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Abstract 

 

 

Understanding social-ecological systems precedes studying solutions to natural resource 

problems. This research presents an interdisciplinary approach, which links theories from 

grassland ecology and institutional economics and methods from remote sensing, field ecological 

measurements, household survey, statistical modeling, and agent-based computational modeling, 

to study the dynamics of grassland social-ecological systems on the Mongolian plateau, 

including Mongolia and Inner Mongolia Autonomous Region, China, and social adaptation to 

climate change and ecosystem degradation. A range of research questions in the fields of remote 

sensing of vegetation, drivers and mechanisms of resource dynamics, and societal adaptation to 

environmental change were addressed at regional and local scales. 

 

This dissertation includes three research objectives: (1) monitoring grassland ecosystems at 

regional and local scales using remote sensing; (2) interpreting the dynamics of grassland 

productivity on the Mongolian plateau; and (3) studying social adaptation to climate change and 

grassland degradation. First, using a remote sensing based light-use efficiency model, I estimated 

annual grassland net primary productivity on the Mongolian plateau over the past three decades 

and analyzed the spatial-temporal dynamics of grassland net primary productivity in response to 

climate variability and change. In order to account for the insufficiency of using multispectral 

coarse resolution images to monitor grassland dynamics, especially grassland degradation, I 

analyzed the potential for using hyperspectral remote sensing to detect the quantity and quality of 

dominant grassland communities across ecological gradients of the Inner Mongolian grasslands, 

based on a sampling of field conditions across a large geographic area. 

  

Second, I linked the patterns of the dynamics in grassland productivity with biophysical and 

social variables. I drew on theories from grassland ecology and institutional economics to 

interpret the broad determinants of dynamics in grassland productivity, and used a hybrid state-

market-community framework to present a new interpretation of differences in the dynamics of 
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grassland productivity over the past five decades in China and Mongolia, based on grassland, 

demographic, socioeconomic, and climate data. In addition to qualitative analyses, I used spatial 

panel data models to identify the biophysical and socioeconomic factors driving the interannual 

dynamics of grassland net primary productivity across agro-ecological zones on the Mongolian 

plateau over the past three decades. The results showed that the major drivers of NPP dynamics 

vary across agro-ecological zones and between the two political regions. The heterogeneous 

drivers indicated the necessity of institutional diversity for sustainable governance of grassland 

resources. 

 

Third, social adaptation to environmental change was studied at both the household and 

community levels. The documented increases in climate variability and the deterioration of 

grassland productivity have increased livelihood vulnerability of the natural resource dependent 

herders on the Mongolian plateau. A household survey was designed to understand livelihood 

adaptation strategies adopted by local herders over the past ten years, and implemented in each 

of three grassland types in Mongolia (210 households in seven soums/towns) and China (541 

households in 15 villages). Based on the rich field data, I analyzed livelihood adaptation 

strategies of the surveyed herder households and associated local institutions, which facilitated 

herders’ livelihood adaptation behaviors. Hierarchical linear models, which I used to diagnose 

the determinants of fodder-purchasing behavior as a frequently cited adaptation, revealed that 

resource institutional factors, climate variability, and household financial capital were the 

dominant factors associated with livelihood adaptation strategies of the surveyed households. 

 

Local institutions played the central role in shaping and facilitating livelihood adaptation 

behaviors of herders in the Mongolian grasslands. Based on an agent-based model informed by 

empirical studies, I analyzed the social-ecological performance of alternative resource 

institutions and their combinations. I also explored effective social mechanisms for promoting 

and maintaining cooperation among herders. The results showed that under certain conditions 

resource institutions that can facilitate cooperative use of pastures generated better social-

ecological performance than the performance of sedentary grazing. Agent diversity and social 

norms were important for promoting cooperation among herders. Social structures and 

governmental regulations were important for solving the free-rider problem and maintaining 
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cooperation. The results implied that relaxing state-control related management strategies and 

allowing herders to form cooperative arrangements are effective ways to improve social-

ecological outcomes of pasture-use; and governmental support is also important for promoting 

and maintaining self-organized resource institutions. 
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Chapter One 

 

Analyzing Sustainability of Social-Ecological Systems on the Mongolian Plateau: An 

Interdisciplinary Approach 

 

1.1 Research Motivation 

Terrestrial vegetation performs pivotal roles in socio-ecological systems. Grasslands occupy 

about 40% of the earth’s terrestrial surface (and 38% of the Asian continent) and are generally 

characterized by single-stratum vegetation structures dominated by grasses and other herbaceous 

plants (Brown and Thorpe, 2008). Livestock graze on nearly all available grasslands, and 

managed grazing occupies about 25% of the terrestrial surface (Asner et al., 2004). The 

Mongolian plateau is part of the larger central Asian plateau, covering approximately 2.6 million 

km2. It is occupied by Mongolia in the northwest and Inner Mongolian Autonomous Region 

(IMAR), China, in the southeast. Grasslands are the dominant ecosystem types there. About 66% 

of the total land in IMAR (0.78 million km2) is classified as grasslands, which is a quarter of all 

Chinese grasslands (Zhang, 1992). Nearly 84% of the total territory in Mongolia (1.26 million 

km2) is covered by grasslands (Angerer et al., 2008). As relatively intact terrestrial ecosystems, 

they play significant roles in sequestrating carbon dioxide, conserving biodiversity, and 

providing livelihood benefits to herders (Chapter Four). 

 

The Mongolian grasslands have supported millions of pastoralists over the past thousands of 

years, and it is expected to provide goods and services for regional development as well as 

exports. Recent studies show that grasslands in IMAR and Mongolia have degraded to varying 

degrees; the degradation status in IMAR is more serious than in Mongolia (Angerer et al., 2008; 

Jiang et al., 2006). From the early 1960s to 2010, the average grassland biomass productivities in 

IMAR and Mongolia had decreased from 1871 to 900 kg/ha and from 804 to 369 kg/ha, 

respectively (IMIGSD, 2011; IOB, Mongolia, 2011). Grassland degradation has undermined 

ecosystem services they generated and endangered the livelihoods of local herders. The 
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sustainability of grassland social-ecological systems has become a major ecological, economic, 

and social issue on there, especially in the context of climate change. 

 

Climate on the Mongolian plateau is continental with extremely cold winters and warm 

summers. Droughts and heavy winter snowstorms (Dzuds) are the two major climate disasters 

there. Over the past half century, climate there has become warmer and drier (Chapter Four). The 

number of droughts increased significantly in Mongolia over the last 60 years, particularly in the 

last decade (NCRM, 2009). The worst Dzuds that Mongolia experienced recently were in the 

consecutive summers and winters of 1999, 2000, 2001, and 2002, which affected 50–70% of the 

territory. About 35% (12 million) of livestock population perished in that period. The 2010 Dzud 

was the worst ever, resulting in the death of about 8.5 million livestock or 20% of the 2009 

national livestock population in Mongolia (Vernooy, 2011). The adverse climate affects 

grassland productivity as well as grassland degradation. Studies have shown that in Mongolia, 

grassland productivity in areas in which grazing is not allowed has decreased by 20–30% over 

the past 40 years (Angerer et al., 2008). Until recently, the major rural income sources in 

Mongolia and IMAR were still from herding (Olonbayar, 2010; Waldron et al., 2010). Climate 

change and grassland degradation have endangered the livelihoods of herders on the Mongolian 

plateau. 

 

In the semiarid and arid grasslands of Inner Asia (Southern Russia, Mongolia, and Northern 

China), local herders used to migrate in large geographic distances to adapt to the high spatio-

temporal variability of precipitation and vegetation productivity (Humphrey and Sneath, 1999). 

Flexible property boundaries and reciprocal use of pastures allow herders to use grassland 

resources efficiently and to cope with frequent climate hazards (Fernandez-Gimenez, 1997). 

Those institutions have evolved over thousands of years and can well fit the biophysical 

characteristics of local ecological systems. However, over the past 50 years, the social-

institutional changes have undermined the traditional resource institutions and replaced them 

with a series of alternative systems. Since the mid-1980s and the early 1990s, IMAR and 

Mongolia have been transforming from centrally planned to market economies. Pastures there 

have been privatizing to individual households since then, and livestock was privatized at the 

beginning of their economic transforms. In IMAR, most pastures have been contracted to 
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individual households and fenced. In Mongolia, due to the lack of effective resource institutions, 

pastures have become open-access resources. The grazing sedentarization process has almost 

been completed in IMAR, China (Humphrey and Sneath, 1999). In Mongolia, poor families, who 

could not afford long distance migrations, migrated less frequently or became sedentary grazers 

around water points or fertile pastures (Olonbayar, 2010). Along with grazing sedentarization, 

the social norms of reciprocal use of pastures that the traditional nomadism was relied on have 

been disappearing (Li and Huntsinger, 2011; Upton, 2009). Migration, used to be the major 

adaptation strategy for herders on the Mongolian plateau to cope with uncertainties in 

precipitation and forage becomes less feasible. Therefore, social-institutional changes have 

increased the vulnerability of livelihoods for natural resource dependent herders on the 

Mongolian plateau. 

 

In this dissertation the dynamics of grassland productivity on the Mongolian plateau since the 

early 1960s was systematically investigated, by combining multiple datasets derived from 

satellite remote sensing and field measurements and drawing on theories from grassland ecology 

and institutional economics and methods from remote sensing, household survey, statistical 

modeling, and agent-based modeling. Current resource institutions and polices implemented in 

IMAR and Mongolia for governing grassland resources were analyzed and assessed. Diverse 

resource policy and institutional recommendations across ecological gradients and between 

IMAR and Mongolia were discussed. Social adaptation to climate change and grassland 

degradation was studies at household and community levels, i.e., changing herder livelihood 

choices and adjusting resource institutions. Taken as a whole, my dissertation provides 

knowledge that can support the development of policy and management strategies within the 

Mongolian plateau to produce more sustainable use of the grassland resources in the context of 

climate change. 

 

1.2 Frameworks, Theories, and Methods 

A social-ecological system is an ecological system intricately linked with and affected by one 

or more social systems (Anderies et al., 2004). All natural resources are embedded in social-

ecological systems. Social-ecological systems are composed of multiple subsystems and internal 
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variables within these subsystems at multiple levels analogous to organisms composed of organs, 

organs of tissues, tissues of cells, cells of proteins, etc. (Ostrom, 2009). Due to complexity in 

social-ecological systems, a single theory cannot explain phenomena that emerge from the 

interactions of social and ecological sub-systems. In addition, without a common framework to 

organize findings, isolated knowledge about social-ecological systems does not accumulate 

(Ostrom, 2009). A general framework helps us to identify the components and  the relationships 

among those components in the studied systems. 

 

Several frameworks have been developed to analyze and harness complex adaptive social-

ecological systems. Ostrom developed two frameworks for understanding institutional diversity 

and analyzing complex social-ecological systems, i.e., the Institutional Analysis and 

Development (IAD) framework (Ostrom, 2005) and the diagnostic framework for analyzing 

sustainability of social-ecological systems (Ostrom, 2009). Lemos and Agrawal (2006) proposed 

a governance framework that recognizes the importance of hybrid arrangements for sustainable 

environmental governance. Such hybrid arrangements connect the state, market, and community. 

Agrawal (2009) developed an analytical framework to examine the interactions among climate-

related vulnerability, local institutions, and livelihood adaptation practices. In this integrated 

research, the above analytical frameworks were used in multiple analysis and modeling settings 

to address the complex interactions between environment and social dynamics affecting 

adaptation to environmental change on the Mongolian plateau. 

 

Theories are sets of logics that are used to explain phenomena and predict outcomes. The 

development and use of theories enable the analyst to specify which components of a framework 

are relevant for certain kinds of questions (Ostrom, 2005). Several theories can be compatible 

within a framework. For example, in the diagnostic framework for analyzing sustainability of 

social-ecological systems (Ostrom, 2009), multiple social science theories, such as theories of 

institutions, institutional change, public choice, and common-pool resources, are all compatible 

within the framework. In this study of Mongolian grassland social-ecological systems, I mainly 

draw on theories from grassland ecology (Ellis and Swift, 1988) and institutional economics 

(North, 1990, 2005; Ostrom, 1990; 2005). Specifically, equilibrium and non-equilibrium 

ecosystem theories from grassland ecology and theories of institutions, institutional change, and 
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institutional diversity from institutional economics were used to generate hypotheses and explain 

phenomena for this integrated study. In addition, the concepts and analytical frameworks from 

complex adaptive systems (Miller and Page, 2007) were used in analyzing and modeling agent 

interactions, adaptations, and emergence in the Mongolian grassland social-ecological systems. 

 

Understanding the dynamics of social-ecological systems requires an interdisciplinary 

approach and methodological pluralism. Focusing on a single research method used in one 

academic discipline will not lead to holistic and multi-scale comprehensions of natural resource 

management problems (Ostrom and Nagendra, 2006). This doctoral research analyzes satellite 

images, conducts social-ecological measurements on the ground, and explores social-ecological 

performances of alternative resource institutions by an agent-based computational model. Time-

series of satellite images were used to track regional-scale grassland dynamics within different 

management regimes overtime. Satellite remote sensing is the one of the most frequently used 

techniques for mapping changes in natural resources. By combining satellite data with on-the-

ground observations, I investigated the biophysical and social-institutional mechanisms that 

drive the dynamics of grassland productivity.  

 

Household surveys and interviews with local resource users helped me to understand the 

major biophysical and social-economic factors, such as climate variability, household capital, 

and local institutions, which were closely related to the livelihood adaptation practices of local 

inhabitants. Statistical models (e.g. spatial panel data models and hierarchical linear models) 

were used for identifying the major drivers of the dynamics in grassland NPP across ecological 

zones of the Mongolian plateau and the factors that determine livelihood adaptation strategies of 

herder households. Agent-based models are computational platforms for exploring the dynamics 

of socio-ecological systems, and they are process-based models that can be used to explain 

empirical phenomena, to help design and choose institutions, and to generate alternative 

scenarios of agent actions and interactions. Agent heterogeneity, learning and adaptation, and 

social interactions can be easily incorporated in the model. They are flexible enough to represent 

and model various real world phenomena, compared with equilibrium-based analytical models 

(e.g. game theoretical models). In this integrated research, they were used for modeling the 

social-ecological outcomes of pasture-use under alternative resource institutional scenarios. 
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1.3 Research Objectives and Dissertation Outline 

The overall objective of this research was to quantify the dynamics of grassland productivity 

on the Mongolian plateau over the past half century, analyze the drivers and mechanisms of the 

dynamics in grassland productivity, and understand social adaptation to climate change and 

grassland degradation. I advance the understanding of grassland dynamics on the Mongolian 

plateau and social adaptation to environmental change through monitoring, interpretation, and 

modeling. An interdisciplinary approach, which combines remote sensing, field ecological 

measurements, household survey, and agent-based modeling, enabled me better understand the 

dynamics of the Mongolian grassland social-ecological systems. The strengths of remote sensing 

and social science were combined advance understanding of coupled human and natural 

dynamics. Linking the estimated grassland NPP from remotely sensed data with field social-

ecological measurements enabled me to interpret the dynamics of grassland NPP. Moreover, the 

linkages between the results of household surveys and the interpreted degradation status of 

grasslands from remotely sensed data are useful to understand the consequences of different 

land-use and management behaviors (e.g. grazing intensity) and the environmental effects on 

livelihood adaptation choices of herder households.  

 

This dissertation includes three- research objectives: (1) monitoring grassland ecosystems 

using remote sensing, (2) interpreting the dynamics of grassland productivity on the Mongolian 

plateau; (3) studying social adaptation to climate change and ecosystem degradation. The 

research questions and methodologies for each of the three research objectives are presented in 

the following. 

 

Objective One: monitoring grassland ecosystems using remote sensing 

The major research questions behind this objective are: (1) what is the spatio-temporal 

variability of grassland annual NPP since the early 1980s?; and (2) what are the advantages and 

constraints of using hyperspectral remote sensing to monitor grassland ecosystems? The main 

advantage of the remote sensing technology, compared with traditional ecological samplings, in 

mapping grassland quantity and quality are that it can repeatedly monitor large-scale grassland 
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ecosystems in relatively low cost. In Chapter two, I sought to improve the availability of long 

term, spatially explicit, and regionally extensive record of grassland productivity dynamics with 

remote sensing. This research addresses lack of a long-term record of these dynamics that is 

needed for study of human-environment dynamics.  It also relates those dynamics to climate 

variables to explore the variability and strength of those relationships before diving into the 

human-environment interactions in the next section 

 

In order to uncover vegetation patterns that may be masked due to the coarse spatial and 

spectral resolution of the foregoing analysis, I explored the use of hyperspectral remote sensing 

to measure vegetation productivity. Hyperspectral remote sensing with hundreds of spectral 

bands has the potential to measure specific ecological variables of grassland ecosystems that 

were difficult to measure using traditional multispectral sensors. In Chapter three, I analyzed the 

potential for using hyperspectral remote sensing to detect the quantity and quality of dominant 

grassland communities across ecological gradients of the Inner Mongolian grasslands, based on a 

sampling of field conditions across a large geographic area. Though based on measurements 

taken in the field, the work provides a basis for developing methods to improve our ability to 

detect changes in vegetation productivity from space 

 

Objective Two: interpreting the dynamics of grassland productivity 

The major research question behind this objective is: how well do changes in resource 

policies and institutions, populations of livestock and humans, climate factors, and human land-

use activities explain the dynamics of grassland productivity since the early 1960s? 

Understanding the drivers and mechanisms of the dynamics in grassland productivity is 

prerequisite for studying effective resource policies and institutions that can govern grassland 

resources sustainably. Mongolia and IMAR share similar ecological gradients of climate, 

vegetation, and soils, and they have undergone significant social-institutional and ecological 

transformations over the past half century. However, the two regions are different in their 

demographic, ethnic, cultural, economic, and political contexts.  
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In Chapter four, I focused on human dimensions of grassland degradation on the Mongolian 

plateau since the early 1960s. I adopted a hybrid state-market-community framework to analyze 

the dynamics of social-ecological systems on Mongolian plateau over the past 50 years based on 

grassland, socioeconomic, and climate data, collected in the field. In Chapter five, I presented a 

diagnostic analysis of the major drivers of the dynamics in grassland NPP across agro-ecological 

zones of the Mongolian plateau, using spatial panel data models. The dynamics of grassland NPP 

was modeled as a function of climatic and socioeconomic datasets. The time-series of grassland 

NPP estimated in Chapter two were used as inputs for the spatial panel data models. The 

Mongolian grasslands were first divided into six sub-regions based on the agro-ecological 

conditions. Then, spatial panel data models were run in each of the six agro-ecological zones in 

order to identify the major drivers of the dynamics in grassland annual NPP. 

 

Objective Three: studying social adaptation to climate change and grassland degradation  

The major research questions behind this objective are: (1) what were the major livelihood 

adaptation strategies adopted by herders on the Mongolian plateau to cope with climate change 

and grassland degradation?; (2) what kinds of local institutions were those livelihood adaptation 

strategies facilitated by?; (3) what were the determinants of variations in livelihood adaptation 

choices?; (4) what are the efficient resource institutions that can improve social-ecological 

outcomes of pasture-use in the semiarid and arid Mongolian grasslands in the context of climate 

change? 

 

In Chapter six, social adaptation to climate change and grassland degradation were studied at 

the household level. A household survey was designed based on the adaptation, institutions, and 

livelihoods framework (Agrawal, 2009), and it was implemented across ecological gradients 

(meadow, typical, and desert steppes) of IMAR and Mongolia. I first analyzed the livelihood 

adaptation choices adopted by herder households over the past ten years. Then, a hierarchical 

linear model was applied to diagnose the factors at household and village levels that determined 

fodder purchasing behaviors of herder households. In Chapter seven, I presented an agent-based 

modeling approach to explore the social-ecological performance of alternative resource 

institutions (i.e., sedentary grazing, pasture rental markets, and reciprocal use of pastures) and 
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their combinations. Model parameters were set based on empirical data from household survey 

and literature review. I hypothesized resource institutions that can facilitate cooperative use of 

pastures can generate better social-ecological performance than the performance of sedentary 

grazing without cooperation. Based on the agent-based model informed by empirical studies in 

the Mongolian grasslands, I tested this hypothesis and explored effective social mechanisms for 

promoting and maintaining cooperation among herders. 
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Chapter Two1 

 

Dynamics of Net Primary Productivity in the Mongolian Grasslands (1982−2009) in 

Response to Climate Variability and Change 

 

Abstract 

In order to understand the dynamics of grassland productivity on the Mongolian plateau over 

the past three decades, we used a remote-sensing-based light-use efficiency model to estimate 

annual net primary productivity (NPP) of the Mongolian grasslands from 1982 to 2009. We also 

analyzed the response of grassland NPP to climate variability and change. The estimated NPP 

was evaluated with the results of two empirically based methods. The results indicated that the 

interannual variability of grassland NPP generally increased over the study period, especially for 

desert steppe. The temporal trends of NPP varied across spring and summer seasons. Spring NPP 

increased in northern Mongolia, where climate was cold and humid, and decreased in desert 

steppe of Mongolia and eastern Inner Mongolia, China. Summer NPP increased in southern 

Inner Mongolia, mainly covered by cropland, and decreased in central Mongolia. Annual NPP 

increased significantly in northern Mongolia and southern Inner Mongolia, and decreased in 

some parts of desert and typical steppes of the Mongolian grasslands. In order to interpret the 

interannual variability of NPP and the temporal trends of NPP, we analyzed the relationships 

between NPP and climate. The results showed that the interannual variability of NPP decreases 

with the increase of precipitation (January-July), and the interannual variability of NPP increases 

with the increase of the interannual variability of precipitation (January-July). Based on 

correlation analyses between NPP and climate, NPP was more strongly associated with 

precipitation than with temperature, especially in desert and typical steppes. 

 

Keywords: Grassland dynamics; net primary productivity; light-use efficiency; remote sensing; 

climate variability and change; Mongolian grasslands 

                                                            
1Wang, J., Brown, D. G., and Chen, J. Dynamics of net primary productivity in the Mongolian grasslands 
(1982−2009) in response to climate variability and change. Manuscript submitted for review. 
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2.1 Introduction 

The Mongolian grasslands, including Mongolia and Inner Mongolia Autonomous Region 

(IMAR), China, has supported millions of pastoralists over thousands of years. Local herders 

continue to expect the grassland to provide goods and services for regional development as well 

as exports. However, climate variability and intensified human land-use activities have interacted 

to significantly alter the grassland ecosystems over the past 50 years (Chapter Four). Grassland 

sustainability has become a major ecological, economic, and social issue there. Quantifying 

grassland productivity is prerequisite for understanding grassland dynamics on the Mongolian 

plateau. Estimating grassland net primary productivity (NPP) is also of interest in better 

understanding the role of the Mongolian grasslands in global carbon budget and the provision of 

other ecosystem services. Studies based on satellite derived data indicate that vegetation NPP has 

been increasing in the northern middle and high latitudes since the early 1980s (Fang et al., 2003; 

Hicke et al., 2002; Piao et al., 2009; Potter et al., 1999; Slayback et al., 2003; Tucker et al., 2001). 

However, the temporal trends of vegetation NPP may vary geographically due to the spatial 

heterogeneity of climate variability and change and the intensity of human land-use activities. 

Estimates of NPP over large geographic areas and long-time frames are needed to explore their 

spatio-temporal patterns and responses to climate variability and change. 

 

Vegetation NPP with global coverage, such as the Advanced Very High Resolution 

Radiometer (AVHRR) Global Production Efficiency Model (GLOPEM) NPP (1981-2000) 

(Goetz et al., 1999, Prince and Goward, 1995) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) NPP (2000-present) (Heinsch et al., 2003; Running et al., 1999) 

have been developed for studying global vegetation dynamics. Although the models used for 

estimating GLOPEM NPP and MODIS NPP are both based on the light-use efficiency (LUE) 

model (Monteith, 1972; 1977), the model parameterization processes and spatial resolutions are 

different. Normalized difference vegetation index (NDVI) is one of the major inputs for these 

remote-sensing-based LUE models for NPP estimation (Field et al., 1995; Running et al., 2004; 

Seaquist et al., 2003). NDVI can provide important information on spatial complexity and 

temporal dynamics of biophysical properties of the Earth Surface. However, NDVI products 

derived from different sensors have different spatial resolutions, compositing schedules, and 
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image processing streams (e.g., differences in atmospheric corrections) (Brown et al., 2006). For 

example, AVHRR and MODIS image systems are different in their spectral, spatial, and 

radiometric resolutions and off-nadir view-angles (Tarnavsky et al., 2008). Therefore, NDVI 

values derived from the two sensors are different. In this work, we used a spatial degradation and 

linear-regression adjustment approach to integrate 8-km resolution GIMMS AVHRR NDVI 

(1982-1999) with 1-km resolution MODIS NDVI (2000-2009) and to build a spatially consistent 

and temporally continuous NDVI time-series used for estimating long-term grassland NPP. 

 

The primary goal of this work was to build a spatially consistent and temporally continuous 

NPP time-series (1982-2009), covering the whole Mongolian grasslands, based on the integrated 

NDVI time-series processed through the LUE model. Then, we used the NPP time-series to 

explore: (1) the interannual variability and the temporal trends of NPP (1982-2009); and (2) the 

relationships between NPP and climate. We hypothesized that in the Mongolian grasslands, 

precipitation played a dominant role in influencing the interannual variability of NPP, and the 

long-term trends of NPP were also strongly affected by human land-use activities. Following this 

introduction, Section 2.2 provides a brief description of the study area and the datasets used in 

this study. Section 2.3 introduces the methods for estimating NPP, evaluating the estimated NPP, 

and analyzing the changes of NPP and their relationships with climate. Section 2.4 presents the 

results. In Section 2.5, we compare the estimated NPP with the results of other studies and 

discuss the drivers of the interannual variability and the temporal trends of NPP. 

 

2.2 Study Area and Data 

2.2.1 Study Area 

The Mongolian plateau exhibits gradients of vegetation cover and density (Fig. 2.1). 

Grassland is the dominant ecosystem type there. About 66% of the total land area in Inner 

Mongolia (0.78 million km2) is classified as grassland, comprising a quarter of all Chinese 

grassland (Zhang, 1992). Nearly 84% of the total territory in Mongolia (1.26 million km2) is 

covered by grassland (Angerer et al., 2008). Climate on the Mongolian plateau is continental. 

Droughts and winter snowstorms are the two main types of climate disasters. Over the past half 
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century, climate there has been getting warmer and drier, and the frequencies of climate hazards 

have also increased (Chapter Four). Climate variability and change is likely affecting grassland 

productivity as well as grassland degradation. Besides climate, socioeconomic factors, such as 

increasing populations of human and livestock, human land-use intensification, and inefficient 

resource institutions have been identified as the major drivers of the dynamics in grassland 

productivity (Chapter Four; John et al., 2009). 

 

 
Fig. 2.1 The study area. Note: the background image is the 1-km resolution MODIS NDVI in the second 
half of August, 2009. IMGERS is the abbreviation of the Inner Mongolian Grassland Ecosystem Research 
Station, China. 

 

2.2.2 Remotely Sensed Data 

In this study, we used three NDVI datasets. The first dataset is GIMMS AVHRR NDVI, 

which are 15-day maximum value composite images (MVC) with 8-km spatial resolution. 

GIMMS AVHRR NDVI has been corrected for sensor degradation, cloud contamination, 

viewing-angle effects due to satellite drift, volcanic aerosols, and low signal-to-noise ratios due 

to sub-pixel cloud contamination and water vapor (Fensholt et al., 2009; Tarnavsky et al., 2008). 

GIMMS AVHRR NDVI has been demonstrated to be more stable than other AVHRR NDVI 

products (Slayback et al., 2003). We acquired twenty-five years of GIMMS AVHRR NDVI 
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images (1982-2006) from the Global Land Cover Facility (GLCF). We also acquired two 

MODIS NDVI products (2000-2009): MOD13Q1 and MOD13A2. Their spatial resolutions were 

250-m and 1-km, respectively. The two MODIS NDVI products were acquired from the NASA 

Reverb database. Monthly mean surface incident shortwave radiation (1982-2009) with spatial 

resolution of 1.0° × 1.0° was acquired from the Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC). Advanced space-borne thermal emission and reflection 

radiometer (ASTER) DEM data, covering the three field sites in Inner Mongolia (Figs. 2.1 and 

2.2), were also acquired from the NASA Reverb database. 

 

2.2.3 Ecological and Climate Data 

Regional-scale vegetation maps of Mongolia and Inner Mongolia were collected and used for 

establishing the parameter values of the LUE model. The two maps were made by the Institutes 

of Botany in Mongolia and China, in the 1980s and 1990s, respectively. The two vegetation 

maps were created based on large-scale field campaigns and samplings. The original scale of the 

vegetation maps was 1:1,000,000. The field sampled aboveground biomass in the summer (i.e., 

from mid-August to early September) of 2009 were used to validate the NPP estimated by the 

LUE model. These data were collected by our collaborators, the Inner Mongolian Grassland 

Survey and Design Institute and used for assessing grassland quality and mapping vegetation 

distribution. In this study, we only used the field measured aboveground biomass of three 

counties, distributed in meadow, typical, and desert steppes (Figs. 2.1 and 2.2). The numbers of 

field samples in the three counties were 107, 80, and 114, respectively. In the sampling process, 

each 1 × 1 m field plot was randomly selected within relatively homogeneous sites with a size of 

100 × 100 m. For the purpose of evaluating the estimated NPP, we also used the detailed 

vegetation maps for the three counties (Fig. 2.2). These vegetation maps were made based on 

visual interpretations of Landsat TM 5 images in 2009, assisted by detailed field campaigns. 
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Fig. 2.2 The field ecological sampling sites and the vegetation maps of 2009: (a) Ewenke county, 
meadow steppe; (b) Xilinhot county, typical steppe; (c) Wulatezhong county, desert steppe. The three 
sites are corresponding to sites A, B, and C in Fig. 2.1. 

 

Monthly precipitation and temperature (1982-2009) were collected from 17 and 47 national 

standard climate stations in Mongolia and Inner Mongolia, respectively. Monthly total 

precipitation and monthly mean temperature were spatially interpolated to 8-km resolution using 

the universal kriging model for consistency with the spatial resolution of GIMMS AVHRR 

NDVI. Spatial coordinates of the climate stations were used as the secondary information for 

incorporating the spatial trends of temperature and precipitation into the spatial predictions. 

 

2.3 Methods 

2.3.1 Integrating GIMMS AVHRR NDVI and Terra MODIS NDVI 

The process of integrating 8-km resolution GIMMS AVHRR NDVI and 1-km resolution 

MODIS NDVI proceeded as follows. First, in order to put the two NDVI datasets at the same 

(b)

(c) 

(a) 



18 
 

spatial resolution, 1-km MODIS NDVI were spatially degraded to 8-km by averaging all 64 1-

km pixels within each 8-km pixel. Second, regression analyses were performed to relate AVHRR 

NDVI and MODIS NDVI during the period in which both were operating (i.e., from the second 

half of May to September, 2000-2006) (Ji et al., 2008). Ten thousand regularly distributed 

sample points were generated to cover the study area and used to extract the values of AVHRR 

NDVI and MODIS NDVI. The coefficients of the linear regression models used for calculating 

MODIS NDVI as a function of AVHRR NDVI were estimated in the software package 

MATLAB (Mathworks Inc., Natick, Massachusetts, USA). In order to test the stability of the 

regression coefficients over time, we built linear regression models between AVHRR NDVI and 

MODIS NDVI for all biweekly intervals between 2000 and 2006. T-tests showed that all 

regression coefficients were significant at p < 0.01. The regression coefficients and intercepts 

exhibited periodic or seasonal variations, with seasonal variations being larger. Therefore, we 

averaged the regression coefficients and intercepts across years for each biweekly interval to 

represent the values of regression coefficients and intercepts in that seasonal period (Table 2.1). 

 

Table 2.1 The coefficients of the linear regressions used for adjusting AVHRR NDVI (1982-1999) to 
MODIS NDVI 
Biweekly Period Intercept Slope R2 p 

April_Period 2 0.0046 1.0256 0.9285 < 0.01 
May_Period 1 0.0003 1.1532 0.9034 < 0.01 
May_ Period 2 0.0060 1.0808 0.9163 < 0.01 
June_ Period 1 0.0156 1.0413 0.9230 < 0.01 
June_ Period 2 0.0293 1.0366 0.9276 < 0.01 
July_ Period 1 0.0305 1.0053 0.9361 < 0.01 
July_ Period 2 0.0423 0.9574 0.9237 < 0.01 
August_ Period 1 0.0413 0.9086 0.9150 < 0.01 
August_ Period 2 0.0292 0.8582 0.8895 < 0.01 
September_ Period 1 0.0374 0.7250 0.8827 < 0.01 
September_ Period 2 0.0424 0.6546 0.8704 < 0.01 

 

2.3.2 Estimating Annual NPP of the Mongolian grasslands (1982-2009) 

The light-use efficiency (LUE) approach for estimating vegetation productivity assumes that 

biological production is proportional to the amount of absorbed photosynthetically active 

radiation (APAR). APAR itself is the product of the incident photosynthetically active radiation 

(PAR) and the reflectance properties expressed through vegetation indices (e.g., NDVI) 
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(Running et al., 1999). The maximum biological efficiency of converting PAR to dry matter in 

units of carbon (g·C·MJ-1), known as LUE, is constrained by environmental factors (e.g., 

precipitation and temperature). LUE varies not only between biomes but also between species, 

and even across leaves within a plant (Brogaard et al., 2005). Gross primary productivity (GPP; 

g·C·day-1·m-2) represents the amount of solar energy converted through photosynthesis. NPP 

subtracts from this energy used for the maintenance and growth respiration, and represents the 

mass of dry plant matter produced (i.e., allocated in roots, shoot, leaves, and seeds). Annual NPP 

was accumulated in the vegetation growing season. For the LUE model, we defined that the 

growing season of the Mongolian grasslands was from the second half of April to September. 

Annual NPP was estimated by the following equations. 

,j i j j jNPP N PAR FPAR                                                                                                         (2-1) 

11

,
1

j j k
k

ANPP NPP


 
                                                                                                                          (2-2) 

where 
jANPP  is the annual NPP of pixel j . For a given biweekly period, NPP in pixel j  (

jNPP ) 

is estimated based on the LUE of biome type i  at pixel j  ( ,i j ), the PAR received at pixel j  

(
jPAR ), and the proportion of PAR absorbed at pixel j  (

jFPAR ). N  is the number of days over 

which the maximum NDVI images were produced (Equation (2-1)); for GIMMS AVHRR NDVI 

(1982-1999) and MODIS NDVI (2000-2009), the values of N  are 15 and 16, respectively. 

Annual NPP of pixel j  (
jANPP ) is estimated as the sum of eleven ( 1, 2, ,11k      ) biweekly NPP 

values over the growing season (Equation (2-2)). 

 

To parameterize the LUE model, we first defined land-cover types for each pixel. There are 

three main types of grassland on the Mongolian plateau: meadow, typical, and desert steppes. 

Over the past thousands of years, some of the grassland has been converted to cropland. 

Cropland is mainly distributed in the ecological zones that were originally covered by meadow 

and typical steppes. Besides the three types of grassland, forests, desert/bare-rock mountains, and 

lakes are the other main land-cover types in the study area. In order to diagnose the changes of 

land-cover types over the study period (1982-2009), we classified the land-cover types over five 

time periods (i.e., 1982-1987, 1988-1993, 1994-1999, 2000-2004, and 2005-2009) using the 
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integrated NDVI time-series. NDVI values in each biweekly period were averaged over the 

number of years in each time period to minimize the influences of climate variability on NDVI 

values. The differentiation of land-cover types was based on the differences in their phenologic 

curves. The preliminary analyses of the phenologic curves, represented by biweekly NDVI 

values, indicated that typical steppe and cropland cannot be differentiated clearly because their 

phenologic curves were largely overlapping. Therefore, we combined cropland into typical 

steppe. 

 

We used the K-means unsupervised classification method for image classification. The 

classification process was assisted by the K-means clustering functions in MATLAB. In order to 

make the classification results comparable over the five time periods, we first pooled the NDVI 

data of the five time periods by averaging the NDVI values in each biweekly period between 

1982 and 2009 to calculate the cluster centers. The extracted cluster centers were used for image 

classification in the five time periods. The land-cover clusters were labeled and combined into 

six land-cover types: forests, forest/meadow steppe, cropland/typical steppe, desert steppe, desert 

and bare-rock mountains, and lakes. There should be a certain amount of misclassified pixels 

because we used the coarse resolution NDVI images for land-cover classifications. In order to 

assess the classification accuracy over the five time periods, we compared the results of land-

cover classification with the vegetation maps of Mongolia and Inner Mongolia. The proportions 

for most land-cover types in most time periods were reasonably consistent with the vegetation 

maps with slight differences (Table 2.2). Considering the uncertainties associated with the land-

cover classifications, we used the vegetation maps of Mongolia and Inner Mongolia to assign 

land-cover types for each pixel. In this study, we focused only on studying the dynamics of 

grassland productivity, so other land-cover types were taken out of the study area. 

 

Table 2.2 The proportions of the six land-covers over the five time periods. 
Vegetation Type 1982−1987 1988−1993 1994−1999 2000−2004 2005−2009 Vegetation Map 

Forests 8.97% 9.15% 8.87% 8.30% 8.47% 8.64% 
Forest/Meadow steppe 17.54% 17.30% 17.15% 16.88% 16.40% 17.65% 
Cropland/Typical steppe 30.87% 31.95% 33.67% 34.10% 34.72% 32.98% 
Desert steppe 18.40% 17.33% 15.76% 13.89% 14.80% 17.02% 
Desert and bare mountains 23.89% 23.86% 24.12% 26.49% 25.32% 23.39% 
Lakes 0.33% 0.41% 0.43% 0.34% 0.29% 0.31% 
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In the second step, we calculated the values of LUE for meadow, typical, and desert steppes. 

We used the values of NPP, PAR, and FPAR for selected field sites to solve Equation (2-1) in 

order to calculate LUE. Here, we used annual maximum grassland biomass to represent annual 

NPP. The annual biomass was calculated based on the aboveground biomass measured in the 

field and the established ratios of belowground to aboveground biomass. In this process, we used 

the long-term field measurements of annual aboveground biomass observed from 16 field sites: 

five in meadow steppe, eight in typical steppe, and three in desert steppe (Fig. 2.3). Aboveground 

live biomass was sampled in the mid-August of each year. This was because the biomass of 

grassland communities in Inner Mongolia reached the annual peak in the mid-August. 

Aboveground biomass of the sampled grassland communities was dried at 65 °C for 48h before 

weighting. The lengths of records for these sites range from 8 years to 24 years. For 14 of the 16 

sites, the size of the study plots was 250 × 40 m, and the size of the other two plots was 500 × 

500 m. Detailed descriptions of the ecological dataset are provided in Bai et al. (2008). 

 

 
Fig. 2.3 The major land-cover types on the Mongolian plateau. The vegetation maps of IMAR (1990s) 
and Mongolia (1980s) were provided by the Institutes of Botany in China and Mongolia, respectively. 
The original scale of the two vegetation maps is 1:1,000,000. The ecological sampling sites in IMAR are 
the long-term ecological observation sites, which are managed by Chinese Academy of Sciences. 
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We estimated belowground biomass based on the empirical ratios between aboveground and 

belowground biomass. The approach of using aboveground to belowground biomass ratio has 

been the most common method for estimating belowground biomass at local to landscape, 

regional, and biome scales (Mokany et al., 2006). Physiologically the ratio is explained as 

reflecting the differential investment of photosynthates between aboveground and belowground 

organs (Mokany et al., 2006; Titlyanova et al., 1999). In this study, the ratios of belowground to 

aboveground biomass for meadow, typical and desert steppes were drawn from other field 

studies including 113 field sites in Inner Mongolia (i.e., 18 in meadow steppe, 55 in typical 

steppe, and 40 in desert steppe) at which both aboveground and belowground live biomass were 

measured (Ma et al., 2008). The belowground to aboveground biomass ratios for meadow, 

typical, and desert steppes of the study area were set to 6.90, 5.16, and 5.32, respectively. The 

multi-year mean of aboveground biomass was converted to total live biomass by multiplying the 

established ratios. Then, total live biomass (g·m-2) was converted to units of carbon 

measurements (g·C·m-2) by multiplying the empirical ratio 0.45 (Lieth and Whittaker, 1975). 

 

PAR (2000-2006) was calculated based on monthly mean incident shortwave radiation (J·sec-

1·m-2) multiplied by a scalar 0.45 (i.e., the photosynthetically active proportion of the total 

incident shortwave electromagnetic radiation) and 24 hours in units of seconds (Zhao et al., 

2007). FPAR (2000-2006) was calculated using an empirical MODIS NDVI-FPAR look-up table 

(Knyazikhin et al., 1999). Moreover, in order to minimize the scale-mismatch between the sizes 

of field plots (i.e., 14 plots were with a size of 250 × 40 m; two were with a size of 500 × 500 m) 

and the size of remote sensing pixels, we chose the 250-m MODIS NDVI dataset in calculating 

LUE. We estimated absorbed photosynthetically active radiation (APAR) by multiplying the 

incident solar radiation in photosynthetically active wavelengths with FPAR (Running et al., 

2004). Annual APAR was summarized over the eleven biweekly periods of a given year. We 

averaged annual APAR between 2000 and 2006 to represent the multi-year mean APAR. Finally, 

we calculated the values of LUE for the 16 field sites based on APAR and NPP. The LUE values 

and their standard deviations (i.e., among the number of sites in each type) for meadow, typical, 

and desert steppes were 0.78 g·C·MJ-1 (0.14), 0.60 g·C·MJ-1 (0.10), and 0.51 g·C·MJ-1 (0.15), 

respectively. The calculated LUE values are relatively consistent with the field measured 

grassland LUE by Turner et al. (2003). 
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Finally, biweekly FPAR (1982-2009) for the LUE model was also calculated using the 

empirical MODIS NDVI-FPAR look-up table. Monthly mean PAR (1982-2009) was calculated 

using the same method for PAR processing as described in calculating LUE. Then, we calculated 

biweekly NPP based on the values of PAR, FPAR, and LUE for each pixel. In the end, annual 

NPP was summarized over the eleven biweekly growing-season periods in a given year. 

 

In the above process, any uncertainties associated with land-cover type, LUE, PAR, and 

FPAR can influence the accuracy of the NPP estimates. First, biweekly NPP was calculated 

assuming NDVI was constant over the 15- or 16-day period. However, NDVI changes all the 

time due to changes in plant phenology, incident solar radiation, and cloud cover. Second, in 

calculating FPAR, we used the empirical MODIS NDVI-FPAR look-up table that was developed 

based on simulated data from the NOAA-11 AVHRR sensor. This might affect the magnitude of 

our estimated annual NPP in a systematic way (Zhao et al., 2007). Third, the land-cover types 

used for assigning the LUE values for each pixel can introduce errors. Although the spatial 

distributions of the three broad grassland types were fairly stable over the study period, some 

changes may have occurred that influence the accuracy of LUE parameter. Fourth, the LUE 

calculation process may introduce errors. We used multi-year mean aboveground biomass for 

calculating LUE, and we cannot diagnose the interannual variability of LUE due to the lack of 

field data over time. Moreover, we used one empirical ratio of belowground to aboveground 

biomass for each of the three broad grassland types. Field studies have shown that these 

empirical ratios vary within each of the three grassland types (Ma et al., 2008). In addition, the 

coarse resolution images used in this study can also decrease the spatial variability of LUE 

(Tuner et al., 2002). Finally, any errors associated with the monthly mean incident solar radiation 

dataset can systematically influence the accuracy of the estimated annual NPP because PAR is 

one of the major inputs for the LUE model. 

 

2.3.3 Spatial Predictions of Grassland NPP by Universal Kriging 

In order to evaluate the estimated NPP by the LUE model, we compared the NPP estimates 

with the results of a geostatistical model used for predicting NPP with field measurements and 
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auxiliary variables for the three evaluation sites (Fig. 2.2). Geostatistical methods, such as 

universal kriging and co-kriging, have been used for spatially predicting vegetation quantities 

(Dungan, 1998; Sales et al., 2007). Here, we used the universal kriging (UK) model for spatially 

predicting NPP. UK is a commonly used geostatistical interpolation method. It can incorporate 

auxiliary variables to provide additional information about the spatial distributions of predictions. 

Auxiliary variables in the UK model are similar to the regression covariates in multiple linear 

regression models (MLR). Compared with MLR, UK can also account for the spatial structure of 

predictions and can reproduce measurements (Chilès and Delfiner, 2012). UK has been applied 

in combining remote sensing data with field biomass measurements (Berterretche et al., 2005; 

Chatterjee et al., 2010). Detailed discussions about UK are provided in Chilès and Delfiner 

(2012). Only a few key equations are described here. 

 

UK splits the random function into a linear combination of a deterministic function, known at 

any location of the prediction field, and a random component, which is the function of random 

residuals. The prediction problem can be expressed as 

ss X                                                                                                                                         (2-3) 

where s  is an 1m  vector of predictions, 
sX  is an m p  matrix representing the model of the 

trend,   is a 1p  vector of drift coefficients representing the weights assigned to the p  auxiliary 

variables.   is the function of random residuals. The matrix form of the solution is 

0

T
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QQ X

X M X

    
         

                                                                                                                    (2-4) 

where 
zzQ  is an n n  size matrix representing the covariance of observations, 

zX  is an n p  size 

matrix of auxiliary variables representing the spatial trend of observations, 
sX  is an m p  size 

matrix representing the trend of predictions. 
zsQ  is an n m  matrix representing covariance 

between predictions and observations,   is an m n  matrix of weights assigned to related 

observations, and M  is a p m  matrix of Lagrange multipliers. The best predictions of NPP and 

their variances are produced by 

s z                                                                                                                                            (2-5) 
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T
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V Q Q X M  
                                                                                                                       (2-6) 

 

Field sampled aboveground biomass in the three evaluation sites are used as the 

measurements for spatial prediction (Fig. 2.2). We used the 2009 vegetation maps, 1-km MODIS 

NDVI, and 30-m ASTER DEM as auxiliary information. Vegetation maps were rasterized to 1-

km resolution grids. Each vegetation type was set as an independent layer. The spatial 

distribution of each vegetation type was coded as binary variables for each independent layer. 

30-m DEM was aggregated to 1-km resolution by averaging all 30-m elevation values within 

each 1-km pixel. NDVI, elevation, and vegetation types represent the deterministic part of the 

UK model. The spatial resolution of the prediction field was set as 1-km. We used the restricted 

maximum likelihood (REML) method to estimate the values of covariance parameters. REML 

can detrend observations and estimate the covariance parameters simultaneously. Exponential 

covariance function was used in the UK framework. The objective function of RMEL is (Gourdji 

et al., 2010) 

1 1 1 1 1 11 1 1
ln ln ( ( ) )

2 2 2
T T T T

zz z zz z zz zz z z zz z z zzL Q X Q X s Q Q X X Q X X Q s          
                                            (2-7) 

 

The covariance parameters (sill, range, and nugget) can be derived by minimizing the 

objective function. We used the unconstrained nonlinear optimization routine for parameter 

optimization, provided in MATLAB. The UK method and the REML algorithm were coded by 

the authors in MATLAB. The total live biomass in the prediction field was calculated based on 

the spatially predicted aboveground biomass and the ratios of belowground to aboveground 

biomass for the three grassland types, which were used for calculating LUE. Then, we 

aggregated the 1-km resolution total live biomass to 8-km resolution by averaging the 1-km 

resolution values. The total live biomass (g·m-2) was converted to units of carbon (g·C·m-2) by 

multiplying the empirical ratio 0.45. Finally, the spatially predicted grassland NPP of 2009 was 

compared with the estimated NPP by the LUE model. 
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2.3.4 Analyzing the Changes of NPP and Their Relationships with Climate 

First, we analyzed the changes of the interannual variability of NPP over the study period. We 

divided the study period (1982-2009) into three sub-periods (i.e., 1982-1990, 1991-1999, and 

2000-2009) and calculated the interannual variability of NPP, represented by the coefficient 

variance of NPP (NPP-CV), in each sub-period. Second, we calculated the changes of NPP in 

spring (from mid-April to June) and summer (from July to September) seasons, along with the 

changes of annual NPP, in each pixel. The changes of NPP were classified as significant increase 

or decrease if the linear regressions were significant at p < 0.05. Due to the spatial 

autocorrelation of NPP and the multiple-testing problem, some of the pixels may be falsely 

labeled as significant increase or decrease. Therefore, we adopted the false discovery rate (FDR) 

control procedure (Benjamini and Hochberg, 1995) to exclude the pixels that may be labeled 

falsely. In this study, we used the common approach and defined the threshold value of FDR as 

the same with the p value (0.05). Detailed discussions about the FDR control procedure are 

provided in Benjamini and Hochberg (1995). 

 

In order to understand the spatial patterns of the interannual variability of NPP and the 

temporal trends of NPP, we analyzed the relationships between NPP and climate. Previous 

studies based on long-term field measurements indicated that grassland aboveground NPP in 

Inner Mongolia were sensitive to precipitation between January and July (Bai et al., 2008). 

Therefore, in this study, we only used precipitation data between January and July. First, we 

calculated the variations of NPP-CV, along the gradient of the mean precipitation per half-annum 

(MPHA; January-July, 1982-2009). We also binned the values of NPP-CV in every 50 mm by 

calculating averages and standard deviations. Second, we analyzed the relationships between 

NPP-CV and the interannual variability of precipitation, represented by the coefficient of 

variation of precipitation (precipitation-CV). In addition, we calculated the correlation 

coefficients between NPP and climate variables (January-July) for each pixel (1982-2009). If the 

correlation coefficient was significant at p < 0.05, we labeled the correlation as significantly 

positive or negative. We also used the FDR control procedure to exclude the pixels that were 

labels falsely as significantly positive or negative. Here, the threshold value of FDR was set as 

same with the p value. 
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2.4 Results 

2.4.1 Evaluation of the Estimated Grassland NPP 

The estimated grassland NPP by the LUE model was evaluated with the results of two 

empirically based methods. First, we compared the estimated NPP of 2009 with the spatially 

predicted NPP using the UK model in that year at the three evaluation sites in meadow, typical, 

and desert steppes of Inner Mongolia (Figs. 2.1 and 2.2). The estimated NPP values were plotted 

against the spatially predicted NPP (Fig. 2.4). For the three evaluation sites, the NPP values 

estimated by the LUE model were roughly consistent with the NPP values predicted by the UK 

model. For the three sites in meadow, typical, and desert steppes, the root mean square errors 

(RMSEs) between the two NPP datasets were 25.17 g·C·m-2·year-1, 11.60 g·C·m-2·year-1, and 

6.89 g·C·m-2·year-1, respectively. 
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Fig. 2.4 The comparisons between estimated NPP by the LUE model and spatially predicted NPP by UK 
in the three evaluation sites of IMAR: (a) Ewenke county, meadow steppe; (b) Xilinhot county, typical 
steppe; (c) Wulatezhong county, desert steppe. 

 

Second, we compared the estimated NPP by the LUE model with the field measurements at 

IMGERS (Fig. 2.1) (1982-2003) (Ma et al., 2010) for evaluating the NPP estimates over time. 

The plot size of the fenced experimental site at IMGERS was 500 × 500 m, which was smaller 

(b) 

(a) 

(c) 
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than the pixel size of the estimated NPP. The measured aboveground biomass was first converted 

to total live biomass by multiplying the empirical ratio of belowground to aboveground biomass 

in typical steppe. Then, we converted the total live biomass (g·m-2) to units of carbon (g·C·m-2) 

by multiplying the coefficient 0.45. The calculated NPP values based on field measurements 

were compared with the estimated annual NPP in the corresponding pixel, assuming that the 

field measured biomass taken at the end of the growing season can represent annual NPP. The 

calculated NPP based on field measurements were higher than the estimated NPP by the LUE 

model. The lower NPP estimated by the LUE model might be explained by grazing activities, 

which were excluded from IMGERS. The calculated NPP based on field measurements also had 

higher interannual variability (Fig. 2.5). This could be explained by the fact that the LUE model 

did not include the interannual variability of climate variables directly. In addition, the estimated 

NPP using coarse resolution remote sensing data also had the smoothing effect. The correlation 

coefficient between the two NPP time-series was 0.82 (p < 0.01). 
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Fig. 2.5 The comparisons between the estimated annual NPP (g·C·m-2·year-1) by the light-use efficiency 
(LUE) model and ground measured biomass (g·C·m-2) at IMGERS (1982−2003). 

 

2.4.2 The Interannual Variability of Grassland NPP 

The spatial patterns of mean annual NPP (1982-2009) and the interannual variability of NPP 

in the three sub-periods follow the general trends observed in the vegetation map of the study 

area (Fig. 2.6). By statistics, mean annual NPP and their standard deviations for meadow, typical, 

and desert steppes were: 316.09 g·C·m-2·year-1 (118.03), 164.27 g·C·m-2·year-1 (87.14), and 
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85.70 g·C·m-2·year-1 (35.86). For the three sub-periods, the interannual variability of grassland 

NPP (NPP-CV) decreased from desert to typical and meadow steppes. The spatial patterns of 

NPP-CV also varied over the three sub-periods. Over study period (1982-2009), the values of 

NPP-CV of the Mongolian grasslands generally increased, especially for desert steppe. 

 

 
Fig. 2.6 (a) mean annual NPP (g·C·m-2·year-1) (1982−2009); (b) the interannual variability of NPP in 
Period 1 (1982−1990); (c) the interannual variability of NPP in Period 2 (1991−1999); and (d) the 
interannual variability of NPP in Period 3 (2000−2009). 

 

2.4.3 The Temporal Trends of Grassland NPP 

The temporal trends of grassland NPP vary across spring and summer seasons. Spring NPP 

increased in northern Mongolia, where climate was cold and humid, and decreased in desert 

steppe of Mongolia and eastern Inner Mongolia (Fig. 2.7a). Summer NPP increased in southern 

(d) 

(b) (c)

(a) 
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Inner Mongolia, which is mainly covered by cropland, and decreased in the central part of 

Mongolia (Fig. 2.7b). Annual NPP increased significantly in northern Mongolia and southern 

Inner Mongolia, and decreased in some parts of desert and typical steppes of the Mongolian 

grasslands (Fig. 2.7c). The significant increase of annual NPP in southern Inner Mongolia 

indicated that human land-use activities strongly affected the long-term trend of grassland NPP. 

Over the study period, most of the aggregated temporal trends of NPP for meadow, typical, and 

desert steppes did not change significantly at p < 0.05, except for the significant decreasing trend 

in meadow steppe of Mongolia (Fig. 2.7d). 

 

 
Fig. 2.7 Temporal trends of NPP (g·C·m-2·year-1) (1982−2009) in (a) spring, (b) summer, (c) overall 
growing season, and (d) three grassland types of IMAR and Mongolia; IMAR_M, IMAR_T, IMAR_D, 
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Mongolia_M, Mongolia_T, and Mongolia_D denote meadow, typical, and desert steppes in IMAR and 
Mongolia, respectively. 

 

2.4.4 The Relationships between NPP and Climate 

The interannual variability of NPP (NPP-CV) decreases with increases of the mean 

precipitation per half-annum (MPHA), and the standard deviations of NPP-CV are higher where 

the values of MPHA are between 50 and 200 mm (Fig. 2.8a). Within this precipitation region, 

mainly covered by desert steppe, vegetation is sparsely distributed. The spatial heterogeneity of 

vegetation density in this region is higher than typical and meadow steppes. The values of NPP-

CV increase with the increase of the interannual variability of precipitation (Fig. 2.8b). 

 

 
Fig. 2.8 Relationships between the interannual variability of NPP (NPP-CV) and precipitation: a NPP-CV 
and the mean precipitation per half-annum (MPHA); b NPP-CV and the interannual variability of 
precipitation (precipitation-CV). 

 

The correlations between NPP and temperature were significantly negative in central 

Mongolia and eastern Inner Mongolia; and significantly positive in southern Inner Mongolia and 

western Mongolia (Fig. 2.9a). Southern Inner Mongolia is mainly covered by cropland, and 
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western Mongolia is the mountainous region with cold and wet climate. Our analyses of the 

temporal trends of temperature and precipitation (January-July; 1982-2009) indicated that 

temperature increased significantly in most parts of the Mongolian grasslands, except some parts 

of eastern Mongolia. However, precipitation had insignificant increasing or decreasing trends for 

most parts of the Mongolian grasslands. The significantly increased temperature may be one of 

the reasons for the decreased NPP in some parts of desert and typical steppes, and the increased 

NPP in the wet and cold mountainous region and the cropland region of Inner Mongolia. The 

increased temperature can either decrease water availability for plant growth in the arid and 

semi-arid region or increase plant activity in the cold and wet mountainous region, and in the 

cropland region without water constraints. Compared with the influence of temperature, 

precipitation played a more important role in influencing the interannual variability of NPP. The 

correlations between NPP and precipitation were significantly positive in most parts of the 

Mongolian grasslands, especially in desert and typical steppes (Fig. 2.9b). 

 

 
Fig. 2.9 The correlations between NPP and climate: (a) NPP−temperature and (b) NPP−precipitation 
(January-July; 1982−2009). 

 

2.5 Discussion 

Grassland NPP estimated by the LUE model was also evaluated by comparisons with the 

results of other studies. In this study, we only evaluated the NPP estimates in Inner Mongolia, 

based on the availability of references on NPP estimations of the Mongolian grasslands (Table 

2.3). Our estimated NPP were slightly higher than MODIS NPP, but they were lower than the 

grassland NPP estimated by Ma et al. (2010), which were calculated based on the regression 

(a) (b)
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analyses between field measured biomass and AVHRR GIMMS NDVI data. Moreover, our NPP 

estimates were slightly higher than the grassland NPP estimated by Xing et al. (2010), which 

were also calculated using the LUE model but with different model parameterization processes. 

Despite various uncertainties associated with our NPP estimates, the evaluations of the estimated 

NPP by two empirical methods and by comparisons with other studies indicated that the 

estimated grassland NPP by the LUE model was sufficient for assessing the dynamics of 

grassland NPP on the Mongolian plateau. 

 

Table 2.3 The comparisons of grassland NPP in Inner Mongolia estimated in this study with the results of 
other studies. 

Grassland NPP in Inner Mongolia (g·C·m-2·year-1)   Source 
Meadow Typical Desert Overall Time period References 

330.17 172.63 93.81 198.87 2002-2006 This study 
314.63 169.70 88.52 190.95 2002-2006 MODIS NPP 
593.50 350.60 212.30 385.47 2002-2006 Ma et al. 2010 

N/A N/A N/A 187.91   2000-2005 Xing et al. 2010 

 

Estimating region-scale vegetation productivity over time and across heterogeneous 

landscapes has been an important research focus in recent years. This is driven by the demands 

from both basic (e.g., ecosystem function at broader spatial scales) and applied (e.g., carbon 

credit among countries) communities. The remote-sensing-based LUE model provided a useful 

tool to evaluate the dynamics of grassland productivity on the Mongolian plateau over the past 

three decades. Mean annual NPP and the interannual variability of NPP (NPP-CV) varied across 

ecological gradients characterized by the vegetation types. NPP-CV increased significantly over 

the study period, especially in desert steppe. Despite the rapid increase of livestock population in 

the Mongolian grasslands, especially in Inner Mongolia (Chapter Four), NPP only showed 

significant decrease in meadow steppe of Mongolia. Annual NPP increased in the high latitudes 

with cold and humid climate (i.e., northern and western Mongolia) and in the cropland-intensive 

region (i.e., southern Inner Mongolia). The significantly warming temperature may be one of the 

major reasons for the phenomena. The warming temperature may also be one of the major 

reasons for the decreased NPP in some parts of desert and typical steppes. The temporal trends of 

NPP varied across spring and summer seasons. The interannual variability of NPP was strongly 

affected by the mean precipitation per half-annum (January-July) and the interannual variability 
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of precipitation. The correlation analyses between NPP and climate indicated that NPP dynamics 

was strongly correlated with precipitation than with temperature. 

 

Besides climate variability and change, human land-use activities, such as livestock grazing 

intensity and agricultural and mineral developments, also affected NPP dynamics, especially the 

long-term trend of NPP (Neupert, 1999; Olonbayar, 2009). Our analyses also showed that NPP 

increased significantly in southern Inner Mongolia (i.e., cropland-intensive region). In this study, 

the estimated NPP included the productivity of cropland. This was because we were not able to 

exclude cropland from the study area using the coarse resolution AVHRR and MODIS NDVI 

images. In Inner Mongolia, during 1985-2005, 20.3% (23.9 million hectares) of the total land 

had been reclaimed for grain production (13.14%, 15.5 million hectares), fodder production 

(5.93%, 7.0 million hectares), and other uses (1.19%, 1.4 million hectares; Chapter Four). 

Moreover, census data indicated that the total area of cropland increased about 40% from 1982 to 

2009 (ACBIMAR, 2005, 2010). The quantitative interpretations of NPP dynamics driven by 

climate and socioeconomic variables across ecological zones of Inner Mongolia and Mongolia is 

presented in another piece of our work (Chapter Five). 
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Chapter Three1 

 

Estimating the Quantity and Quality of Grassland Communities across an Ecological 

Gradient of the Inner Mongolian Grasslands with In Situ Hyperspectral Remote Sensing 

 

Abstract 

Grassland degradation, including the deterioration grassland productivity, has been evident in 

Inner Mongolia, China, over the past few decades. Hyperspectral remote sensing has the 

potential for monitoring and measuring ecological variables of grassland ecosystems that have 

been difficult to measure using multispectral sensors. In this study, we analyzed the spectral 

reflectance of the representative grassland communities and explored the relationships between 

hyperspectral indices and aboveground biomass of grassland communities across an ecological 

gradient of the Inner Mongolian grasslands, based on field samples across a large geographic 

area. The results showed that the ecological variables of grassland communities generally 

decreased from meadow to typical and desert steppes. The spectral reflectance curves of different 

types of grassland ecosystems were generally differentiable. In the three sites with fenced and 

grazed plot pairs, the fenced plots had lower reflectance in the visible bands and higher 

reflectance in the near infrared bands. The grazed plots showed a shift of the red-edge inflection 

points toward shorter wavelengths (i.e., “blue-shift”). The predictive power of vegetation indices 

(VI) for aboveground biomass generally decreased from desert to typical and meadow steppes. 

All narrowband VI tended to saturate at the study sites with high vegetation densities. The REIP 

produced better prediction accuracies than VI in meadow and typical steppes, but it was not a 

good predictor of aboveground biomass in desert steppe. 

 

Keywords: In situ hyperspectral remote sensing; grassland communities; canopy reflectance 

curves; hyperspectral indices; ecological variables; Inner Mongolian grasslands 

 
                                                            
1Wang, J., Brown, D. G., Bai, Y., and Xie, Y. Estimating the quantity and quality of grassland 
communities across an ecological gradient of the Inner Mongolian grasslands with In Situ hyperspectral 
remote sensing. Manuscript submitted for review. 
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3.1 Introduction 

Grasslands are the dominant ecosystem types on the Mongolian plateau, including the Inner 

Mongolia Autonomous Region (IMAR), China. In IMAR, the average grassland productivity 

decreased from 1871 to 900 kg/ha over the past 50 years (1961−2010), and 90% of grasslands 

are in various stages of degradation (Chapter Four). Grassland degradation has significant 

impacts on herder livelihoods, carbon sequestration, and biodiversity conservation. Sustainable 

governance of the Inner Mongolian grassland resources requires a thorough understanding of 

grassland productivity and the up-to-date information about spatial distributions of grassland 

communities.  

 

The main advantage of remote sensing technology in mapping grassland quantity and quality, 

compared with traditional large-scale ecological field approaches, are that it can repeatedly 

monitor large-scale grassland ecosystems at relatively low cost. Accurate spatial monitoring and 

assessment of terrestrial vegetation are increasingly critical for ecological conservation and 

restoration purposes, e.g., dealing with grassland degradation. Satellite images derived from 

broadband sensors have been used for studying biophysical properties of vegetation for decades. 

A major limitation of multispectral image data is their coarse spectral resolutions, which could 

mask the detailed reflectance features of vegetation canopies (Thenkabail et al., 2000). In 

addition, our previous work of mapping grassland types and their qualities in the Inner 

Mongolian grasslands was mainly based on visual interpretations of Landsat images, which was 

tedious and could introduce errors because interpreters were with different field experience and 

image interpretation skills. Because of its greater spectral dimensionality, hyperspectral data 

provide more detailed information on structural, biochemical, and biophysical properties of 

vegetation cover (Blackburn, 1998; Cho, 2007; Darvishzadeh et al., 2008; Hansen and 

Schjoerring, 2003; Treitz and Howarth, 1998). Therefore, hyperspectral remote sensing provides 

the potential for accurately and efficiently mapping grassland types and their degradation status 

in the Inner Mongolian grasslands. 

 

There are essentially two approaches to estimating aboveground biomass of vegetation using 

hyperspectral data: statistical models (Cho, 2007; Darvishzadeh, 2008; Todd, 1988) and radiative 
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transfer models (Jacquemoud et al., 1995, 2009). In this chapter, we focused on using empirical-

statistical methods for predicting aboveground biomass of grassland communities in IMAR. For 

this type of methods, a number of indices derived from spectral reflectance curves, such as 

spectral vegetation indices (VI) and red-edge inflection points (REIP), have been developed and 

used for predicting ecological variables of vegetation. VI are usually calculated from the linear 

combinations of reflectance in the red and near infrared (NIR) portions of the spectrum, and they 

exploit the contrast between low reflectance in the red band due to chlorophyll absorption and 

high reflectance in the NIR band related to multiple scattering effects. The frequently used VI 

include simple spectral ratio (SR) (Jordan, 1969), normalized difference vegetation index (NDVI) 

(Rouse et al., 1974), soil adjusted vegetation index (SAVI) (Huete, 1988), modified soil adjusted 

vegetation index (MSAVI) (Qi et al., 1994), and triangle vegetation index (TVI) (Broge and 

Leblane, 2000). The major limitation of using VI to study ecological variables of vegetation is 

that their values approach a saturation level above a certain level of biomass density (Gao et al., 

2000; Hurcom and Harrison, 1998; Tucker, 1977). Hyperspectral remote sensing with hundreds 

of narrowbands provides an opportunity to develop new VI and refine conventional approaches 

for studying ecological variables of vegetation. A typical approach to identify the optimal VI is 

to calculate all possible linear combinations of two narrowbands and identify a band combination 

that has the highest fitness with ecological variables (Thenkabail et al., 2000; Thenkabail et al., 

2004). 

 

Besides VI, the REIP are the other type of frequently used hyperspectral indices for studying 

ecological variables of vegetation. The red-edge of the reflectance curve for green vegetation 

denotes a region of transition from the strong chlorophyll absorption in the red bands to the 

strong NIR reflectance. The REIP is usually found at wavelengths between 680 nm and 740 nm 

(i.e., around 720 nm), and it has been used to estimate vegetation nutritional status, based on the 

relationship between chlorophyll concentration and plant productivity (Cho, 2007). Several 

methods have been developed to calculate the REIP, such as maximum first-order derivative of 

spectra (Dawson and Curran, 1998), four-point linear interpolation (Guyot and Baret, 1998), the 

inverted Gaussian method (Bonham-Carter, 1988), polynomial curve fitting (Pu et al., 2003), and 

linear extrapolation method (Cho and Skidmore, 2006). 
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Plant communities of grassland ecosystems are usually composed by diverse sets of plant 

species. The heterogeneous canopies of plant communities create a challenge for using remote 

sensing data to estimate grassland quantity and quality. Hyperspectral remote sensing, with 

hundreds of narrow spectral bands, has the potential to improve our study of heterogeneous 

grassland communities. The potential of hyperspectral remote sensing for estimating the quantity 

and quality of grassland communities has been evaluated at laboratory, field, and airborne 

imaging scales (Adam and Mutanga, 2009; Cho, 2007; Darvishzadeh, 2008; Mutanga, 2004; 

Schmidt and Skidmore, 2001; Shen et al., 2008). Although VI and REIP are useful for measuring 

grasslands, grasslands with different biophysical characteristics (e.g., species composition) may 

produce similar index values if they have similar biomass and canopy cover percentages. 

Therefore, investigating spectral reflectance characteristics of various grassland communities is 

also important for mapping grassland types and their qualities. Besides the hyperspectral studies 

of grassland ecosystems in Europe (Cho, 2007; Darvishzadeh, 2008) and Africa (Adam and 

Mutanga, 2009; Mutanga, 2004; Schmidt and Skidmore, 2001), hyperspectral remote sensing 

also has been used for investigating spectral reflectance characteristics of grassland communities 

and predicting grassland aboveground biomass in the Inner Mongolian grasslands (Gao et al., 

2012; Ren et al., 2011; Yamano et al., 2003). However, the above studies were implemented in 

only one of the major types of grassland ecosystems (i.e., meadow, typical, and desert steppes) of 

the Inner Mongolian grasslands. A comparative study of the spectral reflectance characteristics 

of grassland communities across different types of grassland ecosystems in the Inner Mongolian 

grasslands is still missing. 

 

In this study, we used in situ hyperspectral remote sensing to estimate the quantity and quality 

of the representative grassland communities across an ecological gradient of the Inner Mongolian 

grasslands. We aimed to investigate (1) the spectral reflectance characteristics of the 

representative grassland communities across different types of grassland communities; (2) the 

differences in the spectral reflectance of the grazed and fenced grassland communities; (3) the 

performance of using multiple hyperspectral indices for predicting aboveground biomass of the 

representative grassland communities. We expected that the spectral library of the representative 

grassland communities built through this study and the explorations between spectral 

characteristics and ecological variables of grassland communities across the major types of 
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grassland ecosystems could be used to provide the foundations for future large-scale efforts of 

monitoring grassland communities in Inner Mongolia using either airborne or space-borne 

imaging spectroradiometers. Following this introduction, in Section 3.2, we briefly introduce the 

Inner Mongolian grasslands and field data collection procedures and the methods used for 

processing field data and linking hyperspectral and ecological data. The results and discussion 

are presented in Sections 3.4 and 3.5. Finally, we summarize the major findings of this work. 

 

3.2 Study Area and Data 

3.2.1 Study Area 

The study area is located in the Inner Mongolia Autonomous Region (IMAR), China, which is 

part of the Mongolian plateau (Fig. 3.1). Grasslands are the dominant ecosystem types in IMAR, 

covering about 66% (0.78 million km2) of the total territory (Angerer et al., 2008; Zhang, 1992). 

Vegetation types vary from forests, meadow steppe, typical steppe, and desert steppe to desert 

along an ecological gradient from east to west of IMAR. In order to investigate spectral and 

ecological characteristics of the representative grassland communities across the Inner 

Mongolian grasslands, field sampling sites were selected along an ecological gradient (e.g., from 

wet to dry areas) and covering meadow, typical, and desert steppes (Fig. 3.1). 

 



41 
 

 
Fig. 3.1 Field sampling sites across the ecological gradient of the Inner Mongolian grasslands. The 
vegetation map of Inner Mongolia, China, was provided by the Institute of Botany, China. It was made in 
the 1990s with an original scale of 1:1,000,000. 

 

3.2.2 Field Data Collection 

In situ canopy spectral reflectance of the representative grassland communities across an 

ecological gradient of the Inner Mongolian grasslands were collected using Analytical Spectral 

Devices (ASD) FieldSpec 3 spectrometer, which has a wavelength ranging from 350 to 2500 nm 

with a sampling interval of 1.4 nm for the spectral region 350−1000 nm, 2 nm for the spectral 

region 1000−2500 nm, and a spectral resolution of 3−10 nm. The sampled spectra were then 

interpolated by the ASD software to produce readings at every 1 nm (ASD Inc., Boulder, 

Colorado, USA). The field campaign was carried out in August of 2010 (i.e., from August 1st to 

August 22th) using stratified random sampling with clustering. The study area was first stratified 

into meadow, typical, and desert steppes using the vegetation map of IMAR (Fig. 3.1). Then, 

seven field sites in meadow steppe; three sites in typical steppe; and six sites in desert steppe 

were selected. The field site selection was mainly based on the representativeness of local 

grassland communities, but the travel distance was also a consideration. For most of these 

sampling sites, three replicate plots were selected. The plot size was 30 m × 30 m, and the plot 

size was set to resemble the pixel size of EO-Hyperion images. The replicated plots of each site 
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were selected to account for the spatial variability of local biophysical environment. In meadow 

steppe, we had three sites with grazed and fenced (i.e., permanent exclosures) plot pairs. For 

these three sites, six plots were sampled: three plots were in the exclosures; and three plots were 

outside of the exclosures. In total, we sampled 57 field plots across meadow, typical, and desert 

steppes. 

 

In order to account for the spatial variability of grassland communities in one field plot, 16 

spectral samples and nine ecological samples were taken along the diagonals of each plot. The 

spectral and ecological subplots within each plot were set with equal distances. The spectral 

samples were taken between 10:00 am−14:00 pm under sunny and cloudless conditions. The 

field of view (FOV) of the sensor was 25°. Scans were taken from a height of 1.5 m looking 

towards the nadir so that the field of view at the ground was 1.4 m in diameter. Care was taken to 

avoid including shadows or equipment within the field of view. Each of 16 measurements in one 

plot was sampled ten times to account for random measurement errors. The sensor was calibrated 

with white reference Spectralon panel after every eight measurements to offset any changes in 

solar illuminations and weather conditions. The radiances recorded by the sensor were then 

converted to reflectance by the software package ViewSpecPro (ASD Inc., Boulder, Colorado, 

USA). For each plot, ecological samples of grassland communities were taken right after spectral 

samplings. The size of each subplot was 1 m × 1 m. The aboveground biomass (AGB) was 

harvested using the traditional agronomic methods. The standing senesced biomass and litter 

were excluded from the measurement of AGB, and only live biomass was collected. Moreover, 

canopy height (cm), canopy cover percentage (%), and the number of plant species were also 

measured at each subplot. GPS was used to locate the sampled plots in the field. 

 

3.3 Methods 

3.3.1 Preprocessing In Situ Hyperspectral Data 

The analyses of spectral reflectance characteristics of grassland communities and the linear 

relationships between spectral and ecological measurements were conducted at plot level. 

Measurement errors in the field spectra, identified as any individual measurement among the ten 



43 
 

repeated measurements that deviated highly from the means, were removed from calculating the 

mean values of the spectral reflectance. Then, all measurements in one plot were averaged to 

represent the spectral reflectance for that plot. In this step, any of the 16 samples in one field plot 

that had more than five of their individual measurements identified as errors were removed from 

the averaging process. In order to reduce the background effects from soil, we normalized all of 

the averaged field spectra by dividing by the mean spectral reflectance for each plot (Gong et al., 

2001). The normalized spectra were then smoothed using the Savitsky-Golay least-squares 

method (Tsai and Philpot, 1998) to reduce sensor noise. In this study, we only used the visible 

and NIR portions (350−900 nm) of the field spectra. Other spectral bands were removed, and this 

was mainly due to the noises caused by atmospheric water absorption. In addition to spectral 

reflectance curves, we also used spectral derivatives to characterize the key spectral features of 

the investigated grassland communities. Considering the higher order (i.e., second or higher) 

spectral derivative processing is very sensitive to data noise (Pu, 2012), only the first-order 

derivative analysis was conducted in this study. Grassland AGB, canopy height, canopy cover 

percentage, and the number of plant species in each plot was averaged from the nine subplots. 

 

3.3.2 Vegetation Indices, Red-Edge Inflection Points, and Aboveground Biomass Prediction 

In this study, we selected four frequently used VI (i.e., SR, NDVI, SAVI, and TVI) to predict 

AGB of grassland communities in meadow, typical, and desert steppes of the Inner Mongolian 

grasslands. Our field sites were selected across a large geographic area, which were with 

different percentages of vegetation cover. Therefore, SAVI was used since this index can 

account for soil background effects. However, due to lack of field data to calibrate the L 

parameter in SAVI across the field sites with different biophysical conditions. L was set as 0.5 

because this value can be used for a wide range of vegetation conditions (Huete, 1988). TVI was 

created to describe the radiative energy absorbed by the pigments as a function of the relative 

difference between red and near-infrared reflectance in conjunction with the magnitude of 

reflectance in the green region (Broge and Leblane, 2000). TVI was calculated as the area of the 

triangle defined by the green peak, the chlorophyll absorption minimum (i.e. red valley), and the 

NIR shoulder in the spectral space. 
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/NIR redSR R R                                                                                                                                   (3-1) 

( ) / ( )NIR red NIR redNDVI R R R R                                                                                                              (3-2) 

( )(1 ) / ( )NIR red NIR redSAVI R R L R R L     ,  0.5L                                                                                     (3-3) 

750 550 670 550[120 ( ) 200 ( )] 0.5TVI R R R R                                                                                           (3-4) 

where 
550R , 

670R , and 
750R  are the spectral reflectance at the wavelengths of 550 nm (green), 670 

nm (red), and 750 nm (NIR), respectively. The constants 0.5, 120, and 200 in Equation 3-4 are 

empirical values. 

 

In order to determine the optimal red and NIR band combinations of VI (i.e., SR, NDVI, and 

SAVI) for predicting AGB, we calculated all two-band combinations between red (630−690 nm) 

and NIR (760−900 nm) portions of the reflectance spectrum. we ran linear regression between 

narrowband VI and AGB to identify the spectral bands that were more sensitive to AGB. The 

narrowband combinations with the highest values of the coefficient of determination (R2) were 

selected for further analyses. Considering the spatial variations of biophysical conditions across 

meadow, typical, and desert steppes, we ran linear regression models for each of these types of 

grassland ecosystems and explored the spatial variability of the linear relationships. 

 

In this study, we explored whether the REIP of grassland communities with livestock grazing 

showed the “blue-shift” phenomena, compared with the REIP of grassland communities with 

permanent exclosures. “Blue-shift” (i.e., a shift of the REIP towards shorter wavelengths) and 

“red-shift” (i.e., a shift towards longer wavelengths) are related to plant growth conditions. 

“Blue-shift” is associated with a decrease in green vegetation density, and “red-shift” is 

associated with an increase in chlorophyll concentration (Mutanga, 2004). Moreover, we also 

used the REIP as another set of predictors for predicting AGB of grassland communities. We 

applied five frequently used methods for calculating the REIP, including maximum first-order 

derivative, four-point linear interpolation, the inverted Gaussian method, polynomial curve 

fitting, and linear extrapolation. 
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The maximum first-order derivative of reflectance defines the REIP as the wavelength where 

the first-order derivative of the spectral reflectance curve reaches its maximum value. The first-

order derivative of spectral reflectance calculates the slope values from the spectral reflectance 

(Dawson and Curran, 1998) 

( ) ( 1) ( )( ) /i j jFDiff R R                                                                                                                     (3-5) 

max( )FDiff FDiffREIP                                                                                                                              (3-6) 

where 
( )iFDiff  is the first-order derivative at a wavelength i  midpoint between wavebands j  and 

1j  . 
( )jR

 and 
( 1)jR 

 are reflectance at j  and 1j   wavebands, respectively; 
 is the difference in 

wavelengths between j  and 1j  . 

 

The four-point linear interpolation method assumes that the spectral reflectance at the red-

edge can be simplified to a straight line centered at a midpoint between the reflectance in the 

NIR shoulder (i.e., around 780 nm) and the minimum reflectance in the red bands (i.e., around 

670 nm). The reflectance value is first estimated at the inflection point (Equation 3-7). Then, a 

linear interpolation is applied for the spectral reflectance at 700 nm and 740 nm for estimating 

the wavelength corresponding to the estimated reflectance at the inflection point (Equation 3-8) 

(Guyot and Baret, 1998) 

670 780( ) / 2red edgeR R R                                                                                                                         (3-7) 

700 740 700700 40 ( ) / ( )red edgeREIP R R R R                                                                                                (3-8) 

where the constants 700 and 40 result from interpolation between 700 nm and 740 nm intervals, 

and 
670R , 

700R , 
740R , and 

780R are the reflectance values at 670 nm, 700 nm, 740 nm, and 780 nm, 

respectively. 

 

The inverted Gaussian method explains the variations in reflectance as a function of 

wavelength ( ) at the REIP as (Bonham-Carter, 1988) 

2 2
0( ) exp( ( ) / 2 )s s oR R R R                                                                                                          (3-9) 

0REIP                                                                                                                                   (3-10) 
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where 
sR  is the maximum shoulder reflectance, 

oR and 
0  are the minimum spectral reflectance 

and corresponding wavelengths, and   is the variance of the Gaussian function. 

 

For the polynomial curve fitting method, a red-edge reflectance curve between the 

wavelengths corresponding to the minimum reflectance in red (i.e., red valley) and the maximum 

NIR shoulder reflectance are fitted with a fifth-order polynomial equation as (Pu et al., 2003)  

5

0
1

i
i

i

R a a 


                                                                                                                             (3-11) 

where   represents the wavebands in the red-edge, 
0a  and 

ia  are the regression coefficients. The 

REIP is determined from the maximum first-order derivative spectrum. The first-order derivative 

was calculated using a first difference transformation of the reflectance obtained from the 

polynomial fit. 

 

The linear extrapolation method is based on the linear extrapolation of two straight lines 

through two points on the far-red (680−700 nm) and two points on the NIR (725−760 nm) flank 

of the first-order derivative reflectance spectrum of the red-edge region (Cho and Skidmore, 

2006). The REIP is defined by the wavelength value at the intersection of the straight lines 

(Equation 3-14) 

Far-red line: 
1 1 1FDR m c                                                                                                           (3-12) 

NIR line: 
2 2 2FDR m c                                                                                                               (3-13) 

1 2 1 2( ) / ( )REIP c c m m                                                                                                                  (3-14) 

where 
1FDR  and 

2FDR  are the first-order derivatives of reflectance, 
1m  and 

2m  are the slopes, 
1c  

and 
2c  are the intercepts, and   is the wavelength. 

 

The independent data test and the cross-validation method are the two frequently used 

methods for validating regressions between hyperspectral indices and ecological variables of 

vegetation. Studies have demonstrated that the results of the two methods in terms of R2 and root 

mean square error (RMSE) were similar (Darvishzadeh et al., 2008; Selige et al., 2006). In this 
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study, due to the limited number of field samplings relative to the large geographic area of the 

Inner Mongolian grasslands, we applied the cross-validation method, which is also called the 

leave-one-out method, to validate all of the linear regression models. In cross-validations, each 

sample was iteratively taken out and predicted by the remaining samples. As the predicted 

samples were not the same as the samples used to build the regression models, the cross-

validated root mean square error (RMSECV) was selected as the accuracy indicator of the 

regression models in predicting unknown samples. Cross-validation can detect outliers and 

provide nearly unbiased estimations of the prediction error (Schlerf et al., 2005). 

 

3.4 Results 

3.4.1 Ecological Variables of the Investigated Plant Communities 

The dominant plant species of the investigated grassland communities in meadow, typical, 

and desert steppes of the Inner Mongolian grasslands are shown in Table 3.1. Stipa baicalensis, 

Stipa krylovii, and Carex pediformis were the dominant plant species in meadow steppe; Leymus 

chinensis and Stipa grandis were the dominant plant species in typical steppe; Artemisia frigid, 

Salsola collinsa, Stipa klemenzii, and Allium polyrhizum were the dominant plant species in 

desert steppe. For the three sites with permanent exclosures, the dominant plant species varied 

between the fenced and grazed plots. This indicated that livestock grazing affected species 

compositions of the grassland communities. The descriptive statistics of the ecological variables 

for the investigated grassland communities are shown in Table 3.2. Overall, AGB, canopy cover 

percentage, canopy height, and species diversity decreased in values from meadow to typical and 

desert steppes. In meadow steppe, the fenced plots had higher AGB, canopy cover percentage, 

canopy height, and species diversity than the grazed plots. For these three sites, AGB and canopy 

height decreased more rapidly than canopy cover percentage and species diversity from the 

fenced to grazed plots. In this study, we only focused on predicting AGB of grassland 

communities using hyperspectral indices. However, other four ecological variables also could 

affect the spectral reflectance of the investigated grassland communities. The results of linear 

regression analyses between AGB and the other four ecological variables showed that AGB was 
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a good predictor of canopy height and canopy cover percentage (R2 > 0.7, p < 0.01), but it was 

not a good predictor of species diversity (R2 < 0.3, p < 0.01). 

Table 3.1 Dominant plant species of the investigated plant communities. 
Grassland type Field site Dominant plant species 
Meadow 
steppe 

1 Carex pediformis+Filifolium sibiricum 
2 Carex pediformis 
3 Koeleria cristata+Stipa krylovii+Festuca ovina 
4 Filifolium sibiricum+Bupleurum+Stipa baicalensis 
5_Fenced Stipa baicalensis+Filifolium sibiricum+Leymus chinensis 
5_Grazed Stipa baicalensis+Leymus chinensis+Carex pediformis 
6_Fenced Carex pediformis+Leymus chinensis 
6_Grazed Carex pediformis+Agropyron cristatum 
7_Fenced Leymus chinensis 
7_Grazed Taraxacum mongolicum+Plantago depressa+Carex duriuscula 

Typical 
steppe 

8 Leymus chinensis+Stipa grandis+Anemarrhena asphodeloides 
9 Stipa grandis  
10 Stipa grandis  

Desert 
steppe 

11 Carex duriuscula+Kochia prostrata+Artemisia frigida 
12 Allium polyrhizum+Ceratoides latens+Salsola collinsa 
13 Stipa klemenzii 
14 Cleistogenes songorica+Stipa breviflora+Allium polyrhizum 
15 Salsola collinsa+Stipa krylovii 
16 Allium polyrhizum+Stipa klemenzii 

 

Table 3.2 Descriptive statistics of the ecological parameters for the investigated plant communities. 

Grassland type Field site 
AGB a 
(g/m2)  

CCP a 
(%)  

CH a 
(cm)  

NPS a 
(n) 

Mean SD Mean SD Mean SD Mean SD 
Meadow 1 656.79 76.81  63.04 11.89  35.56 3.95  14.04 3.17 
steppe 2 634.39 175.60  51.85 15.28  32.41 5.34  17.04 0.61 
 3 547.63 137.86  63.33 6.19  26.67 3.38  16.63 0.94 
 4 481.06 38.31  44.07 1.70  20.22 0.29  14.81 2.68 
 5_Fenced 492.97 42.26  40.00 6.96  35.30 3.17  11.96 2.43 
 5_Grazed 361.31 35.62  38.92 11.28  21.44 4.73  11.51 3.76 
 6_Fenced 419.42 115.55  39.26 4.98  30.85 4.33  15.03 2.07 
 6_Grazed 295.59 48.44  31.30 2.80  19.30 2.12  9.67 1.37 
 7_Fenced 822.17 63.07  66.48 13.17  44.63 3.53  8.85 1.54 
 7_Grazed 258.89 44.94  50.93 12.84  14.89 1.09  8.44 1.20 
Typical 8 430.32 38.70  44.44 3.38  23.33 0.96  6.11 0.44 
steppe 9 418.58 21.90  43.89 2.78  26.85 0.85  9.22 0.19 
 10 390.01 83.13  46.67 11.48  30.19 2.57  7.67 0.40 
Desert 11 143.53 9.74  25.56 2.55  12.85 1.98  7.48 0.74 
steppe 12 100.13 23.75  23.15 3.78  15.37 0.64  4.78 0.68 
 13 106.71 13.13  27.22 2.89  19.44 0.56  5.63 0.71 
 14 168.26 27.53  29.07 3.35  13.15 1.16  7.81 0.45 
 15 430.58 5.29  40.93 2.31  14.07 1.77  8.00 0.62 
  16 167.90 52.39  32.22 10.18  11.30 0.85  7.93 1.12 
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a CCP means canopy cover percentage; CH means canopy height; NPS means number of plant species; 
and SD means standard deviations of measurements from three subplots at each site. 

 

3.4.2 Canopy Reflectance Curves of the Investigated Plant Communities 

Given space limitations, we only showed the spectral reflectance curves and their first-order 

derivatives for one of the three plots at each site (Fig. 3.2). The spectral reflectance curves of the 

investigated grassland communities showed clear differences across meadow, typical, and desert 

steppes. The NIR reflectance generally decreased from meadow to typical and desert steppes. 

The green peaks and red valleys were distinctive in meadow and typical steppes and less 

differentiable in desert steppe. The spectral reflectance curves of grassland communities in desert 

steppe were similar to the reflectance curve of bared soil. The field sampling sites in desert 

steppe were with low canopy cover percentages (Table 3.2), vegetation-soil spectral mixing is 

still a challenge in desert steppe. The reflectance curves of grassland communities at site 15 were 

the outliers in desert steppe (Fig. 3.2e). At this site, the NIR reflectance of grassland 

communities was higher than the other field sites, and the red valley was also distinctive. This 

site also had the highest values of ecological variables among the six sites of desert steppe (Table 

3.2). The first-order derivatives for all of the grassland communities had two peaks: one was in 

the green bands, and the other was in the red-edge, and the maximum values of the first-order 

derivatives were distinctive in the red-edge peaks (Fig. 3.2b, d, and f). Overall, the maximum 

values of the first-order derivatives generally decreased from meadow to typical and desert 

steppes. This was consistent with the distinctiveness of red-edges of the spectral reflectance 

curves. 
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                                         (a)                                                                                                 (b)      

                   
                                         (c)                                                                                                (d)      

                  
                                         (e)                                                                                                (f)      
Fig. 3.2 The normalized canopy reflectance curves and their first-order derivatives of the investigated 
grassland communities: (a), (c), and (e) are the normalized reflectance curves in meadow, typical, and 
desert steppes; (b), (d), and (f) are the first-order derivatives of (a), (c), and (e). In each plot, there were 
measurements from at least 12 subplots (120 measurements) used for spectral averaging. In order to make 
the reflectance curves more readable, standard deviation bars were not added on the plots. 
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Investigating whether grassland communities under different human disturbance can be 

spectrally differentiated is important for monitoring and mapping grassland degradation status 

under human disturbance. Similar to the above analyses, we analyzed the spectral reflectance 

curves for the three sites with fenced and grazed plot pairs. Given space limitations, we only 

showed the reflectance curves and their first-order derivatives for one of the three plots at each 

study site (Fig. 3.3). The sampled grassland communities of the fenced and grazed plots can be 

differentiated by their normalized spectral reflectance curves and their first-order derivatives. 

Compared with the grazed plots, the fenced plots had higher values of normalized reflectance in 

the NIR wavebands and lower values of normalized reflectance in the visible wavebands. The 

first-order derivatives of spectral reflectance were distinctive in the red-edge (Fig. 3.3b, d, and f). 

Livestock grazing affected the spectral reflectance characteristics of grassland communities. 

However, due to lack of detailed data about livestock grazing intensity for the grazed plots, we 

were not able to explain the variations of the difference in the normalized reflectance between 

the fenced and grazed plots across the three study sites. The REIP for the plots in the field sites 

with grazed and fenced plot pairs, calculated by the five methods, are shown in Table 3.3. The 

REIP in the fenced plots were generally higher than the REIP of the grazed plots. This was the so 

called “blue-shift” due to livestock grazing. For some fenced and grazed plot pairs, the REIP 

calculated by the maximum first-order derivative method and the four-point linear interpolation 

method were the same or counterintuitive (i.e., the REIP of the grazed plots were higher).  
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                                        (a)                                                                                                   (b)    

                         
                                        (c)                                                                                                  (d)      

                          
                                         (e)                                                                                                  (f)      
Fig. 3.3 The normalized canopy reflectance curves and their first-order derivatives of the field sites with 
fenced and grazed plot pairs: (a), (c), and (e) are the normalized reflectance curves; (b), (d), and (f) are the 
first-order derivatives of (a), (c), and (e). In each plot, there were measurements from at least 12 subplots 
(120 measurements) used for spectral averaging. In order to make the reflectance curves more readable, 
standard deviation bars were not added on the plots. 
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Table 3.3 The REIP of reflectance for the sites in meadow steppe with fenced and grazed plot pairs. 

Field site Field plot 
MFD a   LFPI a   IGM a   PCF a   LEM a 

Mean SD   Mean SD   Mean SD   Mean SD   Mean SD 
5 Fenced.1 713 0.59  718 0.60  717 0.58  718 0.48  718 0.53 

Grazed.1 710 0.61  716 0.70  715 0.65  713 0.50  715 0.61 
Fenced.2 714 0.56  717 0.57  716 0.57  716 0.59  717 0.62 
Grazed.2 710 0.55  712 0.42  710 0.60  711 0.63  713 0.38 
Fenced.3 708 0.59  718 0.56  715 0.48  717 0.70  716 0.72 
Grazed.3 717 0.52  716 0.39  711 0.54  716 0.54  712 0.60 

6 Fenced.1 714 0.74  715 0.77  714 0.69  714 0.73  713 0.68 
Grazed.1 710 0.67  713 0.52  705 0.47  709 0.60  708 0.53 
Fenced.2 707 0.55  714 0.35  713 0.51  712 0.57  714 0.54 
Grazed.2 710 0.50  712 0.33  704 0.66  707 0.49  708 0.47 
Fenced.3 712 0.53  715 0.39  713 0.43  714 0.55  715 0.56 
Grazed.3 708 0.42  711 0.28  708 0.21  711 0.29  709 0.31 

7 Fenced.1 709 0.56  718 0.44  718 0.69  718 0.64  718 0.63 

Grazed.1 715 1.03  718 0.82  715 0.88  715 0.93  716 0.85 

Fenced.2 720 0.62  719 0.30  717 0.73  719 0.75  717 0.77 

Grazed.2 719 0.61  717 0.47  709 0.66  715 0.65  714 0.56 

Fenced.3 717 0.55  717 0.58  716 0.62  716 0.62  716 0.63 

Grazed.3 715 0.53  718 0.61  714 0.56  713 0.40  714 0.38 
a MFD means maximum first-order derivative; LFPI means linear four-point interpolation; IGM means 
the inverted Gaussian method; PCF means polynomial curve fitting; LEM means the linear extrapolation 
method; and SD means standard deviation of measurements from at least 12 subplots in each plot. 

 

3.4.3 Optimal Narrowband Vegetation Indices 

The coefficient of determination (R2) for the relationships between AGB and three 

narrowband VI (i.e., SR, NDVI, and SAVI) computed from all two band combinations between 

red (630−690 nm) and NIR (760−900 nm) reflectance is shown in Fig. 3.4. The meeting point of 

each pair of wavelengths in the plots corresponds to the R2 value between AGB and VI 

calculated from the reflectance values in those two wavebands. The plots showed that the 

relationships between AGB and VI varied a function of two-band combinations between the red 

and NIR reflectance. In meadow steppe, the R2 values produced by NDVI and SAVI showed 

similar correlation patterns (Fig. 3.4d and g). NDVI produced higher R2 values than SAVI in 

typical and desert steppes. SR produced the lowest R2 values in typical steppe and the highest R2 

values in desert steppe (Fig. 3.4b and c). Overall, the R2 values decreased from desert to typical 

and meadow steppes. Moreover, all of the three VI did not show good predictive power for AGB 

in meadow steppe (R2 < 0.2, p < 0.05) and typical steppe (R2 < 0.3, p < 0.05). The grassland 
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communities in meadow and typical steppes had higher values of AGB and canopy cover 

percentage than the grassland communities in desert steppe (Table 3.2). The narrowband VI used 

this study still had the “saturation problem” in predicting AGB for the grassland communities 

with high vegetation densities. The linear relationships between VI and AGB were dependent on 

the types of grassland ecosystems and un-suitable for application to large geographic areas. 

 

 
.
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Fig. 3.4 The correlation plots representing the coefficient of determination (R2) of the linear relationships 
between VI and AGB, calculated from all possible combinations spread across red and NIR bands: (a), (b), 
and (c) are the R2 for the regressions between SR and AGB in meadow, typical, and desert steppes, 
respectively; (d), (e), and (f) are the R2 values for the regressions between NDVI and AGB in meadow, 
typical, and desert steppes, respectively; and (g), (h), and (i) are the R2 for the regressions between SAVI 
and AGB in meadow, typical, and desert steppes, respectively. 

 

Narrowband combinations that formed the optimal VI for the three types of grassland 

ecosystems were determined based on the R2 values in the plots (Fig. 3.4). The optimal red and 

NIR band combinations for the three VI are shown in Table 3.4. The optimal narrowbands varied 

across meadow, typical, and desert steppes. The optimal red wavelengths were generally 

decreasing from desert to typical and meadow steppes. The optimal NIR wavelengths were the 

longest in desert steppe, but they were similar in meadow and typical steppes. The linear 

relationships between VI and AGB were statistically significant at p < 0.05, p < 0.05, and p < 

0.01 levels for meadow, typical, and desert steppes, respectively. Together with the REIP and 

TVI, the three optimal VI were used for predicting AGB of grassland communities for the three 

types of grassland ecosystems. 

 

Table 3.4 The optimal red and NIR band combinations for predicting AGB in meadow, typical, and 
desert steppes. 
Grassland type VI Red band  (nm) NIR band (nm) R2 p 
Meadow steppe SR 675 760 0.16 < 0.05 

NDVI 677 760 0.16 < 0.05 
SAVI 677 761 0.16 < 0.05 

Typical steppe SR 684 760 0.24 < 0.05 
NDVI 683 761 0.26 < 0.05 
SAVI 684 760 0.25 < 0.05 

Desert steppe SR 687 781 0.84 < 0.01 
NDVI 687 780 0.77 < 0.01 
SAVI 688 780 0.76 < 0.01 

 

3.4.4 Linear Relationships between Hyperspectral Indices and Aboveground Biomass 

The performances of linear regression models for predicting AGB using multiple 

hyperspectral indices are presented in Table 3.5. By stratifying the field spectral and ecological 

data according to the three types of grassland ecosystems, it was observed that the strength of the 

linear relationships between hyperspectral predicators and AGB varied across the three types of 



57 
 

grassland ecosystems. The linear regression models with higher R2 values generally had lower 

values of the cross-validated root mean square errors (RMSECV). The R2 values for the linear 

relationships between VI and AGB decreased from desert to typical and meadow steppes. TVI 

had the lowest prediction accuracies in meadow and desert steppes. SR had the best prediction 

accuracies in desert steppe. However, compared with optimal NDVI and SAVI, it had lower 

prediction accuracies in meadow and typical steppes. SAVI had lower prediction accuracies in 

typical and desert steppes than NDVI. Compared with VI, the REIP had better prediction 

accuracies in meadow and typical steppes, but it had lower prediction accuracies in desert steppe. 

The REIP estimated by the maximum first-order derivative method and the four-point linear 

interpolation had the lowest performance among the linear regressions using the REIP as the 

predictor, and the linear regression models based on the REIP extracted by the two methods were 

also not statistically significant in desert steppe. 

 

Table 3.5 The results of linear regressions between hyperspectral indices and AGB in meadow, typical, 
and desert steppes. 

Hyperspectral  
Indices 

Meadow steppe Typical steppe Desert steppe 

R2 p 
RMSECV a  

(g/m2)  
R2 p 

RMSECV a  
(g/m2)  

R2 p 
RMSECV a  

(g/m2) 
VI 
SR 0.16 < 0.05 96.01 0.24 < 0.05 69.16 0.84 < 0.01 22.33 
NDVI 0.16 < 0.05 95.20 0.26 < 0.05 66.33 0.77 < 0.01 24.49 
SAVI 0.16 < 0.05 95.66 0.25 < 0.05 67.98 0.76 < 0.01 25.70 
TVI 0.15 < 0.05 97.82 0.25 < 0.05 67.50 0.73 < 0.01 23.62 

REIP 
MFD 0.32 < 0.05 77.16 0.27 < 0.05 64.41 0.10 > 0.05 50.73 
LFPI 0.32 < 0.05 77.82 0.28 < 0.05 63.02 0.08 > 0.05 52.16 
IGM 0.35 < 0.05 75.35 0.32 < 0.05 57.40 0.14 < 0.05 43.25 
PCF 0.34 < 0.05 76.03 0.30 < 0.05 60.08 0.13 < 0.05 45.81 
LEM 0.37 < 0.05 74.28 0.32 < 0.05 56.52 0.15 < 0.05 41.57 
a RMSECV means cross-validated root mean square errors for the linear regressions. 

 

3.5 Discussion 

We have presented the ecological and spectral characteristics of the representative grassland 

communities sampled in the field across an ecological gradient of the Inner Mongolian 

grasslands. The differences in spectral reflectance of grassland communities across the three 
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major types of grassland communities were resulted from multiple factors, such as dominant 

plant species, grassland aboveground biomass, canopy cover percentage, and biophysical 

environment. The dominant plant species for the investigated field sites were mostly different 

(Table 3.1). This could cause differences in leaf pigments and canopy structures, which 

consequently caused differences in spectral reflectance given the same aboveground biomass. 

Second, aboveground biomass of the investigated grassland communities varied from 822.17 

g/m2 in meadow steppe to 100.13 g/m2 in desert steppe. Differences in biomass density and 

chlorophyll concentration caused variations in radiation absorption in the red bands and 

reflectance in the NIR bands. Third, the surveyed field sites were with different percentages of 

vegetation cover, the spatial variations in soil background (e.g., soil type and water content) and 

standing litters of vegetation could result in significant differences in spectral reflectance. 

 

Besides the spectral variations across different types of grassland ecosystems, the spectral 

variations between the fenced and grazed plots were also differentiable. From Tables 3.1 and 3.2 

we can see that livestock grazing affected the dominant plant species of grassland communities, 

aboveground biomass, and other ecological variables, these consequently affected the spectral 

reflectance of grassland communities. For example, in the grazed plots, the higher reflectance in 

the visible bands and the lower reflectance in the NIR bands could be caused by the lower 

vegetation densities and canopy cover percentages. In this study, the maximum first-order 

derivative method and the four-point linear interpolation method generated some indistinctive 

and counterintuitive REIP between grazed and fenced plots (Table 3.3). Previous studies also 

showed that the maximum first-order derivative method has limitations because the maximum 

derivative values occur within two principal spectral regions around 700 nm and 725 nm (Cho, 

2007), and the four-point linear interpolation method can produce REIP estimates biased to 

longer wavelengths (Cho and Skidmore, 2006). 

 

The spatial variations of the linear relationships between AGB and VI could also be explained 

by the variations in ecological characteristics of the investigated grassland communities. Among 

the three optimal narrowband VI, SR and NDVI are determined only by spectral reflectance in 

the red and NIR bands. They are more sensitive to chlorophyll concentration. High chlorophyll 

concentration in meadow and typical steppes affected the saturation of radiation absorption in the 
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red bands, which consequently affected VI calculated from reflectance in the red and NIR bands. 

Therefore, the R2 values for the regressions between AGB and VI were lower in meadow and 

typical steppe. In desert steppe, lower chlorophyll concentration alleviated the saturation effect 

of red reflectance. Therefore, the R2 values for the sites in desert steppe were higher. Moreover, 

compared with NDVI, SAVI did not improve the predictions of AGB. Possible reasons, such as 

lower variations in soil background and vegetation density in each type of grassland ecosystems, 

could explain the phenomena. TVI showed the lowest prediction accuracies in meadow and 

desert steppes. This indicated that TVI was not a good predictor of AGB for the grassland 

communities with high or low vegetation densities. The REIP calculated by the five methods 

produced better prediction accuracies than VI in meadow and typical steppes, but it was not a 

good predictor of AGB in desert steppe. This was mainly caused by the fact that red-edge was 

mostly indistinctive for the grassland communities in desert steppe (Fig. 3.2e). Other studies 

have shown that the REIP was a good predictor (R2 > 0.6) of AGB in humid grassland areas 

(Cho et al., 2007). Our study sites were distributed in semiarid and arid grassland regions. The 

spectral reflectance of grassland communities in these regions was quite different from the above 

studies. 

 

3.6 Conclusions 

The ecological variables of the investigated grassland communities generally decreased from 

meadow to typical and desert steppes. In the three sites with permanent exclosures, the grazed 

plots had higher values of ecological variables than the fenced plots. The spectral reflectance 

curves of the representative grassland communities and the grassland communities with and 

without livestock grazing were generally differentiable, and they were distinctive in the red-edge 

bands of the reflectance spectrum. For the three study sites with grazed and fenced plot pairs, the 

fenced plots had higher reflectance in the NIR bands and lower reflectance in visible bands than 

the grazed plots. The REIP of the grazed plots showed “blue-shift.” Over all, the predictive 

power of optimal narrowband VI for AGB generally decreased from desert to typical and 

meadow steppes. All narrowband VI tended to saturate at the study sites with high vegetation 

densities. The REIP was not a good predictor of AGB in desert steppe. 
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In conclusion, our research results indicated that in situ hyperspectral remote sensing is useful 

for discriminating different grassland communities across an ecological gradient of the Inner 

Mongolian grasslands and the grassland communities with and without livestock grazing. The 

results also demonstrated that care must be taken when using regression models for linking 

spectral and ecological measurements in large geographic scales since they are lack of portability 

over different types of grassland ecosystems. In the future, we plan to use imaging spectrometers 

to map grassland types and their qualities in the Inner Mongolian grasslands for reducing the 

workload and errors of visually interpreting multispectral Landsat images. The in situ 

hyperspectral remote sensing studies provide the foundations for future large-scale efforts of 

using images derived from imaging spectroradiometers. Considering the large geographic scale 

and the spatial heterogeneity of the Inner Mongolian grasslands, additional field samplings may 

be still needed in order to build a rich spectral library for various grassland communities in 

different biophysical and livestock grazing conditions. 
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Chapter Four1 

 

Sustainable Governance of the Mongolian Grasslands: Comparing Ecological and Social-

Institutional Changes in Mongolia and Inner Mongolia, China 

 

Abstract 

Over the past fifty years, a number of processes have conspired to undermine grassland 

ecosystem services on the Mongolian plateau. In this chapter, we focus on human dimensions of 

grassland degradation on the Mongolian plateau since the early 1960s. Mongolia and IMAR 

share similar ecological gradients of climate, vegetation, and soils, and have undergone 

significant social-institutional and ecological transformations: from collective to market 

economies, increasing market integration, and climate variations and change that affect 

vegetation productivity and human livelihoods. However, the two regions are different in their 

demographic, ethnic, cultural, economic, and political contexts. Moreover, their governments 

have different approaches to grassland management. These features of the two regions make 

comparative analysis interesting and causal inference meaningful for enhancing understanding of 

sustainable governance and social-ecological dynamics in grassland ecosystems. In the chapter, 

we first review the literature on models and frameworks for studying grassland dynamics, which 

were developed by ecologists and institutional analysts. Then, we adopt a hybrid state-market-

community framework to analyze the dynamics of social-ecological systems in Mongolian 

grasslands over the past fifty years based on grassland, socioeconomic, and climate data. We end 

the chapter with a discussion of strategies for sustainable governance of the Mongolian 

grasslands in the contexts of climate change and increasing market integration. 

 

Keywords: Grassland degradation; social-institutional changes; climate change; the state-

market-community framework; sustainability; Mongolian plateau 
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4.1 Introduction 

Grasslands occupy about 50% of the earth’s terrestrial surface (and 38% of the Asian 

continent) and are generally characterized by single-stratum vegetation structures dominated by 

grasses and other herbaceous plants. They provide about 70% of the forage for domestic 

livestock globally (Brown et al., 2008). The Mongolian grasslands in Mongolia and Inner 

Mongolia Autonomous Region (IMAR), China constitute the dominant component of the 

Eurasian grasslands (Angerer et al., 2008). As relatively intact terrestrial ecosystems, they play a 

significant role in sequestrating carbon dioxide, conserving biodiversity, and providing 

livelihood benefits to herders. For example, the Mongolian plateau was estimated as a carbon 

sink of 0.03 Pg C year-1 in the 1990s (Lu et al., 2009), compared with the intact tropical forests 

of 1.33 Pg C year-1 in that period (Pan et al., 2011). The numbers of plant species in Mongolia 

and IMAR are roughly over 3,000 (MNET, 2009) and 2,100 (Xing, 2008). Grassland degradation 

involves the deterioration of social-ecological performances of these ecosystems, for example for 

livestock production, and is one of the major environmental problems worldwide. Recent studies 

show that grasslands in IMAR and Mongolia have degraded to varying degrees; the degradation 

status in IMAR is more serious than in Mongolia (Angerer et al., 2008; Jiang et al., 2006). 

Grassland degradation and rural poverty are twin problems; recent studies show that the major 

income sources for rural households in IMAR and Mongolia are still from livestock production 

(Olonbayar, 2010; Waldron et al., 2010). Herders in Mongolia rely more heavily on grasslands 

for their livelihoods than do the herders in IMAR; the livelihood strategies of herders are more 

diversified in IMAR (Zhen et al., 2010). Both Mongolia and IMAR have been transitioning from 

a centrally planned economy to a less regulated economy. As a corollary, herders have sought to 

increase their livelihood benefits by increasing livestock numbers, leading to over-stocking and 

grassland degradation in many parts of the region. 

 

Scholars from multiple disciplines have contributed to a better understanding of the dynamics 

of social-ecological systems in the Mongolian grasslands. Increasing populations of humans and 

livestock, inefficient institutional arrangements for resource governance, distorted market 

incentives, reclamation of grasslands for grain production, urbanization, changing climate, and 

the increasing frequencies of climate hazards have all been identified as among the major drivers 
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of grassland degradation (Angerer et al., 2008; Bijoor et al., 2006; Fernandez-Gimenez, 1997; 

Humphrey and Sneath, 1999; Jiang et al., 2006; Li et al, 2007; Neupert, 1999; Sneath, 1998; 

Zhang, 2007). However, most of the existing work tends to focus on one or two factors that 

cause grassland degradation and poverty, and provides solutions based on their identified factors. 

There has been little to no systematic analysis of how different factors and their interactions 

drive the dynamics of grassland social-ecological systems in the Central Asian region. However, 

the dramatic changes that the grasslands of IMAR and Mongolia have witnessed over the past 

half century necessitate a systematic investigation of the factors shaping grassland social and 

ecological dynamics to improve their understanding and sustainability. 

 

In this chapter, we review the models and explanatory frameworks developed by grassland 

ecologists and institutional analysts and discuss the management and institutional strategies they 

offer. We bring together different types of evidence on changes of grassland quality and 

associated social-institutional processes in the context of climate change. We examine the 

available data in relation to different frameworks, and discuss an explanatory approach that 

considers state, market and community actors in relation to grassland dynamics and outcomes 

(Lemos and Agrawal, 2006). We discuss the feasible strategies for addressing grassland 

degradation, and societal adaptations to environmental change. We adopt an integrated and 

multiscale state-market-community framework for analyzing environmental problems associated 

with complex human and environment interactions. Linking historical social-institutional 

changes and dynamics of grassland productivity allows us to understand the dynamics of 

Mongolian grassland social-ecological systems over the past fifty years. Our integrated and 

multi-scalar approach considers as well the feedbacks and interactions between social, 

institutional, ecological and biophysical aspects of grassland systems, and leads to a more 

comprehensive consideration of alternative strategies to grassland management. Finally, we draw 

conclusions about the dynamics and sustainability of grassland social-ecological systems on the 

Mongolian plateau. 
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4.2 Explanatory Models of Grassland Dynamics 

Broadly speaking, grassland ecologists have distinguished between two models of grassland 

dynamics: the equilibrium ecosystem model and the non-equilibrium ecosystem model. The 

equilibrium ecosystem model follows the Clementsian succession theory according to which 

natural vegetation in a given ecological site reaches a state of equilibrium over time, given 

climate and soil conditions (Zhang and Li, 2008). In equilibrium grazing systems, climate 

conditions are relatively constant with low interannual variability, enabling stable seasonal 

rhythms of vegetation growth across the years. In these zones, grazing intensity has a direct 

impact on grassland quality, and over-grazing leads to the deterioration of grassland quality. The 

preferred management recommendation is to stock grasslands at or below carrying capacity. This 

grazing model is still the dominant model used to make carrying capacity-based grassland 

management policies in China and Mongolia (Olonbayar, 2010; Zhang, 2007). The goal of these 

policies is to control the numbers of humans and livestock or ensure long-term exclusion of 

livestock grazing to allow grassland quality to recover and persist. However, this model has been 

criticized on the grounds that it ignores and at best simplifies spatial and temporal variability of 

precipitation and grassland productivity in grasslands. Because it does not take into account the 

extremely high levels of spatio-temporal variability characteristic of semiarid and arid ecological 

regions, prescriptions based on its assumptions, particularly those related to sedentarization of 

herders and animals, have also been viewed as faulty. 

 

Over the past decades, a non-equilibrium approach to ecosystem functioning has been 

developed to explain grassland dynamics in the semiarid and arid regions. In non-equilibrium 

ecological landscapes, the high variability of climatic conditions is more important for the 

quality of grasslands than the livestock grazing intensity (Ellis and Swift, 1988; Oba et al., 2000). 

Predictions from non-equilibrium theories have been tested in the semi-arid and arid grassland 

regions of Mongolia and China and shown to better explain grassland dynamics (Fernandez-

Gimenez, 1999; Ho, 2001; Zhang, 2007). In these regions, a simple carrying capacity value 

oversimplifies the dynamics of the environment. Livestock grazing needs to be organized 

according to variable precipitation patterns and forage availability, and these vary enormously 

across space and over the years. 
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Another school of thought for governing grassland resources comes from neo-institutional 

economists, who focus on analyzing efficient institutional arrangements for sustainable use of 

natural resources. There are three main institutional frameworks for governing natural resources: 

privatization, state/public ownership, and community-based resource management. Traditionally, 

privatization and state control have been recognized as the two major solutions to solve problems 

of unsustainable harvesting of natural resources (Hardin, 1968). In the past decades, Ostrom and 

other institutional analysts have demonstrated self-organized collective action as an alternative 

approach to govern common pool natural resources (Agrawal, 2001; Ostrom, 1990, 2005, 2010). 

Because mobility is an essential characteristic of traditional herding strategies in semiarid and 

arid regions, cooperative use of grasslands by mobile herders can reduce the uncertainties caused 

by variations in precipitation and vegetation productivity in a given location, and reduce overall 

uncertainty (Agrawal, 2001; Wilson and Thompson, 1993). Studies have shown that large 

differences in levels of grassland degradation under a traditional, self-organized group property 

regime (Mongolia) versus national government management (China and Russia) on the 

Mongolian plateau (Humphrey and Sneath, 1999; Sneath, 1998). Mongolia has allowed 

pastoralists to continue their traditional group-property institutions, which enable large-scale 

movements between seasonal pastures. China and Russia imposed agricultural collectives, which 

involve sedentarization and permanent settlements.  

 

Besides pure state-, market-, or community-based governance strategies, Lemos and Agrawal 

(2006) proposed a governance framework that recognizes the importance of hybrid arrangements 

for sustainable environmental governance. Such hybrid arrangements connect the state, market, 

and community. The Lemos and Agrawal framework is particularly useful for dealing with 

complex and multiscale environmental problems such as climate change and ecosystem 

degradation. State, community, and market actors have different strengths, and can play different 

roles in resource management in terms of institution building and implementation, collective 

action, and market incentives. Co-management links the state and local communities. Public-

private partnerships link the state and markets, and private-social partnerships link markets and 

communities. For the dynamics of social-ecological systems in the Mongolian grasslands over 

the past fifty years, the national governments of Mongolia and China, local grazing communities, 
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and local and international markets all have played significant roles. However, the importance of 

their roles has changed over-time. 

 

4.3 Analyses and Results 

About 66% of the land in IMAR (0.78 million km2) is classified as grasslands, a quarter of all 

Chinese grasslands (Zhang, 1992). Nearly 84% of the total territory in Mongolia (1.26 million 

km2) is covered by grasslands (Angerer et al., 2008). Mongolia and IMAR share the similar 

ecological gradient of vegetation, which varies from forests to forest/meadow steppe, typical 

steppe, desert steppe, and desert (Fig. 4.1). Recent studies from China and Mongolia show that 

90% of the total grasslands in IMAR and 78% of the grasslands in Mongolia have degraded to 

varying degrees (Erdenetuya, 2006; Ministry of Agriculture, China, 2007).  

 

Several large-scale field ecological surveys were conducted to assess grassland quality, 

measured by dry biomass, over the last fifty years: four in IMAR and three in Mongolia. These 

field grassland surveys were based mainly on large-scale field samplings, but the latter two times 

in IMAR were assisted by geospatial technologies. The overall grassland productivity in IMAR 

is higher than in Mongolia (Fig. 4.2). This is mainly caused by the climate constraints. IMAR is 

with warmer temperature and has more annual precipitation than Mongolia. In period 2, the 

average grassland biomass in IMAR and Mongolia decreased to 57.1% and 75.9% of the value in 

period 1, respectively (Fig. 4.2). By period 3, the average grassland biomass in the two regions 

decreased to 44.8% and 57.7% of period 1, respectively. The results of the most recent survey 

(2009–2010) in IMAR show that the average grassland biomass increased slightly to 48.1% of 

period 1. Moreover, the survey results of Mongolia also show that the average number of grass 

species per hectare decreased by periods 2 (24) and 3 (18) to 84.6% and 62.3% of period 1 (31), 

respectively (Olonbayar, 2010). 
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Fig. 4.1 Spatial distributions of the major vegetation types on the Mongolian plateau. Source: vegetation 
maps of IMAR and Mongolia were respectively provided by the Institute of Botany, China, and the 
Institute of Botany, Mongolia. They were made respectively in the 1990s and 1980s. The original scale of 
the two vegetation maps is 1:1,000,000. 
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Fig. 4.2 Changes of the average grassland biomass of IMAR and Mongolia over the past fifty years. 
Source: the data of IMAR was provided by the Inner Mongolian Institute of Grassland Survey and Design 
(IMIGSD, 2011) and the data of Mongolia was reconstructed from Olonbayar, 2010. 

 

By the early 1960s, both IMAR and Mongolia had completed a dramatic social transformation 

from the traditional “communal” ownership into collective economies, begun in the late 1950s. 

They experienced privatization in the middle and late 1980s, respectively. In IMAR after 2000, 

the Chinese national government has been making and implementing a range of policies to 

restore grassland quality. These policies are known as “Grain to Green” policies (Liu et al., 

2008). Given these broad social-institutional changes, we divide the last fifty years into three 
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sub-periods: collectivization (1961–1985), privatization (1986–2000), and recentralization 

(2000–present) periods. The recentralization period applies only to IMAR, China. Parallel with 

these economic changes, social-institutional changes have influenced the social organizations, 

culture, land-use behaviors of herders, and populations of human and livestock, which have 

consequently affected grassland quality and the livelihoods of herders in the two regions. 

 

4.3.1 Collectivization of Pastures and Livestock 

In the 1950s, pastures and livestock in IMAR and Mongolia were collectivized by a policy 

called “state purchase.” Herders were responsible for selling livestock products to the state at 

below-market prices based on planned, rather than actual, numbers of livestock (Fernandez-

Gimenez, 1997). In the early 1960s, all herders in IMAR and Mongolia were members of grazing 

collectives, and most of the livestock and pastures were collectively owned by the local grazing 

communities. Under the collective institutional arrangements, herders had little incentive to 

manage livestock well or increase livestock numbers. The total numbers of livestock and the 

herd compositions by species in Mongolia (1961–1990) and IMAR (1961–1985) were fairly 

stable in the collective period (Fig. 4.3). In Mongolia, collectives, called negdel, played a central 

role in allocating pastures and campsites and directing seasonal movements that often respected 

pre-existing customary rights and were regulated and tightly controlled by soums (counties) and 

Aimags (provinces).  

 

Pastoral land-use practices remained mobile and herding families were generally supported by 

deliveries of hay, and thus had little impact on grassland quality (Ojima and Chuluun, 2008). The 

collectives also engaged in veterinary services, producing livestock products, preventing 

livestock loss from natural hazards, and improving pasture quality through the development of 

water points at strategic locations. However, in this period, the overall herding radius decreased 

and herders were confined to smaller areas, thereby limiting access across broad ecological zones 

and reducing access to diverse forage resources used traditionally. Moreover, through the 

building of water facilities, winter shelters, and soum centers and the investments in ‘scientific’ 

management of livestock, the nomadic pastoral economy was transforming into a sedentary and 

intensive one (Fernandez-Gimenez, 1997). In Mongolia, the conversion of grasslands for grain 
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production started in the year 1959 and 1.34 million hectares of grasslands were converted to 

cropland prior to the early 1990s (Olonbayar, 2010). Although some grazing activities were 

sedentarized and some grassland was converted into cropland, the overall grassland quality in 

Mongolia did not degrade rapidly in the collective period (Fig. 4.2). 

 

 
Fig. 4.3 Changes of livestock numbers in IMAR, China, (a) and Mongolia (b) (1961–2009) (Unit: 10,000). 
Source: Annual census books of IMAR, China, and Mongolia (ACBIMAR, 2005, 2010; ACBM, 1990, 
2010). 

 

In IMAR, grazing collectives called production teams can migrate within their village 

boundaries seasonally and to other villages (or soums) in the years with natural disasters. Similar 

to Mongolia, grazing collectives were responsible for managing pastures and livestock 

production. In the collective period, human population in IMAR increased rapidly from around 

12 million to 20 million (Fig. 4.4). The increased population was mainly from the migration of 

Han people from other provinces. The negative consequences of the “Great Leap Forward” 

(1957–1959) and the consecutive large-scale natural disasters (1960–1961) caused the “Great 

Famine” in the most of China. Population migration in this period was partially driven by the 

national policy for solving the starvation problem in China. Fertile grasslands were reclaimed for 
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food production (Jiang, 2005). The “Grain First” policy implemented in the “Cultural 

Revolution” period (1966–1976) also caused large areas of grasslands to be converted to 

cropland (Jiang, 2005; Zhang, 2007). During the period 1949–1985, 9.2 million hectares of 

fertile grasslands were used for grain production, mainly corn and potatoes (Table 4.1). 

Conversion from grassland to cropland can easily destroy the thin surface soil layers and 

destabilizes underlying sandy layers. This can consequently cause desertification, leading to 

cropland abandonment in a few years. Some of the new migrants worked on grain production, 

and others migrated into pastoral areas to compete for pasture resources with local herders. 

Moreover, many coal and metal mining sites were built in IMAR in this period (Neupert, 1999). 

Due to the loss of fertile grasslands, overstocking and other intensive grassland-use behaviors 

(e.g. mining and collection of traditional herbal medicines), the average grassland biomass 

decreased rapidly from 1871 kg/ha to 1069 kg/ha, roughly in the corresponding period (Fig. 4.2). 

 

 
 

Fig. 4.4 Demographic changes in IMAR, China, (a) and Mongolia (b) (1961–2009) (Unit: 10,000). 
Source: Annual census books of IMAR, China, and Mongolia (ACBIMAR, 2005, 2010; ACBM, 1990, 
2010). 
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Table 4.1 Amounts of grassland area reclaimed in IMAR (1949–2005) (Unit: 1,000,000 hectares). 
Study Period Grain Production Fodder Production Other Uses 

1949-1985 9.20 0.00 0.00 

1985-2000 6.30 1.40 1.40 

2000-2005 0.00 5.60 0.00 

Total Area 15.50 7.00 1.40 

Source: Inner Mongolian Institute of Grassland Survey and Design (IMIGSD, 2008). 
 

4.3.2 Privatization and Market Incentives 

In the middle of 1980s, the Household Production Responsibility System (HPRS), also called 

the Double-Contract System, was introduced from the agricultural province of China to the 

pasture areas of IMAR. Livestock production was first contracted to herder households by local 

governments (1984– 1988). Then, pastures were allocated to individual households (1989–1995). 

At the same time, China started its transition from the central planned economy to market 

economy. In Mongolia, the free-market reforms began with the first democratic elections in 1990. 

Privatization and market incentives stimulated herders to increase their livestock numbers in 

order to gain more benefits from livestock production. Sharp increases in all prices of livestock 

products in Mongolia during the latter half of the 2000s have similar trends with the increases of 

livestock numbers. The similar increasing trends between livestock numbers and the prices of 

livestock products are also seen in IMAR (Fig. 4.5). Compared with Mongolia, livestock 

production in IMAR is more connected to local and international markets, since market economy 

is more developed in China than in Mongolia. Since the late 1980s and the early 1990s, the total 

number of livestock in IMAR and Mongolia increased rapidly (Fig. 4.3). For example, in 1990, 

Mongolia had 25.9 million domesticated animals. In 1998, this had grown to 32.9 million an 

increase of 27%. Other studies also show that the high price of cashmere in international markets 

triggered the rapid growth of goats (Ojima and Chuluun, 2008). The species composition also 

changed since the early 1990s, and the number of goats increased more rapidly than other species 

in both IMAR and Mongolia (Fig. 4.3). 
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Fig. 4.5 Changes of the prices of livestock products in IMAR (Unit: 1000 Yuan/Tonne) (a) and Mongolia 
(Unit: 1000 MNT/Tonne) (b) (1991–2007). The historical prices from the Food and Agriculture 
Organization (FAO) were adjusted to constant 1991 currency. Source: FAO price statistics database (FAO, 
2011). 

 

In IMAR, with pastures contracted to individual herder households, herders could not migrate 

over large areas after privatization. In this period, pastoralists were sedentarized, and migratory 

grazing was converted to year-round grazing on small pieces of contracted pastures. The leasing 

term of the contracted pastures was 30 years, and herders did not have the full ownership of the 

pastures, decreasing incentives to protect pastures (Humphrey and Sneath, 1999; Li et a., 2007). 

Contracting pastures to individual households destroyed the intact grassland ecosystems and 

traditional customs for pasture use, and conflicts over pasture use increased (Williams, 2002). 

The implementation of the HPRS has been recognized as a major reason for grassland 

degradation in IMAR (Li et al., 2007; Li and Huntsinger, 2011; Sneath, 1998; Zhang, 2007; 

Zhang and Li, 2008). Increased stocking rates and year-round grazing adversely affects pasture 
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increased during the 1990s along with prices of livestock products. As more mining and other 

industries continued to compete with local herders for land the grasslands available for grazing 

decreased and grazing intensity increased. Fencing on contracted lands exacerbated the problem 

of reduced pasture area. The increases in grazing intensity likely explain the decreases in the 

average grassland biomass from 1069 kg/ha to 838 kg/ha, roughly corresponding to this study 

period (Fig. 4.2). 

 

In Mongolia, due to the lack of efficient resource institutions to govern grassland use, most 

grassland became open-access resources. Levels of conflict over grassland use increased. 

Traditional grazing customs such as reciprocal use of grasslands in natural disaster years 

declined (Upton, 2009). Livestock privatization had a tremendous impact on livestock 

production and the marketing of livestock products. Herders became livestock owners and 

simultaneously lost the support of collectives (mainly the transportation support for seasonal and 

interannual migrations). Poor families who could not afford long-distance migrations migrated 

less frequently or became sedentary grazers around water points or fertile pastures. The numbers 

of water facilities and pasture reserves also decreased (Olonbayar, 2010). Data from the census 

books of Mongolia show that the area of cropland decreased 24.3% from 1995 to 2009 (ACBM, 

2005, 2010). Cropland abandonment made lands prone to wind erosion. Roughly corresponding 

to this period, the average grassland biomass decreased from 610 kg/ha to 464 kg/ha (Fig. 4.2). 

 

4.3.3 Recentralization of Grassland Management in IMAR, China 

Since the year 2000, grassland management in Inner Mongolia, China, was recentralized to 

the national government. Therefore, we call this study period the “Recentralization Period.” The 

national government has implemented several projects for ecological restoration and 

conservation in the pasture areas of IMAR, such as “Converting Pastures to Grasslands” and 

“Ecological Restoration of the Sandstorm Sources of Beijing-Tianjin-Tangshan.” Most of the 

counties in IMAR are involved in these two projects. Under these policies, herders are subsidized 

in the forms of grain and money for grazing bans (all year round), grazing restrictions (on a 

seasonal basis), rotational grazing, migration out of pastures, pen-feeding livestock, and 

importing high value-added livestock. Due to grazing restrictions, pen-feeding of livestock has 
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become popular in IMAR. This is one of the major reasons for the abrupt increase in total 

livestock numbers in IMAR after 2002 (Fig. 4.3). In 2011, the national government of China 

started a new ecological compensation and restoration project. Eight grassland provinces and 

autonomous regions, including IMAR, are involved in the project. This policy is still based on 

the equilibrium model of grassland dynamics and emphasizes reducing grazing intensity in order 

to keep the balance between grassland capacity and stocking rates. The social-ecological 

outcomes of the new policy are still to be assessed. 

 

In the recentralization period, local herders in IMAR have been marginalized in the policy 

making and implementation processes, and many of the same problems associated with 

collectivization have become evident. Conflicts exist between the market-oriented behaviors of 

local herders and the grassland conservation and restoration goals of the national government. 

For example, violations to the policies of grazing restrictions and bans commonly exist in IMAR 

(Bijoor et al., 2006). High monitoring and implementation costs make these policies difficult to 

implement. Moreover, these polices have ignored the diversity of grassland ecosystems across 

the ecological gradient. Additionally, due to pen-feeding, 5.6 million hectares of grasslands were 

reclaimed for fodder production during 2000–2005 (Table 4.1). Recent studies show that the 

overall grassland degradation status did not get changed, although in some local areas, grassland 

quality has improved (Ministry of Agriculture, China, 2007). 

 

4.3.4 Changing Roles of the State, Market, and Community for Grassland Management 

In the three study periods, state, market, and community actors played significant roles in 

influencing grassland-use behaviors of herders, and their roles also changed over time. In the 

collective periods of Mongolia and IMAR, there was little market influence on grassland 

management and livestock production. The state and local grazing communities governed 

grassland resources and managed livestock production. After privatization, both Mongolia and 

IMAR have transformed from central planned economies towards free market economies. 

Livestock production by herders has become linked to fluctuations in global and local market 

demands. The roles of the state and local grazing communities have been deemphasized, 

especially in Mongolia. Traditional grazing customs have also not played a role in coordinating 
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livestock grazing. In the recentralization period in China, grassland management was 

recentralized to the national government. Though grassland-use behaviors of herders are still 

market-oriented, they are restricted by the new rules created by the state. Local communities no 

longer play important roles in governing grassland resources in the recentralization period. 

 

4.3.5 Climate Variability and Change: History and Future 

Over the past fifty years, the overall climate in IMAR and Mongolia became warmer and drier 

(Fig. 4.6). The increasing trends of annual mean temperature were significant in both IMAR and 

Mongolia ( 2 0.57IMARr  , 0.01IMARp  ; 2 0.48Mongoliar  , 0.01Mongoliap  ). However, the decreasing trends 

of annual total precipitation were not significant in both IMAR and Mongolia 

( 2 0.02IMARr  , 0.37IMARp  ; 2 0.07Mongoliar  , 0.05Mongoliap  ). Other studies also showed that annual 

mean temperature increased about 2.1 C in Mongolia and about 2 C in IMAR; annual 

precipitation decreased about 7.0% in Mongolia (NCRM, 2009) and about 6.6% in IMAR (Ding 

and Chen, 2008). Drought increased significantly in Mongolia in the last 60 years, particularly in 

the last decade (NCRM, 2009). The worst droughts and Dzuds (heavy winter snowstorms) 

Mongolia experienced recently were in the consecutive summers and winters of 1999, 2000, 

2001, and 2002, which affected 50–70% of the territory. The substantial decline of livestock 

numbers between 1999 and 2002 (Fig. 4.3) was mainly caused by droughts and winter 

snowstorms in these years. About 35% (12 million) of the total number of livestock perished in 

the period. Recent studies show that in Mongolia, grassland productivity in areas in which 

grazing is not allowed has also decreased by 20–30% in the past 40 years (Angerer et al., 2008). 

By statistical analyses of the climate data collected at national standard stations of Mongolia and 

IMAR over the past fifty years, we found that the interannual variability of precipitation in the 

growing season (from April to September) of most stations are over 0.35 (the coefficient of 

variance). Therefore, most parts of the Mongolian plateau can be seen as non-equilibrium 

grassland ecosystems. 

 

Future climate scenarios show that in the next 30 years, annual mean temperature will 

increase 0.4–1.6 C, especially in summer and autumn (0.8–1.6 C), and there is no apparent 
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increase of annual precipitation on most parts of the Mongolian plateau (Tang et al., 2008). IPCC 

AR4-A1B future climate scenarios of the Mongolia plateau (mean projections of 21 models, 

Christensen et al., 2007) show that comparing the end of this century (2080–2099) with the end 

of last century (1980–1999), winter temperature will increase 3–5 C; summer temperature will 

increase 2.5–4 C; winter precipitation will increase 5–30%; summer precipitation in most areas 

will increase 5–15%, except in some parts of the western Mongolian plateau. Livelihoods of 

herders on the Mongolian plateau will be more vulnerable to future adverse climate conditions. 

 

 
Fig. 4.6 The temporal variability of annual mean temperature (Unit: C) (a) and annual precipitation (Unit: 
mm) (b) in IMAR and Mongolia with multi-year means and five-year moving averages (1961–2009). 
Source: national standard climate stations of IMAR, China, and Mongolia (CIMAR, 2011; CM, 2011). 

 

4.4 Discussion 

Over the past fifty years, grassland quality on the Mongolian plateau has been deteriorating, 

which has endangered the livelihoods of local herders. Future climate change and the increasing 

integration into world markets have the potential to exacerbate these problems. Therefore, simple 

solutions like those based on carrying-capacity are not sufficient for solving these complex and 

multiscale natural resource problems. An interdisciplinary framework that integrates social and 
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ecological systems is needed to understand the dynamics of social-ecological systems in the 

Mongolian grasslands over the past fifty years, and to consider strategies for sustainable 

management in the future (Ostrom, 2009). In the context of warming and drying climate, social-

institutional factors played significant roles in changing grassland-use behaviors of herders and 

grassland quality. These socioeconomic factors also interact with each other. The roles of the 

state, market, and community in governing grassland resources in Mongolia and IMAR have 

changed over time. The above analyses show that none of the historical resource institutions 

implemented in IMAR and Mongolia (collectivization, privatization, and recentralization) was 

efficient for sustainable governance of grassland resources. 

 

Grassland degradation and the increasing frequencies of climate hazards, such as drought and 

Dzud (heavy winter snowstorms that interact with summer droughts to endanger livestock), have 

endangered the livelihoods of herders. Since the middle 1990s, the poverty rate in pastoral areas 

of IMAR has increased. Grassland degradation, natural disasters, increasing costs of herding, and 

increasing competition in the livestock product markets were identified as the major reasons (Li 

et al., 2007; Zhang, 2007). In IMAR, fodder cost is the major household expenditure of herders 

(Li et al., 2007). Environmental problems have also made the poverty situation worse in 

Mongolia. For example, in 1998, the national poverty rate of Mongolia was slightly below 35%, 

and it increased to 36.1% in 2001–2002 as a consequence of the severe natural disasters between 

1999 and 2002 (Olonbayar, 2010). Social-institutions also affect the adaptive capacity of herders 

to climate hazards. For example, studies show that the implementation of HPRS in IMAR, China, 

decreased the adaptive capacity (the ability to migrate to other places and to get help from other 

herders and/or the local governments in the natural disaster years) of herders to climate 

variability and change (Li and Huntsinger, 2011). 

 

The high costs of privatization and the top-down hierarchy of state control render these 

approaches inefficient for governing grassland resources in the semiarid and arid regions. 

Grassland productivity and water resources are with high spatial and temporal variability in these 

regions, which makes demarcation of grassland resources very difficult. High monitoring costs 

make “command and control” an inefficient way for governing grasslands. The social-ecological 

performances (overall grassland degradation condition and rural poverty) of policies 
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implemented in the recentralization period of China have demonstrated that state-control is 

inefficient. Community-based resource management (CBRM), which has cooperation and 

collective action at its core, has been recommended by scholars for solving grassland problems 

in the semiarid and arid regions of Mongolia and China (Angerer et al., 2008; Banks, 2001; 2003; 

Banks et al., 2003; Bijoor et al., 2006; Fernandez-Gimenez, 1997; Ho, 2001; Humphrey and 

Sneath, 1999; Li et al., 2007).  

 

Traditionally, herders on the Mongolian Plateau had a culture of reciprocal and exchange use 

of grasslands in natural disaster years, and the grazing boundaries and movement patterns were 

also flexible. These informal norms and rules enabled them to adapt to the spatial-temporal 

variability of climate and grassland productivity. However, social-institutional changes 

(collectivization and privatization) altered the social organizations and the cooperative culture. 

For example, in Mongolia, the traditional grazing organizations, called khot ail and consisting of 

several households with clanship and/or kinship camping together, were replaced by grazing 

specialization groups, for example goat/sheep management groups, which were not family based. 

After privatization, due to market incentives and the lack of effective resource institutions to 

coordinate grassland use, the use of grasslands became competitive. The number of conflicts 

over grassland use increased (Upton, 2009). The broad institutional changes in IMAR were 

similar. Moreover, in IMAR, contracting grasslands and livestock production to herder 

households have caused social stratification and further incentivized competitions among herders 

(Williams, 2002). These changes make it difficult to consider recovering traditional customs in 

livestock grazing. 

 

In order to avoid the degradation of grasslands due to trampling from daily grazing and to 

make seasonal and interannual migrations possible, cooperative use of pastures is necessary. 

Cooperative organizations, such as pasture-use groups and water-facility-use groups, can help 

herders to improve their livelihoods and better adapt to future adverse climate conditions. The 

formation of collective action needs external drivers and internal coordination mechanisms 

(Ostrom, 2005) and effective decentralization requires the support from formal institutions 

(Ribot and Agrawal, 2006). In Mongolia and IMAR, support from the national governments can 

help the formation of cooperative organizations. For example, the national government of China 
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has been providing subsidies for supporting herders to build cooperation organizations in order 

to increase their profits of livestock production in the market economy. A formal agricultural 

cooperative law was also implemented in the year 2007 to support the organization of 

agricultural cooperatives. For areas that are near the major or local markets, market-oriented 

cooperative organizations can be built, while areas distant from markets but with high 

frequencies of natural disasters might benefit from subsistence-oriented cooperative 

organizations. Where disasters happen with relatively high frequency, cooperation can be among 

neighbors or among villages or counties, since in serious natural disaster years a large 

geographical area could be affected simultaneously. 

 

Community-based resource management is not a panacea for reversing grassland degradation. 

High stocking rates caused by the increased human and livestock populations have reduced the 

feasibility of migration, especially in IMAR, China, and state-control of the overall grazing 

intensity of a large geographic area is still necessary. State-control policies need to be sensitive 

to spatial and temporal variations within the grassland ecosystems. Otherwise, those polices will 

not be effective and will lack the support from local herders. For example, annual precipitation in 

the eastern part of IMAR is fairly stable. Grazing intensity is the major cause for grassland 

degradation in those areas. Therefore, state grazing-control or privatization might be more 

effective than cooperative use in these areas, since cooperation and collective action involves lots 

of transaction costs, such as searching, negotiation, contracting, monitoring, and sanctions. 

Moreover, long-distance and frequent seasonal and interannual migrations are also not necessary 

in regions with stable precipitation and productivity. 

 

Livelihood diversification has been promoted by the state as a major approach to adapt to 

environmental change. For example, in order to reduce stocking rates, the national government 

of China has been providing subsidies for herders to leave pastures and find jobs in cities. 

However, due to the lack of education and training, this policy has not worked well (Bijoor et al., 

2006). Therefore, more institutional and government support may be needed in the future for 

herders to adapt their livelihoods to the changing climate and grassland services. Besides 

adjusting resource institutions and polices, improving grazing technologies is another solution. 

Indigenous knowledge (Fernandez-Gimenez, 2000) and recent research on grassland ecology and 
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grassland use and management provide a broad knowledge base for technical solutions to reduce 

grassland degradation. Introducing new species with high productivity is an important approach 

for improving livestock production in the semiarid and arid regions. However, this strategy can 

increase the natural and economic risks of livestock production. Whether this strategy is feasible 

also depends on institutional supports, such as markets for livestock products, technology 

training, livestock insurance, and financial support. 

 

4.5 Conclusions 

Most areas of the grassland ecosystems on the Mongolian plateau can be classified as non-

equilibrium ecosystems. Institutions that govern grasslands should accommodate the 

characteristics of grasslands. The traditional nomadism was adapted to local climate conditions, 

and also preserved ecosystem functions of grasslands. However, in the past fifty years, the 

social-institutional changes have undermined the traditional resource institutions and replaced 

them with a series of alternative systems. Sustainability of the Mongolian grassland social-

ecological systems has been affected as a result. A warmer and drier climate and the increasing 

frequencies of climate hazards have increased the vulnerability of the livelihoods of local herders 

on the Mongolian plateau. Therefore, understanding these changes and providing feasible 

strategies to cope with the environmental problems are urgent.  

 

Numerous scholars from different disciplinary backgrounds have contributed to these topics. 

However, a systematic analysis is still missing. In this chapter, we adopt an integrated state-

market-community model to analyze the dynamics and sustainability of the Mongolian grassland 

social-ecological systems. The results indicate that drivers from the human dimensions, such as 

institutional and policy changes and demographic change, play significant roles in changing 

grassland quality over the past half century. In this chapter, we propose cooperative use of 

grasslands to cope with future climate change and market fluctuations. In regions with high 

environmental variability, cooperation and collective action can pool climate risks over space 

and increase the predictability of precipitation and grassland productivity. With the increasing 

integration into the world market, market-oriented cooperative production can increase profits of 

livestock production. Diverse institutional arrangements and strategies are necessary to 
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accommodate diverse ecosystem types and social situations across ecological gradients and 

social-political regions. In all, sustainable governance of grassland social-ecological systems on 

the Mongolian plateau in the context of climate change need the integration and coordination of 

forces from the state, market, and local grazing communities.  
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Chapter Five1 

 

Drivers of the Dynamics in Net Primary Productivity across Agro-Ecological Zones of 

Mongolia and Inner Mongolia, China 

 

Abstract 

Understanding the drivers of dynamics in grassland productivity is prerequisite for studying 

effective resource policies that can be used to govern grassland resources sustainably. We 

present a diagnostic analysis of the major drivers of the dynamics in net primary productivity 

(NPP) across agro-ecological zones on the Mongolian plateau. We estimated a spatial panel data 

model for NPP (1986−2009) as a function of climatic and socioeconomic variables. Static and 

dynamic spatial panel models were estimated in each of six sub-regions, which were classified 

based on rural livelihoods and agro-ecological models of grassland dynamics, to identify the 

major drivers of NPP dynamics. The statistical modeling results indicated that the major drivers 

of NPP dynamics vary across the six sub-regions. Grain output was the major predictor of NPP 

dynamics in the farming and farming-grazing zones of Inner Mongolia. Precipitation and 

livestock populations both had significantly positive relationships with NPP in the two grazing 

zones of Inner Mongolia. However, in Mongolia, livestock populations was the only significant 

predictor of NPP in the grazing zone with relatively stable climate, and precipitation was the 

only significant predictor of NPP in the grazing zone with highly variable climate. Human land-

use and livestock management behaviors and the bidirectional causal relationships between 

livestock populations and NPP could explain the positive relationships between livestock 

population and NPP. The heterogeneous drivers of NPP dynamics across space indicated the 

necessity of diverse resource policies and institutions for sustainable governance of grasslands. 

 

Keywords: Grassland ecosystem; net primary productivity; drivers; spatial panel data models; 

agro-ecological zones; Mongolian plateau 

                                                            
1Wang, J., Brown, D. G., and Chen, J. Drivers of the dynamics in net primary productivity across 
ecological zones on the Mongolian plateau. Landscape Ecology, 2013, DOI 10.1007/s10980-013-9865-1. 
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5.1 Introduction 

Grassland degradation on the Mongolian plateau, including the country of Mongolia and the 

Inner Mongolia Autonomous Region (IMAR), China, has undermined ecosystem functions, 

including carbon sequestration (Lu et al., 2009), and endangered the livelihoods of local herders 

(Chapter Four; Li et al., 2007) since the early 1960s, especially following the political-economic 

transitions in IMAR and Mongolia in the mid-1980s and the early 1990s, respectively. Empirical 

studies have shown that grassland degradation has increased the cost of livestock grazing, and 

poverty has become prevalent in the grazing communities of Mongolia and IMAR, China 

(Olonbayar, 2010; Zhang, 2007). Understanding the drivers and mechanisms of grassland 

productivity dynamics over the past decades on the Mongolian plateau is prerequisite for 

developing effective resource policies and institutions that can govern grassland resources 

sustainably. Previous studies have identified that climate change, increasing populations of 

humans and livestock, inefficient resource institutions, distorted market incentives, and 

reclamation of grasslands for grain production are the major causes for grassland degradation on 

the Mongolian plateau (Chapter Four; Fernandez-Gimenez, 1997; Neupert, 1999; Sneath, 1998). 

However, most of these studies just focused on one or several of these drivers at regional scales, 

and a systematic analysis of the major drivers across heterogeneous landscapes of the Mongolian 

grasslands is still needed. 

 

Since the early 1960s, climate on the Mongolian plateau has been getting warmer and drier 

(Chapter Four). Studies have also shown that in some areas of Mongolia where grazing is not 

allowed grassland productivity has declined by 20–30% over the past 40 years (Angerer et al., 

2008). IMAR and Mongolia have been transforming from centrally planned to market economies 

since the mid-1980s and the early 1990s, respectively. Grasslands in IMAR have been allocated 

to individuals through contracts and fenced. Nomadic herding has been replaced by farming and 

livestock grazing activities. As a result, seasonal and interannual migrations have become less 

feasible. In Mongolia, due to lack of effective resource institutions, conflicts among herders over 

grassland use have increased since the early 1990s (Upton 2009). Moreover, livestock 

privatization and market factors have given herders strong incentive to keep more animals and 

therefore stimulated the growth of livestock populations. For example, based on annual census 
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data, livestock populations in IMAR increased from around 40 to 100 million between 1985 and 

2009; livestock populations in Mongolia increased from 26 to 33 million between 1990 and 1998 

(ACBIMAR, 2010; ACBM, 2010). Livestock populations in Mongolia crashed in the 1999-2002 

Dzud, although they rebuilt by 2009. They crashed again (though less extremely) in the 2009-

2010 Dzud. The rapid increase of livestock populations following economic transitions caused 

disastrous impacts on grassland quality. Livestock privatization and grazing sedentarization have 

been identified as the major reasons for the degradation of the Mongolian grasslands, especially 

in IMAR (Humphrey and Sneath, 1999; Jiang et al., 2006; Li et al., 2007; Li and Huntsinger, 

2011). Studies based on large-scale field samples showed that from the early 1980s to 2010, the 

average grassland dry biomass productivity in IMAR and Mongolia decreased from 1069 to 900 

kg/ha and from 610 to 369 kg/ha, respectively, (IMIGSD 2011; IOB, Mongolia 2011). However, 

the extent of grassland degradation in Mongolia is still controversial (Addison et al. 2012). 

 

Our understanding of the dynamics in grassland productivity and sustainable governance of 

grassland resources rests on contributions from both ecologists and institutional economists. 

Grassland ecologists developed two conceptual explanations of the dynamics in grassland 

productivity, referred to as the equilibrium and non-equilibrium grassland models, although there 

are still some controversies about these models (Briske et al., 2003; Ellis and Swift, 1988; 

Fernandez-Gimenez, 1999; Oba et al., 2000; Wehrden et al. 2012; Zemmrich et al. 2010). In 

grazing zones with relatively stable climate, vegetation can have stable seasonal growth rhythms 

across the years. Livestock grazing intensity has a direct impact on grassland quality, and over-

grazing leads to the deterioration of grassland quality. However, in grazing zones with highly 

variable climate, climate has a more important effect on grassland quality than livestock grazing 

intensity (Ellis and Swift 1988; Oba et al. 2000). Predictions from the non-equilibrium 

ecosystem model have been tested in grassland areas of Mongolia and China and shown to better 

explain grassland productivity dynamics in the semi-arid and arid portions of the region 

(Fernandez-Gimenez, 1999; Ho, 2001; Zhang, 2007). 

 

Institutional economists interested in studying sustainable governance of natural resources 

focus on analyzing the social-ecological performance of resource institutions. Three institutional 

solutions studied for solving common-pool natural resources problems include privatization, 
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state-control, and community-based natural resource management (Agrawal, 2001; Hardin, 1968; 

Ostrom, 1990, 2005, 2010). In the semiarid and arid grasslands, cooperative use of grasslands, 

which facilitates seasonal and interannual migrations, can reduce uncertainties caused by the 

highly variable precipitation and grassland productivity and avoid pasture over-grazing in the 

years with droughts (Agrawal, 2001; Wilson and Thompson, 1993). Studies have shown that 

clear differences in levels of grassland degradation were achieved under mobile grazing in 

Mongolia versus forced grazing sedentarization in China and Russia (Sneath 1998; Humphrey 

and Sneath, 1999). 

 

The primary objective of this work was to identify the major drivers of the dynamics in 

grassland net primary productivity (NPP) across agro-ecological zones and between IMAR and 

Mongolia after economic transitions in these two political regions. Statistical models have 

commonly been estimated to diagnose the major drivers of land-use and land-cover change 

(Brown et al., 2004; Seto and Kaufmann, 2003), and we used static and dynamic spatial panel 

data models (Elhorst, 2010a; Lee and Yu, 2010) to evaluate the major drivers of dynamics in 

grassland productivity across agro-ecological zones and two political regions of the Mongolian 

grasslands. To the best of our knowledge, this is the first use of spatial panel data models for 

modeling land-use and land-cover change. Satellite images provide a strong basis for measuring 

grassland productivity at a regional scale, as the dependent variable in the spatial panel data 

models. Time-series satellite images offer the opportunity for studying grassland productivity 

over time and space. Specifically, we estimated annual grassland NPP using a remote sensing 

based light-use efficiency (LUE) approach. The independent variables are the biophysical and/or 

socioeconomic factors that we hypothesized to drive the dynamics of grassland productivity, 

including demographic and climatic variables. Because we are concerned with a large area, 

socioeconomic census data are virtually the only source of region-wide data on the 

socioeconomic factors, like livestock populations. 

 

Most parts of the Mongolian grasslands are semiarid and arid regions with high interannual 

variations of precipitation and grassland productivity. For thousands of years, pastoralists have 

adapted to the highly variable and vulnerable physical environment by migrating seasonally and 

inter-annually, and nomadism also preserved the grassland ecosystems. Over the past half 
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century, a large amount of the Mongolian grasslands have been reclaimed for grain and fodder 

production, especially in IMAR, China. In addition, cropland productivity was also included in 

the analyses of grassland productivity dynamics because we were not able to exclude cropland 

from the analysis. We hypothesized that the major drivers of the dynamics in grassland NPP vary 

across agro-ecological zones and two political regions. Specifically, we hypothesized that: grain 

output is the major determinant of NPP dynamics in the farming and farming-grazing zones; 

livestock grazing intensity is the major driver of NPP dynamics in the grazing zone with 

relatively stable climate; precipitation is the major driver of NPP dynamics in the grazing zone 

with highly variable climate; the major drivers of NPP dynamics vary between IMAR and 

Mongolia, given that grazing systems in IMAR are likely also affected by external forces, e.g., 

market incentives and fodder import from farming areas. 

 

To test the hypotheses, we first divided the Mongolian grasslands into several sub-regions, 

based on the livelihood sources of rural households and amounts and the interannual variability 

of precipitation, stated in the non-equilibrium grassland models. Then, we diagnosed the major 

drivers of NPP dynamics in each of these sub-regions by estimating spatial panel data models. 

Finally, we interpreted the results in light of scholarship on efficient resource institutions that can 

govern grassland resources sustainably in the context of the causal factors identified by statistical 

models. The reminder of this chapter is organized as follows. In Section 5.2, we describe the 

study area and the datasets used. Section 5.3 introduces the methodology for classifying the sub-

regions of the Mongolian grasslands and the structures of the static and dynamic spatial panel 

data models used in this work. In Section 5.4, we present the modeling results and interpretations. 

In Section 5.5, we summarize the findings and discuss model limitations and policy and 

institutional implications. 
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5.2 Study Area and Data 

5.2.1 Study Area 

The Mongolian plateau is part of the larger central Asian plateau and has an area of 

approximately 2.6 million km2. It is occupied by Mongolia in the northwest and IMAR, China, in 

the southeast. The study area exhibits gradients of topography, climate, soil, and vegetation (Fig. 

5.1). Climate on the Mongolian plateau is continental with extremely cold winters and warm 

summers. The multi-year mean annual precipitation varies from less than 50 mm in the western 

desert to around 650 mm in the northeastern forests. Grasslands are the dominant ecosystem 

types, covering about 66% (0.78 million km2) and 84% (1.26 million km2) of the total territories 

in IMAR and Mongolia, respectively (Angerer et al., 2008; Zhang, 1992). Over the past 50 years, 

some of the grasslands in IMAR and Mongolia have been reclaimed for grain and fodder 

production, especially in IMAR. During 1985–2005, 20.3% (23.9 million hectares) of the total 

land in IMAR was reclaimed for grain production, fodder production, and other uses (IMIGSD, 

2008). Since the year 2000, the national government of China has implemented a range of 

policies for grassland restoration in IMAR, including cropland abandonment (Waldron et al., 

2010). In Mongolia, 1.34 million hectares of grasslands were converted to cropland from the late 

1950s to the early 1990s (Olonbayar, 2010). The total area of cropland in Mongolia decreased 

24.3% from 1995 to 2009 (ACBM, 2010). The decreasing trend was mainly driven by the 

abandonment of state-owned farms following the economic transition in Mongolia (Olonbayar, 

2010). 
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Fig. 5.1 Spatial distributions of the major land-cover types on the Mongolian plateau. Source: vegetation 
maps of IMAR and Mongolia were respectively provided by the Institute of Botany, China, and the 
Institute of Botany, Mongolia. They were made in the 1990s and 1980s, respectively. The original scale 
of the two vegetation maps was 1:1,000,000. 

 

5.2.2 Time-series of Annual NPP 

 Regional-scale annual NPP (1986−2009) was estimated using a light-use efficiency (LUE) 

approach based on remotely sensed data. Vegetation NPP (g·C·m-2·day-1) represents the total 

amount of solar energy converted into dry plant matter through photosynthesis, and it is 

calculated as the total energy used in plant photosynthesis (referred to as gross primary 

productivity; GPP) subtracted by the energy used for plant respiration for maintenance and 

growth. In the LUE approach, GPP is assumed to be proportional to the amount of absorbed 

photosynthetically active radiation (APAR). APAR is the product of incident photosynthetically 

active radiation (PAR) and the reflectance properties expressed through a vegetation index 

(Running et al., 1999). Annual NPP is accumulated in the growing season of grasslands. In the 

Mongolian grasslands, the growing season is roughly from late April to September. Detailed 

descriptions about the NPP estimation and validation procedures for the annual grassland NPP 

time-series on the Mongolian plateau are provided in Chapter Two. The spatial resolution of the 

annual NPP time-series was 8 × 8 km. 
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5.2.3 Climate and Socioeconomic Data 

We compiled climate data from national standard meteorological stations in Mongolia (17 

stations) and IMAR (47 stations) (CIMAR 2011; CM 2011). We spatially interpolated monthly 

total precipitation and monthly mean temperature (1986−2009) using universal kriging. Previous 

studies using long-term field measurements of aboveground biomass have shown that grassland 

productivity in IMAR was sensitive to mean temperature and total precipitation between January 

and July (Bai et al., 2008). The climate variables accumulated between January and July were 

used as independent variables in the spatial panel data models. County-level annual livestock 

populations (the year-end value), grain output, and human populations of IMAR (1986–2007) 

and the province-level annual populations of people and livestock of Mongolia (1995–2009) 

were compiled from annual census books of IMAR and Mongolia (ACBIMAR, 2010; ACBM, 

2010). Based on census data, cropland occupies only a very small portion (less than 0.5%) of 

Mongolia (ACBM, 2010). Therefore, we did not use data on grain output of Mongolia. To match 

the scale of the socioeconomic data, we spatially aggregated climate and NPP datasets to county 

and province levels in IMAR and Mongolia, respectively. 

 

5.3 Methods 

5.3.1 Mapping Agro-ecological Zones of the Mongolian Grasslands 

 Ecological conditions, including climate and vegetation (Fig. 5.1), vary greatly across the 

Mongolian grasslands. In order to identify the major drivers of the dynamics in grassland NPP 

over space, we assigned the counties and provinces of IMAR and Mongolia to different agro-

ecological zones based on information about sources of rural household income and precipitation 

criteria associated with non-equilibrium model of grassland dynamics (Ellis and Swift, 1988; 

Zhang, 2007). Based on census data (ACBIMAR, 2010; ACBM, 2010), if more than 80% of 

agricultural income of rural households in a jurisdictional unit is from farming or grazing, we 

assigned the unit as farming or grazing zone, respectively. If farming and grazing income were 

both in the range 20%–80% of the total agricultural income, we assigned the unit into farming-

grazing zone. The annual mean precipitation and the interannual variability of precipitation 
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(1986−2009) were used to distinguish grazing zones with different climate conditions (Ellis and 

Swift, 1988; Fernandez-Gimenez, 1997). The grazing zone with relatively stable climate was 

defined as having a mean annual precipitation of more than 250 mm and the interannual 

variability of precipitation, represented by the coefficient of variation of annual precipitation, of 

less than 33%. The grazing zone with highly variable climate was defined as having a mean 

annual precipitation of less than 250 mm and the coefficient of variation of annual precipitation 

of more than 33%. Compared to the vegetation map (Fig. 5.1), we can find that most of meadow 

steppes of IMAR and Mongolia are in the grazing zones with relatively stable climate; and 

typical and desert steppes are mostly in the grazing zones with highly variable climate (Fig. 5.2). 

 

 
Fig. 5.2 Spatial heterogeneity of grassland social-ecological systems in Mongolia and IMAR, China. 

 

5.3.2 Modeling the Drivers of NPP Dynamics with Spatial Panel Data Models 

We began with exploratory analysis of the correlations between annual NPP and explanatory 

variables across time in each county or province, and we assigned each correlation to one of the 

four types: significantly positive (p < 0.05), positive but not significant (p > 0.05), negative but 

not significant (p > 0.05), and significantly negative (p < 0.05). We used the false discovery rate 

(FDR) control procedure to exclude the polygons that may be falsely labeled due to spatial 
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autocorrelations of these variables (Benjamini and Hochber, 1995). The threshold value of FDR 

was set equal to 0.05. Next, we built regression models between the time-series of NPP and 

explanatory variables. A simple cross-sectional regression model that links NPP and 

socioeconomic and biophysical variables does not allow sufficient degrees of freedom to 

estimate statistically reliable models (Frees, 2004; Hsiao, 1986). To increase the reliability of 

modeling results, we used panel data analysis to take advantage of the increased variation and 

reduced collinearity in data that we collected at the smallest possible administrative unit over 

time. Panel data models can be used to relax the common assumptions in traditional cross-

sectional or time-series data analyses that regression parameters are identical for all individuals 

or at all time points. Incorporating heterogeneity into panel data models is often motivated by the 

concern that important explanatory variables have been omitted from panel data models (Frees, 

2004). The obvious generalization of the constant-intercept-and-slope model for panel data is to 

introduce dummy variables to account for the effects of those omitted variables that are specific 

to individual cross-sectional units but stay constant over-time, and the effects that are specific to 

each time point but are the same for all cross-sectional units (Elhorst, 2003, 2010a; Hsiao, 1986). 

Panel data models can be assigned into four types in representing the heterogeneity among 

individual units: fixed effects, random effects, fixed coefficients, and random coefficients models 

(Elhorst, 2010a). 

 

Panel data models are promising options for modeling land-use and land-cover change. They 

allow relationships between the independent variable (drivers of land-use and land-cover change) 

and the dependent variable (measures of land-use and land-cover) to vary across space and time 

(Brown et al., 2004; Seto and Kaufmann, 2003). Because we only modeled NPP dynamics 

following major economic transitions in Mongolian and IMAR, we assumed no time-specific 

effects and focused only on individual (spatial location) specific effects. The spatial panel data 

models, used in this work, have heterogeneous intercepts and homogeneous slope. Spatial 

specific effects may be treated as fixed effects or as random effects. In the fixed effects models, a 

dummy variable is introduced for each spatial unit; while in random effects models, the effects 

that are specific to spatial units are treated as a standard Gaussian random variable. When the 

random effect model is implemented, the units of observation should be representative of a large 

population, and the number of units should potentially be able to go to infinity (Elhorst, 2010a). 
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In this work, we have a limited number of observational units in Mongolia and IMAR. Therefore, 

we chose the spatial fixed effect models. 

 

A simple panel data model with spatial fixed effects is (Frees, 2004) 

it it i ity x                                                                                                                                   (5-1) 

where ity  is the dependent variable value at measurement of unit i  ( 1,2, ,i N  ) and time point t  

( 1,2, ,t T  ); itx  is vectors of observations for m  independent variables ([ ]N T m  );   is a 

matching vector of fixed but unknown model parameters ( [ ]m N T  ); it  is an independently and 

identically distributed error term with zero mean and variance of 2 ; 
i  denotes a spatial specific 

effect. The standard reasoning behind spatial specific effects is that they control for all space-

specific and time-invariant variables whose omissions could bias the parameter estimates in a 

typical cross-sectional model (Elhorst, 2010a). In the case of our modeling of grassland NPP 

dynamics, we may omit some space-specific variables that affect annual NPP dynamics, for 

example soil fertility. The random variables i  and it  are assumed as independent of each other. 

For many panel datasets, the number of units is large relative to the number of observations per 

unit, and these are useful to reveal the relationships among variables and to account for subject-

level heterogeneity (Frees, 2004). 

 

Grassland NPP aggregated at jurisdictional levels tends to have spatial and/or spatio-temporal 

autocorrelations. In order to account for the spatial and/or temporal interactions, we used both 

static and dynamic spatial panel data models to diagnose the drivers of NPP dynamics across 

ecological gradients and between IMAR and Mongolia. When the interactions between spatial 

units of observation are taken into consideration, the panel data model will contain a spatially 

lagged dependent variable or a spatial autoregressive process in the error term, known as the 

spatial lag model and the spatial error model, respectively (Elhorst, 2010a). In this study, we 

chose spatial-lag models to account for the spatial autocorrelations of grassland annual NPP on 

the Mongolian plateau. This assumes that grassland productivity in one study unit was affected 

by the productivities of neighboring units. For example, if a study unit was surrounded by 

neighboring units with high productivities, this unit might have better ground water supply and 
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be less affected by wind erosion. In addition, the spatial fixed effects included in the panel model 

could also account for the missing variables (e.g., soil types) which could explain the spatial 

differences in grassland annual NPP. The spatial lag model posits that the dependent variable 

value is affected by the value of the dependent variable in neighboring units 

1

N

it ij jt it i it
j

y w y x   


                                                                                                                (5-2) 

where 1,2, ,i N  , 1,2, ,j N  , 2,3, ,t T  ,   is called the spatial autoregressive coefficient, 

representing the influence from neighboring units. 
ijw  is an element of the spatial weights matrix, 

and it describes the proximity of two observational units. It is assumed that the spatial weights 

matrix is a pre-specified non-negative matrix. We assumed a constant spatial weight matrix over 

time, based on the inverse distance method to calculate spatial weights between spatial units in 

the software package ArcGIS (ESRI, Redlands, CA, USA). 

 

An important advantage of panel data is the opportunity to model the dynamic patterns in the 

data. Incorporating the correlation structure of the data over time is important for achieving 

efficient parameter estimates, especially for datasets with many observations over time (Elhorst, 

2010a; Frees, 2004). If temporal autocorrelation of the dependent variable is taken into 

consideration, the spatial panel data model becomes a dynamic spatial panel data model. 

, 1 , 1
1 1

N N

it ij jt i t ij j t it i it
j j

y w y y w y x      
 
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where 1,2, ,i N  , 1,2, ,j N  , 2,3, ,t T  . The parameters   and   are measures of the 

relationship between 
, 1i ty 

 and 
,i ty , which are called the temporal and spatio-temporal 

autoregressive parameters, respectively. In this study, grassland annual NPP tended to be 

temporally auto-correlated. Grassland NPP in one specific year was affected by productivities in 

the previous years (e.g., livestock overgrazing tends to cause the degradation in grassland 

productivity). Therefore, in addition to static spatial panel data models, we also ran the dynamic 

spatial panel data models in this study. 

 

Given space limitations, the parameter estimation procedures for static and dynamic spatial 

panel data models are not detailed here. Readers are referred to Elhorst (2010b), Lee and Yu 
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(2010), and Yu et al. (2008) for detailed discussions about using the maximum likelihood 

method to estimate the parameters of the spatial panel data models. The t-test was used to assess 

whether the estimated regression coefficients were significantly different from zero. We 

calculated the goodness of fit (pseudo-R2) to measure the explanatory power of the spatial panel 

data models. In order to test the contribution of each of the independent variables to both static 

and dynamic spatial panel data models, we iteratively removed the independent variables and ran 

the spatial panel data models to calculate the values of pseudo-R2. The static and dynamic spatial 

panel data models used in this study were coded by the authors in MATLAB (Mathworks Inc., 

Natick, Massachusetts, USA), based on the sample MATLAB codes provided in Elhorst (2010b) 

and Lee and Yu (2010). The biophysical and socioeconomic data used for fitting the static and 

dynamic spatial panel data models (Table 5.1) were normalized to 0−1. 

 

Table 5.1 Variables for the static and dynamic spatial panel data models. 
Name Description Definition 

NPP Net primary productivity 
Annual NPP accumulated in the growing season from late April to 
September 

PRECIP Precipitation Total monthly precipitation from January to July 
TEMP Temperature Mean monthly temperature from January to July 
LIVE Livestock population Year end livestock population 
GRAIN Grain output Annual grain output 
POP Human population Annual human population 
DELTA ( ) Spatial autoregression Spatially lagged dependent variable in Equations 5-2 and 5-3 

RHO (  ) Spatio-temporal 
autoregression 

Spatio-temporally lagged dependent variable in Equation 5-3 

GAMMA ( ) Temporal autoregression Temporally lagged dependent variable in Equation 5-3 

 

5.4 Results 

5.4.1 Correlations between NPP and Explanatory Variables 

Temperature was positively correlated with NPP in most parts of Mongolia and IMAR, but 

most of the correlations were not statistically significant (Fig. 5.3a and e). The relationships 

between NPP and precipitation were only significant in two provinces of Mongolia (Fig. 5.3b); 

both of which are in the grazing zone with highly variable climate (Fig. 5.2). In most semiarid 

and arid counties of IMAR, precipitation was significantly correlated with annual NPP (Fig. 5.3f). 

In Mongolia, livestock populations were positively correlated with NPP in the grazing zone with 
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relatively stable climate, although the correlation relationships were not statistically significant 

for most provinces; in Mongolia, the correlations between livestock populations and NPP were 

not significant for most provinces in the grazing zone with high variable climate (Fig. 5.3c). The 

correlations between NPP and human populations were not significant for all provinces. The 

correlations were positive for most provinces in the grazing zone with highly variable climate 

and negative in most provinces in the grazing zone with relatively stable climate (Fig. 5.3d). 

Livestock populations were positively correlated with NPP in most of the grazing counties of 

IMAR (Fig. 5.3g). Annual grain output was significantly correlated with NPP in most of the 

farming and farming-grazing counties of IMAR (Fig. 5.3h). Human populations were 

significantly correlated with NPP in some of the farming counties of IMAR (Fig. 5.3i). 
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Fig. 5.3 Temporal correlations between NPP and explanatory variables in counties of IMAR (1986−2007) 
and provinces of Mongolia (1995−2009): (a) NPP–temperature in Mongolia; (b) NPP–precipitation in 
Mongolia; (c) NPP–livestock populations in Mongolia; (d) NPP–human populations in Mongolia; (e) 
NPP–temperature in IMAR; (f) NPP–precipitation in IMAR; (g) NPP–livestock populations in IMAR; (h) 
NPP–grain output in IMAR; (i) NPP–human populations in IMAR. 

 

 

(i) 

(g) (h)

(f)(e) 

(d)(c) 

(b)(a) 
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5.4.2 Drivers of NPP Dynamics across Agro-ecological Zones 

In the farming and farming-grazing zones of IMAR, precipitation and grain output had 

significantly positive relationships with NPP (Table 5.2). In these two regions, grain production 

was the major human land-use activity, and grain output played a dominant role in influencing 

NPP dynamics. In the two grazing zones of IMAR, precipitation and livestock populations had 

significantly positive relationships with NPP. In IMAR, precipitation played a dominant role in 

influencing annual NPP dynamics in the grazing zone with highly variable climate, and its 

influence relative to livestock populations was lower in the grazing zone with relatively stable 

climate. In Mongolia, precipitation was the only factor that had a significantly positive 

relationship with NPP in the grazing zone with highly variable climate. In this zone, livestock 

populations were negatively correlated with NPP, although the linear relationship was not 

significant. In Mongolia, livestock population was the only factor that was significantly 

correlated with NPP in the grazing zone with relatively stable climate. This zone is mainly 

distributed in the northern mountainous regions with cold and wet climate (Fig. 5.2), and 

precipitation was less important in influencing NPP dynamics. For most of the agro-ecological 

zones, human populations did not have a significant linear relationship with NPP. Temperature 

did not have significant linear relationships with NPP in any zone; the observed relationships 

were negative for most zones. 

 

The relationships between NPP and explanatory variables identified by the spatial panel data 

model were consistent with results of the exploratory correlation analyses (Fig. 5.3). For all of 

the agro-ecological zones, the spatially lagged NPP had significant linear relationships with the 

dynamics of NPP (Table 5.2). The values of the spatial fixed effects of the spatial panel data 

models for IMAR and Mongolia show clear spatial patterns (Fig. 5.4). As a result, the spatial 

fixed effects in the models could account for some of the missing explanatory variables of the 

dynamics of annual NPP. 
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Table 5.2 Static spatial panel data models for NPP dynamics using normalized variables. 

Variable 
IMAR, China   Mongolia  

Farming Farming_grazing Grazing zone_H Grazing zone_S Grazing zone_H Grazing zone_S 

PRECIP 0.1826*** 0.0275** 0.2568*** 0.1684*** 0.0927** -0.0304 
TEMP 0.0054 -0.0264 -0.0157 -0.0909 -0.0149 0.0410 
LIVE 0.0431 0.0084 0.1381** 0.1281** -0.0353 0.1053** 
GRAIN 0.2579*** 0.0468** 
POP 0.1842* 0.0944 0.0962 0.4042* 0.0060 -0.3106 
DELTA 0.1361** 0.6690*** 0.1361** 0.1361** 0.3285*** 0.5107*** 

Pseudo-R2 0.8935 0.8709 0.8640 0.8082   0.8613 0.8894 
*** p < 0.001; ** p < 0.01; * p < 0.05 
Note: Grazing zone_H means the grazing zone with highly variable climate; and Grazing zone_S means 
the grazing zone with relatively stable climate. 

 

 
Fig. 5.4 Values of the spatial fixed effects for the static spatial panel data models of NPP dynamics: (a) 
Mongolia; (b) IMAR. 

 

Adding the temporally lagged dependent variable and the spatio-temporally lagged dependent 

variable into the models did not change the relationships among the variables much. The relative 

importance of the causal factors in all of the sub-regions did not change in any of the models, 

although the temporally lagged dependent variable was significantly correlated with NPP in the 

farming-grazing zone and the grazing zone with relatively stable climate of IMAR (Table 5.3). 

This suggested that the models can provide the basis for constructing unbiased estimators when 

the dynamic aspects of the dependent variable are ignored. The values of the overall goodness of 

fit (pseudo-R2) for the spatial panel data models show that all of the models have high 

explanatory power for the dynamics of NPP (pseudo-R2 > 0.8). The results of testing the relative 

influence of each variable on the model’s ability to predict NPP indicated that the spatially 

lagged NPP had the highest explanatory power for all panel data models. Grain output had high 

explanatory power in farming and farming-grazing zones of IMAR. Precipitation and livestock 

(b)(a) 
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populations had high explanatory power in the two grazing zones of IMAR. In Mongolia, 

precipitation was the only variable that had high explanatory power in the grazing zone with 

highly variable climate, and livestock populations was the only variable that had high 

explanatory power in the grazing zone with relatively stable climate (Tables 5.4 and 5.5). 

 

Table 5.3 Dynamic spatial panel data models for NPP dynamics using normalized variables. 

Variable 
IMAR, China   Mongolia 

Farming Farming_grazing Grazing zone_H Grazing zone_S Grazing zone_H Grazing zone_S 

PRECIP 0.0963*** 0.0294*** 0.1302*** 0.0873*** 0.0925** -0.0517 
TEMP -0.0244 -0.0324 -0.0153 -0.0367 -0.0142 0.0360 
LIVE 0.0381 0.0070 0.0941** 0.0564* -0.0370 0.1103** 
GRAIN 0.1304*** 0.0462** 
POP 0.0749* 0.0803 0.0780 0.1996* 0.0054 -0.2965 
DELTA 0.1325*** 0.6733*** 0.1327*** 0.1310*** 0.3719*** 0.5572*** 
RHO 0.0025 -0.1571 0.0182 -0.1991 -0.1355 -0.0744 
GAMMA 0.0767 0.2077*** 0.0231 0.1545* 0.1682 0.0913 

Pseudo-R2  0.9006 0.8825 0.8913  0.8104     0.8692  0.8996 
*** p < 0.001; ** p < 0.01; * p < 0.05 
Note: Grazing zone_H means the grazing zone with highly variable climate; and Grazing zone_S means 
the grazing zone with relatively stable climate. 

 

Table 5.4 Pseudo-R2 values of static spatial panel data models for NPP dynamics: iteratively removing 
the independent variables to show their explanatory power. 

Variable 
IMAR, China   Mongolia 

Farming Farming_grazing Grazing zone_H Grazing zone_S Grazing zone_H Grazing zone_S 

PRECIP 0.7784 0.7616 0.6343 0.6559 0.6024 0.7093 
TEMP 0.8913 0.8657 0.8586 0.8062 0.8370 0.8125 
LIVE 0.8394 0.8002 0.7049 0.6346 0.7992 0.6250 
GRAIN 0.6123 0.6305 
POP 0.8288 0.7809 0.8086 0.7058 0.8026 0.7338 
DELTA 0.4512 0.3086 0.4979 0.4713 0.4377 0.4107 

Overall 0.8935 0.8709 0.8640 0.8082   0.8613 0.8894 

Note: Grazing zone_H means the grazing zone with highly variable climate; and Grazing zone_S means 
the grazing zone with relatively stable climate. 
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Table 5.5 Pseudo-R2 values of dynamic spatial panel data models for NPP dynamics: iteratively 
removing the independent variables to show their explanatory power. 

Variable 
IMAR, China   Mongolia 

Farming Farming_grazing Grazing zone_H Grazing zone_S Grazing zone_H Grazing zone_S 

PRECIP 0.7812 0.7488 0.6130 0.6496 0.6003 0.7882 
TEMP 0.8981 0.8711 0.8663 0.7993 0.8471 0.8207 
LIVE 0.8431 0.8129 0.6992 0.6125 0.7960 0.6190 
GRAIN 0.6036 0.6254 
POP 0.8259 0.8092 0.8160 0.6981 0.8015 0.7305 
DELTA 0.4225 0.3119 0.4492 0.4637 0.4317 0.4139 
RHO 0.8874 0.8794 0.8831 0.8059 0.8572 0.8701 
GAMMA 0.8890 0.8633 0.8795 0.7937 0.8490 0.8693 

Overall 0.9006 0.8825 0.8913 0.8104   0.8692 0.8996 

Note: Grazing zone_H means the grazing zone with highly variable climate; and Grazing zone_S means 
the grazing zone with relatively stable climate. 

 

5.5 Discussion 

We analyzed the drivers of NPP dynamics across the agro-ecological zones in the Mongolian 

grasslands, using spatial panel data models. Most of the Mongolian grasslands are located in 

semi-arid and arid regions, and precipitation was significantly correlated with NPP, except in the 

grazing zone with relative stable climate in Mongolia. Annual grain production was the major 

reason for NPP dynamics in the farming and farming-grazing zones of IMAR. Livestock 

populations had significantly positive relationships with NPP in the two grazing zones of IMAR 

and the grazing zone with relative stable climate in Mongolia. These relationships were counter 

to the hypotheses generated by the equilibrium grassland model, which postulates that increased 

grazing intensity results in decreased productivity and grassland degradation in places where 

climate is stable (Fernandez-Gimenez, 1999; Zhang, 2007). Possible reasons for these 

counterintuitive results include imports of fodder and hay from other areas (e.g., farming and 

farming-grazing areas), human land-use (e.g., fertilization and irrigation) and livestock 

management activities, impacts of climate hazards on livestock populations, and low grazing 

intensity (i.e., not reaching the carrying capacity of pastures). In addition, there may be some 

endogeneity, in which herders move over time to areas with high productivity because they are 

high and abandon areas of low productivity. Such endogenous interactions cannot currently be 

represented in the spatial panel data models. 
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A number of challenges limit our ability to interpret causation based on the static and dynamic 

spatial panel data models of NPP dynamics. The results of the panel data models for IMAR and 

Mongolia may not be comparable because the data for fitting the spatial panel data models of the 

two regions were aggregated at different spatial and jurisdictional scales. In this case, we do not 

have fine resolution census data (at soum level) of Mongolia. One of the challenges in merging 

remotely sensed data and socioeconomic data is to identify the scale of analysis and modeling. 

Aggregating the values of remote sensing pixels to the scale of census polygons is a common 

way to match the two types of data. Because census data are collected at different jurisdictional 

levels with different sizes, analyzing and modeling the causes of land-use and land-cover change 

often requires attention to the modifiable area unit problem (MAUP), i.e. the shape and size of 

data aggregation affects analysis. MAUP can produce analytical artifacts that result from the 

variations in the sizes and geographic arrangement of geographical units (Brown et al., 2004). 

The relationships inferred among the variables in the models may change as the sizes of spatial 

units change. 

 

Inaccuracies and errors associated with data used in this study can be a problem. The 

estimated NPP included the productivity of cropland, and we were not able to exclude farming 

activities from the study area. Grassland biomass was not the only food source for livestock, 

especially in IMAR. Using imported fodder will definitely affect the model-inferred relationships 

between annual NPP and livestock populations. Compared with Mongolia, the grazing systems 

in IMAR were more strongly affected by fodder imported from farming regions because of 

grassland degradation and incentives for keeping more animals, stimulated by market benefits 

(Li et al., 2007; Zhang, 2007). Further, the data about the populations of people and livestock did 

not measure exactly the variables of interest. The data on human populations used here included 

both urban and rural populations, and we were not able to exclude urban population from total 

population due to lack of detailed data. The data of livestock populations used in the panel data 

models included both locally grazed and stall-fed livestock populations, and we did not have 

detailed census data about the proportions of livestock populations that were stall-fed. This data 

problem was less serious in Mongolia because most animals were locally and seasonally grazed. 
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Livestock management behaviors of herders also affected the statistical modeling results. 

Studies have shown that in IMAR, the number of livestock that herder households plan to 

manage is usually based on two factors: the ability to buy fodder during droughts and the 

anticipated amount of rainfall in the next year (Zhang, 2007). Herders usually do not want to sell 

most of their livestock in the years with droughts when livestock prices were fairly low, and they 

usually want to buy fodder or migrate to greener places to keep their livestock alive and wait for 

the years with more rainfall. These livestock management behaviors of local herders should 

affect the inferred relationships among the variables. Moreover, empirical studies indicate that it 

usually takes four years to recover the livestock populations after severe droughts, due to the 

breeding cycles of livestock (Zhang, 2007).  

 

Assumptions in the spatial panel data models, such as linear relationships among the variables, 

no correlations among independent variables, and no autocorrelations of independent variables, 

also affect the identification the major drivers of NPP dynamics accurately. Panel data modeling 

methods that account for both spatial and temporal autocorrelations of dependent and 

independent variables are still under development (Elhorst, 2010a). In the static and dynamic 

spatial panel data models, the spatial autocorrelation term had significant relationships with NPP. 

This may be caused by other missing explanatory variables, such as soil fertility and ground 

water, which caused the spatial autocorrelation of NPP. In addition, we assumed unidirectional 

causal relationships for the spatial panel data models, i.e., the selected independent variables 

were the dominant causal factors for NPP dynamics. The endogeneity problem caused by the 

bidirectional causal relationships between livestock populations and NPP could affect parameter 

estimations and the interpretations of the modeling results, especially in the grazing zones with 

relative stable climate in which livestock grazing intensity played a more important role in 

affecting NPP dynamics. Model misspecification can lead to spurious results. This is especially 

the case with panel data, where model coefficients can vary both temporally and spatially 

(Brown et al., 2004). The spatial panel data models that can account for the endogeneity problem 

are still underdevelopment. Finally, similar to any other statistical methods, spatial panel data 

models were insufficient to establish causal relationships among variables. However, they can be 

more useful than purely cross-sectional data models in establishing causality. 
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Understanding the drivers of NPP dynamics across heterogeneous landscapes is important for 

providing evidence-based policy recommendations for sustainable governance of grassland 

resources. The heterogeneous drivers of NPP dynamics indicated the necessity of diverse 

resource policies and institutions to accommodate the diversity of grassland social-ecological 

systems and to govern grassland resources sustainably (Ostrom, 2005). In the grazing zones with 

highly variable climate, cooperative use of grasslands is an effective way to minimize the loss 

caused by the high interannual variability of precipitation and forage. Studies have shown that in 

Mongolia, grassland productivity degraded the most in meadow steppe, and this was mainly 

driven by grazing sedentarization and overgrazing in these areas (Olonbayar 2010). In the 

grazing zones with relatively stable climate, controlling livestock grazing intensity is important 

for sustainable use of grasslands. 
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Chapter Six1 

 

Climate Adaptation, Local Institutions, and Rural Livelihoods: A Comparative Study of 

Herder Communities in Mongolia and Inner Mongolia, China 

 

Abstract 

The livelihoods of natural resource dependent herders on the Mongolian plateau are 

vulnerable to climate change and pasture degradation, both of which have threatened the 

sustainability of their economic activities. Therefore, social adaptation to environmental change 

is increasingly important for local sustainable development. This chapter applies an analytical 

framework focused on adaptation, institutions, and livelihoods (AIL) to study climate adaptation 

and local institutions on the Mongolian plateau. A household survey was designed based on the 

AIL framework and implemented in each of three grassland community types (meadow, typical 

and desert steppes) in both Mongolia and China. The analytical results, based on field data from 

diverse institutional, social, and ecological contexts, revealed prominent differences in the way 

herders adapted to environmental change between the two countries. Local institutions, including 

public, private, and civic institutions, played the central role in shaping and facilitating livelihood 

adaptation practices of herder households. However, they have undermined the adaptive capacity 

of herder communities in some ways. While mobile grazing was the predominant adaptation 

strategy for herders in the Mongolian grasslands to cope with uncertainties in precipitation and 

forage, the storage of fodder and hay represents the second most important strategy. Multilevel 

statistical models of fodder purchasing behaviors indicated that livestock management behaviors, 

household financial capital, climate variability, and the status of pasture degradation had 

statistically significant relationships with the percentage of income spent on fodder and hay. 

 

Keywords: Climate adaptation; local institutions; rural livelihoods; Mongolian grasslands; 

sustainability 
                                                            
1Wang, J., Brown, D. G., Agrawal, A., Xing, Q. Climate adaptation, local institutions, and rural 
livelihoods: A comparative study of herder communities in Mongolia and Inner Mongolia, China. 
Manuscript submitted for review. 
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6.1 Introduction 

Climate change has been increasing the vulnerability of livelihoods in the natural resource 

dependent rural populations (Agrawal, 2009; Eakin, 2005; Fernandez-Gimenez et al., 2012). 

Climate dynamics affect rural communities through changes in both the mean values of key 

climate variables and their variability (Lemos et al., 2007). Rural communities have constantly 

adapted to changes in the conditions and dynamics of the climate and natural resources they 

experience. Social vulnerability, adaptation, and adaptive capacity are interrelated terms in the 

analysis of the potential effects of environmental change, especially climate change, on local 

communities and their potential responses to it (Adger, 2006; Smit and Wandel, 2006; Turner II 

et al., 2003). Adaptation to climate change can happen at multiple scales (Adger, 2005), e.g., 

resulting from top-down changes in policies and institutions and bottom-up household 

autonomous responses, and their effectiveness depends on a variety of environmental and social 

contextual factors that are both internal and external to local communities (Agrawal, 2009). 

 

Institutions, which are the formal laws and policies and informal norms and rules that 

structure human interactions and govern the interactions between humans and their environment 

(North, 1990; Ostrom, 1990), can either enhance or undermine the adaptive capacity of rural 

populations for environmental change (Adger, 2000; Agrawal, 2009; Li and Huntsinger, 2011). 

Local formal institutions are the instruments of the national-level policies and institutions. Local 

informal institutions have evolved in response to international, national, and local contexts to 

structure human interactions. In order to reduce climate-related vulnerability, it is crucially 

important to understand how local institutions shape climate adaptation and how local 

institutions can strengthen the adaptive capacity of rural populations. 

 

Local institutions, including public/governmental, private/market, and civic/community 

institutions, play a key role in livelihood adaptation to environmental change, as reflected in the 

adaptation, institutions, and livelihoods (AIL) framework, developed by Agrawal (2009) (Fig. 

6.1). In the context of climate change as a major stressor on the natural resource dependent rural 

populations, local institutions can influence rural livelihoods and their adaptation in three major 

ways: they shape the impact of climate change on rural communities; they shape the ways that 
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rural communities respond to climate change; they are the intermediaries for external support to 

local climate adaptation. External interventions that facilitate climate adaptation can work 

through provision of information, technology, finance, and leadership (Agrawal, 2009). By 

examining livelihood adaptation strategies historically adopted by rural communities, the role of 

local institutions in climate adaptation can be observed. Based on such observations, Agrawal 

(2009) identified five basic livelihood adaptation strategies in the context of environmental risks 

to livelihoods: mobility, which pools risks across space; storage, which pools and reduces 

climate risks over time; livelihood diversification reduces risks across assets owned by 

households or collectives; common pooling, which pools risks across households in local 

communities; and market exchange. He argued that all of these livelihood adaptation strategies 

can only work in certain formal (e.g. property rights) and informal (e.g. trust and reciprocity) 

institutional arrangements, i.e., adaptation never occurs in an institutional vacuum. 

 

 
Fig. 6.1 The framework of adaptation, institutions, and livelihoods (adapted from Agrawal, 2009). 

 

In the semiarid and arid grasslands of the world, such as Africa and Inner Asia, migration has 

been a particularly important livelihood adaptation strategy for pastoralists to live with the highly 

variable precipitation and forage. Migration over large geographic distances represents a key 

adaptation strategy to the high spatio-temporal variability of precipitation and grassland 

productivity. For centuries, institutional arrangements that include flexible property boundaries 

and reciprocal use of pastures have allowed pastoralists to use grassland resources efficiently and 

to cope with frequent climate hazards. Those local institutions have evolved over thousands of 

years and are well fit the biophysical characteristics of local ecological systems. The pastoral 
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system on the Mongolian plateau, including the country of Mongolia and the Inner Mongolia 

Autonomous Region (IMAR), China, was a typical example of the traditional grazing systems. 

Over thousands of years, herders on the Mongolian plateau have adapted to the highly variable 

climate and forage by altering their mobility patterns, shifting livelihood strategies, varying herd 

compositions, and undertaking marketing activities (Fernandez-Gimenez, 1997). However, over 

the past fifty years (1961−2010), climate change and pasture degradation have increased the 

vulnerability of livelihoods for herders on the Mongolian plateau (Chapter Four). In this context, 

we analyzed the interactions among climate-related vulnerability, livelihood adaptation, local 

institutions, and external interventions in the two neighboring countries of Mongolia and China, 

based on the AIL framework (Agrawal, 2009). Comparative analyses of livelihood adaptation 

practices under different institutional arrangements in the two countries can help us understand 

the relationships between local institutions and climate adaptation. This information is 

meaningful for guiding policy interventions to strengthen the adaptive capacity of herder 

communities for future climate change. 

 

We designed a household survey based on the AIL framework to study livelihood adaptation 

of herders on the Mongolian plateau to environmental change. The household survey was 

implemented to sample herder households from a range of environmental conditions within 

Mongolia and IMAR, China. Matched sites in each of three ecological zones in the two different 

countries helped to reduce the differences in underlying ecological variability between the two 

countries and allowed us to focus on differences in adaptation strategies and local institutions 

across the border. Our focus was on the following questions: (1) what were the major livelihood 

adaptation strategies adopted by herders on the Mongolian plateau to cope with climate change 

and pasture degradation over the past ten years?; (2) what kinds of local institutions were those 

livelihood adaptation strategies facilitated by?; and (3) what were the determinants of variations 

in livelihood adaptation choices? For the third question, we focused on identifying the 

determinants of fodder purchasing behaviors of herders. While mobile grazing was the 

predominant adaptation strategy for herders in the Mongolian grasslands to cope with 

uncertainties in precipitation and forage, the storage of fodder and hay represents the second 

most frequent strategy. This strategy has become increasingly important as opportunities for 

mobile grazing have decreased and diminished in Mongolia and IMAR (Chapter Four; 
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Olonbayar, 2010). In addition, we interpreted more fodder purchasing as an indicator that 

households were experiencing effects from pasture degradation and increased climate variability 

as the two major environmental stressors that herders in the Mongolian grasslands have had to 

face to in recent years.  

 

We hypothesized that: (1) livelihood adaptation strategies varied between Mongolia and 

IMAR and these differences reflected differences in local institutions; and (2) local resource 

institutions/policies, livestock management strategies, market influences, climate variability, 

household capital, and the status of pasture degradation were the major determinants associated 

with purchasing fodder and hay by herder households on the Mongolian plateau. Following the 

introduction, Section 6.2 provides the descriptions of the study area, survey design, and field data 

collection. Section 6.3 introduces the methods for analyzing livelihood adaptation practices of 

herders over the past ten years and diagnosing the determinants of fodder purchasing behaviors 

of herders. The results are presented in Section 6.4. Finally, we summarize the findings of this 

work and discuss the implications of the results for building adaptive capacity for environmental 

change on the Mongolian plateau. 

 

6.2 Study Area and Data 

6.2.1 Study Area 

The Mongolian plateau exhibits gradients of topology, climate, soils, and vegetation, but 

vegetation is predominately comprised of grassland ecosystems. About 84% (1.26 million km2) 

and 66% (0.78 million km2) of the total areas of Mongolia and IMAR, are classified as 

grasslands (Angerer et al., 2008; Zhang, 1992). Climate change and pasture degradation have 

been evident on the Mongolian plateau over the past half century. Climate there has been warmer 

and drier since the early 1960s. Between 1961 and 2009, annual mean temperature increased 

about 2.1 C in Mongolia and about 2.0 C in IMAR, and annual precipitation decreased about 

7.0% in Mongolia and about 6.6% in IMAR (Chapter Four). The frequencies of climate hazards 

have also increased. Droughts increased significantly in Mongolia over the past 60 years, 

particularly in the last decade (NCRM, 2009). The worst droughts and winter snowstorms 
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(Dzuds) that Mongolia experienced recently were in the consecutive summers and winters of 

1999, 2000, 2001, and 2002, which affected 50–70% of the total territory. About 12 million 

livestock perished in that period (Chapter Four). The 2010 Dzud was the worst ever, resulting in 

the death of about 8.5 million livestock or 20% of the 2009 national livestock populations in 

Mongolia (Vernooy, 2011). Future climate scenarios for this region indicated that climate will 

continue to become warmer and drier in the next few decades (Christensen et al., 2007). Large-

scale field ecological surveys also indicated that pastures have degraded, and the average 

grassland biomass productivity in IMAR and Mongolia decreased from 1871 to 900 kg/ha and 

from 804 to 369 kg/ha, respectively, between 1961 and 2010 (IMIGSD, 2011; IOB, Mongolia, 

2011). 

 

IMAR and Mongolia have also undergone dramatic social-institutional changes over the past 

five decades. By the early 1960s, IMAR and Mongolia had completed a dramatic social 

transformation from the traditional “communal” ownership into collective economies, which 

happened in the late 1950s and the early 1960s, respectively. They both experienced 

privatization in the mid-1980s and early 1990s, respectively. In IMAR, pastures were allocated 

to individual households and fenced, which is known as “household production responsibility 

systems (HPRS).” Mobile grazing in most parts of IMAR has been sedentarized, characterized 

by farming, stall-feeding, and local grazing. The implementation of HPRS has been recognized 

as the major cause of pasture degradation in IMAR (Humphrey and Sneath, 1999; Li et al., 2007; 

Sneath, 1998; Zhang, 2007). Herder households are trapped in a self-reinforcing cycle of a 

declining resource base and low incomes. This cycle is a result of intense pressures imposed on 

the grasslands by humans and their livestock. Since the early 2000s, the Chinese national 

government has been making and implementing a range of policies to break the self-reinforcing 

cycle of a declining resource base and poverty (Waldron et al., 2010). One of these policies is 

known as “Grain to Green,” which involves converting pastures and farmland to grasslands in 

IMAR (Liu et al., 2008). In Mongolia, animals have been privatized and pastures are under state 

ownership but have become open-access resources, due to the lack of effective resource 

institutions needed for cooperative management. Migration distances and frequencies have 

decreased, especially in the areas with fertile pastures and water resources (Olonbayar, 2010). 

Since the economic reforms of the early 1990s, herders in Mongolia have lost transportation 
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support from the government for migrations and the supplies of hay and fodder in harsh winter 

and spring seasons. Herders with limited household endowments tend to migrate less frequently 

or to be sedentary grazing. Moreover, in Mongolia, the collapse of the collective economy and 

livestock privatization has led to an increase in the domestic subsistence orientation (Humphrey 

and Sneath, 1999). In contrast, the market economy in IMAR is growing rapidly, and herders 

benefit from livelihood opportunities generated by the thriving economy and strong 

governmental investments. 

 

6.2.2. Household Survey 

We selected six case study sites across ecological gradients of the Mongolian grasslands with 

three distributed in each IMAR, China, and Mongolia (Fig. 6.2). Field sites with different social-

institutional and ecological contexts were selected to ensure the surveyed households can 

sufficiently cover many empirical cases of livelihood adaptation practices adopted by different 

social groups. 

 

 
Fig. 6.2 The major vegetation types on the Mongolian plateau (shaded colors) and the locations of 
surveyed herder households (red dots). The vegetation maps of Mongolia and IMAR were made by the 
Institute of Botany, Mongolia (1980s), and the Institute of Botany, China (1990s), respectively. The 
original scale of the two vegetation maps was 1:1,000,000. 
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Based on the local social, institutional and ecological contexts, and consultations with our 

collaborators in Mongolia and IMAR, we identified 51 household livelihood adaptation 

strategies, of which we asked local herders to select the others they had undertaken over the last 

ten years. Based on the characteristics of the 51 adaptation strategies, they were categorized into 

the five major livelihood adaptation types in the AIL framework: mobility, storage, communal 

pooling, livelihood diversification, and market exchange. In addition to mobile herding activities, 

mobility in this study also included urban-rural and rural-urban migrations of herder households. 

Besides climate-driven decision making, these adaptation strategies can also result from pasture 

degradation and non-climate related socioeconomic changes, for example fluctuations in the 

prices of livestock products. We also asked the respondents to identify local institutions that 

facilitated each livelihood adaptation strategy. According to the AIL framework, local 

institutions related to climate adaptation were assigned into three major types: 

public/governmental, private/market, and civic/community.  

 

Local resource institutions/policies (property rights, environmental policies, and 

governmental subsidies), livestock management strategies (stall-feeding, local-grazing, and 

migratory grazing), market influences (accessibility to markets, percentage of sold livestock last 

year, and effects of price fluctuations for livestock products), climate variability (numbers of 

droughts and snowstorms over the last ten years), and household capital, including human (labor 

availability, education, and grazing experience), materials (grazing, farming, and living facilities 

and instruments), natural (livestock population, areas of owned pastures, and accessibility of 

water resources), financial (income sources and expenditures), and social capital (help from 

relatives, neighbors, friends, and local institutions), that were hypothesized to be associated with 

livelihood adaptation practices of herders were all assessed through questions asked of 

households in the questionnaire. Our questionnaire was pretested and revised iteratively on the 

basis of qualitative interviews with local herders, governmental officials, and grassland scientists. 

 

The household survey was implemented in IMAR and Mongolia, in autumn 2010 and spring 

2011, respectively. For each of the six case study sites, villages in IMAR and soums (towns) in 

Mongolia were stratified based on the following variables: distances to major markets/towns, 

population density, livestock grazing intensity, and the average number of livestock owned by 
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each household. Villages and soums in different categories were selected. In each village and 

soum, all of the herder households in that administrative unit were first numbered in order. Then, 

a random sample was selected from each village/soum with a random number generator. At least 

30 herder households were surveyed in each village/soum. If the surveyed units had fewer than 

60 households, we surveyed all of them. In total, 15 villages in IMAR, including 541 herder 

households, and seven soums in Mongolia, including 210 herder households, were surveyed. 

Local grassland survey experts from the two countries assisted us in implementing the household 

surveys. 

 

6.3 Methods 

6.3.1 Descriptive Analyses of Livelihood Adaptation Strategies 

To understand the differences in livelihood adaptation choices across the two countries and 

ecological gradients, we first counted the frequencies of the 51 livelihood adaptation strategies 

adopted by the surveyed herder households, and labeled the associated local resource institutions 

that facilitated those livelihood adaptation choices. By doing this, we were able to compare the 

differences in livelihood adaptation strategies of herder households in the two countries, and the 

local resource institutions that facilitated those livelihood adaptation strategies of herders. In 

addition, we also calculated summary statistics to describe the income and expenditure structures 

of the herder households across three broad vegetation types (meadow, typical, and desert 

steppes) in the two neighboring countries. These descriptive statistics were intended to reveal the 

variations in the livelihoods of the respondents between the two neighboring countries. 

 

6.3.2 Modeling Fodder Purchasing Behaviors of Herders 

As the storage of fodder and hay is the strategy to cope with uncertainties in precipitation and 

forage that herders cited with the second highest frequency, we aimed to diagnose the 

determinants of fodder purchasing behaviors of herders. Understanding the determinants and 

constraints of livelihood adaptation practices is important for making evidence-based policies for 
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building adaptive capacity for future environmental change. For example, policies related to 

whether sedentary grazing is superior to mobile grazing. In this study, field data collected at 

household and village levels were fitted into a series of random-intercept multilevel linear 

models to diagnose the determinants associated with the percentage of income spent on fodder 

and hay. Multilevel statistical models are designed for dealing with nested data, i.e., lower level 

observations that are members of several groups at the higher levels (Gelman and Hill, 2007). 

The dependent variable is affected by independent variables measured at both individual and 

group levels. In this case, the percentage of income spent on fodder and hay at the household-

level was affected by both household-level and village/soum-level variables. Multilevel 

statistical models can be assigned into fixed-effects and random-effects models (Gelman and Hill, 

2007). Fixed-effects models are used when the samples of interest are assumed to not be 

randomly selected and no generalizations are going to be made. Otherwise, random-effects 

models, in which the variance that exists between groups is modeled explicitly by adding random 

terms, may be used. In addition, introducing random terms to models can also prevent model 

residuals from being heteroskedastic (Overmars and Verburg, 2006). 

 

Based on the correlation structure of the household-level variables collected by our surveys, 

we selected only a few of these variables for the subsequent inclusion in the multilevel statistical 

models (Table 6.1). The two variables indicating the livestock management behaviors (stall-

feeding or migratory grazing) of the respondents were included in the models. The percentage of 

sold livestock was included as an indicator of livestock commercialization and market influences. 

Years of grazing experience and total annual income were included in the models to indicate 

human and financial capital, respectively. Income was calculated in Chinese RMB, assuming an 

exchange rate of 225 Mongolian tugrik per RMB. Number of livestock and ownership of living 

and grazing facilities and instruments were included into the models as indicators of household 

material capital. Because the property rights of pastures in Mongolia and IMAR were different, 

the areas of pastures owned by the surveyed households were not comparable. Only winter 

reserves of pastures were reported as the owned pastures of the surveyed households in Mongolia, 

whereas all of the pastures in the surveyed sites of IMAR have been contracted to herder 

households. Therefore, we excluded this variable. We used the accessibility of water resources 

represented by using pump irrigation as an indicator of natural capital of the surveyed herder 
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households. We were not able to collected high quality data related to social capital. Therefore, 

variables related to this category were not included into the models. 

 

Besides the household-level variables, the status of pasture degradation is another 

hypothesized determinant associated with fodder purchasing behaviors. Pasture degradation was 

recorded by the percentages of degraded pastures in each village/soum and measured by the 

Institute of Botany, Mongolia (IOB, Mongolia, 2011), and the Inner Mongolian Grassland 

Institute of Survey and Design, China (IMIGSD, 2011), respectively. Because pasture 

degradation may be correlated with others independent variables that are also related to the 

percent of income spent on fodder and hay, we modeled its influence in a two-stage process. 

First, we diagnosed the correlates of pasture degradation at the village/soum-level. Then, the 

independent variables that were diagnosed as not statistically significant in the resulting model 

were added together with the variable of the percentage of degraded pastures into the multilevel 

statistical models as the village/soum-level variables. We hypothesized that the interannual 

variability of precipitation, livestock grazing intensity, population density, and the percentage of 

herder households with migratory grazing within a village or soum were correlated with the 

status of pasture degradation (Table 6.1). Most of the variables were measured for the year 2009, 

except the interannual variability of precipitation, which was calculated using climate data 

observed at nearby climate stations over the past 30 years. All variables included in the statistical 

models were normalized to 0−1, based on their observed minimum and maximum values. 
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Table 6.1 The socioeconomic and biophysical variables measured at the household and village/soum 
levels. 
Hypothesized Factors Data Collection Items Measurement Unit 

Household-level   

Livestock management Percentage of stall-fed livestock last year % 

 Percentage of seasonally grazed livestock last year % 

Market influence Percentage of sold livestock last year % 

Human capital Grazing experience Years 

Material capital Living, grazing, and farming facilities and instruments RMB 

Natural capital Livestock population SFU 

 Accessibility of water resources (using pump irrigation) Yes/No 

Financial capital Total annual income RMB 

Village/soum-level   

Climate variability Interannual variability of precipitation N/A 

Human impact Grazing intensity SFU/hectare 

 Population density Person/hectare 

Livestock management Percentage of households with seasonal grazing % 

Resource condition Percentage of degraded pastures % 
Note: SFU means sheep forage unit. The SFUs for sheep, cow, cameral, horse, goat are 1, 5, 6, 7, and 0.5, 
respectively (Fernandez-Gimenez et al., 2012). 

 

A simple multiple linear regression (MLR) was first used to diagnose the correlates of the 

status of pasture degradation. 

0i i i iy x r                                                                                                                           (6-1) 

where iy  is the percentage of degraded pastures within the villages/soums, ix  are the explanatory 

variables, ir  is the random error term. The ordinary least squares (OLS) method was used to 

estimate model parameters. The MLR model was performed in the SPSS software package (IBM, 

New York, USA, 2012). 

 

We built five multilevel statistical models with different levels of complexity to model fodder 

purchasing behaviors of herders. Model 1 was a random-intercept model without any 

explanatory variables. The village/soum-level effects were added in the model as the random 

component (Equation 6-2). For this model, the variance of the dependent variable was parsed 

into two parts: one part was due to the household-level variance, and the other part was due to 

the village/soum-level variance. 

, 00 0i j jy U                                                                                                                           (6-2) 
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where ,i jy  is the livelihood adaptation strategy for household i  in village/soum j . In this case, it 

is the percentage of income spent on fodder and hay for herder households, which is a 

continuous variable ranging from 0 to 1. 00r  is the intercept, 0 jU  is the random error term for 

village/soum j . Model 1 was used as the baseline model to estimate if the village/soum-level 

variance in the dependent variable was statistically significant. Different groups of independent 

variables were added in the subsequent models to detect their influences on the variance.  

 

In Model 2, a group of independent variables, related to livestock management and market 

influences at the household-level, was first included. We assumed that these were the most 

important variables for predicting fodder purchasing behaviors of herders. 

, 00 10 1 , 0 , 0i j i j q qi j jy x x U                                                                                                (6-3) 

where 00 10 1 , 0 ,i j q qi jx x      is called the fixed part of the model, where 0q  is the regression 

coefficient, ,qi jx  is the explanatory variable for household i  in village/soum j , 0 jU  is the 

random term for village/soum j . In Model 3, a group of independent variables related to 

household capital were added in. The variables included in Models 2 and 3 were measured at the 

household-level. These two groups of variables were added into the models separately because 

we wanted to explore whether including variables related to household capital can significantly 

increase the predictability of the model. The increased model predictability was measured by the 

reduced variance at the village/soum-level. 

 

The household-level variables can explain part of variability at both individual and group 

levels in the case where the values of the household-level variables are consistently higher or 

lower than the general mean for a given village. For example, the total annual income can be 

consistently higher in some of the villages/soums and lower in others. Besides the household-

level variables, we also included the village/soum-level variables in Models 4 and 5 (which 

differ in their treatments of endogenous grassland degradation, described below). As stated 

above, the second-level variables were selected based on the statistical analyses of the correlates 

of pasture degradation within villages/soums. 

, 00 10 1 , 0 , 01 1 0 0i j i j q qi j j r rj jy x x z z U                                                                         (6-4) 
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where 01 1 0j r rjz z    is the fixed effect of the village/soum-level independent variables, where 

0r is the regression coefficient, rjz  is the explanatory variable for village/soum j . The 

proportion of variance of the independent variables that was accounted for by the village/soum-

level independent variables (
0( )U ) was calculated by dividing the variances at the village/soum-

level (
0var( )U ) by the total variance of the models. The multilevel statistical models were 

performed with the HLM software package (HLM 6.08; Raudenbush et al., 2012). All of the 

multilevel statistical models were estimated using the restricted maximum likelihood (REML) 

method. 

 

6.4 Results 

6.4.1 Local Institutions and Climate Adaptation 

Differences in livelihood adaptation strategies were much larger between the two countries 

than across ecological settings. For this reason, we focus on describing country-level differences 

and the institutional facilitators of the adaptation strategies. Mobility and storage were the two 

most frequent types of livelihood adaptation strategies for herders to adapt to the highly variable 

precipitation and forage (Table 6.2). Stopping migration was the most frequently cited livelihood 

adaptation strategy in IMAR. Other sedentarization related livelihood adaptation strategies, such 

as building permanent houses and winter shelters and improving the storage of fodder and hay, 

also ranked among the most common. These adaptation strategies were mainly facilitated by the 

national environmental policies for recovering grassland quality in IMAR. Local public 

institutions are the instruments for the implementation of the national environmental policies (e.g. 

“Grain to Green” policies). Only a few of the storage and mobility related livelihood strategies in 

IMAR were facilitated by civic/communal institutions, such as using pump irrigation and 

changing the time of hay cutting (Table 6.2). These were bottom-up livelihood adaptation 

strategies, which were mainly implemented through decentralized decision making. In Mongolia, 

mobility-related livelihood adaptation strategies were still the dominant strategies to cope with 

uncertainties in precipitation and forage. However, we can also see indicators of sedentarization 

in livestock grazing in Mongolia, indicated by the storage-related strategies, such as building 
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winter shelters and using pump irrigation. These livelihood adaptation strategies were mostly 

facilitated by civic/community institutions (Table 6.2). 

 

Communal pooling was a frequently used strategy for herders in both IMAR and Mongolia. In 

IMAR, communal pooling was mostly market-oriented taking the form of organized agricultural 

cooperatives for increasing their benefits of livestock production. In contrast to IMAR, 

communal pooling in Mongolia was mostly subsistence-oriented in the form of pooling pastures 

together for migratory grazing. These two communal-pooling strategies were mainly facilitated 

by different types of local institutions. Agricultural cooperatives were mainly promoted by 

governmental and private institutions; more than 90% of the agricultural cooperatives mentioned 

by IMAR respondents were led by local governmental officials (e.g. village leaders). Pooling 

pastures for communal use in Mongolia was a form of self-organized cooperation for pooling 

climate risks across space and improving the efficiency of pasture-use. This kind of community-

based natural resource management in Mongolia was mainly facilitated by traditional social 

norms and rules for mobile grazing, such as flexible pasture boundaries and reciprocal use of 

pastures in the years with climate disasters. In addition, in order to adapt to an increasingly 

warmer and drier climate, digging wells together was a fairly common livelihood adaptation 

practice for the respondents in the two countries (Table 6.2). 

 

Livelihood diversification was mentioned as a strategy that herder communities used to adapt 

to climate change and pasture degradation, and it includes both subsistence-oriented activities 

(e.g. harvesting wild plants) and off-farming incomes (e.g. starting home-based business). The 

rapidly growing Chinese economy has increased off-farm work opportunities for herders in 

IMAR. For example, about one third of the surveyed herder households in IMAR started home-

based private businesses. The income structure was more diversified overall in IMAR than in 

Mongolia (Fig. 6.3). Moreover, market incentives have stimulated herders to feed more animals 

and to introduce new animal species with higher productivity (Table 6.2). In addition, pasture 

rental markets have been emerging and are under development in IMAR. Herders can sublease 

their contracted pastures to others to gain benefits. This can increase pasture-use efficiency and 

decrease climate related vulnerability of herders. The less developed market economy in 

Mongolia created fewer opportunities for herders to have off-farm jobs. Governmental support 
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was important for herder livelihoods in the two countries. Half of the surveyed households in 

IMAR and one third of the surveyed households in Mongolia took loans from their governments. 

Governmental subsidies were also important income sources for herder households in the two 

countries (Fig. 6.3).  

 

Market incentives influenced livestock management behaviors of herders through the prices 

of livestock products. All of the surveyed households were asked what they would do in response 

to rises in the prices of livestock and livestock products. More than 80% of the respondents in the 

two countries thought they would increase their livestock population or change herd 

compositions to gain more profits. Selling more livestock and livestock products were important 

strategies to improve the living conditions of herder households in both IMAR and Mongolia 

(Table 6.2). Improving breed quality and productivity by introducing the “improved” foreign 

breeds was also an important strategy for the two countries, especially in IMAR, China. 
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Table 6.2 The livelihood adaptation strategies of the surveyed herder households in Mongolia, and IMAR, China (2000−2009). 

Adaptation Type Livelihood Adaptation Items 
Mongolia   IMAR, China 

Frequency* Rank† Institutions‡   Frequency* Rank† Institutions‡ 

Mobility Alter the beginning of Migration 54 7 C 33 29 C 

Alter the period/duration of migration 59 5 C 31 30 C 

Alter the end dates of migration 60 4 C 24 31 C 

Alter distance of migration 40 16 C 24 32 C 

Migrate more frequently 48 12 C 18 37 C 

Migrate less frequently 35 21 C 19 34 G 

Stop migration 0 32 470 1 G 
Move all the time 36 18 C 71 20 C 

Migrate to different locations 42 15 C 19 35 G 

Temporary migration to urban areas or abroad  36 19 C 5 48 C 
Temporary migration to other rural areas  40 17 C 2 51 C 
Permanent migration  to urban areas 36 20 C & G 4 49 G 

Storage Improve storage of fodder and hay 51 10 C 353 8 C 

Stall-feed more livestock 0 33 237 16 G & M 
Start hay cutting earlier or later 0 34 59 24 C 

Stop hay cutting  0 35 18 38 C 

Use manure of family herd on the field 0 38 37 28 C 

Reduce expenses by consuming less 47 13 C 366 6 C 

Reduce livestock, surpluses or savings 2 30 C 333 9 C 

Use irrigation 0 39 19 36 C 

Mini dams 0 40 11 42 C 

Use pump or manual irrigation 76 2 C 46 25 C 

Improve management of water points 26 22 C 66 23 C 
Build permanent house 0 41 417 2 G 
Build a new or improve winter shelter 15 23 C 379 4 G 
Begin new veterinary practices 0 42     301 12 G 
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Table 6.2 The livelihood adaptation strategies of the surveyed herder households in Mongolia, and IMAR, China (2000−2009) (Continued). 

Adaptation Type Livelihood Adaptation Items 
Mongolia   IMAR, China 

Frequency* Rank† Institutions‡   Frequency* Rank† Institutions‡ 
Communal Pooling Dig wells together with other people 52 9 C 83 19 C & G 

Start communal water harvesting 0 43 9 44 C 
Pool contracted pastures together 210 1 C 23 33 C & G 
Join agricultural cooperatives 0 44 135 18 M & G & C 

Livelihood 
Diversification 

Increase the time of off-farm working 6 26 C & M 4 50 C & M 
Apply different feed to animals 4 27 C 366 7 C & G 
Adopt new animal species  0 45 318 10 G & M 
Start home-garden agriculture 4 28 C 38 27 C 
Change kind of crops being cultivated  0 46 12 40 C & M 
Change use of plots for grazing or agriculture 0 37 9 43 C 
Sell handicrafts 0 47 12 41 C 
Start tree nursery 0 48 16 39 C & M 
Sublease land 0 49 252 15 G & M 
Eat different foods  49 11 C 77 21 C 
Start a business 0 50 201 17 C & M 
Collect traditional herb medicine 1 31 C 6 45 C 
Start harvesting wild plants  53 8 C 6 46 C 
Plant fruit trees 0 51 6 47 C & M 
Take loans from banks/government 72 3 G 380 3 G 

Market Exchange Buy animals to increase herd size 45 14 M 265 14 M 
Buy animals to improve breed productivity 14 25 M 313 11 M & G 
Sell more animals 55 6 M 376 5 M & G 
Change the herd composition  3 29 M 266 13 M & G 
Sell more agricultural or animal products  15 24 M 81 20 M 
Start early animal breeding 0 36     39 26 G & M 

Note: The numbers of surveyed households in Mongolia and IMAR, China, were 210 and 541, respectively. G represented governmental 
institutions; M represented market institutions; and C represented community institutions. 
* The selected frequency of the livelihood adaptation items. 
† The order for the selected frequency of the livelihood adaptation items. 
‡ The type of local institutions that facilitated the livelihood adaptation items. 
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Fig. 6.3 Income (a) and expenditure (b) structures of IMAR and Mongolia. IM_M, IM_T, IM_D, MG_M, 
MG_T, and MG_D means the study sites in meadow, typical, and desert steppes of IMAR and Mongolia, 
respectively. 

 

6.4.2 Determinants of Fodder Purchasing Behaviors 

The percentage of households undertaking seasonal migrations in each village/soum was the 

only variable that had a statistically significant relationship with the percentage of degraded 

pastures within the surveyed villages/soums for the six case study sites (Table 6.3). Grazing 

intensity was a poor guide to the status of pasture degradation. It was the way pastures were used, 

not only the populations of humans and livestock that was the most important factor in analyzing 

the causes of pasture degradation. The highest levels of pasture degradation were found in the 

sites with the lowest livestock mobility. The status of pasture degradation in the three sites of 

Mongolia was much less serious than the three sites of IMAR. A possible reason for the 

phenomena was that livestock grazing in Mongolia was always managed in such a way that it 

allowed virtually full reproduction of grass productivity. The ecological outcomes of pasture-use 

under different resource institutions, implemented in Mongolian and IMAR, can be illustrated 
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with a striking Landsat-5 satellite image, taken on June 28, 2010 (Fig. 6.4). The location of the 

international border, despite not being added explicitly to the image, is indicative of the different 

grazing systems in operation in the neighboring region of the two countries. 

 

Table 6.3 The estimates of the effects of biophysical and socioeconomic variables on the percentage of 
degraded pastures within the surveyed villages/soums. 
Independent Variables Parameters SE 

Intercept 0.803 0.415 
Interannual variability of precipitation 0.476 1.332 
Percentage of households with seasonal migrations −0.766* 0.106 
Livestock grazing intensity 0.040 0.221 
Population density 0.216 0.184 
   
R2 0.840   
Note: The number of surveyed villages/soums was 22. SE means standard error.  
* p ≤ 0.001. 

 

 
Fig. 6.4 A Landsat-5 satellite image covering the border between China and Mongolia. The area covers 
one of the six case study sites for the household surveys (the site in northeastern Mongolia; Fig. 6.2). 
Lakes are black and dark blue. Areas with the most vegetation are red. Greens and grays indicate 
intermediate amount of vegetation, and pale and white areas are sandy and bare earth. 

 

The results of the multilevel statistical analyses indicated that adding the three explanatory 

variables in Model 2 reduced the variance of the random component at the village/soum-level 

(Table 6.4). The percentage of stall-fed livestock and the percentage of seasonally grazed 

livestock had positive and negative relationships with the percent income spent on forage, 

respectively. These two variables were indicators of livestock management behaviors. The 

percentage of stall-fed livestock affected the independent variable more strongly than the 
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percentage of seasonally grazed. Our survey data indicated that around 12% of the herder 

households in IMAR had seasonal migrations, and the rest of them had combined livestock 

management behaviors of stall feeding and local grazing. In Mongolia, all of the animals were 

managed by combinations of local grazing and migratory grazing. The percentage of sold 

livestock did not have a statistically significant relationship with the percentage of income spent 

on fodder and hay. 

 

Adding the explanatory variables about household capital in Model 3 only slightly reduced 

the variance of the random component at the village/soum-level. This indicated that household 

capital did not provide good predictability of fodder purchasing behaviors. The total annual 

income, as an indicator of financial capital, was the only form of household capital that had a 

statistically significant relationship with the percentage of income spent on forage. Our survey 

data indicated that the average annual income for the respondents in Mongolia was only about 

28% of the average income values for the respondents in IMAR. Herder households with higher 

total income were more capable of purchasing fodder to cope with precipitation uncertainty. 

Grazing experience had a negative and insignificant relationship with the percentage of income 

spent on forage. Livestock populations and grazing and living facilities had positive and 

insignificant relationships with the percentage of income spent on forage. The accessibility of 

pump irrigation, which was also an indicator of sedentarization, had a positive and insignificant 

relationship with the percentage of income spent on forage. 

 

After including the variables of grazing intensity and the interannual variability of 

precipitation, measured at the village/soum-level, into Model 4, the variance of the random 

component at the village/soum-level decreased substantially. Apparently the variance was 

captured by the included explanatory variables at the village/soum-level. The interannual 

variability of precipitation had a significant and positive relationship with the percentage of 

income spent on forage. In the study area, the interannual variability of precipitation increased 

from meadow to typical and desert steppes. The similar trend can be found in the percentage of 

income spent on forage in IMAR (Fig. 6.3). Grazing intensity in this model did not have a 

statistically significant relationship with the percentage of income spent on forage.  
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In Model 5, we replaced mobile grazing at the household-level with pasture degradation at the 

village/soum-level, since mobility was the only statistically significant variable for the status of 

pasture degradation (Table 6.3). The percentage of degraded pastures within villages/soums had 

significant and positive relationships with the percentage of income spent on fodder and hay 

(Table 6.4). After adding the variable of pasture degradation, the significance level of the 

household-level financial capital decreased. The interannual variability of precipitation still had a 

significant relationship with the percentage of income spent on forage. The proportion of the 

village/soum-level variance to the total variance only decreased slightly after including the 

variable of pasture degradation. 
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Table 6.4 The estimations of the determinants for the livelihood adaptation behaviors of purchasing fodder and hay. 

Independent Variables 
Model 1 Model 2 Model 3 Model 4 Model 5 

Parameters SE Parameters SE Parameters SE Parameters SE Parameters SE 

Fixed effects           
Household-level           
Intercept 0.212* 0.032 0.206* 0.032 0.216* 0.044 0.082‡ 0.037 0.006 0.037 
Percentage of stall-fed livestock   0.226* 0.023 0.229* 0.023 0.234* 0.023 0.231* 0.023 
Percentage of seasonally grazed livestock   −0.037‡ 0.023 −0.043‡ 0.022 −0.041‡ 0.022   
Percentage of sold livestock   −0.020 0.021 −0.023 0.021 −0.024 0.021 −0.026 0.021 
Grazing experience     −0.062 0.071 −0.059 0.072 −0.059 0.072 
Total annual income     0.140† 0.045 0.146† 0.049 0.137‡ 0.049 
Number of livestock     0.013 0.039 0.010 0.041 0.020 0.042 
Grazing and living facilities and instruments     0.003 0.034 0.004 0.034 0.020 0.033 
Pump irrigation     0.012 0.012 0.003 0.013 0.006 0.013 
Village/soum-level           
Interannual variability of precipitation       0.331* 0.070 0.266* 0.069 
Grazing intensity       0.056 0.065 0.009 0.045 
Percentage of degraded pastures         0.179* 0.052 
           
Random effects           
var(U0) 0.022*  0.017*  0.016*  0.006*  0.005*  
ρ(U0) 0.461  0.424  0.407  0.216  0.182  
Note: The number of surveyed herder households was 751; the number of surveyed villages/soums was 22. SE means standard error. var(U0) is 
the variance component at the village/soum-level. ρ(U0) is the proportion of variance at the village/soum-level to the total variance. 
* p ≤ 0.001. 
† p ≤ 0.01. 
‡ p ≤ 0.05. 
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6.5 Discussion 

Most of the Mongolian grasslands experience high interannual variability of precipitation and 

forage. Seasonal and interannual migrations used to be the dominant strategies of herders to cope 

with precipitation uncertainty. Traditional mobile grazing was assisted by only small amount of 

fodder and hay input for winter and spring seasons. There has been a decrease in grazing 

mobility for both IMAR and Mongolia over the past century (Chapter Four). The striking 

difference between Mongolia and IMAR is that pasture in IMAR has been allocated to individual 

households. In contrast, Mongolia still has a more flexible and mobile grazing system, although 

the frequencies of migrations have decreased (Olonbayar, 2010). Climate change and pasture 

degradation have increased livelihood vulnerability of herders on the Mongolian plateau. Social 

adaptation, in the forms of adjustments to policies, institutions, and livelihood strategies, are 

important for local sustainable development. Our survey data show that herder households in the 

two neighboring countries have taken divergent paths in adapting to environmental change. Their 

livelihood adaptation choices have been shaped by local public, private, and civic institutions. 

The roles of local institutions in facilitating and undermining adaptive capacity of herder 

communities for environmental change were illustrated in our comparisons of the survey 

responses in the two countries. 

 

Livelihood adaptation strategies of the respondents in IMAR were mostly facilitated by strong 

governmental interventions and market incentives created by the rapid growing Chinese 

economy (Table 6.2). These have increased the adaptive capacity of local herders in terms of 

finance, technology, information, and leadership. However, they have undermined the adaptive 

capacity of local herders by changing social structures of herder communities and making mobile 

grazing less feasible. Stopping migration was the top livelihood adaptation choice for the 

respondents in IMAR (Table 6.2). Grazing sedentarization is the major goal of the current 

environmental policies, including “Grain to Green,” implemented in IMAR. Herders have been 

subsidized to stall-feed livestock and to reduce herd size (Chapter Four). However, sedentary 

grazing has increased the cost of livestock production (Li et al., 2007). Based on responses to 

survey questions about income and expenses, about 40% of the respondents in IMAR had 

negative household incomes for the year 2009. 
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In addition, herders in IMAR are encouraged by local governments to feed “introduced” high-

productivity livestock species. Our data show that about 58% of the respondents in IMAR 

selected this livelihood adaptation choice. However, the introduced breeds are usually not 

adapted to local climate conditions. Therefore, special requirements, such as warm winter 

shelters and large inputs of fodder and hay, are usually required. The introduction of foreign 

livestock breeds to the Mongolian grasslands, especially in IMAR, seems to have contributed to 

the reduction in mobility over the past half century (Humphrey and Sneath, 1999). Empirical 

studies also showed that this kind of technology innovation also undermined the adaptive 

capacity of local herders for climate hazards (Li and Li, 2012). 

 

In contrast to IMAR, livelihood adaptation strategies of the respondents in Mongolia were 

mainly facilitated by civic/communal institutions in terms of traditional norms of mobile grazing 

(Table 6.2). Governmental policies and institutions were much less influential in Mongolia than 

in IMAR. This was related to the retreat of governmental investments in Mongolia after the 

economic reform in the early 1990s. For example, our survey data show that the death rates of 

livestock species were much higher in Mongolia than in IMAR for the year 2009. Most animals 

died due to the lack of forage supplies and migrations in the harsh climate conditions of winters 

and early springs. Herders in Mongolia received less governmental support than herders in 

IMAR. Moreover, the incomes sources of herder households were also less diversified in 

Mongolia than in IMAR (Fig. 6.3). In Mongolia, most herder households produce the same 

livestock products, which cause a lowering of prices and few guaranteed purchasers. The high 

transportation cost due to distant markets also increases the cost of producing livestock products 

(Humphrey and Sneath, 1999).  

 

In addition, governments in Mongolia and IMAR responded differently to the negative 

consequences of market incentives. Take the cashmere as an example. Goats were previously 

less important, in part because they are not as well adapted to the climate conditions in the 

Mongolian grasslands. The rapid increase of goat populations was mainly stimulated by the 

cashmere price in the international markets (Ojima and Chuluun, 2008). The eating habit of goats 

causes damage to the vulnerable grassland environment on the Mongolian plateau (Neupert, 
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1999). In IMAR, herders have been forbidden to graze goats since the early 2000s. Changing 

herd compositions in IMAR was mainly forced by the governmental policies. However, there 

have been no effective policy interventions to reduce goat populations in Mongolia. 

 

With grazing sedentarization and pasture degradation, the storage of fodder has become one 

of the major livelihood strategies to cope with precipitation uncertainty in the Mongolian 

grasslands, especially in IMAR, China. The cost of fodder and hay also became one of the major 

household expenditures for herders on the Mongolian plateau (Fig. 6.3b). This has increased the 

livelihood vulnerability of herders to climate variability, especially in IMAR, China. The results 

of our statistical analysis indicate that livestock management practices (stall-feeding and 

migratory grazing), household financial capital, the interannual variability of precipitation, and 

the percentage of degraded pastures within villages/soums had statistically significant 

relationships with the percentage of income spent on fodder and hay (Table 6.4). As discussed 

above, livestock management behaviors in the two political regions were mainly shaped by local 

resource institutions. Herder households in IMAR with more financial capital were more capable 

of purchasing fodder to cope with precipitation uncertainty. With grazing sedentarization, poor 

herders who cannot afford buying fodder to feed their livestock were more vulnerable to climate 

variability. 

 

The percentage of income spent on fodder and hay decreased from desert to typical and 

meadow steppe. The pattern was more apparent in IMAR than in Mongolia (Fig. 6.3). The 

spatial variation of climate variability, which has the same trend along the same ecological 

gradient, may be the major reason for the phenomena. The percentage of degraded pastures 

within villages/soums had positive relationships with the percentage of income spent on fodder 

and hay (Table 6.4). For all of the six study sites, the status of pasture degradation was less 

serious in Mongolia than in IMAR. Our research results also showed that the level of mobile 

grazing was the only variable that had statistically significant relationship with the status of 

pasture degradation (Table 6.3). Because of the effect of livestock management practices on 

pasture degradation and the effect of pasture degradation on fodder purchasing behaviors, we 

concluded that livestock management practices were an underlying determinant for fodder 

purchasing behaviors of herders on the Mongolian plateau. 
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Grazing sedentarization has increased the livelihood vulnerability of herders on the 

Mongolian plateau to environmental change, especially in IMAR. Therefore, the traditional 

strategies of mobile grazing, flexible property boundaries, and reciprocal use of pastures 

continue to be as the key strategies for herders on the Mongolian plateau to adapt to climate 

change and pasture degradation. With the sedentarization trend of livestock grazing over the past 

decades, fodder storage became another key strategy to cope with uncertainties in precipitation 

and forage, especially in IMAR, China. The results of multilevel statistical modeling of fodder 

purchasing behaviors of herders implied that, besides adjusting local resource institutions, 

grassland restoration and increasing household capital are also significant approaches to building 

adaptive capacity of herder communities for environmental change, although household financial 

capital was the only statistically significant variable among all of the household variables. 

Recovering grassland quality can improve the resilience of grassland ecosystems to climate 

change. Increasing human capital in terms of education and health, social capital in terms of trust 

and reciprocity, natural capital in terms of the accessibility of grassland and water resources, 

material capital in terms of grazing facilities and instruments, and financial capital in terms of 

governmental low interest loans and subsidies are also important ways for building adaptive 

capacity. 
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Chapter Seven1 

 

Exploring the Role of Local Institutions in Adaptation to Environmental Change in the 

Semiarid and Arid Mongolian Grasslands: An Agent-Based Modeling Approach 

 

Abstract 

Communal pastures in the traditional grazing societies like Inner Mongolia, China, have been 

privatizing to herder households over the past decades. Migration, which used to be the major 

strategy for local herders to adapt to the highly variable environmental condition, has become 

less feasible. As a result, the livelihoods of local herders have become more vulnerable to 

climate variability and change. This paper presents an agent-based modeling approach to explore 

efficient resource institutions in adaptation to climate change and grassland degradation in the 

semiarid and arid Mongolian grasslands. Based on an agent-based model informed by empirical 

studies, we analyzed the social-ecological performance of alternative resource institutions (i.e. 

sedentary grazing, pasture rental markets, and reciprocal use of pastures) and their combinations. 

We also explored effective social mechanisms for promoting and maintaining cooperation 

among herders. The modeling results showed that under certain conditions resource institutions 

that can facilitate cooperative use of pastures (i.e. pasture rental markets and reciprocal use of 

pastures) generated better social-ecological performance (i.e. average net benefit of agent and 

grassland quality) than the performance of sedentary grazing. Agent diversity and social norms 

were important for promoting cooperation among herders. Social structures (i.e. the density of 

kinship connections) and governmental regulations were important for solving the free-rider 

problem and maintaining cooperation. 

 

Keywords: Social adaptation; climate change; grassland degradation; local institutions; agent-

based modeling; Mongolian grasslands 
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7.1 Introduction 

In the semiarid and arid grasslands of the world, such as Africa and Inner Asia (i.e., Southern 

Russia, Mongolia, and Northern China), herders used to have the tradition of migrating in large 

geographic distances to adapt to the highly variable precipitation and grassland productivity. 

Flexible property boundaries, reciprocal use of pastures, and underlying social networks allowed 

herders to use grassland resources efficiently and to survive in the regions with frequent climate 

hazards (Fernandez-Gimenez, 1997; Humphrey and Sneath, 1999; Mwangi, 2007). Those local 

institutions have evolved over thousands of years and can well fit the biophysical characteristics 

of local environment. However, in some countries like China, communal pastures in those 

traditional grazing societies have been privatizing to individuals over the past half century 

(Humphrey and Sneath, 1999; Mwangi, 2007). Local governments in those societies anticipated 

that private ownership could create incentives for herders to adopt better pasture-use practices, 

which could consequently increase pasture-use efficiency and livelihood benefits to herders 

(Mwangi, 2007; Williams, 2002; Zhang, 2007).  

 

The two political regions on the Mongolian plateau, including Mongolia and the Inner 

Mongolia Autonomous Region, China, have been transforming from centrally planned to market 

economies since the mid-1980s and the early 1990s, respectively. Pastures in Inner Mongolia 

have been privatizing to individual households since then, and livestock was privatized at the 

beginning of their economic transformations. Most pastures have been contracted to individual 

households and fenced. In Mongolia, pastures there have become open-access resources due to 

lack of effective resource institutions. The process of grazing sedentarization has been almost 

completed in Inner Mongolia. In Mongolia, poor families, who could not afford long-distance 

migrations, migrated less frequently or became sedentary grazers around water points or fertile 

pastures (Olonbayar, 2010). Along with grazing sedentarization, the social norms of reciprocal 

use of pastures that the traditional nomadism was relied on have been disappearing (Li and 

Huntsinger, 2011; Upton, 2009). Migration, which used to be the major adaptation strategy for 

herders to cope with uncertainties in precipitation and grassland productivity, has become less 

feasible. 
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Studies based on large-scale field sampling showed that grassland productivity in Mongolia 

and Inner Mongolia has degraded seriously since the early 1960s. Between 1961 and 2010, the 

average grassland biomass productivity in Inner Mongolia and Mongolia had decreased from 

1871 to 900 kg/ha and from 804 to 369 kg/ha, respectively (IMIGSD, 2011; IOB, Mongolia, 

2011). Grazing sedentarization has been recognized as one of the major reasons for grassland 

degradation on the Mongolian plateau, especially Inner Mongolia (Humphrey and Sneath, 1999; 

Li et al., 2007; Sneath, 1998; Williams, 2002; Zhang, 2007). Besides grassland degradation, 

climate on the Mongolian plateau has been getting warmer and drier, and the frequencies of 

climate hazards have increased over the past half century (Chapter Four). For example, climate 

hazards caused disastrous outcomes on the livelihoods of herders in Mongolia between 2000 and 

2010. Drought and winter snowstorms between 1999 and 2002 caused the death of 12 million 

animals (Chapter Four). Winter snowstorms in the spring of 2009 resulted in the death of 8.5 

million animals (Vernooy, 2011). Until recently, the major rural income of Mongolia and Inner 

Mongolia was still from herding (Olonbayar, 2010; Waldron et al., 2010). Grassland degradation 

and climate change have increased the cost of livestock grazing and endangered the livelihoods 

of local herders. Poverty has been prevalent in herder communities of Inner Mongolia and 

Mongolia (Olonbayar, 2010; Zhang, 2007). 

 

In this chapter, we study social adaptation to climate change and grassland degradation in the 

Mongolian grasslands. Social adaptation to environmental change can result from top-down 

changes in policies and institutions and bottom-up household-level autonomous responses 

(Agrawal, 2009). Research based on extensive case studies has shown that local institutions 

played the central role in shaping and facilitating livelihood adaptation strategies of rural 

populations for climate change (Agrawal, 2010). Institutions, including formal laws and policies 

and informal norms and rules, are humanly devised constraints that shape human interactions and 

reduce social uncertainties (North, 1990; Ostrom, 1990). The institutions for sustainable 

governance of natural resources have been studied for a long time (Agrawal, 2001; Ostrom, 1990, 

2005, 2009; Wilson and Thompson, 1993). 

 

The development of local institutions for adapting to environmental change usually involves 

collective action of local people. The free-rider problem is an innate problem of collective action. 
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The existence of free-riders affects the maintenance of cooperation. For example, in a pasture-

use group that herders pool their pastures for communal grazing, some herders may overgraze 

communal pastures to increases their own benefits, and some herders may not let other herders 

access their pastures. The free-rider problem can cause the collapse of collective action. Over the 

past decades, several social mechanisms have been identified for solving the free-rider problem 

and maintaining cooperation. The first mechanism is to keep the size of the cooperation group 

small, which is also known as “small-scale collective action (Olson, 1965).” The organization 

cost of cooperation increases with increases in the size of a cooperation group. Communication 

and monitoring become difficult when the size of cooperation group is large. The second 

mechanism is the rights of free entry and exit, which is also known as “voluntary games (Nowak, 

2006).” If agents cannot benefit from being in a cooperation group, and they cannot afford the 

exit cost of leaving a cooperation group, then free-riding will be the dominant strategy for the 

agents. Otherwise, the rights of free entry and exit create “threats” for members in a cooperation 

group who plan to play free-ride. Kinship is another important mechanism for maintaining 

cooperation (Nowak, 2006). Kinship can lower the organization cost of cooperation by making 

communication and trust easier. In addition, punishing free-riders, also known as negative 

selective incentives (Nowak, 2006; Olson, 1982), is also an important social mechanism for 

maintaining cooperation. Punishment creates a cost to an agent who plays free-ride. The above 

four social mechanisms are complementary for maintaining cooperation. 

 

My primary goal was to study efficient resource institutions for social adaptation to climate 

change and grassland degradation in the semiarid and arid Mongolian grasslands with high 

environmental variability. We aimed to answer the following question: what are the efficient 

resource institutions that can improve social-ecological outcomes of pasture-use in the semiarid 

and arid Mongolian grasslands in the context of climate change? We hypothesized resource 

institutions that can facilitate cooperative use of pastures can generate better social-ecological 

performance than the performance of sedentary grazing without cooperation. Based on an agent-

based model informed by empirical studies in Inner Mongolia, we tested this hypothesis and 

explored effective social mechanisms for promoting and maintaining cooperation among herders. 

Agent-based modeling is a useful tool to dynamically examine the social mechanisms for 

promoting and maintaining cooperation. 
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 Agent-based modeling is a promising quantitative methodology for social science research 

(Axerold, 1997; Epstein, 2007; Epstein and Axtell, 1997; Miller and Page, 2007). Agent-based 

models are process-based models that can be used to explain empirical phenomena, to help 

design and choose institutions, and to generate alternative scenarios of agent actions and 

interactions. Agent heterogeneity, learning and adaptation, and social interactions can be easily 

included in the computational models. In the field of sustainability in social-ecological systems, 

agent-based models have been used in modeling urban sprawl and ecological effects (Brown et 

al., 2008), deforestation and reforestation (Manson and Evans, 2007), pasture dynamics and 

management (Bell, 2011), and environmental migrations (Kniveton et al., 2011). The decision-

making process of agents (e.g., land users and managers) and their social interactions can be 

explicitly included in the models. Agent-based models also have been used for studying 

institutions for sustainable governance of common-pool natural resources (Bravo, 2011; 

Deadman et al., 2000; Janssen and Ostrom, 2006a). Although agent-based models are effective 

tools for exploring alternative scenarios of human-environment interactions, they should be built 

on social theories that can explain agent actions and interactions. If these models are expected to 

have real-world policy implications, they should be informed by empirical studies (Janssen and 

Ostrom, 2006b). 

 

Following the introduction, we introduce the empirical background of the agent-based model 

of resource institutions in Section 7.2. Section 7.3 presents the conceptual agent-based model of 

resource institutions. Section 7.4 illustrates the designed computational experiments. Section 7.5 

provides the modeling results. Finally, we discuss the real-world implications of the modeling 

results and possible model extensions. 

 

7.2 Empirical Background 

We developed our agent-based model of resource institutions using information derived from 

empirical studies in the Mongolian grasslands. Over the past decades, self-organized resource 

institutions (i.e., pasture rental markets and reciprocal pasture-use groups) have been emerging in 

the Mongolian grasslands for adapting to climate change and grassland degradation. Pasture 

rental markets have been emerging in Inner Mongolia since the mid-1990s (Li and Huntsinger, 
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2011; Zhang, 2007), through which herders can rent pastures from others to minimize the loss 

caused by climate hazards. Herders leasing pastures to others also gain benefits from pasture 

rental fees. Therefore, the emergence of pasture rental markets can increase pasture-use 

efficiency when drought happens. However, there are barriers to the development of pasture 

rental markets. Most herders are only willing to lease pastures to their relatives and friends 

because strangers may overgraze their rented pastures and/or destroy water facilities. Moreover, 

the transportation cost of migration and the pasture rental fee are usually too expensive for local 

herders. Therefore, most herders do not migrate, except when they may lose most of their 

animals in climate hazards (Zhang, 2007). Besides pasture rental markets, reciprocal pasture-use 

groups also have been emerging in both Inner Mongolia and Mongolia over the past decades. 

These cooperation groups were mostly self-organized by relatives, friends, and neighbors for 

improving pasture-use efficiency and adapting to climate change (Bijoor et al., 2006; Vernooy, 

2011). 

 

Besides empirical studies in literature, we also designed a household survey and implemented 

it in both Inner Mongolia and Mongolia to understand the interactions among climate adaptation, 

local institutions, and rural livelihoods of herder communities in the Mongolian grasslands. We 

surveyed 541 herder households in 15 villages of Inner Mongolia and 210 households in seven 

soums/towns of Mongolia, which were distributed across the major vegetation types of the 

Mongolian plateau, in autumn 2010 and spring 2011, respectively (Fig. 7.1). The content of the 

household survey included herders’ demographic and socioeconomic attributes, pasture-use and 

livestock management behaviors, and livelihood adaptation strategies to changes in climate, 

grassland productivity, policies, and market prices of livestock products over the past ten years. 

Our household survey results showed that pasture rental markets emerged in our sampled 

villages in Inner Mongolia, and the pasture rental fee was one of the major household income 

sources for herders there. Reciprocal pasture-use groups emerged in our household survey sites 

of Inner Mongolia and Mongolia. The results of our household survey also showed that local 

institutions, including local public/state, private/market, and communal/civic institutions, played 

the central role in shaping and facilitating livelihood adaptation strategies of herders. The 

developments of pasture rental markets and pasture-use groups in Inner Mongolia were mainly 

facilitated by local public/state and private/market institutions. The emerged pasture-use groups 
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in Mongolia were mainly facilitated by local communal/civic institutions. Empirical studies 

about grassland social-ecological systems on the Mongolian plateau from literature and our 

household survey informed our design of social mechanisms included in the agent-based model 

of resource institutions. Moreover, empirical data also helped to calibrate the values of model 

parameters. 

 

 
Fig. 7.1 Major vegetation types (shaded color) and the surveyed herder households (red dots) in the 
Mongolian grasslands. Vegetation maps of Mongolia and Inner Mongolia were made by the Institutes of 
Botany, Mongolia (1980s) and China (1990s), respectively. 

 

7.3 The Conceptual Agent-Based Model 

7.3.1 The Agent Landscape and Agents 

The agent-based model includes an agent landscape, represented by equally divided pasture 

parcels. Pastures and sheep were owned privately by agents. In the spring, grass grew to certain 

heights. The grass growth rates were drawn from a normal distribution, with a mean and a 

standard deviation. Drought was the exogenous driver that caused changes in grass productivity. 

In the summer, drought hit the parcels of the agent world randomly with a probability, and each 

parcel had the same probability to be hit. The productivities of grass on the parcels hit by drought 
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and their neighborhood parcels (i.e., within a radius) were influenced by drought. If the agents, 

who owned the parcels influenced by drought, could not find available parcels to migrate to, they 

would overgraze their pastures. This would consequently cause decreased grass growth rates (i.e., 

grassland degradation). We assumed that if the biomass left after grazing was less than 10% of 

the initial grown biomass, this parcel would have decreased grass growth rates for the subsequent 

model step (Table 7.1). This was to represent damage to plants and roots that can occur when 

pastures are overgrazed. The parcels with decreased grass growth rates were counted as degraded 

pasture parcels. Biomass for each parcel was set to zero at the end of each model step, and grass 

grew from zero at the beginning of the next step. This was to represent the seasonal nature of 

biomass production. 

 

The model included two types of agents: herder agents and the village manager agent. Agents 

with the same last name were connected as relatives. Otherwise, they were strangers. Agents 

with the same last name were distributed randomly in the agent world. Herder agents were 

assigned into rich and poor agents based on the number of sheep they owned. At the end of each 

model step, agents sold their sheep to the market to gain benefits. The influence of market 

incentives on livestock management behaviors of herders was simplified in the model. We 

assumed that the number of sheep owned by each agent was stable over time, and the number of 

sheep owned by each agent produced the same number of sheep for the next model step. During 

drought, agents would lose some proportions of their sheep and grass productivity. They had to 

buy sheep and fodder from markets to make up for the loss of sheep and fodder caused by 

drought. The sheep prices in normal and drought years were set as different (Table 7.1). Agents 

would lose more benefits if they sold all of their sheep during drought. This was caused by the 

decreased sheep price in drought years. 

 

In this work, we first built the resource institutions of sedentary grazing into the model. Then, 

we added the cooperation mechanisms of pasture rental markets and reciprocal use of pastures 

into the model, separately and together, to analyze social-ecological outcomes of pasture use 

under alternative resource institutional scenarios (Fig. 7.2). The social outcome of pasture-use 

was measured by the average net benefit of agents, and the ecological outcome of pasture-use 

was measured by the number of undegraded parcels in the agent world. 
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Table 7.1 The values of the major parameters of the agent-based model. 
ID Parameter name Value Source 

1 pasture size per parcel 100 ha Assumed 
2 drought probability in the agent world 10% This study 
3 consumption rate of grass per sheep 1 tonne/year This study 
4 grassland productivity in a normal year 1.5 tonne/ha (SD: 0.3) IMGSD, 2011 
5 grassland productivity for the next year after over-grazing 1.0 tonne/ha (SD: 0.2) IMGSD, 2011 
6 drought radius (number of parcels impacted by drought) 1 (9 parcels) Assumed 
7 percentage of productivity loss: the parcel hit by drought 80% Assumed 
8 percentage of productivity loss in drought: neighborhood parcels  50% Assumed 
9 percentage of agents willing to share pastures to strangers 100% Assumed 
10 searching radius of a rich agent 2 Assumed 
11 searching radius of a poor agent 1 Assumed 
12 maximum trials for searching available pastures 3 Assumed 
13 percentage of rich agents in the agent world 20% This study 
14 number of sheep owned by a rich agent 50 This study 
15 number of sheep owned by a poor agent 30 This study 
16 sheep price in a normal year 1/sheep This study 
17 sheep price in a drought year 0.5/sheep This study 
18 fodder price 0.25/tonne This study 
19 percentage of sheep loss caused by drought without migration 50% Zhang, 2007 
20 transportation cost per distance 1/parcel distance Zhang, 2007 
21 price willingness to ask for leasing pastures 10 (SD: 2) Zhang, 2007 
22 price willingness to pay relative to the percentage of total benefit 25% (SD: 5%) Zhang, 2007 
23 organization cost of cooperation for strangers 0.1/person Assumed 
24 organization cost of cooperation for relatives 0.01/person Assumed 
25 increasing rate of cooperation benefit with each additional agent 1%/person Assumed 
26 exit cost of leaving a cooperation group 1 Assumed 
27 punishment cost of being found as a free-rider 20 Assumed 
Note: The numbers of sheep owned by rich and poor agents, percentages of rich and poor agents, sheep 
prices in normal and drought years, and fodder price were calibrated using our household survey data of 
this study. These values were set proportional to the original values for the convenience of calculation. 
SD means standard deviation. 
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Fig. 7.2 The conceptual agent-based model of resource institutions. 

 

7.3.2 Sedentary Grazing 

Each step, agents grazed their sheep on their own parcels. During drought, agents could not 

migrate to other parcels. The net benefit of agents under the institutional scenario of sedentary 

grazing was calculated by 

1 ( )i i i i iU n n B C                                                                                                                               (7-1) 

where 
1iU  is the net benefit of agent i ; 

in  is the number of sheep owned by the agent i ; iB  is the 

benefit from selling one sheep; and 
iC  is the cost of buying sheep and fodder when drought 

happens. The average net benefit of agents and the number of undegraded parcels in the agent 

world were measured at each model step. 
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7.3.3 Pasture Rental Markets 

When the mechanism of pasture rental markets was included in the model, agents, who owned 

the parcels hit by drought, would search in their neighborhoods for available parcels to migrate 

to. The available parcels were defined as the parcels that had enough left biomass to support 

migrants. The number of migrants one agent could support was based on how much biomass 

they had left on the basis of without causing grassland degradation in the subsequent model step. 

We assumed poor agents had a smaller searching radius than rich agents (Table 7.1). The 

searching agents bid on available pastures in their neighborhoods. The price that an agent was 

willingness to pay was based on the budget of the agent and a random component, which was 

drawn from the standard normal distribution. The budget for each agent was based on the 

number of sheep they had. The price that an agent was willing to ask was drawn from a normal 

distribution with a mean and a standard deviation (Table 7.1). 

 

As one way to represent the bounded rationality of agents, we assumed that a searching agent 

could bid on at most three parcels. The agents, who offered the highest prices for the available 

parcels, could put those parcels on their final selection list. Finally, these agents calculated 

whether they could benefit from migrating to the nearest parcel in their selection list. If they 

could benefit from migration, they paid pasture rental fees and the transportation cost of 

migration. Otherwise, they stayed on their own pastures. Moreover, not all agents were willing to 

lease pastures to strangers, and this was a parameter set in the model (Table 7.1). The agents, 

who were willing to lease pastures to strangers, were distributed randomly in the agent world. At 

the end of each model step, all migrant agents moved back to their parcels. The net benefit of 

agents under the institutional scenario of pasture rental markets was calculated by 

2 0 0 1 2( )i i i i i i i iU n n B B C C C                                                                                                            (7-2) 

where 
2iU  is the net benefit of agent i ; 

in  is the number of sheep owned by the agent i ; iB  is the 

benefit from selling one sheep; 
0iB  is the benefit from leasing pastures to others; 

0iC  is the cost of 

renting pastures; 
1iC  is the cost of leasing pastures; and 

2iC  is the transportation cost of migration. 

If agents could not find available parcels to migrate to, they had to bear the loss caused by 

drought. They calculated their net benefits by Equation 7-1. Besides the average net benefit of 
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agents and the number of undegraded parcels, the numbers of agents who found or did not find 

pastures to migrate to through pasture rental markets were also measured at each model step. 

 

7.3.4 Reciprocal Use of Pastures 

When the mechanism of reciprocal use of pastures was included in the model, agents, who 

owned the parcels hit by drought, would have incentives to search for cooperators in their 

neighborhoods. To cooperate means that they would share pastures with each other during 

drought. If agents found cooperators who had enough biomass to support migrants, they would 

migrate to the pastures of their cooperators without paying pasture rental fees or taking the risk 

of no available pastures could be found in pasture rental markets. Reciprocity reduced the risk of 

no parcels being available in pasture rental markets. The searching radii for rich and poor agents 

were defined as the same as in pasture rental markets. The benefits of cooperators increased as 

increases in the size of a cooperation group because of the economies of scale. The economies of 

scale were defined as the increasing bargaining power and the resulting higher livestock sale 

prices with increases in the size of a cooperation group. Agents in a cooperation group had to pay 

the organization cost of cooperation. The organization cost of cooperation increased with 

increases in the size of a cooperation group. This mechanism was contradictory to the 

mechanism of the economies of scale in the development of reciprocal pasture-use groups. 

Agents in a cooperation group also had to pay the transportation cost of migration if they 

migrated to other parcels. The migration distance of cooperators was expected to decrease as 

more agents joined the cooperation group. 

 

The net benefit of agents under the institutional scenario of reciprocal use of pastures was 

calculated by 

3 1 2 3 4( ) (1 ) (1 ) (1 )i i i i i i i i i i iU n n B C C C C                                                                                       (7-3) 

where 
3iU  is the net benefit of agent i ; 

in  is the number of sheep owned by the agent i ; iB  is the 

benefit from selling one sheep; 
1iC  is the cost of sharing pastures; 

2iC  is the transportation cost of 

migration; 
3iC  is the organization cost of cooperation; 

4iC  is the exit cost of leaving a 
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cooperation group; 
i  is the increased proportion of cooperation benefit because of the 

economies of scale; i  is the decreased proportion of transportation cost with increases in the 

number of cooperators; 
i  is the increased proportion of the organization cost with increases in 

the size of a cooperation group; and 
i , i , and 

i  are functions of the number of agents in a 

cooperation group. At each model step, agents made decisions about whether to stay in or leave a 

cooperation group based on whether they could benefit from being a cooperation group. Besides 

the average net benefit of agents and the number of undegraded parcels, the numbers of 

cooperators and cooperation groups were also measured at each model step. 

 

7.3.5 The Free-Rider Problem in Cooperation 

If cooperators could not benefit from being in a cooperation group, and they could not afford 

the exit cost of leaving the cooperation group, these cooperators would turn into free-riders. 

Being free-riders means these agents did not share their own pastures with others, but they would 

migrate to pastures of other cooperators when drought hit their pastures. Free-riders still had to 

pay the organization cost of cooperation. The existence of free-riders increased the cost of 

sharing pastures for other cooperators in a cooperation group. The net benefit of agents in a 

cooperation group with free-riders was calculated by 

4 1 2 3 4 5( ) (1 ) (1 ) (1 ) (1 )i i i i i i i i i i i i iU n n B C C C C C                                                                          (7-4) 

where 
4iU  is the net benefit of agent i ; 

i  is the increased proportion of pasture-sharing cost, and 

i  is the function of the number of free-riders in a cooperation group; 
5iC  is the cost of being 

found as a free-rider; and other parameters in Equation 4 have the same meaning with the 

parameters in Equation 3. Besides the average net benefit of agents and the number of 

undegraded parcels, the numbers of cooperators, free-riders, and cooperation groups were also 

measured at each model step. 
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7.4 Computational Experiments 

7.4.1. The Social-Ecological Performance of Alternative Resource Institutions 

In the first set of experiments, we analyzed the social-ecological performance of four 

institutional scenarios: sedentary grazing, pasture rental markets, reciprocal use of pasture, and 

the combined institutions of reciprocity and pasture rental markets. We changed the drought 

probability in the agent world to analyze social-ecological outcomes of pasture-use under 

alternative climate and institutional scenarios. When the cooperation mechanisms of pasture 

rental markets and reciprocal use of pastures were both added into the model, agents, who owned 

the parcels hit by drought, would search available parcels to migrate to through pasture rental 

markets if they could not find reciprocal pasture-use groups to join. If agents could not find 

available parcels from either pasture rental markets or reciprocal pasture-use groups, they had to 

bear the loss caused by drought. We set the price of one sheep in a normal year as one unit, and 

the values of other parameters were set relative to the sheep price (Table 7.1). In this set of 

experiments, all agents were willing to lease pastures to strangers. The organization cost of 

cooperation (i.e., 0.1 per person for strangers) and the increasing rate of cooperation benefit (i.e., 

0.1 per ten people) were assumed values (Table 7.1). The values of the two parameters were set 

such that the organization cost of cooperation for each cooperator increased 0.1 with each new 

agent in the cooperation group, and the cooperation benefit to each cooperator increased 1% with 

each additional agent in the cooperation group. 

 

In this set of experiments, we also ran verification experiments of model mechanisms and did 

sensitivity analyses of model parameters. First, we ran experiments to verify the mechanism of 

pasture rental markets included in the model. We varied the percentage of agents, who were 

willing to lease pastures to strangers, from 100% to 50% and 0% to test whether the percentage 

of agents who could find pastures to migrate to was increased. Second, we analyzed the 

sensitivity of the performance of reciprocal use of pastures to the organization cost of 

cooperation and the increasing rate of cooperation benefit because these two parameters were set 

without empirical data. The organization cost of cooperation was varied from zero per person to 

0.5 per person in equal increment of 0.05, and the increasing rate of cooperation benefit was 
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varied from 1% per person to 5% per person in equal increment of 1%. The values of these two 

parameters were varied separately. For the verification experiments and sensitivity analyses, we 

set a constant drought probability (i.e. 10%) in the agent world. 

 

7.4.2. Social Mechanisms for Promoting Cooperation 

In the second set of experiments, we explored two social mechanisms for promoting 

cooperation among herders under the institutional scenario of reciprocal use of pastures. For the 

baseline scenario, no other social mechanisms were included in the model other than reciprocal 

use of pastures. Then, we added agent diversity into the model. In this set of experiments, we set 

20% agents in the agent world had the same last name, and the other 80% agents had random last 

names. This is a key cooperation mechanism for herder communities of the Mongolian 

grasslands because kinship networks are important for herders to pool climate risks across space 

and social groups. When this mechanism was included in the model, the organization cost of 

cooperation was lower for relatives than for strangers (Table 7.1). We assumed that the 

organization cost for relatives was 10% of the organization cost for strangers. The organization 

cost was calculated based on the number of relatives and strangers in a cooperation group. The 

organization cost of cooperation (i.e. 0.1 per person for strangers; 0.01 per person for relatives) 

and the increasing rate of cooperation benefit (i.e. 1% per person) were assumed values. We also 

did sensitivity analyses of the two parameters. The value ranges of these two parameters were set 

the same as in the first set of experiments. 

 

The second social mechanism added into the model was neighborhood effects through the 

formation of social norms. Agent diversity was turned off when this mechanism was turned on. 

When neighborhood effects were included in the model, agents would copy the behaviors of 

their neighbors if they could benefit from changing their behaviors. The neighboring eight 

parcels of a parcel were defined as the neighbors of that parcel. The number of neighborhood 

agents with the same behavior for an agent to change its behavior was also set as a model 

parameter. The value of the parameter was varied from 75% to 50% and 25%. In this process, the 

criterion for an agent to change its behavior based on the conformity of its neighbors’ behaviors 

was decreased. Moreover, we set a constant drought probability (i.e. 10%) in the agent world. 
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7.4.3. Social Mechanisms for Maintaining Cooperation 

In the third set of experiments, we explored two social mechanisms for solving the free-rider 

problem and maintaining cooperation. When the kinship mechanism was included in the model, 

free-riders would only free-ride on strangers, and the organization cost of cooperation for 

relatives was lower than for strangers. In this experiment, we varied the density of kinship 

connections. The number of agents with the same last name was increased in 10% increments 

from 10% (i.e., other 90% agents had random last names) to 100%. The second social 

mechanism added into the model was the punishment mechanism. The kinship mechanism was 

turned off when the punishment mechanism was turned on. When this mechanism was included 

in the model, agents in a cooperation group would not play free-ride if they could not afford the 

punishment cost of being found as free-riders. If the punishment cost was higher than the net 

benefit of an agent, the agent would not play free-ride. In this set of experiments, the punishment 

cost on free-riders was increased in 10% increments from 10% to 100% of the gross benefit of a 

poor agent. The village manager agent operated the behavior of punishing free-riders, and this 

was to avoid the second or higher order free-rider problem in cooperation (Boyd et al., 2000). 

The two social mechanisms were added into the model separately in a sequence. In this 

experiment, we also set a constant drought probability (i.e. 10%) in the agent world. 

 

The agent-based model was coded in Eclipse using Java and RepastJ 3.1 libraries (North et al., 

2007). In order to make the social-ecological performance of alternative resource institutions 

comparable, we set the values of the basic model parameters as the same for all computational 

experiments. The basic model parameters included the number of sheep owned by rich and poor 

agents, percentages of rich and poor agents, the number of sheep owned by rich and poor agents, 

growth rates of grass at normal and degradation status, the consumption rate of grass per sheep, 

and prices of fodder and sheep. Moreover, for the institutional scenarios of pasture rental markets 

and reciprocal use of pastures, the transportation cost per distance was set as a constant (Table 

7.1). Most of the above parameters were set using empirical data from literature and our 

household survey. The complexity of the agent-based model of resource institutions was 

represented by the social mechanisms included in the model. Although the size of the agent 

world was scalable, we used a small agent world with the size of 10 × 10 to diagnose the 
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interactions of the social mechanisms and the social-ecological performance of different resource 

institutions. For each experiment, we ran the model 20 steps to represent 20 years. In order to 

account for the random parts in the model, we ran each experiment 30 times and averaged social-

ecological outcomes of pasture-use over 30 time runs. 

 

7.5 Results 

7.5.1 The Importance of Cooperation in Climate Adaptation 

The three different institutional scenarios produced different patterns of agent activity (Fig. 

7.3). During drought, some of the agents could not find available parcels to migrate to through 

pasture rental markets (Fig. 7.3b). Reciprocal pasture-use groups emerged after a few model 

steps (Fig. 7.3c). For the experiments of verifying the mechanism of pasture rental markets 

included in the model, the modeling results showed that with decreases in the percentage of 

agents who were willing to lease pastures to strangers, the percentage of agents could find 

available parcels to migrate to decreased from around 70% to 50% and 10%. These modeling 

results verified that fewer agents could find parcels to migrate to when fewer agents were willing 

to lease pastures to strangers. 

 

The results under the four institutional scenarios and different conditions of drought 

probability indicated that sedentary grazing without cooperation had the lowest level social-

ecological performance (Fig. 7.4). Reciprocal use of pastures had better social-ecological 

performance than the performance of pasture rental markets. However, when adding both 

reciprocity and pasture rental markets into the model, the modeling results did not change much. 

This indicated that reciprocity played stronger role in facilitating cooperation among agents. 

Reciprocal use of pastures allowed herders to pool climate risks across space and improve social-

ecological outcomes of pasture-use. The modeling results also showed that with increases in 

drought probability, the comparative advantage of cooperative use of pastures, which was 

facilitated by pasture rental markets and reciprocal use of pastures, became more evident. The 

results of our sensitivity analyses showed that both ecological and economic performance of 

reciprocal use of pastures declined with increasing organization costs and decreasing benefits 
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from cooperation (Fig. 7.5). By comparing the performance of reciprocal use of pastures and the 

performance of pasture rental markets under the same drought probability, we found that 

reciprocal use of pasture had better performance than the performance of pasture rental markets 

only when the organization cost of cooperation for strangers was less than 0.15 per person and 

the increasing rate of cooperation benefit was more than 1% per person. 

 

                          
                              (a)                                                          (b)                                                         (c) 
Fig. 7.3 Snapshots of the experiments for the three institutional scenarios. (a) sedentary grazing. (b) 
pasture rental markets. (c) reciprocal use of pastures. The green blocks were the parcels not hit by drought; 
the blue blocks in (a) were the parcels hit by drought; the blue blocks in (b) were the parcels hit by 
drought, and the agents did not find parcels to migrate to; the red blocks in (b) were the parcels hit by 
drought, and the agents found parcels to migrate to; the red blocks in (c) were cooperators. 
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                                           (a)                                                                                    (b) 
Fig. 7.4 The social-ecological performance of four institutional scenarios under different conditions of 
drought probability. (a) the average net benefit of agents. (b) the number of undegraded parcels. 
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                                           (a)                                                                                    (b) 
Fig. 7.5 Sensitivity analyses of the parameters related to the organization cost of cooperation and the 
increasing rate of cooperation benefit for the institutional scenario of reciprocal use of pastures. (a) the 
average net benefit of agents; and (b) the number of undegraded parcels in the agent world.  

 

7.5.2 Effects of Agent Diversity and Social Norms on Promoting Cooperation 

In comparison with the outcomes of the baseline scenario, the average net benefit of agents 

and the number of undegraded parcels increased significantly after including agent diversity in 

the model (Fig. 7.6). The number of strangers in cooperation groups also increased when agent 

diversity was included in the model. This indicated that adding agent diversity into the model 

also facilitated cooperation among strangers. The organization cost of cooperation increased with 

increases in the sizes of cooperation groups. This constrained the sizes of cooperation groups. 

However, adding agent diversity into the model relaxed the constraint. The sensitivity analyses 

of model parameters showed that the average net benefit of agents and the percentage of 

undegraded parcels decreased with increases in the organization cost of cooperation (Fig. 7.7). 

However, the decreasing rates of the two measurements were lower than their decreasing rates in 

the first set of experiments (Fig. 7.5). By comparing the performance of reciprocal use of 

pastures and the performance of pasture rental markets under the same drought probability, we 

found that reciprocal use of pasture had better performance than the performance of pasture 

rental markets only when the organization cost of cooperation for strangers was less than 0.25 

per person and the increasing rate of cooperation benefit was more than 1% per person. Adding 

neighborhood effects (i.e. social norms) into the model also promoted cooperation among agents. 

The social-ecological outcomes of pasture-use increased gradually as the percentage of 
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neighbors with the same behavior required for an agent to change its behavior varied from 75% 

to 50% and 25% (Fig. 7.6). Overall, the results of this set of experiments indicated that agent 

diversity and the prevalence of social norms were important in promoting cooperation among 

herder agents. 
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                                          (a)                                                                                      (b) 
Fig. 7.6 The social-ecological performance of reciprocal use of pastures with agent diversity and 
neighborhood effects included in the model. (a) the average net benefit of agents. (b) the number of 
undegraded parcels. Baseline means the baseline scenario; Diversity means the scenario of agent diversity; 
and for the scenarios related to neighborhood effects, the neighborhood parameter was changed from 75% 
(N_75%) to 50% (N_50%) and 25% (N_25%). The error bars represent one standard deviation. 

 

 
                                          (a)                                                                                      (b) 
Fig. 7.7 Sensitivity analyses of the parameters related to the organization cost of cooperation and the 
increasing rate of cooperation benefit for the institutional scenario of reciprocal use of pastures with the 
mechanism of agent diversity included in the model. (a) the average net benefit of agents; and (b) the 
number of undegraded parcels in the agent world. 
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7.5.3 Solving the Free-Rider Problem in Cooperation 

The social-ecological outcomes of pasture-use increased gradually with increases in the 

density of kinship connections in the agent world. The effects of the kinship mechanism on 

maintaining cooperation were more prominent when the density of kinship connections was 

higher than 70% (Fig. 7.8). This was caused by the fact that free-riders would not free-ride on 

relatives after including the kinship mechanism in the model. Moreover, the organization cost of 

cooperation decreased with increases in the density of kinship connections. Therefore, adding the 

kinship mechanism into the model helped to maintain cooperation among herder agents. 
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                                          (a)                                                                                      (b) 
Fig. 7.8 The social-ecological performance of reciprocal use of pasture with the kinship mechanism 
included in the model. (a) the average net benefit of agents. (b) the number of undegraded parcels. The 
error bars represent one standard deviation. 

 

The average net benefit of agents first decreased then increased with increases in the 

punishment cost (Fig. 7.9a). When the punishment cost was low, some of the agents played free-

ride because they could take the punishment cost of being found as free-riders. However, when 

they were found as free-riders, they had to pay the punishment cost. Therefore, the average net 

benefit of agents decreased at first. However, when the punishment cost was high, fewer agents 

could take the cost of being found as free-riders. Therefore, the average net benefit of agents 

increased. Due to the implementation of the punishment mechanism, some agents could not take 

the cost of being found as free-riders. Therefore, the number of undegraded parcels increased 

with increases in the punishment cost (Fig. 7.9b). 

 

 

 



154 
 

10

15

20

25

30

35

40

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Punishment cost

A
ge

nt
 n

et
 b

en
ef

it 

  

80

85

90

95

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Punishment cost

N
um

be
r 

of
 u

nd
eg

ra
de

d 
pa

rc
el

s 

 
                                          (a)                                                                                      (b) 
Fig. 7.9 The social-ecological performance of reciprocal use of pasture with the punishment mechanism 
included in the model. (a) the average net benefit of agents. (b) the number of undegraded parcels. The 
error bars represent one standard deviation. 

 

7.6 Discussion 

We began comparing the social-ecological performance of alternative resource institutions by 

setting a baseline institutional scenario of sedentary grazing without cooperation. Then, we 

included the cooperation mechanisms of pasture rental markets and reciprocal use of pastures 

into the model, separately and together, to compare their performance with the performance of 

the baseline scenario under different conditions of drought probability. The results showed that 

sedentary grazing produced the lowest level social-ecological performance among institutional 

scenarios. Under certain conditions (i.e., the organization cost of cooperation was low), 

reciprocal use of pastures had better social-ecological performance in comparison with the 

performance of pasture rental markets; and the advantage of cooperative use of pastures became 

more evident with increases in drought probability. We also explored effective social 

mechanisms for promoting and maintaining cooperation among herders. The results showed that 

agent diversity and social norms played important roles in promoting cooperation; and social 

structures (i.e., the density of kinship connections) and governmental regulations were important 

for solving the free-rider problem and maintaining cooperation. 

 

The modeling results implied that relaxing state-control related management strategies and 

allowing herders to form cooperative arrangements are effective ways to improve social-

ecological outcomes of pasture-use in the context of climate change. Grazing sedentarization has 

been a trend in Mongolia and Inner Mongolia since the late 1950s (Humphrey and Sneath, 1999). 
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The process of grazing sedentarization has been almost completed in Inner Mongolia. Moreover, 

state-control related management strategies are the dominant strategies for grassland 

management in Inner Mongolia. The self-organized resource institutions (i.e., pasture rental 

markets and reciprocal pasture-use groups) are important ways for herders to improve pasture-

use efficiency and minimize the loss caused by climate hazards. Governmental support is also 

important for promoting and maintaining cooperation by lowering the organization cost of 

cooperation. For example, local governments can collect information about the demand and 

supply of pastures and disseminate the information to local herders in drought years. The 

conflicts of pasture-use in pasture rental markets (e.g., overgrazing rented pastures and disputes 

over pasture rental fees) can also be solved with the help from local governments. Second, local 

governments can provide transportation help for poor herders who cannot afford long-distance 

migrations. Third, governmental incentives (e.g., subsidies and financial supports) can also 

facilitate the development of self-organized resource institutions. In addition, local governments 

can also punish herders, who are against the rules of cooperation, for maintaining cooperation 

among herders. 

 

There are several possible improvements and extensions to the current version of the agent-

based model of resource institutions. First, the attributes, actions, interactions of agents in the 

agent-based model can be further calibrated by empirical data. Second, the relationships between 

climate and grassland productivity were simplified by setting a hypothetical look-up table. 

Future work could couple an ecosystem model of grassland dynamics with the agent-based 

model of resource institutions for an integrated modeling of grassland social-ecological systems. 

Third, the influence of the fluctuations in livestock prices on livestock management behaviors of 

herders can be included in the model. Since economic transformations in Mongolia and Inner 

Mongolia, China, market incentives have been playing an important role in affecting livestock 

management behaviors of herders. In addition, other social mechanisms for promoting 

cooperation can also be included in the model. For example, we only used the differences in the 

organization cost of cooperation for relatives and strangers to represent the role of agent diversity 

in promoting cooperation. Besides these differences, rich and poor herders usually play different 

roles in organizing cooperation groups. In this work, this social mechanism was not included in 



156 
 

the model because we did not have enough empirical data to calibrate the roles of rich and poor 

agents in organizing cooperation groups. 

 

7.7 Conclusions 

We analyzed the social-ecological performance of alternative resource institutions in the 

semiarid and arid Mongolian grasslands in the context of climate change, using an agent-based 

model informed by empirical studies. Under certain conditions, resource institutions that can 

facilitate cooperative use of pastures generated better social-ecological outcomes of pasture-use 

than the performance of sedentary grazing without cooperation. Agent diversity and social norms 

played important roles in promoting cooperation. Social structures (i.e. the density of kinship 

connections) and governmental regulations were important for maintaining cooperation. As 

discussed in the beginning, social-institutions of the traditional grazing societies of Inner Asia 

and Africa have changed dramatically over the past decades. They have undermined the adaptive 

capacity of local herder communities for climate change by making mobile grazing less feasible. 

Although the development of the agent-based model of resource institutions was informed by 

empirical studies in the Mongolian grasslands, it has important policy and institutional 

implications for social adaptation to climate change in other semiarid and arid grassland regions 

of the world with high environmental variability. 
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Chapter Eight 

 

Synthesis 

 

Previous studies have provided general information about the drivers of grassland dynamics 

on the Mongolian plateau (e.g., Humphrey and Sneath, 1999; Neupert, 1999), social vulnerability 

and adaptation to climate variability and change for herder communities in Mongolia (e.g., 

Fernandez-Gimenez et al., 2012; Vernooy, 2011), and the role of local institutions in adaptation 

to climate change for rural populations (e.g., Agrawal, 2009, 2010). A systematic study about the 

drivers of grassland dynamics across the heterogeneous Mongolian grasslands is still needed. 

Moreover, comparative studies of livelihood adaptation practices of herders under different 

institutional arrangements in the two political regions on the Mongolian plateau can help us 

understand the relationships between local institutions and climate adaptation. This is also 

meaningful for guiding policy interventions to strengthen the adaptive capacity of herder 

communities for climate change. In this research, I contributed new knowledge about: (1) the 

relative importance of natural and human drives of grassland dynamics across agro-ecological 

zones and the two political regions on the Mongolian plateau; (2) the major livelihood adaptation 

strategies of herders in Mongolia and Inner Mongolia, China, and the associated local institutions 

that facilitated those livelihood adaptation strategies; (3) the efficient resource institutions that 

can facilitate social adaptation to climate change in the semiarid and arid Mongolian grasslands 

with high environmental variability. 

 

I used an interdisciplinary approach to understand environmental and social dynamics as well 

as their interactions. I drew on multiple theoretical frameworks for analyzing social-ecological 

systems, which were developed by Ostrom (2005, 2009), Lemos and Agrawal (2006), and 

Agrawal (2009), multiple theories from grassland ecology (Ellis and Swift, 1988) and 

institutional economics (North, 1990, 2005; Ostrom, 1990, 2005), and methods from remote 

sensing, household survey, statistical modeling, and agent-based modeling. Grassland 

ecosystems on the Mongolian plateau were measured using the remote sensing techniques at 
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both regional and local scales (Chapters two and three). The dynamics of grassland productivity 

over the past several decades in the region were analyzed qualitatively and quantitatively 

(Chapters four and five). Social adaptation to environmental change was studied at both 

household and community levels by extensive household surveys and exploratory agent-based 

modeling (Chapters six and seven).  

 

The series of studies in this dissertation advanced our understanding of the dynamics in 

grassland social-ecological systems and social adaptation to climate change and grassland 

degradation on the Mongolian plateau. Taken as a whole, my dissertation provides knowledge 

that can support the development of policy and management strategies within the Mongolian 

plateau to produce more sustainable use of the grassland resources in the context of climate 

change. In the following, I will draw conclusions for each of the three research objectives listed 

in Chapter one and discuss the caveats, challenges, and future improvements of the work. 

 

8.1 Conclusions 

8.1.1 Remote Sensing of the Mongolian Grasslands 

In this part, I focused on mapping and analyzing the dynamics of grassland NPP. This was 

because the spatial and temporal variations in annual grassland NPP provides important 

information about the multiple drivers (i.e., natural and human drivers) that contribute to the 

availability of the key natural resources (i.e., grass biomass) for herder communities on the 

Mongolian plateau. While using remote sensing techniques for mapping grassland productivity 

are generally well known, I was able to prolong the available record on the dynamics of 

grassland NPP, and test the possibility of using hyperspectral data to measure grassland 

productivity that could be developed in the future. 

 

The long-term analyses of grassland NPP showed that the interannual variability of NPP 

increased over the study period (1982−2009), especially in desert steppe. Despite the rapid 

increases of livestock populations in IMAR and Mongolia, NPP only showed significant 

decrease in some parts of Mongolia during the study period. Spring NPP increased in northern 
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Mongolia, where climate was cold and humid, and decreased in desert steppe of Mongolia and 

eastern Inner Mongolia. Summer NPP increased in southern Inner Mongolia, mainly covered by 

cropland, and decreased in central Mongolia. Annual NPP increased significantly in northern 

Mongolia and southern Inner Mongolia, and decreased in some parts of desert and typical 

steppes of the Mongolian grasslands. The interannual variability of NPP decreased with 

increases in precipitation (January-July), and the interannual variability of NPP increased with 

increases in the interannual variability of precipitation (January-July). Based on correlation 

analyses between NPP and climate, NPP was more strongly associated with precipitation than 

with temperature, especially in desert and typical steppes. These findings suggest that climatic 

variability and change is an important underlying cause of variability in grassland productivity, 

though it is not the whole story. 

 

The results of field hyperspectral remote sensing of grassland communities showed that the 

spectral reflectance curves of different types of grassland communities were generally 

differentiable. In the three sites with fenced and grazed plot pairs, the fenced plots had lower 

reflectance in the visible bands and higher reflectance in the near infrared bands. The grazed 

plots showed a shift of the red-edge inflection points toward shorter wavelengths (i.e., “blue-

shift”). The predictive power of vegetation indices (VI) for aboveground biomass generally 

decreased from desert to typical and meadow steppes. All narrowband VI tended to saturate at 

the study sites with high vegetation densities. The REIP produced better prediction accuracies 

than VI in meadow and typical steppes, but it was not a good predictor of aboveground biomass 

in desert steppe. The field hyperspectral remote sensing studies provide the foundations for 

future large-scale efforts of using images derived from imaging spectroradiometers. 

 

8.1.2 Interpretations of Grassland Dynamics 

For thousands of years, nomadism allowed local herders in the Mongolian grasslands to adapt 

the highly variable precipitation and vegetation productivity and preserved the vulnerable 

grassland ecosystems. Over the past fifty years (1961−2010), social-institutions have changed 

dramatically in both IMAR and Mongolia, i.e., from communal pastures to collective ownership 

to privatization. Those social-institutional changes have undermined the traditional resource 
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institutions and replaced them with a series of alternative systems. Consequently, the 

sustainability of the Mongolian grassland social-ecological systems was affected. Moreover, 

climate change and grassland degradation have been evident on the Mongolian plateau over the 

past five decades, and they have increased the vulnerability of livelihoods for local herders. 

Socioeconomic factors, such as changes in resource institutions and policies, demographic 

change, and economic development, played significant roles in changing grassland quality over 

the past five decades. The roles of state, market, and community in governing grassland 

resources on the Mongolian plateau also changed over the study period. Sustainable governance 

of the Mongolian grasslands needs the integration and coordination of the forces from the state, 

market, and local grazing communities. 

 

In order to analyze the drivers of the dynamics in grassland productivity across heterogeneous 

landscapes, I further diagnosed the drivers of NPP dynamics across ecological zones in IMAR 

and Mongolia, using a spatial panel data modeling approach. The statistical modeling results 

indicated that the major drivers of NPP dynamics vary across the six sub-regions. Grain output 

was the major predictor of NPP dynamics in the farming and farming-grazing zones of Inner 

Mongolia. Precipitation and livestock populations both had significantly positive relationships 

with NPP in the two grazing zones of Inner Mongolia. However, in Mongolia, livestock 

populations was the only significant predictor of NPP in the grazing zone with relatively stable 

climate, and precipitation was the only significant predictor of NPP in the grazing zone with 

highly variable climate. Human land-use and livestock management behaviors and the 

bidirectional causal relationships between livestock populations and NPP could explain the 

positive relationships between livestock population and NPP. The heterogeneous drivers of NPP 

dynamics across space indicated that communities in different ecological and institutional 

settings face different kinds of challenges in their attempts to produce their livelihoods in these 

grassland systems. As such, a diversity of resource policies and institutions that are sensitive to 

these different settings is necessary for sustainable governance of grassland resources. 
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8.1.3 Social Adaptation to Climate Change and Grassland Degradation 

While analyses in the above section provides important information about the drivers of 

grassland dynamics, understanding how herder households adapt to changes in grassland quality 

and climate is important for the sustainability of grassland social-ecological systems. In this part, 

I focused on studying social adaptation, in terms of changes in livelihood and land-use behaviors 

and changes in resource institutions and policies, to environmental change. I used a household 

survey to study how herders have adapted to environmental change over the past ten years. 

Informed by empirical studies in the Mongolian grasslands, I developed an agent-based model of 

resource institutions to understand how local institutions might best be structured to help herders 

adapt to environmental change in the future. 

 

The results of my analysis of livelihood adaptation behaviors of herders using household 

surveys indicated that the differences in livelihood adaptation strategies were prominent between 

the two countries. Mobility and communal pooling were the two most frequent livelihood 

adaptation strategies for herders in Mongolia. Storage, livelihood diversification, and market 

exchange were the three most frequent livelihood adaptation strategies for herders in Inner 

Mongolia. Livelihood adaptation strategies in Mongolia were mainly shaped and facilitated by 

local communal institutions. Livelihood adaptation strategies in Inner Mongolia were mainly 

shaped and facilitated by local public and private institutions. Sedentary grazing and grassland 

degradation have increased livelihood vulnerability of herders to climate change, especially in 

Inner Mongolia. Multilevel statistical models of fodder purchasing behaviors of herders indicated 

that livestock management behaviors, household financial capital, climate variability, and the 

status of grassland degradation had statistically significant relationships with the percentage of 

income spent on fodder and hay. The results implied that besides adjusting local institutions, 

recovering grassland quality and increasing household capital are also important ways for 

building adaptive capacity of herder communities for future climate change. 

The modeling results of the agent-based model of resource institutions showed that under 

certain conditions resource institutions that can facilitate cooperative use of pastures (i.e. pasture 

rental markets and reciprocal use of pastures) generated better social-ecological performance (i.e. 

average net benefit of agent and grassland quality) than the performance of sedentary grazing. 
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Agent diversity and social norms were important for promoting cooperation among herders. 

Social structures (i.e. the density of kinship connections) and governmental regulations were 

important for solving the free-rider problem and maintaining cooperation. The results implied 

that relaxing state-control related management strategies and allowing herders to form 

cooperative arrangements are effective ways to improve social-ecological outcomes of pasture-

use; and governmental support is also important for promoting and maintaining self-organized 

resource institutions. 

 

8.2 Research Limitations and Future Directions 

8.2.1 Remote Sensing of Grassland Ecosystems 

Long-term coarse resolution AVHRR and MODIS NDVI images were integrated to study 

grassland productivity dynamics between 1982 and 2009. These coarse resolution data are useful 

for studying vegetation dynamics at regional and global scales. However, the detailed spatial and 

spectral information may be averaged by these coarse resolution data. For example, in Chapter 

two, I was not able to exclude cropland from the Mongolian plateau, which could cause 

ambiguous results about the temporal trends of grassland NPP. Cropland productivity was 

included in the analysis of grassland NPP. The problem can be serious in IMAR since large 

amounts of grasslands in IMAR have been plowed for grain and fodder production over the past 

decades (Chapter Four). Accurate assessment of grassland productivity still needs to exclude 

cropland from the total study area. Differentiating cropland from grasslands is a challenge since 

they have similar spectral reflectance characteristics. Object-based image classification using 

moderate or fine resolution images is one possible method to solve the problem, because 

cropland parcels are usually with regular shapes. However, high-resolution images are usually 

needed in order to make objective-based classifications more effective. In addition, NDVI 

derived from AVHRR and MODIS sensors may be insufficient to monitoring grassland 

degradation. One of the reasons is that the values of NDVI will saturate at high canopy densities. 

The other major reason is that grasslands with different biophysical characteristics (e.g. species 

composition) may produce similar values of vegetation indices if they have similar biomass 

(Yamano et al., 2003). 



164 
 

 

Hyperspectral images with hundreds of spectral bands have the potential to accurately map 

plant communities and their degradation status. In Chapter three, I explored the potential of using 

hyperspectral remote sensing data to differentiate plant communities and predict ecological 

variables across ecological gradients of IMAR. However, only a few field sites were investigated, 

considering the large geographic coverage of the study area. More extensive field spectral and 

ecological samplings are still needed in order to get reliable and convincing results. This work 

provides the foundation for future large-scale efforts for monitoring grassland status using 

hyperspectral remote sensing. Hyperspectral images can be combined and fused with high-

resolution images to extract more detailed information of vegetation (Walsh et al., 2008). One 

major challenge of using hyperspectral images is the data volume. Various algorithms have been 

developed to handle the data redundancy problem and extract useful information from 

hyperspectral image cubes (Thenkabail et al., 2012). However, large-scale mapping of grassland 

communities and extracting the information of grassland degradation from hyperspectral images 

will still be a challenge. 

 

8.2.2 Climate Adaptation, Local Institutions, and Rural Livelihoods 

Understanding the interactions between climate adaptation, local institutions, and rural 

livelihoods is important for building adaptive capacity of herder communities for future climate 

change. In my doctoral research, livelihood adaptation behaviors of herders to environmental 

change were generally investigated. In the future, I hope to revisit the sites included in my 

dissertation and to do follow-up surveys and in-depth interviews about the livelihoods of herders 

for the years with climate hazards, such as droughts and snowstorms. Besides a warmer and drier 

climate, the increased frequencies of climate hazards have caused disastrous effects on livestock 

grazing in the Mongolian grasslands over the past half century. The results of this work lead me 

to an interest in studying the impacts of the spatial-temporal variability of droughts and 

snowstorms on the livelihoods of herders over the past three decades. Satellite data derived from 

multispectral and radar sensors can be used for studying historical climate hazards. Ultimately, I 

hope to help policy makers and grassland users design and implement evidence-based policies 

for building adaptive capacity of local herder communities for future climate change. 
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The results of my survey analyses showed that local institutions played the central role in 

shaping and facilitating livelihood adaptation behaviors of herders. The self-organization and 

evolution of local institutions for governing grassland resources are interesting and meaningful 

topics. I plan to study the interactions between local institutions, resource behaviors, and changes 

in grassland quality. The major challenge of this work is to collect accurate information about 

long-term changes in ecological variables and local resource institutions. I will continue to adopt 

the approach that links remote sensing, local institutions, and socioeconomic data to study 

human-environment interactions. Time-series of Landsat images from the mid-1980s to now can 

be acquired and interpreted to track the changes in grassland quality. Building on the 

comprehensive household survey data collected in this research, further follow-up surveys and 

in-depth interviews can be conducted to investigate changes in local resource institutions over 

the past 30 years. This study can further our understanding of the process of land-use change and 

the role of local institutions in shaping human-environment interactions. 

 

8.2.3 Modeling Sustainability of Social-Ecological Systems 

The agent-based model in this work has a focus on the modeling the social-ecological 

performance of local resource institutions under different climate scenarios. Other sub-systems 

of grassland social-ecological systems were simplified. Those simplifications could lower the 

reliability of the agent-based model to have real world policy and institutional implications. For 

example, market incentives on the livestock management behaviors of herders were simplified in 

the model. I assumed that the number of livestock in each herder household was constant 

overtime. In the real world, the rapid increase of livestock population stimulated by market 

incentives is one of the major reasons for grassland degradation on the Mongolian plateau, 

especially in IMAR. Therefore, in the future, modeling the role of local institutions in adaptation 

to climate change and grassland degradation needs to incorporate the market sub-model. Second, 

the mechanisms of the dynamics in grassland productivity driven by climate variability were 

simplified by using a hypothetical look-up table. This simplification can be improved by 

coupling a simple ecosystem model with the agent-based model.  
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Moreover, resource institutional change was not explicitly modeled. This is another potential 

improvement for the model. Endogenous intuitional change, or self-organized resource 

institutions, is the core part of studying intuitions for governing common-pool natural resources 

sustainably (Ostrom, 1990). The interactions between macro-level institutional changes and 

micro-level changes in knowledge, beliefs, and information constraints of actors have been 

studied by North (2005) and Ostrom (2005). The institutional framework is an external 

manifestation of the belief systems of individuals. Institutional change is strongly depends on 

changes occurring in belief systems. At the same time, the institutional structure constraints 

choices and actions and influences the beliefs of individuals (North, 2005). Agent-based models 

have been used to model endogenous resource intuitional change (Bravo, 2011). In the future, 

the interactions between agent beliefs and resource institutions will be further explored. 

Compared with abstract analytical models (e.g., game theoretical models), agent-based models 

can generate more realistic scenarios. Besides the above simplifications of the economic, 

ecological, institutional mechanisms, another limitation of the current version of the model is 

that some of the model parameters were not empirically calibrated, although the social 

mechanisms of agent actions and interactions under alternative institutional scenarios were 

informed by empirical studies in the Mongolian grasslands. Further calibrations of the model 

parameters using empirical data is still needed if the modeling results are expected have real-

world policy and institutional implications. 

 

8.2.4 Scale, Uncertainty, and Error Propagations 

Scale is one of the most studied topics in remote sensing, more broadly speaking geographical 

information science (GIScience) (Liang, 2004; Quattrochi and Goodchild, 1997). Uncertainty 

and error propagations in spatial analysis and modeling are the emerging topics in GIScience 

(Burnicki, 2008; Zhang and Goodchild, 2002). In this dissertation, I applied geostatistical inverse 

modeling (GIM) to produce both the best predictions of a target image at finer resolutions 

(downscaling) and prediction uncertainties, based on one or more other images with different 

resolutions, while honoring the original measurements. GIM can also be used for image up-

scaling. These have been discussed in Appendix A. For the traditional image re-sampling 

algorithms, such as nearest neighbor, bilinear interpolation, and cubic convolution, the 
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uncertainty of the re-sampled results are not provided. Therefore, the analyst does not know the 

actual uncertainty of the data with changed spatial resolutions. Geostatistical models for image 

scaling regard the measurements as random fields and produce both spatial predictions and 

associate prediction uncertainties. Second, in this work, the Gaussian random field model was 

used in both synthetic and real data modeling experiments. However, lots of measurements do 

not follow the Gaussian distribution. Therefore, GIM needs to be modified to fit the non-

Gaussian data, and this set of models is known as generalized linear mixed models.  

 

In addition, measurement errors can also be accounted by the GIM framework, although I did 

not run experiments with data associated measurement errors. Measurement errors and errors in 

spatial analysis and modeling procedures will propagate to lower-stream procedures and final 

results. In classic geospatial analysis and modeling, these problems are usually ignored or less 

studied (Heuvelink, 1998). In the future, I plan to generate hundreds of images with different 

covariance parameters, measurement errors, non-normality, and non-stationarity and explore the 

problem of error propagations in depth. These synthetic images will be aggregated to different 

coarser resolutions and downscaled back to the original resolution. The restricted maximum 

likelihood (REML) method will still be used for covariance parameter estimation from the 

aggregated synthetic images. The prediction accuracies and associated uncertainties will be 

assessed in order to understand error propagations in spatial predictions made by GIM. 
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Appendix A1 

 

Geostatistical Inverse Modeling for Super-Resolution Mapping of Continuous Spatial 

Processes 

 

Abstract 

We present a geostatistical inverse modeling (GIM) approach for merging coarse-resolution 

images with variable resolutions and for super-resolution (i.e. predictions at the sub-pixel level) 

mapping of continuous spatial processes. We used GIM to produce both spatial predictions of a 

target image and prediction uncertainties, while preserving the values of original measurements. 

GIM is totally data driven, and covariance parameters for the target resolution can be directly 

derived from measurements. We also developed a moving-window GIM approach to 

accommodate spatial nonstationarity and reduce computational burden associated with large 

image datasets. First, we demonstrated GIM and moving-window GIM on synthetic images. 

Aggregated synthetic images with variable resolutions were merged to produce a single 

resolution image. The modeling results showed that the two approaches can produce accurate 

spatial predictions and correct prediction uncertainties. Second, we applied moving-window 

GIM for merging aerosol optical depth (AOD) data with variable resolutions, which were 

derived from two sensors. The results showed that moving-window GIM can be used for 

merging complementary AOD data from the two sensors and for super-resolution mapping of 

global AOD distributions. Therefore, we can conclude that GIM is a practical solution for 

merging complementary coarse-resolution images and for super-resolution mapping of 

continuous spatial processes. 

 

Keywords: Multi-resolution data fusion; super-resolution mapping; change-of-support; spatial 

nonstationarity; geostatistical inverse modeling; spatial prediction; uncertainty 

 

                                                            
1Wang, J., Brown, D. G., Hammerling, D. Geostatistical inverse modeling for super-resolution mapping 
of continuous spatial processes. Manuscript submitted for review. 
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A.1 Introduction 

Synthesizing complementary information derived from multiple sensors prompts the need to 

study rigorous data fusion algorithms. Data fusion is a process that integrates information 

derived from different sensors or different spectral bands of the same sensor and produces a 

single image that contains complementary information from multiple sources, while minimizing 

loss or distortion of the original data (Hall, 2004; Pohl and Van Genderen, 1998). In this work, 

we focus on statistical algorithms for merging measurements derived from multiple coarse-

resolution sensors. Statistical data fusion combines statistically heterogeneous samples from 

marginal distributions to make statistical inference about the unobserved joint distributions or 

functions of them (Braverman, 2008). Statistical data fusion, including those based on 

geostatistics, can produce spatial predictions of pixel values (Atkinson et al., 2008). Recently, 

several geostatistical algorithms, including fixed ranking kriging (Cressie and Johannesson, 

2008), fixed ranking filtering (Cressie et al., 2010; Kang et al., 2010), spatial statistical data 

fusion (Nguyen, 2012), space-time data fusion (Braverman et al., 2011), and moving-window 

kriging (Hammerling et al., 2012), have been developed for mapping global distributions of 

environmental variables, such as aerosol optical depth (AOD) and carbon dioxide (CO2), with 

sparsely distributed remotely sensed data. The numerous algorithms for merging measurements 

from different spectral bands (e.g. pan-sharpening) are beyond the scope of this chapter. 

 

Measurements from remote sensing sensors are constantly influenced by factors like 

atmospheric conditions, electronic noise of sensors, and changes in illumination. In order to build 

geostatistical models of sensor measurements contaminated with measurement errors, we took a 

stochastic perspective of remote sensing images. We regarded the true spatial process of interest 

(i.e. spectral radiance) as a random field, i.e., a spatial random process with a set of random 

variables that have certain probability distributions. Then, a remote sensing image covering an 

area can be conceived as a realization of the random field. In this work, we adopted the Gaussian 

random field model, which involves a set of Gaussian probability density functions for random 

variables. For remote sensing measurements, the values of continuous spatial processes of 

interest are regularized to discrete pixels by a weighted average process, with the spatial weights 

determined by point spread functions (PSFs) of sensors (Jupp et al., 1988). The effective 
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instantaneous field of view (EIFOV) of the sensor is an area over which measurements are 

averaged. EIFOV defines the spatial support of sensor measurements. Spatial support is a 

geostatistical concept that means the shape, size, and orientation of measurements (Gotway and 

Young, 2002, 2005). The value assigned to a pixel represents the average radiance arriving at the 

sensor from the EIFOV (Jupp et al., 1988). Sensors with different sizes of pixels have different 

EIFOVs. Therefore, measurements from these sensors have different spatial supports. 

 

Merging remote sensing images with variable resolutions usually involves the change-of-

support problem (Curran and Atkinson, 1999; Gotway and Young, 2002, 2005). Several 

geostatistical algorithms have been developed to solve the change-of-support problem. Area-to-

point kriging was developed for downscaling areal data to point support (Kyriakidis, 2004; 

Kyriakidis and Yoo, 2005). Goovaerts (2008) developed a practical semivariogram 

deconvolution algorithm to derive point support variogram parameters from areal data. This 

algorithm solved one of the key problems in the practical application of area-to-point kriging. 

Moreover, a parallel computing algorithm has been developed for speeding-up the computation 

involved in the practical application of area-to-point kriging (Guan et al., 2011). Area-to-point 

kriging has the potential for downscaling remote sensing data. Nguyen et al. (2012) developed a 

spatial statistical data fusion approach, which incorporated a change-of-support model into fixed 

rank kriging. It was applied for merging variable-resolution AOD images derived from the 

Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors. 

 

The spatially varying dependence structure of random variables (i.e. spatial nonstationarity) is 

another major problem to be dealt with when working with remote sensing images covering large 

geographic areas. In classical geostatistics, a fundamental assumption of most models is that 

random fields are second-order stationary, i.e., in a relatively small region the mean values of 

random variables are constant and the covariance between the values of random variables only 

depends on the distance between them (Chilès and Delfiner, 2012). However, for spatial data 

covering large geographic areas, this assumption may not be true because spatial heterogeneity is 

a typical characteristic for remote sensing images covering large geographic areas. In this work, 

we differentiated two types of spatial nonstationarity: one is spatial nonstationarity in the mean 



117711  
  

values of regionalized variables, and the other is spatial nonstationarity in the covariance 

structure. The need to address spatial nonstationarity has been discussed in the field of 

geostatistics over the past decades. Universal kriging is one way to address spatial 

nonstationarity in the mean values of regionalized variables. Hass (1990) applied a moving-

window kriging approach to model acid depositions. For this method, measurements in local-

windows are used for parameter estimations and spatial predictions. This approach is simple to 

be implemented, and it alleviates the problem of spatial nonstationarity. Due to local fitting and 

computing, moving-window kriging is also computationally efficient. One caveat of the local-

window approach is that there is no consistent covariance function over the whole study domain. 

Higdon et al. (1999) convolved spatially varying kernels to give a nonstationary version of the 

squared exponential stationary covariance function. This approach has been applied in modeling 

remote sensing images (D’Hondt et al., 2007). Although this method can produce a consistent 

covariance function over the whole prediction domain, the Gaussian kernel applied in this 

method was too smooth for real spatial processes. 

 

Besides spatial nonstationarity, the problem of computational burden also needs to be solved 

when applying geostatistical models to deal with large spatial data. The local-window approach 

is one way to solve the problem of computational burden. Data dimension reduction is another 

way to reduce computational burden associated with large spatial data (Wikle, 2010). Cressie 

and Johannesson (2008) developed a spatial mixed effects model, called fixed rank kriging, with 

a flexible family of nonstationary covariance functions. For this approach, kriging can be done 

exactly, and the computational complexity is linear to the size of the data. Moreover, Cressie et 

al. (2010) developed a spatial-temporal random effect model, called fixed rank filtering, which 

integrates fixed rank kriging and Kalman filter for dealing with large spatial-temporal data. Fixed 

rank kriging and fixed rank filtering are both approaches of data dimension reduction. These 

methods eliminate or reduce some components of spatial variability to improve computational 

efficiency. 

 

In this work, we present a geostatistical inverse modeling approach for merging coarse-

resolution remote sensing images with variable spatial supports. Geostatistical inverse modeling 

was designed to be statistically principled, and it was designed to preserve the information of 
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original measurements, i.e., honoring the original data. In the geostatistical inverse modeling 

framework, the restricted maximum likelihood method was used for estimating covariance 

parameters related to the change-of-support problem. Moreover, we contributed a moving-

window geostatistical inverse modeling approach to accommodate spatial nonstationarity and 

reduce computational burden associated with large image datasets. Following the introduction, 

we introduce the geostatistical inverse modeling methodology in Section A.2. In Section A.3, we 

illustrate the modeling experiments on synthetic and real images. The modeling results are 

presented in Section A.4. Finally, we discuss possible model improvements and summarize the 

major findings of this work. 

 

A.2 Methodology 

A.2.1 Geostatistical Inverse Modeling 

Geostatistical inverse modeling (GIM) follows a Bayesian approach, and it is based on the 

principle of combining prior information (i.e. spatial and/or temporal autocorrelation) with 

information from available measurements (Michalak et al., 2004). Spatial and/or temporal 

autocorrelation can provide information about the structure of the data that can be used to reduce 

prediction uncertainty. GIM has been applied in ground water systems (Kitanidis, 1995), 

contaminant sources identification (Snodgrass and Kitanidis, 1997), estimating surface fluxes of 

atmospheric trace gases (Gourdji et al., 2008; Michalak et al., 2004), characterizing attribute 

distributions in water sediments (Zhou and Michalak, 2009), and merging remote sensing images 

with variable resolutions (Erickson and Michalak, 2006). There remain unrealized opportunities 

for using GIM for image scaling (i.e. downscaling and up-scaling) and multi-resolution data 

fusion. In comparison with area-to-point kriging, which also deals with predicting point values 

from available areal data, the covariance parameters in the GIM framework can be inferred 

directly from measurements by the restricted maximum likelihood algorithm. Multiple 

measurements with different spatial supports can also be explicitly accounted in the GIM 

framework. 

 

The spatial prediction problem of GIM can be expressed as 
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h( , )z s r v                                                                                                                                  (A-1) 

where z  is an 1n  vector of measurements; s  is an 1m  vector of predictions; and the vector r  

contains other parameters in the transformation function h( , )s r . This function can be expressed 

as a linear transformation of predictions, which is represented by the relationships between 

measurements and predictions. For remote sensing applications, the transformation function can 

be defined as point spread functions (PSFs) of sensors. PSFs for many electro-optical sensors 

follow a two-dimensional Gaussian distribution (Huang et al., 2002). The vector v  describes the 

model-data mismatch, which means the mismatch between underlying true spatial processes and 

measurements. The vector v  represents measurement errors of remote sensing images. In the 

GIM framework, the prior and posterior probability density functions are with respect to the 

measurements z . 

( , | ) ( , ) ( | )p s z p s p z s                                                                                                                  (A-2) 

where ( , )p s   is the prior probability density function; ( | )p z s  is the likelihood of measurements; 

and ( , | )p s z  is the posterior probability density function. The prior probability density function 

represents the assumed spatial structure of the unknown surface (i.e. prediction field), which is 

described by a covariance function. The multivariate Gaussian distribution model is used in the 

GIM framework. 

1 2 11
( , ) exp ( ) ( )

2
Tp s Q s X Q s X         

                                                                                          (A-3) 

where X  is an m t  matrix of auxiliary variables related to the distribution of predictions; t  is 

the number of auxiliary variables;   is a 1t   vector of drift coefficients on X ; X   is the model 

of the trend; and Q  is an m m  matrix representing the spatial autocorrelation of residuals that 

are not explained by the model of the trend. The likelihood of the measurements represents the 

degree to which a prediction of the unknown function s  reproduces the measurements z  

(Kitanidis, 1995; Michalak et al., 2004) 

1 2 11
( | ) exp ( ) ( )

2
Tp z s R z Hs R z Hs

       
                                                                                             (A-4) 
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where H  is an n m  matrix representing relationships between measurements and predictions; 

and R  is an n n  matrix representing the model-data mismatch. Then, the posterior probability 

density function of the unknown surface distribution s  becomes 

1 2 1 2 1 11 1
( , | ) exp ( ) ( ) ( ) ( )

2 2
T Tp s z R Q z Hs R z Hs s X Q s X              

                                                   (A-5) 

By taking the negative logarithm of the above formula, we can get the objective function of 

GIM 

1 1
, ( ) ( ) ( ) ( )T T

sL z Hs R z Hs s X Q s X                                                                                       (A-6) 

The best predictions (i.e. minimizing the squared errors between spatial predictions and 

measurements) are obtained by minimizing the above objective function with respect to s  and  . 

By taking the first order derivative of the above objective function with respect to s  and   and 

expressing the resulting in the matrix form, we can get the solution of the geostatistical inverse 

model 

( ) 0

T T

TT

HQHQH R HX

M XHX

      
     

     
                                                                                                        (A-7) 

where   is an m n  matrix of estimated weights assigned to related observations; and M  is a 

p m  matrix of Langrange multipliers. By solving   and M , the best predictions and their 

variances are produced by 

 s z                                                                                                                                           (A-8) 

T

s
V XM Q QH                                                                                                                          (A-9) 

where s  are the best predictions of pixel values at m  locations of the prediction field; and the 

diagonal elements of 
s

V  represent the predicted error variance of individual elements in s . An 

overview of the GIM methodology for synthesizing information of multiple images with variable 

resolutions is shown in Fig. A.1. 
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Fig. A.1 A flowchart of the geostatistical inverse modeling methodology for merging remotely sensed 
data with variable resolutions to produce a single resolution image. Multiple datasets (

1 2, , , nz z z   ) can be 

merged to produce one single resolution image with different relationships matrices (
1 2, , , nH H H   ). The 

prior information on the covariance structure of the prediction field (Q ) was also estimated from the 
measurements (see the following section). 

 

In order to accommodate spatial nonstationarity and reduce computational burden associated 

with large spatial data, we developed a moving-window GIM approach, which is an integration 

of GIM and the moving-window approach. The general idea of moving-window GIM is that 

instead of using all available measurements to predict the value at a prediction location, only 

measurements within local-windows are used. Local-windows are centered at prediction 

locations. The rationale behind this approach is that measurements distant from a prediction 

location may contribute very little to the prediction, except the situation that the correlation 

length is long. In most remote sensing applications, this is particularly true because images 

usually cover everywhere in the study domain, except the missing pixels caused by measurement 

errors or clouds. Moreover, the point spread functions (PSFs) of optical sensors also have a 

blurring effect because pixel values are calculated using data from neighboring pixels (Huang et 

al., 2002). In this work, the size of local-windows was chosen based on pre-calculations of 

covariance parameters over the prediction domain in order to guarantee the size of local-
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windows meets both computational requirements and the accuracy of approximation. We used 

measurements in local-windows for both parameter estimations and spatial predictions. 

 

A.2.2 Covariance Parameter Estimations 

Parameter estimations refer to the statistical inference of covariance parameters for a 

stochastic model of measurements. There are several approaches for estimating covariance 

parameters of geostatistical models, such as ordinary least square (OLS; Bogaert and Russo, 

1999), weighted least square (WLS; Cressie, 1985), and restricted maximum likelihood (REML; 

Kitanidis, 1995; Michalak et al., 2004). In this work, we applied REML for optimizing 

covariance parameters by maximizing the likelihood of measurements. REML is a variant of the 

maximum likelihood (ML) algorithm. REML leads to less biased estimates of covariance 

parameters when the sample size is small (Diggle and Ribeiro Jr., 2007). Image scaling and 

multi-resolution data fusion involve two types of parameter estimations. The differentiation is 

based on whether measurements are available at the prediction resolution. If there are available 

measurements at the prediction resolution, we can directly estimate covariance parameters using 

the measurements. Otherwise, we have to infer covariance parameters at the prediction resolution 

using data measured at another spatial resolution. REML can be used for both types of parameter 

estimations. 

 

First, when measurements are available at the prediction resolution, the REML approach for 

parameter estimations is referred to as “REML-Kriging (Gourdji et a., 2010; Nagle et al., 2011).” 

The objective function of “REML-Kriging” is defined as 

1 1 1 1 1 11 1 1
ln ln ( ( ) )

2 2 2
T T T TL Q X Q X s Q Q X X Q X X Q s     

      
                                                      (A-10) 

In this case, the gradient-based searching routine can be used for parameter optimization 

because the number of measurements is usually quite large for remote sensing applications. 

Uncertainties of covariance parameters (i.e. sill, range, and nugget) can also be calculated by the 

Hessian computation. 
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Second, when no measurements are available at the prediction resolution, the REML 

approach for parameter estimations is referred to as “REML-Inverse Modeling (Kitanidis, 1995; 

Michalak et al., 2004).” The objective function of “REML-Inverse Modeling” is defined as 

11 1 1
ln

2 2 2
T T TL X H HX z z                                                                                                    (A-11) 

THQH R                                                                                                                               (A-12) 

1 1 1 1 1( )T T T THX X H HX X H                                                                                                 (A-13) 

If the number of measurements is small, we can use the unconstrained nonlinear optimization 

routine for parameter optimization. Otherwise, the gradient-based searching routine can be 

applied for parameter optimization. The two optimization algorithms are both provided in the 

software package MATLAB (Mathworks Inc., Natick, Massachusetts, USA). In the moving-

window GIM framework, we used “REML-Inverse Modeling” for parameter estimations in 

local-windows. This was because “REML-Inverse Modeling” leads to less biased estimates of 

covariance parameters when the sample size is small (Diggle and Ribeiro Jr., 2007). The 

unconstrained nonlinear optimization routine was applied for optimizing covariance parameters 

in local-windows. 

 

In this work, we applied the exponential covariance function for all geostatistical models. The 

form of the exponential covariance function and the corresponding semivariogram model are 

defined as 

2 2( | , ) exp( )
h

Q h l
l

                                                                                                                   (A-14) 

2 2( | , ) 1 exp( )
h

h l
l

        
                                                                                                             (A-15) 

where 2  is the variance; l  is the integral scale; and h  is the distance between two data. The 

straight-line distance (i.e. Euclidian distance) and the great-circle distance were both used in this 

study for different types of problems. The great-circle distance between ix  and jx  is defined as 

(Diggle and Ribeiro Jr., 2007) 

1( , ) cos (sin sin cos cos cos( ))i j i j i j i jh x x                                                                              (A-16) 
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where   is the radius of the Earth; i  and i  are the latitude and longitude of ix , respectively; 

and 
j  and 

j  are the latitude and longitude of jx , respectively. 

 

A.2.3 Unconditional and Conditional Simulations 

Unconditional and conditional simulations are spatially consistent Monte Carlo simulations. 

They are geostatistical approaches for describing spatial variability of random fields. Conditional 

simulations generate realizations of a random field that possess the same structural 

characteristics as measurements. It can also reproduce measurements. Conditional simulations 

are equally likely realizations that have the same spatial structure defined by the covariance 

function. Unconditional simulations also follow the same spatial dependence structure defined by 

measurements, but they cannot reproduce measurements (Chilès and Delfiner, 2012; Diggle and 

Ribeiro Jr., 2007). Unconditional and conditional simulations can generate multiple outcomes, 

and each of which is an equally likely realization. When modeling a stationary Gaussian random 

field over an area that is much larger than the range, a single simulation can give a view of a 

variety of possible local situations (Chilès and Delfiner, 2012). 

 

In order to demonstrate the application of GIM for image downscaling and multi-resolution 

data fusion on synthetic images with spatially stationary characteristics, we used unconditional 

simulations to generate such synthetic data. In this case, the Gaussian random field model was 

used in modeling the spatial random process. The Gaussian models are widely used because they 

are simple, and they can capture a wide range of spatial behaviors according to the specification 

of their correlation structures (Diggle and Ribeiro Jr., 2007). The random field is spatially 

stationary (i.e. second-order stationary) if the mean values of regionalized variables are constant, 

and the covariance is only determined by the distance between two measurements (Chilès and 

Delfiner, 2012). The generation of synthetic images proceeded as follows. The user-specified 

covariance function was first decomposed by the Cholesky decomposition 

TQ CC                                                                                                                                      (A-17) 

where Q  is the covariance function. The unconditional simulations were generated by 



117799  
  

ui is X Cu                                                                                                                                (A-18) 

where X   is the model of spatial trend and can be set as zero; and iu  is a vector of normally 

distributed random numbers with zero-mean and unit-variance. In the case of generating 

synthetic images, the model of spatial trend was set as zero. 

 

The conditional simulations of the geostatistical inverse model were defined as (Kitanidis, 

1995; Michalak et al., 2004) 

 ci ui uis s z v Hs                                                                                                                  (A-19) 

where v  is a normally distributed random number, which is sampled from the model-data 

mismatch error covariance R  with zero-mean and variance 2
R ; and uis  is the unconditional 

simulation of GIM (Equation A-18). 

 

A.2.4 Fixed Rank Kriging 

In order to demonstrate the application of moving-window GIM for image downscaling and 

multi-resolution data fusion on synthetic data with spatially nonstationary characteristics, we 

used fixed ranking kriging (FRK; Cressie and Johannesson, 2008) to generate such synthetic data. 

FRK is a low-rank representation of spatial continuous random processes, and it eliminates or 

reduces some components of spatial variability to improve computational efficiency. This data 

dimension reduction approach was developed for dealing with the spatial prediction problem 

associated with large spatial data. Moreover, remote sensing images covering large geographic 

areas usually have spatially nonstationary characteristics. FRK can accommodate spatial 

nonstationarity by using a set of multi-scale basis functions. Readers are referred to Cressie et al. 

(2010), Cressie and Johannesson (2008), and Kang et al. (2010) for detailed discussions about 

FRK. Only brief descriptions are provided here because we only used FRK to generate synthetic 

images. Here, our goal was to make statistical inferences about a spatial process { ( ) : }dY s s D    

based on measurements with errors.  

 

The measurements are given by the data model 
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( ) ( ) ( )Z s Y s s                                                                                                                         (A-20) 

where { ( ) : }s s D   is a white-noise Gaussian process with mean zero and variance 2 0  . We 

assumed that ( )Y s  has the following structure 

( ) ( ) ( )Y s s s                                                                                                                            (A-21) 

where ( )   is a deterministic trend function representing the large-scale variability(e.g., ( ) X   ). 

The small-scale variability is modeled as a Gaussian process. ( )   is assumed as with zero-mean 

and follows a spatial random effect model. The unknown random variables to be predicted are 

fixed at a number, which is equal to the number of spatial basis functions. It can be expressed as 

'( ) ( ) ( )s S s s                                                                                                                           (A-22) 

where '
1( ) ( ( ),..., ( ))rS S S     is a set of basis-functions, which can capture different scales of spatial 

dependence. The basis-functions are not necessarily orthogonal, but they should represent 

information at multiple resolutions. The multi-resolution wavelet basis function (Cressie et al., 

2010; Kang et al., 2010) and the bi-square basis function (Cressie and Johannesson, 2008; 

Nguyen, 2012) have been used in the previous studies. In this work, we chose the bi-square basis 

function considering its simplicity and computational efficiency (Cressie and Johannesson, 2008). 

 2
2

( ) ( )
( )

1 ( / )
( )

0,

j l l j l l
j l

u v r u v r
S u

otherwise

      
 

                                                                             (A-23) 

where ( )j lv  is one of the center points of the thl  resolution ( 1,2,3,l N  ); and lr =1.5 (i.e. the 

shortest arc distance between center points of the thl  resolution). The generated synthetic images 

can have more spatial variability by increasing the number of resolutions in the model. However, 

this will increase computational requirements for generating such synthetic data. The spatially 

nonstationary covariance function is modeled as 

'( , ) ( ) ( )C u v S u S v  ,                       , du v                                                                                 (A-24) 

where   is a positive definite r r  unknown matrix; '
1( ,..., )r    is a zero-mean Gaussian 

random vector with cov( )   ; and ( )   captures the fine-scale spatial variability. The fraction of 
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the fine-scale spatial variability to the total spatial variability and the signal to noise ratio of the 

generated synthetic image can also be defined in the FRK model (Cressie et al., 2010). 

 

A.3 Computer Experiments 

In this work, the overall geostatistical modeling experiments proceeded as follows. First, in 

order to isolate various problems associated with real images (e.g. measurement errors), we 

demonstrated the applications of GIM and moving-window GIM for image downscaling and 

multi-resolution data fusion on synthetic images. Second, we applied moving-window GIM for 

merging AOD measurements derived from two sensors and for super-resolution mapping of 

global AOD distributions. For all experiments on synthetic and real data, we used REML for 

estimating covariance parameters. In order to assess prediction accuracies and the correctness of 

prediction uncertainties, we calculated the root mean square error (RMSE) between spatial 

predictions and measurements, and the percentage of pixels in original images with their values 

falling within two standard deviations of the best predictions. We called the first measure the 

“RMSE index” and the second measure the “percentage index.” In addition, image registration is 

a major step prior to pixel-level data fusion. We assumed that the images used for multi-

resolution data fusion have been registered correctly. Analyzing the influence of image mis-

registration on the accuracy of spatial predictions was beyond the scope of this work. All of the 

geostatistical models discussed in the chapter (Section A.2) and the following experiments were 

coded in MATLAB by the authors. 

 

A.3.1 Generating Synthetic Images  

We applied unconditional simulations with user specified covariance parameters to generate 

synthetic images with spatially stationary characteristics. The synthetic images with and without 

the nugget effect were generated and used in the modeling experiments. The simulated reference 

pixel values were distributed on a 120 × 120 regular grid (of unit cell size). In this work, we 

differentiated the fine-scale spatial variability of images and the measurement errors of images, 

and we defined the nugget effect as the fine-scale spatial variability (Cressie et al., 2010). 
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Moreover, we did not introduce simulated measurement errors into the synthetic images. The 

covariance functions used for generating synthetic images are 

( ) 0.01 (1 )
10

h
C h                                                                                                                            (A-25) 

( ) 0.005 0.02 (1 )
5

h
C h                                                                                                                    (A-26) 

where ( )C h  is the covariance function; and h  is the straight-line distance (i.e. Euclidian distance) 

between two locations. Equation 25 is the exponential covariance function, and the sill and range 

values are 0.01 and 30, respectively. Equation 26 is a combination of the exponential covariance 

function and the nugget effect, and the sill and range values are 0.025 and 15, respectively. 

 

We used FRK to generate a synthetic image with spatially nonstationary characteristics. The 

values of sill and range for the exponential covariance function in the FRK framework were set 

as 0.05 and 30, respectively. The specified covariance function was used to parameterize the   

matrix in the spatially nonstationary covariance function (Equation 24). In order to simulate 

spatial variability of real remote sensing images, we used a large number of basis-functions for 

characterizing multi-scale spatial variability. In this experiment, we set the resolution number ( l ) 

as five. The number of bi-square basis-functions used for generating the synthetic image was 

1364, which was the sum of basis-functions in each of the five lower resolutions: 4 (1 × 4), 16 (4 

× 4), 64 (16 × 4), 256 (64 × 4), and 1024 (256 × 4). We set the fraction of the fine-scale spatial 

variability to the total spatial variabiltiy as 0.05. We did not introduce measurement errors into 

the synthetic image. Therefore, the value of the signal-to-noise ratio was set as one. The 

simulated pixels were distributed on a 320 × 320 regular grid (of unit size). 

 

A.3.2 Merging Synthetic Images with Variable Resolutions 

We designed four experiments for demonstrating the application of GIM for image 

downscaling and multi-resolution data fusion on the synthetic images with spatially stationary 

characteristics: two were on the synthetic image without the nugget effect, and the other two 

were on the synthetic image with the nugget effect. The modeling experiments proceeded as 

follows. Given space limitations, we only used the experiment on the synthetic image without the 
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nugget effect as an example. First, we averaged the synthetic image to two coarser resolutions 

using a non-overlapping moving-window. The first aggregated image was with the spatial 

support of 64 (i.e. the size of the local-window was 8 × 8), and the second aggregated image was 

with the spatial support of four (i.e., the size of the local-window was 2 × 2). We only used the 

diagonal part of the second aggregated image for the experiment. We set two relationship 

matrices (i.e. the H  matrix in the GIM framework) for the two aggregated images because they 

had different spatial supports. We used the uniform distribution function to represent the 

relationships between coarse-resolution measurements and fine-resolution predictions, and we 

assumed sub-pixels within a coarse-resolution pixel had the same contribution to the value of the 

coarse-resolution pixel. The size of the prediction field was set as the same size of the original 

simulated image. We also generated conditional simulations to show spatial uncertainties of the 

predictions. In the second experiment, the aggregated image with the spatial support of 64 was 

merged with the diagonal part of the aggregated image with the spatial support of 16 (i.e. the size 

of the local-window was 4 × 4). We also ran two similar experiments on the synthetic image with 

the nugget effect. 

 

We demonstrated the application of moving-window GIM for multi-resolution data fusion on 

the synthetic image with spatially nonstationary characteristics. Similar to the above experiments, 

the synthetic image generated by FRK was averaged using non-overlapping moving windows to 

two coarser resolutions: one aggregated image was with the spatial support of 16 (i.e. the size of 

the local-window was 4 × 4), and the other aggregated image was with the spatial support of four 

(i.e. the size of the local-window was 2 × 2). Only the diagonal part of the second aggregated 

image was used in the experiment. We also set two relationship matrices for the two aggregated 

images with different spatial supports. The uniform distribution function was also used for 

representing the relationships between coarse-resolution measurements and fine-resolution 

predictions. In order to assess the modeling results, the size of the prediction field was also set as 

the same size of the original simulated image. 
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A.3.3 Merging AOD Measurements with Variable Resolutions 

We applied moving-window GIM for merging Level-3 AOD data derived from the MISR and 

the Terra-MODIS sensors and for super-resolution mapping of global AOD distributions in short 

time-intervals. The spatial resolutions of Level-3 MISR AOD and Terra-MODIS AOD are 0.5° × 

0.5° and 1° × 1°, respectively. MISR and Terra-MODIS are both carried by the Terra satellite but 

with different sensor characteristics, such as the size of swath and the instantaneous field of view. 

Second, the algorithms for retrieving AOD from original MISR and Terra-MODIS data are 

different. MODIS land retrieval algorithm does not operate over desert (e.g. northern Africa and 

Middle East) or other bright land surfaces, and MODIS has difficulties in computing AOD in 

part of its swath over dark water due to sun glint. MISR can measure AOD in the above 

conditions (Kahn et al., 2009). Moreover, MODIS has much wider spatial coverage than MISR 

does due to its wider swath. However, MISR has measurements in some areas where MODIS 

does not have. Given the differences in instrumental designs and retrieval algorithms, AOD 

measurements from the MISR and MODIS sensors were used in conjunction with one another to 

exploit their complementary strengths, especially for the middle and low latitudes (Kahn et al., 

2009). In addition, AOD is changing quickly in space and time, measurements from one sensor 

in a short time-interval may not be enough to capture the functional features of the continuous 

AOD process. The complementary coverage makes the two AOD datasets suitable for data 

fusion. 

 

However, there were several difficulties in merging AOD measurements from the MISR and 

MODIS sensors. We have discussed spatially nonstationarity and computational burden 

associated with large spatial data. In the real-data modeling experiments, we had both of the 

problems. In this part, we ran two experiments: one experiment was merging one-day AOD 

measurements derived from the two sensors (i.e. August 1, 2008), and the other experiment was 

merging eight-day AOD measurements derived from the two sensors (i.e. from July 28, 2008 to 

August 4, 2008). These data were selected randomly with no specific reasons. For the one-day 

AOD measurements, the numbers of pixels for MISR AOD and MODIS AOD measurements 

were 15,612 and 23,253, respectively. For the eight-day AOD measurements, the numbers of 

AOD measurements from the two sensors were 129,664 and 40,766, respectively. Most of the 
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AOD measurements from the two sensors were made between 70° N and 50° S, and between 

180° W and 180° E. For the two real-data modeling experiments, MISR AOD and MODIS AOD 

were merged and downscaled to 0.25° × 0.25° for super-resolution mapping of global AOD 

distributions. Similar to the experiments on synthetic data, we also used two relationship 

matrices for the two AOD measurements with different spatial supports. The uniform 

distribution function was also used to calculate the relationship matrices in the GIM framework. 

We applied moving-window GIM to accommodate spatial nonstationarity and reduce 

computational burden associated with large spatial data. By pre-calculations and analyses, we set 

a local-window with the size of 2000-km for both parameter estimations and spatial predictions. 

Even for the areas with AOD measurements from both MODIS and MISR, merging them 

through the moving-window GIM approach can provide more accurate and robust predictions of 

the true AOD process. We also calculated prediction uncertainties for the two real-data 

experiments. 

 

A.4 Results 

A.4.1 Results of Synthetic Image Modeling  

The three synthetic images were generated as realizations of Gaussian random fields, and the 

histograms of pixel values for the three images were normally distributed (Fig. A.2d-f). For the 

synthetic images generated by unconditional simulations, the image without the nugget effect 

and with a longer correlation length and a lower sill (Fig. A.2a) showed less spatial variability 

than the other image (Fig. A.2b). The synthetic image generated by FRK is shown in Fig. A.2c. 
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                        (a)                                                        (b)                                                          (c) 

               
                        (d)                                                        (e)                                                          (f) 
Fig. A.2 Synthetic images: (a) and (b) are the images without and with nugget effect, respectively. These 
two images were generated by unconditional simulations. (c) is the image with nugget effect, generated 
by FRK. (d), (e), and (f) are the histograms for the images (a), (b), and (c), respectively. 

 

The modeling results of the five synthetic data modeling experiments are shown in Table 

A.1. The values of the RMSE index and the percentage index showed that the spatial 

predictions were all accurate and the prediction uncertainties were all correct. The values of 

the RMSE index for the five experiments were lower than 10% of the original measurements. 

Theoretically, for realizations of Gaussian random fields, 95% of the pixel values of the 

original images should fall within the two standard deviation bounds of the best spatial 

predictions. The prediction accuracies for the experiments using the images without the 

nugget effect (Experiments 1 and 2) were better than the results of the experiments using the 

images with the nugget effect (Experiments 3 and 4). The prediction accuracies for the 

experiments using fine-resolution aggregated images (Experiments 1 and 3) were better than 

the results of the experiments using coarse-resolution aggregated images (Experiments 2 and 

4). The prediction accuracy for Experiment 5 was better than the results of the first four 

experiments, and the percentage index for this experiment was also higher than the results of 

the first four experiments. These may be caused by the fact that the synthetic image 

generated by FRK was smoother than the synthetic images generated by unconditional 

simulations. 
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Given space limitations, we only showed the figures of modeling results of Experiments 1, 

3, and 5 (Fig. A.3). The spatial predictions showed more spatial details for the diagonal parts 

with fine-resolution aggregated data added in (Fig. A.3b, f, and j). The diagonal parts also 

had lower prediction uncertainties (Fig. A.3c, g, and k). These results were reasonable 

because all spatial predictions benefit from the presence of nearby measurements. Spatial 

predictions made in the densely measured regions should have lower errors than those made 

in the sparsely measured regions. The conditional simulations (Fig. A.3d, h, and l) looked 

more realistic as the original simulated data (Fig. A.2a, b, and c) and showed less smoothing 

effect than spatial predictions (Fig. A.3b, f, and j). From Fig. A.3k we can see that the values 

of prediction uncertainties (i.e. standard errors) varied across the domain. This demonstrated 

that moving-window GIM accommodated spatial nonstationarity of the synthetic image 

generated by FRK. This implied that using spatially stationary covariance functions for 

realizations of nonstationary random fields may introduce more prediction errors and 

generate incorrect prediction uncertainties. 

 

Table A.1 Results of merging multi-resolution synthetic images. 

Experiments with aggregated images RMSE Index 
Prediction uncertainty 

Percentage index 
Lower_bound Upper_bound 

Images with spatially stationary characteristics 

Images without the nugget effect 

Experiment 1: 15 × 15 and part of 60 × 60 0.0395 0.0237 0.0663 95.60% 

Experiment 2: 15 × 15 and part of 30 × 30 0.0427 0.0305 0.0667 95.72% 

Images with the nugget effect 

Experiment 3: 15 × 15 and part of 60 × 60 0.1008 0.0781 0.1361 95.61% 

Experiment 4: 15 × 15 and part of 30 × 30 0.1074 0.0917 0.1369 95.65% 

Images with spatially nonstationary characteristics 

Experiment 5: 160 × 160 and part of 80 × 80 0.0361 0.0209 0.0816 98.27% 
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                         (a)                                                                    (b)                                                        (c)                                                        (d) 

       
                         (e)                                                                    (f)                                                        (g)                                                        (h) 

       
                         (i)                                                                    (j)                                                        (k)                                                        (l) 
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Fig. A.3 Results of merging synthetic images with variable resolutions: (a), (e), and (i) are the overlays of 
synthetic images with different resolutions for Experiments 1, 3, and 5, respectively; (b), (f), (j) are the 
spatial predictions with data from (a), (e), and (i), respectively; (c), (g),and (k) are the prediction 
uncertainties for (b), (f), and (j), respectively; and (d), (h), (l) are the conditional simulations for (b), (f), 
and (j), respectively. 

 

A.4.2 Super-Resolution Mapping of Global AOD Distributions 

From the one-day AOD measurements derived from the MISR and MODIS sensors (Fig. A.4a 

and c), we can see that MODIS had more complete spatial coverage than MISR did. MODIS 

AOD was missing in some of the low and middle latitudes (Fig. A.4a). MISR had measurements 

in those regions, but the field of view of MISR was narrow (Fig. A.4c). The eight-day MODIS 

AOD measurements had more complete coverage than the one-day MODIS AOD measurements. 

However, there were still gaps in the low and middle latitudes (i.e. North Africa and Middle East) 

(Fig. A.4b). The eight-day MISR AOD measurements had much better coverage than the one-

day AOD measurements, but they still did not cover the whole globe (Fig. A.4d). Visually, the 

data gaps of the eight-day MODIS AOD can be mostly covered by the eight-day MISR AOD. 

Merging the two datasets can produce a more complete picture of global AOD distributions. 

 

By comparing the spatial predictions using the one-day and eight-day AOD measurements 

(Fig. A.4e and f), we can find that although the general patterns of the two images were similar, 

there were still apparent differences between the two figures, especially in North Eurasia and 

North America. This indicated that aerosol concentrations were shifting quickly over space and 

time. Therefore, mapping AOD distributions over short time-intervals may be important. Studies 

showed that the high concentrations of AOD were from different sources: high AOD values in 

North Africa and Middle East, Central Africa, and East Asia (e.g. China) and North America 

were mainly from dust, smoke, and pollution, respectively (Ichoku et al., 2004). The standard 

errors of spatial predictions showed that the errors of the experiment using the eight-day 

measurements (Fig. A.4g) were apparently lower than the errors of the experiment using the one-

day measurements (Fig. A.4h). In addition, the prediction uncertainties in some of the low and 

middle latitudes with fewer measurements were much higher than the prediction uncertainties in 

the regions with dense measurements. These were reasonable because there were few 

measurements to constrain spatial predictions in the low and middle latitudes. 
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                                            (a)                                                                                         (b) 

  
                                            (c)                                                                                         (d) 

  
                                            (e)                                                                                         (f) 

  
                                            (g)                                                                                         (h) 

                                        
Fig. A.4 Results of multi-resolution real data fusion: (a) and (c) are the one-day measurements of AOD 
derived from the MODIS and MISR sensors , respectively; (b) and (d) are the eight-day measurements of 
AOD derived from the MODIS and MISR sensors, respectively; (e) is the spatial predictions with 
measurements from (a) and (c); (f) is the spatial predictions with measurements from (b) and (d); and (g) 
and (h) are the prediction uncertainties associated with (e) and (f), respectively. Only modeling results 
covering the continents are shown in the maps. 
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A.4.3. Moving-Window GIM versus Spatial Statistical Data Fusion 

In order to gain insights into the relative performance and computational efficiency of 

moving-window GIM, we compared this approach with spatial statistical data fusion (SSDF; 

Nguyen et al., 2012). SSDF is a recently developed geostatistical approach for merging large 

spatial data with variable resolutions. SSDF was developed based on FRK, and it uses a data 

dimension reduction approach to improve computational efficiency. For this experiment, we 

selected subsets of the eight-day AOD measurements from the MISR and MODIS sensors within 

the latitudes 20°N – 60°N and the longitudes 70°E – 120°E. The numbers of pixels for AOD 

measurements from the MISR and MODIS sensors within the subsets were 4412 and 1477, 

respectively. We randomly selected 10% of the AOD measurements and treated them as testing 

data. The remaining 90% of the data were used for spatial predictions. In this experiment, the 

spatial predictions were made at the resolution of 0.25° × 0.25°. For SSDF, the number of bi-

square basis functions used was 340 (i.e. the resolution number was four). The spatial predictions 

were averaged back to the resolutions of AOD measurements for cross-validations. The values of 

RMSE for moving-window GIM and SSDF were 0.3519 and 0.8106, respectively. However, 

SSDF was more computationally efficient than moving-window GIM. For this experiment, 

SSDF took about 117 seconds on a 2.8 GHz machine with an Intel Core Processor, and moving-

window GIM took about 6 minutes on a 16-processor work station (i.e. the computing process 

was parallelized). These were reasonable because SSDF eliminates some components of spatial 

variability to improve computational efficiency. 

 

A.5 Discussion and Conclusion 

We have demonstrated GIM and moving-window GIM for image downscaling and multi-

resolution data fusion on synthetic and real images. There were several limitations in the above 

experiments. First, we did not deal with measurement errors of remote sensing images. For the 

experiments on synthetic and real images, we treated the nugget effect as the fine-scale 

variability of images, and we built geostatistical models to model it. However, real remote 

sensing images are always contaminated with measurement errors. Future work needs to 

examine the influence of measurement errors. Fortunately, GIM can account for measurement 
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errors by the model-data mismatch matrix (i.e. the R  matrix in the GIM framework). Second, we 

applied the Gaussian random field model for both synthetic and real images. In some cases, 

measurements may have non-Gaussian characteristics. In those occasions we need to extend the 

geostatistical inverse model to accommodate non-Gaussian spatial data by using a set of models 

known as generalized linear mixed models. The actual probability distributions of measurements 

need to be explored in order to define the link function of generalized linear mixed models. Third, 

we did not use auxiliary information for spatial predictions, although GIM can include auxiliary 

variables (i.e. the spatial trend part of the GIM framework) to improve prediction accuracies. 

Other studies showed that including auxiliary variables in the GIM framework can improve 

prediction accuracy (Gourdji et al., 2008). However, adding inappropriate auxiliary information 

may bias the model. Usually, a statistical test of the contributions of auxiliary variables is needed 

(Gourdji et al., 2008). 

 

We used REML for estimating covariance parameters related to the change-of-support 

problem. The estimated covariance parameters are always associated with errors, and these errors 

can consequently propagate to spatial predictions. Therefore, analyzing error propagations is 

very important for understanding the accuracy of spatial predictions. By running modeling 

experiments, we found that the errors associated with the estimated covariance parameters 

increased with increases in the resolution gap between measurements and spatial predictions. 

More in-depth analyses about error propagations in spatial predictions using GIM are still needed. 

Moreover, we only applied GIM for merging coarse-resolution satellite images. However, when 

applying GIM on fine-resolution images with tens or hundreds of millions of pixels, 

computations will still be a problem. This is similar to many other geostatistical models for 

dealing with large spatial data. We developed a moving-window GIM approach to reduce 

computational burden associated with large spatial data. When parallelizing the computations of 

moving-windows, spatial predictions can be made very fast. Besides parallel computing, low-

rank representations (Wikle, 2010) and covariance tapering (Fuentes and Smith, 2001) are also 

possible solutions to the problem of computational burden. Furthermore, although we used the 

uniform distribution function to simulate the relationships between coarse-resolution 

measurements and fine-resolution predictions, real point spread functions (e.g. two-dimensional 

Gaussian distribution) of sensors can be used to calculate the relationship matrix (i.e. the H  
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matrix in the GIM framework). Finally, we only applied GIM for image downscaling. GIM can 

also be used for image up-scaling with one or more measurements, if we set-up a coarse 

prediction grid and define the relationship matrix between fine-resolution measurements and 

coarse-resolution predictions. 

 

We have presented an introduction of the GIM methodology for merging coarse-resolution 

images with variable resolutions and for super-resolution mapping of continuous spatial 

processes. The results of synthetic data modeling experiments showed that GIM and moving-

window GIM can produce accurate spatial predictions and correct prediction uncertainties. The 

results of real data modeling experiments showed that moving-window GIM can be used for 

merging complementary MISR AOD and MODIS AOD data and for super-resolution mapping 

of global AOD distributions. To the best of our knowledge, this is the first introduction of the 

moving-window GIM approach for solving the scale and data fusion related problems in remote 

sensing. 
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