of a binary image 

 

This problem has only a small effect on grain size distributions. However, its impact on 

assessment of particle shapes would be more significant and therefore needs to be rectified. 

Meyer and Beucher (1990) proposed “marker-controlled” watershed segmentation by identifying 

foreground objects and background objects. Unfortunately, it is not easy to identify or “mark” 

foreground particles from complex soil grains.  

For the TST, a method that handles the over-segmentation problem manually is proposed 

(Figure 4.24). From the results of watershed segmentation shown in Figure 4.23 (c), pairs of 

over-segmented particles are selected by clicking each object manually. Then, each pair of 
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selected objects is assigned as the same particle number. Finally, one-pixel line that separates the 

pair of over-segmented particles is removed by applying the morphological closing operation.  

 

Figure 4.24 Handling over-segmentation: (a) selecting over-segmented particles, (b) assigning 
same numbers, (c) removing one-pixel line by closing 

 

Both the watershed segmentation and the proposed modified watershed segmentation 

method were performed on particles retained between the 25.4 mm and 4.75 mm height bridges 

from T11, T12 and T13 for the comparison. The percentages of number of over-segmented 

particles were 1.2 %, 3.1 % and 2.6% for tests T11, T12 and T13 respectively. However, when 

comparing TST results with and without corrections for over-segmentation, almost no 

differences between the grain size distribution curves were found. Still, automated image 

processing method must be developed to identify and correct the over-segmentation in the 

watershed segmentation more efficiently and less subjectively. 
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CHAPTER V 

New Research Directions 

 

5.1 A Higher Magnification Camera on Image-Based Methods 

5.1.1 Recent Advances in Imaging Technology 

Since their commercial introduction in the late 1990’s digital single lens reflex (DSLR) cameras 

have rapidly increased in resolution as measured by image megapixels (MP). Figure 5.1 shows 

the resolution history of two commercial lines, DSLR cameras by Nikon and medium format 

digital camera back (DCB) cameras by Leaf. DSLR cameras reached 36 MP in 2012, while DCB 

cameras had already achieved 80 MP in 2010. Since DCBs cameras are very expensive, DSLR 

cameras are currently used in the Sedimaging and TST systems. 
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Figure 5.1 Advances in DSLR and DCB camera resolutions over time 

 

 Many particulates such as pills, agricultural products and even biological cells are 

digitally imaged. However, they do not possess a very wide range of sizes and therefore, 

advances in image resolution is not as critical for their respective industries. By contrast, silt, 

sand and gravel particles range from 0.002 mm to 75 mm.  

 With pre-2010 lower resolution DSLR cameras, images had to be taken at several 

magnifications to capture different particle size ranges. Also, multiple images had to be taken at 

different specimen locations and digitally “stitched” so that a combined image would be a 

statistically valid representation of the soil. By contrast, using a post-2010 higher resolution 

camera, a single photo taken at a fixed magnification can produce particle size distributions for 

soil particles ranging over 2 orders of magnitude in diameter. 
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5.1.2 Minimum PPDs for the Sedimaging and the TST 

Based on the Sedimaging tests of sands containing known percentages of silt, the minimum PPD 

that can be analyzed by the wavelet method was found to be 2.7. However, for simplicity a more 

conservative minimum PPD of 3.0 will be assumed. To explain why so few pixels are apparently 

needed to size the particles, it is pointed out that the wavelet method does not determine the sizes 

of every particle individually. It merely analyzes the overall “texture” in each 128 pixel × 128 

pixel analysis subarea.  

 The minimum PPD for the TST test is dictated by the watershed segmentation method 

and the need to adequately define the particles’ projected areas. To find this minimum PPD, 

different quantities of coffee beans were placed on the TST and photographed. The percentage of 

the image area covered by the coffee beans was varied from 20% to 70% as shown in Figure 5.2.  
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Figure 5.2 Different image coverage by coffee beans: (a) 20%, (b) 30%, (c) 40%, (d) 50%, (e) 
60%, (f) 70% 

 

Different PPDs were generated by digital downscaling of the original images. Figure 5.3 

compares the number of segmented particles by watershed analysis at different PPDs to the 

number of actual coffee beans. Conservatively, the minimum PPD to detect all of the particles 

appears to be 9. It is also noted that even with a coverage area of 70% (i.e. very high contact 

between particles) watershed segmentation successfully identified virtually all of the beans. Note 

that the minimum PPD for the TST is three times larger than the minimum PPD for the 

Sedimaging. This is because the TST uses a deterministic method that requires good particle 
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perimeter resolution for watershed analysis while the Sedimaging uses a statistical method that 

does not require such high resolution. 

 

Figure 5.3 Comparison of segmented versus actual number of coffee beans in the TST for 
various PPD 

 

5.1.3 Discussion 

The minimum required PPDs for the Sedimaging and TST tests are dictated by their respective 

image analysis methods. However, this is only one factor that will control the minimum particle 

size that can be determined in each test with a given camera. The other factor is the area to be 

photographed. The Sedimaging test requires a specimen weight of 450 g to 500 g. This weight 

yields a loose sedimented soil column height of no more than 135 mm. For the TST, the longer 

dimension of the table that must appear in the image is 910 mm. This allows for single image 
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testing of 1.0 to 1.5 kg specimens. With these requisite parameters and the minimum PPD 

requirements of 3 for the Sedimaging and 9 for the TST, the capabilities of four cameras with 

different resolutions are compared in Table 5.1. The cameras were selected to represent digital 

capabilities of the early 2000’s (6.1 MP), the presently used Nikon D7000 (16.2 MP) and 

potential usage of higher resolution Nikon D800 (36.3 MP) and Leaf Credo (80 MP) cameras. 

While the actual costs of digital cameras decrease regularly, if the current (2013) D100 cost was 

set at 100 arbitrary currency units, the other three cameras would cost 800, 2500 and 40000 

respectively. 

Table 5.1 Smallest resolved particle sizes by Sedimaging and TST for different camera 
resolutions 

Camera Model D100 D7000 D800 Credo 80 

Year Introduced 2002 2010 2012 2012 

Resolution (MP) 6.1 16.2 36.3 80 
Resolution  

(pixels × pixels) 
3008 × 2000 4928 × 3264 7360 × 4912 10320 × 7752

Sedimaging 
Soil Column Height  

(mm) 
135 135 135 135 

Required Magnification  
(pixels/mm) 

22.3 36.5 54.5 76.4 

Minimum PPD for  
Wavelet Analysis (pixels) 

3 3 3 3 

Smallest Particle  
Resolved (mm) 

0.135 0.082 0.055 0.039 

Translucent Segregation Table (TST) 
Longer TST  

Dimension (mm) 
910 910 910 910 

Required Magnification  
(pixels/mm) 

3.3 5.4 8.1 11.3 

Minimum PPD for  
Watershed Analysis (pixels) 

9 9 9 9 

Smallest Particle  
Resolved (mm) 

2.7 1.7 1.1 0.8 
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The longer Sedimaging and TST image dimensions and the larger of the two pixel 

resolution directions dictate the required magnification in units of pixels/mm. The required PPD 

then establishes the smallest particles size that can be resolved. Table 5.1 reveals that the target 

particle sizes (0.075 mm for the Sedimaging and 2.0 mm for the TST) could not be achieved 

with DSLR cameras in the 2000’s. By contrast, currently available cameras are well suited for 

characterizing particles well into the silt range by the Sedimaging and below 1.0 mm by the TST. 

These calculations suggest that particles in the 2.0 mm to 1.0 mm range could be tested in the 

TST rather than by the Sedimaging. Such a seemingly small decrease in the maximum particle 

size for the Sedimaging would have profound implications to the size and cost of the system. By 

reducing the maximum particle diameter by 50% the cross section of the sedimentation column 

could be reduced from (50 mm)2 to (25 mm)2. At the same time, the column height could be 

reduced by more than 50% since settling velocity is proportional to the square of the particle 

diameter and settling velocity controls particle segregation. The presently large Sedimaging 

system could become a portable device. 

 Continuing advances in image sensor technology will yield ever-increasing camera 

resolutions. This will gradually increase the range of particle sizes that could be analyzed from a 

single image. At the same time, improvements in optics will gradually increase image 

magnifications. Common current methods for increasing magnification include macro lenses, 

diopter rings and extension tubes. Table 5.2 lists the smallest soil particle sizes that could 

theoretically be detected by wavelet analysis using various combinations of these magnifying 

systems.  
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Table 5.2 Smallest resolved particles by various magnifying systems 

 

1)Macro  
Low Mag. 

Macro  
High Mag. 

2)Macro & 
Diopters 

3)Macro & 
Extension 

Magnification  
(pixels/mm) 

36.7 209.8 238.1 254.2 

Minimum PPD 
(pixels) 

3 3 3 3 

Minimum Particle  
Size (mm) 

0.082 0.014 0.013 0.012 

1) AF-S Micro Nikkor 60 mm f/2.8 G ED 
2) Tiffen 62 mm close-up lens +1, +2 and +4 
3) Kenko extension tube 12 mm, 20 mm and 36 mm 

 

A 60 mm macro lens provides magnifications approaching 210 pixels/mm. At this magnification 

the field of view will be too small for Sedimaging but it demonstrates that particles as small as 

0.014 mm can be detected. It is also worth noting that a magnification of 1500 pixels/mm would 

be able to detect 0.002 mm particles, the commonly cited silt/clay threshold. Smaller, clay-sized 

particles would not be detected. The use of diopter rings and extension tubes adds very little to 

the magnification achieved by the macro lens alone. Furthermore, diopter rings and extension 

tubes decrease the image quality to the point that measures of particle size are noticeably 

affected. As such, the use of diopter rings and extension tubes is not recommended. Higher 

magnifications can also be achieved with photomicroscopy at the expense of having a very 

limited field of view. 
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5.2 Linear Calibration Curve 

5.2.1 Theoretical CA Versus log10(PPD) Relationships 

It was earlier observed that the Normalized Energy distribution peaks at the decomposition level 

at which the approximations are at the size of the features in an image. Each doubling of PPD 

should increase CA by 1.0. Thus, the CA versus log10PPD relationship should theoretically be 

linear. This is demonstrated using images of perfect checkerboards shown in Figure 5.4.  

 

Figure 5.4 CA for ideal checkerboards 
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A checkerboard of 1 × 1 pixels contains all of its energy at the 1st decomposition level and 

accordingly CA=1.00; a checkerboard of 2 × 2 squares contains all of its energy at the 2nd level 

(CA=2.00); a checkerboard of 4 × 4 squares contains all of its energy at the 3rd level (CA=3.00) 

and so on. This idealized “checkerboard relationship” is shown in Figure 5.5 and expressed by: 

12CAPPD        (5.1) 

Figure 5.5 also compares Equation (5.1) to the empirically established CA vs log10PPD 

calibrations for saturated soils behind glass. The differences are obviously large but explainable. 

 

Figure 5.5 Checkerboard model and downscaling from n=10 

 

 In the early 2000’s, prior to wide availability of high resolution digital SLR cameras, 

Shin and Hryciw (2004) used an analog CCD camera. The signals were digitized into 640 × 480 
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images. As such, only 7 (at most 8) levels of decomposition could be used. Today, 7 

decomposition levels (128 × 128) continue to be used so that the size of the square analysis areas 

could be small relative to the specimen size when using the highest resolution cameras 

commercially available. This leads to a critical observation: of the 6 curves shown in Figure 3.22, 

only the one for PPD = 12, which peaks almost symmetrically at the 4th decomposition, comes 

close to not being truncated at either the 1st or 7th decomposition level. As a result of the 

truncations of curves for all other PPDs, Equation (3.3) under-predicts the true (un-truncated) 

CA at high PPD values and over-predicts the true CA at low PPDs. 

 To confirm that the true CA versus PPD calibration line should be linear, a 1024 × 1024 

(n=10) image of 2NS soil retained between the No. 10 and No. 16 sieves was captured at PPD = 

58.5. Instead of the usual 7, all 10 decomposition levels were used to compute CA. As shown by 

the curve in Figure 5.6 for PPD = 58.5, the Normalized Energy distribution was not truncated at 

either end when 10 decomposition levels were used. The 1024 × 1024 images was then digitally 

downscaled to 512 × 512 (PPD = 29.3). Figure 5.6 shows that this caused each data points to 

shift to the left by exactly one decomposition level. Therefore, CA also decreased by exactly 1.0. 

The image was then further downscaled to 256 × 256 (PPD = 14.6) and finally 128 × 128 (PPD 

= 7.3). The experiment was repeated on 369 overlapping images of the soil specimen and the 

average CA was computed to be 5.53 with a standard deviation (σ) of ± 0.06. The maximum and 

the minimum CA values were 5.69 and 5.40, respectively. The results of one test which produced 

a CA value closest to the average are shown in Figure 5.5. The vertical dimension of the open 

square data point at PPD = 58.5 shows the range occupied by ± σ of the CA values and the 

horizontal bars show the minimum and the maximum values. Figure 5.5 also shows the CA 

points corresponding to PPD = 29.3, 14.6 and 7.2. As expected from observation of Figure 5.6, 
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the points for PPD = 58.5 and 29.3 fall on a line parallel to the checkerboard line. The point 

corresponding to PPD = 14.6 begins to rise above the line and the point corresponding to PPD = 

7.3 is well above it as would be expected given the clear truncation of its energy curve in Figure 

5.6.  

 

Figure 5.6 Normalized Energies with downscaling from n=10 
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 While the “calibration line” for the 2NS in Figure 5.5 is parallel to the checkerboard line, 

it is offset downward (or to the right) from it. The offset is due to voids, partial particle views, 

non-square particle geometries and particle surface imperfections. Since such features are 

smaller than the particles themselves, the CA for images of soil assemblies will naturally be 

lower than for perfect checkerboards.  

 

5.2.2 Discussion of Practical Implications 

While current high end camera resolutions and testing system dimensions assure that Equation 

(3.4) will continue to be used for some years, the prospect of eventually moving to a single-

parameter linear calibration is exciting. Since the calibration line would be a simple offset from 

the checkerboard line, it can be expressed by modification of Equation (5.1) to: 

2CA TPPD        (5.2) 

The letter T is suggested for the shift as it would reflect the soil image’s “texture” or “type”. For 

the checkerboard line T = -1.00 while for 2NS and many similar alluvial or glacio-fluvial sands, 

T = 0.34 is tentatively recommended. For mottled, roughly textured or translucent soil particles, 

T would be smaller. At any rate, the linear model would be much preferred over the current non-

linear calibration as it would require a single empirical parameter (T) which for most soils is 

expected to be about 0.34. Unusual soils would then be characterized by their deviation from the 

soil baseline of T = 0.34. 

 The eventual implementations of the linear Equation (5.2) would require that the smallest 

soil particles, (d = 0.075 mm) nominally contain at least PPD = 20 to 25 to avoid having CA 
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affected by truncation of the Energy distribution at the first decomposition level. This translates 

to a camera magnification of about 300 pixels/mm which is almost 10 times the currently used 

magnification. To capture the entire soil column shown in Figure 3.19 with a single image at this 

magnification would require a 500 to 600 MP camera sensor. Alternatively, it would require high 

resolution scanning or digital stitching of multiple images which, while technically feasible, are 

impractical. As such the current 2-parameter non-linear model which yields very good results 

will continue to be used until higher resolution cameras are developed or an alternate engineering 

solution is found.  
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5.3 Morphological Opening to Analyze Sedimented Soil Images 

5.3.1 Mathematical Morphology in Optical Granulometry 

In this dissertation, for image analysis in the Sedimaging test, a statistical method called 2D 

wavelet analysis was used and a wavelet index CA was correlated to the average particle size as 

defined by PPD. A different approach based on morphological opening to determine particle size 

distribution of soil from a Sedimaging image is proposed. 

Mathematical morphology has previously been employed to characterize particle size and 

surface texture. Devaux et al. (1997) used two morphological operations, erosion and dilation on 

steel marbles and ground pea kernels, and found that the erosion or dilation steps can be related 

to the particle size. Ghalib and Hryciw (1999) used watershed analysis to separate contacted 

particles from an image captured by a backlit table. Mlynarczuk (2009) used morphological 

gradient, watershed analysis and morphological filtering to evaluate rock surface roughness from 

an image obtained by a laser profilometer.  

 

5.3.2 Erosion, Dilation and Structuring Element 

Two basic operations in mathematical morphology are erosion and dilation. Erosion can be 

described as shrinkage of objects in an image whereas dilation can be described as expansion of 

objects in an image. It is easy to understand how these two operations work when applied on a 

binary image. Figure 5.7 shows the results of erosion and dilation on a binary image containing 

square “objects” of different size. Note that red dots represent locations of pixel points.  
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Figure 5.7 Erosion and dilation of a binary image by a 3 x 3 square structuring element: 
(a) Original image, (b) Erosion, (c) Dilation 

 

To determine how much the area of an object will be shrunk or expanded, a structuring 

element needs to be defined. A Structuring element defines the size of the neighborhood that will 

be influenced by erosion or dilation, and also defines the center of this neighborhood. The center 

of the structuring element will progressively be moved to every pixel location in an image. The 

final products of applying erosion and dilation on an image are entirely dependent on the shape 

and the size of this structuring element (Solomon and Breckon 2011). As shown in Figure 5.7, an 

object that is smaller than a 3 by 3 square structuring element is removed by erosion whereas 

objects that are larger than the structuring element still remain but will be smaller. On the other 

hand, opening will make every object larger. Mathematically, in both binary and non-binary 

images the erosion operation replaces the value of each individual pixel in an image by the 

minimum value of its neighborhood pixels whereas dilation replaces each individual pixel in an 

image by the maximum value of neighborhood pixels.  
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5.3.3 Opening and Closing 

Now that the two basic operations in mathematical morphology are defined, opening and closing 

can be defined based on the sequence of these two basic operations. Opening is defined as 

erosion followed by dilation, whereas closing is defined as dilation followed by erosion. The 

easiest way to compare opening and closing is to see the final products of an original image 

applied by these two operations. Figure 5.8 shows a result of opening an original image using a 3 

by 3 square structuring element. One of the square objects from the original image which has a 

size less than 3 by 3 structuring element is removed as a result of opening. When erosion is first 

applied on the original image, objects that are smaller than structuring element are removed. 

When dilation is next applied on the image after erosion, the remaining objects recover their 

original size. The closing operation is the opposite of the opening operation. Figure 5.9 shows 

the result of closing an image. Notice that “voids” inside of the square foreground objects that 

are smaller than the structuring element are removed by closing.  

 

Figure 5.8 Opening of a binary image by a 3 x 3 square structuring element: (a) Original image, 
(b) After opening 
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Figure 5.9 Closing of a binary image by a 3 x 3 square structuring element: (a) Original image, 
(b) After closing 

 

Opening is the operation that is used to determine particle size distribution using morphological 

processing. The basic premise is that the number of pixels that are removed by opening a binary 

image with certain sized structuring element corresponds to percentage of objects that are 

smaller than that structuring element. For a grayscale image, the results of opening may not be as 

simple to interpret as those for a binary image. The opening operation on a grayscale image tends 

to suppress bright regions that are smaller than the structuring element (Solomon and Breckon 

2011). Figure 5.10 shows opening of a soil image with structuring elements of different sizes. 

The grayscale image can be plotted in three dimensional space where the x and y axes are the 

coordinates of each pixel and the z axis is the grayscale value. Thus, the opening operation on a 

grayscale image can be visualized as removing similar gray scale region that are smaller than 

structuring element in three dimensional space. Therefore, the result of opening operation on a 

gray scale image is somewhat different than that on a binary image. In other words, for a binary 

image objects that are smaller than structuring element are entirely removed from the original 
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image, whereas for a grayscale image the details of objects that are smaller than the structuring 

element are removed.  

 

Figure 5.10 Opening of a soil image with different size of diamond shape structuring element: (a) 
Original image, (b) Opening with SES=21, (c) Opening with SES=41, (d) Opening with SES=61 

 

One could say that the opening operation on a gray scale image can be regarded as blurring the 

image at different scales. For a soil particle image, details of objects can be parts of a particle 

having similar internal shades of gray, voids between soil particles, entire individual soil 

particles, or combinations of two (or more) adjacent soil particles having similar gray scales 

(Ohm and Hryciw 2012). Therefore, the results of opening a grayscale image cannot be directly 
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correlated to particle size distribution as can be done for a binary image. Details about how to 

correlate opening results to particle size distribution follow in next two sections.  

 

5.3.4 Structuring Element Size 

As discussed earlier, the structuring element is an assemblage of pixels representing any shape 

that is to define the neighborhood for the morphological operation. For determination of a 

distribution of sizes of objects in an image, the structuring element shape is chosen to 

approximate the shape of objects being sized. For soil particles, a diamond shape was selected. 

The Structuring Element Size (SES) was defined by the number of pixels along the diagonal of a 

diamond structuring element (Jung 2010).  

 

5.3.5 Pattern Spectrum 

A pattern spectrum is a normalized histogram of the objects found in an image (by opening) 

versus the SES (Matheron 1975). Mathematically, a pattern spectrum value (PSV) for certain 

SES is defined as a summation of the difference in gray scale values between an image opened 

by SES-2 and an image opened by SES. For uniform soils, the SES corresponding to the peak of 

the pattern spectrum correlates well with PPD (Jung 2010). For non-uniform soils, the pattern 

spectrum is flatter than that for uniform soils.  
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5.3.6 Peak of Pattern Spectrum (PPS) Method 

An image of soils of sieve diameter between 0.425 mm (No. 40 sieve) and 0.300 mm (No. 50 

sieve) was captured in a Sedimaging test. The pattern spectrum was computed for each vertical 

128 pixel height increment from bottom to top of the image. The pattern spectrum for all of the 

increments and their peak values as marked by blue circle are shown in Figure 5.11.  

 

Figure 5.11 Pattern spectrum of pre-sieved soil: No. 40 - No. 50 

 

The SES corresponding to the peak of the PSV is not exactly equal to PPD due to the slightly 

different shape of the diamond structuring element and typical soil particles (Jung 2010). 

Therefore, the average of SESs corresponding to the peak of the PSV and the average PPD 

calculated from the two bounding sieve sizes were plotted to develop a calibration curve. In 

order to find this curve for a wide range of PPD, different particle ranges of sieved soils were 

prepared and analyzed by the same procedure (Figure 5.12). The relationship between PPD and 

SES corresponding to the peak of the PSV is as follows: 
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 

      (5.3)  

where SESp is the structuring element size corresponding to peak of the PSV.  

 

Figure 5.12 Structuring element size corresponding to peak of the PSV (SESp) vs pixels per 
particle diameter (PPD) curve 

 

To summarize, the procedure to analyze an image of a sedimented soil using the Peak of Pattern 

Spectrum (PPS) method is as follows. First, a sedimented soil image is obtained in the 

Sedimaging device. Second, the pattern spectrum for each 128 pixel height increment is 

computed. Third, the SES corresponding to the peak of the PSV for each increment is found. 

Fourth, each SES is converted to PPD using Equation (5.3) (Figure 5.12). Finally, the particle 

size distribution of the soil is developed by sorting the PPD from each layer by size. A typical 

result by the PPS method is shown in Figure 5.13. 
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Figure 5.13 Typical result of PPS method (S1): (a) Original soil image, (b) Pattern Spectrums for 
all vertical image increments, (c) Particle size distribution 

 

5.3.7 Pattern Spectrum Matching (PSM) Method 

The PPS method still requires that soil particles be relatively uniform in size within each 128 

pixel high increment of the image. As discussed earlier, this same requirement prompted 

development of the Sedimaging system to analyze grain sizes of soil using wavelet analysis. In 

this chapter a method is proposed for analyzing images of for non-uniform soil using a Pattern 

Spectrum Matching (PSM) method. In this approach, pattern spectrums for non-uniform soils are 

created by combining the pattern spectrums of uniform soil particles that are components of the 

real soil mixture. In other words, the pattern spectrum of a soil “mixture” containing various 
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sizes is a summation of the weighted contributions of the spectrums of different incremental 

particle size ranges. The equation describing the pattern spectrum of such soil mixtures is: 

1 1 2 2 1 1i i i iPSV C PSV C PSV C PSV C PSV        (5.4) 

1

1
i

k
k

C


      (5.5) 

where PSV is the pattern spectrum of a soil mixture, PSVi is the pattern spectrum of the i-th 

uniform sieved soil constituent, and Ci is the mass (or volume) fraction of the i-th component soil. 

Unlike the PPS method, the entire pattern spectrum from each sieved component soil is used. 

Figure 5.14 (a) shows the pattern spectrum of the sieved component soils. These spectrums are 

used as a database to create synthetic pattern spectrum of different mass fractions. Figure 5.14 (b) 

shows the range of synthetic pattern spectrums created by assuming various combinations of the 

nine size increments shown in Figure 5.14 (a). Each constituent was assumed to contribute n × 

10% to the mixture where 0 ≤ n ≤ 10. Of course, the sum-of-n’s for each synthetic pattern was 10. 

Figure 5.14 (b) also shows the actual pattern spectrum of some real soil mixture. A least-square 

method is used to find the one synthetic pattern spectrum that best matches the pattern spectrum 

of the real soil mixture. Figure 5.14 (c) shows the synthetic pattern spectrum that matched the 

pattern spectrum of the real soil mixture shown in Figure 5.14 (b). A typical result by the PSM 

method is shown in Figure 5.15. 
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Figure 5.14 Procedure of PSM method: (a) Pattern spectrum of sieved soils, (b) Synthetic pattern 
spectrum using weighted average of pattern spectrum from sieved soils, (c) Matching synthetic 

spectrum to pattern spectrum of mixture 

 



140 
 

 

Figure 5.15 Typical result of PSM method (S1): (a) Original soil image, (b) Synthetic pattern 
spectrums and the pattern spectrum of the soil mixture, (c) Particle size distribution 

 

5.3.8 Test Materials 

Twenty soil samples were prepared in the Sedimaging system for analysis by the PPS and PSM 

mathematical morphology methods. The sieve-based size distributions by sieving are shown in 

Table 5.3. The total weight of each sample varied between 460 g and 510 g listed in Table 5.4. 

The first ten samples (S1-S10) were made by splitting one large specimen into ten portions then 

putting each portion through a sample splitter to create two halves. The second ten samples (S11-
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S20) were made to specific gradations from large batches of pre-sieved material. The particle 

size distributions are shown in Figure 5.16.  

Table 5.3 Percent passing different sieve opening sizes  

Specimen 
Number 

Opening Size 

No. 16 No. 30 No. 50 No. 100 No. 200 

1.180 mm 0.600 mm 0.300 mm 0.150 mm 0.075 mm 

S1 90.2 63.0 15.1 2.6 0.7 
S2 85.4 57.1 13.7 2.4 0.6 
S3 77.7 46.1 11.0 2.4 0.7 
S4 83.3 51.6 12.7 2.5 0.6 
S5 87.9 58.7 16.1 3.7 0.9 
S6 82.7 50.4 11.3 1.9 0.5 
S7 82.1 48.3 11.9 2.7 0.7 
S8 81.4 48.1 12.0 2.8 0.6 
S9 75.3 41.0 9.0 2.0 0.5 
S10 78.2 45.2 11.2 2.6 0.6 
S11 75.5 52.1 27.5 3.8 1.1 
S12 54.1 41.4 27.9 4.1 1.3 
S13 86.5 41.4 27.3 4.0 1.4 
S14 88.0 75.6 28.0 4.0 1.4 
S15 72.6 60.5 48.5 4.2 1.1 
S16 87.5 75.8 51.7 28.4 3.2 
S17 69.0 38.8 16.0 4.9 3.4 
S18 90.6 76.7 44.4 11.7 3.0 
S19 89.4 79.5 68.3 37.7 6.6 
S20 69.0 63.5 32.3 26.0 1.8 
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Table 5.4 Total weight of soil specimens 

Specimen 
Number 

Total Weight (g) 

S1 477.4 
S2 484.6 
S3 497.8 
S4 493.4 
S5 487.2 
S6 502.6 
S7 483.3 
S8 498.6 
S9 507.3 

S10 481.0 
S11 475.0 
S12 485.0 
S13 470.5 
S14 486.8 
S15 483.2 
S16 460.6 
S17 481.0 
S18 475.3 
S19 481.4 
S20 465.1 

 

 

Figure 5.16 Sieve analysis results of 20 soil specimens: (a) S1-S10, (b) S11-S20 
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5.3.9 Results and Discussions 

Figure 5.17 compares the results of the PPS image analysis method to sieve analysis. The 

number of data points obtained by the PPS method corresponds to the number of 128 pixel high 

layers in a sedimented soil image. Figure 5.18 compares the results of the PSM method to sieve 

analysis. The number of data points by the PSM method corresponds to the number of pattern 

spectrums of uniform sized sub-specimens that were used to create the synthetic pattern 

spectrums. The match between PPS method and sieve analysis appears to be as good as the 

match between the PSM method and sieve analysis. 

 As discussed earlier, both the PPS method and wavelet analysis require relatively 

uniform particle sizes within the area that is being analyzed. If there is a thin layer at the top of a 

sedimented soil image that is smaller than 128 pixels in height, the average particle size from this 

thin layer may not be fully calculated by using 128 × 128 pixels windows in wavelet analysis or 

by the 128 pixel height layers from the PPS method. Since morphological opening can analyze 

an area of any size, the layer thicknesses can be reduced. By contrast, since the window size used 

for wavelet analysis must be 2n × 2n, the window size can only be reduced to 64 × 64 pixels, 32 × 

32 pixels, and so forth. The flexibility of the PPS method can be useful when there is a thin layer 

that needs to be analyzed. 

 The purpose of the Sedimaging device is to sort particles by size and therefore insure 

relative uniformity of particle sizes at certain elevation increments in a sedimented soil. While 

the PPS method requires that the sedimented soil be analyzed incrementally with height, the 

PSM method analyzes the entire sedimented soil column simultaneously. Therefore, the PSM 

method may not need the same degree of particle sorting as the PPS requires. Thus, the PSM 
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method may be very useful in analyzing soil mixtures where a large Sedimaging device cannot 

be utilized, such as in the field. Further study is needed to evaluate how much the Sedimaging 

system could be scaled down if the PSM method is adopted.   

 However, the PSM results are still very preliminary. They are based on only one soil type. 

It is not yet known if the synthetic pattern responses determined on the sieved-out mass fractions 

of one soil will accurately predict the composite pattern response and the particle size 

distributions of other soils. If this is not the case and if every soil will require that its constituent 

size fractions be analyzed to create its own unique library of responses then the method may not 

be as attractive as the present study implies.  
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Figure 5.17 Comparison of results from sieve analysis and PPS method (S1-S8) 
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Figure 5.17 (Cont.) Comparison of results from sieve analysis and PPS method (S9-S16) 
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Figure 5.17 (Cont.) Comparison of results from sieve analysis and PPS method (S17-S20) 
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Figure 5.18 Comparison of results from sieve analysis and PSM method (S1-S8) 
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Figure 5.18 (Cont.) Comparison of results from sieve analysis and PSM method (S9-S16) 
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Figure 5.18 (Cont.) Comparison of results from sieve analysis and PSM method (S17-S20) 
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CHAPTER VI 

Conclusions 

 

Two tests using image-based methods to determine particle size distribution of soil were 

developed. Sediment Imaging or Sedimaging test that determines particle size distribution of soil 

between 0.075 mm and 2 mm utilized a statistical method called wavelet transformation. 

Translucent Segregation Table or TST test that determines particle size distribution of soil 

between 2 mm and 35 mm or more utilized a deterministic method called watershed 

segmentation. Both tests generate particle size distributions of soil that match with sieving results.  

 For the Sedimaging test, the effects of surface textures on a calibration curve were 

explored. It was found that internal particle textures may be interpreted as smaller particles 

thereby causing Sedimaging to underestimate the actual particle sizes. Therefore, development of 

a soil-specific calibration curves is recommended if Sedimaging is used for quality control 

purposes for soil particles with erratic internal textures.  

A statistical approach which can be used to characterize particle shape and particle 

orientation or fabric was proposed. An Energy Ratio (F) was defined as the ratio between 

wavelet decomposition Energies in the horizontal and vertical directions. F values greater than 

plus 1 are indicative of particles oriented with their long axes horizontally, while F values 

smaller than minus 1 indicate vertical orientation of axes. The absolute value of F is an indicator 
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of overall particle sphericity. A deterministic approach utilizing mean-shift clustering was 

proposed to determine aspect ratios of individual particles. The method requires a first estimate 

of particle radius that can be obtained by wavelet transformation. Well-segmented particles are 

still selected manually for computation of the aspect ratios.  

 For the TST test, over-segmentation from watershed segmentation results was explored. 

It was found that there is an occasional segmentation problem associated with elongated particles, 

particularly if they have both convex and concave perimeter segments. This problem has only a 

small effect on particle size distributions. However, its impact on assessment of particle shapes 

would be more significant. A method that handles the over-segmentation problem manually was 

proposed. From the results of watershed segmentation, pairs of over-segmented particles are 

selected by clicking each object manually. Then, each pair of selected objects is combined to 

become one particle. Still, an automated image processing method should be developed to 

identify and correct over-segmentation by watershed segmentation. Bridges used in the TST 

have two roles: 1) they prevent small particles from hiding beneath large particles and 2) the 

smallest particle dimension (d3) can be estimated from the average underpass height of the two 

bridges between which each particle comes to rest on the TST. The smallest dimension is used to 

determine the volume-based particle size distribution of a soil. The effects of the minor axis 

dimension (d2) and the smallest dimension (d3) on sieve size (d) were explored. An equation to 

determine a “d2 correction factor” based on the ratio between d2 and d3 was derived.  

 For future directions, implementing a higher magnification camera might shift particles 

between 1 mm and 2 mm in the Sedimaging to the TST. Such a seemingly small decrease in the 

maximum particle size for Sedimaging would have profound implications to the size and cost of 

such systems. The presently large Sedimaging system could become a portable device by 
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reducing the column height by more than 50%. With the higher magnification cameras, single-

parameter linear calibration could be developed. The calibration line would be a simple offset 

from the checkerboard line using a single empirical parameter (T). The T value would reflect the 

soil image’s texture or type.  

Morphological opening could be used to determine particle size distribution from not 

only uniform particle size images but also non-uniform particle size images. The Peak of Pattern 

Spectrum (PPS) method uses a Structuring Element Size (SES) corresponding to the peak of the 

pattern spectrum of a uniform soil image. A Pattern Spectrum Matching (PSM) method uses 

synthetic pattern spectrums that are created by assuming various combinations of the sieved 

component soils. A least square method is used to find the one synthetic pattern spectrum that 

best matches the pattern spectrum of the real soil mixture. It is expected that the PPS method can 

be useful when there is a thin layer in a sedimented soil image that needs to be analyzed while 

the PSM method can be useful to analyze soil mixtures where a Sedimaging device cannot be 

implemented, such as in the field.  
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% Sedimaging (SED) Test 
% Grain Size Distribution Analysis of Soils 
%  
% Geotechnical Engineering, Civil and Environmental Engineering 
% University of Michigan 
  
clear all; 
  
%% INPUT 
  
prompt={'Enter the Image File Name :  ','Enter the Magnification (pix/mm) :  
','Enter the Weight of Canister (W_c) (grams) :  ','Enter the Weight of Dry 
Soil and Canister (W_s+c) (grams) :  ','Enter the Weight of Accumulator 
filled with Water (W_aw) (grams) :  ','Enter the Weight of: Soil in 
Accumulator + Final Water in Accumulator + Empty Accumulator (W_s+wf+a) 
(grams):  '}; 
Ans=inputdlg(prompt,'Input Window'); 
  
prompt2={'Enter the Material Name :'}; 
Ans2=inputdlg(prompt2,'Input Window'); 
  
%% LABEL INPUT DATA 
  
I = imread(char(Ans(1))); 
Mag = str2double(Ans(2)); 
W_c = str2double(Ans(3)); 
W_sc = str2double(Ans(4)); 
W_aw = str2double(Ans(5)); 
W_swfa = str2double(Ans(6)); 
  
R=dir(char(Ans(1))); 
Material = char(Ans2(1)); 
Date_Tested = R.date; 
Tested_By = 'Ohm, H.S.'; 
  
%% WEIGHT OF SOIL IN ACCUMULATOR 
  
W_sa = 1.6*(W_swfa - W_aw); 
W_s = W_sc - W_c; 
  
if W_sa > W_s 
    W_sa = W_s; 
end 
  
%% IMAGE CROPPING 
  
I3 = imrotate(I,270,'bilinear'); 
I2 = imcrop(I3); 
Hgt_old = size(I2,1);  
Wth_old = size(I2,2);  
  
%% NUMBER OF WINDOWS 
  
n = 8;  
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Ver_N = floor((Hgt_old-128)/n)+1;  
Hor_N = 10; 
  
Start_Hor = floor((Wth_old - Hor_N * 128)/2); 
Hgt_new = 128 + (Ver_N - 1) * n; 
Wth_new = 128 * 10; 
  
I3 = I2(Hgt_old - Hgt_new + 1 : Hgt_old , Start_Hor + 1 : Start_Hor + 
Wth_new , :);  
  
%% WAVELET ANALYSIS 
  
for i = 1 : Ver_N 
    for j = 1 : Hor_N 
        I4 = I3(Hgt_new - 127 - n * (i - 1) : Hgt_new - n * (i - 1) , 1 + 128 
* (j - 1): 128 + 128 * (j - 1)); 
         
[A1 H1 V1 D1]=dwt2(I4,'haar'); 
[A2 H2 V2 D2]=dwt2(A1,'haar'); 
[A3 H3 V3 D3]=dwt2(A2,'haar'); 
[A4 H4 V4 D4]=dwt2(A3,'haar'); 
[A5 H5 V5 D5]=dwt2(A4,'haar'); 
[A6 H6 V6 D6]=dwt2(A5,'haar'); 
[A7 H7 V7 D7]=dwt2(A6,'haar'); 
  
E1=H1.^2+V1.^2+D1.^2; 
E2=H2.^2+V2.^2+D2.^2; 
E3=H3.^2+V3.^2+D3.^2; 
E4=H4.^2+V4.^2+D4.^2; 
E5=H5.^2+V5.^2+D5.^2; 
E6=H6.^2+V6.^2+D6.^2; 
E7=H7.^2+V7.^2+D7.^2; 
  
E1=sum(sum(E1)); 
E2=sum(sum(E2)); 
E3=sum(sum(E3)); 
E4=sum(sum(E4)); 
E5=sum(sum(E5)); 
E6=sum(sum(E6)); 
E7=sum(sum(E7)); 
E=E1+E2+E3+E4+E5+E6+E7; 
  
x=[1:7]; 
y=[E1/E E2/E E3/E E4/E E5/E E6/E E7/E]; 
CA(i,j)=dot(x,y); 
  
    end 
end 
  
%% CALIBRATION CURVE 
  
PPD = (CA./2.4).^5.1;  
Grain_Size = PPD./Mag; 
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%% ONE COLUMN GRAIN SIZE 
  
k = 1; 
  
for i = 1: Ver_N 
    for j = 1: Hor_N 
    Grain_Size_Row(k,1) = Grain_Size(i,j); 
    k = k+1; 
    end 
end 
  
for i = 1:Ver_N 
    Locat(i,1) = 64 + 8*(i-1); 
end 
  
%% INCREMENT PERCENTAGE 
  
Incre(1) = 8; 
  
for i = 1:15 
    Incre(i+1) = Incre(i) - 8/16 + 8/(16-i); 
end 
  
Incre_Perc = flipud(Incre'/Hgt_new*100); 
  
for i = 17:Ver_N-16 
    Incre_Perc(i) = 8/Hgt_new*100; 
end 
  
for i = Ver_N-15:Ver_N 
    Incre_Perc(i) = Incre_Perc(Ver_N-i+1); 
end 
  
Incre_Perc_Row = Incre_Perc / Hor_N; 
  
for i = 1:Hor_N-1 
    Incre_Perc_Row = [Incre_Perc_Row ; Incre_Perc / Hor_N]; 
end 
  
%% SORTING BY GRAIN SIZE 
  
C = [Grain_Size_Row Incre_Perc_Row]; 
D = sortrows(C); 
E = flipud(D); 
Sorted_Grain_Size = E(:,1); 
Sorted_Incre_Perc = E(:,2); 
  
%% PASSING PERCENTAGE 
  
for i= 1: Ver_N * Hor_N 
    if Sorted_Grain_Size(i,1)>0.075 
        Sorted_Grain_Size_Truncated(i,1)=Sorted_Grain_Size(i,1); 
        Sorted_Incre_Perc_Truncated(i,1)=Sorted_Incre_Perc(i,1); 
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    end 
end 
  
Pass_Perc_Truncated(1,1) = 100 - Sorted_Incre_Perc_Truncated(1,1); 
  
for i = 2 : size(Sorted_Incre_Perc_Truncated,1) 
    Pass_Perc_Truncated(i,1) = Pass_Perc_Truncated(i-1,1) - 
Sorted_Incre_Perc_Truncated(i,1); 
end 
  
Sorted_Incre_Perc_Truncated_Added = Sorted_Incre_Perc_Truncated * W_sa / W_s; 
  
Pass_Perc_Truncated_Added(1,1) = 100 - Sorted_Incre_Perc_Truncated_Added(1,1); 
  
for i = 2 : size(Sorted_Incre_Perc_Truncated_Added,1) 
    Pass_Perc_Truncated_Added(i,1) = Pass_Perc_Truncated_Added(i-1,1) - 
Sorted_Incre_Perc_Truncated_Added(i,1); 
end 
  
%% GRAIN SIZE DISTRIBUTION PARAMETERS 
  
if Pass_Perc_Truncated_Added(size(Sorted_Incre_Perc_Truncated_Added,1),1) > 
60 
    D60 = 0; 
    D30 = 0; 
    D10 = 0; 
    Cu = 0; 
    Cg = 0; 
else if Pass_Perc_Truncated_Added(size(Sorted_Incre_Perc_Truncated_Added,1),1) 
> 30 
        D30 = 0; 
        D10 = 0; 
        Cu = 0; 
        Cg = 0; 
        k = 1; 
        for i = 1 : size(Sorted_Incre_Perc_Truncated_Added,1) 
            if Pass_Perc_Truncated_Added(i)<=60 && 
Pass_Perc_Truncated_Added(i)>59 
                D60(k) = Sorted_Grain_Size_Truncated(i); 
                k = k+1; 
            end 
        end 
        D60 = D60(1); 
    else if 
Pass_Perc_Truncated_Added(size(Sorted_Incre_Perc_Truncated_Added,1),1) > 10 
            D10 = 0; 
            Cu = 0; 
            Cg = 0; 
            k = 1; 
            m = 1; 
            for i = 1 : size(Sorted_Incre_Perc_Truncated_Added,1) 
                if Pass_Perc_Truncated_Added(i)<=60 && 
Pass_Perc_Truncated_Added(i)>59 
                    D60(k) = Sorted_Grain_Size_Truncated(i); 
                    k = k+1; 
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                else if Pass_Perc_Truncated_Added(i)<=30 && 
Pass_Perc_Truncated_Added(i)>29 
                        D30(m) = Sorted_Grain_Size_Truncated(i); 
                        m = m+1; 
                    end 
                end 
            end 
            D60 = D60(1); 
            D30 = D30(1); 
        else 
            k = 1; 
            m = 1; 
            n = 1; 
            for i = 1 : size(Sorted_Incre_Perc_Truncated_Added,1) 
                if Pass_Perc_Truncated_Added(i)<=60 && 
Pass_Perc_Truncated_Added(i)>59 
                    D60(k) = Sorted_Grain_Size_Truncated(i); 
                    k = k+1; 
                else if Pass_Perc_Truncated_Added(i)<=30 && 
Pass_Perc_Truncated_Added(i)>29 
                        D30(m) = Sorted_Grain_Size_Truncated(i); 
                        m = m+1; 
                    else if Pass_Perc_Truncated_Added(i)<=10 && 
Pass_Perc_Truncated_Added(i)>9 
                            D10(n) = Sorted_Grain_Size_Truncated(i); 
                            n = n+1; 
                        end 
                    end 
                end 
            end 
            D60 = D60(1); 
            D30 = D30(1); 
            D10 = D10(1); 
            Cu = D60/D10; 
            Cg = (D30)^2/(D10*D60); 
        end 
    end 
end 
  
%% PERCENT FINER BY SIEVE OPENING SIZES 
  
Result_Passing_10 = 100; 
Result_Passing_16 = 100; 
Result_Passing_20 = 100; 
Result_Passing_30 = 100; 
Result_Passing_40 = 100; 
Result_Passing_50 = 100; 
Result_Passing_60 = 100; 
Result_Passing_70 = 100; 
Result_Passing_80 = 100; 
Result_Passing_100 = 100; 
Result_Passing_200 = 100; 
  
for i = 1: size(Sorted_Grain_Size_Truncated,1) 
    if Sorted_Grain_Size_Truncated(i) >= 2 
        Result_Passing_10 = Pass_Perc_Truncated_Added(i); 
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    else if Sorted_Grain_Size_Truncated(i) >= 1.19 && 
Sorted_Grain_Size_Truncated(i) < 2 
            Result_Passing_16 = Pass_Perc_Truncated_Added(i); 
         
        else if Sorted_Grain_Size_Truncated(i) >= 0.841 && 
Sorted_Grain_Size_Truncated(i) < 1.19 
            Result_Passing_20 = Pass_Perc_Truncated_Added(i); 
             
            else if Sorted_Grain_Size_Truncated(i) >= 0.595 && 
Sorted_Grain_Size_Truncated(i) < 0.841 
                Result_Passing_30 = Pass_Perc_Truncated_Added(i); 
                 
                else if Sorted_Grain_Size_Truncated(i) >= 0.420 && 
Sorted_Grain_Size_Truncated(i) < 0.595 
                    Result_Passing_40 = Pass_Perc_Truncated_Added(i); 
                     
                    else if Sorted_Grain_Size_Truncated(i) >= 0.297 && 
Sorted_Grain_Size_Truncated(i) < 0.420 
                        Result_Passing_50 = Pass_Perc_Truncated_Added(i); 
                         
                        else if Sorted_Grain_Size_Truncated(i) >= 0.25 && 
Sorted_Grain_Size_Truncated(i) < 0.297 
                            Result_Passing_60 = Pass_Perc_Truncated_Added(i); 
                             
                            else if Sorted_Grain_Size_Truncated(i) >= 0.210 
&& Sorted_Grain_Size_Truncated(i) < 0.25 
                                Result_Passing_70 = 
Pass_Perc_Truncated_Added(i); 
                                 
                                else if Sorted_Grain_Size_Truncated(i) >= 
0.177 && Sorted_Grain_Size_Truncated(i) < 0.210 
                                    Result_Passing_80 = 
Pass_Perc_Truncated_Added(i); 
                                     
                                    else if Sorted_Grain_Size_Truncated(i) >= 
0.149 && Sorted_Grain_Size_Truncated(i) < 0.177 
                                        Result_Passing_100 = 
Pass_Perc_Truncated_Added(i); 
                                         
                                        else if Sorted_Grain_Size_Truncated(i) 
>= 0.074 && Sorted_Grain_Size_Truncated(i) < 0.149 
                                            Result_Passing_200 = 
Pass_Perc_Truncated_Added(i); 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
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end 
  
if min(Sorted_Grain_Size_Truncated) > 0.149 && 
min(Sorted_Grain_Size_Truncated) <= 0.177 
    Result_Passing_200 = 0; 
else if min(Sorted_Grain_Size_Truncated) > 0.177 && 
min(Sorted_Grain_Size_Truncated) <= 0.210 
        Result_Passing_200 = 0; 
        Result_Passing_100 = 0; 
    else if min(Sorted_Grain_Size_Truncated) > 0.210 && 
min(Sorted_Grain_Size_Truncated) <= 0.25 
            Result_Passing_200 = 0; 
            Result_Passing_100 = 0; 
            Result_Passing_80 = 0; 
        else if min(Sorted_Grain_Size_Truncated) > 0.25 && 
min(Sorted_Grain_Size_Truncated) <= 0.297 
                Result_Passing_200 = 0; 
                Result_Passing_100 = 0; 
                Result_Passing_80 = 0; 
                Result_Passing_70 = 0; 
            else if min(Sorted_Grain_Size_Truncated) > 0.297 && 
min(Sorted_Grain_Size_Truncated) <= 0.420 
                    Result_Passing_200 = 0; 
                    Result_Passing_100 = 0; 
                    Result_Passing_80 = 0; 
                    Result_Passing_70 = 0; 
                    Result_Passing_60 = 0; 
                else if min(Sorted_Grain_Size_Truncated) > 0.420 && 
min(Sorted_Grain_Size_Truncated) <= 0.595 
                        Result_Passing_200 = 0; 
                        Result_Passing_100 = 0; 
                        Result_Passing_80 = 0; 
                        Result_Passing_70 = 0; 
                        Result_Passing_60 = 0; 
                        Result_Passing_50 = 0; 
                    else if min(Sorted_Grain_Size_Truncated) > 0.595 && 
min(Sorted_Grain_Size_Truncated) <= 0.841 
                            Result_Passing_200 = 0; 
                            Result_Passing_100 = 0; 
                            Result_Passing_80 = 0; 
                            Result_Passing_70 = 0; 
                            Result_Passing_60 = 0; 
                            Result_Passing_50 = 0; 
                            Result_Passing_40 = 0; 
                        else if min(Sorted_Grain_Size_Truncated) > 0.841 && 
min(Sorted_Grain_Size_Truncated) <= 1.19 
                                Result_Passing_200 = 0; 
                                Result_Passing_100 = 0; 
                                Result_Passing_80 = 0; 
                                Result_Passing_70 = 0; 
                                Result_Passing_60 = 0; 
                                Result_Passing_50 = 0; 
                                Result_Passing_40 = 0; 
                                Result_Passing_30 = 0; 
                            else if min(Sorted_Grain_Size_Truncated) > 1.19 
&& min(Sorted_Grain_Size_Truncated) <= 2 
                                    Result_Passing_200 = 0; 
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                                    Result_Passing_100 = 0; 
                                    Result_Passing_80 = 0; 
                                    Result_Passing_70 = 0; 
                                    Result_Passing_60 = 0; 
                                    Result_Passing_50 = 0; 
                                    Result_Passing_40 = 0; 
                                    Result_Passing_30 = 0; 
                                    Result_Passing_20 = 0; 
                                else if min(Sorted_Grain_Size_Truncated) > 2  
                                        Result_Passing_200 = 0; 
                                    Result_Passing_100 = 0; 
                                    Result_Passing_80 = 0; 
                                    Result_Passing_70 = 0; 
                                    Result_Passing_60 = 0; 
                                    Result_Passing_50 = 0; 
                                    Result_Passing_40 = 0; 
                                    Result_Passing_30 = 0; 
                                    Result_Passing_20 = 0; 
                                    Result_Passing_16 = 0; 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
Sieve_Size = [2; 1.19; 0.841; 0.595; 0.420; 0.297; 0.25; 0.21; 0.177; 0.149; 
0.074]; 
Result_Passing = [Result_Passing_10; Result_Passing_16; Result_Passing_20; 
Result_Passing_30; Result_Passing_40; Result_Passing_50; Result_Passing_60; 
Result_Passing_70; Result_Passing_80; Result_Passing_100; Result_Passing_200]; 
                                             
%% OUTPUT 
  
figure(1); 
subplot(1,3,1),imshow(I3); 
  
hold on; 
mark_color = 'bgrcmykbgrcmykbgrcmykbgrcmyk'; 
mark_shape = 'ox+*sdv^hox+*sdv^hox+*sdv^ho'; 
  
for i = 1 : 1 
    for j = 1 : Hor_N 
        A = [Hgt_new - 127 - n * (i - 1) Hgt_new - n * (i - 1) Hgt_new - n * 
(i - 1) Hgt_new - 127 - n * (i - 1) Hgt_new - 127 - n * (i - 1)]; 
        B = [1 + 128 * (j - 1) 1 + 128 * (j - 1) 128 + 128 * (j - 1) 128 + 
128 * (j - 1) 1 + 128 * (j - 1)]; 
        plot(B,A,[mark_color(j) '-'],'LineWidth',2); 
    end 
end 
  
N=floor(Ver_N / 5); 
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for i=1:N 
    for j=1:Hor_N 
        Grain_Size_Red(i,j)=Grain_Size(5*(i-1)+1,j); 
        Locat_Red(i)=Locat(5*(i-1)+1); 
    end 
end 
  
text(1300,Hgt_new/20*1,'SEDIMAGING (SED) TEST','fontsize',15); 
text(1300,Hgt_new/20*2,'GEOTECHNICAL ENGINEERING','fontsize',15); 
text(1300,Hgt_new/20*3,'UNIVERSITY OF MICHIGAN','fontsize',15); 
  
text(1300,Hgt_new/20*5,['MATERIAL: ',Material],'fontsize',15); 
text(1300,Hgt_new/20*6,['DATE TESTED: ',Date_Tested],'fontsize',15); 
text(1300,Hgt_new/20*7,['TESTED BY: ',Tested_By],'fontsize',15); 
  
text(1300,Hgt_new/20*10,['D_6_0 (mm): ',sprintf('%1.2f',D60)],'fontsize',15); 
text(1300,Hgt_new/20*11,['D_3_0 (mm): ',sprintf('%1.2f',D30)],'fontsize',15); 
text(1300,Hgt_new/20*12,['D_1_0 (mm): ',sprintf('%1.2f',D10)],'fontsize',15); 
text(1300,Hgt_new/20*13,['C_u: ',sprintf('%1.2f',Cu)],'fontsize',15); 
text(1300,Hgt_new/20*14,['C_g: ',sprintf('%1.2f',Cg)],'fontsize',15); 
text(1300,Hgt_new/20*15,['PF (%): 
',sprintf('%1.1f',abs(Result_Passing_200))],'fontsize',15); 
  
text(1300,Hgt_new/20*17,['MAGNIFICATION (pix/mm): 
',sprintf('%2.1f',Mag)],'fontsize',15); 
text(1300,Hgt_new/20*18,['IMAGE SIZE (pix): ',num2str(Hgt_new,4),' x 
',num2str(Wth_new,4)],'fontsize',15); 
text(1300,Hgt_new/20*19,['IMAGE SIZE (mm): ',sprintf('%2.1f',Hgt_new / Mag),' 
x ',sprintf('%2.1f',Wth_new / Mag)],'fontsize',15); 
  
subplot(2,2,2),semilogx(Grain_Size_Red(:,1),Locat_Red,'bo','LineWidth',2); 
axis([0.05 2.5 0 Hgt_new]) 
set(gca,'XTick',[0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
,1.0,2.0,2.5]) 
set(gca,'XTickLabel',{'0.05','','','','','0.1','','','','','','','','','1.0',
'','2.5'}) 
set(gca,'XDir','reverse') 
xlabel('GRAIN SIZE (mm)','fontsize',15); 
ylabel('ELEVATION (pix)','fontsize',15); 
set(gca,'fontsize',15); 
hold on; 
  
for i=2:Hor_N 
    semilogx(Grain_Size_Red(:,i),Locat_Red,[mark_color(i) 
mark_shape(i)],'LineWidth',2); 
end 
  
legend('COL1','COL2','COL3','COL4','COL5','COL6','COL7','COL8','COL9','COL10'
,'Location','SouthEast'); 
grid on; 
  
subplot(2,2,4),semilogx(Sorted_Grain_Size_Truncated,Pass_Perc_Truncated,'b.',
Sorted_Grain_Size_Truncated,Pass_Perc_Truncated_Added,'r.','LineWidth',2); 
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axis([0.05 2.5 0 100]) 
set(gca,'XTick',[0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
,1.0,2.0,2.5]) 
set(gca,'XTickLabel',{'0.05','','','','','0.1','','','','','','','','','1.0',
'','2.5'}) 
set(gca,'XDir','reverse') 
xlabel('GRAIN SIZE (mm)','fontsize',15); 
ylabel('PERCENT FINER (%)','fontsize',15); 
set(gca,'fontsize',15); 
  
legend('GSD in ACCUMULATOR','GSD w/ P%F ADDED','Location','NorthEast'); 
grid on; 
  
fig1 = figure(1); 
set (fig1, 'Units', 'normalized', 'Position', [0,0,1,1]); 
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% Translucent Segregation Table (TST) Test 
% Grain Size Distribution Analysis of Soils 
%  
% Geotechnical Engineering, Civil and Environmental Engineering 
% University of Michigan 
  
clear all; 
  
%% INPUT 
  
prompt={'Enter the 1st Image File Name (xxx.jpg):','Enter the 2nd Image File 
Name (xxx.jpg):','Enter the 1st Watershed Image File Name (xxx.jpg):','Enter 
the 2nd Watershed Image File Name (xxx.jpg):','Enter the Magnification 
(pix/mm) :'}; 
Ans=inputdlg(prompt,'Input Window'); 
  
prompt2={'Enter the the 1st Dividing Point (pixel):','Enter the the 2nd 
Dividing Point (pixel):','Enter the the 3rd Dividing Point (pixel):','Enter 
the the 4th Dividing Point (pixel):','Enter the the 5th Dividing Point 
(pixel):'}; 
Ans2=inputdlg(prompt2,'Dividing Points of 1st Image'); 
  
prompt3={'Enter the the 1st Dividing Point (pixel):','Enter the the 2nd 
Dividing Point (pixel):','Enter the the 3rd Dividing Point (pixel):','Enter 
the the 4th Dividing Point (pixel):','Enter the the 5th Dividing Point 
(pixel):'}; 
Ans3=inputdlg(prompt3,'Dividing Points of 2nd Image'); 
  
prompt4={'Enter the Material Name :'}; 
Ans4=inputdlg(prompt4,'Input Window'); 
  
%% LABEL INPUT DATA 
  
I = imread(char(Ans(1))); 
I1 = imread(char(Ans(3))); 
I2 = im2bw(I1); 
I3 = ~I2; 
I4 = bwlabel(I3,4); 
  
I_1 = imread(char(Ans(2))); 
I1_1 = imread(char(Ans(4))); 
I2_1 = im2bw(I1_1); 
I3_1 = ~I2_1; 
I4_1 = bwlabel(I3_1,4); 
  
I5 = imrotate(I,90); 
I6 = imrotate(I_1,90); 
I7=[I5;I6]; 
Mag = str2double(Ans(5)); 
Hgt_new1 = size(I7,1);  
Wth_new1 = size(I7,2);  
  
Material = char(Ans4(1)); 
R=dir(char(Ans(1))); 
Date_Tested = R.date; 
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Tested_By = 'Ohm, H.S.'; 
  
%% BRIDGE HEIGHTS 
  
e1 = str2double(Ans2(1)); 
e2 = str2double(Ans2(2)); 
e3 = str2double(Ans2(3)); 
e4 = str2double(Ans2(4)); 
e5 = str2double(Ans2(5)); 
  
f1 = str2double(Ans3(1)); 
f2 = str2double(Ans3(2)); 
f3 = str2double(Ans3(3)); 
f4 = str2double(Ans3(4)); 
f5 = str2double(Ans3(5)); 
  
g1 = 25.0; 
g2 = 19.0; 
g3 = 12.5; 
g4 = 9.5; 
g5 = 4.75; 
g6 = 2.36; 
  
%% DIVIDING IMAGES BY BRIDGES 
  
P1 = I4(1:e1,:); 
P2 = I4(e1+1:e2,:); 
P3 = I4(e2+1:e3,:); 
P4 = I4(e3+1:e4,:); 
P5 = I4(e4+1:e5,:); 
P6 = I4(e5+1:size(I4,1),:); 
  
O1 = I4_1(1:f1,:); 
O2 = I4_1(f1+1:f2,:); 
O3 = I4_1(f2+1:f3,:); 
O4 = I4_1(f3+1:f4,:); 
O5 = I4_1(f4+1:f5,:); 
O6 = I4_1(f5+1:size(I4_1,1),:); 
  
%% CLOSING 
  
se = strel('disk',1); 
  
P1_1 = imclose(P1,se); 
P2_1 = imclose(P2,se); 
P3_1 = imclose(P3,se); 
P4_1 = imclose(P4,se); 
P5_1 = imclose(P5,se); 
P6_1 = imclose(P6,se); 
  
O1_1 = imclose(O1,se); 
O2_1 = imclose(O2,se); 
O3_1 = imclose(O3,se); 
O4_1 = imclose(O4,se); 
O5_1 = imclose(O5,se); 
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O6_1 = imclose(O6,se); 
  
P=[P1_1;P2_1;P3_1;P4_1;P5_1;P6_1]; 
O=[O1_1;O2_1;O3_1;O4_1;O5_1;O6_1]; 
  
%% MAJOR AXIS AND MINOR AXIS 
  
stats4 = regionprops(P1_1, 'MinorAxisLength'); 
Minor_Axis1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(P2_1, 'MinorAxisLength'); 
Minor_Axis2 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(P3_1, 'MinorAxisLength'); 
Minor_Axis3 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(P4_1, 'MinorAxisLength'); 
Minor_Axis4 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(P5_1, 'MinorAxisLength'); 
Minor_Axis5 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(P6_1, 'MinorAxisLength'); 
Minor_Axis6 = [stats4.MinorAxisLength]'; 
  
stats4 = regionprops(O1_1, 'MinorAxisLength'); 
Minor_Axis1_1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(O2_1, 'MinorAxisLength'); 
Minor_Axis2_1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(O3_1, 'MinorAxisLength'); 
Minor_Axis3_1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(O4_1, 'MinorAxisLength'); 
Minor_Axis4_1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(O5_1, 'MinorAxisLength'); 
Minor_Axis5_1 = [stats4.MinorAxisLength]'; 
stats4 = regionprops(O6_1, 'MinorAxisLength'); 
Minor_Axis6_1 = [stats4.MinorAxisLength]'; 
  
stats3 = regionprops(P, 'MajorAxisLength'); 
stats4 = regionprops(P, 'MinorAxisLength'); 
Major_Axis = [stats3.MajorAxisLength]'; 
Minor_Axis = [stats4.MinorAxisLength]'; 
  
stats3 = regionprops(O, 'MajorAxisLength'); 
stats4 = regionprops(O, 'MinorAxisLength'); 
Major_Axis_1 = [stats3.MajorAxisLength]'; 
Minor_Axis_1 = [stats4.MinorAxisLength]'; 
  
X1=[size(Minor_Axis1,1),size(Minor_Axis2,1),size(Minor_Axis3,1),size(Minor_Ax
is4,1),size(Minor_Axis5,1),size(Minor_Axis6,1)]; 
X2=max(X1)+1; 
  
X1_1=[size(Minor_Axis1_1,1),size(Minor_Axis2_1,1),size(Minor_Axis3_1,1),size(
Minor_Axis4_1,1),size(Minor_Axis5_1,1),size(Minor_Axis6_1,1)]; 
X2_1=max(X1_1)+1; 
  
Minor_Axis1(X2,1)=0; 
Minor_Axis2(X2,1)=0; 
Minor_Axis3(X2,1)=0; 
Minor_Axis4(X2,1)=0; 
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Minor_Axis5(X2,1)=0; 
Minor_Axis6(X2,1)=0; 
  
Minor_Axis1_1(X2_1,1)=0; 
Minor_Axis2_1(X2_1,1)=0; 
Minor_Axis3_1(X2_1,1)=0; 
Minor_Axis4_1(X2_1,1)=0; 
Minor_Axis5_1(X2_1,1)=0; 
Minor_Axis6_1(X2_1,1)=0; 
  
%% ASSIGNING THICKNESS 
  
T1=Minor_Axis1; 
for i=1:size(Minor_Axis1,1) 
    if Minor_Axis1(i)>0 
        T1(i)=(g1+g2)/2*Mag; 
    end 
end 
  
T2=Minor_Axis2; 
for i=1:size(Minor_Axis2,1) 
    if Minor_Axis2(i)>0 
        T2(i)=(g2+g3)/2*Mag; 
    end 
end 
  
T3=Minor_Axis3; 
for i=1:size(Minor_Axis3,1) 
    if Minor_Axis3(i)>0 
        T3(i)=(g3+g4)/2*Mag; 
    end 
end 
  
T4=Minor_Axis4; 
for i=1:size(Minor_Axis4,1) 
    if Minor_Axis4(i)>0 
        T4(i)=(g4+g5)/2*Mag; 
    end 
end 
  
T5=Minor_Axis5; 
for i=1:size(Minor_Axis5,1) 
    if Minor_Axis5(i)>0 
        T5(i)=(g5+g6)/2*Mag; 
    end 
end 
  
T6=Minor_Axis6; 
for i=1:size(Minor_Axis6,1) 
    if Minor_Axis6(i)>0 
        T6(i)=(g6+2)/2*Mag; 
    end 
end 
  
T1_1=Minor_Axis1_1; 
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for i=1:size(Minor_Axis1_1,1) 
    if Minor_Axis1_1(i)>0 
        T1_1(i)=(g1+g2)/2*Mag; 
    end 
end 
  
T2_1=Minor_Axis2_1; 
for i=1:size(Minor_Axis2_1,1) 
    if Minor_Axis2_1(i)>0 
        T2_1(i)=(g2+g3)/2*Mag; 
    end 
end 
  
T3_1=Minor_Axis3_1; 
for i=1:size(Minor_Axis3_1,1) 
    if Minor_Axis3_1(i)>0 
        T3_1(i)=(g3+g4)/2*Mag; 
    end 
end 
  
T4_1=Minor_Axis4_1; 
for i=1:size(Minor_Axis4_1,1) 
    if Minor_Axis4_1(i)>0 
        T4_1(i)=(g4+g5)/2*Mag; 
    end 
end 
  
T5_1=Minor_Axis5_1; 
for i=1:size(Minor_Axis5_1,1) 
    if Minor_Axis5_1(i)>0 
        T5_1(i)=(g5+g6)/2*Mag; 
    end 
end 
  
T6_1=Minor_Axis6_1; 
for i=1:size(Minor_Axis6_1,1) 
    if Minor_Axis6_1(i)>0 
        T6_1(i)=(g6+2)/2*Mag; 
    end 
end 
  
T1a = [T1';T2';T3';T4';T5';T6']; 
T2a = [T1_1';T2_1';T3_1';T4_1';T5_1';T6_1']; 
  
Thickness_T1 = max(T1a)'; 
Thickness_T2 = max(T2a)'; 
Thickness = [Thickness_T1(1:size(Thickness_T1,1)-
1);Thickness_T2(1:size(Thickness_T2,1)-1)]; 
  
Minor = [Minor_Axis;Minor_Axis_1]; 
Major = [Major_Axis;Major_Axis_1]; 
  
%% CORRECTION FACTOR 
  
F=(Minor ./ Thickness).^2; 
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F1=(Thickness ./ Minor).^2; 
  
for i=1:size(Minor,1) 
    if F(i)>=1 
         Correction(i)=sqrt((F(i)+1)./(2*F(i))); 
    else Correction(i)=sqrt((F1(i)+1)./(2*F1(i))); 
    end 
end 
  
Correction=Correction'; 
  
%% INCREMENT PERCENTAGE 
  
Vol=Major.*Minor.*Thickness; 
Total_Vol = sum(Vol); 
Percent_Vol = Vol / Total_Vol * 100; 
  
%% CORRECTED GRAIN SIZE AND ASPECT RATIO 
  
Grain_Size = Minor .* Correction / Mag ; 
Aspect_Ratio = Major ./ Minor; 
  
%% SORTING BY GRAIN SIZE 
  
A2 = [Grain_Size Percent_Vol Aspect_Ratio Correction]; 
B2 = sortrows(A2); 
C2 = flipud(B2); 
  
Sorted_Grain_Size = C2(:,1); 
Sorted_Incre_Perc = C2(:,2); 
Sorted_Aspect_Ratio = C2(:,3); 
Sorted_Correction = C2(:,4); 
  
%% PASSING PERCENTAGE 
  
Pass_Perc(1,1) = 100 - Sorted_Incre_Perc(1,1); 
for i = 2 : size (Sorted_Grain_Size,1) 
    Pass_Perc(i,1) = Pass_Perc(i-1,1) - Sorted_Incre_Perc(i,1); 
end 
  
%% OUTPUT 
  
figure(1),subplot(1,3,1),imshow(I7); 
  
text(3300,Hgt_new1/20*1,'TRANSLUCENT SEGREGATION TABLE (TST)','fontsize',15); 
text(3300,Hgt_new1/20*2,'GEOTECHNICAL ENGINEERING','fontsize',15); 
text(3300,Hgt_new1/20*3,'UNIVERSITY OF MICHIGAN','fontsize',15); 
  
text(3300,Hgt_new1/20*5,['MATERIAL: ',Material],'fontsize',15); 
text(3300,Hgt_new1/20*6,['DATE TESTED: ',Date_Tested],'fontsize',15); 
text(3300,Hgt_new1/20*7,['TESTED BY: ',Tested_By],'fontsize',15); 
  
text(3300,Hgt_new1/20*17,['MAGNIFICATION (pix/mm): 
',sprintf('%2.1f',Mag)],'fontsize',15); 
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text(3300,Hgt_new1/20*18,['IMAGE SIZE (pix): ',num2str(Hgt_new1,4),' x 
',num2str(Wth_new1,4)],'fontsize',15); 
text(3300,Hgt_new1/20*19,['IMAGE SIZE (mm): ',sprintf('%2.1f',Hgt_new1 / 
Mag),' x ',sprintf('%2.1f',Wth_new1 / Mag)],'fontsize',15); 
  
subplot(2,2,2),semilogx(Sorted_Grain_Size,Sorted_Aspect_Ratio,'r.','LineWidth
',2); 
  
axis([1 40 1 5]) 
set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,20,30,40]) 
set(gca,'XTickLabel',{'1','2','','','','','','','','10','20','30','40'}) 
set(gca,'XDir','reverse') 
  
set(gca,'YTick',[1,2,3,4,5]) 
xlabel('GRAIN SIZE (mm)','fontsize',15); 
ylabel('ASPECT RATIO','fontsize',15); 
  
set(gca,'fontsize',15); 
grid on; 
  
subplot(2,2,4),semilogx(Sorted_Grain_Size,Pass_Perc,'r.','LineWidth',2); 
axis([1 40 0 100]) 
set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,20,30,40]) 
set(gca,'XTickLabel',{'1','2','','','','','','','','10','20','30','40'}) 
set(gca,'XDir','reverse') 
xlabel('GRAIN SIZE (mm)','fontsize',15); 
ylabel('PERCENT FINER (%)','fontsize',15); 
  
set(gca,'fontsize',15); 
  
grid on; 
  
fig1 = figure(1); 
set (fig1, 'Units', 'Normalized', 'Position', [0,0,1,1]); 
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: 2NS

DATE TESTED: 21-Sep-2011 12:21:34

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Capitola, CA

DATE TESTED: 19-Jun-2012 11:05:24

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Class IIA

DATE TESTED: 26-Aug-2011 12:31:20

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Costa Rica

DATE TESTED: 04-May-2011 12:53:04

TESTED BY: Ohm, H.S.

D
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D
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D
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 (mm): 0.11
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: 1.48

C
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PF (%): 0.0

MAGNIFICATION (pix/mm): 33.3

IMAGE SIZE (pix): 4096 x 1280

IMAGE SIZE (mm): 123.0 x 38.4
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Griffin, IN

DATE TESTED: 01-May-2011 09:09:50

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 33.6
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IMAGE SIZE (mm): 123.1 x 38.1
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Oakland Co., MI

DATE TESTED: 25-Jun-2012 12:59:02

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Rincon, NM

DATE TESTED: 25-Jan-2012 11:15:20

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.8
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Scotts Valley, CA

DATE TESTED: 13-Jun-2012 12:27:46

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.7

IMAGE SIZE (pix): 4256 x 1280
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: Upper Peninsula, MI

DATE TESTED: 01-May-2011 09:10:08

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 33.5
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S1

DATE TESTED: 21-Sep-2011 12:21:34

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.9
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S2

DATE TESTED: 22-Sep-2011 15:38:54

TESTED BY: Ohm, H.S.

D
60

 (mm): 0.67

D
30

 (mm): 0.45

D
10

 (mm): 0.31

C
u
: 2.15

C
g
: 0.99

PF (%): 0.2

MAGNIFICATION (pix/mm): 36.9
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S3

DATE TESTED: 23-Sep-2011 10:53:24

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.9
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IMAGE SIZE (mm): 126.8 x 34.7
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S4

DATE TESTED: 23-Sep-2011 10:23:34

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.9
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S4

DATE TESTED: 23-Sep-2011 10:23:34

TESTED BY: Ohm, H.S.
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MAGNIFICATION (pix/mm): 36.9
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S6

DATE TESTED: 23-Sep-2011 11:58:32

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S7

DATE TESTED: 22-Sep-2011 12:50:34

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S8

DATE TESTED: 23-Sep-2011 11:24:14

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S9

DATE TESTED: 23-Sep-2011 12:30:08

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S10

DATE TESTED: 21-Sep-2011 16:31:40

TESTED BY: Ohm, H.S.
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SEDIMAGING (SED) TEST

GEOTECHNICAL ENGINEERING

UNIVERSITY OF MICHIGAN

MATERIAL: S11

DATE TESTED: 21-Sep-2011 15:55:26

TESTED BY: Ohm, H.S.
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Appendix D. Complete Translucent Segregation Table Results 
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TRANSLUCENT SEGREGATION TABLE (TST) TEST
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UNIVERSITY OF MICHIGAN

MATERIAL: T1
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TRANSLUCENT SEGREGATION TABLE (TST) TEST
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TRANSLUCENT SEGREGATION TABLE (TST) TEST
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TRANSLUCENT SEGREGATION TABLE (TST)
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UNIVERSITY OF MICHIGAN
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TRANSLUCENT SEGREGATION TABLE (TST)
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