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PREFACE 

 This work describes improvements to a technique called low-flow push-pull 

perfusion for measuring neurotransmitters within the brains of anesthetized or awake, 

freely-moving animals. This method is advantageous given its multianalyte measurement 

capabilities and high (~200 µm) spatial resolution. This work introduces methods to 

collect samples as nanoliter droplet fractions, providing from 7 s to 200 ms temporal 

resolution. It further discusses methods for analyzing neurotransmitters using reagent 

addition to droplets to perform enzyme assays or mass spectrometry.  Push-pull probes 

were then used to demonstrate how concentrations of neurotransmitters and their 

metabolites can vary significantly between small nuclei (200 μm apart) using liquid 

chromatography – mass spectrometry, demonstrating differences in neuronal abundance, 

function and local metabolism. 
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ABSTRACT 

 

   Low-flow push-pull perfusion is a technique for measuring neurotransmitters 

within the brain with ~200 μm resolution. Activity of neurotransmitters can vary on this 

size scale; therefore, low-flow push-pull may offer new insights into physiology. Flow 

rates used by this technique (50 nL/min) may present challenges for sample handling and 

assay sensitivity due to nL sample fractions. In this work, the temporal resolution of low-

flow push-pull was advanced to 7 s in vivo, several different neurochemical assays were 

implemented, and gradients of neurotransmitters were mapped across sub-mm distances. 

To address collection and manipulation of 7 s fractions collected in vivo, push-

pull samples were stored as 6 nL plugs in an oil carrier phase. A tee was developed to 

address each fraction discretely for reagent addition. L-glutamate was measured within 

the striatum of anesthetized rats by using a fluorogenic enzyme assay. Microinjection of a 

potassium solution at the probe tip evoked L-glutamate concentration transients that had 

maxima of 4.5 ± 1.1 μM and rise times of 22 ± 2 s. 

Nanospray ionization mass spectrometry was used to simultaneously measure 

three neurochemicals in plug samples. After microinjection of neostigmine at the push-

pull probe tip, rapid extracellular concentration increases of neostigmine (14 ± 3 s), 

acetylcholine (35 ± 4 s) and a gradual decrease in choline (60 ± 13 s) were observed. This 

experiment highlights the ability of low-flow push-pull perfusion to observe drug-



xv 

 

neurotransmitter dynamics in vivo. A GABA enzyme assay and capillary electrophoresis 

were demonstrated for analysis of push-pull perfusion plugs. 

 A miniaturized push-pull probe was adapted for awake, freely moving animals 

and used to measure 13 neurotransmitters and metabolites.  Concentration gradients were 

observed between proximate brain regions.  For example, dopamine in the ventral 

tegmental area was 4.8 ± 1.5 nM, but in the red nucleus (200 µm apart) was 0.5 ± 0.2 nM.  

 This collection of work illustrates that low-flow push-pull perfusion is a versatile 

tool for monitoring many different neurotransmitters within the brain with 200 μm spatial 

and 7 s or faster temporal resolution. Future research directions may include ms temporal 

resolution in vivo measurements and microfabricated probes. 
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Chapter I 

Introduction 

 

Realizing the Next Generation of in Vivo Neurochemical Monitoring 

Much of our understanding of how the brain works has been gleaned from 

chemical measurements made within the intact organ.  Though cell and tissue 

preparations provide valuable information about the anatomy and physiology of the 

neurons that comprise the brain1-10, they require great care in making inferences about 

higher-order physiology of the brain11.  In vivo chemical measurements permit direct 

observation of normal brain function and can be associated with behavioral cues, external 

stimuli, and animal models of disease12-14. The technology to make these measurements 

was originally introduced during the 1950s. Since that time, it has undergone years of 

innovation, from the cortical cup, to microdialysis, then to the miniaturized probes and 

electrodes of the present. Whereas early experiments focused on simple identification of 

the presence and release of neurotransmitters15, state-of-the-art techniques allow behavior 

to be correlated with the rapid chemical concentration fluctuations of specific 

neurotransmitters within spatially distinct, even sub-mm regions of the brain14.  Although 

in vivo electrochemical sensors have revealed the presence of ms chemical transients, 

further development is required to create universal and selective techniques which 

provide the same resolution. 
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The objectives of this chapter are to review the chemical basis of neuronal 

communication within the brain and to place the topic of chemical sampling technology 

in a historical context.  This section will highlight currently used instrumentation 

outlining the benefits and limitations of each detection method. An examination of the 

information provided by in vivo microelectrodes will indicate the importance of spatial 

and temporal resolution in neurochemical measurements. Finally, this chapter will 

discuss current microfluidic technologies that can be utilized to allow measurements of 

neurotransmitters on the µm size scale and s to ms time scale within the brain. 

Neurons and Neurotransmitters 

 Neurons are discrete, highly interconnected cells that communicate with each 

other and control the functions of the body. Neurons transmit signals by conducting 

electrochemical impulses, or action potentials, through their excitable cell membranes. 

Axons are projections which conduct signals away from the cell body (soma) while 

dentrites conduct signals towards the cell body. Their membranes are maintained in a 

polarized state (-70 mV, cytosol versus extracellular fluid) by the action of sodium-

potassium pumps and contain voltage-gated ion channels that can open when the 

membrane is sufficiently depolarized (approximately -55 mV)16. Upon reaching this 

threshold potential, the rapid influx of sodium ions across the membrane triggers further 

depolarization, and this action potential propagates along the cell membrane until 

reaching a junction with another neuron, called a synapse. 

While a small fraction of synapses are gap junctions which directly link the 

cytosol of the two cells through channels, the majority are chemical synapses in which 

the neuronal membranes are in close proximity (~20 nm)17 but not connected (shown in  
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specific neurotransmitter and the region of release as rates of reuptake or degradation 

vary19. Extracellular neurotransmitters can agonize receptors on nearby or distant 

neurons, in a process known as “volume transmission”1, 19, 20. While some 

neurotransmitters are found within the extracellular compartment primarily as a 

consequence of neuronal release, others, such as glutamate, are maintained at tonic 

concentrations by the actions of glia, the support cells within the brain which surround 

neurons and regulate their functions (Figure 1.1)21-23. 

There are hundreds of neurotransmitters and although some have highly 

specialized roles, others can be diverse in their actions24. The function of a 

neurotransmitter is dependent upon what receptor it binds, and can have an excitatory 

(depolarizing), inhibitory (hyperpolarizing) or modulatory effect. The roles of glutamate 

as the universal excitatory neurotransmitter25 and γ-aminobutyric acid (GABA) as the 

universal inhibitory neurotransmitter are well established. However, the neurotransmitter 

glycine can function in either capacity as it is a major inhibitory neurotransmitter within 

the spinal cord but a required cofactor for glutamate receptors in the brain26.  The cellular 

roles of the “excitatory” and “inhibitory” neurotransmitters cannot be generalized to their 

effect on the entire organism, as glutamate disregulation is implicated in the etiology of 

addiction27 and decreased GABA is implicated in mood disorders28.  

Modulatory neurotransmitters such as the monoamines have more abstract roles, 

affecting higher order mental processes. For example, dopamine is associated with 

reward, movement, and congnition19, whereas serotonin is associated with mood, 

cognition, memory and other processes29, 30.  Rather than directly affecting membrane 
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potential, these bind G-protein-coupled receptors, affecting sub-cellular processes31.  

Much about the roles and behavior of different neurotransmitters remains obscure.   

Measurement of neurotransmitters released can provide not only an assay of 

neuronal activity, but of what chemical messages are being sent. Synaptic clefts are very 

difficult to measure within due to their small (~20 nm) width17, but the spillover from 

these clefts has been well established to correlate with local neuronal activity14, 32, 33. A 

salient feature of neurotransmission that presents an analytical challenge is the fast rates 

of release and reuptake of neurotransmitters into the extracellular space.  Extracellular 

concentrations can vary on the s to ms timescale, correlating with behaviors, stimuli, and 

other events32, 34, 35.  Another feature is that neuronal populations are highly organized 

into discrete nuclei within the brain and vary in size from mm to hundreds of µm. This 

organization reflects the different roles of neurons throughout the brain, such as the 

“hedonic hotspot” within the rat brain, a 1 mm3 region which modulates how an animal 

responds to a pleasurable or noxious stimuli36. Additionally, the chemical concentrations 

in the extracellular compartment can range from pM to µM concentrations, necessitating 

techniques with adequate sensitivity to make such measurements. 

Evolution of in Vivo Neurotransmitter Sampling 

Cortical Cup 

One of the first established techniques for monitoring neurochemical release from 

the intact brain was developed in 1953 by MacIntosh and Oborin37. Known as the 

“cortical cup”, a cylinder ~5-10 mm in diameter37, 38 (Figure 1.2A) was placed on the 

cortex through a burr hole in the skull. This allowed physiological saline to be passed 

over the surface of the brain and analyzed for content38. In doing so, the release of  
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the brain be exposed.  This made small animal experiments, deep brain measurements, 

and awake, freely moving experiments impractical39. 

“Conventional” Push-Pull Perfusion 

By 1961, an alternative to the cortical cup had been developed known as push-

pull perfusion40. Like the cortical cup, push-pull perfusion probes bathed neurons directly 

with physiological saline and collected the effluent. By doing so at the ends of concentric 

cannulae (Figure 1.2B), the extracellular neurotransmitters could be measured throughout 

the intact brain41. Push-pull perfusion allowed an animal to be sampled after recovery 

from the implantation surgery.  To accomplish this, the outer cannula of the push-pull 

probe was inserted with an obturator instead of the inner cannula, and the animal was 

allowed to recover for several days. The obturator was then removed and inner cannula 

was inserted to enable sampling42.  

As the surface of the brain was not exposed, more freedom of motion could be 

achieved. However, with the benefits of this design came some challenges.  Flow rates in 

the range of 10-100 µL/min were necessary to avoid probe occlusion which bore the 

potential for tissue lesioning, and continuous monitoring was also necessary to maintain 

operation42.  Push-pull perfusion is still used for neurochemical measurements43, 44, 

particularly large molecules45, but has declined in use in lieu of newer techniques. 

Microdialysis 

Delgado and others first experimented with implanting and perfusing dialysis 

membranes within the brain in the 1970’s (the “dialytrode”)46. However, it was the work 

of Urban Ungerstedt in 1982 that introduced the technique of microdialysis47. 

Microdialysis probes consist of a hollow dialysis fiber which is implanted into the brain 
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region of interest, and perfused at ~1 to 2 µL/min flow rates with physiological saline 

(Figure 1.2C). Molecules such as neurotransmitters can then diffuse into the probe and be 

collected for analysis. Additionally, drugs and other molecules can be delivered 

simultaneously by diffusion from the probe.  Concentrations within the sample collected 

at the probe outlet are proportional to the concentration within the tissue48. This technique 

is advantageous as it eliminates the risk of tissue lensioning poised by push-pull42, and 

requires less monitoring as vacuum is not required. Microdialysis is to this day the in vivo 

method of choice for most neuroscientists making chemical measurements within the 

brain.  Challenges for microdialysis include spatial resolution, as membrane lengths 

shorter than 1 mm are typically not used due to low concentrations recovered by the 

probe. Regions of interest may potentially be hundreds of microns in diameter49. 

Low-Flow Push-Pull Perfusion 

Within the past decade, efforts to improve on the spatial resolution of in vivo 

sampling have resulted in new, ultra-low flow rate sampling methods. One such example 

is “direct sampling,” or inserting a ~90 µm diameter capillary into the brain region of 

interest and withdrawing extracellular fluid at 1-50 nL/min50. This technique was 

improved upon with the development of low-flow push-pull perfusion51.  Low-flow push-

pull perfusion is similar to Gaddum’s “conventional” push-pull perfusion (Figure 1.2B), 

except that tissue trauma is minimized by using 50 nL/min flow rates51.  Concentric low-

flow push-pull probes as small as 170 µm diameter have been utilized52. Another 

variation of the low-flow push-pull probe is the side-by-side capillary probe53-55.  This 

design uses a 26 gauge hypodermic needle sheath to prevent occlusion during 
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implantation, but provides the advantages of low internal volume fluidics for both push 

and pull, facilitating probe use at nL/min flow rates53-55.  

 Of in vivo sampling techniques, low-flow push-pull perfusion affords the finest 

spatial resolution. This is because sampling is confined to the area occupied by the probe 

tips. Though most studies have been conducted in the relatively large striatum51, 53, 54 or 

lateral hypothalamus56, there is the potential to selectively sample regions of the brain 

hundreds of µm in diameter.  However, the low flow rate presents an analytical challenge 

for high temporal resolution, both in sample handling and sensitivity. 

Instrumentation for Neurotransmitter Measurements 

 As sampling methodology to collect neurotransmitters from the brain has evolved, 

demands on analytical instrumentation have increased. Modern analytical techniques 

allow multiple neurotransmitters to be measured at basal levels within the brain57. 

However, sensitivity and selectivity presents a challenge when adapting to higher time 

resolution or lower flow rate techniques due to the smaller sample volumes produced.  

This is because the extracellular matrix of the brain is highly complex, and concentrations 

of neurotransmitters vary from µM to pM levels57. The advent of liquid chromatography 

(LC) and capillary electrophoresis (CE) mitigate these problems by separating 

neurotransmitters from the matrix and each other, reducing demands on the detector39, 57. 

Detection can then be conducted utilizing electrochemical detectors, fluorescence, or 

mass spectrometry57.  Methods not requiring separations are immunoassays, enzyme 

assays and mass spectrometry and may increase analysis throughput by eliminating 

separation time. 
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Liquid Chromatography-Based Analyses 

Liquid chromatography (LC)-based analyses are amongst the most frequently 

utilized methods of quantifying neurotransmitters collected by microdialysis57. In most 

cases, LC is performed in an offline fashion, collecting fractions for later analysis57, 58. 

Common techniques involve coupling LC to electrochemical detectors for electroactive 

molecules such as the catecholamines and serotonin57, 59. For quantifying non-

electroactive species, pre-column derivatization makes LC amenable to fluorescence or 

electrochemical detectors57, 59. Another method of analysis is to place an enzyme bed at 

the end of the chromatography column for generation of an electroactive species from the 

analyte of interest.  Enzyme reactors are commonly used for measurement of choline and 

acetylcholine60, 61. 

A disadvantage of LC as an analytical tool is that temporal resolution  may be 

sacrificed if a larger sample volume is necessary for adequate sensitivity57. This can 

preclude use with ultra-low flow rate techniques such as low-flow push-pull perfusion51.  

Despite these concerns, LC with electrochemical or fluorescence detection remain 

mainstays of in vivo neuroscience research57, 62. 

More recently, advancements in mass spectrometry (MS) coupled to LC have 

offered high sensitivity measurements of neurotransmitters with and without 

derivatization57. MS has been used for label-free online detection and quantification of 

neuropeptides63. For separating small molecule neurotransmitters prior to MS detection, 

hydrophilic interaction chromatography (HILIC) and ion pairing have been utilized for 

simultaneous measurement of 4 to 6 neurotransmitters64, 65. Strong cation exchange can 

also be used for separation of neurotransmitters such as acetylcholine, improving  
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Figure 1.3. Benzoyl chloride derivatization of neurotransmitters for LC-MS analysis.  
(A) Benzoyl chloride reacts with primary amine, secondary amine and phenol moieties 
on neurotransmitters and metabolites.  (B) High sensitivity and resolution of 17 
neurotransmitters and their metabolites can be achieved from as little as a few µL of 
sample. Adapted with permission from 66, copyright 2012 American Chemical Society. 
 
detection limits over electrochemical techniques67. Recently, derivatization prior to LC-

MS detection has greatly increased the number of analytes which can be simultaneously 

measured.  Diethylation labeling was shown to allow measurement of 4 monoamine 

neurotransmitters and metabolites68. To improve upon this technique, another group used 

benzoyl chloride to simultaneously measure 17 neurotransmitters and metabolites, as 

shown in Figure 1.366. 

LC-MS with derivatization is particularly amenable to higher temporal resolution 

microdialysis or lower flow rate sampling methods due to its very high sensitivity,  
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Figure 1.4. Online CE analysis of microdialysate in awake animals.  In rats exposed to a 
fox scent, a rapid increase in L-glutamate is detected within their nucleus accumbens, as 
shown with 14 s resolution (CE-LIF).  These dynamics are not visible with 10 min 
resolution sampling (LC-fluorescence).  The 14 s data binned to 10 min is comparable to 
previous results. Reprinted with permission from 35, copyright 2006 International Society 
for Neuroscience. 
  
achieving nM to pM detection limits with only a few µL of sample66, 68, 69. This high 

sensitivity of derivatized analytes is attributable to high fragmentation within the MS 

collision cell, better ionization efficiency due to increased hydrophobicity, and reduced 

matrix interference66, 68.  As derivatized neurotransmitters are more stable, storage prior 

to offline analysis is simplified66. 

Capillary Electrophoresis 

 Capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection 

has emerged as a way of making fast time resolution chemical measurements with 

microdialysis and low-flow push-pull perfusion. Sensitivity and throughput of CE-LIF is 
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sufficient that effluent can be transmitted directly from the dialysis probe to instrument, a 

reagent (such as o-phthalaldehyde or naphthalene-2,3-dicarboxaldehyde57, 70, 71) added 

online to fluorescently label neurotransmitters, and a pL volume plug injected onto the 

separation capillary18, 35, 71, 72. Higher electric fields (~4 kV/cm) for CE allow for faster 

separation of amino acid neurotransmitters73.  With high temporal resolution comes the 

ability to observe rapid concentration dynamics, such as responses to environmental 

stimuli. Figure 1.4 shows measurements of glutamate collected by microdialysis from the 

nucleus accumbens of rats in response to a fox scent with fast CE (14 s resolution) or LC 

analysis  (10 min)35.  While LC reveals a glutamate increase, the fast dynamics involved 

are not uncovered without higher time resolution.  Binning the CE data to the same time 

scale reveals comparable results.  

 The sensitivity of CE-LIF has also made it the most common method of detection 

for low-flow push-pull perfusion51-54, 56.  By collecting sample fractions into capillaries 

for offline analysis, temporal resolutions of 5 min (~0.25 µL per fraction) have been 

achieved56.  In an online low-flow push-pull analysis, CE coupled to an ultraviolet 

detector has been utilized to measure ascorbate within the eye at 16 s resolution74.  Other 

studies have utilized microfluidic devices to control push and pull flow while 

incorporating derivatization, CE separation and LIF detection with ~45 s resolution 

(described below)53, 54. 

Direct Methods of Neurotransmitter Analysis 

 While the majority of neurotransmitter analyses incorporate a separation, there are 

some techniques with sufficient selectivity and sensitivity to measure neurotransmitters 

within the sample matrix57.  Electrochemical detectors are attractive for compact systems 
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as they do not require complex components such as optics. In particular, enzyme-based 

electrochemical detection has been developed for quantification of glucose and lactate75 

and  has been applied for the study of spreading depolarizations within the human brain76, 

77. As for neurotransmitters, glutamate has been detected with glutamate 

oxidase/horseradish peroxidase-based electrochemical detection78, 79.  Challenges of 

incorporating enzyme-based electrochemical detectors are strategies to avoid background 

interference from sources such as ascorbic acid. 

 Another technique for direct detection of neurotransmitters is enzyme-based 

fluorogenic assays.  A number of such assays have been developed previously for 

neurochemicals such as glutamate80-82, GABA82, acetylcholine83, and choline83.  For 

monitoring brain metabolism, a glucose oxidase assay has been used with 

microdialysis84. Laser-induced fluorescence can be utilized to achieve high sensitivity 

detection with small sample volumes84, 85. The minimal manipulation required for an 

enzyme assay makes them attractive for continuous flow detection schemes. 

 Though LC-MS has recently been utilized for detection of neuropeptides from 

microdialysis samples, radioimmunoassays are more well established57. While useful, 

these techniques often require large sample volumes (~25 µL) which may be impractical 

for observing chemical changes on the min time scale, and hourly fractions are not 

uncommon86. 

 Recently, MS with electrospray ionization has been utilized for direct 

quantification (without LC) of neurotransmitters within microdialysate87.  A makeup flow 

containing organic solvent to increase sensitivity, a chelating agent to remove adduct 

interferences, and an isotopically labeled internal standard enabled nM detection limits of 
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acetylcholine and choline87.  The flow rates required during analysis made this method 

impractical for low-flow push-pull perfusion. However, nanospray ionization provides 

better mass sensitivity than eletrospray with nL/min flow rates and therefore may be 

amenable to this assay for push-pull samples88. 

  Despite very rapid analysis times and high sensitivity, the temporal resolution of 

microdialysis and low-flow push-pull perfusion are limited by Taylor dispersion89.  

Taylor dispersion is the accelerated diffusion of a solute due to laminar flow within a 

capillary. This reduces the temporal resolution of sampling methods depending on the 

capillary lengths and flow rates73.  With nL/min flow rates as with low-flow push-pull, 

this dispersion becomes severe and the 16 s resolution demonstrated previously is near 

the theoretical limit of the short (50 cm, 50 µm ID) inlet used74.  A detailed description of 

temporal resolution and dispersion is presented in Chapter II. 

Microelectrodes for in Vivo Measurements 

Implantable microelectrodes have developed in parallel to sampling techniques 

for in vivo neurotransmitter measurements. These methods have been reviewed in detail 

elsewhere14, 90-92.  Using cyclic voltammetry or amperometry, microelectrodes can 

provide chemical measurements on the s to ms timescale with hundreds of µm spatial 

resolution14.  Two electrode types which have been especially popular in recent years are 

carbon fiber microelectrodes and microfabricated electrodes14, 32-34, 93-103.  Carbon fiber 

electrodes are beneficial as they can be less than 30 µm in diameter, providing excellent 

spatial resolution while minimizing tissue trauma104. Microfabricated electrodes, 

constructed from silicon or ceramic, provide the benefits of small size (~100-200 µm  
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detected with hundreds of ms temporal resolution on carbon fiber microelectrodes 

(Figure 1.5A)14, 32, 93.  Fast-scan cyclic voltammetry (FSCV) provides some selectivity for 

specific neurotransmitters while making measurements every ~100 ms (Figure 1.5B-C)14, 

90.  This has revealed much information about the nature of chemical communication, as 

the frequency of exocytotic events can be monitored and correlated with behavior (Figure 

1.5D-E)34, 93, 105. 

Amperometric electrodes can be used for measuring neurotransmitters and 

substances not easily oxidized by an electrode14, 102.  This is accomplished by coating an 

electrode with an enzyme selective for the neurotransmitter of interest which generates an 

electroactive product.  Common analysis targets include glutamate99, 101, 102, 106-109, 

acetylcholine and choline100, 110, lactate92, 111, 112, and glucose113, 114. Though lactate and 

glucose are not neurotransmitters, they provide information about local metabolic activity 

within the brain112, 113. 

There are some technical limitations to implantable microelectrodes. Fewer than 

20 neurotransmitters have been measured in vivo14, indicating a significant number of 

neurotransmitters are not yet compatible with these techniques24.  Another challenge is 

making selective, quantitative measurements. While FSCV can resolve neurotransmitters 

with different redox potentials14, some neurotransmitters such as norepinephrine and 

dopamine have identical voltammograms and cannot be directly distinguished32. 

Additionally, FSCV generates a relatively high background current which must be 

subtracted, as shown in Figure 1.5B-C.  To avoid interference from background shifts, no 

greater than 90 s measurement windows should be utilized93.  Amperometric 

microelectrodes utilize specialized coatings and background electrodes to remove signals 
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from interferents such as ascorbic acid97, 101, 102. However, selectivity of measurements 

remains a challenge97. 

The spatial and temporal resolution of microelectrodes has highlighted the 

significance of rapid chemical changes in small regions within the brain.  In particular, 

they have revealed that “hot spots” of neural activity can be detected even within 

seemingly homogenous nuclei49. Moreover, it highlights the need for use of high spatial 

resolution sampling techniques such as low-flow push-pull perfusion, but with higher 

temporal resolution than the ~5 min of previous offline analyses56. 

Microfluidics for Improving Temporal Resolution 

 Given the spatial heterogeneity and rapid concentration fluctuations revealed by 

microelectrodes, there is a need to develop new techniques which allow accurate multi-

analyte measurement with the same spatial and temporal resolutions.  While bench-top 

CE systems can provide a great deal of information and improved temporal resolution, 

they have not been as successful in increasing the time resolution of ultra-low flow rate 

techniques.  Microfluidic chips can further push the temporal limits of in vivo sampling 

while integrating analytical functions within the device.  Several substrates for 

microfabrication have been developed including glass and polydimethyl siloxane 

(PDMS) 115, 116. By miniaturizing, integrating and automating the processes of collecting, 

derivatizing and analyzing flow from a sampling probe, there is a potential to reduce 

reagent consumption, reduce instrument size, and facilitate sample handling. 

Capillary electrophoresis on a chip provides integrated analysis. Glass 

microfluidic chips have been used to analyze microdialysate collected from the brain70, 84, 

117-119. By integrating the derivatization and analysis on one device, precise control of  
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Figure 1.6. (A) Microfluidic chip incorporating a pneumatic peristaltic pump, 
fluorescence derivatization, and CE separation channel for analysis of neurotransmitters.  
(B) Transient increases in amino acid neurotransmitters glutamate and taurine were 
observed following neuronal stimulation with high potassium (K+) aCSF. Reproduced 
from 53 with permission of the Royal Society of Chemistry. 
 
derivatization parameters and separation channels can be obtained, however temporal 

resolution for this work was no greater than those demonstrated in non-microfabricated 

online analyses due to dispersion during flow73. 

 Microfluidic pumps have been used to automate and simplify control of low-flow 

push-pull perfusion sampling.  One advantage of PDMS as a microfluidic substrate is its 

flexibility and multilayer capabilities make it amenable to valving and pumping120.  The 

basis of these devices is a layer of “control channels” over a thin PDMS membrane which 

incorporates the fluidic channels.  By applying pneumatic pressure to the control 

channels, the membrane flexes to pinch the fluidic channels, sealing them off.  As the 

volume of the channel is displaced by this motion, a series of these valves become an 

effective pump53, 54, 120.  Figure 1.6A shows a PDMS microfluidic chip which integrates 

all the operations of low-flow push-pull perfusion and sample analysis. Figure 1.6B 
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shows the results obtained from within the anesthetized brain following potassium 

depolarizations of neurotransmitters.  A multi-channel pump provides both push and pull 

flow to the implanted probe, and propels a separation buffer to an integrated microfluidic 

flow gate53, 54.  A valve to stop the flow of separation buffer is actuated by a computer 

program to make an injection into the electrophoresis channel. To improve CE separation 

efficiency, a fused silica capillary can be inserted into the PDMS chip at the flow gate 

exit and utilized for the separation channel, improving heat transfer versus PDMS53.  By 

integrating all functions and minimizing dispersion lengths, these devices have 

demonstrated the highest temporal resolution (~45 s) of any neurotransmitter analysis 

using low-flow push-pull (excluding this work)53, 54. 

 Segmented flow microfluidics offer much potential for sampling methods to 

reduce dispersion during transport, manipulation, derivatization, and analysis of 

microdialysate or low-flow push-pull perfusate121.  Segmented flow is the use of plugs or 

droplets of aqueous phase in an immiscible oil carrier on-chip121.  If the channel is 

hydrophobic, then the oil phase wets the walls with a thin film, isolating each aqueous 

segment as a discrete sample122-124.  Much progress has been achieved in the handling of 

nanoliter droplets. Methods for reagent addition125, 126, splitting127, 128, storage118, phase 

separation129, and rapid mixing124 have been demonstrated without cross-talk between 

droplets.  Analytical methodologies have been utilized with droplets including enzyme 

assays84, immunoassays130, capillary electrophoresis70, 118, 119, 129, and mass 

spectrometry87, 131, 132. 
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Figure 1.7. Chemistrode sampling using droplets for high temporal resolution. (A) An islet 
was monitored during exposure to high glucose concentration for intracellular calcium 
concentration and insulin secretion.  (B) Analyzing plugs collected for insulin 
(competitive immunoassay) revealed a delayed insulin increase following glucose 
stimulation, and a decreasing insulin release over time as opposed to a more constant 
calcium concentration.  Reproduced with permission from 130 copyright 2008 the 
National Academy of Sciences of the USA. 
 

Nanoliter droplets were successfully incorporated with microdialysis sampling for 

up to 2 s temporal resolution70, 118, 119.  By utilizing an offline analysis format, plugs could 

be generated at a high frequency and individually analyzed at a slower pace with 

electrophoresis119.  This enables high resolution separations without compromising on 

temporal resolution.  Despite this benefit, faster than 2 s temporal resolution was not 

achieved, a temporal limit attributed to the probe dialysis membrane119.   

Sampling methods not requiring a membrane may offer higher temporal 

resolution than microdialysis by not having a membrane to limit diffusion119.  One novel 
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device so named the “chemistrode” has demonstrated this possibility, achieving up to 50 

ms temporal resolution sampling in vitro130.  This device functioned by bouncing nL 

plugs off the surface of an islet being analyzed (Figure 1.7).  While this device clearly 

illustrates the potential of plugs for improving temporal resolution, the “chemistrode” is 

not amenable to deep brain sampling as measurements occurred at an orifice of a PDMS 

microchip. 

In previous studies, the temporal resolution of low-flow push-pull perfusion was 

significantly affected by Taylor dispersion, reducing resolution to 16 s without 

derivatization or ~45 s with derivatization54, 74. This is due to practical limits imposed by 

how close the analytical instrumentation can be placed near an animal, increasing the 

length of the capillary inlet and dispersion time.  However, segmented flow can be 

generated much closer to the inlet of the probe, preserving the temporal resolution for 

online or offline analysis70, 84, 119.  As no membrane is present to limit diffusion, temporal 

resolutions in the ms range should be possible.  The spatial resolution of these devices is 

greater than microdialysis, thus offering the potential to observe changes within small (~ 

200 µm) nuclei of the brain.  Since plugs are amenable to different assays, this should 

allow many different neurotransmitters to be analyzed. 

Conclusions 

 Technologies for in vivo neurochemical sampling have evolved significantly as 

sampling probes have become less invasive, more practical, and finer spatial resolution.  

Improvements in analytical methodology allow multianalyte measurements and higher 

temporal resolution.  Microelectrodes have highlighted the significance of high spatial 

and temporal resolution for observing concentration dynamics and spatial heterogeneity 
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of the brain. Droplet-based microfluidics have improved microdialysis to comparable 

temporal resolution of microelectrodes but with multianalyte resolution.  By coupling 

droplet microfluidics to low-flow push-pull perfusion, sampling with both spatial and 

temporal resolution comparable to microelectrodes within the brain should be achievable, 

providing the potential for many different and multianalyte analyses. 

Dissertation Overview 

 The goal of this dissertation is to improve upon low-flow push-pull perfusion to 

create a high spatial and temporal resolution in vivo method without the limitations of 

microelectrodes.  First, a reliable and simple method for integrating droplet microfluidics 

with push-pull is described, which provides 7 s temporal resolution.  To process the 

samples collected, a novel Teflon reagent addition tee was fabricated.  This high temporal 

resolution methodology was demonstrated in vivo with several different assays, including 

an enzyme assay, capillary electrophoresis, and mass spectrometry.  The spatial 

resolution and multianalyte potential of low-flow push-pull perfusion were demonstrated 

in vivo by using novel miniaturized probes implanted in awake, freely moving animals to 

map 13 neurotransmitters and metabolites with 200 µm resolution.  Future projects are 

proposed to improve upon the spatial and temporal resolution of these devices, including 

designs to improve temporal resolution, microfabrication of probes for smaller 

geometries, improved temporal resolution of comprehensive neurotransmitter analyses, 

and elucidating regional differences in dopamine uptake and metabolism. 

Chapter II 

 Push-pull perfusion was coupled to segmented flow to generate 6 nL plug samples 

at 7 s intervals.  This was achieved by using a vacuum source coupled to a tee at the 
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probe outlet for plug generation.  By balancing the flow resistance of an oil inlet, stable 

plug generation was achieved and up to 45 min of samples stored for offline analysis.  A 

novel Teflon-based reagent addition tee was fabricated to allow addition of a glutamate 

enzyme assay reagent to each plug, which was then quantified by laser-induced 

fluorescence.  This allowed 7 s resolution measurement of glutamate transients within the 

striatum of anesthetized rats. Microinjections of 70 mM potassium created rapid 

glutamate transients with an average maxima of 4.5 ± 1.1 µM.  It was also demonstrated 

that reducing inlet size and geometry can provide up to 200 ms temporal resolution. 

Chapter III 

 Multianalyte in vivo measurements were demonstrated by low-flow push-pull 

perfusion sampling coupled to nanospray ionization mass spectrometry.  Acetylcholine, 

its metabolite choline, and the drug neostigmine were analyzed simultaneously.  A 

reagent was added to each plug to improve ionization, remove background interferences 

and increase accuracy by an iosotopic internal standard using the tee demonstrated in 

Chapter II.  Basal concentrations of ACh and Ch were 5.0 ± 1.9 nM and 490 ± 90 nM in 

the striatum of anesthetized rats.  Following microinjection of neostigmine, extracellular 

concentration increases of as fast as 7 s could be observed for neostigmine (14 ± 3 s 

average) while acetylcholine increased over 35 ± 4 s.  Choline was observed to decrease 

over 60 ± 13 s following microinjection, relating to a decrease in metabolism of 

acetylcholine. 

Chapter IV 

 Low-flow push-pull perfusion was used to test if extracellular chemical gradients 

exist between several small brain nuclei. A miniaturized polyimide-encased push-pull 
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probe was developed and used to measure basal neurotransmitter spatial gradients within 

brain of live animals with 0.004 mm3 resolution.  Dopamine, norepinephrine, serotonin, 

glutamate, γ-aminobutyric acid, aspartate, glycine, acetylcholine and several 

neurotransmitter metabolites were measured simultaneously by LC-MS. Significant 

differences in basal concentrations between midbrain regions as little as 200 μm apart 

were observed. For example, dopamine in the ventral tegmental area was 4.8 ± 1.5 nM 

but in the red nucleus was 0.5 ± 0.2 nM. Regions of high glutamate concentration and 

variability were found within the VTA of some individuals suggesting hot spots of 

glutamatergic activity. Measurements were also made within the nucleus accumbens core 

and shell. Differences were not observed in dopamine and 5-HT in the core and shell; but 

their metabolites homovanillic acid (460 ± 60 nM and 130 ± 60 nM respectively) and 5-

hydroxyindoleacetic acid (720 ± 200 nM and 220 ± 50 nM respectively) did differ 

significantly suggesting differences in dopamine and 5-HT activity in these brain regions. 

Maintenance of these gradients depends upon a variety of mechanisms. Such gradients 

likely underlie highly localized effects of drugs and control of behavior that have been 

found using other techniques.   

Chapter V 

 To further increase the applications of segmented flow-coupled low-flow push 

pull perfusion, two analytical methods were adapted.  First, a novel droplet-based enzyme 

assay for the neurotransmitter GABA was developed.  By incorporating laser-induced 

fluorescence, a detection limit of 0.7 µM for GABA within samples was achieved using 

similar methodology to that described within Chapter II.  Second, the reagent addition tee 

was used to fluorescently tag amine neurotransmitters and a microfabricated 
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electrophoresis chip was used to measure neurotransmitters within each sample plug.  

Rise times could be observed within 1 plug, indicating that 7 s temporal resolution is 

conserved in this microchip.  Potassium-evoked changes of glutamate and aspartate were 

measured in vivo by electrophoresis. 

Chapter VI 

 This body of work is summarized, and several future areas for research are 

proposed to build on this work.  The first project is to improve the temporal resolution to 

1 s or better for low-flow push-pull perfusion when applied to in vivo measurements.  

This can be accomplished by modifying probe geometry and flow rates and using 

segmented flow. Additionally, adding a makeup volume to probe effluent can allow 

higher frequency plugs without the technical challenges of reducing to pL plug volumes. 

The second project is to integrate segmented flow microfluidics with a silicon 

microfabricated push-pull probe. Prototypes of this probe have been constructed and 

tested successfully in vivo with 20 minute fraction collection but as of yet, segmented 

flow has not been utilized. Design modifications can additionally provide benefits such as 

sampling from other sites and incorporation of microinjectors. A third project would 

improve on the temporal resolution of benzoyl chloride analysis of push-pull fractions. 

As the 1 µL fractions collected in Chapter IV yielded amply detectable signals for basal 

neurotransmitter concentrations, 0.1 µL (2 minute) fractions should be readily detected 

and highly informative.  Lastly, low-flow push-pull perfusion can be utilized to study the 

fate and metabolism of dopamine within regions such as the accumbens shell, which may 

provide insight to the mechanisms of certain drugs which are not well understood. 
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Appendices 

 Three appendices are provided to supplement experimental procedures for probe 

use and fabrication, performing histology, and microfabricating push-pull probes.  

Appendix A contains a description of practical aspects for low-flow push-pull perfusion 

probe fabrication and operation. Though the data chapters give an overview of 

instrumentation and parameters needed for low-flow push-pull sampling, the goal of this 

section is to provide a comprehensive description of fabrication protocols and probe 

operation. It offers an overview of parameters observed to be relevant to maintaining 

stable flow rates over several hours and how to prevent probe occlusion. Appendix B 

describes in detail the procedures for performing histology for probe tracking. This 

allows not only probe placement to be verified, but can be helpful in troubleshooting 

sampling issues. Appendix C provides a detailed description of the fabrication procedures 

for a new design of silicon microfabricated push-pull probe.  It also provides results and 

observations from preliminary experiments utilizing this probe and a discussion of the 

significance of these preliminary results. 
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Chapter II 

Push-Pull Perfusion Sampling with Segmented Flow for High Temporal and Spatial 

Resolution in Vivo Chemical Monitoring 

Reproduced with permission from Slaney, T.R. et al. Analytical Chemistry 2011, 83, 

5207-5213.  Copyright 2011 American Chemical Society. 

Introduction 

Monitoring neurotransmitters in the brain extracellular compartment is a 

necessary tool for studying neuronal function and psychological disorders1-3.  In such 

measurements, temporal resolution is important because concentration changes of 

neurotransmitters in the extracellular space around synapses are known to occur in 

milliseconds to seconds 1, 4.  Spatial resolution is important because the brain contains 

many small structures with distinct functions, neuronal populations, and neurotransmitter 

dynamics.  Microdialysis sampling coupled to analytical methods is a widely used 

approach for in vivo monitoring.  If the sensitivity of the analytical method is sufficient, 

short sampling intervals can be used and temporal resolution of a few seconds can be 

achieved5-8; however, the relatively large size of the probes, which are typically over 2 

mm long and 200 µm diameter, preclude their use for studying smaller brain regions.  In 

this work, we combine the miniaturized sampling method low-flow push-pull perfusion 

with segmented flow to achieve 200 ms temporal resolution and spatial resolution of 

0.016 mm2. 
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Push-pull sampling has been used in the brain since 19619, 10.  In this method, 

artificial cerebrospinal fluid (aCSF) is continuously infused into tissue through one tube 

and withdrawn from a second tube that is placed beside or concentric with the infusion 

tube.  Push-pull sampling fell out of favor because of tissue damage associated with 

direct tissue contact of fluids flowing at microliter per minute rates.  Spatial resolution 

can be improved and tissue damage greatly reduced by using narrow bore capillaries as 

the sampler tubing and flow rates less than 50 nL/min11.  Spatial resolution of low-flow 

push-pull perfusion is inherently better than microdialysis as the active sampling area is 

only limited by the spacing of the probe capillary inlets.   

Achieving high temporal resolution with low-flow push-pull sampling places 

great demands on sample manipulation capability, assay throughput, and assay 

sensitivity. Consider that if sampling at 50 nL/min, then a 60 min experiment at 10 s 

temporal resolution would require collection and analysis of 360 samples of 8 nL volume 

each.  Furthermore, Taylor dispersion during sampling can reduce temporal resolution.  

Initial experiments with low flow push-pull perfusion achieved 5 min temporal resolution 

by off-line fraction collection and analysis by CE11.  Coupling low-flow push pull 

perfusion on-line with CE has allowed 16 s12 and 45 s13, 14 temporal resolution sampling 

from the eye and brain respectively; however, in these cases Taylor dispersion was 

minimized by using short tubing that would be impractical for freely moving subjects.  

This approach also precludes off-line analysis which is often advantageous. 

In this work, we have coupled low-flow push-pull perfusion to segmented flow to 

both improve temporal resolution and facilitate manipulation of the nanoliter fractions 

that are collected.  In segmented flow, fractions are collected into a tube or channel as 
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discrete plugs separated by an immiscible carrier phase that wets the tubing surface.  As 

previously shown for microdialysis and “chemistrode” sampling, this approach prevents 

loss of temporal resolution due to Taylor dispersion during transport to an analytical 

system15-17.  This method also provides a convenient way to manipulate nanoliter samples 

in view of the operations that have been developed for plugs18-24.  Furthermore, several 

methods have been developed to analyze plug samples including enzyme assay23, 

immunoassay25, electrophoresis15, 26, and mass spectrometry27, 28.   

A significant challenge for coupling segmented flow with push-pull perfusion is 

developing flow control for plug formation from the “pull” or sampling capillary.  We 

found that this problem could be solved by using vacuum at the outlet of collection 

tubing to pull oil and brain perfusate into a tee where flow segmentation occurred.  As an 

initial application of this approach, we demonstrate in vivo monitoring of L-glutamate, a 

primary excitatory neurotransmitter in the brain known to have rapid concentration 

dynamics29.  L-glutamate was determined by fluorescent enzyme assay of the plugs in an 

off-line system. The assay allowed hundreds of samples with ~6 nL volume to be 

measured at 15 samples/min.  The system is shown to provide an efficient means of 

collecting, manipulating, and analyzing the large number of low volume samples required 

for high temporal and spatial resolution sampling. 

Materials and Methods 

Chemicals and Materials 

Unless otherwise specified, all reagents were purchased from Fisher Scientific 

(Fairlawn, NJ) and were certified ACS grade or better.  L-glutamic acid and 

1H,1H,2H,2H-perfluoro-1-octanol (PFO) were purchased from Sigma-Aldrich (St. Louis,  
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Figure 2.1. (A) Diagram of segmented flow-coupled low-flow push-pull probe.  
Artificial cerebrospinal fluid (aCSF) is infused directly into the tissue, while 
simultaneously extracellular fluid is withdrawn at an equal flow rate.  Suction for 
sampling flow is generated by vacuum applied to the outlet of Teflon storage tubing, 
which also pulls the oil to generate the segmented sample stream.  (B) Diagram of the 
internal tee geometry (tee outline not to scale). (C) Photograph of 6 nL sample 
segments (blue food dye) entering the storage tubing at the tee outlet. 
 

MO).  Perfluorodecalin and FC-72 were purchased from Acros (Morris Plains, NJ).  L-

glutamate oxidase, glutamate pyruvate transaminase, horseradish peroxidase, L-alanine, 

dimethylsulfoxide, and Amplex Red were purchased as a kit from Invitrogen (Carlsbad, 

CA).  Fused silica capillaries were purchased from Polymicro (Phoenix, AZ).  Teflon 

PFA tubing was purchased from Upchurch (Oak Harbor, WA). 1/32” polyvinylidine 

difluoride (PVDF) sheets were purchased from Small Parts (Lexington, KY). 

Probe Fabrication 

 “Side-by-side” push-pull probes were constructed as described previously13.  

Briefly, two 10 cm lengths of 20 μm inner diameter (ID), 90 μm outer diameter (OD) 

capillary were inserted through a 27-gauge stainless steel hypodermic needle as  
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Figure 2.2. System for high temporal resolution sampling.  (A) A tee from PVDF was 
molded so to place the probe inlet adjacent to the segmentation tubing.  Oil enters the tee 
by flowing over the end of the inlet capillary within the tee.  (B) Fluorescence of plugs in 
non-fluorescent oil was measured while switching between 1 and 2 μM resorufin 
standards, demonstrating 0.2 s temporal resolution (1 plug to observe a 10-90% 
concentration change, 30 nL/min sampling rate). 
 
illustrated in Figure 2.1A (BD, Franklin Lakes, NJ).  The capillaries were cemented in 

place by applying cyanoacrylate adhesive to the opposite end of the needle (Duro Super 

Glue, Henkel, Rocky Hill, CT).  To adapt these capillaries to 360 μm fittings, 2 cm 

lengths of 150 μm ID, 360 μm OD capillary were glued concentrically over the ends of 

these using thixotropic optical epoxy (353ND-T, Epoxy Technology, Billerica, MA).  

Additional fabrication details are provided in Appendix A. 

A tee was fabricated from PVDF and capillaries for use in temporal resolution 

experiments.  Figure 2.2A illustrates the assembled tee design.  To mold the PVDF, a 150 

μm OD capillary was placed inside a 150 μm ID, 360 μm OD Teflon tubing and a 360 

μm OD capillary was placed perpendicular to the 150 μm OD capillary to form a tee.  

These capillaries were fixed to a piece of glass using labeling tape and an approximately 
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1 cm square piece of PVDF was placed over these capillaries.  Another piece of glass was 

placed over the PVDF, and the assembly was heated in an oven at 170°C until the PVDF 

melted.  After cooling at room temperature, a second piece of approximately 1 cm square 

PVDF was slid underneath the PVDF assembly to form a bottom layer and this assembly 

was again melted in the oven.  The capillaries were removed and the PVDF was trimmed 

to reduce channel lengths to ~4 mm using a high-speed rotary cutoff tool (Dremel, Robert 

Bosch, Farmington Hills, MI).  The perpendicular channel was extended to intersect the 

150 μm ID channel using a 360 μm drill bit (Kyocera, Costa Mesa, CA).  A flat tipped 

360 μm drill bit was used to bore out the 360 μm axial tubing channel.  A 25 cm length of 

50 μm ID, 360 μm OD capillary was inserted into the axial channel.  The polyimide was 

removed from approximately 2 mm at the end of a 1 cm length of 10 μm ID, 150 μm OD 

capillary and this end was inserted into the 150 μm ID channel until adjacent to the 

Teflon tubing.  A 10 cm long, 25 μm ID x 360 μm OD oil inlet capillary was inserted in 

the perpendicular channel.  The tee was sealed with StickyWax (KerrLab, Orange, CA) to 

prevent leaks and primed with oil (10:1 FC-72:PFO, v:v) to remove trapped air bubbles 

before use. 

Surgical Procedures 

All surgical procedures were performed according to a protocol approved by the 

University Committee on Use and Care of Animals.  Male Sprague-Dawley rats between 

250 and 350 g were anesthetized by intraperitoneal administration of 75 mg/kg ketamine 

and 0.25 mg/kg dexmedetomidine.  Boosters of 25 mg/kg ketamine and 0.08 mg/kg 

dexmedetomidine were given as needed.  Anesthetized rats were mounted in a stereotaxic 

frame and the push-pull sampling probe was inserted into the striatum at 1.0 mm anterior 
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and ± 2.6 mm lateral to bregma, and 5.0 mm ventral to the dura.  During insertion, both 

capillaries were flushed with aCSF to prevent clogging as described elsewhere11.  The 

aCSF contained 145 mM NaCl, 2.68 mM KCl, 1.01 mM MgSO4, 1.22 mM CaCl2, 1.55 

mM Na2HPO4, and 0.45 mM NaH2PO4, pH 7.414.  For K+ stimulation experiments, a 

capillary microinjector30 mounted on a second stereotaxic arm, angled 10° to vertical in 

the coronal plane, was inserted 0.1 mm right of the sampling probe inlet.  The sampling 

probe was positioned so that the beveled side faced the injector.  After probes were 

inserted, 45 min equilibration time was allowed as preliminary experiments showed that 

for 30 min after insertion L-glutamate concentrations were not stable.  Stimulated L-

glutamate release was achieved by infusing 100 nL of high-K+ aCSF over 6 s.  High-K+ 

aCSF was prepared the same as aCSF, except with 70.0 mM KCl and 77.7 mM NaCl. 

Probe Operation 

 An overview of the fluidic system for in vivo sampling and analysis is shown in 

Figure 2.1. To provide the “push” flow, one capillary of the probe was connected to a 25 

μL syringe (Gastight, Hamilton Co., Reno, NV) using 360 μm capillary fittings and 

approximately 30 cm of 40 μm ID capillary, and this syringe was placed in a syringe 

pump (Fusion 400, Chemyx, Stafford, TX).  After probe insertion, the “pull” capillary 

was connected to a 100 μm ID tee (C360QTPKG4, Valco Instruments, Houston, TX).  

One inlet of this tee was attached to a 20 cm length of 40 μm ID capillary which was 

placed in a vial of a 50:1 (v:v) solution of perfluorodecalin:PFO, the immiscible oil 

phase.  A 50 cm length of 150 μm ID, 360 μm OD Teflon PFA tubing was attached to the 

third inlet of the tee.  610 mm Hg of vacuum was applied to the outlet of the Teflon tube 

to provide 50 nL/min of “pull” through the probe inlet and approximately 70 nL/min of 
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oil flow simultaneously.  To provide a constant flow rate, this Teflon storage tubing was 

primed with plugs of aCSF before sampling.  To monitor the aqueous flow, plug 

frequency and quality were visually observed. Detailed procedures for probe use and 

troubleshooting are provided in Appendix A. 

After sampling from the brain, the probe was removed and sequentially placed 

into a series of standards of L-glutamate in aCSF for calibration.  To prevent clogging 

during removal, vacuum was stopped and the “push” flow was increased to 500 nL/min. 

Standards were sampled without “push” flow to calibrate for absolute recovered 

concentrations. 

Fabrication of a Teflon-Based Reagent Addition Tee 

A hydrophilic capillary placed orthogonal to a hydrophobic channel has been 

shown to provide carry-over free reagent addition to segmented flow22, 24.  A reusable 

Teflon-based reagent addition tee with a hydrophilic reagent inlet was therefore 

constructed by melt casting polyvinylidine difluoride (PVDF) sheet over capillary tubing 

as shown in Figure 2.3.  A 20 cm length of 150 μm ID Teflon tubing was first protected 

by inserting a ~30 cm length of 150 μm OD capillary through it.  This was placed on a 

piece of glass, and a 200 μm OD capillary was placed perpendicular to this.  To ensure 

vertical alignment, the 200 μm capillary was placed inside a ~2 cm length of 250 μm ID, 

360 μm OD capillary  and approximately 3 mm of 200 μm OD capillary was left exposed 

(not pictured).  These capillaries were fastened to the glass with labeling tape.  An 

approximately 1 cm square piece of PVDF sheet was aligned over the tubing as shown in 

Figure 2.3A.  Another piece of glass was placed above this assembly which was then 

heated at 170°C until the PVDF melted.  After cooling to room temperature, another 
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prevent carry-over of sample22.  PDMS unions consisting of a ~5 mm long x 360 μm ID 

channel were used to connect Teflon tubings. 

Glutamate assay reagents were prepared to achieve the reaction concentrations 

recommended by the manufacturer when added at a 1:2 reagent:sample volume ratio.  

These reagents were prepared as two solutions in 100 mM Tris-HCl pH 7.5, the first 

containing 0.3 mM Amplex Red, and the second 7.5 U/mL of horseradish peroxidase, 

0.24 U/mL L-glutamate oxidase, 15 U/mL glutamate-pyruvate transaminase, and 6 mM l-

alanine.  These reagents were mixed at a tee fitting while being injected into plugs.  The 

resulting plugs passed out of the third arm of the tee and into a 150 μm ID by 60 cm long 

Teflon tube.  Fluorescence of plugs was measured in this tube 50 cm downstream of the 

tee as they passed through the detector.  The laser-induced fluorescence detector utilized 

a 543 nm 1.5 mW He-Ne laser (Melles Griot, Carlsbad, CA) for excitation, a 580 nm 

emission filter (XF3022, Omega Optical, Brattleboro, VT), and a photomultiplier tube for 

detection. 

Safety Considerations 

 Perfluorinated surfactants have been shown to cause chronic health effects.  

Proper care and personal protective equipment should be utilized to avoid contact with 

these liquids.  

Results and Discussion 

Backpressure and Temporal Resolution Considerations of a Sampling Probe Inlet 

In selecting the vacuum and capillary dimensions, it is necessary to balance the 

desire to use short and narrow bore tubing to minimize dispersion with the practical 
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Figure 2.5. Contour plots of effects of varying probe inlet capillary lengths and inner 
diameter on  (A) backpressures (0.89 cPa viscosity) and (B) temporal resolution (rise 
time) for l-glutamate (D = 7.6x10-10 m2/s) at 50 nL/min. 
 
considerations of useful backpressures.  The backpressure must be greater than the 

capillary pressure at the oil/aqueous interface within the tee of the probe to ensure 

constant flow; however, leaking and bubble formation become increasingly problematic 

at stronger vacuum.  Using the Hagen-Poiseuille equation with 0.89 mPa·s and 5.1 mPa·s 

as the dynamic viscosities for the aqueous phase and perfluorodecalin, respectively, 

allows the desired backpressure and the aqueous/oil ratio to be selected.  A 2D plot of 

inlet backpressures at 50 nL/min when diameter and length are varied is shown for the 

aqueous inlet in Figure 2.5. 

While lower backpressures may provide more reliable flow, temporal resolution 

achieved will be worse with larger inlet dimensions due to Taylor dispersion and 

diffusion.  The rise time required for 10% to 90% of a concentration step change was 

used as a metric of temporal resolution.  The equation for the effective diffusion 

coefficient for Taylor dispersion31, 32 can be substituted into the equation for diffusion 

from a finite concentration step to describe a flowing concentration step.  This combined 

equation can be solved to find the distances from the center of the boundary for 10% and 

90% of the step change after dispersing for the flush time of the capillary, and this 
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distance converted to rise time using the flow linear velocity.  Iteratively solving this 

equation revealed a simpler expression: 

݁݉݅ܶ ݁ݏܴ݅ ൌ ଷ.଺ଶ
௏

ටቀ1 ൅ ௥మ௏మ

ସ଼஽మቁ  (1)                                                                                    ݐܦ

where r is capillary radius, V is average flow velocity, D is diffusion coefficient, and t is 

flush time of the capillary.  This equation for 10 to 90% rise time can be plotted for a 

fixed flow rate as shown in Figure 2.5B.  Juxtaposing this with a plot of backpressure 

(Figure 2.5A) can visually allow considerations of the consequences of inlet dimensions 

at a fixed flow rate.  

In this work, we used a 1 cm, 10 μm ID probe inlet to achieve sub-second 

resolution because it yielded 145 Torr backpressure and 0.15 s temporal resolution (for 

resorufin, D=4.6x10-10 m2/s) at 32 nL/min.  For in vivo sampling, a 10 cm length of 20 

μm ID capillary was chosen as it provides not only a long probe length to work with, but 

a 142 Torr backpressure and 1.2 s resolution (for glutamate) at 50 nL/min, much faster 

than the 7 s plugs generated.  Approximately 150 Torr was found to be small enough 

backpressure that air leaks in both probes were minimal. 

Probe Design 

  The fluidics for in vivo sampling by push-pull perfusion and collecting fractions 

as plugs are illustrated in Figure 2.1A.  In this system, a syringe pump provides push flow 

and vacuum pulls both sample from the probe and oil from a reservoir through a tee and 

into a collection tube. Based upon considerations of flow resistance and temporal 

resolution, capillaries with 20 µm ID by 10 cm length and 40 µm ID by 20 cm length 

were selected for the aqueous phase (sampling) capillary and oil inlet capillary, 

respectively.  The collection tubing was 150 μm ID Teflon for in vivo studies.  This ID 
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tubing is compatible with previously published methods of reagent addition which is 

necessary for assays22, 24.  Using this system, regularly shaped plugs were generated as 

illustrated in Figures 1B and 1C.  By measuring the width and frequency of plugs 

generated, we determined the flow rate through the sampling capillary to be 48 ± 8 

nL/min (n = 5 different probe and tee systems), which is within the desirable flow rates 

for low-flow push-pull perfusion11, with 610 mm Hg absolute pressure applied.  This 

vacuum was small enough that failure due to air leaks was eliminated.  The flow rate in 

the collection tubing was 46 ± 5 % aqueous (n = 5) so that the oil spacers and sample 

plugs were similar widths.  Sample plugs were measured to be 5.9 ± 1.2 nL using 

different probes (n = 5) corresponding to 7 s plugs of 330 μm length. 

Spatial resolution is inherently better than microdialysis as the active sampling 

area is based on the spacing of the two capillary lumen between which the flow occurs.  

If the active sampling area is assumed equal to the tip surface area of these two 

capillaries, the sampling region is then approximately 90 μm by 180 μm, an area of about 

0.016 mm2.  This area is approximately 80-fold less than the surface (i.e., sampling) area 

of a relatively small 2 mm long by 200 μm diameter microdialysis probe. 

 Temporal Resolution Characterization 

Temporal resolution in a plug-based system can be defined as ݐ௥௘௦ ൎ థ
௙
 where � is 

the number of plugs required to observe a change (from 10 to 90% of a concentration 

step), and f is the plug frequency (Hz)16.  As shown in Figure 2.6A, a glutamate step 

change could be observed with just 1 plug within 150 μm ID Teflon collection tubing for 

7 s resolution.  Reducing the collection tubing ID to match that of the tee (100 μm) 

allows smaller, more frequent plugs, occurring at 1.7 ± 0.3 s (n = 3).  Step changes of  



47 
 

Figure 2.6. Calibration curve of recovered L-glutamate concentrations.  A stirred vial 
was sampled without push flow, and was spiked at 5 minute intervals from 0 to 10 μM 
L-glutamate.  Resulting plugs were analyzed using the system shown in Figure 2.4. (A) 
Recording of fluorescence of plugs for sampled step changes in L-glutamate 
concentration (black line).  A comparable experiment without segmented flow revealed 
the loss of temporal associated with continuous flow (red line). (B) Calibration curve 
resulting from sampling experiments.  Each point is the average of ~56 samples with 1 
standard deviation as the error bar. 
 
resorufin measured directly by laser induced fluorescence could be resolved within two 

plugs for 3.4 s resolution.  Finite element analysis (not shown) suggested that this 

resolution was limited by the dead volume of the tee.   

 To test the limits of temporal resolution by push-pull perfusion with segmented 

flow, a PVDF tee with lowered internal volume was fabricated.  As shown in figure 2.2A, 

this tee allowed the probe capillary outlet to be placed immediately adjacent to the plug 

storage tubing.  A 10 μm ID, 1 cm long sampling capillary was used.  A 50 μm bore 

Teflon storage tubing allowed faster plugs to be stably generated (0.2 s intervals, 0.1 nL 

volume, n = 3) for a 30 nL/min flow rate.  Step changes of resorufin were observed 

within one plug for a 0.2 s rise time (as shown in Figure 2.2B).  These results show that 

sub-second temporal resolution is possible by this method of sampling.  For practical 

analysis, reagent addition tees for the lower volume plugs would need to be developed.  
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High Throughput Determination of L-Glutamate in Nanoliter Sample Plugs 

This in vivo sampling probe generates 500 plugs of 5.9 nL volume in 1 h.  

Therefore, the analytical procedure used must have sufficient throughput and sensitivity 

to analyze the fractions.  For this work, we chose a fluorescence enzyme assay for L-

glutamate.  The reaction scheme of the assay used is: 

L-glutamate ൅ O2
L-Glutamate Oxidase
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮۛ α-ketoglutarate ൅ H2O2 

H2O2 ൅ Amplex Red
Horseradish Peroxidase
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ O2 ൅ resorufin 

α-ketoglutarate ൅ L-alanine
Glutamate-Pyruvate Transaminase
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ L-glutamate ൅ pyruvate 

where resorufin is the detected fluorescent product.  This assay is attractive as it 

incorporates an enzyme (glutamate-pyruvate transaminase) to regenerate L-glutamate and 

amplify signal.  Reaction time (35 minutes) was chosen based on manufacturer-

recommended times and was verified experimentally to provide adequate sensitivity to 

observe sub-micromolar concentration changes (see Figure 2.6B). 

To perform the assay on plugs, the fluidic system illustrated in Figure 2.4 was 

used.  Reagents were reproducibly added to plugs with little cross-contamination by 

pumping them through a hydrophilic capillary that intersects the plug flow path in a 

hydrophobic tee similar to that described before22, 24.  Previous work for reagent addition 

to pre-formed plugs has used tees fabricated in PDMS; however, because perfluorinated 

oils have low energy of interaction with PDMS, the surface had to be modified to prevent 

aqueous plugs from coalescing and splitting33.  We found that although such 

modifications were suitable for in vitro studies, they were not sufficiently stable when 

exposed to samples collected in vivo.  Therefore, we developed a reagent-addition tee 
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using 150 μm ID Teflon tubing as shown in Figure 2.4.  Surface stability of this Teflon 

tee was sufficient to allow it to be reused for many experiments.   

Using this tee, approximately 3 nL of reagent was added to each of the plug 

samples as they passed the tee junction.  The resulting fluorescence was detected ~50 cm 

downstream, corresponding to a 35 min reaction time.  At the flow rates used, samples 

were assayed at ~4 s intervals (15 samples/min) after the initial 35 min of incubation.  Up 

to 500 sample and standard plugs were analyzed in one 75 min session demonstrating the 

stability of this high throughput system.  A fluorescence trace during calibration of the 

system is shown in Figure 2.6A. For calibration, L-glutamate was spiked into a test 

solution in steps from 0 to 10 µM.  The fluorescence changes are linear with 

concentration as shown in Figure 2.6B.  The step changes were detected across 1-2 plugs, 

indicating that temporal resolution was preserved despite the long incubation time. 

The system provided a convenient and automated way to manipulate and analyze 

the 5.9 nL plugs collected from the probe while maintaining temporal resolution and 

providing good throughput.  Alternatives to the segmented flow approach would be to 

collect individual fractions into a multi-well plate or similar device; however collecting 

5.9 nL fractions in a multi-well plate at high temporal resolution, storing them, and 

adding appropriate reagent amounts would be challenging.  Another alternative would be 

to operate a continuous flow assay; however, this would greatly compromise temporal 

resolution.  A direct comparison of continuous flow and segmented flow during 

calibration is shown in Figure 2.6A.  Due to dispersion caused by flow and diffusion 

during transfer within the storage tubing (100 μm ID), 5 minute concentration steps 

produced a continuous increase in detected signal instead of the sharp steps observed 
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Figure 2.7. Segmented flow-coupled low-flow push-pull sampling of neurotransmitters 
in the rat striatum.  (A) Measured striatal L-glutamate, with 100 nL 70 mM K+ aCSF 
injected at times indicated by the arrows. (B) Same as A, but where brief probe occlusion 
occurred near third injection. (C) Mean evoked peak area of repeat injections in 5 rats, (4 
rats for injection 4) with SEM.  (D) Control injections of aCSF (solid), and 70 mM K+ 
aCSF (dashes) analyzed without glutamate oxidase (arrows indicate approximate times). 
 
with segmented flow. 

In Vivo Monitoring of L-glutamate 

 We used this method to measure L-glutamate in the striatum of anesthetized rats 

as a demonstration of the potential for in vivo monitoring.  Average basal L-glutamate 

concentration was 0.9 ± 0.2 μM (n = 8).  For comparison, we measured 1 uL perfusate 

fractions using a capillary electrophoresis (CE) system described previously34 and found 

basal glutamate to be 1.4 ± 0.1 μM (n = 3).  We attribute this difference to ascorbic acid, 

which decreased the enzyme assay sensitivity at in vivo concentrations (not shown).  The 

in vitro recovery of our probe was measured to be 57 ± 15 % (n = 3) by sampling 
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resorufin with and without “push” flow (2 μM in aCSF at 37°C).  Correcting the CE-

measured basal concentration for this recovery gives 2.5 ± 0.2 μM L-glutamate, which 

agrees with previously reported values of 2.0 ± 0.7, 1.9 ± 0.6, and 2.3 ± 1.2 µM for low-

flow push-pull perfusion measurements of L-glutamate11, 13, 14.   

To demonstrate monitoring of rapid concentration changes, we microinjected 100 

nL of 70 mM K+ to evoke brief pulses of L-glutamate efflux.  As shown by the example 

traces in Figures 2.7A and 2.7B, such injections resulted in transient increases in L-

glutamate concentration recorded by measuring the fluorescence of plugs with reagent 

added.  Average concentration maxima for the first microinjection was 5.6 ± 2.0 μM (n = 

6) and 4.0 ± 0.9 μM for subsequent injections in the same animal (n =  6 rats, 2-3 

injections each) spaced 5 or 10 min apart, an overall average of 4.5 ± 1.1 μM (n = 6).  For 

a measure of evoked L-glutamate collected by the probe, area under the curve was 

calculated for each microinjection.  Average peak area for the first stimulation was 121 ± 

41 μM·s (n = 6), and 92 ± 16 μM·s for subsequent peaks as shown in Figure 2.7C (n = 6 

rats, 2-3 injections each), an overall average of 102 ± 23 μM·s (n = 6).  The average 

release of L-glutamate from the first microinjection was not significantly higher than for 

subsequent by either metric (T-test, p > 0.05). 

To illustrate that the responses were not an artifact of the microinjection, we 

repeated the microinjections with normal aCSF and observed no response as shown in 

Figure 2.7D (solid line).  If glutamate oxidase was omitted from the enzyme mixture, no 

response to potassium microinjections was observed, indicating transients are changes of 

glutamate and not hydrogen peroxide (Figure 2.7D, dashed line).  These results are 

comparable to the 5.7 µM maxima observed in previous work with L-glutamate 
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microelectrodes where 100 nL of 70 mM high-K+ aCSF was microinjected into the 

striatum29. 

 As shown in Figure 2.7A, the rise to maximal response for high-K+ aCSF 

stimulation could be observed within 1 to 2 plugs.  Achieving a 1 plug rise for all 

stimulations would require timing microinjections to be in phase with plug formation. In 

these preliminary experiments, the average number of plugs required was 2.8 ± 0.3 

corresponding to a rise time of 22 ± 2 s (n = 21 injections in 6 rats).  Some in vivo 

experiments experienced temporal resolution loss due to plugs coalescing during analysis 

as shown in Figure 2.7B (2-3 plugs required for rise time).  A syringe driver was used for 

microinjections, at the disadvantage of requiring at least 6 s to infuse the full volume.  A 

gas pressure microinjection system has allowed 1.6 s rise times to be observed in a 

comparable microelectrode study29. 

This temporal resolution is comparable to the “state-of-the-art” in microdialysis 

temporal resolution, while sampling from at least an 80-fold smaller area of the brain.  

The in vitro experiments shows temporal resolution that approaches what is possible with 

“chemistrode” sampling16.  In the chemistrode, plugs are preformed and then passed 

through the sampling region.  The present work shows that with relatively low dispersion 

in the sampling channel, 200 ms resolution is possible which is comparable to 50 ms 

achieved for the “chemistrode”.  The push-pull system achieves this resolution at much 

lower flow rates relative to the “chemistrode”, which may be advantageous in sampling 

delicate tissues that might be disrupted by shear forces, and without concern of 

contaminating the sample with oil.  
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Segmented-flow coupled to push-pull sampling may also be compared to 

biosensors for in vivo monitoring.  The segmented-flow method provides temporal and 

spatial resolution that approaches that of the best sensors.  Glutamate enzyme sensors 

with 50 μm by 150 μm dimensions35, compared to 90 x 180 µm capillary tips used here 

for sampling, and 0.8 s temporal resolution compared to 7 s here have been reported29.  

Aside from these issues, sensors presently provide advantages of ease of use (e.g. 

commercial products) and real time monitoring.  In contrast, the sampling method should 

provide better opportunities for monitoring different compounds and multiple compounds 

simultaneously.  In short, this approach to sampling closes the gap in spatial and temporal 

resolution performance between sampling and sensor methods, but each approach to in 

vivo monitoring retains distinct advantages.     

Future Directions and Potential 

A number of improvements and other applications seem feasible based on these 

initial results.  This work used an enzyme assay to monitor L-glutamate in 7 s plugs.  

Development of a smaller reagent addition tee will allow assays to be performed on 200 

ms plugs collected from push-pull sampling for detecting more rapid concentration 

changes.  Other analytes could be targeted by using different enzyme systems. The 

resulting samples are also compatible with a variety of other plug manipulation and 

analysis techniques such as the “SlipChip” for handling arrays of nanoliter samples36, 

immunoassays25, capillary electrophoresis15, 26, 37, electrochemical detection38, 39, and 

mass spectrometry27, 28.  While in vivo neurotransmitter sampling was the goal of the 

work described here, segmented flow-coupled low-flow push-pull or direct sampling is 
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adaptable to other applications such as spatially resolved sampling of secretions from 

tissues in vitro (e.g. brain slices, islets of Langerhans, or cultured cells). 

In the course of these experiments, we observed several difficulties that will need 

to be addressed for future development.  During the sampling procedure, 23% of probes 

were found to clog, a concession for the benefit of improved recovery granted by having 

the probe inlet directly in contact with the tissue.  Figure 2.7B shows an experiment 

where clogging occurred briefly during the third microinjection resulting in a delayed 

appearance of the transient.  Future work will investigate whether different probe designs 

are less susceptible to clogging.  Another practical issue to address is materials and 

connections.  Teflon tubing as the basis of assay fluidics proved to be robust as reagent 

addition tees could be used for many experiments.  However, care in making connections 

between Teflon tubings was necessary to avoid trapping dust and debris, which could 

cause plug coalescence and compromise temporal resolution.  Additionally, PDMS 

unions used exhibited a poor tolerance for high backpressure.  Future work will focus on 

development of more reliable unions for analysis.  Despite these obstacles, 74% of the 

sample tubes collected were successfully analyzed (n = 34 experiments).  While this 

enzyme assay provided facile plug analysis and allowed visualization of glutamate 

transients, its non-specificity may be problematic if quantitative measurements are 

desired due to matrix interferences including ascorbic acid and hydrogen peroxide. 

Conclusions 

 A method for high temporal resolution sampling using segmented flow coupled to 

a push-pull sampling probe was demonstrated with an 80-fold spatial resolution 

improvement over microdialysis.  The method provides spatiotemporal resolution for 
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neurotransmitter measurement that approaches what has been achieved with 

electrochemical sensors, but as a sampling method it is adaptable to other segmented 

flow-based analyses to provide good versatility in chemical monitoring.  The simplicity 

of the probes, the small dimensions of inlets, and high temporal resolution while 

maintaining picoliter to nanoliter volumes provides new opportunities for chemical 

monitoring by sampling. 
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Chapter III 

Nanospray Mass Spectrometry for 7s Resolution in Vivo Simultaneous Monitoring 

of Drugs, Neurotransmitters and Metabolites 

 

Introduction 

Measuring neurotransmitters, metabolites and drugs simultaneously within the 

brain extracellular compartment is a powerful way to gain insight to the interactions of 

drugs with specific tissues. However, the brain is extremely delicate, requiring minimally 

invasive methods1.  In rodents such as rats or mice, nuclei of interest may be less than 1 

mm in diameter, requiring high spatial resolution.  While tonic levels of neurotransmitters 

may vary on the min to h timescale2, 3, sudden stimuli (such as behavioral cues or drug 

administration) may trigger dynamics on the s to ms timescale4-6. 

 Enzyme-modified sensors have garnered much interest within the past decade 

given their abilities to observe rapid (~2 s resolution) chemical changes in vivo with high 

spatial resolution7-11. Advancements such as self-referencing designs and coatings8, 11 

compensate for some of the background interferents such as ascorbic acid. However, 

caution should be used in interpretation of any basal or absolute concentration 

measurements as effects of oxygen, ascorbate, glutathione, and other variable 

extracellular contents may not be compensated for by external calibrations11.  Sensors are 
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also typically limited to one analyte per electrode, and developing sensors for new 

analytes including drugs is difficult.  

 Sampling methods such as microdialysis and low-flow push-pull allow 

multianalyte analyses to be performed without the selectivity concerns of electrodes.  

Microdialysis probes allow as rapid as 2 s temporal resolution12, however their 

membranes are typically 1-4 mm long, precluding high spatial resolution. Low-flow 

push-pull perfusion probes have spatial resolution defined by their capillary inlets (~200 

μm),13-15 however the flow rates used (50 nL/min) present a significant analytical 

challenge both in sample handling and analytical sensitivity. Taylor dispersion must be 

minimized to maintain temporal resolution, often precluding use of continuous flow 

systems16. 

 Segmented flow is a viable way to achieve 7 s temporal resolution with offline 

analysis of in vivo samples collected using low-flow push-pull (see Chapter II).  Fractions 

collected are amenable to a variety of assays, and we both in vitro and in vivo 

multianalyte analyses have been conducted using a glass microchip CE system (see 

Chapter V)17.  This device utilized fluorescence derivatization of analytes and a 

hydrophilic extraction bridge in a hydrophobic channel of a microchip to separate the 

aqueous and oil phases prior to separation.  While a rapid and highly-sensitive technique, 

it nevertheless requires some microfabrication and a custom laser-induced fluorescence 

detector. 

 Mass spectrometry (MS) is an attractive tool for push-pull sample analysis given 

its sensitivity, multianalyte capability, and commercial availability. Multiple reaction 

monitoring (MRM) allows selective and sensitive measurement of analytes, and 
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isotopically labeled internal standards can ensure quantitative results.  Using MS, 

microdialysate has been collected as oil-segmented fractions and analyzed online or 

offline to provide rapid measurements of acetylcholine (ACh), choline (Ch), and 

neostigmine, a cholinesterase inhibitor18.  This method analyzed 160 nL plugs at 4 s/plug 

with a detection limit of 800 amol/sample.  While this sensitivity greatly exceeds that of 

other detectors, it would limit temporal resolution of low-flow push-pull to approximately 

3 minutes. 

 Nanospray ionization has the potential to provide high temporal resolution 

monitoring with low-flow push-pull.  By using nL/min flow rates, much greater 

ionization efficiency is achieved compared to “conventional” ESI19.  Commercially 

available metalized nanospray tips allow direct measurement of plug samples without the 

requirement of desegmentation.  This method is also salt-tolerant, allowing measurement 

in 100’s of mM ionic strengths as found within the brain19.  To our knowledge, nanospray 

has not previously been used for direct analysis of brain perfusate. 

 In this work, we use nanospray for direct, label-free analysis of neurotransmitters 

collected from in vivo by low-flow push-pull perfusion sampling.  We simultaneously 

measure 3 analytes and an internal standard with a 5 nM detection limit for ACh.  This 

allows visualization of up to 7 s concentration dynamics limited by plug frequency, and 

permits the potential of much faster temporal resolution. 

Materials and Methods 

Reagents and Materials 

 Unless otherwise specified, all reagents were purchased from Fisher Scientific 

(Pittsburgh, PA) and were Certified ACS grade or better.  Perfluorodecalin was 



60 
 

purchased from Acros (Fair Lawn, NJ).  1H,1H,2H,2H-perfluoro-1-octanol (PFO), 

acetylcholine chloride (ACh), choline chloride (Ch), and neostigmine bromide were 

purchased from Sigma-Aldrich (St. Louis, MO). Acetylcholine-d4 was purchased from 

CDN Isotopes (Pointe-Claire, Quebec, CA). Cyanoacrylate glue was purchased from K & 

R International (E-Z Bond, Laguna Niguel, CA). Acetonitrile and water used were 

HPLC-grade. Artificial cerebrospinal fluid (aCSF) consisted of 145 mM NaCl, 2.68 mM 

KCl, 1.01 mM MgSO4, 1.22 mM CaCl2, 1.55 mM Na2HPO4, and 0.45 mM NaH2PO4, pH 

7.4 20. 

Reagent Addition Tee 

 A reagent addition tee was fabricated from Teflon tubing and capillary encased in 

polyvinylidine difluoride sheet (PVDF).  PVDF was purchased from AmazonSupply 

(1/32” thickness, Seattle, WA).  Teflon high-purity PFA tubing (150 μm bore, 360 μm 

outer diameter) was purchased from IDEX Health and Science (Oak Harbor, WA).  

Capillaries were purchased from Polymicro (Phoenix, AZ).  

 A detailed fabrication protocol of the reagent addition tee is described 

elsewhere14.  Briefly, a 190 μm outer diameter capillary was held perpendicular to the 

Teflon tubing on a glass support and PVDF was melted around it at 190°C in a 

convection oven.  The capillary was then removed and a 200 μm drill bit (Kyocera, Costa 

Mesa, CA) inserted to drill through the wall of the Teflon.  A 50 μm bore, 190 μm outer 

diameter capillary was then inserted until its tip was flush with the inner wall of the 

Teflon tubing, and was sealed and held in place using Sticky Wax (Kerr, Orange, CA). 

 Segmented flow compatible unions were used to connect to this tee. These unions 

were fabricated from ~4 mm of 1/16” outer diameter (OD), 0.01” inner diameter (ID) 
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polytetrafluoroethylene (PTFE) tubing (Grace, Albany, OR).  A 360 μm OD capillary 

tubing was used to carefully ream the Teflon tubing ~5 times before use.  For plug 

transfer, the 360 μm OD Teflon PFA tubings were cut uniformly and inserted until ends 

contacted within the union. 

Push-Pull Probe Fabrication 

 Polyimide-encased push-pull probes were fabricated, as described in detail in 

Appendix A.  Briefly, two lengths of 20 μm ID, 90 μm OD fused silica capillary were 

inserted into 3 cm of 180 μm ID, 220 μm OD polyimide tubing (AmazonSupply).  The 

space between the capillaries and polyimide was backfilled with thixotropic epoxy 

(353ND-T, Epotek, Billerica, MA) and the epoxy was cured at 50°C for 30 minutes and 

80°C until fully cured (~30 minutes).  The polyimide and capillaries were cut flush with a 

razor blade and two 2 cm capillary adapters (150 μm ID, 360 μm OD) were glued with 

cyanoacrylate to the capillary ends to yield a length of 10 cm for the 20 μm ID, 90 μm 

OD capillaries. The polyimide-encased tip of the probe was polished smooth with 1500 

grain sandpaper placed on a 1 Hz rotating disk (BV-10, Sutter, Novato, CA).  To prevent 

occlusion while polishing, probe capillaries were backflushed at 500 nL/min with water.  

A 2 cm length of 250 μm ID, 360 μm OD capillary was coned on one end using the 

rotating sandpaper disk.  The polyimide encased probe was then inserted through this 

capillary with the tip of the probe protruding 1 mm past the coned capillary tip, and was 

fastened with cyanoacrylate. 

 A microinjector was fabricated by gluing a 2 cm long 150 μm ID, 360 μm OD 

capillary adapter over a 20 μm ID, 90 μm OD capillary with a final length of 4.8 cm as 

described previously18.  The microinjector was glued with cyanoacrylate to the side of the  
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Figure 3.1. Miniaturized low-flow push-pull probes for neurochemical monitoring. (A) A 
probe (220 µm outer diameter) is placed within a 250 μm ID, 360 μm OD capillary 
sheath and a 90 μm OD microinjector attached with cyanoacrylate to the side. (B)The 
probe tip consists of 3 materials (polyimide, epoxy and fused silica capillary) polished to 
a flat surface.  (C) Micrograph of a probe tip. 
 
polyimide-encased probe to place the injector tip in contact and flush with the probe tip.  

Figure 3.1 shows a picture of an assembled probe with microinjector, as well as a 

polished probe tip. 

Surgical Procedures 

 All animal use was performed according to a protocol approved by the University 

Committee for the Use and Care of Animals.  Male Sprague-Dawley rats between 300 

and 390 g were anesthetized by intraperitoneal administration of 65 mg/kg ketamine and 

0.25 mg/kg dexmedetomidine.  Boosters of 22 mg/kg ketamine and 0.08 mg/kg 

dexmedetomidine were administered as needed.  Anesthetized animals were mounted in a 

stereotaxic frame (David Kopf, Tujunga, CA).  A burr hole was drilled 1.0 mm anterior 

and ± 2.6 mm lateral to bregma. 
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 Probes were fixed to a stereotaxic electrode holder (1770, David Kopf) and 

connected to a syringe pump. The probe microinjector was connected with a Teflon union 

to a 10 cm length of 200 μm ID, 360 μm OD capillary filled with either 5 μM 

neostigmine or aCSF. This reservoir capillary was connected to a Picospritzer (General 

Valve, Fairfield, NJ) set to 80 PSI.Probe capillaries were backflushed at 500 nL/min and 

implanted to a depth of 5.0 mm from dura.  Probes were lowered slowly at ~1 mm per 20 

s, and backflushing was immediately reduced to 50 nL/min at depth.  Both capillaries 

were backflushed for 8 minutes. 

 Before starting pull, one of the probe inlets was connected to a 100 μm bore 

polyether ether ketone (PEEK) tee as described previously14.  A second inlet of this tee 

contained a 20 cm capillary of 40 μm ID, 360 μm OD which connected to an oil reservoir 

containing a 50:1 (vol:vol) solution of PFD:PFO.  The outlet of this tee contained a 20 

cm length of 150 μm ID, 360 μm OD Teflon tubing.  To start pull flow, the Teflon tubing 

was connected to 150 mm Hg of vacuum.  This generated pull flow of 50 nL/min through 

the probe and ~1:1 aq:oil plugs.  Flow rate was monitored by visual observation of plug 

size and frequency. 

 Push-pull flow was continued for 1 hour following implantation to allow basal 

concentrations of neurotransmitters to stabilize14, 20.  After 1 h, a 4 s (200 nL) 

microinjection was performed.  After 10 minutes, this injection was repeated and 

following another 10 minutes, the Teflon tubing “cartridge” was removed. A new tubing 

was then immediately started to collect additional samples. 
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Sample Preparation 

 After collection, the Teflon tubing cartridge containing plug fractions was 

connected to a syringe filled with oil via a 360 μm capillary union (Valco, Houston, TX).  

The other end of this tubing was connected to the Teflon reagent addition tee using a 

Teflon union.  The outlet of the union was coupled to another Teflon storage tubing (150 

μm ID, 360 μm OD). 

 A reagent containing 3 mM ethylenediamine tetraacetic acid disodium salt 

(EDTA) and 100 nM acetylcholine-d4  in 1:1 (vol:vol) water:acetonitrile was added to 

plugs.  The reagent was added at a 1:1 plug:reagent volume ratio using this tee14, 18.  

Stable addition was achieved by infusing the reagent at 600 nL/min.  Plug aqueous:oil 

ratio was observed microscopically prior to reagent addition, and plug flow rate was set 

to ensure 1:1 reagent addition (typically 1200 nL/min).  If sample plugs were non-

uniform, they were discarded prior to reagent addition. 

Mass Spectrometry Analysis 

Following reagent addition, the Teflon cartridge containing the samples was again 

connected to an oil-filled syringe in a syringe pump.  The other end of the tubing was 

connected with a Teflon union to a metalized nanospray tip.  This tip consisted of a 75 

μm ID, 360 μm OD fused silica capillary pulled to a tip inner diameter of 15 μm and 

coated with a conductive metal (NewObjective, Woburn, MA).  Sample plugs were 

infused at 200 nL/min through this nanospray tip. 

 Samples were analyzed using a Micromass QuattroUltima triple-quadrupole 

(QQQ) mass spectrometer in MRM mode.  MRM parameters are shown in Table 3.1.  

Nanospray tips were replaced as needed, at least daily. Plug intensities were measured  
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Mass Spectrometer - MRM Parameters 
 m/z 

Transition 
Dwell 

Time (ms) 
Cone 

V 
Collision 

energy (eV) 
Acetylcholine 146 → 87 40 35 15 
Choline 104 → 60 40 35 15 
Neostigmine 223 → 208 40 35 15 
Acetylcholine-d4 150 → 91 40 35 20 
 
Table 3.1. Three analytes and an internal standard were 
simultaneously monitored in plug push-pull perfusate samples.  The 
QQQ mass spectrometer additionally had a capillary voltage of 1.9 
kV, cone gas of 150 L/h, and a source temperature of 140°C. 
 

using Igor Pro 6.2.0.4 (WaveMetrics, Lake Oswego, OR).  To analyze each MRM 

transition, the “Identify and measure peaks in steps” procedure of the “Unipolar Peak 

Areas” feature was utilized for the acetylcholine-d4 internal standard trace. From this 

procedure, a list of peak center points was generated (average of peak start and end 

points).  A 3-point boxcar average was performed on each MRM trace and the intensity 

of the midpoint (determined from d4-ACh) of each peak for each analyte was measured.   

The ratio of peak intensities to the internal standard intensity was then calculated and 

used for calibration. 

 After each animal experiment, plugs were collected for calibration.  Initially plugs 

of aCSF were collected, then 3 solutions of aCSF containing ACh, Ch and Neostigmine 

standards.  Three levels of calibration standards were collected for ACh, and one or three 

levels for Ch and Neostigmine.  For example, one set of standards included 10, 50, and 

100 nM ACh; 500, 250, and 50 nM Ch; and 2500, 1250 and 250 nM neostigmine, 

respectively. Calibration curves were generated based on ratio to internal standard 

intensity and were linear over the range tested. 
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However, detection of pharmacological effects was not reliably achieved (1 in 5 probes), 

including failure to observe the drug. This was indicative of the drug not reaching the 

sampling area of the probe, and suggests that the spatial resolution of the probe was finer 

than the tip diameter of 220 μm.  When the injector was instead attached with its tip in 

contact with the probe tip, neostigmine, ACh and Ch concentration transients were 

observed with every microinjection. 

Optimization of Nanospray source parameters 

 Collision energy and ionization settings were previously characterized in a study 

using conventional electrospray ionization for ACh, Ch, Neo and d4-ACh18.  However, a 

number of concerns are encountered with nanospray, including the need for stable spray 

throughout the experiment, risk of clogging, and potential cluster ion interferences not 

necessarily encountered with conventional electrospray. As tissue damage is minimal 

 
Figure 3.3. Effect of source temperature was examined on ACh interference.  Plugs of 
aCSF containing no ACh were diluted 1:1 with a reagent of 3 mM EDTA in 50% (vol) of 
ACN were examined as source temperature was varied.  Above 125°C, no interference 
was observed. 
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during low-flow push-pull15, the sample collected was debris free and clogging of the 

nanospray emitter tip never occurred during these experiments. 

 To optimize sample additives for nanospray, varying concentrations of 

acetonitrile (ACN), water and the presence of 3% formic acid were tested as 1:1 diluents 

to a 100 nM d4-ACh standard in aCSF.  As shown in Figure 3.2, optimal spray was 

obtained with a diluent of 1:1 acetonitrile:water containing 3% formic acid.  

An issue described previously with ESI of ACh is that endogenous magnesium 

adducts produced a high background current for the ACh MRM transition18.  This same  

 

Figure 3.4. Sample collection, processing and analysis were performed in 3 steps.  (A) A 
push-pull perfusion probe was used to fill a Teflon cartridge with up to 20 min of plugs.  
(B) Plugs from cartridge were infused through a reusable reagent addition tee where a 
reagent containing d4-ACh internal standard, EDTA and acetonitrile was added.  (C) 
Plugs containing reagent were infused into a metalized nanospray tip at the MS inlet. 
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interference was observed with nanospray ionization (not shown).  As with conventional 

electrospray, 3 mM EDTA added to the diluent removed this interference18. Though 

formic acid was used in preliminary optimization experiments, it was later excluded as it 

interfered with the action of EDTA to remove magnesium adduct interference18.  This 

may be due to protonated EDTA having a lower affinity for cationic magnesium ions 

than the anionic disodium-EDTA salt. Background interference was found to depend on 

the source temperature of the mass spectrometer.  As shown in Figure 3.3, interference 

was observed when the source temperature was lower than 125°C.  No interferences were 

observed with a source temperature of 140°C and EDTA added to the plugs. 

Analysis of Acetylcholine, Choline and Neostigmine 

 A schematic of the experimental design is shown in Figure 3.4.  A commercially 

available capillary microfluidic tee was used to generate plugs (Figure 3.4A).  The small  

internal geometry (100 μm bore) and gas impermeability make this tee well-suited for 7 s 

resolution fraction collection by vacuum14.  By balancing flow resistance of the probe 

inlet and oil inlet, fractions were collected at a 1:1 aqueous:oil ratio. 

 A Teflon reagent addition tee was used for adding an internal standard-containing 

diluent to plugs (Figure 3.4B).  As described above, reagent addition to plugs is necessary 

to improve ion signal and remove interference.  The reagent consisted of 50% (vol.) 

acetonitrile, therefore its low interfacial tension and high viscosity presented a challenge 

due to plug instability during addition.  Comparable flow rates to those used previously 

for reagent addition (200 nL/min plugs, 100 nL/min reagent) resulted in droplet 

instability and coalescence within the reagent addition tee.  This coalescence was greatly 

reduced at higher flow rates (600 nL/min reagent, ~1200 nL/min plugs), allowing stable  
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reagent addition. An advantage of this tee is that it is reusable and durable, minimizing 

time required for microfabrication and assembly.  Only one reagent addition tee was 

needed for the course of these experiments.  A benefit of the plug format is that a second 

Teflon cartridge tube could be used to transfer plugs following reagent addition without 

any loss of temporal resolution. 

 
Figure 3.5. (A) Droplet signal trace for a calibration curve of ACh.  (B) d4-ACh internal 
standard revealed a decrease in ion intensity during the calibration curve.  (C) A 
magnified trace of ACh ion intensity, showing measured peak heights (red). (D) 
Calibration curve for ACh. (E) Normalized ACh calibration using d4-ACh peak heights. 
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 Segmented flow analysis by nanospray provided sensitive and stable analysis of 

sample plugs22, 23. As transfer of samples from Teflon tubing to nanospray capillary 

requires a simple Teflon union, no coalescence was observed at this connection. Some 

coalescence did occur spontaneously downstream of the reagent addition tee, most likely 

due to the acetonitrile reducing interfacial tension, as shown in Figure 3.5C. Coalescence 

did not affect the measured plug peak height, and therefore height was used as the metric 

of concentration. A flow rate of 200 nL/min was chosen because it provided stable signal 

and approximately 15 points per plug maxima (5 scans/s).  Plug volumes during analysis 

were measured by peak width of the internal standard trace and was 14 ± 7 nL (n = 3 

animals), which corresponded to an average of 7 nL (8 s resolution) per sampled plug. Of 

1031 plugs analyzed from 3 rats, 49% were 11.7 nL or smaller (7 s resolution), 62% were 

13 nL or smaller (8 s resolution), and 75% of plugs were 17 nL or smaller (10 s 

resolution).  The greater distribution of sizes of plugs than observed in Chapter II reflects 

the weaker plug interfacial tension due to an organic reagent additive, and the higher ratio 

of reagent to sample. The time point of each plug was measured from the center point of 

the plug during analysis, therefore a coalescenced plug would result in a momentarily 

slower temporal resolution without affecting the fidelity of subsequent plugs. 

 Sensitivity and response for each compound was characterized in vitro. Limits of 

detection were calculated from signal to noise for blank plugs.  As instrumental noise 

varied slightly between experiments, calculated limits of detection varied from 2 to 8 nM 

(typically 5 nM) for ACh, 30 to 90 nM (typically 50 nM) for Ch, and 3 to 8 nM (typically 

5 nM) for neostigmine. This corresponds to a 35 amol detection limit of ACh per 7 nL 

sample. 
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Figure 3.6. High temporal and spatial resolution measurements of neostigmine, ACh and 
Ch within the anesthetized brain (n = 5 cartridges from 3 rats).  Neostigmine was 
microinjected at t = 0 and 600 s (200 nL in 4 s).  Markers indicate significance of ACh 
increase at each point relative to basal, corresponding (from smallest to largest) to, p < 
0.05, 0.01, 0.001, 0.0001 (two-way ANOVA). 
 

ACh ion intensity response was linear with respect to concentration over the 

physiological range of interest as shown in Figure 3.5D. Though linearity was 

comparable for absolute response and relative response in Figure 3.5D and 3.5E, ratio of 

the ACh (also Ch and Neo) to d4-ACh was the metric of choice for determining 

concentrations. While using ratios did slightly increase variability of measurements (for 

example, relative standard deviation of 50 nM ACh plugs shown in Figure 3.5D 

increased from 16% to 19%), it corrected for any signal intensity differences between 

analysis of in vivo sample plugs and standard plugs. This is important as the nanospray 
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emitter had to be removed and replaced between cartridges of plugs analyzed. 

Concentrations reported in this paper were not corrected for relative recovery. 

In Vivo Measurement of Neurotransmitters 

 Plugs of neurotransmitters were measured at least 1 h after implantation as 

previous studies have observed that concentrations of neurotransmitters are unstable 

within this time14, 20.  Basal concentrations of ACh and Ch were 5.0 ± 1.9 nM and 490 ±  

 90 nM (n = 3 rats).  These are in agreement with previous measurements using 

microdialysis, supporting the validity of this assay24-26. 

 Concentration dynamics of drug, neurotransmitter and metabolite were measured 

simultaneously following microinjection.  Following a 4 s injection of the 

acetylcholinesterase inhibitor neostigmine, the neostigmine concentration increased from 

10 to 90% of maxima in 14 ± 3 s (n = 10 injections in 3 rats, 2 or 4 injections each).  Rise  

time was limited by plug frequency (typically ~7 s per plug) and could be observed 

within 1-2 plugs. Rise time of ACh was 35 ± 4 s.  ACh exhibited a slower rise time as its 

concentration continued to accumulate in the extracellular space during the lifetime of the 

neostigmine.  Ch, the metabolite of ACh following acetylcholinesterase action, exhibited 

a concentration decrease following microinjection.  The average 10-90% time to minima 

in 60 ± 13 s.  Figure 3.6 shows averaged traces collected from 3 animals for each analyte. 

 Average maxima of neostigmine measured within the brain following 

microinjection were 120 ± 20 nM, reflecting a dilution of the 5 μM drug concentration 

injected. The average maxima of ACh following microinjection was 65 ± 14 nM.  The 

average minima of Ch following microinjection were 160 ± 40 nM.   
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Figure 3.7. Examples of individual traces following 200 nL/4 s microinjections of (A) 
neostigmine and (B) aCSF.  
 

As a control, microinjections of aCSF were infused and no increase in aCh or 

decrease in Ch was observed as shown in Figure 3.7B.  This confirms that the decrease 

observed in Ch results from the action of neostigmine and not dilution of extracellular 

fluid at the tip of the probe.  Flow effects of the infused aCSF produced momentary 

perturbations in basal Ch but did not produce the prolonged decrease to 30% of basal 

observed with neostigmine (Figures 3.6 and 3.7A).  

Future Directions and Potential 

 The method described presently demonstrates the capability of in vivo sampling 

coupled to mass spectrometry for high spatial and temporal resolution pharmacokinetic 

studies. Like microdialysis, this method allows the local application of novel drugs to 

specific regions of the brain to elucidate local effects. This work expands these 

capabilities to spatial resolution of better than 200 μm. While microelectrodes have 
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allowed choline or acetylcholine dynamics to be observed within the brain with similar 

spatial and temporal resolution, sensitivity and selectivity concerns make quantitation 

difficult7, 27. Additionally, the lack of redox activity of drug molecules often precludes 

electrochemical detection.  As a mass spectrometer is a “universal detector” with nM 

sensitivity, many analytes should be detectable by simply modifying the sample matrix to 

improve ionization, as demonstrated here.  A detection limit of 35 amol was achieved for 

ACh, demonstrating the high sensitivity of this detector even within biological matrices. 

 Additional work will include measurements within awake, freely moving animals 

and improving temporal resolution.  We have demonstrated elsewhere that this design of 

low-flow push-pull probe is compatible with awake, freely moving experiments. High 

temporal resolution measurements will allow correlation of the drug, neurotransmitter 

and metabolite transients observed with behavioral responses.  Additionally, the simple 

fluidics of coupling plugs to a nanospray emitter tip makes this method well-suited to 

measurement of smaller volume plugs.  We have previously demonstrated the potential 

for 200 ms temporal resolution in vitro with low-flow push-pull perfusion, and work is 

ongoing to demonstrate this resolution in vivo.  A description of how sub-second in vivo 

sampling can be achieved is provided in Chapter VI. 

Conclusions 

 Mass spectrometry with nanospray ionization allows direct, quantitative 

measurements of neurotransmitters, metabolites and drugs with 7 s temporal resolution 

when coupled to low-flow push-pull perfusion with segmented flow. This method 

provides better sensitivity and comparable spatial and temporal resolution to 

electrochemical measurements without matrix concerns. 
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Chapter IV 

Chemical Gradients within Brain Extracellular Space Measured using Low-Flow 

Push-Pull Perfusion Sampling in Vivo 

Reproduced with permission from Slaney, T.R. et al. ACS Chemical Neuroscience, in 

press. Copyright 2012 American Chemical Society. 

Introduction 

A salient feature of the brain is its heterogeneity. Neurons expressing different 

neurotransmitters are in close proximity and connect together in small nuclei. 

Neighboring nuclei and sub-nuclei may be involved in distinct processes providing 

functional significance to heterogeneous distribution. For example, a 1 mm locus of the 

rat nucleus accumbens (NAc) shell has been implicated in responses to hedonic stimuli1. 

Chemical analysis and histochemical imaging of brain tissue have revealed distribution of 

neurotransmitters2, 3, processing enzymes4, 5, receptors6, 7, and reuptake proteins2, 8, 9 that 

presumably underlie functional heterogeneity in the brain. Although these approaches 

give an important view of brain organization, they do not provide distribution of 

neurotransmitters where they are actually active, i.e. in the extracellular space. It would 

be difficult to predict differences in extracellular concentration because of complex 

regulation of neurotransmitters by combined effects of synthesis, release, reuptake, and 

metabolism10-12. Direct, spatially resolved measurement of neurotransmitter extracellular 

concentration is required to address this issue. Such measurements also provide a means 



79 
 

to assess the regulation of a neurotransmitter, its transport through the brain, and its 

potential for extrasynaptic signaling (i.e., “volume transmission”)13. In this work we 

demonstrate a method to measure extracellular concentrations of neurotransmitter and 

metabolites with 0.004 mm3 (4 nL) spatial resolution to reveal gradients across the 

boundary between several nuclei. 

Common methods for in vivo measurement include microdialysis14 and 

microelectrodes15. Because microdialysis probes are 200-400 μm diameter with a 1-4 mm 

long sampling membrane, they provide a relatively gross measure of chemical 

distributions. Microelectrodes can be made much smaller; however, direct measurement 

of basal concentration is often confounded by background interference. Nevertheless, 

differences in dopamine (DA) activity have been detected across ~150 μm distances by 

electrochemical methods16-18. 

In this work we apply low-flow push-pull perfusion sampling19 to make spatially 

resolved measurements in brain extracellular space. This method is similar to classic 

push-pull perfusion wherein sampling is achieved by infusing physiological buffer and 

withdrawing sample at equal flow rates through closely spaced capillaries20. By using 

low flow rates (50 nL/min) and smaller capillaries, spatial resolution is enhanced relative 

to conventional push-pull perfusion19, 21-23. Fractions collected from probes in this work 

are analyzed using a recently developed liquid chromatography-mass spectrometry (LC-

MS) method to assay 13 neurotransmitters and metabolites24. 

The method is used to measure extracellular chemical gradients across a few 

hundred micrometers in three brain regions where DA distributions are expected. We 

focus on DA because of interest in this neurotransmitter for its role in reward, addiction, 
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and certain diseases25, 26. Also, substantial effort has already been expended in evaluating 

its extracellular concentration and heterogeneity17, 27-29 allowing comparison to previous 

studies. 

One set of measurements is made across the corpus callosum at the boundary 

between cortex and striatum. DA neurons are present in both cortex and striatum, but 

much richer DA innervation in the striatum than cortex suggests the potential for a sharp 

concentration gradient2. Measurements are also made at the border of ventral tegmental 

area (VTA) and red nucleus (RN) where a similar gradient is expected based on strong 

DA innervation of VTA relative to RN26. Finally, we collect spatially resolved 

measurements within the NAc. Functional and morphological heterogeneity within the 

NAc has implications for addiction and disease pathologies2, 30, 31. The dorsolateral 

accumbens, or core, projects to brain regions associated with motor activity while the 

ventromedial accumbens, or shell, projects to regions associated with the limbic system2. 

Dopaminergic neurons are found throughout the NAc; but, dopaminergic projections to 

the core originate within parabrachial VTA and substantia nigra pars compacta, whereas 

projections to the medial shell originate within paranigral VTA27, 32.  A consensus on 

differences in basal concentration of DA within the NAc has not been reached with 

studies finding higher, equal, or lower concentrations in core versus shell27. The 

variability in microdialysis observations has been attributed to probe placements and 

angles of implantation27, emphasizing the significance of spatial resolution.  

Although this study centers on detection of likely gradients in DA, the 

measurement of other neurotransmitters and metabolites provides further insight into 
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chemical heterogeneity within these regions. Further, the measurements provide a 

validation of the push-pull method for spatially-resolved chemical measurements. 

Materials and Methods 

Materials and Reagents 

 Unless otherwise specified, all reagents were purchased from Sigma Aldrich (St. 

Louis, MO).  Fused silica capillaries were purchased from Polymicro (Phoenix, AZ).  

Unions for 360 µm outer diameter (OD) capillaries were purchased from Idex Health and 

Science (P-772, Oak Harbor, WA).  Polyimide tubing was purchased from 

Smallparts.com (Seattle, WA).  Thixotropic epoxy was purchased from Epoxy 

Technology (353ND-T, Billerica, MA).  Cyanoacrylate glue was purchased from K & R 

International (E-Z Bond, Laguna Niguel, CA). Artificial cerebrospinal fluid (aCSF) 

contained  145 mM NaCl, 2.68 mM KCl, 1.01 mM MgSO4, 1.22 mM CaCl2, 1.55 mM 

Na2HPO4, and 0.45 mM NaH2PO4, pH 7.422. 

Probe Fabrication 

 For anesthetized experiments, probes were fabricated from two 20 µm inner 

diameter (ID), 90 µm OD capillaries.  These capillaries were coated with thixotropic 

epoxy and inserted through a 3 cm length of 180 µm ID, 220 µm OD polyimide tubing.  

Excess epoxy was gently wiped off and the epoxy cured for 1 hour at 50°C and then for 

20 minutes at 80°C.  The polyimide and capillaries were cut within 3 mm of the end of 

the polyimide.  Adapters consisting of 2 cm lengths of capillary (150 micron ID, 360 

micron OD) were glued with cyanoacrylate on both probe capillaries for a probe length of 

10 cm.  Excess 90 micron OD capillary was cleaved flush with the 360 micron OD 

adapter using a ceramic capillary cutter.   
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To polish the probe, each capillary was flushed with 0.5 µL/min of water and the 

tip was pressed against wet 1500 grain sand paper fixed to a 1 Hz rotating polishing 

wheel (BV-10, Sutter Instrument Co., Novato, CA).  A 2 cm length of 250 µm ID, 360 

µm OD capillary was glued over the polyimide to increase rigidity leaving 1 mm exposed 

at the probe tip.  Examples of probes are shown in Figure 4.1A-C. 

 Probes for awake, freely moving animal experiments were fabricated the same as 

the anesthetized probes except that they consisted of two 60 cm lengths of 40 µm ID, 100 

µm OD capillaries and 200 µm ID, 240 µm OD polyimide tubing.  These tubes were 

threaded through 45 cm of 0.50 mm ID, 1.52 mm OD Tygon tubing (Saint-Gobain, 

Courbevoie, France), and the tip was inserted through a threaded probe holder 

 
Figure 4.1. (A) Schematic of a polyimide-encased side-by-side capillary probe.  The 
space within the polyimide is filled with epoxy.  (B) Side view of a probe used in 
anesthetized studies, with a 360 μm OD capillary to add rigidity.  (C) Polished tips of 3 
probes, showing the polished capillaries, epoxy and polyimide.  (D) Probe assembly for 
awake, freely moving studies.  When inserted, the probe protrudes 1 mm past the tip of 
the cannula into the brain. 
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(C312ICP/O/SPC, Plastics One, Roanoke, VA).  A 1.2 cm 26 gauge (G) hypodermic 

tubing (BD, Franklin Lakes, NJ) was placed over the probe and glued 1 mm from the tip 

with cyanoacrylate.  The probe was fixed to the holder by gluing to a ~6 mm length of 

Tygon placed partially over the metal inlet tube of the probe holder, and the length was 

chosen to allow 1 mm to protrude from the cannula when inserted.  The 26 G tubing did 

not protrude from the cannula when inserted, as shown in Figure 4.1D. A more detailed 

fabrication procedure with diagrams can be found in Appendix A. 

Surgical Procedures 

 All surgical procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals.  Male Sprague-Dawley rats 

weighing between 250 and 300 g were anesthetized using 65 mg/kg ketamine and 0.25 

mg/kg dexdomitor i.p.  For awake experiments, a stainless steel cannula was inserted to 1 

mm dorsal to the region of interest (C312GP/O/SPC – 8 mm, Plastics One, Roanoke, 

VA).  For the VTA and RN experiments, cannulae were implanted at 5.3 mm posterior 

and 1.0 mm lateral to bregma and to 5.8 or 6.8 mm from dura for the RN or VTA, 

respectively. For the accumbens, cannulae were implanted at 1.2 or 1.8 mm anterior and 

1.4 or 0.8 mm lateral to bregma for the NAc core or shell, respectively.  Cannulae were 

implanted to a depth of 5.8 mm from dura. Three screws were inserted in the skull near 

the cannula and a cap was fabricated from methyl methacrylate (Teets Cold Cure Denture 

Material, Co-oral-ite Dental Mfg. CO, Diamond Springs, CA). A small metal clip was 

also inserted into the cap for attaching the tether.  A stylet (C312DC, Plastics One, 

Roanoke, VA) was inserted into the cannula and the animal was allowed at least 48 h to 

recover.  
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 For anesthetized experiments, animals were administered ketamine and 

dexdomitor (as above) with boosters (22 mg/kg ketamine, 0.08 mg/kg dexdomitor) as 

needed and the probe was fixed to the stereotaxic arm.  The animal was placed in an 

ultra-precise stereotaxic frame (David Kopf, Tujunga, CA).  A burr hole was drilled 

above the region of interest and the probe was slowly lowered (approximately 10 s per 

mm) while backflushing both capillaries with aCSF at 500 nL/min.  When the desired 

depth was reached, the backflushing was decreased gradually over 30 s to 50 nL per 

minute per capillary, and was backflushed for 8 minutes prior to starting the “pull” flow.  

Depths of 2.0, 2.5 and 3.0 mm from bregma were targeted for each animal, and 

backflushing was used while lowering between depths. 

Probe placements were identified by infusing dye through the sampling probe and 

performing histological analysis of the tissue. After a sampling experiment was complete, 

100 nL of either Evans Blue (0.24 mg/mL in aCSF) or a filtered, saturated solution of 

FastGreen FCF in aCSF were infused at 50 nL/min. FastGreen was preferred because it 

preferentially labeled the probe track whereas Evans Blue uniformly labeled the entire 

tissue volume affected by the dye around the probe tip. Brains were fixed in 10% 

paraformaldehyde containing 2.5% sucrose and 100 mM phosphate buffered saline for at 

least 24 hours. Brains were then frozen and sliced along the coronal plane to find the 

probe track.  Slicing with a cryostat and manual slicing with a razor were both utilized. 

Manual slicing provided facile visualization of anatomical features for mapping 

placements and rapid preparation time.  Cryostat slices (60 µm thick) were preferred as 

they were of better uniformity and reproducibility than manual slices and could be stored 

on slides for later review (Superfrost Plus, Fisher Scientific, Fairlawn, NJ). Probe 
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placement was considered to be the point at maximal dye concentration for Evans Blue, 

or the base of the probe track for FastGreen. Brain regions were identified by reference to 

the atlas of Paxinos and Watson 33. Anatomical boundaries and white matter (such as the 

anterior commissure in the nucleus accumbens, or the mesolateral lemniscus in the VTA) 

were used as landmarks to aid identification of probe location. Appendix B provides 

further details and illustrates two examples of histological analysis used to identify probe 

placement. 

Freely Moving Experiments 

 Following cannulation and recovery, rats were placed in a Raturn (Bioanalytical 

Systems, West Lafayette, IN) and allowed free access to food and water.  To implant the 

probe, rats were briefly anesthetized with isoflurane vapor and the stylet removed.  While 

backflushing at 500 nL/min through each capillary, probes were gently inserted into the 

cannula and slowly tightened at ~1 turn per 5 s, making sure to prevent any twisting.  

Immediately after implanting, the probe backflushing was reduced to 50 nL/min for 8 

minutes.  Appendix A provides a detailed guide for probe fabrication and use. 

Sample collection and analysis 

To start “pull” flow, a 13 cm length of 100 µm ID, 360 µm OD capillary was 

connected to one of the probe capillaries, and sufficient vacuum to fill this tube at 9.4 

s/mm (equal to 50 nL/min) was applied.  Samples collection was initiated after 1 h of 

perfusion to allow for tissue recovery21.  Sampling was conducted for approximately 3 h 

(~9 fractions) for awake animals, or 1 h (3 fractions) at each depth for anesthetized.  

Fractions were transferred from 1 μL collection capillaries to low-volume autosampler 

vials and were immediately derivatized as described previously24.  The following 
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reagents were added with intermediate vortexing in rapid succession: 1.5 μL of 100 mM 

sodium tetraborate, 1.5 μL of benzoyl chloride (2% in acetonitrile), 1.5 μL of 13C-internal 

standard, and 1 μL of 100 nM d4-ACh in water.   

The 13C-internal standard reagent contained 1% (vol) of a 13C-benzoyl chloride 

derivatized stock solution (described in detail elsewhere24), 97% dimethylsulfoxide, and 

2% acetic acid.  Calibration curves were prepared for each analyte in aCSF with the 

following concentrations: 0.5, 5, 10, 50 and 100 nM for DA, NM, NE, 5-HT, and ACh; 5, 

10, 50, 100, and 1000 nM for DOPAC, HVA, 5-HIAA, Glu, GABA, and Asp; and 50, 

100, 500, 1000, and 10000 nM for Gly. Samples were analyzed using a Waters (Milford, 

MA) NanoAcquity UPLC coupled to either an Agilent (Santa Clara, CA) 6410 mass 

spectrometer or a Waters Micromass QuattroUltima mass spectrometer. A 5 μL sample 

plug was injected onto a Waters Acquity T3 1.8 μm C18, 1 mm I.D., 50 mm length 

column. Mobile phase A was 10 mM ammonium formate with 0.15% (vol.) formic acid, 

and mobile phase B was acetonitrile.  Flow rate of mobile phase was 0.1 mL/min and the 

gradient used was as follows: initial, 0% B; 0.01 min, 23% B, 2.51 min, 23% B; 3 min, 

50% B; 5.2 min, 60% B; 6.46 min, 65% B; 6.47 min, 100% B; 7.3 min, 100% B. 

Results and Discussion 

Polyimide-encased push-pull probe 

 A novel push-pull probe design, compatible with commercially available 

microdialysis cannulae, was used for this work (Figure 4.1). Previous side-by-side push-

pull probes housed sampling and infusion capillaries within a hypodermic needle21, 23; 

however, the needle sheath perturbed tissue ventral to the probe inlets and increased 

probe diameter to approximately twice that of the probe capillaries (400 μm versus 180  
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μm21). To avoid these problems, we made probes that consisted of two fused silica 

capillaries sheathed in polyimide tubing. Polyimide was used because it is 

biocompatible34 and available as thin wall (20 μm) tubing. The tip of the probe was 

polished to provide a smooth surface and unobstructed path between push outlet and pull 

inlet (Figure 4.1C). The resulting probes are easily made, smaller than previous designs21, 

and in principle avoid tissue damage from a protrusion below the sampling zone.    

 To estimate spatial resolution of sampling (i.e, the volume of tissue sampled by a 

probe), a probe was inserted into agar gel impregnated with the fluorescent dye resorufin. 

 
Figure 4.2. Confocal microscopy of a probe (outlined) in agar containing 1 μM resorufin 
(A) without sampling and (B) push-pull sampling at 50 nL/min.  (Circles are air bubbles 
within the probe epoxy). (C) The relative concentration of resorufin in a linear path 
(dashes in A,B) from the tip of the probe, measured by the difference in fluorescence. 
Scale bar is 200 μm. 
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Fluorescence imaging of the probe tip during push-pull operation allowed visualization of 

the sampling field as a localized region of resorufin depletion (Figure 4.2). A plot of 

fluorescence signal along a line perpendicular to the probe tip (Figure 4.2C) shows that 

depletion of resorufin extends about 200 μm beyond the tip, but at 100 µm resorufin is 

about 80% of the bulk concentration.  We estimate that the sampled volume is 0.004 mm3 

(4 nL) by assuming a cylindrical sampling field, with radius of 220 μm and height of 

~100 μm, centered over the push-pull lumen.  Because dilute agar prevents convection, 

this volume represents spatial resolution for an analyte affected only by diffusion, similar 

to brain tissue35-37. The spatial resolution in vivo may be even higher because active 

processes, such as reuptake and metabolism, may reduce the distance that a molecule 

could diffuse in the brain space. Thus, a molecule released within the diffusion controlled 

sampling field may never reach the probe because of these processes38.    

Analysis of Neurotransmitters by LC-MS 

 Benzoyl chloride derivatization is amenable to analysis of multiple 

neurotransmitters as it increases sensitivity and retention for chromatographic 

separation24. Figure 4.3 shows representative chromatograms for the 13 neurotransmitters 

and metabolites monitored.  Figure 4.3A shows an example of a fraction collected from 

within the nucleus accumbens.  Stable isotope-labeled internal standard were added to 

each sample (Figure 4.3B) and the ratio of analyte to internal standard was utilized for 

measurement of concentrations.  Figure 4.3C shows an example of a standard containing 

all 13 neurotransmitters measured.  Blanks of derivatized aCSF were analyzed between 

sets of samples or standards and showed no significant carry-over (Figure 4.D).   
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Figure 4.3. Chromatograms of neurochemicals measured (A) in vivo from the nucleus 
accumbens shell and (B) internal standards, (C) a standard containing 100 nM of ACh, 
NM, 5-HT, 3-MT, NE, and DA; 1000 nM of Asp, Glu, GABA, 5-HIAA, HVA and 
DOPAC; and 10000 nM of Gly, and (D) an aCSF blank (same scale as C). 
 
 Calibration curves were linear over the physiological range of interest.  An example of a 

typical calibration curve is shown in Figure 4.4. 

Probe recovery  

 In vitro recovery at 37 oC was 93 ± 17 % for Glu and 89 ± 14 % for DA (n = 3) 

from a stirred vial and 69 ± 4 % for Glu and 51 ± 15% for DA (n = 3) from an unstirred 

vial. Microdialysis experiments have shown that recovery measurements from a stirred 

vial more closely emulates the in vivo condition39. The high recovery is comparable to 

previously observed values for push-pull perfusion19, 21, 22 and is a benefit of not having a 

membrane to limit mass transport (as with microdialysis) and use of low flow rates35. 

Concentrations reported in this chapter are not corrected for relative recovery.  
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Figure 4.4 Calibration curves for neurotransmitters and metabolites, measured as ratio of 
analyte to stable isotope-labeled internal standard. 
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Figure 4.5. A comparison of measurements taken from multiple locations within 
anesthetized animals.  (A) Sampling was conducted at the cortex, corpus callosum, and 
striatum boundary33.  The rectangle diameters represent the probe width (220 μm) and a 
conservative estimate of tissue sampled (100 μm). Probe placements were mapped and 
concentration measurements at each site are shown for (B) Glu and (C) DA. Vertically 
aligned fractions represent one animal. (D) Differences in neurotransmitters were 
observed (*** p < 0.001, one-way ANOVA, Tukey’s multiple comparisons test). 
  
Measurement of concentration gradients within anesthetized animals 

To evaluate a region likely to have DA gradients, samples were collected at 500 

μm steps near the border of cortex, corpus callosum, and striatum in 3 animals (Figure 

4.5A-C, Table 1).  DA concentration changed over short distances and was higher within 

the dorsal striatum (1.7 ± 0.2 nM) than corpus callosum (0.4 ± 0.2 nM) and cortex (0.4 ± 

0.2 nM).  The extracellular concentration gradient matches the distribution of DA 

neurons, which have a much greater population within the striatum than cortex or corpus 

callosum2.  
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Table 4.1. Basal measurements of neurotransmitters and metabolites between the cortex 
and corpus callosum of anesthetized rats (n = 3 rats). 
 

As shown in Figure 4.5D and Table 1, no other compounds showed significant 

differences except the DA metabolite 3-MT which varied from 0.35 ± 0.03 nM to 0.10 ± 

0.01 nM to 0.08 ± 0.02 nM for striatum, corpus callosum, and cortex respectively (p <  

0.001, one-way ANOVA with Tukey’s multiple comparisons test).  Although DOPAC 

and HVA were equivalent at different locations, we did find that the ratio of HVA to 

DOPAC concentration correlated with probe depth (Figure 4.6A).  These results are in 

agreement with previous microdialysis observations from awake rats which found 

HVA/DOPAC of 1.2 within the cortex and 0.7 within the striatum40.   

Regional differences in DA metabolite concentrations offer insight into not only 

DA abundance but its turnover and extracellular fate. Among DA metabolites, 3-MT is 

most correlated with DA release because it is formed only extraneuronally by catechol-O-

methyltransferase (COMT)41. DOPAC is formed primarily within the presynaptic neuron  

Basal Extracellular Concentrations (nM) - Anesthetized 
Cortex Corpus Callosum Striatum 

DA 0.4 ± 0.1 0.4 ± 0.1 1.7 ± 0.2*** 
DOPAC 47 ± 12 44 ± 11 55 ± 18 
3-MT 0.08 ± 0.01 0.10 ± 0.00 0.35 ± 0.02*** 
HVA 36 ± 8 29 ± 7 31 ± 13 
5-HT 0.4 ± 0.1 0.4 ± 0.2 0.2 ± 0.1 
5-HIAA 43 ± 15 31 ± 14 24 ± 9 
NE 0.8 ± 0.3 1.1 ± 0.3 0.5 ± 0.1 
NM 0.2 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 
Glu 2600 ± 700 1300 ± 300 1100 ± 200 
Asp 590 ± 300 350 ± 30 640 ± 260 
GABA 44 ± 11 43 ± 6 39 ± 4 
Gly 5400 ± 1500 3200 ± 700 4400 ± 400 
Ach 31 ± 2 28 ± 5 42 ± 10 
*** p < 0.001, one-way ANOVA with Tukey’s multiple comparisons test versus both the 
corpus callosum and cortex. 
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and is therefore a measure of intraneuronal turnover42. As HVA formation requires 

extraneuronal metabolism by COMT, the ratio of HVA to DOPAC can offer insight to 

whether extraneuronal metabolism or reuptake is dominant for removal of DA from 

extracellular space42, 43. Because DA reuptake is generally faster than metabolism, the 

HVA/DOPAC ratio has also been considered an indicator of extracellular DA lifetime. 

The chemical profile suggests higher release in the striatum (higher 3-MT and DA 

concentration); but greater intraneuronal turnover within the cortex (as DOPAC 

concentrations are comparable despite much lower DA in cortex).  It is interesting that a 

gradient of 3-MT is maintained over such a short distance. This result may be a 

consequence of high monoamine oxidase (MAO) abundance in the corpus callosum4, 44. 

DA and 3-MT are both degraded by MAO with aldehyde dehydrogenase to produce 

 
Figure 4.6. (A) HVA/DOPAC ratio (indicative of extraneuronal or intraneuronal DA 
metabolism) varied across the cortex, corpus callosum and striatum. (B) A gradient of 
decreasing Glu was also observed as a function of probe depth at this boundary (n = 3 
anesthetized rats, 3 measurements per rat). 
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DOPAC and HVA respectively. In this way, the CC is a barrier to transport of DA and 3-

MT from striatum to cortex. This “metabolic wall” may help shield cortex from relatively  

high DA in the striatum, which may be especially important in view of the low dopamine 

transporter (DAT) level45 and high DA lifetime in cortex46. 

Among other compounds, Glu showed some differential distribution. Glu 

concentration in the cortex was 2.4-fold greater than in the striatum (2.6 ± 0.7 μM versus 

1.1 ± 0.2 μM). Although this difference did not reach statistical significance, Glu 

concentration did have a significant correlation with probe depth (Figure 4.6B, p < 0.05, 

Pearson’s r = 0.678) suggesting a decreasing concentration gradient passing from cortex 

to striatum. This observation agrees with previous microdialysis studies which found 

basal concentrations of Glu to be ~2-fold higher within the cortex than striatum; however, 

the sizes of the probes used in that work (2-5 mm active length) precluded observations 

of the gradual gradient across the callosum seen here47, 48. Interestingly, the higher 

concentration of Glu correlates with greater abundance of glial Glu transporters (GLAST 

and GLT-1) in the cortex relative to the striatum49. Because GLAST and GLT-1 remove 

Glu from extracellular space, these results suggest higher Glu release in cortex to achieve 

the higher Glu tone.  

Gradients in neurochemicals in the dorsal VTA 

 Gradients of extracellular neurochemicals were examined in the VTA and dorsal 

of the VTA (RN) of awake, freely moving rats (Figure 4.7).  Because these experiments 

were performed in awake animals, only one probe placement was made per animal. 

(Micropositioners are available that may allow multiple placements in awake subjects; 

but for these experiments we used a single position per animal to avoid the complication  
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of moving a probe in an awake subject.)  Experiments grouped as VTA were primarily 

collected from the parabrachial pigmented nucleus (n = 6) but included one experiment 

from the parainterfascicular nucleus and one from the rostral part of the ventral tegmental 

area.  Experiments grouped as RN were collected from the red nucleus parvicellular part 

(n = 3) and the prerubral field (n = 2).  No significant differences were observed between 

sub-nuclei.  

 

 
Figure 4.7. (A) A coronal map of the brain showing the location of the VTA and RN and 
(B) placements of measurements made in the VTA and RN with the DA concentration at 
each. Samples represent A/P coordinates of 4.80 mm to 5.64 mm posterior to bregma, 
plotted at 5.28 mm and excluding 1 fraction from the rostral area of the VTA for clarity. 
(C) Normalized concentrations between the VTA and RN. 
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Table 4.2, Basal extracellular concentrations of neurotransmitters measured within 
awake, freely moving rats. 
 

Basal concentrations of DA were much higher within the VTA (4.8 ± 1.5 nM, n = 

8) than within the RN (0.5 ± 0.2 nM, n = 5) reflecting rich dopaminergic innervation of 

the mesolimbic system within the VTA relative to RN26. As shown in Figure 4.7B, this 

concentration difference is visible between even the most dorsal region of the VTA and 

the most ventral of the RN (200 μm apart).  The sharp concentration gradient, similar to 

that seen for cortex-striatum, supports the notion of strong regulation of the diffusion of 

DA through extracellular space. In contrast to what was observed with the cortex-

striatum boundary, all DA metabolites are also significantly more abundant within the 

VTA than RN (see Table 2): DOPAC was 3-fold higher (p < 0.001), 3-MT was 11-fold 

higher (p < 0.01), and HVA was 3-fold higher (p < 0.001). These results suggest 

mechanisms that prevent DA metabolites from diffusing to adjacent nuclei. Such 

mechanisms may include clearance from extracellular space by neurons, glia, or  

Basal Extracellular Concentrations (nM) - Awake, freely moving rats 
VTA RN Core Shell 

DA 4.8 ± 1.5 0.5 ± 0.2** 7.2 ± 1.2 11 ± 4 
DOPAC 220 ± 30 65 ± 17*** 1100 ± 330 720 ± 110 
3-MT 3.5 ± 1.3 0.30 ± 0.11** 0.80 ± 0.29 0.66 ± 0.12 
HVA 150 ± 20 44 ± 8*** 460 ± 60 130 ± 30***
5-HT 1.6 ± 0.5 1.1 ± 0.5 1.3 ± 0.6 0.6 ± 0.2 
5-HIAA 430 ± 120 400 ± 110 720 ± 200 220 ± 50* 
NE 2.5 ± 0.8 2.2 ± 0.5 2.5 ± 1.1 1.0 ± 0.3 
NM 0.7 ± 0.2 0.6 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 
Glu 8500 ± 2700 3700 ± 1000 2400 ± 900 930 ± 340 
Asp 1500 ± 400 2000 ± 800 1100 ± 500 450 ± 190 
GABA 160 ± 50 190 ± 70 150 ± 110 92 ± 48 
Gly 7200 ± 1000 9200 ± 3500 4400 ± 1100 2100 ± 500 
ACh 9.5 ± 3.3 6.8 ± 1.8 10 ± 3 7.3 ± 2.1 
* p < 0.05; ** p < 0.01; *** p < 0.001 for comparison of VTA to RN or NAc core and shell; 
Student’s T-test of adjacent nuclei. 
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Figure 4.8. Variability of glutamate concentrations within the VTA.  Glutamate basal 
measurements within the VTA demonstrated high variability between animals (markers 
represent individuals) and within individual animals as opposed to other regions such as 
the RN, or other neurotransmitters within the VTA (GABA). Insets show sequential 
fractions analyzed within one individual. 
vasculature. The ratio of HVA to DOPAC was not significantly different between the 

VTA and RN (0.66 ± 0.05 versus 0.75 ± 0.09 respectively), despite differences in DAT 

distribution45.   

 Among other compounds measured, only Glu showed potential spatial 

heterogeneity of concentration (Figure 4.7C). The basal concentration of Glu was ~2-fold 

greater within the VTA than the RN; however, this difference did not reach statistical 

significance because of high variability in the VTA. Glu concentration ranged from 2 and  

24 μM (median 5.6 μM) within VTA (n = 8) compared to the 2 to 7 μM (median 3.4 μM) 

within the RN (n = 5) as shown in Figure 4.8. For comparison, measurements of GABA 

within the VTA from the same animals are shown in Figure 4.8 and ranged only from 70 

to 130 nM (with one outlier of 510 nM). The variance of glutamate measurements was 

significantly greater in VTA than RN (p < 0.05, F-test).  We also found that sequential 

fractions collected within the VTA of a given animal had higher variability than the RN 
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(examples shown in Figure 4.8), with a relative standard deviation of 65 ± 23 in the VTA 

as compared to 37 ± 14 in the RN (p < 0.05, t-test). The high concentration and 

variability suggest a high degree of glutamatergic activity with these specific placements. 

It is unclear if the elevated activity is an individual difference or “hot spots” within the 

VTA. These data may indicate localized regions of elevated glutamatergic neuronal 

activity. They may also relate to distribution of non-neuronal sources of Glu such as the 

cystine-glutamate antiporter, which has been found to cluster in some brain regions10, 50.  

Another possible reason for the variable Glu in the VTA is tissue damage caused by the 

probe, e.g. disruption of neurons could cause release of intracellular Glu. This 

explanation is discounted because we have previously observed that Glu concentration in 

perfusate is elevated immediately after push-pull probe insertion into brain tissue and that 

it decreases and to a stable level within 0.5 h22, 23. Similar findings on microdialysis have 

been reported51  and is attributed to the disruption of neurons and subsequent dissipation 

of the neurotransmitters. Thus, sampling in these experiments has occurred after Glu 

released by cell disruption has been removed. Further, the variation of Glu was far 

stronger in the VTA than other brain regions and it seems unlikely that damage 

associated with the probe would have such disparate effects on different brain regions. 

Spatial differences in the nucleus accumbens 

Differences in DA concentration between the NAc core and shell is still unsettled 

because of difficulty of making spatially resolved measurements27. To address this issue, 

we sampled from 11 animals with probe placements in core (n = 5) and shell (n = 6) as 

shown in Figure 4.9. The small size of the probes mean that sampling was completely 

within a specified brain region thus eliminating uncertainty associated with larger probes  
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Figure 4.9. (A) A coronal map of the brain showing the nucleus accumbens and (B) 
placements of 5-HIAA measurements made in the core and shell with the concentration 
at each. Probes varied from 1.32 to 2.52 mm anterior to bregma but are shown at 1.80 
mm anterior to bregma for clarity. (C) Normalized concentrations between the 
accumbens core and shell. 
 
that may sample from a larger area. Using this method, we found no significant 

difference between core and shell DA, DOPAC, or 3-MT (Figure 4.6, Table 2); however, 

HVA concentration was 3-fold higher within core than shell (p < 0.001).  As a result, the 

ratio of HVA to DOPAC was lower (p < 0.01) within the shell (0.19 ± 0.02) than core 

(0.53 ± 0.09). The greater HVA within the core suggests greater turnover of DA in the 

core than shell. The differences in HVA/DOPAC ratio indicate greater intraneuronal than 

extraneuronal metabolism within the shell and are suggestive of greater DA lifetime in 

the core43. This result is surprising given the higher abundance of DAT within the core  
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than shell, but has been observed previously by measuring clearance rates of exogenous 

DA and may relate to regional differences in DAT activity52. The shorter extracellular 

lifetime of DA within the shell may correlate with the much greater behavioral responses 

observed with local application of DA reuptake inhibitors to the shell than core29. Indeed, 

while these regions are just a few hundred microns apart, voltammetry studies show that 

their neurochemical activation to cues and drugs varies substantially30, 31. We cannot rule 

out DA hot spots within either nucleus without more extensive mapping as has been 

suggested by voltammetry studies53.   

 The results also suggest greater 5-HT activity in core than shell. 5-HT was 2.2-

fold higher in the core; however the concentration difference did not reach statistical 

significance. Supporting the idea of differences in 5-HT activity, 5-HIAA was 3-fold 

higher in core (p < 0.05). Previous studies have been inconclusive on whether 5-HT 

activity is different between these two regions. Microdialysis sampling did not find a 

significant difference in 5-HT concentration between NAc core and shell29, 54 even 

though the shell contains a greater number of 5-HT neurons and the core contains more 

of the 5-HT transporter SERT2, 3. In view of the higher 5-HIAA and SERT abundance in 

the core, it is reasonable to postulate that more 5-HT is released in the core than shell, but 

greater reuptake and metabolism keep the extracellular concentration similar in the two 

brain regions. As 5-HT neurons of the core are more vulnerable to drugs of abuse than 

those of the shell2, selectively studying 5-HT within the core may provide new insights 

into addiction. 

A significant difference in NE and its metabolite NM between core and shell was not 

observed, whereas previous microdialysis work observed higher NE concentrations in  
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Region Neurotransmitter “No-Net-Flux” 
Concentration Species Push-Pull 

Concentration
VTA DA 5.0 ± 0.5 nM55 ♀ Indiana 

“P” 
4.8 ± 1.5 nM 

 Glu 3.3 ± 0.8 μM, 4.1 ± 0.5 
μM56 

♀ Wistar 8.5 ± 2.7 µM 

     

Accumbens 5-HT 0.7 nM57 ♂ SD 1.3 ± 0.6 nM 
(core) 

  0.7 ± 0.1 nM58 ♂ Wistar 0.6 ± 0.2 nM 
(shell) 

  0.6 ± 0.1 nM59 ♂ Wistar  

 DA 4.7 ± 0.7 nM60 ♂ 
Holtzman 

7.2 ± 1.2 nM 
(core) 

  5.6 ± 0.4 nM58 ♂ Wistar 11 ± 4 nM (shell) 

  8.3 ± 1.2 nM59 ♂ Wistar  

 GABA 32.7 ± 4.0 nM61 ♂ SD 150 ± 110 nM 
(core) 
92 ± 48 nM (shell) 

 Glu 1.8 ± 0.4 μM, 2.4 ± 0.5 
μM62 

♂ SD 2.4 ± 0.9 µM 
(core) 

  5.6 ± 1.0 μM63 ♂ SD 0.93 ± 0.34 µM 
(shell) 

     

Striatum 
(anesthetized) 

DA 2.5 ± 0.5 nM64 ♂ SD 1.7 ± 0.2 nM 
 6.5 ± 1.1 nM65 ♂ SD  

 Glu 3.0 ± 0.6 µM66 ♂ SD 1.1 ± 0.2 µM 

Abbreviations: SD = Sprague-Dawley 

Table 4.3. Comparison of concentrations measured by microdialysis calibrated by “no-
net-flux”, and low-flow push-pull perfusion 
 
the shell27. This difference may relate to probe placement. Dopamine-β-hydroxylase 

(DBH) distribution, indicative of NE synthesis, indicates only partial innervation of the 

shell, favoring the caudal portion, with NE neurons5. Examination of results from 

individual probe placements supports this notion. The lowest concentration of NE (0.1 

nM) was observed within the most rostral spot sampled (2.52 mm anterior to bregma), 

and 2 of the 3 highest concentrations in the most caudal spots sampled (1.4 and 1.2 nM at 
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1.32 mm anterior to bregma). A more direct study of these differences is required to 

establish if this trend is statistically significant.  

Comparison to microdialysis concentrations 

 The high recovery by low-flow push-pull perfusion in vitro suggests that the 

recovered concentrations may approximate actual extracellular concentrations. Presently 

the most accepted method for measuring basal concentrations is by calibrated 

microdialysis measurements 67, 68. Recovered concentrations of amine neurotransmitters 

were similar to those reported previously by microdialysis calibrated by “no-net-flux” 

(NNF), as shown in Table 3.  NNF values for DA were 5.0 nM in the VTA 55, 4.7 to 8.3 

nM in NAc (across both core and shell) 58-60, and 2.5 to 6.5 nM in the striatum of 

anesthetized rats 64, 65, all close to the push-pull values (see Tables 1, 2 and 3). NNF 

measurements of 5-HT within the accumbens were 0.6 to 0.7 nM 57-59 whereas push-pull 

measurements averaged 0.9 ± 0.3 nM.  In contrast to the good agreement found for 

amines, amino acids showed more differences.  GABA in NAc was ~33 nM by NNF but 

3-5 times that (depending on sub-region) by push-pull. Glu concentrations agreed well 

for NAc core but differed by 5-fold for NAc shell, 3-fold in striatum, and ~2-fold in 

VTA. Glu concentrations were both higher and lower by NNF, depending on brain 

region, than by push-pull sampling. Without further study it is difficult to tell if these 

differences were due to lack of calibration for current method, spatial resolution, 

differences in probe impact, or other factors. 

Probe placement and tissue damage 

For all in vivo experiments, probe placement was confirmed by injecting dye 

through the probe and examining coronal brain slices. While this approach has limits, it 
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does allow confirmation that the probe was positioned within the brain regions and sub-

regions reported. The histological images also allow a preliminary evaluation of tissue 

damage caused by the probes. Two examples of probe tracking are provided along with 

detailed histology procedures in Appendix B. Substantial tissue disruption is apparent 

along the cannula track and dorsal of the probe tip; however, around the probe tip no 

obvious cellular destruction or brain morphology disturbance is apparent. This result is 

agreement with a previous report19 and in contrast to observations made with higher flow 

push-pull perfusion69. In view of the potential utility of this sampling method, a detailed 

study of its effect on tissue is warranted. 

 Conclusions 

Low-flow push-pull perfusion allows high spatial resolution chemical 

measurements to be made in the brain. When combined with LC-MS the method allows a 

relatively comprehensive study of chemical gradients in the brain. The results show that 

gradients in basal concentration of neurotransmitters and metabolites can exist between 

adjacent brain regions less than 1 mm apart. Gradients appear to be controlled by 

different mechanisms depending on the brain region. Cortical and striatal DA neurons 

operate differently with higher release and shorter lifetime in the striatum. A mechanism 

that prevents transport of DA metabolites from the VTA to adjacent brain regions is 

active. Among the most intriguing findings is high variability of Glu within the VTA 

which may indicate hot spots and/or individual differences. High temporal resolution 

measurements will be useful to further characterize such hot spots and determine their 

functional significance.  Within the NAc, differences in DA and 5-HT activity are 

apparent, based on the differences in metabolite concentrations despite similar 
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neurotransmitter concentration, between the core and shell which may explain differences 

in susceptibility to some drugs. The ability to measure such gradients will help determine 

their role in highly localized effects of drugs and behavioral control that has been found 

with other techniques. 
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Chapter V 

Adapting a Plug-based GABA Enzyme Assay and Electrophoresis for 7 s Resolution 

Neurotransmitter Measurements by Push-Pull Perfusion 

 

Introduction 

 An inherent advantage of sampling techniques such as microdialysis and low-flow 

push-pull perfusion is that a variety of different analyses can be utilized for sample 

analysis.  This is beneficial as hundreds of neurotransmitters have been identified1 and 

therefore, one assay may be insufficient to observe all chemical signaling implicated in a 

physiological process. Additionally, processes can occur on the s to ms timescale2 and 

may be unique to a brain regions 100s of μm in diameter3, 4.  Therefore, sampling 

techniques able to match this spatial and temporal resolution may offer new insights 

towards understanding neurophysiology. 

Currently, most high spatiotemporal resolution measurements within the brain are 

made with microelectrodes by either amperometry or fast-scan cyclic voltammetry5.  

While able to resolve ms transients within sub-mm regions of the brain2, electrodes for 

relatively few analytes have been developed.  Additionally, quantitative measurement of 

neurotransmitters is difficult given the high background of biological matrices6, 7. 

Segmented flow-coupled low-flow push-pull perfusion is an attractive technique for high 

spatiotemporal resolution monitoring of neurotransmitters8. In particular, segmented flow 
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can be used to store nL “plug” fractions of neurotransmitters in an immiscible oil carrier 

to preserve temporal resolution, allowing samples to be analyzed offline8, 9. This 

facilitates analysis via a number of assays with which it might otherwise be challenging 

to integrate a vacuum source.  Additionally, it allows multiple processing steps to be 

utilized independently, such as a reagent addition step and a detection step. Segmented 

flow analysis techniques include enzyme assays8, 10, immunoassays11, microchip capillary 

electrophoresis12, 13, and mass spectrometry14, 15.  As plugs in an immiscible oil carrier are 

discrete, they can be stored and transported without cross-contamination16. 

Fluorogenic enzyme assays are attractive for analysis of nL samples as they have 

μM to nM sensitivity8, 10. A commercially available fluorogenic enzyme assay for 

glutamate has previously been used with push-pull perfusion, providing 7 s resolution 

and a 300 nM limit of detection8. Other analytes which are potentially amenable to 

fluorogenic enzyme assays include GABA17, acetycholine and choline18, and lactate19.  

GABA is a universal inhibitory neurotransmitter found ubiquitously in brain 

tissue, and it is implicated in many physiological processes20, 21. While many studies have 

measured GABA both with and without high temporal resolution using microdialysis21-23, 

no sensors are currently available for high spatial and temporal resolution measurements.  

As low-flow push-pull perfusion is amenable to fluorogenic enzyme assays with 7s 

resolution8, adapting an enzyme assay for GABA to plugs would provide a method to 

obtain both high spatial and temporal resolution measurements within the brain17. 

Microchip electrophoresis is another potential method for rapid, high temporal 

resolution measurements of neurotransmitters. Push-pull perfusion has previously been 

demonstrated to be compatible with capillary electrophoresis using microfabricated 



109 
 

polydimethylsiloxane microchips24, 25.  However, the continuous flow utilized by these 

devices made temporal resolutions of better than 45 s difficult24, 25.  More recently, 

segmented flow has been utilized to preserve temporal resolution of plug samples for CE 

analysis10, 12, 13, 26.  In these devices, segmentation is preserved until just prior to injection 

onto a separation channel.  By using electroosmotic flow to gate the injection of plugs 

into the electrophoresis channel, injection reproducibility and separation efficiency is 

greatly improved over previous, passively gated designs13, 26. 

 In this work, two assays were adapted to the offline analysis of 6 nL plugs 

collected using low-flow push-pull perfusion. A novel plug-based enzyme assay was 

developed for the analysis of the neurotransmitter γ-aminobutyric acid (GABA) with 7 s 

resolution. A previously described capillary electrophoresis chip was utilized following 

fluorescent derivatization of amine neurotransmitters with naphthelene-2,3-

dicarboxaldehyde (NDA) in an offline format.   Both assays were evaluated in vitro and 

the capillary electrophoresis was demonstrated in vivo for high temporal resolution 

neurotransmitter analysis. 

Materials and Methods 

Reagents and Materials 

 Unless otherwise specified, all reagents were purchased from Fisher Scientific 

(Fairlawn, NJ) and were certified ACS reagent grade or better.  GABase, nicotinamide 

adenine dinucleotide phosphate (NADP+), reduced NADP+ (NADPH), β-

mercaptoethanol(β-ME), (2-hydroxypropyl)-β-cyclodextrin (β-CD) and 1H,1H,2H,2H-

perfluoro-1-octanol (PFO) were purchased from Sigma Aldrich (St. Louis, MO).  

Naphthelene-2,3-dicarboxaldehyde was purchased from Invitrogen (Carlsbad, CA). 
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Perfluorodecalin (PFD) was purchased from Acros (Fairlawn, NJ). Artificial 

cerebrospinal fluid (aCSF) contained 145 mM NaCl, 2.68 mM KCl, 1.01 mM MgSO4, 

1.22 mM CaCl2, 1.55 mM Na2HPO4, and 0.45 mM NaH2PO4, pH 7.425.  High-K+ aCSF 

was the same composition as aCSF but with 145 mM KCl and 2.68 mM NaCl. 

Probe Fabrication and Operation 

 Polyimide-encased push-pull probes were fabricated as described in Chapter III.  

Probes consisted of 20 μm inner diameter (ID), 90 μm outer diameter (OD) fused silica 

capillaries of 10 cm length (Polymicro, Phoenix, AZ).  These capillaries were glued with 

thixotropic epoxy (353ND-T, Epotek, Billerica, MA) within a 180 μm ID, 220 μm OD 

polyimide sheath (Amazon Supply, Seattle, WA).  To adapt to 360 μm fittings, 2 cm 

lengths of 150 μm ID, 360 μm OD capillary were glued at the ends of the fused silica 

capillaries.  Probe tips were polished smooth while backflushing, as described in Chapter 

III. Microinjectors consisting of 20 cm lengths of 40 µm ID, 100 µm fused silica capillary 

were attached to probe side (~100 µm from the probe tip) using cyanoacrylate.  To 

stimulate neurotransmitter release, 100 nL of high-K+ aCSF was microinjected over 1 s.  

A picospritzer was used at 41 psi for microinjections (General Valve, Fairfield, NJ). 

Probe infusion or “push” flow of aCSF were achieved at 50 nL/min using a 

syringe pump (Fusion 400, Chemyx, Stafford, TX). Withdrawal or “pull” flow was 

supplied by applying 145 mm Hg of vacuum to a Teflon plug collection tubing as 

described previously8.  This Teflon tubing (150 μm ID, 360 μm OD from IDEX, Oak 

Harbor, WA) was connected to a commercially available tee (C360QTPK4, Valco, 

Houston, TX).  A balanced flow resistance oil inlet was placed in the other tee inlet 
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consisting of 20 cm of 40 μm ID, 360 μm OD capillary and placed into an oil reservoir 

attached to the probe holder.  Oil consisted of a 50:1 (vol) solution of PFD and PFO. 

Surgical procedures 

 All animal procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals.  Male Sprague-Dawley rats were 

anesthetized by i.p. injection of ketamine (75 mg/kg) and dexmedetomidine (0.25 

mg/kg).  Boosters of 25 mg/kg ketamine and 0.08 mg/kg dexmedetomidine were 

administered as needed.  A burr hole was drilled at 1.0 mm anterior and ±2.6 mm lateral 

to bregma.  Probes were implanted to a depth of 5.0 mm from dura, and perfusion was 

conducted for 1 hr prior to sample collection.  During implantation, probe capillaries 

were backflushed to prevent occlusion8. 

GABA Plug-based assay 

 An offline enzyme assay of plug fractions collected was analyzed by continuous 

enzyme reagent addition, incubation, and detection by laser-induced fluorescence (LIF) 

with a photomultiplier tube (PMT), as described previously8 and shown in Figure 5.1. A 

Teflon-based reagent addition tee was used to add the reagent to each plug.  Fabrication 

of this tee is described in detail in Chapter II.  Following collection, plugs within a Teflon 

cartridge were coupled to the inlet of this reagent addition tee.  The outlet of the tee was 

coupled to a 60 cm length of Teflon reaction tubing.  The end of this reaction tubing was 

placed vertically in a capillary mount, and aligned using a micropositioner with a 60× 

microscope objective fixed to a PMT enclosure27.  A 355 nM laser was focused on the 

capillary orthogonal to the PMT for excitation (DPSS Lasers, Santa Clara, CA). 
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Figure 5.1 Schematic of a plug-based GABA enzyme assay.  To analyze push-pull 
perfusate samples, plugs were pumped into a Teflon reagent addition tee.  The enzyme 
GABASE and its substrates NADP+ and α-ketoglutarate were added at a 1:2 
reagent:sample ratio.  Each plug then traveled through a uniform length of reaction tubing 
where fluorescence was detected by laser and PMT. 
 
 Plugs were pumped into the reagent addition tee at 200 nL/min and reagent was 

added at 50 nL/min (1:2 reagent:sample vol.).  Reagent consisted of10 mM β-ME, 15 

mM α-KG, 3.75 mM NADP+, and 0.3 U/mL of GABASE in 100 mM sodium 

pyrophosphate, pH 8.628.  GABASE was first prepared as a stock solution of 15 U/mL in 

75 mM potassium phosphate, pH 7.2 with 25% (vol) glycerol. (This was adapted from an 

assay protocol by Sigma Aldrich, St. Louis, MO).  Enzyme activity and concentrations 

were optimized using a 384-well plate reader (Perkin Elmer, Shelton, CT). 

Microchip Capillary Electrophoresis of Plugs 

 Analysis of plugs by electrophoresis with LIF detection required derivatization of 

plugs with NDA.  To fluorescently tag amine neurotransmitters, NDA and potassium 

cyanide (KCN) were added using a reagent addition tee (described in Chapter II).  KCN 

and NDA were each prepared in 50% acetonitrile and 10 mM sodium tetraborate pH 10 

and mixed online during reagent addition (shown in Figure 5.2A).  At the outlet of the tee 

was a Teflon transfer cartridge.  The reagent addition tee and transfer cartridge were 

shielded from light. 
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 Fabrication of the glass capillary microchip device is described in detail 

elsewhere12, 26.  The design of this device is shown in Figure 5.2B.  Briefly, channels 

were masked by photolithography, and etched using hydrofluoric acid.  The plug channel 

was 120 μm wide by 50 μm deep.  The extraction bridge was 300 μm wide, 300 μm long 

and 6 μm deep, and separation channels were 6 μm deep26.  The plug channels were 

derivatized hydrophobic using octadecyltrichlorosilane, while the extraction bridge and 

separation channels remained hydrophilic26. 

To analyze each NDA-derivatized plug, plugs were pumped from the Teflon 

tubing into the glass microchip (shown in Figure 5.1B).  The aqueous plugs were 

extracted from oil by the hydrophilic extraction bridge, then were immediately drawn by 

 
Figure 5.2. Analysis of push-pull sample plugs by microchip CE.  (A) After collection, 
plugs are fluorescently tagged by pumping through a reagent addition tee in which NDA 
and KCN are added at a 1:2 reagent:sample ratio.  (B) For analysis, plugs were infused 
onto a glass CE microchip. A hydrophilic bridge extracts aqueous plugs from oil.  
Immediately after extraction, samples are drawn by electroosmotic flow to an injection 
cross, where an injection into the CE channel for each plug is made by momentarily 
pausing the electroosmotic flow of separation buffer. Adapted with permission from 12, 
copyright 2010 Elsevier. 
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EOF towards the injection cross.  Operation of this chip is described in detail elsewhere26. 

Separation timing and plug frequency entering the chip were matched to achieve 1 

injection per plug.  Separation buffer was 10 mM sodium tetraborate containing 1 mM β-

CD.  Fluorescence was detected on the separation channel by a 440 nm laser at 490 nm 

emission using an epifluorescent optics stage described previously26. 

Results and Discussion 

Evaluation of a Plug-based GABA Enzyme Assay 

 The amino acid neurotransmitter GABA is not natively fluorescent; therefore, 

enzymatic methods were used to convert it to a readily detectable molecule. GABASE 

consists of two enzymes prepared by extraction from cultured pseudomonas 

fluorescens28, 29.  These enzymes are GABA-glutamate transaminase (GABA-T) and 

succinic semialdehyde dehydrogenase (SSDH).  In the presence of α-ketoglutarate and 

NADP+, these enzymes react with GABA to yield NADPH and glutamate. NADPH is 

Figure 5.3. Optimization of enzyme concentration and reaction time.  Reagents were 
prepared as described above, except (A) enzyme concentration was varied (60 µM 
GABA) or (B) GABA concentration was varied (0.3 U/mL GABASE).  Reaction was 
fastest with 0.3 U/mL GABASE and neared equilibrium at 40 minutes. 
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highly fluorescent and a common target for enzyme assays17, 30. This reaction is shown 

below. 

ܣܤܣܩ ൅ ݁ݐܽݎܽ݉ܽݐݑ݈݃݋ݐ݁ܭ‐ߙ 
ீ஺஻஺ି்
ሱۛ ۛۛ ሮۛ ݁ݐܽ݉ܽݐݑ݈ܩ‐ܮ ൅ܵ݁݀ݕ݄݈݁݀ܽ݅݉݁ܵ ܿ݅݊݅ܿܿݑ 

݁݀ݕ݄݈݁݀ܽ݅݉݁ܵ ܿ݅݊݅ܿܿݑܵ ൅ ାܲܦܣܰ
ௌௌ஽ு
ሱۛ ሮۛ ݁ݐܽ݊݅ܿܿݑܵ ൅  ܪܲܦܣܰ

As this assay is compatible with a single reagent-addition step, it is readily amenable to 

droplet-based enzyme assays8, 10.  

To optimize reaction parameters, reaction progress was monitored by 

fluorescence of evolved NADPH using a plate reader.  Enzyme concentration was varied 

to measure the effect on reaction rate.  As shown in Figure 5.2A, 0.3 U/mL provided the 

fastest reaction velocity evaluated (higher was not tested due to practical limitations of 

the quantity of GABASE available).  Optimal reaction time was measured by incubating 

different concentrations of GABA across the physiological range of interest.  As shown 

in Figure 5.2B, 40 minutes achieved equilibrium across the physiological range of 

interest for GABA (0 to 10 µM). Therefore, Teflon tubing length (60 cm) was chosen to 

match this reaction time (40 min at 250 nL/min).  

  
Figure 5.4. (A) Fluorescence trace of GABA standard plugs analyzed by enzyme assay. 
(B) Calibration of the assay was linear over the physiological range of interest (0 to 5 
µM). 



116 
 

 
Figure 5.5. NDA-labeled neurotransmitters within plugs were analyzed by microchip 
CE. (A) An overlapped electropherogram for glutamate(Glu), aspartate(Asp), arginine 
(Arg), GABA, taurine (Tau), glutamine (Gln), glycine (Gly) and serine (Ser), where 
separation length was 6.5 cm and 650 V/cm applied.  (B) Rapid analysis of Glu and Asp 
with 6 s separations, 1 separation per plug (1.5 cm channel length at 690 V/cm).  
 

As mentioned above, this reaction required only one reagent addition step, 

facilitating adaptation to a plug-based enzyme.  Unlike Amplex Red assays utilized 

previously8, 10, fluorescence did not increase over time within the blank (Figure 5.3B) and 

therefore the enzyme was mixed with its co-substrates within one syringe, simplifying 

fluidics.  An example of a calibration curve from plug standards is shown in Figure 5.4.  

Limit of detection of this assay was 0.7 μM.  This corresponds to a 4×10-15 mol detection 

limit for a 6 nL plug, improving upon the 1×10-11 mol detection limit demonstrated 

previously17. 

Monitoring of Multiple Neurotransmitters by Capillary Electrophoresis 

 To assess the potential for capillary electrophoresis for analyzing plugs with high 

temporal resolution, standards of 6 amino acid neurotransmitters were collected from a 

stirred vial.  An example eletropherogram is shown in Figure 5.5A.  An advantage of this 

design is that if a faster separation is desired, the detection point can be easily varied to 

change the effective channel length.  Figure 5.5A shows separation of 8 amino acid 

neurotransmitters within 14 s in 6.5 cm of channel.  By using a shorter channel length,  
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Figure 5.6. (A) Potassium microinjection increased Glu, Asp and GABA (second peak) 
concentrations.  (B) Microinjection of potassium at 40 s produced large increases in Glu 
and Asp. 
 
glutamate and aspartate can be analyzed within 6 seconds allowing for high throughput 

(600 samples/hr) analysis of plugs (Figure 5.5B). 

 Step changes can be resolved within 1 to 2 plugs (Figure 5.5B), meaning 

temporal resolution is preserved through this microchip.  This is expected as the volume 

of each plug (~9 nL following reagent addition) is sufficient to wash the previous plug 

from the EOF inlet on the chip (Figure 5.2B)26. 

In Vivo Measurement of Rapid Neurotransmitter Dynamics 

 Electrophoresis allows rapid separation and detection of NDA-labeled glutamate 

and aspartate even within the matrix of the brain (Figure 5.6). Microinjections of 

potassium produced a large increase in extracellular glutamate and aspartate, as shown in 

Figure 5.6B. This was a 26-fold increase in glutamate and 18-fold increase in aspartate.  

GABA also is clearly visible with potassium microinjection, however at basal 

concentrations it was not resolved from co-eluting compounds.  In this preliminary 

experiment, one of every two plugs was injected for 12 s temporal resolution (plugs were 
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collected at 6 s intervals), however, this method is currently capable of 6 s resolution, as 

was demonstrated in vitro. 

Future Directions and Potential 

 Both a GABA enzyme assay and on-chip CE have potential for in vivo 

measurement of neurotransmitters.  The GABA assay is capable of higher throughput 

than electrophoresis as the analysis time per plug (excluding 40 minute reaction 

incubation) is limited by the flow rate of the plugs through the LIF detector and ms plug  

analysis times have been demonstrated previously11.  The detection limit was insufficient 

to reliably detect basal GABA, which ranges from ~0.7 µM25 to ~0.1 µM (described in 

Chapter IV).  This detection limit can be improved by better control of fluorescence 

background as the PFO within the oil and other reagents contained contaminants resulting 

in a background equivalent to 5 µM of GABA.  An alternative is to chemically convert 

NADPH to a secondary fluorophore of longer wavelength such as resorufin; however, 

care must be taken to find an NADPH assay which is unaffected by the enzyme reagents 

needed for GABASE, including β-ME and NADP+, both of which can increase 

background31. 

 As shown above, the CE microchip has potential to detect GABA in vivo as well 

as simultaneously measuring glutamate, aspartate and other neurotransmitters. As push-

pull is high spatial resolution, this provides the potential for rapid, multianalyte 

neurochemical monitoring selectively within smaller regions of the brain.  Work is 

ongoing to improve the reliability of plug extraction while achieving faster and more 

efficient separations.  
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Conclusions 

 The potential of segmented flow-coupled low-flow push-pull perfusion for other 

plug-based enzyme assays and separations-based analyses without sacrificing temporal 

resolution was demonstrated.  A novel plug-based enzyme assay was developed and 

demonstrated for the neurotransmitter GABA.  This assay has a 4 fmol detection limit 

and is compatible with high-throughput analysis. Further optimization of assay 

parameters, particularly careful exclusion of fluorescence contamination from reagents, 

should allow facile measurement of basal GABA within the brain. 

Electrophoresis allows highly sensitive detection of multiple analytes collected in 

vivo.  This allows measurement of glutamate and aspartate with high throughput (6 s to 

12 s/plug depending on efficiency desired) and this work presents the highest temporal 

resolution measurements yet demonstrated for aspartate within the brain with 200 µm 

spatial resolution. 
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Chapter VI 

Future Directions 

 

Introduction 

 In this work, the potential of using low-flow push-pull perfusion for monitoring 

different neurotransmitters with high temporal and spatial resolution within the brain has 

been demonstrated. By coupling probes to microfluidic plug-generating tees, samples 

were analyzed with various single and multi-analyte assays while maintaining 7 s 

temporal resolution (with the potential for 200 ms resolution). This technique was first 

utilized with an enzyme assay for the neurotransmitter glutamate, then with nanospray 

mass spectrometry for simultaneous monitoring of acetylcholine, its metabolite choline, 

and the drug neostigmine in vivo. A new design of miniaturized push-pull probe was 

characterized and used to identify differences in neurotransmitter abundance and 

metabolism with 200 µm resolution.  Lastly, amenability of this sampling method to 

other assays was demonstrated by coupling sampling to a plug-based GABA assay, and 

microchip capillary electrophoresis. These probes have comparable spatial and temporal 

resolution to microelectrodes1 while providing better selectivity, nM sensitivity, and 

multianalyte measurements.  There remain several avenues to further expand this 

methodology, and to utilize it for performing in vivo neurochemical experiments. 
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In Vivo Demonstration of Millisecond Temporal Resolution 

 Using low-flow push-pull perfusion for sub-second temporal resolution chemical 

measurements would be a significant technological advance as this method provides the 

potential to measure many analytes not presently observable at that resolution. Low-flow 

push-pull perfusion is capable of 200 ms resolution sampling, provided an inlet with 

minimal dispersion is utilized and plug frequency is sufficient to store these dynamics. In 

Chapter II, collection and storage of 200 ms (100 pL) plugs was accomplished by using a 

narrow, 50 µm inner diameter (ID) Teflon capillary to maintain the plug geometry. A 

number of challenges resulted from this small tubing, such as high flow resistance 

limiting the number of plugs which could be collected to ~1 min.  Other experiments 

indicated that plugs in 50 μm ID tubing are unstable after reagent addition, rapidly 

coalescing due to differences in velocities between consecutive plugs.  

A strategy to collect trains of sub-second plugs for extended periods of time is to 

increase volume of plugs generated and store within larger (100 μm) inner diameter (ID) 

Teflon tubing. This should be achievable by one or both of the following strategies: 

addition of a makeup flow to the aqueous phase before segmentation, and increasing the 

flow rate of push-pull perfusion.  Increasing flow rate of push-pull perfusion has the 

added benefit of allowing larger ID probe inlets to be utilized with less dispersion, 

reducing backpressure. 

Using a Makeup Flow to Increase Plug Frequency 

Addition of a makeup flow to collected perfusate at the point of plug generation 

would allow storage of higher frequency plugs in larger diameter tubing. One method to 

couple this diluent flow to a push-pull probe outlet is to replace the plug generating tee 
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with a cross. For example, the commercially available 100 μm ID tee utilized in Chapters 

II and III (C360QTPKG, Valco, Houston, TX) is also available as a 100 μm ID cross 

(C360QXPK4). By placing the aqueous inlets side-by-side, these phases should mix as 

plugs are generated. 

Many bioanalytical assays necessitate the addition of a reagent to samples prior to 

analysis, such as enzymes (Chapters II and V), internal standard (Chapter III) or a 

derivatization reagent (Chapter V); therefore it may be possible to utilize this reagent as 

the makeup flow. The internal standard for acetylcholine analysis described in Chapter III 

is well-suited as a makeup flow in offline analysis as it is chemically stable, and the assay 

is not time-sensitive.  Fluorogenic enzyme reagents (Chapters II and V) could potentially 

be utilized for makeup flow in online analyses as the Teflon collection tubing of the 

push-pull probe could be connected directly to a laser-induced fluorescence detector with 

vacuum applied at the detector outlet. 

Increasing Perfusion Flow Rates 

Increasing the flow rate of low-flow push-pull perfusion allows higher frequency 

plug generation, but also reduces dispersion within the probe inlet. Calculations and 

descriptions of the effects of probe dimensions on temporal resolution are described in 

detail in Chapter II.  While 10 μm ID capillary allows high temporal resolution, it greatly 

increases flow resistance, risking air bubble formation or leaking from higher vacuum 

and allowing only a very short inlet to be used (≤ 1 cm). Achieving ms temporal 

resolution with 20 μm ID probe inlets would avoid the practical difficulties of narrower 

capillaries.  The benefits of reducing inlet length from 10 cm (Chapters II and III) to 5  
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Figure 6.1. Calculated temporal resolution (10 to 90% rise time for a concentration step 
change) for 20 µm bore probe capillary inlets as a function of flow rate for both a 5 cm 
inlet and a 10 cm inlet. 
cm, and increasing perfusion flow rate from 50 to 100 or 200 nL/min is shown in Figure 

6.1.   

One concern of increased flow rates is how fast tissue can be perfused without 

occluding the probe or causing tissue trauma. The flow rate limit of 50 nL/min for low-

flow push-pull perfusion was chosen based on one account of probe reliability, and the 

effects of different flow rates on tissue at these nL/min rates is not established2. 

Immunohistochemical labeling can be used to characterize the effects of different 

perfusion flow rates on tissue3. To test the feasibility of higher rates, a polyimide encased 

push-pull probe (described in chapters III and IV) was used to sample from the striatum 

with a flow rate of 100 nL/min. In this experiment, 1.7 nL plug fractions were collected 

at 1 s intervals in 100 μm ID Teflon tubing for 10 minutes, with the potential for greater 

lengths of time. This was accomplished utilizing a 100 μm ID plug-generating tee and a 

10 cm length, 20 μm ID capillary probe as described in Chapter IV. To attain this flow 

rate, -300 mm Hg vacuum was applied to the collection tubing (instead of -150 mm Hg 

used with this same probe assembly for 50 nL/min).  
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Figure 6.2. Probe assembly for millisecond temporal resolution sampling.  A 5 cm probe 
constructed of 20 μm inner diameter, 90 μm outer diameter (20/90 μm) is fixed to a 
stereotaxic probe holder (1770, David Kopf, Tujunga, CA).  The probe outlet is 
connected to the cross.  Water and oil are placed in vial reservoirs affixed to the holder 
and feeding via capillaries as shown to the cross.  Capillary dimensions are written as 
ID/OD.   
 
Proposed Probe Assembly for Sub-Second Temporal Resolution Sampling 

The specifications for a proposed probe capable of sub-second temporal 

resolution is shown in Figure 6.2. This assembly utilizes a reduced probe length and a 

higher sampling flow rate (100 nL/min) than previously utilized (Chapter II and III), as 

well as a water diluent. The probe is a polyimide-encased design is constructed of 20 μm 

bore, 90 μm outer diameter capillaries (as described in Chapter III and IV) with a length 

of 5 cm.  The probe inlet is connected to a syringe pump to supply “push” flow, whereas 

the outlet is connected to a 100 μm bore cross (C360QXPK4, Valco, Houston, TX).  

Connected to the cross is a diluent inlet capillary (40 cm, 40 μm ID) which will supply 

water from a reservoir at 200 nL/min.  The oil inlet to the cross consists of 11.4 cm of 40 

μm bore capillary placed in a reservoir of 50:1 (vol:vol) perfluorodecalin:1,1,2,2-

perfluoro-1-octanol (“oil”).  The outlet of the cross is 80 cm of 100 μm bore Teflon 
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tubing, which will store 10 min of ~1.7 nL plugs collected at 3 Hz.  Required vacuum 

will be approximately -260 mm Hg (plugs may exhibit additional flow resistance and 

exact vacuum will be determined empirically).  

Temporal resolution of this probe is predicted to be 0.6 s, corresponding to 2 

plugs.  This rise time is limited by inlet dispersion, as shown in Figure 6.1. By replacing 

the water diluent with a reagent, plugs collected can be adapted to different assays. This 

requires a simple calculation to adjust the flow resistance of the reagent inlet.  For 

example, a 1:1 (vol:vol) acetonitrile:water diluent containing a stable isotope internal 

standard for mass spectrometry (Chapter III) has a lower viscosity than water (0.77 cP 

instead of 0.89 cP at 25°C), therefore an inlet length of 46 cm could be used instead of 40 

cm to provide the 200 nL/min makeup flow. 

Silicon Microfabricated Push-Pull Probes 

 A method for improving spatial resolution and reducing tissue trauma of low-flow 

push-pull perfusion is to utilize silicon microfabricated probes.  Silicon is an attractive 

substrate for fabrication as a variety of lithographic processes have been developed for its 

processing and shaping4, 5.  Recently, a method utilizing deep reactive ion etching (DRIE) 

of silicon-over-insulator (SOI) wafers was developed to form channels within silicon 

probes.  This was demonstrated as a viable way to fabricate low-flow push-pull probes. 

Briefly, a series of holes were etched to the desired channel depth within the 

silicon neural probe by DRIE.  Isotropic reactive ion etching was utilized to widen the 

bottom of the holes until they connected into a channel (~20 µm ID), and the top of the 

probe was sealed using polysilicon. These probes were 11 mm long and, within 5 mm of 

the tip, only 80 µm in diameter as shown in Figure 6.3. 
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Figure 6.3. Probes were microfabricated to a total length of 11 mm.  This design 
incorporates a third channel for generation of plug samples within the probe (A) for high 
temporal resolution.  (B) Photograph of a microfabricated low-flow push-pull probe. 
 
 Preliminary experiments have demonstrated successful probe operation within the 

striatum of anesthetized rats. Fractions collected at 20 min intervals were analyzed using 

benzoyl chloride derivatization and liquid chromatography-mass spectrometry, measuring 

17 analytes6 with approximately 100 µm spatial resolution. Details of probe fabrication, 

use and operation, and in vivo measurements results are provided in Appendix C. To 

improve on the operation of these probes, microfabrication allows a number of 

modifications including within-probe droplet generation (shown in Figure 6.3A) and 

addition of multiple push-pull orifices.   
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Incorporation of segmented flow within the microfabricated tee greatly reduces 

within-probe dispersion.  This is because the probe inlet length pre-segmentation can be 

as small as a few hundred µm.  For example, if the distance between the inlet and plug 

generating tee was 1 mm and the channel was 20 μm ID, flow would experience only 100 

ms of dispersion within this inlet. As discussed above, strategies will need to be 

employed to facilitate manipulation of sub-second plugs. An example of a strategy would 

be to etch plug channels to a wider diameter (for example, 40 µm) after the plug 

generating tee in order to facilitate plug transport, and incorporate a diluent channel to 

add a makeup flow to plugs just prior to exiting the probe. 

 Microfabricated probes would be beneficial as a tool for mapping concentration 

gradients between small brain nuclei, as described in Chapter IV.  Whereas experiments 

in Chapter IV only sampled one region at a time per animal, microfabricated probes 

could incorporate additional push-pull orifices at different depths. These can be 

fabricated by using lithography to insert two additional channels and two additional 

connectors at the top of the probe.  While some neurotransmitters were observed to be 

significantly different at basal levels between 200 µm distances, such as within the 

ventral tegmental area (VTA) and above the VTA, it is likely these regions respond 

differently when an animal is administered a drug or conducts a behavior.  Simultaneous 

monitoring of a rat both within the VTA and above the VTA during presentation of a 

food stimulus would provide a validation of this strategy as unexpected appetitive events 

are known to produce dopamine release within the VTA7.  Additionally, high temporal 

resolution measurements of glutamate (Chapter II) by droplet-based methods would 

indicate if the large glutamate variability in the VTA (Chapter IV) correlates with 
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behaviors. Other features which could be incorporated on a Si microfabricated probe 

include microinjector channels for local application of drugs and microfabricated 

electrodes for local stimulation of neuronal release. 

Improved Temporal Resolution of Benzoyl Chloride-Labeled Samples 

In Chapter IV, the utility of benzoyl chloride derivatized samples for mapping 

multiple neurotrasnmitters with high spatial resolution was demonstrated with 13 analytes 

quantified simultaneously. Though a slower time resolution than enzyme assays or CE, 

the multianalyte capability of this technique makes measurements highly informative. 

Despite the small sample volume utilized (1 µL), pM concentrations of neurotransmitters 

could be quantified within the brain, an advantage of the high sensitivity of the LC-MS 

method utilized6. Temporal resolution could be enhanced by further reducing sample 

volumes.  For example, 2 minute temporal resolution could be accomplished by 

collecting and storing 100 nL fractions, which could then be derivatized and analyzed.  

These small sample volumes may be collected and transferred using narrow bore 

capillaries as before (for example, 4.6 cm of 75 µm bore capillary), but microfluidic 

techniques may facilitate handling and prevent evaporation. 

 Microfluidic plugs of ~100 nL volume collected at the probe outlet would be a 

potential way of handling these small fractions. Previous work has demonstrated 160 nL 

plug collection and storage with microdialysis effluent (~ 3 minute resolution) using 250 

µm bore Teflon tubing8, indicating the utility of large plugs.  Plugs could be derivatized 

using a reagent addition tee, which can be fabricated within Teflon tubing of these large 

sizes in a similar fashion to that described in Chapter II. Following derivatization with 

benzoyl chloride, a syringe pump could be used to transfer plugs into vials prior to  
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Figure 6.4. Operation of a Slip Chip for collection and derivatization of nL samples.  (A) 
Sample is loaded into microwells. (B) Sample microwells are slid into contact with 
reagent wells.  (C) Reagent wells are isolated, containing discrete fractions. Scale bar is 
250 µm. (Adapted from 9 with permission of the Royal Society of Chemistry).  
 
injection on the mass spectrometer, or plugs could be injected via an injection valve 

directly into a chromatography column for LC-MS analysis. 

 One concern is the presence of oil and whether it would interfere with retention of 

analytes on a chromatography column.  A benefit of benzoyl chloride derivatized 

neurotransmitters is their chemical stability6.  Should this problem present, plug samples 

could be transferred to vials, dried to remove oil, then redissolved in sample solvent6. 

Another possibility for collecting, storing and derivatizing 100 nL fractions is a 

microchip known as a “Slip Chip”9, 10.  This device utilizes microchannels etched onto  

glass slides to store sample fractions in etched wells, and these fractions can be addressed 

by sliding the unbonded layers of the chip9. As glass microchips are non-gas permeable, 

this is an attractive substrate for a vacuum-based push-pull system and may provide more 

facile manipulation.  Figure 6.4A-C illustrates how a Slip Chip is operated. Push-pull 

perfusate could be pulled through a chip of 200 nL wells until all are filled, and the chip 

“slipped” to add benzoyl chloride reagent to each well.  A design modification with one 

vertical sample channel could allow sample wells to be individually filled by slipping the 

chip horizontally, which may be advantageous for preventing Taylor dispersion. 
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Following derivatization, an individually addressable transfer channel could be utilized to 

transfer each sample to an autosampler vial, or directly into an LC instrument. 

While the microbore (1 mm diameter) chromatography column utilized for the 

experiments within Chapter IV provided nM to pM sensitivity for analytes6, switching to 

a capillary LC column may further enhance sensitivity. The inner volume of a capillary 

column is much smaller; therefore, well-retained analytes can be pre-concentrated by 

injecting high sample volumes relative to column volume. This could provide excellent 

sensitivity for monoamine and catecholamine neurotransmitters, despite sub-µL sample 

volumes. 

Pharmacological Studies of Metabolism with 200 µm Resolution 

 Multianalyte monitoring with low-flow push-pull perfusion revealed differences 

in metabolite and neurotransmitter concentrations on the sub-mm scale, as discussed 

within Chapter IV.  Though this provided indirect evidence of different metabolic routes 

for dopamine within different brain regions11, 12, these differences cannot be well-

established without identifying the specific transporters and enzymes involved.  

Researchers have identified the norepinephrine transporter as a major source of dopamine 

uptake within the cortex and accumbens shell13.  It is unclear as to what the fate of 

dopamine is following this reuptake, whether dopamine is metabolized, released, or 

converted to norepinephrine13. 

Low-flow push-pull perfusion is well suited to elucidating these questions.  

Discrete areas of the accumbens shell can be monitored as within Chapter IV, but while 

infusing 13C-dopamine.  The metabolic fate of 13C-dopamine can be examined by 

measuring its 13C-metabolites, as well as13C-norepinephrine and the 13C-metabolites of 
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norepinephrine (normetanephrine and 3-methoxy-4-hydroxyphenyglycol). As 

norepinephrine transporter inhibitors are effective antidepressants, this may provide 

insight as to their mechanism13, 14.  Norepinephrine reuptake inhibitors such as 

desipramine or nisoxetine would be co-infused to examine their effects on dopamine 

metabolism15.  

Conclusions 

 The capabilities of low-flow push-pull perfusion measurements at fast temporal 

and fine spatial resolution can be further developed, and probes can be used for novel 

studies not possible by other techniques.  By optimizing probe segmented flow 

geometries, probe flow rates, and adding a makeup flow, collection and storage of ms 

temporal resolution plugs can be readily achieved.  Silicon microfabricated probes are a 

viable way to reduce inlet dispersion, probe size, and integrate features such as multi-

depth sampling, microinjectors and electrodes. As the benzoyl chloride LC-MS assay 

provides excellent multianalyte capabilities, its temporal resolution can be reduced 10-

fold by improved sample handling, and this assay could be utilized for differences in 

dopamine uptake and metabolism on the sub-mm scale using 13C-labeled dopamine. 
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Appendix A 

Practical Considerations for Experimental Designs for Low-Flow Push-Pull Perfusion 

Sampling 

Introduction 

 Since the first demonstration of low-flow push-pull perfusion in 2002, several 

systems and methods for performing such experiments have been described1-9. These 

records include descriptions of the protocols necessary to successfully implant and 

operate these probes.  Similar accounts have been provided in Chapters II, III and IV of 

this work. A number of salient details of techniques that were employed to improve 

reliability of results, but which did not fit readily into these chapters, have been included 

in this section.  The objective of this appendix is to document in detail probe fabrication, 

experimental procedures, as well as some methodological considerations and apparatus to 

aid future researchers to use low-flow push-pull perfusion. In addition, troubleshooting 

aspects will be discussed. 

Considerations of Probe Designs 

 In the experiments described in this work, it was observed that bleeding at the tip 

of the probe correlated with the probe becoming occluded while sampling.  Therefore, 

probes were designed to reduce tissue disruption. In the course of these experiments, two 

different probe designs were used: the first consisting of two side-by-side capillaries 

encased in a 27 gauge needle and the second of two capillaries encased in a polyimide 
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sheath. Inserting a pointed needle into tissue was found to improve reliability relative to 

an equal size, blunt probe (N. Cellar, personal communication). Conversely, polyimide-

encased push-pull probes had a blunt tip by design, but reduced risk of tissue trauma and 

bleeding by maintaining a diameter of only 220-240 µm (versus 400-450 μm1, 7, 8). 

Designs which further minimize probe size while maintaining a pointed geometry 

may prove beneficial.  For example, four out of four attempts to sample with silicon-

microfabricated probes of 80 µm diameter and a pointed tip (described in Appendix C) 

were successful, with no clogging or bleeding during implantation. 

Tools for Probe Fabrication 

Probe fabrication required being able to grip capillaries for two purposes: precise 

manipulation, and applying tensile and compressive force.  Tapered extra-fine stainless 

steel forceps (5669A32, McMaster-Carr, Santa Fe Springs, CA) were suitable for 

gripping and manipulating capillaries with microscopic precision, such as threading a 90 

μm outer diameter (OD) capillary into a 150 μm inner diameter (ID) capillary lumen.  

Any imperfections in the forceps which may interfere with holding capillaries can be 

corrected by slightly polishing the clasped tips of the forceps with a rotary tool (Dremel, 

Mount Prospect, IL).  Applying force to capillaries was challenging as these forceps 

could easily damage 90 μm OD capillaries.  Therefore, larger general purpose forceps 

(such as 7379A21, McMaster-Carr) with a layer of labeling tape padding on the tips 

(Fisherbrand 0.75 inch width, Fairlawn, NJ) were utilized for applying force.  

Working with probes necessitated careful observation during fabrication and use. 

A binocular microscope was utilized during fabrication (SMZ745, Nikon Instruments,  

Melville, NY).  During sampling experiments, a microscope was impractical due to size 
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Figure A.1. Inlet capillary fabrication for needle-encased probes. (A) Capillaries were 
cut for probe inlets (~15 cm for 20/90 μm capillary). (B) The 20/90 μm capillary was 
inserted through the adapter capillary, with ~1 cm protruding from one side.  
Cyanoacrylate was applied to fill the space between the capillaries without coating the 
sides of the adapter capillary, and length was cut to 10 cm as shown. (C) A ceramic cutter 
was then used to cleave the inner capillary and excess cyanoacrylate from the end of the 
adapter capillary. (D) After cleaving, the surface of the adapted capillary end was flat, 
with cyanoacrylate filling the gap between inner and outer capillaries. 
 
constraints; hence a jeweler’s loupe magnifying glass (10× or 20× magnification) was 

used. 

Probe Fabrication –Needle-Encased Probes 

For purposes of temporal resolution and backpressure (discussed in Chapter II), 

20 μm ID, 90 μm OD (abbreviated 20/90 μm) capillaries were utilized for probe 

fabrication. These capillaries were adapted for commercially available 360 μm fittings by 

gluing a 2 cm 150/360 μm capillary over one end, as shown in Figure A.1.  

Cyanoacrylate glue (E-Z Bond, Laguna Niguel, CA) was used to both fasten the adapter 

in place and fill the space between the inner and outer capillaries.  A ceramic cutter 

allowed both the cyanoacrylate and inner capillary to be cut flush with the adapter 

capillary, as shown in Figure A.1D. The flat side of the capillary cutter was rubbed 

against the tip to smooth any protruding material not removed by cutting. 
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Figure A.2. Fabrication of needle-encased probes. (A) Sheath needles were prepared by 
removing the hub from commercial hypodermic needles. (B) Two probe inlet capillaries 
(with adapters) were inserted into the needle sheath. (C) Probe capillaries were aligned 
and fixed in place with cyanoacrylate. (D) To facilitate mounting to the stereotax probe 
holder, a 0.5 cm length of hypodermic tubing was slid over the needle sheath as shown, 
and fixed with cyanoacrylate. (E) Wax or cyanoacrylate was applied to protect inner 
capillaries from damage where they enter outer capillaries or needles. (F) Photograph of 
completed probe, showing alignment of probe capillaries. 
 

 Probes were fabricated using 27 gauge hypodermic needles (1¼ inch, BD, East 

Rutherford, NJ).  These needles were cut using a rotary tool to remove the hub (Figure  

A.2A).  Inner edges of the cut needles were opened and deburred using the tip of another 

needle.  Two capillaries with adapters were then inserted through the needle (Figure 

A.2B) and aligned with each other and the center of the needle bevel (Figure A.2C). 

Cyanoacrylate was applied to fix capillaries to the needle (Figure A.2C).  For facilitating 

the attachment of probes to the stereotaxic holder (1770, David Kopf, Tujunga, CA), a 5 

mm length of 22 gauge hypodermic tubing (Amazon Supply, Seattle, WA) was placed 
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over the hypodermic tubing and secured with cyanoacrylate (Figure A.2D).  The 22 

gauge tubing was at least 1 cm from the probe tip and therefore did not enter the tissue on 

implantation. 

One practical limitation of capillary-based sampling probes is that the inner 

capillary is easily broken where it concentrically enters another capillary or a hypodermic 

tubing.  This problem was corrected by applying a small amount of wax (Sticky Wax, 

Kerr, Orange, CA) or cyanoacrylate to these junction points (Figure A.2E).  A completed 

probe is shown in Figure A.2F. 

Probe Fabrication – Polyimide-Encased Probes 

 A second style of probe was developed to reduce probe size and to be compatible 

with cannulae for awake animal experiments. These probes utilized 20/90 μm capillaries 

like the needle-encased probes, but replaced the needle sheath with polyimide tubing 

(180 μm ID, 220 μm OD, Amazon Supply, Seattle, WA).  The fabrication procedure is 

outlined in Figure A.3.  First, the polyimide tubing was cut to length (3 cm) using a razor 

blade, and the probe capillaries (~15 cm of 20/90 μm capillary) were cut with a ceramic 

cutter.  These capillaries were then threaded through the polyimide tubing (Figure A.3B).  

To facilitate inserting the capillaries through the polyimide, the polyimide was gently 

squeezed with forceps to make its shape slightly oval.  The polyimide was centered over 

the fused silica capillaries, and thixotropic epoxy (353NDT, Epoxy Technology, 

Billerica, MA) applied to the end of the capillaries to be covered with the polyimide 

(Figure A.3C).  The polyimide was then slid over the epoxy (Figure A.3D).  This 

thixotropic epoxy was selected based on its non-flowing properties: the epoxy remained  
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Figure A.3. Fabrication of a polyimide-encased push-pull probe. (A) A 3 cm length of 
polyimide was cut to length with a razor, and two probe capillaries (without adapters) 
were prepared.  (B) Probe capillaries were threaded through the polyimide.  (C) 
Thixotropic epoxy was coated on the probe capillaries, and (D) the polyimide was 
carefully slid over the epoxy.  Excess epoxy was gently wiped from the outside of the 
polyimide, and (E) the capillary was baked at low temperature until the epoxy was cured. 
A razor was then used to cut flush the capillaries, epoxy and polyimide. (F) Capillary 
adapters were next applied to the probe capillaries and aligned to a total probe length of 
10 cm.  (G) These were glued with cyanoacrylate and cleaved with a ceramic cutter (as in 
Figure A.1) to yield an unpolished, bare polyimide probe (H). 
 
within the space between the capillaries and polyimide during curing and would not clog 

the probe capillaries. 

When removing excess epoxy from the surface of the polyimide, a Kimwipe 

tissue (Kimberly Clark, Roswell, GA) was very gently passed over the polyimide surface.  

It was important not to apply any pressure to the sides of the polyimide as this would 

create long air pockets, which would become orifices in the surface of the probe tip.  The 

probe was cured at a relatively low temperature (60 min at 50°C, then 20 min at 80°C).  

If the probe epoxy was heated too quickly, it was found that air bubbles in the epoxy 

would expand, creating voids. A razor blade was then used to cut flush the capillaries, 

polyimide and epoxy to form the probe tip (Figure A.3E).  Small air bubbles did not  
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Figure A.4. Polishing polyimide-encased probes. (A) 1500-grain wet sandpaper was 
applied to a capillary beveler for polishing. (B) The sandpaper was pre-wetted with water 
and the probe backflushed with water at 500 nL/min. Forceps were used to gently hold 
the polyimide-encased probe tip to the rotating sandpaper surface. (C) Examples of 
polished probe tips. 
 
affect the probe if they were not at the surface of the tip of the probe, therefore the 

location of the cut was selected to avoid any air bubbles. 

Adapters (2 cm, 150/360 μm) were added to the probe capillaries after cutting the 

probe tip (Figure A.3F). Probe length was measured (10 cm, Figure A.3G) and the 

adapters glued with cyanoacrylate and cut as in Figure A.1. As with the needle-encased 

probes (Figure A.2E), wax or cyanoacrylate was applied to prevent the probe capillaries 

from breaking. 

Probes were polished to create a smooth, uniform sampling tip.  For polishing, a 

BV-10 electrode beveler (Sutter Instruments, Novato, CA) was utilized, as shown in 

Figure A.4A.  1500-grain sandpaper was placed on the polishing surface of the beveler 

and was pre-wetted with water.  To prevent clogging, the probe was backflushed with  
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Figure A.5. Preparing polyimide-encased probes for anesthetized animals. (A) The probe 
was inserted through a 3 cm length of 250/360μm capillary to provide stiffness, and (B) 
this capillary was glued to leave 1 mm of probe protruding from this capillary, as shown 
in (C). (D) The probe was fixed vertically to the mounting block (tan color) of the 
stereotaxic holder first with an ~1 cm piece of labeling tape (not shown), then with the 
metal holder ring. 
 
water at 500 nL/min through each capillary using a syringe pump. To polish, forceps 

were used to gently hold the probe tip to the sandpaper while the sandpaper rotated at 1 

Hz (Figure A.4B).  Probes were polished to achieve a flat surface.  Excess polyimide was 

removed by placing the probe on a glass surface under a microscope and trimming with a 

razor blade.  Examples of polished probe tips are shown in Figure A.4C. 

Polyimide-Encased Probes for Anesthetized Experiments 

 Polyimide-encased probes were flexible and therefore required reinforcement 

before implantation to the brain.  For anesthetized experiments, polyimide-encased 

probes were threaded concentrically through a 3 cm length of 250/360 μm capillary 

(Figure A.5A).  A 1 mm length of probe protruded from the tip of this fused silica 

capillary as shown in Figure A.5B.  This length was selected to minimize tissue 
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disruption near the sampling site while avoiding probe deflection.  The capillary was 

cemented in place with cyanoacrylate.  The finished probe tip is shown in Figure A.5C.  

These probes were placed in a stereotaxic holder (1770, David Kopf, Tujunga, CA) as 

shown in Figure A.5D.  To facilitate mounting and prevent the probe from sliding, an ~1 

cm piece of labeling tape (not shown) was used to affix the probe to the holder before 

fastening the metal ring. 

Polyimide-Encased Probes for Awake Experiments 

 Probes utilized for awake experiments were fabricated by the same procedure as 

the anesthetized polyimide-encased probes (Figure A.3), but with different tubing 

geometries.  Instead of 20/90 μm capillaries, 40/100 μm capillaries were utilized.  The 

probe capillaries were initially cut to ~65 cm length and a 3 cm, 200/240 μm polyimide 

sheath applied to one end of the capillaries (Figure A.3A-D). After filling with epoxy, 

curing and cutting as before, the capillary adapters were added to provide a probe length 

of 60 cm (Figure A.3G). Because of the larger ID of the probe capillaries, a backflushing 

flow rate of 2 μL/min, rather than 500 nL/min, was utilized during polishing (Figure 

A.4). 

For awake experiments, cannulae were used so as to allow probes to be acutely 

implanted in awake, freely moving rats.  The flexibility of polyimide-encased probes 

made them compatible with commercially available cannula systems (Plastics One, 

Roanoke, VA).  The probe holders utilized were model C312ICP/O/SPC with no internal 

hypodermic tubing.  Cannulae were model C312GP/O/SPC (21 gauge) with 8 mm length.  

Stylets (or obturators) were model C312DC.  Before use, stylets were inserted through a 

cannula and cut flush with the tip of the cannula using wire cutters. 
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Figure A.6. Assembly of polyimide-encased probes for awake animals.  (A) A polished 
probe was fabricated as in figures A.3 and A.4 but using 40/100 μm capillaries to a length 
of 60 cm, and 200/240 μm polyimide. (B) The probe was threaded through 45 cm of 
Tygon tubing. (C) An ~6 mm piece of Tygon was applied to an inlet of the probe holder 
and (D) the probe was inserted through this tygon. (E) 26G hypodermic tubing was 
threaded over the probe tip and carefully glued, leaving 1 mm of probe protruding. This 
was carefully secured with cyanoacrylate (not shown). (F) The cannula was connected to 
the probe holder and (G) the probe was glued to the Tygon tubing above the probe holder 
at a length where 1 mm of probe (and no 26G tubing) protruded from the cannula. 
Micrographs show examples of (H) completed probes, (I) a cannula, and (J) an assembled 
probe and cannula. 
 

A detailed protocol for assembling the cannula system for awake in vivo sampling 

is shown in Figure A.6.  After fabricating a push-pull probe, it was threaded (Figure 

A.6B) through a 45 cm length of 0.50/1.52 mm Tygon tubing (St. Gobain, Akron, OH).  

An ~6 mm piece of the Tygon tubing was placed over one of the connector inlets of the 

probe holder and the probe threaded through this inlet (Figure A.6C-D). 
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To fill the space between the probe and stylet during insertion (minimizing 

deflection), a 26 gauge hypodermic needle (1/2 inch, Precision Glide, BD, East 

Rutherford, NJ) was placed over the tip of the probe (Figure A.6E).  This needle was 

prepared by removing the hub with a rotary tool, as in Figure A.2A. The blunt end of this 

needle faced the tip of the probe, and was glued with cyanoacrylate to allow 1 mm of 

probe to protrude past the needle (Figure A.6F).  The probe was then threaded through a 

cannula (Figure A.6F).  After fastening the cannula, the length of the probe was set to 1 

mm past the tip of the cannula with none of the 26 gauge needle protruding, and it was 

secured to the ~6 mm length of polyimide with cyanoacrylate (Figure A.6G). An example 

of a completed probe is shown in Figure A.6H.  A cannula is shown in A.6I and the 

assembled probe and cannula in A.6J. 

Segmented Flow Sampling of Neurotransmitters 

 For high-temporal resolution experiments with either needle-encased (Chapter II) 

or polyimide-encased (Chapter III) probes, segmented flow-based samples were 

collected.  To generate these samples, commercially available 100 μm bore tees 

(C360QTPKG, Valco, Houston, TX) were utilized.  These tees were selected because 

they were practical (50 μm bore tees clogged frequently) and did not compromise 

temporal resolution at 50 nL/min flow rates (unlike 150 μm bore tees). 

 To place the droplet-generating tee in close proximity to the brain and provide a 

stable mounting point, the tee was fixed to the probe holder just above the probe. A 

diagram of the placements of sampling hardware is shown in Figure A.7.  The oil (50:1 

vol:vol of perfluorodecalin:1H,1H,2H,2H-perfluoro-1-octanol) was placed in a vial and 

was attached to the probe holder just above the tee.  The vial and the base of the tee were  
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Figure A.7. Assembly of probes for collecting segmented flow samples. Anesthetized 
probes were attached to a stereotaxic probe holder. The droplet-generating tee (100 μm 
ID) and oil reservoir vial were connected to the holder above the probe using tape (not 
shown). The probe outlet, oil inlet and droplet outlet were connected to the tee as shown, 
and vacuum applied to the Teflon (-150 mm Hg) to provide pull flow. 
 
secured to the holder using tape (not shown).  To balance flow rates of aqueous and oil 

phases (nominally 50 nL/min aqueous, 70 nL/min oil), a 20 cm length of 40/360 μm 

capillary was used for oil, and a 10 cm length of 20/90 μm capillary for aqueous (the 

probe capillary).  Chapter II describes the temporal resolution and backpressure tradeoffs 

of different probe inlet geometries. 

 Plug geometry was evaluated before probe implantation by sampling a vial of 

aCSF.  Sampling was started by applying vacuum (-150 mm Hg) to the Teflon tubing.  

Plugs should be capsules (non-spherical) and uniform in size.  At 50 nL per minute, plugs 

formed nominally at 7 s intervals. It is important to monitor the segmented flow 

generated during sampling to quickly identify and fix any problems that could occur.  

Descriptions of droplet appearances during normal and problematic conditions are 

described below, along with troubleshooting suggestions to obtain or restore stable 

segmented flow. 



147 
 

Surgical Procedures for Anesthetized Sampling 

 All animal procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals of the University of Michigan. 

The anesthetic utilized was ketamine (65 mg/kg) with dexmedetomidine (0.25 mg/kg) 

administered by intraperitoneal (IP) injection. Boosters of one-third the dose of each were 

administered as needed. The rat brain atlas of Paxinos and Watson10 provides instructions 

for how to place an animal in a stereotaxic frame, how to level the head, and where 

bregma and lambda are located on the surface of the skull.  Bregma was used as reference 

for anterior/posterior and lateral measurements, and the dura (at the surface of the brain) 

was reference for dorsal/ventral measurements during implantation. 

 After first shaving, sterilizing and incising the scalp, the surface of the cranium 

was cleaned with a number 10 scalpel blade, revealing the suture lines.  A burr hole was 

drilled using a 30,000 RPM rotary tool (Dremel, Mount Prospect, IL) above the sampling 

site.  To avoid damaging the probe during implantation, an incision was made in the dura 

using a 27 gauge hypodermic needle (BD, East Rutherford, NJ). 

Probe Implantation   

 During implantation, the probe inlet was disconnected from the tee and connected 

to the syringe pump for backflushing.  Unions for connecting to the syringe pump were 

also taped to the probe holder at approximately the same height as the oil reservoir.  The 

unions employed were commercially available 360 μm capillary fittings from either 

IDEX Health and Science (P-772, Oak Harbor, WA) or Valco (C360UPK4 or 

C360UPK6, Houston, TX).  IDEX unions were larger and more difficult to fasten when 

attached to a probe holder, but were less prone to clogging than the Valco fittings. 
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 Probes were backflushed at a high flow rate while lowering the probe (500 

nL/min per capillary) to prevent occlusion, then decreased to 50 nL/min for 8 minutes of 

backflushing.  With needle probes, the flow rate was reduced over ~40 s as described 

previously9, whereas with polyimide probes, it was decreased immediately upon reaching 

the final depth.  As probe size was minimized, backflushing was reduced to match the 

decrease in probe trauma (for example, with silicon microfabricated probes described in 

Appendix C, only 200 nL/min was used). 

 After 8 min of 50 nL/min backflushing, the “pull” capillary was reconnected to 

the plug-generating tee and vacuum applied to the Teflon tubing.  In most instances, flow 

immediately commenced with plugs comparable to when the probe was tested in aCSF.  

Troubleshooting instructions for in vivo sampling with segmented flow are provided 

below.  

Sampling from Awake, Freely Moving Animals 

Surgical Protocol for Cannulation 

 As outlined above, a cannula system (Figure A.6) was utilized to allow sampling 

of neurotransmitters from awake, freely moving animals.  A Plastics One cannula holder 

was purchased (1966, David Kopf, Tujunga, CA), fixed to one arm of the stereotax and a 

cannulae placed within this holder.  As above, the rat was anesthetized and mounted into 

a stereotaxic frame. A burr hole was drilled above the region of interest, and was located 

by using bregma as a reference.  Three burr holes for screws were drilled around the 

sampling burr hole. Three stainless steel screws were inserted into the skull, leaving the 

screw heads ~1 mm above the surface of the skull (0-80 x 3/32, Plastics One, Roanoke, 
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VA).  The dura was incised as above, and the cannula was implanted to a depth of 1 mm 

above the target within the brain.   

A mounting clip for the tether of a Raturn (Bioanalytical Systems, West 

Lafayette, IN) was fabricated by bending a stainless steel wound clip (340555, Harvard 

Apparatus, Holliston, MA) to 90° and placing it on the skull next to the cannula with one 

end protruding vertically.  Methyl methacrylate (Teets Cold Cure Denture Material, Co-

oral-ite Dental Mfg. Co., Diamond Springs, CA) was applied to the skull until the entire 

wound, the screws, ~1 mm of the cannula threads, and the base of the clip were covered.  

Care was taken to sculpt a smooth skull cap having no sharp edges and a rounded lip at 

the skin around the wound.  After the cap cured, the cannula holder was released and a 

stylet secured within the cannula. 

Following surgery, animals were monitored carefully, maintaining body 

temperature, until fully ambulatory.  Atipamezole was given by IP injection (0.75 mg) as 

a reversal agent for dexmedetomidine, and gentamicin was given to prevent infection 

(0.03 mL at 100 mg/mL IP).  Carpofen (5 mg/kg subcutaneous) was administered prior to 

surgery and 24 h after surgery for analgesia during recovery. 

Probe Implantation  

Immediately prior to implantation, probes were backflushed with a syringe pump 

to verify capillaries were not occluded, and “pull” flow was tested by connecting a 1 μL 

(13 cm, 100/360 μm) capillary to the probe.  Fluidic connections to the probe were made 

with 360 μm unions from IDEX (P-772, Oak Harbor, WA) as these were the most 

reliable fittings tested for 360 μm connections.  Flow rate was monitored by measuring  
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Figure A.8. Sampling from awake animals. (A) Animals were placed within a Raturn, 
and connections made using IDEX unions on the Raturn arm.  Push flow was supplied 
with a syringe pump, whereas pull flow with vacuum on the outlet of a 1 μL capillary.  
(B) After collecting 1 μL (20 min), the collection capillary was replaced with a fresh 
capillary, and a syringe filled with air was used to push the sample into a conical 
autosampler vial. 
 
the fill rate of the 1 μL capillary (9.4 s/mm corresponded to 50 nL/min) and vacuum was 

adjusted to achieve this flow rate (nominally -50 mm Hg).  After testing vacuum, the 

“pull” capillary of the probe was connected to a backflushing syringe for implantation. 

Sampling was performed by placing a cannulated rat in a Raturn, allowing free 

movement without tangling probe capillaries (Figure A.8).  For implantation, rats were 

briefly anesthetized with isoflurane. The stylet was removed and cannula cleaned by 

applying a few drops of sterile saline and carefully reinserting and removing the stylet. 

While backflushing the probe (500 nL/min aCSF per capillary) it was tightened 

over ~30 s. Care was taken to ensure the probe did not rotate during implantation. After 

tightening, backflushing flow rate was immediately reduced to 50 nL/min.  The Raturn 

tether was connected by an alligator clip to the clip in the dental cement cap.  A small 
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piece of duct tape was wrapped around the probe and tether clip, taking care to avoid 

contact with the skin or fur. After 8 minutes of backflushing, a 1 μL capillary was 

connected to the “pull” capillary of the probe and vacuum applied.  Flow rate was 

monitored and vacuum adjusted as needed to maintain 50 nL/min.  Fractions collected 

within one hour of implantation were discarded as previous work has suggested basal 

concentrations are unstable for the first ~30 min of sampling1, 8. 

Experimental Considerations and Troubleshooting for nL/min Fluidic Systems 

Syringe Pumps and “Push” Flow 

  Crucial to collecting perfusate at 50 nL/min is maintaining reliable flow rates 

throughout the infusion (or “push”) fluidics.  Though such considerations may seem 

trivial, unstable “push” flow to the probe was found in several instances where the probe 

appeared to become or became occluded.  Maintaining these low infusion flow rates is 

not difficult to achieve with commercially available components, but the system must be 

properly designed and assembled. 

 Previous work utilized microfluidic pumps to provide stable flow rates7, 8, but our 

experiments utilized syringe pumps.  Choice of syringe pump was not critical; Chemyx 

Fusion 400 (Stafford, TX), CMA 402 (Holliston, MA), or Harvard PHD 2000 (Holliston, 

MA) have all been used successfully, but pump stability can decrease with wear. To 

avoid pulsatility, 25 µL syringes (Gastight, Hamilton, Reno, NV) were employed. 

 Different fittings were utilized successfully during these experiments to couple 

syringes to capillary (360 µm OD) tubing.  The most critical features of making fluidic 

connections were to utilize fittings with minimal internal volume (150 µm bore or 

smaller) and to prevent air entrapment during assembly.  Stainless steel, 1/16”, 150 µm 
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bore fittings were found to be robust and reliable for this purpose (ZU1XC, Valco, 

Houston, TX).  Stainless steel ferrules and 1/16” OD polymeric sleeves were used within 

these fittings to adapt to syringes and capillary (IDEX, Oak Harbor, WA). 

 Choice of capillary dimensions for 50 nL/min flow rates was critical to ensure a 

low system volume with reasonable linear velocities through the capillaries.  For 

example, if a 50 cm capillary length was used to connect a syringe to a probe, a 75 µm 

bore capillary would require 2.2 µL, corresponding to 45 minutes, to flush. A 40 µm bore 

capillary would require only 0.6 µL and 12 minutes to flush.  For these experiments, ~50 

cm lengths of 40 µm bore, 360 µm outer diameter were used reliably. 

 A critical step in ensuring flow stability was the complete degassing of all liquids 

stored cold (such as aCSF) before infusion.   This was achieved by placing vials of these 

liquids into a 37°C bath for ~10 minutes to accelerate the warming process, or by using a 

sonicator.  Also, incubating at room temperature for 30 minutes prior to use was likewise 

sufficient.  Failure to do so resulted in air bubbles being generated within syringes, which 

were detrimental to flow stability. 

 A useful tool in this research for validating flow rates and stability within a 

system was a microfluidic flow meter. This device, used periodically to ensure system 

flow stability during troubleshooting (SLG1430-025, Sensirion, Zurich), revealed such 

non-trivial issues as defective syringe pumps and damaged fittings. 

Troubleshooting in Vivo Sampling 

 Before implantation of any probe, both “push” and “pull” flow should be verified 

in vitro to ensure that no occlusion had occurred during probe fabrication.  In the course 

of experiments, probe occlusion was occasionally observed. A benefit of the side-by-side 



153 
 

capillary probe design related to occlusion was that the push-pull capillaries were 

interchangeable.  By switching these capillaries, flow could often be immediately 

resumed.  In cases where alternating the capillaries did not restore flow, three causes 

were identified as most suspect: trapped air, syringe pump flow, and tissue trauma. 

The presence of trapped air at any point within in the microfluidic system 

presented an occlusion risk.  This was because the high air/water interfacial tension 

within small bore (20-40 µm) capillaries presented a significant pressure boundary.  Care 

in making connections and degassing liquids was found to prevent this problem.  

However, if it occurred, fittings were flushed with aCSF to fix this issue mid-experiment. 

In the event of an occlusion, verification of the syringe pump operation, as well as 

the lack of air bubbles within the syringes should be conducted.  In our research, this 

problem was unlikely when aCSF was properly degassed and the connections carefully 

made (as described above).  Since this pump was essential to continuous, reliable flow 

rates during an experiment, it should be considered. 

The third source of occlusion, and one which could not be fixed after implantation 

was tissue trauma and bleeding within the brain.  Care and precision was necessary when 

inserting probes within the brain.  By minimizing probe size (described above) and 

inserting probes at a steady but slow rate, the likelihood of bleeding was greatly reduced.  

It was found to be helpful, even in unsuccessful experiments, to perform histology as this 

can indicate if bleeding occurred along the probe track. If bleeding was found, more care 

during implantation or modification of probe design should be considered. 
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Figure A.9 Examples of segmented flow streams that are (A) optimal and (B-D) 
problematic.  (B) Plugs which have broken into irregular droplets.  (C) Air bubbles 
intermittently during sampling (blue dye is aqueous). (D) Air bubbles within oil (no 
aqueous flow).  (E) Air bubbles in aqueous (no oil flow). 
 
Evaluating and Troubleshooting Segmented Flow Sampling 

Prior to implantation within an animal, it was helpful to identify and fix any 

problems that were occurring with segmented flow generation.  Therefore, probes placed 

in aCSF should be tested before use. Figure A.9A illustrates an example of typical 

segmented flow during sampling: a reproducible train of capsule-shaped plugs. When 

connections issues or clogs occurred, the observable plugs may resemble the illustrations 

in Figures A.9B-E).   

Figure A.9B demonstrates an example of unstable plug geometry that could occur 

during sampling.  Plugs could be unstable if the Teflon tubing was poorly cut or 

damaged, or if the ferrule on the Teflon capillary was too tight or too loose.  To remedy, 

the Teflon tubing was disconnected, inspected for damage (pinches or kinks) and 

replaced if necessary.  The Teflon tubing was recut with an unused razor blade on a clean 

glass surface (such as a microscope slide) to obtain a smooth, flat, perpendicular end.  

Filling the tee with aCSF removed any trapped air, and the Teflon tubing was replaced 

(ensuring it protruded at least 1 mm through the ferrule before tightening).  The fitting 



155 
 

was tightened and gentle tension applied to the Teflon to ensure it was held in place.  The 

flow was then restarted and the ferrule slowly tightened until stable plugs were obtained.  

If this did not resolve the issue, the tee was replaced. 

 Plugs were also be monitored to ensure no air bubbles have been generated. Air 

bubbles interfere with sampling in a number of ways: causing plugs to coalesce, 

increasing backpressure (reducing flow rates), and produce unstable analyte signal during 

analysis. Air bubbles were distinguished from aqueous plugs by their easily visible 

interfaces.  However, aqueous plugs in oil were less defined and required a collimated 

light source to observe.  It was found that air bubbles might occur intermittently during 

sampling, as shown in Figure A.9C, or in a train of bubbles as in Figures A.9D-E.  If a 

slow air leak happened, but otherwise sampling appeared normal (Figure A.9D), it could 

often be fixed by gently tightening the fittings on the Valco tee. If tightening was not 

effective, the Teflon tubing could be recut (as above) and the capillaries and probe 

replaced. If these efforts were unsuccessful, the tee could be replaced also. 

In the event that only a stream of air bubbles was observed (Figure A.9D-E), 

determining if they are air-oil or air-aqueous bubbles was important for troubleshooting. 

Air-oil bubbles were noted to be capsule-shaped (Figure A.9D), whereas air-aqueous 

bubbles had perpendicular interfaces to the Teflon tubing walls (Figure A.9E).  The 

presence of air-aqueous bubbles indicated that the oil capillary was still priming (when 

the air and aqueous segments were close to the same size).  Air-oil plugs indicated a 

clogged or broken probe, a loose connection on the Valco tee, or a damaged Valco tee. 

The last problematic condition which might be observed when testing the 

segmented flow was one-phase (or “continuous”) flow.  If the phase was aqueous 



156 
 

(determined from the phase boundary at the start of the flow), the oil capillary was 

diagnosed as clogged or the tee damaged.  A determination that the flow was oil indicated 

that the probe capillary was clogged or the tee damaged. 

To summarize, loose fittings at the tee or clogged capillaries were most often the 

source of problems in segmented flow streams and could be easily adjusted to remedy 

these issues.  However, when all else failed, a replacement tee fixed segmented flow in 

almost every situation.  As segmented flow was in most cases optimized before 

implantation, plug stability issues and air bubbles seldom arose during the in vivo 

experiment. 

Troubleshooting Segmented Flow in Vivo 

 While the troubleshooting steps outlined in the previous section described how to 

fix issues occurring before probe implantation, problems could also occur after 

implantation.  For any of the scenarios described above and as shown in Figure A.9, the 

same troubleshooting steps would apply.   

Following implantation, probe occlusion, indicated by the aqueous plugs 

becoming widely spaced or stopping, could occur.  To fix this, the “push” syringe and its 

fittings were inspected for stable flow.  The second backflushing syringe could also be 

used for “push” flow.  When resetting the “push” flow did not mitigate this problem, 

switching the probe “push” and “pull” capillaries was helpful.  With recurrent issues, 

backflushing the probe or increasing the “push” flow rate to 100-200 nL/min briefly (less 

than 30 s) could be tested cautiously.  However, if stable sampling was not achieved 

quickly, this might indicate bleeding within the tissue, or a clogged and damaged probe.  

In the event of critical probe failures such as these, having backup probes which could be 
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implanted in the same nuclei of the other brain hemisphere (if the experimental design 

permitted) was beneficial.  A second probe was a viable way to ensure that the animal 

could be used successfully for the experiment. As mentioned previously, an examination 

of histology (described in Appendix B) could reveal whether bleeding occurred within 

the tissue, which could be an indicator of any systematic issues (i.e. probe shape, or 

implantation rate) that require modification in the experimental design. 

Conclusions 

 Push-pull perfusion offers the potential for widespread use as a sampling 

technique.  Hardware and assembly requirements are no more challenging or costly than 

a conventional microdialysis experiment, but the nature of nanoliter per minute flow rates 

may present difficulties to those unaccustomed to utilizing microfluidics. With careful 

choice of hardware, assembly, and probe implantation procedures, researchers from 

different fields and expertise can realize the benefits of high spatial resolution sampling 

by low-flow push-pull perfusion. 
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Appendix B 

Histology for Identification of Probe Placements 

Reproduced with permission from Slaney, T.R. et al. ACS Chemical Neuroscience, 

Accepted for publication November 12, 2012. Copyright 2012 American Chemical 

Society. 

Introduction 

 Histology is an important tool for neurochemical measurements. Histology allows 

both the probe placement to be precisely identified, and the tissue at the sampling site of 

the probe to be examined.  This technique was extensively utilized in Chapter IV as 

mapped placements revealed chemical gradients in the brain extracellular compartment. 

In small animals such as rodents, these regions can be difficult to accurately target, 

making verification of placements for smaller nuclei essential.  In troubleshooting, 

histology also revealed if tissue trauma was the source of sampling issues. The goal of 

this appendix is to provide a detailed description of the two histology techniques that 

were utilized, and how placements were identified. 

Materials and Methods 

Reagents and Materials 

 Unless otherwise specified, all reagents were purchased from Sigma Aldrich (St. 

Lous, MO). The paraformaldehyde solution contained 10% (wt.) of paraformaldehyde, 

2.5% (wt.) sucrose and 100 mM sodium phosphate, pH 7.4.  To facilitate dilution of the 
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paraformaldehyde, the solution was stirred overnight while heating to approximately 

58°C (not exceeding 60°C).  Fast Green FCF and Evans Blue were purchased from Fisher 

(Fair Lawn, NJ).  Artificial cerebrospinal fluid (aCSF) contained 145 mM NaCl, 2.68 

mM KCl, 1.01 mM MgSO4, 1.22 mM CaCl2, 1.55 mM Na2HPO4, and 0.45 mM NaH2-

PO4, pH 7.41.  

Necropsy Procedures 

 All animal use was performed according to a protocol approved by the University 

Committee for the Use and Care of Animals. Male Sprague-Dawley rats (typically 250-

350 g) were purchased from Harlan (Indianapolis, IN). At the conclusion of a sampling 

experiment, animals were sacrificed by barbiturate overdose (0.3 mL of 390 mg/mL 

sodium pentobarbital). To label the probe track, 100 nL of dye was infused at 50 nL/min 

using a syringe pump. The dye used was either 0.24 mg/mL Evans Blue in aCSF or a 

filtered, saturated Fast Green FCF solution in aCSF. The probe was then removed and the 

brain excised, first by decapitation, then removal of the skull.  The brain was carefully 

placed in 10 to 15 mL of paraformaldehyde solution.  Brains were then stored at ~4°C for 

at least 24 h before slicing.   

Sucrose was sometimes used as a cryoprotectant for tissue before slicing.  After 

fixing a brain in paraformaldehyde for at least 24 h, it was transferred to 10-15 mL of a 

25% sucrose solution containing 100 mM sodium phosphate, pH 7.4.  Brains were stored 

at least 24 h at 4°C before slicing.  Sucrose was not typically used as it did not 

significantly affect slice quality for purposes of probe tracking. 
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Cryostat Tissue Slicing 

 Histology was performed utilizing a Leica cryostat set to -20°C (Buffalo Grove, 

IL).  Brains were first frozen using dry ice and then mounted to a stainless steel chuck.  

The brain and chuck were placed in the cryostat for several minutes until completely 

frozen, and then were placed into the microtome within the cryostat.  Disposable 

microtome blades were utilized (Fisherbrand, Fisher Scientific, Fair Lawn, NJ).  The slice 

thickness was set to 60 μm, and at least every other slice was collected near the probe 

placement. Slices were carefully placed on tissue adherent microscope slides (Superfrost 

Plus, Fisherbrand, Fisher Scientific, Fair Lawn, NJ). 

Manual Tissue Slicing 

 Another technique that was utilized for slicing was manual slicing. A fixed brain 

was carefully wrapped in aluminum foil and placed in a -80°C freezer for at least 5 min 

until frozen.  This frozen brain was then placed on a large microscope slide and a razor 

blade was used to make coronal slices through the sampling site.  Slices were 

approximately 0.5 mm thick, but could vary in size.  Slices were not stored but were 

imaged immediately. 

Imaging of Slices 

 To identify placements, brain slices were imaged using an optical microscope 

(SMZ745, Nikon Instruments, Melville, NY).  Imaging cryostat slices required careful 

adjustment of slide illumination and camera settings.  Best imaging of slice features were 

obtained using a fiber optic light for moderate intensity, off-angle illumination of the 

slice.  As cryostat slices were translucent, black felt was placed approximately 1 cm  
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Figure B.1 Examples of histology for probe tracking. Coronal brain slices were mounted 
to microscope slides (A, D). Fast Green FCF stained the probe track a blue color, whereas 
the cannula track was inherently visible by displaced tissue (A, B, D, E). Anatomical 
features including white matter, ventricles, and regional boundaries provided references 
for identifying placements (B, E).  Probe tip placements were then mapped on diagrams 
of coronal slices (C, F). Panels B and E include overlays of the probe and cannula 
locations (drawn to scale), the medial line (white), and visible features. Arrows indicate 
sampling sites (A, C, D, F). Abbreviations: SNR – substantia nigra reticulata; ml – medial 
lemniscus; MM – medial mammillary nucleus; ac – anterior commissure; RN – red 
nucleus; VTA – ventral tegmental area. 
 
below the slice to remove any background light.  Manual slices were imaged using the 

same microscope, but the greater thickness allowed flexibility in lighting as brain features 

were easily visible compared to cryostat slices. 
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Discussion 

Identification of Brain Nuclei 

 Following slicing, tissue was imaged using a microscope. As shown in Figure 

B.1, white matter, lobe boundaries and ventricles were used as references to identify 

probe placements in the brain atlas of Paxinos and Watson2.  The probe distance anterior 

or posterior to bregma was measured by determining the coronal diagram which best 

matched the slice of the probe placement. As a cryostat provides known slice thicknesses, 

anterior or posterior placement could be verified by the number of slices from a distinct 

feature, such as the union point of the two hemispheres of the corpus callosum (1.6 mm 

anterior to bregma).  After nuclei were identified, measurements could be grouped by 

placement. 

 Figure B.1 reveals tissue damage dorsal of the probe tip due to the larger cannula; 

however, it provides verification of no bleeding or significant disruption at the sampling 

site (arrows).  In experiments where a sampling probe became occluded, blood was 

occasionally observed at the tip of the probe.  This information was valuable in 

understanding tissue damage and refining probe designs and methods.  For example, with 

a microfabricated probe of 80 μm diameter, no bleeding or tissue displacement was 

visible along the entire probe track (see Appendix C). 

Conclusions 

 In vivo measurements within small brain nuclei can vary significantly from 

surrounding tissue due to discrete neuronal populations. Additionally, visible signs of 

tissue disruption such as bleeding can be informative when diagnosing performance 
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issues with a direct sampling method such as low-flow push-pull perfusion.  For these 

reasons, histology is a valuable tool for in vivo neurochemical measurements. 
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Appendix C 

Silicon Microfabricated Push-Pull Probes for Neurochemical Sampling 

Woong Hee Lee, Thomas R. Slaney, and Robert T. Kennedy, manuscript to be submitted. 

 

Introduction 

 A desirable trait for neural implants for chemical measurements is a small device 

size. Benefits of reduced device size are two-fold: a reduction in tissue trauma1 and 

enhancement of spatial resolution2, 3. The benefits of spatial resolution are readily 

apparent: “hot spots” of neurotransmitter activity can be identified as have been within 

the nucleus accumbens, and regional differences in activity can be discerned by spatially 

resolved measurements2, 3. Furthermore, local basal concentrations of neurotransmitters 

can vary on the 100s of μm scale, as demonstrated in Chapter IV. Reduction of tissue 

trauma is important to ensure measurements reflect the normal physiology of neural 

tissue. 

 A technique with the potential for greatly reduced probe size is low-flow push-

pull perfusion4. While the probe diameter of microdialysis probes is limited by the 

diameters of available dialysis fibers, low-flow push-pull perfusion probes are only 

constrained to the sizes of the sampling tubing and orifices.  Initial probe designs utilized 

hypodermic tubings relatively large in size (400-450 µm)5, 6; however, substitution of 

fused silica capillaries has greatly reduced device sizes (as in Chapter IV) to ~200 μm7.   
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 Microfabrication of neural implants from silicon has been well-established as a 

way to minimize size.  Silicon microelectrodes are commercially available8, 9 and allow 

integration of different functionalities within a compact device. Silicon microneedles 

have been fabricated and can be mm in length10.  Despite these capabilities, silicon 

probes have not to date been utilized for sampling methods such as low-flow push-pull 

perfusion. 

 In this work, silicon low-flow push-pull perfusion probes were constructed from 

silicon-over-insulator (SOI) wafers by incorporation of two fluidic channels.  

Connections were made to the base of these silicon probes utilizing fused silica 

capillaries as intermediate flow paths.  To demonstrate sampling and examine basal 

concentrations of neurotransmitters, microliter fractions were collected, derivatized with 

benzoyl chloride, and analyzed utilizing liquid chromatography-mass spectrometry. 

Materials and Methods 

Reagents and Materials 

 Silicon wafers were purchased from Silicon Valley Microelectronics (Santa Clara, 

CA), Wafer World (West Palm Beach, FL), or University Wafer (South Boston, MA). 

Fused silica capillaries were purchased from Molex (Phoenix, AZ).  Epoxy was 

purchased from Loctite (5-Minute Epoxy, Westlake, OH). Crystalbond Adhesive was 

purchased from Structure Probe (West Chester, PA).  Unless otherwise specified, all 

reagents for sampling and sample analysis were purchased from Fisher Scientific 

(Fairlawn, NJ) and were Certified ACS grade or better.  Artificial cerebrospinal fluid 

(aCSF) contained 145 mM NaCl, 2.68 mM KCl, 1.01 mM MgSO4, 1.22 mM CaCl2, 1.55 

mM Na2HPO4, and 0.45 mM NaH2PO4, pH 7.4.11 
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Microfabrication Facilities 

 Microfabrication of low-flow push-pull probes was performed within a class 1000 

cleanroom (Lurie Nanofabrication Facility at the University of Michigan, Ann Arbor, 

MI).  A Karl Suss ACS 200 instrument was utilized for photoresist coating, baking and 

development (Garching, Germany).  A Karl Suss MA-6 mask aligner was used for 

exposure of resist. Etching of silicon dioxide (SiO2) and C4F8 was performed using a 

LAM 9400 plasma etcher (LAM Research Corporation, Fremont, CA). For deep reactive 

ion etching (DRIE) and reactive ion etching (RIE), an STS Pegasus 4 etcher was utilized 

(SPTS, Newport, UK).  Low pressure chemical vapor deposition (LPCVD) of polysilicon 

was accomplished by use of a Tempress 6604 D3 furnace tube (Vaassen, Netherlands). 

Silicon Probe Fabrication 

 Probes were fabricated from N-type SOI wafers of 100 mm diameter with a 

thickness of 525 μm. RCA cleaning was performed to remove any organic or inorganic 

contaminants12. A process schematic of the probe fabrication is shown in Figure C.1. 

Silicon dioxide was grown within a furnace to a thickness of 1 μm.  Fluidic channels 

were masked in 3 μm thick SPR 220 photoresist (Dow, Midland, MI) by patterning a 

series of 3 μm diameter holes 17 μm apart along the channel length.  Oxide was removed 

from beneath the resist utilizing plasma etching.  Holes were extended to the channel 

depth (27 μm) by DRIE.  Channels were formed by widening the base of these holes via 

RIE to a width of 20 μm and plasma etching was repeated to remove C4F8 that was 

deposited during DRIE. Photoresist was then removed, the wafer rinsed, and then RCA 

cleaned.  Following cleaning, LPCVD was utilized to seal the channels by depositing 3 

μm of polysilicon. 
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Figure C.1 Microfabrication procedure for silicon probes. (A) Probe channels were 
fabricated by reactive ion etching. (B) Deep reactive ion etching was then used to cut 
probe shapes and sampling inlets. (C) CrystalBond adhesive was used to fix probes to a 
silicon support.  DRIE was then utilized to thin the probe backing, and hot water to 
release individual probes. Top views shown on right. 
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 Following channel fabrication, wafers were placed into an oven to grow a 1 μm 

layer of SiO2.  A 3 μm layer of SPR 220 photoresist was deposited, the probe outlines 

masked and developed, and SiO2 and polysilicon removed by DRIE.  A coating of AZ 

9260 photoresist was then applied to the wafer (AZ Electronic Materials, Branchburg, 

NJ), masked and developed to expose the probe outlines and sampling inlets (20 μm by 

20 μm). Probe outlines were etched using DRIE until the probe silicon is traversed, while 

the oxide and polysilicon layers retarded etching of the probe inlet holes.  By continuing 

DRIE, the oxide and polysilicon above the inlet holes was removed and etching 

continued until the channel depth was reached (25 μm). 

Releasing probes from the SOI wafers was accomplished by etching to remove 

the backside silicon.  This was accomplished by first utilizing Crystalbond adhesive to fix 

the top surface of the SOI wafer to a second silicon wafer substrate.  DRIE was then 

utilized to remove the silicon backing of the SOI wafer.  To release probes from the 

support wafer, the wafer was placed into warm water, dissolving the adhesive. 

Probe Designs 

 Silicon push-pull probes were fabricated as above to provide a total device length 

of 11 mm (as shown in Figure C.2).  Posts for fluidic connections (described below) were 

1 mm in length.  The extracranial portion of the probe connecting the posts to the 

implanted portion was a 2 mm by 2 mm.  The ventral portion of the implanted probe was 

200 μm diameter and 5 mm long.  The ventral portion of the probe was 5 mm long and 84 

μm in width.  Inlets of the probe were at the ventral-most tip of the probe, and beneath 

the inlets, the probe outline tapered at 45° angles to a 90° point. 
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Figure C.2. Design of silicon push-pull probes.  (A) An overview of probe shape and 
channels.  Probes had of three fluidic connection prongs (from left to right: aqueous inlet, 
droplet outlet, and oil inlet) of 70 μm diameter with 20 μm diameter channels (B).  2 mm 
from the probe tip was a droplet generation tee (C) and at the tip of the probe were two 
inlets for “push” (left) and “pull” (right) flow.  Two-channel probes were also fabricated 
of the same geometry but without the oil inlet or tee. 
 

Probes were constructed with two or three fluidic channels.  Two-channel probes 

connected one post orifice to each inlet at the probe tip for “push” and “pull” fluidic 

connections.  Three-channel probes contained an oil inlet post.  This inlet intersected with 

the “pull” inlet channel at 2 mm from the tip of the probe. 

Fluidic Connections for Silicon Probes 

 Probe channels were adapted for external connections by fabrication of posts 

containing each channel of the probe.  Posts were fabricated at the top of the probe and 

were 70 μm in diameter (matching the probe thickness) and 1 mm in length (Figure C.2).  

Channels were centered within these posts and intersected the tip of the post, providing 

an orifice. 
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Figure C.3. Silicon probe assembly.  (A) Connections from probe to capillary were made 
by aligning fluidic posts from the probe and fluidic capillaries (brown, 90 μm outer 
diameter) within a larger union capillary (green, 150 μm inner diameter). (B) Alignment 
was achieved by microfabricating probe holders from silicon wafers. (C) Probe posts 
were aligned in contact with fluidic capillaries. (D) Photograph of assembled probe, 
sealed by encapsulation with epoxy. 
 

To hold probes adjacent to capillaries for unions, probe holders were fabricated 

from silicon wafers by DRIE.  An overview of these holders is illustrated in Figure C.3. 

SPR 220 resist was patterned by lithography (as before) and then DRIE was utilized to 

etch channels of 360 μm width along the holder outline (5 mm by 10 mm rectangle) to 

100 μm depth.  These channels were spaced to align with silicon probe posts, and a 2 mm 

by 2 mm trench of 70 μm depth was etched to match the backside of the probe.  As the 

edges of the holders were aligned with the <110> plane of the wafer, they were readily 

separated by cleaving. 
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 For fluidic unions to connect to probe posts, ~10 mm lengths of 150 μm inner 

diameter, 360 μm outer diameter capillary were placed in the 160 μm diameter probe 

holder trenches (Figure C.3B). A probe was then slid into the 2 mm diameter trench so as 

to insert its posts into the 360 μm diameter capillary unions.  The probe was fastened to 

the holder using epoxy. For fluidic connections, 20 μm inner diameter, 90 μm outer 

diameter capillaries were inserted through the opposite ends of the 360 μm outer diameter 

capillaries until their ends were flush against the tips of the posts.  Capillaries were then 

sealed with additional epoxy. 

Surgical Procedures 

 All procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals.  Male Sprague-Dawley rats 

between 250 and 350 g were anesthetized using 65 mg/kg ketamine and 0.25 mg/kg 

dexmedetomidine and were placed in an ultraprecise stereotaxic frame (David Kopf, 

Tujunga, CA).  The probe was affixed with tape to a stereotax probe holder (1770, David 

Kopf) in a vertical orientation.  The skull was exposed and a burr hole drilled at 1 mm 

anterior and 2.3 mm lateral to bregma. The dura was carefully incised with a 27 gauge 

hypodermic needle and the surface of the cortex exposed so as to avoid damaging the 

probe. 

 During implantation, both channels of the push-pull probe were backflushed with 

aCSF at 200 nL/min. “Push” flow was supplied by coupling the probe inlet capillaries to 

a syringe pump (Fusion 400, Chemyx, Stafford, TX). The probe was lowered to a depth 

of 4 mm from the dura over ~2 minutes, and backflushing was immediately reduced to 50 

nL/min at depth.  After 8 minutes of backflushing, pull was commenced by connecting a 
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13 cm length of 100 μm bore capillary to the probe outlet and applying vacuum to its end 

(-150 mm Hg). Flow rate was monitored by measuring linear velocity of the capillary fill 

rate and vacuum adjusted as necessary to maintain 50 nL/min. After a capillary was filled 

(corresponding to 1 μL), it was transferred to an autosampler vial using gas pressure and 

immediately derivatized as described below. Fractions collected within the first hour 

were discarded. A total of three animals were measured, and between 4 and 8 fractions 

collected per animal (corresponding to 80 to 160 min of sampling). 

Analysis of Neurotransmitters 

 Neurotransmitters were derivatized with benzoyl chloride and analyzed by liquid 

chromatography-mass spectrometry, as described in detail elsewhere13.  To derivatize 

samples, reagents were added in rapid succession with intermediate vortexing 

immediately after collection.  These reagents were 1.5 μL of 100 mM sodium tetraborate, 

1.5 μL of 2% (vol.) benzoyl chloride (Sigma, St. Louis, MO) in acetonitrile, 1.5 μL of 

13C-labeled internal standards in dimethylsulfoxide13 containing 1% (vol.) acetic acid, 

and 1 μL of 100 nM d4-acetylcholine (CDN Isotopes, Pointe-Claire, Quebec, CA). 

Measured analytes included glutamate (Glu), γ-aminobutyric acid (GABA), aspartate 

(Asp), serine (Ser), taurine (Tau), histamine (Hist), glycine (Gly), dopamine (DA), 3,4-

dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid 

(HVA), norepinephrine (NE), normetanephrine (NM), serotonin (5-HT), 5-

hydroxyindoleacetic acid (5-HIAA), adenosine (Ado), and acetylcholine (ACh).  For 

calibration curves, standards were prepared which contained 0.5, 5, 10, 50 and 100 nM of 

ACh, 3-MT, 5-HT, DA, Hist, NE, and NM; 5, 50, 100, 500, and 1000 nM of 5-HIAA,  
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Figure C.4. Histology following sampling with a silicon probe. (A) After sampling, 
FastGreen FCF was infused through the probe, which labeled the sampling site (arrow) 
and probe track a blue-green color. (B) Sampling occurred at the tip of the probe (dashed 
line) within the striatum.  Adapted from Paxinos and Watson14.  

 
Ado, Asp, DOPAC, GABA, Glu, HVA, Ser, and Tau; and 50, 500, 1000, 5000, and10000 

nM of Gly, Ser and Tau respectively. Analysis was conducted using chromatographic 

conditions and mass spectrometer MRM parameters as described previously13. 

Histology 

 After sampling, 100 nL of filtered saturated FastGreen FCF was infused at 50 

nL/min through the probe.  Brains were placed in 10% paraformaldehyde in 100 mM 

phosphate buffered saline and fixed at ~4°C for at least 24 h (see Appendix B).  Brains 

were frozen and sliced along the coronal plane using a cryostat. Slices (50 or 60 μm 

thick) were placed on microscope slides (SuperFrost, Fisher, Fairlawn, NJ) and imaged 

using an optical microscope, as shown in Figure C.4. 
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Figure C.6. Calibration curves of neurotransmitters, as ratio (analyte/internal standard 
peak area) vs. concentration, with weighting factors and correlation coefficients (r2). 
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Neurotransmitter Basal Concentration (nM) 
ACh 26 ± 12 
Tau 1500 ± 700 
Hist 5.9 ± 1.5 
Ser 6600 ± 1800 
Asp 530 ± 110 
Gly 3000 ± 600 
Glu 1100 ± 500 

GABA 78 ± 30 
Ado 39 ± 21 

5-HIAA 140 ± 80 
HVA 380 ± 240 

NM 0.1 ± 0.0 
DOPAC 750 ± 450 

5-HT 0.36 ± 0.16 
3-MT 1.3 ± 0.7 

NE 1.5 ± 1.3 
DA 19 ± 7 

Table C.1. Basal concentrations of neurotransmitters measured within the striatum of 
anesthetized rats (mean ± SEM, n = 3 animals). 
 
given the minimal tissue disruption.  No probe occlusion or bleeding was observed during 

these experiments. 

Basal Concentrations of Neurotransmitters 

 As described above, each 1 μL fraction collected was labeled with benzoyl 

chloride, and stable isotope-labeled internal standards added. Therefore, a total of 34 ions 

were measured by LC-MS from each fraction, and concentrations were measured as the 

ratio of peak area of analyte to internal standard.  Figure C.5 shows example 

chromatograms of a standard, a blank, an in vivo fraction collected from the striatum, and 

internal standards.  No significant carry-over was observed. Calibration curves were 

linear, and weighting was applied to provide the best fit, as shown in Figure C.6. 

 Fractions collected within the first hour after probe implantation were discarded, 

as prior work demonstrated unstable neurotransmitter levels within the first ~30 minutes5, 

6, 11. The average of measurements from three animals is shown in Table C.1. Basal 
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concentrations of dopamine and metabolites HVA and DOPAC were 11, 12 and 14-fold 

greater, respectively, than was observed with 220 μm diameter probes (Chapter IV), and 

dopamine was 3 to 10-fold greater than observed concentrations with no-net-flux 

microdialysis15, 16. A  possible explanation is that this difference is attributable to the 

smaller probe, as electrochemical measurements have suggested that tissue in close 

proximity to larger probes exhibit impaired dopamine release17.  However, the range of 

basal concentrations of dopamine varied 5-fold between individuals (6, 21 and 30 nM for 

3 rats), which may indicate local or individual differences in dopamine within the 

striatum.  Such differences have been observed previously with respect to dopamine 

activity in the ventral striatum2. 

 Different neurotransmitters had differing degrees of variability within animals.  

To compare this variability, the relative standard deviations of neurotransmitters within 

each animal were calculated, and were averaged between animals.  Dopamine and 3-MT 

were least variable, with average within-animal relative standard deviations of 12 ± 2 and 

14 ± 11 percent respectively (n = 3 rats, 4 to 6 measurements each).  Glycine, aspartate, 

serine and glutamate demonstrated the greatest variability, with within-animal standard 

deviations of 58 ± 22, 54 ± 30, 53 ± 23, and 42 ± 13 percent, respectively.  The average 

within-animal variability of each neurotransmitter was 32 percent.  This suggests that the 

amino acid neurotransmitters have a greater variability on the 20-minute timescale than 

the monoamine neurotransmitters.  

Interestingly, taurine and GABA did not follow this trend, with 23 ± 10 and 30 ± 

12 percent deviation each. A possible explanation is that this effect is due to use of 

ketamine anesthetic, as ketamine an n-methyl-d-aspartate (NMDA) receptor antagonist18, 



179 
 

and NMDA receptor antagonists have been shown to increase excitatory amino acid 

concentrations. 

Conclusions 

 Bulk micromachining of silicon wafers by reactive ion etching is a viable way to 

fabricate push-pull sampling probes for measuring neurotransmitters.  These probes have 

the potential to measure many more analytes quantitatively than the 17 demonstrated in 

this work.  These measurements also represent quantitative observations from minimally 

perturbed tissues which may reflect differences observed in basal levels compared with 

other sampling techniques. As probes are amenable to segmented flow by incorporation 

of a third oil channel, low-flow push-pull perfusion with silicon microprobes should 

provide a versatile method for high temporal resolution quantitative measurements. 
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