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1. CHAPTER 1 LEAD TOXICITY AND LEAD EXPOSURE MEASUREMENTS 

Lead Exposure and Public Health Significance  

Lead poisoning is a well-recognized public health concern, and lead pollution 

remains a serious issue worldwide. In 2003, WHO estimated that there were 120 million 

people worldwide who had blood lead levels greater than 10 !g/dL, and 240 million 

people had blood lead levels exceeding 5 !g/dL1. A meta-analysis2 mapped 242 

populations from 1011 studies and datasets worldwide and identified 57 populations 

that had average blood lead levels exceeding 10 !g/dL, the CDC level of concern in 

children3. The main sources of lead pollution vary across countries; the most common 

sources of lead exposures come from metal smelters, leaded gasoline, lead paint, 

battery recycling and lead-glazed pottery. For instance, lead gasoline is the main source 

of lead pollution in Bangladesh and Senegal; family-based battery lead recycling is the 

main problem in Mexico, the Caribbean Islands, and India; lead contaminated food 

containers such as lead glazed pottery and lead solder in aluminum cans are major 

sources of lead pollution in Mexico and Honduras 2, 4. In China, the lack of 

environmental emission control of industrial wastes results in regional lead 

contamination at exceeding levels. Between 1994 and 2004, about 34% of Chinese 

children had blood lead levels higher than the WHO’s recommended limit 5. 

The main sources of lead pollution in the United States came from leaded 

gasoline, lead paint from buildings built before 1980, and lead water pipes6. The 
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concentrations of lead in occupational settings are much higher than those in the living 

community 7. Having recognized the detrimental effects of lead, the US Environmental 

Protection Agency (EPA) in 1973 initiated a series of actions to phase out lead from the 

daily use products, e.g., the removal of lead from gasoline and paint 8. It was not until 

1996 that the final step was taken by the EPA to eliminate lead from gasoline8. Yet, the 

lead the residuals in urban soil in the US remains a source of concern for lead 

poisoning6.  

In general, lead levels at or above 150 µg/dL in whole blood may cause 

irreversible and fatal consequences9, 10.  At lower levels such as 30-40 µg/dL, lead 

poisoning results in the impairment of multiple systems such as the nervous system in 

the susceptible populations, including in children and elderly11. Lead poisoning is also 

correlated with premature birth and intrauterine growth retardation12-14. Chronic lead 

poisoning is associated with renal function impairment15, cardiovascular diseases16, 

infertility17, 18 and pathological neurodegeneration 19. The clinical symptoms of lead 

poisoning are not distinct, which make the diagnosis difficult. The long-term effects from 

cumulative lead exposure are intertwined with aging process, posing a great challenge 

for scientific investigation. 

Lead poisoning causes adverse outcomes not only limited to human health, but 

also to economies by virtue of loss in workforce, compensation in medical care, and 

long term reduction in intelligence20. Reducing environmental lead contaminants can 

result in economic benefits. It is estimated that a lowering the mean blood lead in the 

population by 1 µg/dL could save approximately $3.5 billion per year in reduced 

healthcare costs from lead poisoning in the US 21, 22. In summary, environmental lead 
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exposure still poses current public health concern.  Research and actions should be 

taken in order to better characterize and control this persistent hazard.  

Lead Toxicity  

In the body, lead reacts with a variety of molecules at the cellular level.  

According to Nieboer and Richardson’s classification (1980), lead belongs to Class B 

(Pb2+) and Borderline class (Pb4+) 23. This thermodynamic characteristic of lead 

suggests lead ions have a high binding affinity with a broad range of ligands. In 

particular, lead binding selectively favors nucleophilic ligands such as sulfhydryl, amine, 

phosphate and carboxyl groups. Thiolate, which is abundant in many functional 

proteins, has highest the affinity with lead. 

One way that lead interferes with the cellular machinery is by inducing oxidative 

stress. This has a direct impact on cell membranes, causes changes in with the enzyme 

"-aminolevulinic acid dehydratase ("-ALAD) and inhibits reductase. When binding with 

proteins, lead can cause changes in conformation or occupy a variety of binding sites, 

thus preventing subsequent reactions. Copropohyrinogen oxidase (CO) is one of the 

proteins that are affected by lead. When binding with Pb2+, CO enzyme activity is 

inhibited through structural change, which results in instability of membrane integrity 24.  

Alternatively, in other proteins, lead can outcompete other essential metals cofactors at 

the bioactive binding sites, deactivating proteins. For example, Pb2+ displaces Zn2+ from 

the metallothionein (MT) and inhibits synaptic membranes functions maintained by the 

Zn2+- MT binding structure 25.  
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Lead can also induce oxidative stress with the involvement of mitochondrial 

distress. With a higher binding affinity, Pb2+ outcompetes Ca2+ at the plasma membrane 

Ca2+ transport channel. The permeability of Pb2+ at the cell membrane is tenfold of Ca2+ 

26. Unlike Ca2+, Pb2+ uptake does not appear to reach saturation 26, 27. Pb2+ replaces 

Ca2+ at both of the Ca2+-ATPase sites and at voltage sensitive Ca2+ channels, depletes 

Ca2+ in the mitochondria by impeding Ca2+ uptake into mitochondria and by stimulating 

Ca2+ efflux from mitochondria 28, 29. Alternatively, lead can impose mitochondrial stress 

via inhibition of heme production.  Pb2+ can block catalytic sites that contains vicinal 

thiol groups in the enzyme heme synthetase 25 and  result in the reduction in ATP 

production. Insufficient ATP production in mitochondria in turn creates free radical 

oxygen species (ROS).  

Independent of mitochondrial stress pathways, lead-induced oxidative stress can 

be observed in the peripheral tissues 30, 31. For instance, lead can result in the 

elongation of arachidonic acid in fat tissue 32. Over 80% of lead in erythrocytes binds to 

"-ALAD. Pb2+ replaces Zn2+ at SH sites and inhibits the subsequent binding with "- 

aminolevulinic acid ("-ALA). This leads to accumulation of "-ALA in the cell cytoplasm. 

"-ALA is auto-oxidative at pH 7.0-8.0 and can generate free radicals 33. "-ALAD 

bioactivity can be affected in blood lead levels as low as 5 !g/dL. Approximately 50% of 

"-ALAD activity inhibition occurs at 16 !g/dL in whole blood, whereas 90% of the 

enzyme activity inhibition is observed at 55 !g/dL 34. Antioxidant molecules, such as 

glutathione (GSH), glutathione reductase (GR), glutathione peroxidase, and superoxide 

dismutase are also susceptible to lead. Lead binds at sulfhydryl sites in GSH and GR 
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and reduces the amount of bioactive enzymes 35, 36. Reduction in these bioactive 

antioxidants weakens defenses against oxidative stress.  

Excessive elevation in oxidative stress can have severe consequences to the 

cell. Free radicals have a wide range of intracellular targets, such as nuclear and 

plasma membranes, which are needed to maintain cell function and survival 37 38. The 

destruction of these structures can lead to cell apoptosis or necrosis35.  For instance, 

lipid peroxidation at cell membrane results in structural derangement and alters 

phospholipid bilayer fluidity32. Additionally, oxidative stress affects enzyme activities, 

such as Na+-K+-ATPase, cytochrome oxidase, and succinic dehydrogenase. The 

dysfunction of these enzymes causes increase in permeability of membranes, which 

makes the organelles unable to contain constituents 39. For instance, the instability of 

lysosome membranes causes the release of acid hydrolases, which can degrade 

intracellular constituents and cause cell lysis40. 

In addition, lead disrupts intracellular electrolyte gradients, which could attract 

water fluxing into the cell and cause osmotic lysis41. For example, in the endoplasmic 

reticulum, the presence of Pb2+ induces Ca2+ release from cytoplasmic organelles and 

results in elevated Ca2+ concentrations in the cytoplasm27. This leads to acute elevation 

of intracellular osmotic pressure and formation of cell edema. Cellular edema is 

especially critical clinically when it occurs in the central nervous system. Severe 

cerebral edema can result in the herniations in the midbrain, a life threatening condition.  

In summary, lead can interfere cellular machinery by interacting with proteins, 

mimicking calcium activities and creating oxidative stress. 
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Biomarkers for Lead Exposure Measurement 

Lead Absorption and Distribution in the Body  

Primary routes of lead exposure in humans are inhalation and ingestion. In 

general, 40 to 50% of inhaled lead deposits in the lung. A very small fraction of inhaled 

lead is trapped in the upper respiratory tract and can be swallowed. Compared with 

intestinal absorption, the lung absorbs lead more efficiently42. However, the absorption 

rate in the lung or intestines increases to approximately 50% in infants and in people 

who are fasting43, 44. Deficiency of other electrolytes also facilitates lead absorption 45,46. 

Around 95% of lead in circulation is sequestered in red blood cells, leaving a small 

fraction of inorganic lead in the plasma that can be transferred into surrounding 

tissues46. The mean biological half-life of blood lead is about 40 days 47.  

Lead from blood is incorporated into calcified tissues such as bone. The fraction 

of lead deposited in bones can persist for years 48. Approximately 70% of the total body 

burden of lead in children is carried in the skeletons and up to 95% in adults 49. Lead in 

bones can be released back into circulation. Depending on bone turnover rates, the 

half-life of cortical bone lead is several decades and about eight years in trabecular 

bones 50. Bone lead release is more prominent during intensive bone turnover periods, 

such as during skeletal growth, pregnancy and osteoporosis51.  

Throughout the years of lead toxicity investigations, many biomarkers have been 

developed and tested for the purposes of screening, biomonitoring or clinical diagnosis. 

Given the biokinetics of lead in the body, biomarkers from different tissue types can be 

used to characterize lead exposure as a function of the timing of exposures. Lead can 



 

 7 

be detected in blood, urine, nails, hair, soft tissues and bones. Blood, urine and bone 

lead measurement are discussed below, given these comprise specific exposure 

measurements used in the projects in the following chapters.  

Biomarkers for Short-term Lead Exposure  

Blood Lead Measurements   

Whole blood is the primary biological fluid that has been used to assess lead 

exposure assessment in lead studies. Whole blood lead reflects both intracellular and 

extracellular lead levels. It does not serve as an index for immediate lead exposure but 

can reflect recent exposure for up to 30 days 52. Whole blood lead levels also reflect 

lead mobilization from bone to blood, dominantly from trabecular bone 53.  Many 

analytical approaches have been applied for whole blood lead assessment across lead 

studies. A recent widely adopted method is inductively coupled plasma mass 

spectrometry (ICP-MS). This method uses commercially available standard blood 

sample as the reference for quality controls. The intra-individual variation is controlled at 

less than 5% with detection limit at 1µg/dL. The use of whole blood lead measurement 

approach is relatively resistant to contamination issue at the pre-analytical phase and 

during laboratory sample processing. With this assay, the limitation of detection is 

relatively low and concentrations of lead in whole blood are highly measurable. It is cost 

efficient with a cost of 4 to 64 USD per sample.54. 

Plasma lead levels, on the other hand, reflect the bioactive fraction of lead that 

can be transferred across cell membrane and can have direct toxic effects on cells. The 

ICP-MS method allows the measurement of lead in plasma with detection limit at 0.1 
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µg/dL. Theoretically, plasma lead would be an ideal biomarker for studies of lead 

toxicity. However, it is difficult to achieve satisfactory accuracy in the fieldwork setting 

due to many technical issues arising from this measure. First, plasma separation has to 

be performed soon after the blood specimen has been collected because intracellular 

lead can be released into the plasma via hemolysis that occurs shortly after blood 

collection. Even mild hemolysis could increase plasma lead level up to 30% 55. 

Secondly, lead concentrations in plasma make up less than 1% of whole blood lead, 

which imposes greater requirements for the lower detection limit and stringent sample 

handling procedure in the pre-analytical phase to avoid background contamination.  

Thus, characterizing lead levels in plasma from low environmental exposure levels may 

not provide valid results and may lead to exposure misclassification. Thirdly, measuring 

plasma lead requires the highest purity grade of analytical reagents and special metal-

free collecting tubes. Currently, many of these issues have not been completely 

resolved56. These issues also increase the cost for sample processing and make it more 

expensive compared to the cost of whole blood measurement (approximately 38- 127 

USD), especially when more sensitive detection limit is demanded 54.  

Urinary Lead Measurement  

Urinary lead reflects the lead component that has diffused from plasma and is 

filtered out through kidneys. Lead mobilized from bones contributes to urinary lead 57. 

Urinary lead concentration is subject to biological variations involving glomerular 

filtration functions and plasma lead levels. Urinary lead may serve as a proxy for plasma 

lead after adjustment for creatinine excretion. The procedure of urine collection for lead 

measurement is non-invasive and samples are easy to obtain for epidemiologic studies. 
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However, contamination of urine samples from dust particles and the precipitation of 

urate salts can affect the estimation of urinary lead levels 56. 

Biomarkers for Cumulative Lead Exposure  

The half-life of bone lead ranges from years to decades. Bone lead as 

biomarkers for retrospective lead exposures is well recognized in research settings for 

studying the toxicity from cumulative lead exposures. Bone lead concentration can be 

measured in a variety of approaches. Among these methods, X-ray fluorescence (XRF) 

spectroscopy is the primary choice in the studies of human subjects. 

XRF Photon-physics Mechanism  

X-ray fluorescence is a non-invasive bone lead measurement procedure using 

low dose radiation (30mCi) 58. The current generation of XRF uses 109Cd isotope as a 

point excitement source 59. It generates silver X-ray at an energy spectrum of 88 keV. 

This energy level provokes photoelectric interaction that can knock off a K electron or 

an L electron.  Subsequently, an outer shell electron fills the vacancy and emits X-ray 

fluorescence. Depending on the metal-specific inter-shell transition, the energy level of 

X-ray varies. For example, for a lead K electron transition, the most common energy 

levels are 72.8 keV, 75keV, and 85 keV, which correspond to Pb K#2, Pb K#1 and Pb 

K$13 transitions.  Compared to L-XRF, K-XRF requires higher energy excitement and 

suffers less from signaling attenuation by skin shielding. Due to the deep penetration 

capability, K-XRF performs better in terms of capturing the lead concentration dynamics 

across bone sections compared to L-XRF58. In terms of safety, the absorbed organ 

equivalent dose for K-XRF is slightly higher than L-XRF (4.0 µSv vs.2.9 µSv). However, 
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the health risk from this additional radiation exposure are considered minor 60. Given the 

advantages of the K-shell XRF method, the bulk of research on human subject bone 

lead concentration measurements preferentially adopts K-XRF method. 

Working Flow of XRF Machines  

Figure 1.1 and Figure 1.2 illustrates the working flow of a K-XRF machine. The 

photoelectric interaction is provoked by 109Cd source. The Germanium HP detector 

captures the energy emission during machine “live time”. The signal is amplified and 

transferred to the computer for analytical use. Photoelectric events in lead atoms are 

collected and counted over a fixed period of time (30 minutes in real time in our 

studies). Meanwhile, the signals from calcium, carbon, oxygen and Compton scattering 

edges constituting the reference coherent peak (coh) are also collected. Collected data 

are analyzed with Canberra Genie 2000 Multichannel Analyzer (MCA) software (Figure 

1.3). The 109Cd isotope source resolution is tested before examining human subjects. 

System calibration is carried out using plaster-of-Paris phantoms. The phantom acrylic 

tubes are %” thick, which mimics human skin thickness at tibia midpoint. It also contains 

a mixture of lead and calcium sulfate dehydrate (CaSO42H2O) that resembles the 

chemical components of bones.  Nine plaster-of-Paris phantoms with lead 

concentrations marked as 0 parts per million (PPM), 5PPM, 10PPM, 15PPM, 25PPM, 

35PPM, 50 PPM, 75PPM, and100PPM are used to construct a calibration curve. A 

coherent peak (coh)/reference peak is collected during the calibrations. In order to 

derive the lead peak, the background peak counts are subtracted from the total peak 

counts. Therefore, in the cases of very low lead concentrations, negative peak counts 

may be generated. Calibration lines for #1 and $1 peaks are calculated by plotting #/coh 
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and $/coh ratios against lead concentration. The subject’s lead concentration is derived 

by fitting #/coh and $/coh ratios onto a calibration line with correction factors 59.  

Measurement Procedure  

The K-XRF equipment is kept in a dust-free environment in order to reduce 

background noise during the measurement. A metal free chair with a leg stabilization 

device is provided to the study subject. The study subject is asked to sit still and to wear 

a lead free radiation protective apron while being measured. The tibia measurement is 

collected at the shinbone, which is located at the midpoint between inner ankle and tibia 

plateau connection. Patella measurements are collected at the point where the 

excitement source is perpendicular to the keen cap. The point of 109Cd source should be 

kept about two or three centimeters away from the target organ.  

Measurement Accuracy  

There are several factors during preparation measurement that may contribute to 

measurement uncertainty levels. In the calibration stage, analytic choices in 

constructing calibration lines may slightly affect accuracy and precision of the 

measurement later taken in human subjects 59. During the measurement, an increased 

proportion of dead time during data collection period results in the loss of photoelectric 

event counts that can be received by the detector and greatly impacts the uncertainty 

levels. Depletion of 109Cd source can affect background peak distributions 61-63. 

Additionally, excessive movement by the study subject during measurement may 

contribute to considerable amounts of uncertainty.  
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Measurement quality characteristics are related to biological specimens. 

Because bone lead concentration is derived from the background peak that mainly 

contains calcium, the measurement uncertainty is largely related to the features of 

bones, such as bone density and bone structure. Less mineralized bone, often seen in 

active bone turnover stages, e.g., during rapid skeletal growth, pregnancy and 

osteoporosis, renders weak signaling of the calcium reference. Furthermore, due to 

differences in mineral kinetic activities between trabecular and cortical bones, the 

measurement variability of these two types of bones behaves differently. Because 

cortical bones tend to be more mineralized than trabecular bones, the uncertainty levels 

for cortical bone are narrower than those of trabecular bone. Even within the same type 

of bone tissue, the bone lead density exhibits concentration gradient cross-sectionally. 

Newly formed bone layer itself (close to bone marrow side) tends to be more similar to 

low lead components rather than peripheral surface bone 64, 65.  The variability of K-XRF 

measurement increases with true bone lead concentrations regardless of calibration 

and calculation approaches 66. With the current improvements in technology, the 

uncertainty arising from these factors can be greatly reduced, yet they cannot be 

eliminated.  

Estimated measurement uncertainty is equivalent to standard deviation from 

repeated measures of same subject at same site and is derived by goodness of fit 

calculation of scatter in the XRF peaks. For quality control, estimates with uncertainty 

larger than 10 µg/g for tibia lead measurements and 15 µg/g for patella lead 

measurements are considered invalid. Each estimate is reported as a point of 

measurement ± the uncertainty. If the true bone lead concentration is close to zero, the 



 

 13 

estimate varies above and below zero, in which case, at a single measurement could 

produce a negative point estimate. When reporting results back to the study subject, a 

detection limit (3-fold of standard deviation of blank phantom) is used. However, 

considering the statistical bone lead level distribution in a study population, negative 

values of point estimates are preserved 67, 68.   

Decisions on Biomarker Selections  

Biomonitoring for lead exposure reflects the toxico-dynamic nature of lead 

burden as a function of recent and/or retrospective exposures. Thus, the appropriate 

selection and measurement of lead exposure biomarkers is of particular importance for 

better understanding of the health outcomes from lead exposure with regard to inter-

relationship among biomarkers and the timing of exposures.  

Interrelationships between Lead Biomarkers  

Plasma and urinary lead levels are linearly correlated with each other and both 

are exponentially associated with whole blood lead level 69. Due to the limit of renal 

excretion, however, as the exposure level elevates, urinary lead is disproportionally 

associated with plasma lead 56. It is also observed in occupationally exposed 

populations that plasma and urinary lead levels are linear associated with bone lead 

levels69. 

There are several factors that can affect the lead exchange between plasma and 

whole blood as reflected by ratio of plasma to whole blood lead levels (P-Pb/ B-Pb). For 

instance, ALAD gene variants modify the binding affinities between lead and red blood 

cells.  Meta analysis has shown that ALAD minor allele carriers in occupationally 
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exposed populations have higher lead levels as measured in whole blood 70. Another 

study found that minor allele carriers presented with higher P-Pb/ B-Pb ratios 71. 

Additionally, pregnant woman with ALAD wild type, relative to non-pregnant women, 

had a 2-fold increase in plasma lead and 3-fold increase in the percentage of Pb-P/Pb-B 

ratio72. This could be due to the fact that lead is released back into circulation during 

active bone mobilization in pregnancy. As lead-erythrocyte binding reaches saturation, 

the excess lead flows into the extracellular plasma space.  

Short-term vs. Long-term Lead Exposure Measurement  

As our understanding of lead’s effects on health outcomes grows, the timing of 

exposure is of particular focus. Therefore, the choice of biomarkers in the context of 

timing of exposures is critical. Biomarkers mentioned in the foregoing sections such as 

blood and urinary lead measurements are recognized as reliable indicators of recent 

lead exposure. A critical application of short-term exposure measurement is the 

construction of an exposure matrix that offers a higher resolution of cumulative 

exposure levels with serial short-term measurements 52. This method may outweigh the 

bone lead by providing more accurate long-term exposure dose 73 and by identifying the 

critical windows of exposures.  

Under conditions that lack historical blood lead assessment bone lead serves as 

a good indicator of retrospective lead exposures. By virtue of distinct toxicokinetic 

features in cortical and trabecular bones, one can characterize the temporal pattern of 

exposures. Specifically, tibia lead is more indicative of lead accrued from environmental 

exposure, whereas patella lead is more relevant to the secondary endogenous lead 

exposure53, 74. Studies integrating information from biomarkers of bone resorption 
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activities, such as urinary type I collagen cross-linked N-telopeptides (NTx) levels75, can 

be used to confirm of endogenous exposure levels74, 75 . 

Strength of Long-term Monitoring Lead Exposures 

Cumulative measures of lead exposure dose may be the most crucial 

determinant of some forms of toxicity. When using short-term exposure indicators to 

predict health outcomes, the effect estimates may be confounded by previous 

unmeasured episodes of exposures. Additionally, the exposure at a specific time point 

itself may have a weak the biological relevance with the health outcome. These issues 

are particularly prominent when studying diseases that occur in late life73. Integrating 

exposure history would not only be beneficial in gaining statistical power but also 

provide evidence of long-term effect from accrued lead exposure that cannot be 

observed in a short period of time. Further examples with respect to the strength of 

cumulative lead exposure indicators are illustrated in the three projects in this 

dissertation.   

 Dissertation Overview 

This dissertation focuses on the health effects from lead exposure at different 

stages of life, as graphically represented in figure 1.4. Despite the impressive body of 

evidence showing the toxic effects of lead on neurodevelopment in early life76-79 and 

chronic conditions in late life15, 16, 19, 80, my goal is to further deepen my understanding of 

how the timing of exposures influence health. In particular, I am focusing on the impact 

of lead on behavioral development, interaction of lead with genetic components on 

neurological degenerative disease development and a novel mechanism relating lead to 
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metabolic disorders, such as Type 2 Diabetes Mellitus (T2DM). Three individual projects 

from three epidemiological studies listed in the following chapters comprise this 

dissertation: Early Life Exposure in Mexico to ENvironmental Toxicants study 

(ELEMENT), Normative Aging study (NAS), and Gene-Environmental Metal exposures 

on Parkinson’s Disease study (GEM-PD).  

First, the purpose of Chapter 2 is to explore the influence of lead exposure in 

utero and in early life (birth to early adolescence) on psychobehavioral development. 

This analysis is embedded in the previously established Harvard-Mexico Project on 

Fetal Lead Exposure, Risks and Intervention Strategies (FLERIS) study in Mexico City. 

This analysis examines the associations between early life lead exposures and 

psychobehavioral outcomes by taking advantage of longitudinal exposure 

measurements, accounting for the intercorrelations among consecutive lead exposures. 

The analysis models the tendency of internalizing and externalizing problems, social 

behavioral problems and attention deficit hyperactivity disorder (ADHD)-like behaviors 

as behavioral outcomes. 

Next, Chapter 3 studies on lead effects on neurodegenerative process in the 

central motor control system. It explores the etiology of Parkinson’s disease (PD) from 

the perspective of gene-environment interactions. This analysis utilizes a case-control 

study conducted in Boston, Massachusetts. Both the main effects and interaction effects 

of the genetic variants of SNCA gene were examined in this analysis. The research 

questions whether SNCA genetic variants modify the effect of lead on the odds of 

developing Parkinson’s disease.  
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Finally, the aim of Chapter 4 is to explore the effect of cumulative lead exposure 

on the risk of acquiring T2DM. The study tests the association between cumulative lead 

exposure and T2DM among middle-aged and elderly men. In order to better understand 

the mechanism underlying such an association, an additional stratified analysis is 

conducted with respect to skeletal bone resorption activities.  

Together, the three studies of this dissertation constructed the picture on lead 

impacting human health at the different stages of life.  
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Figures 

Figure 1.1 Structure of X-Ray Fluorescence Machine 
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Figure 1.2 Configuration of K-Shell X-Ray Fluorescence Machine 

 



 

 20 

 

Figure 1.3 Working Interface of Genie 2000 MCA 

Caption: This measurement was taken using Pb phantom at 100PPM. Three lead peaks 
can be observed at energy channel 72.8 keV, 75keV, 85keV. The peak at energy 
channel 88eV refers to the coherent peak.  
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Figure 1.4 Scope of the Dissertation 

Caption: The shaded areas represent the lead exposure periods that were of interest in 
the three projects. Chapter 2 studies the effects of lead exposures in utero and in early 
life (birth to early adolescence) on psychobehavioral development. Chapter 3 focuses 
on modifying effect of genetic variants on the effect of cumulative lead exposures in the 
etiology of Parkinson’s disease (PD). Chapter 4 focuses on the effect of cumulative lead 
exposure on the risk of type 2 diabetes (T2DM). 
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2. CHPATER 2 EFFECT OF TIMING OF LEAD EXPOSURE IN EARLY LIFE ON 
CHILDHOOD NEUROBEHAVIORAL OUTCOMES 

Introduction 

Recent epidemiological studies have shown an increasing trend in the 

prevalence of serious emotional and behavioral disorders in early childhood. 1. 

Behavioral disorders are often underreported and they are given less attention 

compared to intelligence problems. The consequences of underestimating the public 

health significance of childhood emotional and behavioral disorders can be serious. In 

the long run, lack of proper management of emotional and behavioral disorders would 

not only aggravate the quality of life of the suffering individuals, but it could also lead to 

public safety concerns. Psychobehavioral development in early life is shaped by the 

child-rearing environment. Nevertheless, behavioral problems cannot be solely 

explained by the factors related to parenting. In recent years, studies on environmental 

chemical exposures from the living environment have shed light on the etiology of 

behavioral problems in childhood 2-4.  

The toxic effects of lead have been well studied. Several cross-sectional studies 

have shown the associations between lead exposures and behavioral problems. 

Studies have linked concurrent blood lead levels to anxiety, social problem5, inattentive 

and hyperactive- impulsive behaviors6, 7, aggression8 as well as attention deficit 

hyperactivity disorder (ADHD)9-14. Lead effects on behavioral problems can be observed 

as early as age of 35 through adolescence15.  
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A handful of studies have explored the timing of lead exposure on long-term 

neurobehavioral outcomes. Current knowledge suggests that the effect of lead 

exposure in the early life could extend to later life15, 16.  For instance, exposure to lead 

between the ages of 12 to 33 months in humans was found to be associated with 

externalizing behaviors and school problems at age of seven17. The Cincinnati lead 

study also found that prenatal lead exposure has the strongest impact on attention 

deficit at the age of 6.5 years compared to the lead exposure in early childhood16. 

Needleman et al18 used K-shell X-ray Fluorescence Spectroscopy to measure and 

explore the relationship between retrospective lead exposure and neurobehavioral 

outcomes at the ages of seven and eleven. They found that children with a higher 

concentration of lead were more likely to be delinquent, aggressive, anxious or 

depressed, and they were more likely to have externalizing and internalizing problems.  

Despite evidence from these studies suggesting a relationship between early life 

lead exposure and behavioral problems, some questions have not yet been explicitly 

addressed in the literature.  First, the current knowledge is primarily based on cross-

sectional studies, that show the association between lead exposure and behavioral 

problems at one time point. This level of evidence is insufficient to establish a causal 

relationship between lead exposure and psycho-behavioral outcomes. It is important to 

address the chronological order of lead exposure in studies in order to gain an in depth 

understanding of the mechanisms of the effect of lead on neurobehavioral development. 

It is of special importance to note that bone lead can serve as an endogenous source of 

lead exposure during rapid skeletal growth in early life19, 20. Therefore, the observed 

lead levels in blood can be a reflection of previous exposures. Ignoring this relationship 
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may result in inaccurate or biased effect estimates at the time-point of interest21, 22. 

Second, even though a handful of longitudinal studies have shown that early life lead 

exposure could have long-term impacts on behavioral development, the effect of the 

timing of lead exposure on behavioral development is not clear and is not well-

discussed in the literature. This study fills this gap in the literature and reports on the 

critical windows of lead exposure in early life by measuring lead exposure during 

gestation, during the first four years of life and during childhood and early adolescence 

and the impact of these lead exposure measurements on neurobehavioral development. 

Specifically, the primary aim of this analysis was to investigate the programming 

influence of exposure to lead in early life and to evaluate the toxic effects of timing of 

lead exposures on the neurobehavioral performance from childhood to early 

adolescence. We hypothesized that increasing levels of lead exposures in early life 

would be associated with an increasing propensity for developing behavioral problems.  

Methods 

Study Design 

This analysis is embedded in the parent birth cohort of Early Life Exposure in 

Mexico to ENvironmental Toxicants (ELEMENT) study23. The study is constituted of 

three mother-infant pair birth cohorts recruited in Mexico City, Mexico starting in 1994, 

1997 and 2001. The overall goal of this study was to explore the associations between 

early life environmental exposures and a cascade of health outcomes in the offspring. 

Upon the completion of the first stage of this study, subjects from three cohorts were 

selected and combined into a cohort of subjects for this study. 204 mother-infant pairs 

from the 1994 cohort, 367 pairs from the 1997 cohort (223 in Biomarker cohort (BI) and 



 

 32 

144 in Plasma cohort (PL)) and 216 pairs from the 2001 cohort were eligible, yielding a 

total 787 mother-infants pairs for this study.  

Subject Selection 

Subjects were recruited at one of three clinics (Mexican Social Security Institute, 

Manuel Gea Gonzalez Hospital and the National Institute of Perinataology) in Mexico 

City. When pregnant women were screened for initial recruitment into the parent birth-

cohort study, they were excluded if they exhibited any of the following conditions: any 

factor that could interfere with maternal calcium metabolism; reported intention not to 

breastfeed; preeclampsia, kidney or cardiac diseases, gestational diabetes, history of 

urinary infections, family or personal history of kidney stone formation, seizure disorder 

requiring daily medications; ingestion of corticosteroids, or a single-parent household. 

They were later excluded from the study if they were given a physical diagnosis of 

multiple fetuses of if their child had one of these conditions: a gestational age which was 

less than 37 weeks, a birth weight less than 2000g, an infant Apgar score of 6 or under 

at 5 minutes, a condition that required admittance to the NICU or a serious birth defect. 

When reconstituting the current cohort, subjects were preferentially selected based on 

availability of information regarding past exposure, questionnaires, health status and 

demographic characteristics. The study subjects in the current cohort represent low to 

middle-class people in the local region. The behavioral test results vary by age therefore 

created a pronounced cohort difference in the dataset. Additionally, gestational blood 

samples were only available in cohort 2 PL and cohort 3. Therefore, we decided to use 

cohort 2 and cohort 3 in this analysis. As a result, a total of 583 subjects, 223 from 
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cohort 2 BI, 144 from cohort 2 PL, and 216 from cohort 3 were entered into the final 

dataset. 

The research protocol was approved by the Institutional Review Boards (IRB) of 

the National Institute of Public Health of Mexico  (Instituto Nacional de Salud Publica 

(INSP)), the Harvard School of Public Health, the Brigham and Women’s Hospital, the 

University of California, the University of Michigan School of Public Health, and the 

participating hospitals. Written informed consent and/or assent were obtained from all 

participants. 

Lead Exposure Measurements 

Prenatal Lead Exposure  

Prenatal lead exposure was estimated by measuring lead in maternal venous 

blood in cohort 2 PL and cohort 3, in cord blood, and in maternal bone lead. Maternal 

peripheral venous blood samples were collected once during each trimester of 

pregnancy using trace-metal free tubes after sanitizing the lancet site. Umbilical cord 

blood was collected at delivery for lead measurement. Atomic absorption spectrometry 

was used to measure lead in whole blood. 

Maternal bone lead is a proxy for early lead exposure stemming from 

mobilization of maternal bone lead stores.  Although bone lead is not trimester-specific 

and it does not take into account ongoing external exposure, it still can be considered a 

biomarker for early life lead exposure in utero. Between one to 30 days post-partum, 

maternal bone lead levels were measured using K-shell X-ray fluorescence 

spectroscopy at the tibia and the patella.  
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Postnatal Lead Exposure  

Postnatal exposure was assessed by collecting offspring blood from peripheral 

veins and fingertip capillaries at 3, 6,12,18,24, 30, 36, 48 months of age. Blood was also 

collected from the children during their neurobehavioral tests. During these 

neurobehavioral tests, the youngest of these children was six years old and the oldest 

was 13. All of the blood samples were collected in trace metal-free tubes after thorough 

sanitation at lancet sites. Blood samples from birth to 48 months were analyzed using 

atomic absorption spectrometry instrument at the Metals Lab of the American British 

Cowdray Hospital in Mexico City. External blinded quality control samples were 

provided throughout the study period by the Maternal and Child Health Bureau of 

Mexico City and by the Wisconsin State Laboratory of Hygiene Cooperative Blood Lead 

Proficiency Testing Program. Precision and accuracy with a correlation coefficient of 

0.99 and a mean difference of 0.17 µg/dL were achieved. Due to the systematic 

difference between fingertip capillary and venous blood measures, only venous blood 

levels were used in this analysis. Blood samples collected during neurobehavioral visits 

were analyzed at University of Michigan and Michigan Department of Community Health 

using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The 

quality control showed satisfactory accuracy and precision with a detection limit of 1.3 

µg/dL. 

Outcome Measurements  

The psychobehavioral outcomes were scored using the Behavioral Assessment 

System for Children, second edition (BASC-2)24, Conners Rating Scales Revised(CRS-

R) 25, and Conners’ ADHD/DSM-IV Scales Parents (CADS-P)26 completed by both 
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children and parents. These tests were administered by trained examiners who were in-

turn were supervised by psychometricians or psychologists in Mexico City. We chose 

these tests in order to fully capture the effect of lead on psychobehavioral development. 

These tests measure behavior domains of inattention, hyperactivity, internalizing 

problems, externalizing problems, emotional controls, compulsive behavior, social skills 

and adaptive skills. BASC-2 is a coordinated system of psychological assessment that 

evaluates the behavioral and emotional problems in children and adolescents and the 

Self-Reported of Personality (SRP), and Parent Rating Scales (PRS) subscales were 

applied to this study. The BASC-2 questionnaires contained clinical scales and adaptive 

scales covering both adaptive and maladaptive behaviors. There were four composites 

of PRS: externalizing problems, internalizing problems, behavioral symptoms index and 

adaptive skills. Five composites were evaluated on SRP: Clinical Maladjustment 

Composite, Personal Adjustment Composite, Emotional Symptoms Index, and Suicidal 

Risk. Higher scores on clinical scales indicate disruptive or internalizing problems 

whereas lower scores on the adaptive scale indicate lower adaptability, social skills, 

functional communications, leadership skills and study skills. CRS-R was applied to 

parents or caregivers. Scales in CRS-R covered behavioral problems on opposition, 

cognitive problems, inattention, hyperactivity, anxious-shy, perfectionism, social 

problems, psychosomatic, Conners’ Global Index, DSM-IV Symptom Subscales, ADHD 

Index. Conners’ ADHD/DSM-IV Scales Parents (CADS-P) is featured by DSM-IV 

Symptom subscales that distinguishes the inattentive and hyperactive-impulsive 

subtypes of ADHD. All scales were standardized into T-scores. A higher score on CRS-
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R and CADS-P indicates increased tendency to have corresponding behavioral 

problems.  

Measurement of Confounders  

Maternal age, marital status, parental education levels, social economic status of 

family, and maternal smoking behavior during pregnancy was obtained from a 

questionnaire administered to the mothers. Birth weight, which can be consequent from 

prenatal lead exposure 27 is also a risk factor for behavioral problems4, 28, 29 so, this was 

obtained from clinical records. 

Statistical Analyses 

Univariate and Bivariate analyses 

All statistical analyses were performed in R version 2.15.2 30. All significance 

testing was two-sided and was determined at p< 0.05. Univariate analysis was 

performed to examine the distribution of the variables of interest. Extreme observations 

that were at least four standard deviations away from the means were removed from the 

analysis. 

All lead exposure variables were treated as continuous variables. Prenatal lead 

exposure variables included cord blood lead levels, gestational maternal venous blood 

lead levels, and maternal bone lead levels. Maternal blood lead levels during gestation 

were integrated as a cumulative blood lead level (CBLL) calculated using equation 2.1. 

Postnatal lead exposures were divided by three time points: the first and the second two 

years post-delivery and lead exposure at the time of neurobehavioral testing. 

Cumulative blood lead level index at each time point was integrated using blood lead 



 

 37 

level at each follow up time point using equation 2.1. The strength of the correlation 

coefficients among lead exposure variable pairs were calculated and tested for 

significance.  

1 

The agreement between parental rated scales and children’s self-reported scales 

was assessed with Pearson’s correlation coefficients and was tested for statistical 

significance. All the behavioral assessment scores were treated as continuous 

variables. Maternal marital status, mother’s smoking status during pregnancy and 

child’s sex variables were categorized. Maternal age and educational years, child’s age 

at behavioral tests, socioeconomic status (SES) levels, and birth weight were treated as 

continuous variables. Age, SES level and birth weight were centered for the purpose of 

interpretation.  

Statistical Modeling 

Our analytic strategy consisted of two stages: residual extraction from pair-wise 

lead exposures regression and multivariate regression modeling adjusted for covariates. 

First, in consideration of adjusting for the correlations among lead exposures, residuals 

from each consecutive pair of lead exposure regression model were extracted and 

referred as Xj’ in equation 2.2. This approach is commonly seen in nutritional 

epidemiology for controlling correlated nutrition intake21, 22. The rationale in the 

environmental exposure assessment context is illustrated in the Appendix. Except for 

prenatal lead exposure levels, all other observed blood lead levels were regressed on 

                                            
1 Detailed captions are provided in the Appendix 
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lead exposure in the previous window. In the second stage, all residuals were fitted 

simultaneously into the covariate-adjusted models.  

! 

X j = " j#1X j#1 + X j
' (2.2) 2 

Gestational lead exposures were approximated by maternal blood lead, umbilical 

cord blood lead and maternal bone lead separately. Due to the sample availability, 

gestational blood based modeling was performed in cohorts PL and SF. The original 

intent for models using cord blood lead as prenatal lead exposure indicator was to 

include cohort 2 (BI and PL) as well as cohort 3 in the dataset. But cohort 3 was 

excluded due to tremendous missing data therefore only cord blood lead from cohort 2 

was used. Maternal bone lead models were collected from women in cohorts 2 and 3 

and they were combined. Cohort-specific analyses were also performed as sensitivity 

analyses. In these analyses, prenatal blood lead models were the primary focus. We 

chose not to report the results from the bone lead models as the primary findings due to 

following reasons: maternal bone lead was taken one month post-delivery and evidence 

has shown that bone turnover after delivery is higher than that in pregnancy32. In 

addition, cohort 3 was involved in a calcium supplement randomized trial33 and shown 

to have lower bone lead mobilization during pregnancy. Therefore, post-delivery bone 

lead levels may less accurately reflect fetal exposure levels and could result in biased 

effect estimates due this cohort difference. 

                                            
2 Detailed captions and proof are provided in the Appendix 
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All other biologically relevant confounders were selected into the model at the 

initial step. Multicollinearity diagnosis and F-statistics of model fitting were used for 

covariates selection. Coefficient estimates were standardized as in one standard 

deviation increase in exposure to the amount of change in standard deviation in 

outcomes. Maternal age, years of education, marital status, smoking behavior during 

pregnancy, family SES level, and children’s sex, age and birth weight were included in 

the final models. 

Model diagnosis was performed with regard to linearity assumption, constant 

variance assumption, identifying influential points and collinearity. The penalized spline 

smoothing method was applied for linearity examination. Linearity diagnosis showed 

very limited number of models that followed non-linear relationships (<5%). Therefore, 

multivariate linear regression model was applied to the final models. Homoscedasticity 

was examined by Breusch-Pagan test. Variance inflation factor (VIF) at 1.56, which 

corresponded to r=0.6, was used as collinearity index. Influential points were identified 

by Cook’s distance at 0.5 or larger. Sensitivity analysis was performed to compare 

coefficient estimation upon removal of the influential point(s).  

Results 

A total of 583 subjects entered the final study with different amounts of missing 

information on major variables of interest. The mean ages of children were 9 years in 

cohort 2, and 7 years in cohort 3. Table 2.1 summarizes the exposures and 

psychobehavioral outcomes in the three cohorts. Umbilical cord blood levels were 4.31 

µg/dL, 6.37 µg/dL and 3.22 µg/dL in cohort 2 BI, PL and cohort 3, respectively. 

Cumulative blood lead levels from maternal gestational blood on average were 7.58 
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µg/dL and 4.83 µg/dL in cohort 2 PL and cohort3. Cumulative blood lead levels from the 

first two years exceeded 5 µg/dL in cohorts 2 and 3, and cumulative blood lead levels 

from the second two years were slightly higher than that of the first two years. Weak to 

moderate Pearson’s correlations among lead exposures in different windows were 

found (Figure S 2.2 and Figure S 2.3).  No significant pair-wise correlations were found 

in pair-wise extracted residuals. The distributions of behavioral outcomes are shown in 

Table 2.1. In total there were 23 behavioral scales and all were scored within the normal 

range. ANOVA tests showed significant cohort differences on BASC-2 SRP scales with 

cohort 3 (SF) scoring slightly higher (worse) than cohort 2 (BI and PL). This difference 

was not detected in most of parental rated scales. The concordance between children’s 

self-rated scales and parental rated scales was lower (data not shown). 

In the bivariate analyses, lead exposure did not show significant correlations with 

major behavioral outcomes. Maternal educational level and SES level showed 

significant negative correlations with children’s blood lead levels after birth and with 

behavioral outcomes. Gestational age and birth weight showed significant negative 

correlations with internalizing problems and inattention. Table S 2.1 and Table S 2.2 

showed the comparison of the exposure and outcome characteristics between groups 

with complete and incomplete data in cord blood lead models subjects and in 

gestational blood lead models subjects. The included and excluded groups showed 

comparable lead exposure levels, but were slightly different in some behavioral 

outcomes such as hyperactivity and impulsive behavior. In general, the excluded 

subjects groups scored higher (worse) compared with included subjects.  
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Table 2.2 shows adjusted cord blood lead models. A significant association was 

observed between Perfectionism on CRS-R and cord blood lead at p<0.05. Otherwise, 

cord blood lead was not significantly associated with measured behavioral outcomes. In 

the majority of behavioral outcome models, however, the tendency toward behavioral 

problems increased with elevated cord blood lead. Increases in blood lead levels in the 

first two years post-delivery were generally associated with higher (worse) scores. The 

effect estimates of the first two years exposure tend to be stronger than those of 

exposures in any other exposure windows. Except for Inattention/Hyperactivity on 

BASC-2 self-reported scales, none of the behavioral outcomes showed statistical 

significant associations with blood lead during the first two years. Blood lead in the third 

and fourth years and at the tests (around 9 years in cohort 2) did not show strong 

significant associations with any behavioral outcome.  

Gender differences were observed; females were rated worse by parents on 

attention problem scales, but they were rated better on the Personal Adaptive Skills and 

Internalizing Problem scales on BASC-2 PRS. Higher maternal age, education level and 

SES level were associated with better behavioral outcomes in children.  

In the gestational blood models, no statistical significant associations were found 

between lead exposures and behavioral outcomes (Table 2.3). Blood lead levels at the 

time of the behavioral test (9 years in cohort 2 PL and 7 years in cohort 3) were 

negatively associated with the Psychosomatic scale on CRS-R. On the other hand, the 

magnitude of effects of lead exposure during the gestational period and in the first two 

years post-delivery tend to be greater on inattention and hyperactivity scales (e.g. 

Inattention/Hyperactivity on BASC-2 SRP, Cognitive Problems/Inattention, Global 
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Restless-Impulsive Index, and ADHD Index on CRS-R, Hyperactive-Impulsive, 

Inattention on CADS). In addition to the concordant observations on the effects of 

children’s sex, maternal age and educational levels, the results in gestational blood 

models showed that an increase in birth weight was associated with better behavioral 

outcomes. Cigarette smoking during pregnancy was significantly associated with worse 

outcomes related to Externalizing Problems, Opposition and to the Behavioral Symptom 

Index.  

In maternal bone lead models, maternal bone lead levels in tibia and patella 

showed significant protective effect on inattention, impulsive behaviors. None of the 

lead exposures in other windows were significantly associated with behavioral 

outcomes (data not shown).  

Discussion 

In these analyses, we did not find statistically significant evidence of any 

deleterious effects of early lead exposure on psychosocial status of children aged 6 to 

13 years. When weighing the direction and magnitude of lead effects among the early 

life exposure windows, however, the data suggests that lead exposures in the prenatal 

period and in the first two years after birth has a greater impact on behavioral outcomes 

like inattentive and hyperactive behaviors between the ages of 6 and 13 years. The 

results also suggest that lead exposure in these windows could affect control of 

emotions and somatic perception development in children. Compared to perinatal lead 

exposure, lead exposure later in life showed a weaker impact on children’s behavioral 

development. Our results suggest that lead exposure during the first two years after of 

life is a critical window of exposure as it shows a strong and long lasting impact on 
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behavioral development. It also suggests that the effect of prenatal lead exposure was 

mediated via secondary endogenous lead exposure from maternal bone lead released 

during active bone turnover in pregnancy. Consistent with current knowledge on the 

deterministic factors on behavioral development, we found that parental factors that 

may indicate a good child-rearing environment such as higher maternal educational 

levels and social economic status34 are associated with better outcomes on 

psychosocial behavioral development. In addition, low birth weight showed strong 

association with inattention and hyperactivity behaviors in gestational blood lead 

models. 

Unlike findings from studies with a cross-sectional study design, our results 

indicate that concurrent lead exposure was not the major contributor to the behavioral 

problems during the childhood-early adolescence period, but exposure during the first 

two years of life had a greater impact These results could be attributed to the more 

detailed and refined analysis in this longitudinal study; we fitted lead exposures from all 

exposure windows simultaneously and adjusted for inter-correlations using the residual 

method. This has two implications for lead effect estimates. First, the pair-wise residual 

method solved the correlation issue among lead exposures, and it modeled the 

endogenous lead circulation between bone and blood during the rapid skeleton growth 

in the early life. Therefore, the observed blood lead levels reflected both historical and 

current lead exposures. Second, fitting lead exposure variables simultaneously 

constrained the potential mediating effect from earlier exposures that can be reflected 

by the current exposure. The detailed proof is provided in the appendix. This method, 

compared to the models fitting lead exposure at each window separately, increased the 
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magnitude of the effect estimates. The effect estimates, however, from this method did 

not differ greatly in terms of the directions and the magnitude of effects compared to the 

models fitting observed lead levels simultaneously (result not shown). Yet, in several 

models the residual method slightly improved efficiency than the models that did not 

adjust correlations among exposures (results not shown). The other explanation for the 

weak impact from blood lead measured at the time of the behavioral tests is that the 

levels of exposure were low (<5 µg/dL on average in all cohorts). It is possible that the 

amount of lead reaching the brain is even lower given that most of children may have 

developed protective mechanisms from lead intoxication in the central nervous system 

at the age of 5 or older 35. Therefore, the lead can hardly exhibit strong effects with this 

low exposure range.  

Our study result is compatible with the findings from the Cincinnati lead study16. 

In this study, the researchers examined effects of lead exposure using prenatal 

maternal blood lead, children’s blood lead averaged from first five years and at 78 

months on cognitive, behavioral and motor functions at age15 to 17 years. The 20th and 

70th percentile of the average five-year blood level distribution was 15 µg/dL and 25 

µg/dL, respectively. They found that 78-month blood lead was related to attention 

problems. However, the effect of lead on attention and visuoconstruction functions 

tended to be the strongest in the prenatal period compared to lead exposure in other 

age periods. We examined psychobehavioral functions in children in our study at 

younger ages (6- 13 years) than the Cincinnati cohort. The 20th and 70th percentile of 

the first four years cumulative blood lead levels were 14.4 µg/dL, 23.45 µg/dL in cohort 

2 and 12.72 µg/dL, 22.79 µg/dL in cohorts 2 PL and 3 combined. Our analyses explored 
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the critical windows of lead exposures in shorter time intervals. Our results indicated 

that the exposure to lead in prenatal period as well as the first two years post-delivery 

could contribute to the risk of having attention problems, hyperactivities, and compulsive 

behaviors in children aged 6 to 13 years. However, other behavioral problems such as 

internalizing problems, externalizing problems and school problems were not under 

strong influence of lead exposures in these periods. Our findings on the critical 

exposure windows were inconsistent with current knowledge on the brain structure and 

behavioral development36-38.  

Timing of Psychobehavioral Development 

In humans, the neuronal infrastructure development mainly occurs during the 

prenatal period, while the neuronal reorganization and functional gains occur rapidly 

after birth and reach to full maturation in early adulthood 39, 40. Psychosocial 

development can be traced as far back as the first three years of life. Newborns, in the 

first few hours of life, start to look for simple face-like patterns and this may suggest that 

they are attempting to establish a bond with adult caregivers 37. The major psychosocial 

development in infants involves the limbic nuclei, and it is mainly through the 

‘experience-expectant’ mechanism. Experience-dependent plasticity is a type of 

behavior-learning approach whereby infants gain functions and develop psychosocial 

affections through their interactions with the child-rearing environment. This plays a 

crucial role in the psychosocial development in the first few years of life, so, it could play 

a role in behavioral problems in adulthood3. If deprived of environmental stimuli, infants 

exhibit various degrees of functional deficits with the severest damage being 

permanent. For instance, infants who were separated from the caregiver (e.g. mother) 
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repeatedly or for a long period in the first three years of life, exhibit social withdrawal, 

pathological shyness, aggressive and inappropriate emotionality and they are incapable 

of forming normal emotional attachment 41, 42. Depending on the window that stimuli 

deprivation occurred, children manifest dissimilar subtypes of behavior problems which 

reflects different brain regions that were affected 3. Our results also show that the child-

rearing environment plays a crucial role in children’s psychobehavioral development. 

Higher maternal age and educational levels and social economic status level implies 

better capabilities in supporting and promoting the physical, emotional, social, and 

intellectual development of a child. These variables were shown to reduce the 

probability of developing negative behavioral problems.  

Intrinsic and Extrinsic Factors Affecting Biosocial Development  

Both intrinsic and extrinsic environments are involved in guiding the development 

of psychosocial behaviors. For example, dopamine is one of the most important 

neurotransmitters that is highly involved in reward learning and it is associated with 

neuronal branching and outgrowth43, 44. Sex is a major determinant of patterns of 

neurobehavioral development. During the peri-adolescent period, dopamine receptor 2 

in males is overproduced and is subsequently eliminated by around 40%. However this 

fluctuation is not observed in females40 . Females in general reach grey matter and 

white matter peaks, which mark the brain maturation, ahead of males. Yet regional 

differences have been observed between sexes. It is observed that during adolescent 

period amygdala volume bumped up greatly in males, whereas right hippocampus 

volume increases in females 40.  
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The extrinsic environment has a strong and direct impact on behavior 

development. In this study, we found the suggestive effects of lead exposure during the 

prenatal period and during the first two years after birth to be the strongest on 

inattentive and hyperactive behaviors. This can be explained with two possible 

biological mechanisms. First, the fetal brain lacks protective mechanisms to defend 

against lead poisoning. Studies show that adult endothelial cells in the blood brain 

barrier have a lower permeability to lead, and mature astroglias are capable of pumping 

lead back into blood stream against a concentration gradient 45-47. Without a fully 

developed blood brain barrier structure, neurons and glias are directly exposed to lead 

transported from the blood. This explains why this window is particularly vulnerable to a 

low concentration of lead from the circulation and why pronounced neuronal 

impairments can be observed 48. Previous studies confirm that the developing brain is a 

target organ for lead poisoning 48, 49. In rat studies, animals chronically exposed to lead 

sequestered lead in zinc rich regions like the hippocampus 50, while animals with acute 

exposure showed more lead, in the pons medulla, cerebellum, midbrain and cortex 

striatum 49. Second, as previously mentioned, the limbic system which is involved in 

emotional memory and socialization, develops and matures quickly in the first three 

years of life 51. Our evidence suggests that the damage occurred during this 

neurodevelopment period cannot be reversed and the functional deficits can be long-

lasting.  

Furthermore, our findings shows that birth weight is a strong factor in predicting 

inattention and hyperactivity problems at age 6 to 13. This again suggests that the 

perturbation occurred in early life, especially during the gestational period could result in 
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permanent behavioral deficits. Obstetric complications, such as anoxia, forceps 

delivery, pre-eclampsia can result in brain damage that is related to psycho-behavioral 

development 52. Our data also suggests that maternal smoking behavior is related to 

increased tendency on externalizing problems, opposition, atypicality and withdrawal 

behaviors. Smoking behavior in pregnant women would expose the fetuses not only to 

nicotine, but also to carbon monoxide. Nicotine exposure during the prenatal period 

interferes with the development process in the cerebral cortex, and the early 

disturbance from smoking exposure has a long-term impact on behavioral development. 

Offspring who had been exposed to maternal smoking during pregnancy are twofold 

likely to have a criminal record than negative controls, even after adjusting for socio-

economic status, childrearing behavior, parenting behavior and birth complications 52. 

However, neurodevelopment is constantly shaped by the interactions between intrinsic 

cues and the extrinsic environment. When accounting for criminality and antisocial 

personalities of the parents, the magnitude of the association attenuated. Yet, the 

smoking effect was stronger in subjects who were born with complications, born to 

teenage mothers, born into single parent families, or showed motor development lags.  

We believe that our approach, compared to others, resulted in comparisons that 

were more reliable, and it builds validity by testing on multiple behavioral scales and by 

covering diverse behavior domains. Even though most of the literature favors parental 

rated results to self-reported results in young children, our result shows good validity of 

children’s responses. The responses from BASC-2 SRP were more sensitive for 

detecting age effect in response to lead exposure. Our data showed that BASC-2 SRP 

captured the cohort difference introduced mainly by age (average 9 in cohort 2 and 7 in 
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cohort 3), while parental rating scales did not detect this feature. Furthermore, even 

though the results were all non-significant, the magnitudes of the lead effects were 

stronger in children’s self-rated scales than in parent-rated scales. A discrepancy in 

gender effects between SRP and PRS was observed; females tended to rate 

themselves better than males while parents rated females worse on inattention and 

hyperactivity scales. Parental rating is contradictory to the current knowledge that 

ADHD is more prevalent in males53. However, our results show that the consistency of 

lead effects on overall behavior problems disregard responders. Therefore, we believe 

the results are valid.  

On the other hand, these results should be placed in the appropriate context. 

First, this study was conducted in the low-middle class Mexican population so, the lead 

effects cannot be directly applied to other ethnic populations or social classes. 

Moreover, sensitivity analysis showed cohort specific patterns of the effects of lead. We 

observed strong and significant effects of gestational blood and first-two-year blood lead 

on inattention/ hyperactivity scales in cohort 2 PL, while in cord blood lead models using 

cohort 2 PL, blood lead in the first two years showed a strong and significant detrimental 

impact on ADHD related scales. Cohort 2 BI showed that the first two years blood lead 

have the strongest and significant influence on personal adjustment and perfectionism, 

but they have a weak impact on ADHD-like behavior scales. Given these findings, 

results from combined cohort analyses should be cautiously interpreted due to the 

diverse responses in the sub-populations. Secondly, neurobehavioral measurement 

was examined at one time. We do not have data to show the behavioral changes 

overtime as a function of early lead exposures. Hormonal levels also change in 
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adolescent period and it is another important factor affecting behavioral formation.  It 

would definitely provide new understanding on the effect of timing of lead exposure on 

psychobehavioral development as a dynamic growing process. Third, excluded subjects 

can also impact the effects estimates. A comparison of groups with and without 

complete information showed the similar distributions in lead exposure, but not in 

several behavioral outcomes. Slightly worse scores were observed on inattention scales 

in the excluded group. This may indicate a minor differential missing issue so that our 

models only captured subjects with slightly better behavioral outcomes, and it could be 

that the excluded group can be more vulnerable to lead or less likely to follow protocol 

due to attention problems. Therefore, the lead effect estimates could be deflated based 

on complete observations. 

In conclusion, this is the first analysis comparing the effects of lead exposure at 

different windows in early life on neurobehavioral outcomes. Unlike previous findings on 

concurrent lead effects on these outcomes, our data implied that lead exposure during 

the gestational period and the first two years after birth have strong and long-lasting 

impacts on behavioral problems in childhood or early adolescence. The main effect of 

lead implicated a deleterious effect on behavioral development, but child-rearing 

environment factors such as mother’s education, SES levels had even greater impact 

on a child’s psychobehavioral development. Future studies may need to clarify the 

effects of the temporal exposure patterns on a large scale, as well as to provide a new 

understanding of the effect of timing of lead exposures on psychobehavioral 

development as a dynamic process. 
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Tables  

Table 2.1 Characteristics of Study Participants by Cohorts 

  BI  PL  SF 3   
  N Mean SD N Mean SD N Mean SD  
Maternal Blood Pb 1st Trimester (µg/dL) 0 - - 120 7.58 3.51 213 4.83 3.14 **4 
Maternal Blood Pb 2nd Trimester (µg/dL) 0 - - 134 6.89 3.32 211 3.88 2.72 ** 
Maternal Blood Pb 3rd Trimester (µg/dL) 0 - - 121 7.15 3.49 203 4.61 2.95 ** 
Gestational Blood Pb Level (µg/dL)5 0 - - 101 4.43 1.77 197 2.81 1.64 ** 
Patella Pb (µg/g) 221 8.93 9.88 109 13.68 11.23 182 7.05 9.02 ** 
Tibia Pb (µg/g) 212 8.7 10.05 96 11.62 9.51 88 5.04 8.21 ** 
Cord Blood Pb (µg/dL) 170 4.31 2.52 73 6.37 4.16 38 3.32 2.54 ** 
Children Blood Pb Level 1-2year (µg/dL) 222 8.54 5.1 141 10.21 6.01 209 9.14 5.73 ** 
Children Blood Pb Level 3-4year (µg/dL) 220 11.36 4.27 143 12.85 5.81 177 9.75 4.37 ** 
Children Blood Pb Level 4years (µg/dL) 223 20.04 8.08 143 23.34 10.26 215 18.85 9.77 ** 
Children Blood Pb Level at tests (µg/dL) 167 3.13 3.09 109 3.21 2.13 138 3.75 3.1   
BASC SRP: School Problems 223 51.57 10.25 138 51.2 9.8 50 53.3 10.32 * 
BASC SRP: Internalizing Problems 222 50.27 7.88 138 50.93 7.88 50 55.54 10.4 ** 
BASC SRP: Inattention/Hyperactivity 223 52.94 10.23 138 53.31 10.46 50 56.7 11.38   
BASC SRP: Emotional Symptoms Index 223 50.72 8.29 138 51.3 8.28 50 55.72 9.52 ** 
BASC SRP: Personal Adjustment 222 48.55 8.21 138 47.72 9.27 50 43.88 9 ** 
BASC PRS: Externalizing Problems 217 49.8 9.45 136 50.84 9.72 211 48.03 9.35 * 
BASC PRS: Internalizing Problems 217 53.4 10.77 136 52.88 10.08 211 51.47 9.68   
BASC PRS: Behavioral Symptoms Index 216 51.34 9.61 137 51.37 10.43 210 49.98 8.9   
BASC PRS: Adaptive Scale 217 46.43 10.11 137 47.79 10.41 212 47.02 10.22   
CRS-R: Opposition 217 51.01 8.23 136 50.55 9.69 211 50.04 9.31   
CRS-R Cognitive Problems/ Inattention 217 54.49 10.32 137 54.35 11.32 212 53.52 10.48 * 
CRS-R: Hyperactivity 217 56.05 11.23 137 56.35 12.18 212 54.55 9.03   
CRS-R:  Anxious- Shy 217 57.17 11.59 137 56.2 10.26 212 54.45 10.68 * 
CRS-R: Perfectionism 217 51.89 8.07 136 52.01 7.98 211 51.64 7.65   
CRS-R: Social Problems 216 53.47 10.26 137 52.64 10.2 212 53.6 10.79   
CRS-R: Psychosomatic 217 54.03 11.72 137 54.04 11.13 210 52.84 9.94   
CRS-R: ADHD Index 216 54.69 10.72 137 54.35 11.17 212 53.45 9.84   
CRS-R: CGI Restless-Impulsive 217 54.68 9.87 137 55.55 11.5 212 53.75 9.89   
CRS-R: CGI Emotional Lability 215 50.47 8.61 137 51.71 10.69 212 49.42 8.61   
CADS: DSM IV Inattentive 217 53.62 9.93 137 53.66 11.67 212 52.97 9.66   

                                            
3 Cohort BI, PL constitute cohort 2. Cohort 3 is labeled as cohort SF. 
4 *p<0.05, ** p<0.01 from either Fisher’s exact tests or ANOVA tests 
5 Gestational blood lead level was calculated as cumulative blood levels from three trimesters  
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CADS: DSM IV Hyperactive-Impulsive 217 57.58 10.77 137 57.94 11.65 212 56.08 9.91   
CADS: DSM IV Total 217 55.85 10.41 137 56.11 11.23 212 54.67 9.73   
Maternal Age 223 24.92 5 144 26.68 5.25 216 26.81 5.74 ** 
Years of Education (Maternal) 223 10.92 2.75 144 10.62 2.86 216 10.99 2.9 ** 
Years of Education (Paternal) 205 10.9 3.16 144 9.95 4.31 190 10.81 2.94 ** 
Social Economic Levels 216 8.75 3.12 137 9.07 3.46 204 8.49 3.21 * 
Ever Smoked during Pregnancy [N (%)] 222 16 - 144 7 - 216 1 -   
Birth Weight 223 3.17 0.47 141 3.11 0.48 216 3.17 0.51   
Birth Height 223 49.87 2.29 143 49.53 2.71 210 50.18 2.23 ** 
Gestation Length 223 39.05 1.05 140 38.66 1.63 213 38.75 1.41 ** 
Children’s Age 222 9.24 0.73 143 9.68 1.02 195 7.24 0.5 ** 
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Table 2.2 Lead Effects from Cord Blood Lead Models in Cohort 26 

 Cord Blood Lead Blood Lead in the 
 1st Two Years 

Blood Lead in the  
2nd Two Years Blood Lead at Test 

Models Std.Coeff Std.SE   Std.Coeff Std.SE   Std.Coeff Std.SE   Std.Coeff Std.SE   
BASC SRP: Inattention/ Hyperactivity 0.06 0.08   0.04 0.09   0.18 0.08 * -0.02 0.08   
CRS-R: Cognitive Problems/ Inattention -0.09 0.08   0.07 0.09   0.02 0.09   -0.06 0.08   
CADS: DSM IV Inattentive -0.07 0.08   0.06 0.09   -0.04 0.09   -0.06 0.08   
CRS-R: Hyperactivity -0.02 0.08   0.12 0.09   0.03 0.09   0.02 0.09   
CRS-R: CGI Restless-Impulsive Index 0.01 0.08   0.07 0.09   0.07 0.09   0.04 0.08   
CADS: DSM IV Hyperactive-Impulsive 0.01 0.08   0.11 0.09   0.00 0.09   0.05 0.09   
CRS-R: ADHD Index -0.08 0.08   0.11 0.09   0.05 0.09   -0.02 0.09   
CADS: Total -0.04 0.08   0.11 0.09   0.01 0.09   -0.02 0.09   
BASC SRP: Emotion Symptoms Index 0.13 0.08   0.03 0.09   0.02 0.09   0.04 0.08   
BASC SRP: Personal Adjustment 0.07 0.08   0.03 0.09   0.04 0.09   0.04 0.09   
BASC PRS: Adaptive Scale 0.06 0.08   0.07 0.08   0.10 0.08   0.05 0.08   
CRS-R: Anxious-Shy -0.12 0.08   0.06 0.09   -0.10 0.09   0.02 0.09   
CRS-R: Social Problems 0.00 0.08   0.14 0.09   0.06 0.09   -0.02 0.09   
BASC SRP: School Problems -0.01 0.08   -0.01 0.09   -0.01 0.09   0.07 0.09   
BASC PRS: Behavioral Symptom Index 0.07 0.08   0.13 0.09   0.03 0.08   0.01 0.08   
CRS-R: Psychosomatic -0.06 0.08   0.11 0.09   0.11 0.09   -0.15 0.09 . 
CRS-R: CGI Emotion Lability 0.12 0.08   0.10 0.09   0.06 0.09   0.04 0.09   
BASC SRP: Internalizing Problems 0.13 0.08   0.02 0.09   -0.02 0.09   0.00 0.08   
BASC PRS: Internalizing Problems 0.07 0.09   0.11 0.09   -0.07 0.09   0.01 0.09   
BASC PRS: Externalizing Problems 0.04 0.08   0.03 0.09   0.04 0.09   0.02 0.08   
CRS-R: Opposition 0.03 0.08   0.11 0.09   0.10 0.09   -0.01 0.09   
CRS-R: Perfectionism 0.17 0.08 *7 0.09 0.09   -0.12 0.09   -0.06 0.08   

 

 

                                            
6 All models adjusted for maternal age, educational level, marital status, smoking behavior during pregnancy, socioeconomic status levels, 
children’s sex, age and birth weight. 
7 * p<0.05, .p<0.1; 



 

 

54 

Table 2.3 Lead Effects from Gestational Blood Lead Models in cohorts PL and SF8 

 Gestational Blood Lead Blood Lead in the 
1st Two Years 

Blood Lead in the 
2nd Two years Blood Lead at the Test 

Models Std.Coeff Std.SE   Std.Coeff Std.SE   Std.Coeff Std.SE  Std.Coeff Std.SE   
BASC SRP: Inattention/ Hyperactivity 0.05 0.13   0.14 0.13   0.06 0.12   0.13 0.13   
CRS-R: Cognitive Problems/ Inattention 0.03 0.10   0.06 0.10   -0.15 0.10   -0.05 0.10   
CADS: DSM IV Inattentive -0.01 0.10   0.06 0.10   -0.16 0.10   0.00 0.10   
CRS-R: Hyperactivity 0.15 0.11   0.13 0.10   0.08 0.10   0.06 0.10   
CRS-R: CGI Restless-Impulsive Index 0.10 0.10   0.12 0.10   0.04 0.10   0.02 0.10   
CADS: DSM IV Hyperactive-Impulsive 0.15 0.11   0.07 0.10   0.07 0.10   0.04 0.10   
CRS-R: ADHD Index 0.07 0.10   0.12 0.10   -0.08 0.10   -0.05 0.10   
CADS: Total 0.07 0.10   0.07 0.10   -0.07 0.10   0.01 0.10   
BASC SRP: Emotion Symptoms Index 0.15 0.13   0.17 0.13   0.02 0.12   0.18 0.13   
BASC SRP: Personal Adjustment 0.00 0.13   0.15 0.13   -0.05 0.12   0.10 0.13   
BASC PRS: Adaptive Scale 0.01 0.11   -0.07 0.10   -0.06 0.10   0.09 0.10   
CRS-R: Anxious-Shy 0.03 0.11   0.11 0.10   -0.01 0.10   -0.11 0.10   
CRS-R: Social Problems 0.03 0.11   -0.08 0.10   0.05 0.10   -0.12 0.10   
BASC SRP: School Problems 0.00 0.13   0.16 0.14   -0.11 0.13   0.02 0.14   
BASC PRS: Behavioral Symptom Index 0.06 0.11   -0.06 0.10   0.01 0.10   0.06 0.10   
CRS-R: Psychosomatic 0.11 0.10   -0.11 0.10   -0.15 0.10   -0.18 0.10 . 
CRS-R: CGI Emotion Lability 0.02 0.11   -0.02 0.10   0.08 0.10   0.08 0.10   
BASC SRP: Internalizing Problems 0.10 0.12   0.14 0.13   0.03 0.12   0.17 0.13   
BASC PRS: Internalizing Problems 0.02 0.11   -0.17 0.10   -0.07 0.10   -0.06 0.10   
BASC PRS: Externalizing Problems 0.06 0.11   0.04 0.10   0.07 0.10   0.16 0.10   
CRS-R: Opposition -0.03 0.11   -0.03 0.10   0.06 0.10   0.04 0.10   
CRS-R: Perfectionism 0.04 0.11   0.01 0.10   -0.11 0.10   -0.02 0.10   

                                            
8 All models adjusted for maternal age, educational level, marital status, smoking behavior during pregnancy, socioeconomic status levels, 
children’s sex, age and birth weight 

*p<0.05, .p<0.1 
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Table S 2.1 Comparison between Included and Excluded Subjects in Cohort 2  

 Pooled Included Excluded  
 N Mean SD N Mean SD N Mean SD 9 
Maternal Blood Pb 1st Trimester (µg/dL) 120 7.58 3.51 41 7.48 3.16 79 7.63 3.69  
Maternal Blood Pb 2nd Trimester (µg/dL) 134 6.89 3.32 50 6.56 3.44 84 7.09 3.25  
Maternal Blood Pb 3rd Trimester (µg/dL) 121 7.15 3.49 48 7.27 3.22 73 7.08 3.68  
Cumulative Gestational Blood Pb Level (µg/dL) 101 4.43 1.77 38 4.31 1.56 63 4.51 1.89  
Patella Pb (µg/g) 330 10.50 10.57 160 11.11 10.22 170 9.93 10.89  
Tibia Pb (µg/g) 308 9.61 9.96 150 9.83 10.17 158 9.41 9.79  
Cord Blood Pb (µg/dL) 243 4.93 3.24 170 4.99 3.28 73 4.80 3.16  
Children Blood Pb Level 1-2year (µg/dL) 363 9.19 5.52 170 9.01 5.27 193 9.35 5.74  
Children Blood Pb Level 3-4year (µg/dL) 363 11.95 4.98 170 12.06 4.73 193 11.85 5.21  
Children Blood Pb Level 4years (µg/dL) 366 21.33 9.13 170 21.23 8.24 196 21.42 9.85  
Children Blood Pb Level at tests (µg/dL) 276 3.16 2.75 170 2.97 2.07 106 3.48 3.56 . 
BASC SRP: School Problems 361 51.43 10.07 170 51.09 9.72 191 51.72 10.39  
BASC SRP: Internalizing Problems 360 50.52 7.88 170 50.09 8.17 190 50.91 7.61  
BASC SRP: Inattention/Hyperactivity 361 53.08 10.31 170 52.75 10.85 191 53.38 9.82  
BASC SRP: Emotional Symptoms Index 361 50.94 8.28 170 50.72 8.36 191 51.14 8.23  
BASC SRP: Personal Adjustment 360 48.23 8.63 170 48.81 8.48 190 47.72 8.75  
BASC PRS: Externalizing Problems 353 50.20 9.55 167 49.44 9.21 186 50.89 9.83 . 
BASC PRS: Internalizing Problems 353 53.20 10.50 166 52.36 10.55 187 53.94 10.43 . 
BASC PRS: Behavioral Symptoms Index 353 51.35 9.92 167 50.22 9.56 186 52.38 10.15 * 
BASC PRS: Adaptive Scale 354 46.96 10.24 167 47.49 10.08 187 46.49 10.38  
CRS-R: Opposition 353 50.84 8.81 168 50.51 8.65 185 51.14 8.97  
CRS-R:  Cognitive Problems/Inattention 354 54.44 10.70 168 53.61 10.11 186 55.18 11.19 . 
CRS-R: Hyperactivity 354 56.17 11.59 168 55.88 11.47 186 56.42 11.72  
CRS-R: Anxious- Shy 354 56.80 11.09 168 55.73 10.91 186 57.76 11.20 * 
CRS-R: Perfectionism 353 51.93 8.03 167 51.65 8.08 186 52.19 7.99  
CRS-R: Social Problems 353 53.14 10.23 167 53.60 10.27 186 52.74 10.21  
CRS-R: Psychosomatic 354 54.03 11.48 168 53.38 11.73 186 54.63 11.24  
CRS-R: ADHD Index 353 54.56 10.88 168 54.44 11.01 185 54.66 10.79  
CRS-R: Restless-Impulsive 354 55.01 10.53 168 55.58 11.08 186 54.51 10.01  
CRS-R: Emotional Lability 352 50.95 9.48 166 50.34 9.07 186 51.51 9.81  
CADS: DSM IV Inattention 354 53.64 10.62 168 52.46 10.02 186 54.70 11.05 * 
CADS: DSM IV Hyperactive-Impulsive 354 57.72 11.10 168 57.30 10.81 186 58.10 11.37  
CADS: DSM IV Total 354 55.95 10.72 168 55.07 10.34 186 56.75 11.01 . 
Maternal Age 367 25.61 5.16 170 25.79 4.84 197 25.46 5.44  
Years of Education (Maternal) 367 10.81 2.79 170 10.92 2.90 197 10.71 2.70  
Years of Education (Paternal) 349 10.51 3.71 164 10.74 3.65 185 10.30 3.75  
Social Economic Levels 353 8.87 3.26 170 8.91 3.16 183 8.84 3.36  
Ever Smoked during Pregnancy [N (%)] 366 13 - 170 15 - 196 11 -  
Birth Weight 364 3.15 0.47 170 3.14 0.43 194 3.15 0.51  
Birth Height 366 49.74 2.46 170 49.96 2.23 196 49.55 2.64  
Gestation Length 363 38.90 1.31 169 39.05 1.12 194 38.77 1.45  
Children’s Age 365 9.41 0.88 169 9.46 0.82 196 9.38 0.93  
 

 

                                            
9 * p<0.05 , . p<0.1 by Student’s t-test between the included and excluded groups 
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Table S 2.2 Comparison between Included and Excluded Subjects in Cohort 2 PL 
and Cohort 3 Combined 

 Pooled  Included  Excluded  
 N Mean SD N Mean SD N Mean SD 10 

Maternal Blood Pb 1st Trimester (µg/dL) 333 5.82 3.53 158 5.83 3.59 175 5.82 3.48  
Maternal Blood Pb 2nd Trimester (µg/dL) 345 5.05 3.31 159 5.05 3.46 186 5.05 3.18  
Maternal Blood Pb 3rd Trimester (µg/dL) 324 5.56 3.39 145 5.67 3.47 179 5.47 3.33  
Cumulative Gestational Blood Pb Level (µg/dL) 298 3.36 1.85 134 3.37 1.88 164 3.35 1.83  
Patella Pb (µg/g) 291 9.53 10.39 129 9.53 10.87 162 9.54 10.03  
Tibia Pb (µg/g) 184 8.47 9.48 82 9.72 9.83 102 7.48 9.12  
Cord Blood Pb (µg/dL) 111 5.33 3.95 50 4.82 3.28 61 5.74 4.41  
Children Blood Pb Level 1-2year (µg/dL) 350 9.57 5.86 163 9.27 5.23 187 9.84 6.36  
Children Blood Pb Level 3-4year (µg/dL) 320 11.14 5.29 150 11.21 5.44 170 11.07 5.17  
Children Blood Pb Level 4years (µg/dL) 358 20.65 10.20 168 21.06 10.99 190 20.28 9.46  
Children Blood Pb Level at tests (µg/dL) 247 3.51 2.73 118 3.49 2.40 129 3.53 3.00  
BASC SRP: School Problems 188 51.76 9.96 87 52.17 10.55 101 51.41 9.46  
BASC SRP: Internalizing Problems 188 52.16 8.83 87 52.17 9.45 101 52.15 8.32  
BASC SRP: Inattention/Hyperactivity 188 54.21 10.79 87 53.97 11.42 101 54.43 10.26  
BASC SRP: Emotional Symptoms Index 188 52.47 8.82 87 52.29 9.36 101 52.63 8.37  
BASC SRP: Personal Adjustment 188 46.70 9.33 87 46.61 10.03 101 46.77 8.74  
BASC PRS: Externalizing Problems 347 49.13 9.58 161 48.83 9.88 186 49.39 9.33  
BASC PRS: Internalizing Problems 347 52.02 9.85 161 52.07 10.05 186 51.98 9.69  
BASC PRS: Behavioral Symptoms Index 347 50.53 9.54 161 50.14 9.23 186 50.87 9.82  
BASC PRS: Adaptive Scale 349 47.32 10.29 161 47.19 10.42 188 47.44 10.20  
CRS-R: Opposition 347 50.24 9.45 160 49.20 9.01 187 51.13 9.75 * 
CRS-R: Cognitive Problems/Inattention 349 53.85 10.81 162 54.02 11.24 187 53.70 10.45  
CRS-R: Hyperactivity 349 55.26 10.40 162 54.20 9.92 187 56.17 10.74 * 
CRS-R: Anxious- Shy 349 55.14 10.54 162 55.10 10.93 187 55.18 10.22  
CRS-R: Perfectionism 347 51.79 7.77 162 52.05 7.85 185 51.56 7.72  
CRS-R: Social Problems 349 53.22 10.56 162 52.38 9.03 187 53.95 11.70 . 
CRS-R: Psychosomatic 347 53.31 10.43 160 52.45 10.07 187 54.05 10.69 . 
CRS-R: ADHD Index 349 53.81 10.38 162 53.50 10.88 187 54.07 9.94  
CRS-R: Restless-Impulsive 349 54.46 10.57 162 53.60 10.68 187 55.20 10.45 . 
CRS-R: Emotional Lability 349 50.32 9.53 162 49.89 9.43 187 50.70 9.62  
CADS: DSM IV Inattention 349 53.24 10.48 162 53.23 10.81 187 53.25 10.22  
CADS: DSM IV Hyperactive-Impulsive 349 56.81 10.65 162 55.70 10.46 187 57.77 10.74 * 
CADS: DSM IV Total 349 55.23 10.35 162 54.80 10.57 187 55.61 10.17  
Maternal Age 360 26.76 5.54 168 27.09 5.46 192 26.47 5.61  
Years of Education (Maternal) 360 10.84 2.88 168 10.90 2.88 192 10.79 2.89  
Years of Education (Paternal) 334 10.44 3.62 158 10.35 3.99 176 10.52 3.26  
Social Economic Levels 341 8.72 3.32 158 8.87 3.44 183 8.60 3.22  
Ever Smoked during Pregnancy [N (%)] 360 3 - 168 2  192 5 -  
Birth Weight 357 3.15 0.50 167 3.15 0.52 190 3.14 0.48  
Birth Height 353 49.92 2.45 165 49.93 2.40 188 49.91 2.51  
Gestation Length 353 38.71 1.50 164 38.74 1.56 189 38.69 1.44  
Children’s Age 338 8.27 1.43 154 8.32 1.46 184 8.23 1.40  

                                            
10 * p<0.05 , . p<0.1 by Student’s t-test between included and excluded groups 
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Figures 

 

Figure S 2.1 Correlations among Lead Exposures in Cohort 2 (BI and PL) 
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Figure S 2.2 Correlations among Lead Exposures in Cohorts PL and SF combined 
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Appendix 

Equation 2.1 

 

Caption: j- observation time; Pbj - observed lead level at time j; t- time interval between j and j+1 

Equation 2.2 

 

Caption: j- observation time points j!1; Xj- observed lead level; Xj’- unobserved additional lead exposure 

The observed blood lead consists both historical and current lead exposures. 

The effect estimates of observed current blood lead level can be confounded by 

chronologically remote exposures. We used the residual method to differentiate the 

effect from additional lead exposures in the current windows. The residuals serve as 

latent exposure variables at each post-delivery window that could not be directly 

observed. Specifically, the current lead exposure can be decomposed as a summation 

of previous exposure and current exposures as expressed in equation 2.2. This is 

biologically relevant to the lead mobilization from bone to blood during active bone 

turnover period, such as rapid skeletal growth. In equation 2.2, Xj and Xj-1 denote 

observed lead levels; "j-1 characterized the fraction of current blood lead that can be 

explained by previous blood lead. Xj’ indicates the additional blood lead that cannot be 

explained by the previous blood lead. This model assumes the contribution to current 
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blood lead from previous lead exposure is fixed and indicated by "j-1 for every individual, 

while the additional exposure (Xj’) in current window varies across individuals.  

When fitting regression models with observed lead levels separately, the 

previous exposures have been counted due to the intercorrelations among exposures, 

as illustrated in Equation 2.3. 

Equation 2.3 

 
Caption: k- observation windows, k= 1,2#j-1; j- observation time points j!1; Xj- observed lead level; Xj’- 
unobserved additional lead exposure; Y- the outcome measured at or after the window max(j); $j- effect 
estimate of observed lead exposure at window j 

The estimated lead effect at each following window j integrates the effects of 

exposures from both current window and past windows via secondary endogenous lead 

exposure. As illustrated in Equation 2.3, the effect of X1 on Y at j=4 (*) is mediated 

through the bone- blood exchange over next three windows ("1, "2, "3). Similarly, X2, X3 

also impact on Y via "2, "3. 
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3. CHAPTER 3 THE POTENTIAL INFLUENCE OF VARIANTS OF THE SNCA GENE 
ON THE IMPACT OF CUMULATIVE LEAD EXPOSURE ON RISK OF 

PARKINSON’S DISEASE 

Introduction 

Parkinson’s disease (PD) is one of the most common degenerative neurological 

disorders. The incidence of PD increases with age, with annual incidence rates from 20 

out of 100,000 persons at age 60 to 120 out of 100,000 persons at age 70 1. Males 

have a higher risk of developing the disease than females 2. Around 70% of PD patients 

suffer from motor symptoms such as resting tremor, slow movement (bradykinesia) and 

postural instability. The characteristic pathological finding in PD is loss of dopaminergic 

neurons in the basal ganglia and, in particular, in the substantia nigra pars compacta 

(SNpc) region. PD has a silent onset. By the time clinical symptoms arise, neuronal 

losses have occurred in around 77% of the posterior putamen, 68% of the anterior 

putamen, and 50% of the substantia nigra (SN) 3.  The prevailing view is that the loss of 

dopaminergic (DAergic) neurons in PD is a consequence of increased oxidative stress 

level and protein aggregation4-6. Both genetic and environmental components are 

involved in the disease’s development and progression. Genome-wide association 

studies (GWAS) have provided evidence of genetic contributions to the disease 7-16. 

SNCA, UCH-L1, PRKN, LRRK2, PINK1, DJ-1, and ATP13A2 have been found to be 

significantly associated with PD 16. However, family history and twin studies suggest 

that the contribution of inheritance to PD is minor17-22. Low concordance- 15% or lower 
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in monozygotic twins and 11% or lower in dizygotic twins- was reported in the majority 

of twin studies of PD 21, 22.  

With increasing attention to effect of the environmental exposures on health, 

studies have been conducted assessing the potential contribution to the etiology of PD 

of environmental chemical exposures. For example, 1-methyl-4-phenyl-1, 2,3,6-

organophosphates (MPTP) 23and paraquat 24, 25  exposures are well studied as inducers  

of Parkinsonism in animal models. A few studies have identified associations between 

metal exposure and PD26-29. Our group has previously found that cumulative exposure 

to lead (as reflected by measurements of bone lead levels) is associated with an 

increased odds of PD 30.  

In the current study, we continued the investigation of lead impacts on PD by 

examining lead effect in subjects with different levels of genetic susceptibilities to PD. In 

particular, we chose to study the potential modifying effect of the SNCA gene, which 

has been found to be linked to PD in many GWAS studies9, 10, 12, 14, 15.  In addition, 

evidence from animal studies showed that lead can induce SNCA gene expression and 

the formation of inclusion bodies, which is commonly found in PD brain tissue31, 32. This 

gives rise to our hypothesis that lead interacts with SNCA genetic variants to create a 

synergistic effect on PD. We examined the main effect of genetic markers of the SNCA 

gene as well as the interaction with cumulative exposure to lead as reflected by bone 

lead levels in tibia and patella in this study.  
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Methods  

Study Design 

Parkinson’s patients were recruited from several clinics in Boston, 

Massachusetts area: the Boston University Medical Center (BUMC), the Brigham and 

Women’s Hospital (BWH), the Beth Israel Deaconess Medical Center (BIDMC) and 

Harvard Vanguard Medical Associates (HVMA).  The initial proposed recruitment was 

800 PD cases and controls, with cases made up of recently diagnosed PD populations 

(40% have symptomatic PD less than 5 years, 80% have symptomatic PD less than 10 

years). Controls were recruited from the same hospital sites as well as from participants 

in the Harvard Cooperative Program on Aging (HCPOA), participants in Normative 

Aging study (NAS) who were of the same age as PD cases and who have had bone 

lead measurements within 1 year of that of a PD case. The controls were intended to 

match PD cases on age, sex, race and geographic distributions.  

Subject Selections 

The majority of the participants in this study were American Caucasians (86.8%); 

63.2% of the total participants were males. A total of 330 PD cases were identified by 

two clinical neurologists and confirmed with neuroimaging diagnosis (CT or MRI scan) 

showing abnormal structure in basal ganglia or brainstem and exhibiting the following 

symptoms: resting tremor, cogwheel rigidity, bradykinesia. Medical charts was reviewed 

by a study neurologist and additional neurologist affiliated with our collaborating clinics. 

Specifically, cases were selected based on the following criteria: (1) complete history 

and clinical evaluation by an attending neurologist; (2) the presence of at least two of 
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three symptoms: resting tremor, cogwheel rigidity, bradykinesia; (3) asymmetry; (4) 

none of the following: supranuclear gaze palsy out of proportion for PD, unexplained 

cerebellar findings, unexplained hypperreflexia, definite absence of response to 

levodopa 600mg/day, clearly nonprogressive course, findings strictly unilateral after 5 

years, MRI or CT showing infarcts in the basal ganglia or brainstem with either stepwise 

clinical progression, lower-body predominance or pyramidal signs, neuroleptic use in 

the past 6 months; (5) at least two clinical evaluations at a minimum of six months apart, 

the last one of which must be within twelve months prior to recruitment for this study, in 

which preceding criteria were met; and (6) symptoms of PD for fewer than ten years.   

A total of 354 control subjects were mainly recruited from two populations. 

Spouses and in-laws were the first consideration of controls due to the little likelihood of 

being genetically associated with cases. Subjects were free from PD or did not exhibit 

any PD like symptoms, did not have 1st or 2nd degree blood relative with confirmed or 

suspected PD case. Subjects who were younger than 50 years old and/or living more 

than a 2-hour drive from Boston were not considered. Given the lack of an adequate 

number of successfully recruited controls from the originally proposed population, 

subjects participating in the Normative Aging Study (NAS) who were free of PD were 

adopted based on matching demographic information. Of the controls, 59.6% were the 

spouses, in-laws and friends of the PD subjects, and 40.4% were selected from 

subjects participating in the long-running Normative Aging Study (NAS) and 

communities (HCPOA).  

This study was approved by Human Research Committee of Harvard School of 

Public Health, the Brigham and Women’s Hospital (BWH), the Beth Israel Deaconess 
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Medical Center (BIDMC) and Harvard Vanguard Medical Associates (HVMA). All 

subjects in this study had been informed and consented to participate.  

Retrospective Lead Exposure  

Bone lead levels were measured non-invasively using a 109Cd K-shell X-ray 

fluorescence (K-XRF) 33, 34 instrument at the Harvard University/Channing laboratory. 

Subjects who consented to take lead measurements were asked to take two 30-minute 

in vivo bone lead measurements at clinic visit. The left tibia and patella were selected to 

represent the lead depositions in cortical and trabecular bones. The physical principle, 

technical specifications were described in Aro et al’s paper 35. As a quality control 

measure, lead exposure measurements with estimated uncertainties greater than10µg/g 

in tibia and greater than15µg/g in patella were excluded. Both tibia and patella lead level 

reflect cumulative exposure to lead. Compared to patella lead, tibia lead, which is made 

up primarily of cortical bone, exhibits a lower decay rate over time due to the limited 

bone-blood lead exchange 36. Therefore tibia lead is considered as a reliable biomarker 

for lifetime lead exposure. By contrast, the patella, which is mostly trabecular bone, has 

a proportionately larger surface area in contact with blood and the associated lead 

content decays faster than that of tibia lead. Comparing and contrasting the effect of 

these two biomarkers helps to determine the relevant exposure interval for any 

associations.    

Other Information  

A series of questionnaires were conducted during initial recruitment. The 

questionnaires covered domains of family medical history, personal medical history, 
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lifestyle, environmental and occupational exposures, food consumption frequencies and 

tobacco use. Two updated versions that have been conducted with and without 

repetition in study subjects.  

Genotyping and Quality Control  

A total of 14 candidate SNPs in the SNCA gene from 548 study subjects’ DNA 

samples were genotyped at Channing lab at the Harvard University. The markers from 

14 loci were selected based on previous literature, showing an association between 

these common markers and the risk of PD pathology 7, 11, 14, 37-47. DNA was extracted 

from whole blood using standard techniques. Genotyping was done by Sequenom 

iPLEX SNP genotyping technique.  

We defined a call rate threshold at 0.9 for each marker and 0.6 for each 

individual sample as quality filters before analysis. We compared the call rates between 

cases and controls. We defined the threshold of minor allele frequency at 5% and 

compared allele frequency and heterozygosity rate between cases and control groups. 

Departure from Hardy-Weinberg equilibrium was calculated in the pooled study 

population and in cases and controls separately. Linkage disequilibrium (LD) 

examination was defined as r2 greater than 0.8 and D’ greater than 0.9.  

Statistical Analyses 

All of the statistical procedures were performed in R version 2.15.2 48. Packages 

genetics 49 and CGEN 50  and visreg 51 were installed for genetic data processing. The 

threshold for statistical significance were determined at p <0.05. Prior to data analysis of 

the final dataset (genotype combined dataset), we compared the distributions of 
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variables of interests in cases and controls between included and excluded datasets, in 

order to examine the variable distribution shifts brought by data attrition from merging 

with genotype data. We performed logistic regressions to examine the main effect of 

lead in the final dataset and compared this to the effect estimates from the original 

exposure-only dataset, which included fewer NAS subjects compared to the dataset 

published30. Bone lead levels were categorized into quartiles. The OR of PD in each 

quartile was estimated using logistic regression. Comparisons were made of ORs from 

the final dataset and from the exposure dataset with those that have previously been 

published30 to examine differences in the main effects of bone lead in the final dataset.  

Univariate and Bivariate Analyses 

The distributions of tibia and patella lead levels were examined for normality and 

variance. Lead was treated as a continuous variable in the final model. After accounting 

for age, age squared, sex, race, smoking status, and educational levels, bone lead 

distributions in the HCPOA, NAS and community controls were equivalent to the bone 

lead distributions in the BUMC controls (tibia difference: 1.17µg/g, p=0.59, patella 

difference: 0.26µg/g, p=0.92). Therefore, controls from HCPOA, NAS and community 

were merged into BUMC control group. Education levels were categorized into high 

school diploma or less, some college, college graduate, graduate school and others. 

Race information was dichotomized into Caucasians and others. For the covariates with 

missing information (< 8% for any covariates in the final models), we created separate 

missing categories and included them into the final models. We assigned the median 

value to any missing data in pack-years of cigarette smoking, and created missing 

indicators. The new pack-years and missing indicator variables were fitted into the final 
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models. Genotypes were categorized into having 0, 1, 2 copies of the dominant alleles. 

We then compared genotype frequency by disease status, gender, race and recruitment 

sites; we also examined bone lead levels, age at lead measurements, age at 

appearance of first PD symptoms, and age at PD diagnosis by genotypes. 

Association Tests 

Fisher’s exact tests and Cochran-Armitage trend tests were performed among 

the 14 markers to examine their main effects. Statistical significance was considered but 

not determined using Bonferroni correction across the number of tested loci, which 

renders p value threshold at 0.05/14. Our analyses constituted two stages; before 

testing the gene-environment interaction effects, polytomous logistic regressions were 

performed to examine the degrees of independence between selected loci and bone 

lead levels (%GE). This step served as an alert for potential biases if any associations 

were found between genotype distributions and lead exposures, then unconditional 

logistic regression and empirical bayes logistic regression models 52, 53 were used to 

estimate the gene-environment interaction effects. The results from both methods are 

reported here. Due to the break of matching on the matching variables in the final 

dataset, all models included age, sex, race, recruitment sites, educational levels and 

cigarette smoking pack-years as covariates.  

Results 

All 14 SNCA markers reached a call rate above 0.9. Eleven individuals were 

filtered out due to call rates less than 0.6. The overall call rate for all individuals was 

0.92. No statistical difference in call rate was found between cases and controls. The 
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minor allele frequencies (MAF) of the selected markers were all above 5%. Allele 

frequency and heterozygosity were not significantly different between cases and 

controls. Departure of Hardy-Weinberg disequilibrium was identified in six markers at 

p<0.05 (Figure S 3.1). Figure 3.1 shows the chromosome physical distance of 14 SNCA 

markers. Six marker pairs were detected in high LD (r2>0.8, D’>0.95) (Figure S 3.2). A 

total of 537 subjects were maintained in the genotype dataset. After combining with the 

lead exposure dataset, 535 subjects with complete information were included in the final 

dataset. Prior to the main analysis, the sensitivity analysis showed that the main effect 

estimates of lead on risk of PD from the final dataset were not meaningfully different 

from the lead effect estimates from the published dataset30(Table S 3.1).  

Table 3.1 lists the distributions of each variable in the final models for the pooled, 

final, and excluded datasets and by disease status. In general, the controls who entered 

into the final dataset were younger, lighter smokers, compared to cases. In the final 

dataset, the average age at bone lead measurement was 66.6 years in cases 

(SD=9.34) and 69.13 years in controls (SD=9.72), and the mean age of subjects at time 

of PD diagnosis was 60 years (range 28.5-83.91, SD=10.99). After adjusting for age, 

age squared, educational levels, years of smoking, sex and race, the bone lead level in 

a White female aged 50 years with a college degree was 3.85 µg/mg in tibia and 2.46 

µg/mg in patella in the final dataset, whereas in the excluded subjects an equivalent 

subject’s tibia level was 4.46 µg/mg in tibia and 3.61 µg/mg in patella. 

Allele frequencies in the final dataset are shown in Table 3.2. No significant 

differences in allele frequencies were found between case and control groups (Table 

3.2) or among recruitment sites (data not shown). Excluding marker rs356186, no 
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difference was observed in allele frequency between genders (data not shown). The 

allele frequency in the majority of the markers was significantly different between whites 

and nonwhites (data not shown) at p<0.05. Allele frequencies of all makers were 

comparable to the reference population (HapMap CEU). The genotype frequencies for 

all 14 loci among cases and controls are given in Table 3.3. Markers rs10005233, 

rs2301134, rs2301135, rs356186, and rs356188 had different genotype distributions 

between cases and controls at p<0.05. Tibia and patella lead levels did not differ by 

genotypes for any of the 14 markers at p<0.05. The onset of PD was not associated 

with any genotype groups of all makers at p<0.05.  

The initial association tests showed statistical significance at p<0.05 at loci 

rs356188, rs356186, rs10005233, rs2301135, and rs2301134, on Fisher’s exact tests 

and at loci rs356188, rs356186, rs2301135, rs2301134 and rs2736994 on Cochran-

Armitage trend tests (Figure S 3.3, Figure S 3.4). However, after Bonferroni correction, 

only marker rs2301135 reached statistical significance. The gene-environment 

independence assumption tests in control subjects showed that, in general, the 

association between bone lead levels and genotype frequency is weak (%GE range: -

0.054, 0.066,Table S 3.2). However, several markers reached statistical significance at 

p<0.05, indicating significant gene-environment dependence. After Bonferroni 

corrections for 14 loci (p= 0.0036), none of the models reached statistical significance. 

Since under the gene-environment dependence condition, case-only estimates of 

interaction term are subject to bias; furthermore, empirical bayes method weighs 

between the effect estimates using case-only method and the effect estimates using 

case-control method, which renders the point of estimates in between of these two53. 
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Therefore, we decided to report effect estimates based on the unconditional logistic 

regression method. Interaction term effect estimates were plotted in Figure S 3.5, Figure 

S 3.6 for comparison purposes.   

After adjusting for age, educational level, race, gender, and pack-years of 

cigarettes smoking in the gene-environmental final models, we found no significant 

associations between bone lead levels and PD status in any models. The effect of bone 

lead with one standard deviation increase is listed in Table S 3.4. We found strong and 

significant main effects of markers at loci rs11931074, rs356186, rs1812923, 

rs10005233 rs2301135 rs2301134 and rs2736994 on PD (Table 3.4, 3.5). The ORs 

comparing homozygote of minor alleles are 0.494 (95%CI: 0.20,1.20) for heterozygote, 

0.31 (95%CI: 0.12, 0.75) for homozygotes at rs1812923; 1.56 (95%CI: 0.77, 3.14) for 

heterozygotes and 4.29 (95%CI: 1.77, 10.39) for homozygotes at rs10005233; 2.07 

(95%CI: 1.03, 4.15) for heterozygotes, 5.74 (95%CI: 2.26, 14.57) for homozygotes at 

rs2301135; and 0.38 (95%CI: 0.16, 0.89) for heterozygotes, 0.21 (95%CI: 0.08, 0.53) 

for homozygotes at rs2301134 in the tibia bone lead models. Similar results were found 

in patella bone lead models. Since rs10005233, rs2301135 and rs2301134 were in high 

mutual LD, we chose to report rs2301135 in this analysis, based on p values of main 

effect of the markers from both tibia and patella logistic regression models. The 

markers’ main effects remained significant after the post-hoc adjustment. 

Additionally, we found that the gene-environment interaction effects were 

significant at loci rs1812923, rs2301135 in tibia lead models at p<0.05, and marginal 

significance (p<0.1) at loci rs1193107, rs356221 and rs2736994. After Bonferroni 

correction (adjusted for LD pairs, pBF= 0.0056), none of the interaction terms maintained 
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statistical significance. The results for the main effects of each genotype and the 

interactions between genetic variant and bone lead levels shown in Table 3.4 and 3.5. 

Figure 3.2 depicts dose-response relationships between bone lead and probability of 

being a PD case by genotype in markers rs1812923, rs2301135, and rs2736994. As 

shown in the plots for the genotype at locus rs1812923, subjects with homozygous A 

allele (G0) showed the highest odds of having PD compared to heterozygous subjects 

(G1) and homozygous subjects carrying the C allele (G2). However, the dose-response 

relationship showed that the probability of having PD in G0 subjects was not affected by 

an increased level of bone lead, whereas in the G1and G2 groups, an elevated bone 

lead level is associated with an increasing probability of being a PD case. In the tibia 

model, the interaction term OR for G1 was 1.09 (95%CI: 1.00, 1.18, p= 0.04) and OR for 

G2 was 1.08 (95%CI: 0.99, 1.18, p= 0.06). As for the locus rs2301135, the main effect 

of the C allele homozygote (G0) showed a protective effect compared with 

heterozygotes (G1) and G allele homozygotes (G2). In the G0 group, an increase in 

bone lead was associated with a greater probability of being a PD case; whereas in the 

G1 group the same direction of association was observed with lesser magnitude (OR= 

1.03, 95%CI: 0.96,1.09, p= 0.41). In the G2 group, increased lead was associated with 

decreased probability of being a PD case with an OR of 0.91 (95%CI: 0.84,0.99, p= 

0.03). Similar patterns was observed at locus rs2736994, with marginal significance (p= 

0.08 for the interaction term in G1 (CT) and a p value of 0.47 for the interaction term in 

G2 (TT). In group G0 (CC), being a PD case was not associated with lead levels, 

whereas in the G1, G2 groups, increased bone lead levels were positively associated 

with the probability of being PD cases. We also observed weak protective effects with 
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an increase in education level (result not shown). However, these test results did not 

reach statistical significance in most models.  

Discussion  

This study is the first to report an analysis of the potential interactions between 

markers in the SNCA gene and cumulative environmental lead exposure risk on 

Parkinson’s disease. In these analyses of a subset of subjects from the parent study, 

we found that none of the main effect estimates of bone lead was significantly related to 

the odds of being a PD case, which is somewhat different than what we found in the 

parent study. However, we found significant main effects of markers on PD at loci 

rs2736994, rs1812923, rs10005233, rs2301135, and rs2301134. These results indicate 

C allele at rs2736994, the G allele at rs2301135 and the A allele at rs1812923 

detrimental effects on PD. We also found significant gene-environment interactions with 

respect to PD at loci rs1812923 and rs2301135.  The results showed that bone lead 

levels were positively associated with PD in subjects who had less genetic risk of PD; 

whereas bone lead levels were negatively associated with PD in subjects with higher 

genetic risk of PD. Most of the genetic markers locate in the introns of SNCA gene. 

rs11931074 and rs2736994 located at the upstream and downstream of SNCA gene. 

The functions of these noncoding SNPs are largely unknown.  

Our results are comparable to previously reported main effects of lead from our 

group in that lead exposure tended to increase the odds of PD, even though the effect 

we saw was not statistically significant. It also provides evidence of the dynamics of 

lead effects in subpopulations with different levels of genetic susceptibilities. This adds 
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to our understanding of the role of lead exposure in PD development and sheds light on 

population dynamics of susceptibility to PD.  

Our results showed that tibia lead appeared to have stronger associations with 

PD in the interaction terms than patella lead. This distinction can be explained by the 

different decay rates of cortical and trabecular bone lead and may simply reflect the 

different value of these bone measurements in representing retrospective exposures 36. 

The implication from this difference is that effect of lead on PD is more likely due to 

cumulative exposures rather than secondary endogenous exposure. This contention 

has been well discussed in our previous work30.  

The SNCA gene encodes !-synuclein, a brain-enriched neuron specific protein 

that binds phospholipid membranes at synaptic vesicles. It localizes at the pre-synaptic 

terminals in the mature neurons and can be found in both axons and dendrites in 

immature neurons 54.The expression of SNCA is involved in synaptic plasticity and 

synapse maturation 54. In SNCA knockout mice reductions in striatal dopamine levels 

and in the corresponding dopamine dependent locomotory activities were observed 55. 

"-synuclein can bind to tyronsine hydroxylase and inhibits dopamine synthesis 56. It also 

increases the dopamine transporter (DAT) localization at cell surface by binding to DAT. 

This leads to an increase of dopamine reuptake, thus elevating intracellular dopamine 

level and creating oxidative stress 57.  

!-synuclein and PD 

At physiological pH !-synuclein, especially in mutated form, has the propensity to 

aggregate and form oligomer or fibrils 58. Aggregated "-synuclein contributes to the 
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major component of the Lewy body 59, the pathological finding commonly seen in PD 

brains 60. The oligomeric form of "-synuclein has a detergent-like property and forms 

pores in lipid membrane. This results in the increased permeability of cell membranes 

61, 62, which can lead to cell death at severe extent. Aggregated "-synuclein can activate 

microglia and induces subsequent chronic inflammation in central nervous system, 

which is a well-recognized pathogenesis process of PD 63, 64. It is also observed that 

aggregated "-synuclein directly induces apoptosis of dopamine neurons 65.  

Previous genome-wide association studies 16 7, 9, 37, 38, 40, 41, 43, 66-70 have 

confirmed the role of "-synuclein in PD development. Our results are in agreement with 

previous knowledge. Specifically, we observed the deleterious effects at loci rs2736994, 

rs1812923, rs10005233, rs2301135, and rs2301134. Due to the fact that rs10005233, 

rs2301135, and rs2301134 were in pair wise LD, we chose to report rs2301135 to 

represent the genetic effects in this region. SNPs rs1812923, rs2301135 and rs2736994 

exhibit additive effects, with an increase in the number of detrimental alleles (the minor 

allele A in rs1812923; the major allele G in rs2301135 and the minor allele C in 

rs2736994) associated with increasing likelihood of being a PD case in tibia lead 

models.  

Lead Effect on PD by SNCA Variants 

In addition to the findings on the main effect of the SNPs, we also observed 

significant interaction effects at loci rs1812923 and rs2301135. It is noteworthy that 

among all these loci, the increased odds of being a PD case from higher lead exposure 

were only present in subject with low genetic susceptibilities. In subjects with 
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homozygous deleterious alleles, elevation of bone lead level did not increase the odds 

of being a PD case. In some cases, increase in bone lead levels was negatively 

associated with odds of being a PD case. This result suggests that lead’s impact on PD 

depends on genetic predispositions. It also suggests that lead exposure and genetic 

predisposition in SNCA gene does not have a synergistic effect on PD development. In 

addition, we did not observe that genotypes of SNCA were strongly associated with 

bone lead levels. This indicates that SNCA gene does not modify the toxicodynamics of 

lead.  

The mechanism of lead exposure contributing to the risk of PD is not clearly 

understood. However, evidence suggests that lead could impact on the pathogenesis of 

PD via the oxidative stress mechanism, since lead is a known prooxidant. Lead induces 

oxidative stress by binding with &-Aminolevulinic acid dehydratase (&-ALAD) in 

erythrocytes 71, 72, inhibiting the reductase activities73, 74, interfering with intracellular 

Ca2+ activities 75, 76 and inhibiting mitochondria functions 77, 78. Dopamine neurons are 

particularly susceptible to oxidative stress in the physiological environment 79. 

Dopamine and its metabolites generate highly reactive dopamine and DOPA quinones. 

DOPA quinnone is highly linked to current known pathogenesis of PD such as 

mitochondrial dysfunction, inflammation, oxidative stress4, and dysfunction of the 

ubiquitin-proteasome system5.  On the other hand, oxidative stress and dopamine itself 

has been shown to induce the "-synuclein aggresome, which, in turn, creates an 

unfavorable environment for the survival of dopaminergic neurons 56, 58, 80, 81. 

On the other hand, Waalkes’s et al has pointed out that the inclusion body that is 

mainly involved in lead-induced "-synuclein aggresomes, plays a protective role in 
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preventing further cellular disruptions from lead by sequestering lead in the 

metallothionein (MT)- lead- "-synuclein inclusion body31, 32. In their in vitro study32, the 

researchers observed that in wild type MT mice cells, lead increased SNCA expression 

in a timely manner, which peaked at 24 hours, then subsided at 48 hours when lead-

induced inclusion body is formed. They also observed that MT knock-out mice did not 

form lead inclusion bodies and accumulated less lead in kidney after lead exposures31. 

These mice exhibited dose-related nephromegaly, and their renal functions were 

significantly diminished after lead exposures31.  

Weighing the dual roles that "-synuclein plays in the context of lead- related PD, 

our results, to some extent, supported biological findings from animal studies. Our 

results showed an interactions between lead and SNCA genetic variants in such a 

pattern that increased lead was not associated with an increased odds of PD in subjects 

who were genetically susceptible to PD.  We can postulate that in these subjects, "-

synuclein, per se, may have a tendency to form aggresomes, thus creating unfriendly 

environments for dopaminergic neurons; while on the other hand, due to the inclusion 

body formation, it prevents lead interfering with cellular machineries and buffers lead’s 

impact on neurons. Therefore, we observed that lead increased the odds of PD in 

subjects with less genetic susceptibility, possibly due to a decrease in inclusion body 

formation. 

However, the interpretation of our results needs to be made with caution. Our 

results may not be put into direct comparisons with those from Waalkes et al’s work in 

several respects. In the in vitro study, the cells were cultured with an exceedingly high 

dose of lead solution (200µM/L, approximately 4140.78 'g/dL), which could hardly be 
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achieved at physiological level in human beings. Not only is it impossible for a subject to 

be exposed at this high level environmentally, but it also has to be taken into 

consideration that due to the blood brain barrier protection, the biological dose of lead 

entered into neurons is substantially lower. Secondly, all observations from Waalkes et 

al’s work were made in renal cells. Compared to neurons, inclusion bodies are more 

commonly observed in kidney cells. Thirdly, the researchers pointed out the crucial role 

of MT in the inclusion body formation process. Our study did not examine the effects of 

genetic variants in MT gene interacting with SNCA gene and lead exposure. It would 

provide great insights on disease mechanism if we could consider the potential 

modifying effect of MT gene into our study. Finally, the functions of these SNPs are 

unclear; we only postulated that the detrimental effect from these loci may be related to 

"-synuclein aggresome formation. Biological studies are needed to further confirm this 

contention.  

In addition, our results should be placed in limited context. Over one third of the 

control subjects failed to enter into the genotype data. The sample size in the final 

dataset was substantially reduced in comparison to the parent study. Our sensitivity 

analysis showed lead effects contrasted by quartiles were underestimated compared to 

our previous report. In addition, the statistical power was substantially compromised due 

to the reduced sample size. Many of our results were significant only at the p<0.05 

levels. Our results are preliminary and would need replication in other study settings.  

In summary, this study considered the roles of markers from SNCA gene in 

dopaminergic system for Parkinson’s disease. We examined the main influence of 

genotypes and lead exposures as well as their interactions on PD. Markers at 
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rs2736994, rs1812923, and rs2301135 significantly predicted PD status. Lead 

increased the odds of PD only among subjects who were less genetically susceptible. 

Subjects with higher genetic susceptibility were less affected by lead exposure.  Our 

findings were consistent with current knowledge on genetic etiology of PD and our 

previous findings on main effect of environmental lead exposure. These results are 

clearly preliminary and are in need of replication. Future work is needed to better 

understand the pathogenesis of PD.   
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Tables 

Table 3.1 Covariate Distributions in the Included and Exclude Subjects by PD Status 

 

 

 

 

 

 

 

 

 

                                            
11 The pooled dataset contained fewer Normative Aging Study subjects compared to published data. 

   Total Pool of Subjects11  Included in Gene-Environment Study 
  

Excluded from Gene-Envrionment Study 
  Non-PD PD Non-PD PD Non-PD PD 

 N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD 
Sex  [N (%)] 297 0.56 - 375 0.37 - 207 0.66 - 328 0.37 - 90 0.32 - 47 0.38 - 
Whites [N (%)] 281 0.84 - 354 0.96 - 192 0.85 - 307 0.96 - 89 0.83 - 47 0.96 - 
Age at Pb measures 274 69.99 9.82 340 66.46 9.39 204 69.13 9.72 327 66.60 9.34 70 72.48 9.78 13 62.91 10.33 
Birth Year 274 1936.90 9.77 340 1939.20 9.45 204 1937.63 9.63 327 1939.07 9.40 70 1934.77 9.94 13 1942.51 10.42 
Education level 279 3.63 1.11 353 3.94 1.11 190 3.76 1.08 306 3.98 1.08 89 3.37 1.13 47 3.68 1.27 
Years of Smoking 273 13.01 15.51 278 8.00 12.12 202 12.25 14.83 265 8.00 12.08 71 15.15 17.23 13 8.00 13.52 
Pack -years  273 10.91 17.65 301 7.07 13.65 202 9.15 15.87 288 7.28 13.88 71 15.95 21.26 13 2.48 4.92 
Age of PD Onset 0 - - 209 57.67 12.06 0 - - 203 57.65 12.09 0 - - 6 58.52 12.21 
Age at Diagnosis 0 - - 224 59.93 11.07 0 - - 217 60.06 10.99 0 - - 7 56.21 13.66 
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Table 3.2 Allele Frequency in Case and Control Groups 

   Pooled  PD  Non-PD  
Reference 

Population12 
Markers  A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 
rs356219 A G 0.56 0.44 0.55 0.45 0.58 0.42 0.58 0.43 
rs11931074 G T 0.88 0.12 0.88 0.12 0.89 0.11 0.92 0.08 

rs356221 A T 0.54 0.46 0.55 0.45 0.53 0.47 0.47 0.53 

rs356168 G A 0.54 0.46 0.55 0.45 0.53 0.47 0.47 0.53 

rs356188 A G 0.79 0.21 0.81 0.19 0.76 0.24 0.84 0.17 

rs356186 G A 0.80 0.20 0.82 0.18 0.77 0.23 0.86 0.14 

rs2737029 A G 0.55 0.45 0.54 0.46 0.56 0.44 0.55 0.45 

rs1812923 C A 0.59 0.41 0.56 0.44 0.62 0.38 0.50 0.50 

rs10005233 C T 0.51 0.49 0.52 0.48 0.56 0.44 0.47 0.54 

rs2301135 C G 0.52 0.48 0.51 0.49 0.57 0.43 0.50 0.50 

rs2301134 T C 0.52 0.48 0.51 0.49 0.57 0.43 0.48 0.52 

rs2619364 A G 0.71 0.29 0.71 0.29 0.70 0.30 0.68 0.32 

rs2583988 C T 0.71 0.29 0.72 0.28 0.70 0.30 0.74 0.26 

rs2736994 C T 0.78 0.22 0.80 0.20 0.75 0.25 0.83 0.17 

 

 

 

 

                                            
12 Reference population source: HapMap-CEU  
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Table 3.3 Genotype Frequency between Cases and Controls 

 Non-PD PD  Pooled    
Markers  G0 G1 G2 G0 G1 G2 G0 G1 G2 p value 13 
rs10005233 0.34 0.43 0.23 0.24 0.49 0.27 0.28 0.47 0.26 0.04 * 
rs11931074 0.83 0.13 0.05 0.79 0.18 0.03 0.80 0.16 0.04 0.18  
rs1812923 0.17 0.41 0.41 0.20 0.48 0.33 0.19 0.45 0.36 0.12  
rs2301134 0.21 0.43 0.36 0.25 0.52 0.23 0.23 0.48 0.28 0.01 ** 
rs2301135 0.37 0.41 0.22 0.23 0.52 0.25 0.28 0.48 0.24 0.00 ** 
rs2583988 0.53 0.33 0.14 0.52 0.39 0.09 0.52 0.37 0.11 0.16  
rs2619364 0.52 0.34 0.14 0.51 0.40 0.09 0.52 0.37 0.11 0.16  
rs2736994 0.58 0.34 0.08 0.64 0.33 0.03 0.61 0.33 0.05 0.06  
rs2737029 0.32 0.47 0.21 0.29 0.50 0.21 0.30 0.49 0.21 0.68  
rs356168 0.24 0.46 0.30 0.23 0.43 0.34 0.23 0.44 0.32 0.76  
rs356186 0.07 0.31 0.62 0.03 0.30 0.67 0.05 0.31 0.65 0.05 * 
rs356188 0.60 0.33 0.08 0.66 0.31 0.03 0.63 0.32 0.05 0.04 * 
rs356219 0.37 0.41 0.22 0.33 0.43 0.24 0.34 0.43 0.23 0.60  
rs356221 0.30 0.46 0.24 0.34 0.43 0.23 0.32 0.44 0.23 0.70  

 

 

                                            
13 *p value <0.05, ** p value <0.01 from Fisher’s exact tests 
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Table 3.4 Markers’ Main Effects and Interaction Effects from Tibia Lead Models14  

 Main Effects of Markers Lead x Markers Interaction Effects No. of Observations in Each Group 
Markers OR LCI UCL OR LCI UCI G0 G1 G2 PD Non-PD 
rs356219 0.86 0.43 1.75 1.04 0.98 1.11 162 205 115 298 184 
  1.16 0.50 2.72 1.01 0.93 1.09 162 205 115 298 184 
rs11931074 0.93 0.37 2.37 1.07 0.98 1.17 393 78 18 302 187 
  6.76 0.77 59.48 0.86 0.73 1.02 393 78 18 302 187 
rs356221 0.53 0.26 1.09 1.06 0.99 1.13 161 215 109 300 185 
  0.68 0.28 1.66 1.04 0.96 1.12 161 215 109 300 185 
rs356168 0.86 0.39 1.89 1.02 0.95 1.09 110 216 161 302 185 
  1.57 0.65 3.79 0.96 0.89 1.04 110 216 161 302 185 
rs356188 0.56 0.28 1.12 1.03 0.97 1.10 307 156 24 301 186 
  0.35 0.09 1.41 1.01 0.88 1.16 307 156 24 301 186 
rs356186 2.26 0.41 12.37 0.99 0.84 1.16 22 150 312 300 184 
  4.85 0.94 25.10 0.94 0.80 1.10 22 150 312 300 184 
rs2737029 1.09 0.53 2.24 1.01 0.95 1.08 144 240 104 302 186 
  0.99 0.41 2.36 1.01 0.93 1.09 144 240 104 302 186 
rs1812923 0.49 0.20 1.20 1.09 1.00 1.18 87 220 177 300 184 
  0.31 0.12 0.75 1.08 1.00 1.18 87 220 177 300 184 
rs10005233 1.56 0.77 3.14 1.03 0.97 1.10 137 228 123 302 186 
  4.29 1.77 10.39 0.93 0.86 1.01 137 228 123 302 186 
rs2301135 2.07 1.03 4.15 1.03 0.96 1.10 140 230 115 300 185 
  5.74 2.26 14.57 0.91 0.84 0.99 140 230 115 300 185 
rs2301134 0.38 0.16 0.89 1.11 1.02 1.20 113 234 140 301 186 
  0.21 0.08 0.53 1.07 0.99 1.17 113 234 140 301 186 
rs2619364 0.83 0.43 1.62 1.05 0.98 1.11 249 180 53 298 184 
  0.55 0.22 1.38 1.00 0.91 1.09 249 180 53 298 184 
rs2583988 0.85 0.44 1.64 1.04 0.98 1.10 254 179 53 301 185 
  0.57 0.23 1.42 1.00 0.92 1.09 254 179 53 301 185 
rs2736994 0.45 0.23 0.90 1.06 0.99 1.12 296 164 25 301 184 
  0.31 0.08 1.17 1.05 0.92 1.19 296 164 25 301 184 

 

                                            
14 All markers were treated as categorical variables, no inherit mode was assumed, G0 as reference group. The tibia lead levels were treated as 
continuous variable. Unconditional Maximum likelihood (UML) method was applied. 
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Table 3.5 Markers’ Main Effects and Interaction Effects from Patella Lead Models15  

 Main Effect of Markers Lead x Markers Interaction Effect No. of Observations in Each Group 
Markers  OR LCI UCI OR LCI UCI G0 G1 G2 PD  Non-PD 
rs356219 1.08 0.54 2.17 1.01 0.96 1.06 160 200 113 293 180 
  0.86 0.37 1.99 1.03 0.97 1.09 160 200 113 293 180 
rs11931074 0.87 0.36 2.10 1.07 1.00 1.14 385 78 17 297 183 
  9.33 0.90 97.17 0.88 0.76 1.02 385 78 17 297 183 
rs356221 0.68 0.33 1.40 1.02 0.97 1.07 158 211 107 295 181 
  1.00 0.43 2.33 0.99 0.94 1.05 158 211 107 295 181 
rs356168 0.80 0.37 1.71 1.02 0.96 1.07 108 212 158 297 181 
  1.06 0.46 2.46 1.00 0.95 1.06 108 212 158 297 181 
rs356188 0.93 0.48 1.81 0.98 0.93 1.02 301 153 24 296 182 
  0.45 0.09 2.26 0.98 0.88 1.09 301 153 24 296 182 
rs356186 2.79 0.46 16.77 0.98 0.87 1.10 22 147 306 295 180 
  3.03 0.53 17.31 1.00 0.90 1.12 22 147 306 295 180 
rs2737029 1.02 0.50 2.07 1.01 0.97 1.07 142 235 102 297 182 
  0.65 0.27 1.56 1.05 0.98 1.11 142 235 102 297 182 
rs1812923 0.70 0.30 1.67 1.03 0.97 1.10 87 213 175 295 180 
  0.42 0.17 1.04 1.03 0.97 1.10 87 213 175 295 180 
rs10005233 2.02 0.98 4.16 1.00 0.95 1.05 135 222 122 297 182 
  2.80 1.17 6.70 0.99 0.93 1.05 135 222 122 297 182 
rs2301135 2.96 1.43 6.10 0.99 0.94 1.04 138 224 114 295 181 
  3.97 1.61 9.79 0.96 0.91 1.02 138 224 114 295 181 
rs2301134 0.71 0.31 1.63 1.02 0.96 1.08 112 228 138 296 182 
  0.29 0.12 0.70 1.03 0.96 1.09 112 228 138 296 182 
rs2619364 0.85 0.43 1.66 1.03 0.99 1.08 246 176 52 294 180 
  0.39 0.14 1.03 1.03 0.96 1.11 246 176 52 294 180 
rs2583988 0.84 0.43 1.63 1.03 0.98 1.08 250 175 52 296 181 
  0.39 0.15 1.03 1.04 0.96 1.11 250 175 52 296 181 
rs2736994 0.81 0.41 1.57 0.99 0.95 1.04 291 160 25 296 180 
  0.41 0.11 1.63 1.00 0.91 1.11 291 160 25 296 180 

 

                                            
15 All markers treated as categorical variables; no inherit mode was assumed; G0 as reference group. The patella lead levels were treated as 
continuous variable. Unconditional Maximum likelihood (UML) method was applied. 
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Table S 3.1 Tibia Lead Main Effects in the Final Dataset 

 All sites (n=531)16  All hospital sites (exclude HCPOA) (n=400)17 
Tibia Lead (µg/g) Non-PD PD OR LCI UCI Tibia Lead (µg/g) Non-PD PD OR LCI UCI 

!1.74 53 84 - - - !1.74 26 84 - - - 
1.74-7.83 54 83 1.32 0.73 2.40 1.74-7.83 18 83 1.32 0.62 2.81 

7.83-13.92 48 89 1.51 0.83 2.77 7.83-13.05 15 77 1.50 0.69 3.28 
>13.92 49 71 1.66 0.88 3.15 >13.05 14 83 1.73 0.77 3.87 
p-Trend   0.10      0.16   

 

 

 

 

 

 

 

 

 

 

                                            
16 The final dataset for gene-environment interaction models 
17 The final dataset for gene-environmental interaction models excluding the control subjects recruited from Harvard Cooperative Program on 
Aging (HCPOA) 
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Table S 3.2 Gene-Environment Independence Test Results 

 Tibia Lead Models  Patella Lead Models  
 G1   G2   G1   G2   
Markers "GE p value 18 "GE p value  "GE p value  "GE p value  
rs10005233 0.002 0.90  0.035 0.06 . 0.012 0.37  0.009 0.59  
rs11931074 -0.016 0.43  0.062 0.04 * -0.004 0.82  0.032 0.20  
rs1812923 -0.019 0.34  -0.026 0.20  -0.006 0.71  -0.009 0.60  
rs2301134 -0.034 0.07 . -0.037 0.05 . 0.004 0.78  -0.014 0.40  
rs2301135 0.002 0.91  0.051 0.01 * 0.018 0.21  0.029 0.07 . 
rs2583988 -0.029 0.06 . -0.016 0.45  -0.008 0.53  -0.048 0.02 * 
rs2619364 -0.031 0.04 * -0.020 0.33  -0.011 0.43  -0.044 0.03 * 
rs2736994 -0.015 0.30  -0.021 0.41  0.015 0.25  -0.007 0.77  
rs2737029 -0.009 0.58  -0.003 0.89  -0.001 0.92  -0.014 0.42  
rs356168 -0.007 0.70  0.023 0.22  -0.002 0.89  0.016 0.33  
rs356186 0.002 0.95  0.016 0.55  -0.007 0.75  -0.021 0.34  
rs356188 -0.005 0.73  -0.001 0.98  0.013 0.32  0.028 0.17  
rs356219 -0.024 0.13  0.005 0.79  0.006 0.64  -0.009 0.59  
rs356221 -0.032 0.05 * -0.019 0.32  -0.020 0.14  -0.014 0.38  

 

 

 

 

 

 
                                            
18 * p<0.05, . p<0.1 
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Table S 3.3 Standardized Coefficients of Main Effects of Bone Lead from Gene-Environment Interaction Models  

 Tibia Lead Models Patella Lead Models 
Markers Std. OR Std. SE p value  Std. OR Std. SE p value  
rs356219 0.01 0.20 0.94  -0.02 0.20 0.91  
rs11931074 0.17 0.12 0.17  0.04 0.13 0.77  
rs356221 -0.03 0.19 0.86  0.00 0.17 0.98  
rs356168 0.15 0.22 0.52  -0.07 0.23 0.78  
rs356188 0.13 0.14 0.37  0.21 0.15 0.15  
rs356186 0.13 0.55 0.81  0.00 0.51 1.00  
rs2737029 0.09 0.20 0.64  -0.16 0.21 0.43  
rs1812923 -0.43 0.30 0.16  -0.19 0.26 0.47  
rs10005233 0.14 0.20 0.48  0.17 0.22 0.43  
rs2301135 0.18 0.20 0.37  0.29 0.22 0.19  
rs2301134 -0.58 0.31 0.06  -0.16 0.27 0.56  
rs2619364 0.03 0.16 0.85  -0.15 0.16 0.33  
rs2583988 0.07 0.15 0.63  -0.15 0.16 0.35  
rs2736994 0.04 0.14 0.76  0.14 0.14 0.33  
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Figures 

 

Figure 3.1 Physical Distance of 14 Markers in SNCA Gene 
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Tibia Lead Models Patella Lead Models 
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Figure 3.2 Bone Lead Levels and Probability of PD by SNCA Genotypes  

Caption: X-axis: the bone lead levels in tibia and patella. Y-axis: the probability of being a Parkinson’s disease case. 
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Figure S 3.1 –Log10 (p value) from Hardy-Weinberg Tests  

Caption: The dotted line corresponded to p =0.05 
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Figure S 3.2 High Linkage Disequilibrium Pairs 

Caption: High Linkage Disequilibrium was defined as r2 >0.8 and D’ >0.9 
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Figure S 3.3 –Log10 (p Value) of Fisher Exact Tests at 14 Loci 
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Figure S 3.4 –Log10 (p Value) of Cochran-Armitage Tests at 14 Loci 
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Figure S 3.5 Interaction Effect Estimates in Tibia Lead Models (Unconditional Maximum Likelihood vs. Empirical 
Bayes Likelihood Estimates) 

Caption: Solid line - G1 group; dotted line - G2 group. Red - unconditional maximum likelihood (UML) estimates; blue - 
empirical bayes (EB) maximum likelihood estimates. The coefficients lack of 95%CI due to that the standard errors were 
unable to derive with the corresponding method. 
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Figure S 3.6 Interaction Effect Estimates in Patella Models (Unconditional Maximum Likelihood vs. Empirical 
Bayes Likelihood Estimates) 

Caption: Solid line - G1 group; dotted line - G2 group. Red - unconditional maximum likelihood (UML) estimates; blue - 
empirical bayes (EB) maximum likelihood estimates. The coefficients lack of 95%CI due to that the standard errors were 
unable to derive with the corresponding method. 
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4. CHAPTER 4 CUMULATIVE EXPOSURE TO LEAD AND INCIDENCE OF TYPE-2 
DIABETES: THE VA NORMATIVE AGING STUDY 

Introduction 

Diabetes mellitus (DM) is a metabolic disorder characterized by insulin deficiency 

from loss of pancreatic beta cell or insulin resistance in peripheral tissues. Type 2 

diabetes mellitus (T2DM) is a dominant subtype of DM. Oxidative stress induced 

endoplasmic reticulum (ER) distress and systemic inflammation are the major 

pathogenic processes involved in the development of T2DM 1 2 3 4. Insulin deficiency or 

resistance can cause hyperglycemia. If untreated, hyperglycemia can lead to 

ketoacidosis or endothelial infraction, which can cause cardiac and renal function 

impairments5, 6. The incipient stage of T2DM is characterized by hyperglycemia, 

polyuria, polydipsia, polyphagia and weight loss. Early stage T2DM patients typically are 

overweight, with BMI greater than 25, or have excessive body fat around abdominal 

region7, 8. 

According to the Centers for Disease Control and Prevention, there were 1.9 

million incident cases of T2DM in people aged 20 or older in 20108. 18.8 million 

prevalent T2DM cases were recorded, which approximately 8.3% of the US population 

in year 2010. Furthermore, 7 million additional people were suspected to be 

undiagnosed and an estimated 79 million were pre-diabetic. Specifically 11.3% of 

population in age 20 and older and 26.9% of population in age 65 and older were 

suspected diabetic8. The T2DM incidence increased from 1.1 million in 2000 to 1.7 



 

 
110 

million in 20109. Even with increasing attention and interventions directed towards 

diabetes prevention, the incidence rate is still increasing. In 2001, CDC predicted that 

by the year 2050 the national DM prevalence would be 7.9% of the population, an 

estimated 29 million DM cases10. However the growth of DM in recent years has 

exceeded the predictions. Along with this rapid increase in incidence, the financial 

burden associated with diabetes healthcare and treatment for related complications also 

increased concurrently11.Therefore, in order to understand and control the epidemic of 

T2DM, more knowledge on the etiology of T2DM are needed.  

Genetic inheritance plays a role in the development of T2DM12. However, 

genetics alone cannot fully explain the emerging epidemic of T2DM observed in the 

recent decades, as genetic drift would need a long period to manifest phenotypes at the 

population level. Unhealthy diet, physical inactivity, obesity, aging, race, cigarette 

smoking and poor nutrition during pregnancy are well-known non-genetic risk factors for 

T2DM 13, 14. Growing evidence has shown that environmental chemical exposure is 

another non-negligible aspect in the etiology of T2DM. Heavy metals, such as arsenic 

and cadmium, can exacerbate oxidative stress and trigger inflammation processes 

creating an environment poorly suited for the survival of pancreas cells (examples: 

Arsenic 15-17, cadmium 18, 19 nickel and mercury20).  

Despite the established link between exposure to heavy metals and T2DM, few 

studies have been conducted to explore the role of environmental lead exposure in the 

etiology of T2DM. Lead is a pro-oxidant divalent metal21-24 that can induce oxidative 

stress through direct impact on cell membranes23, interactions with !-aminolevulinic 

acid dehydratase24 and inhibition of reductase functions 25 and mitochondria 26, 27. Lead 
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is known to disrupt endocrine functions, especially estrogen metabolism28 . Therefore, it 

is biologically plausible to hypothesize that lead exposure may contribute to the T2DM 

risk. We examined the association between cumulative exposure to lead, as measured 

in bones, and incident T2DM in a community-based cohort of men.  

Methods 

Study Design  

This analysis is nested in the Normative Aging Study (NAS), which was initiated 

by a multidisciplinary investigation team in early 1960’s. The study was established in 

order to study the process of healthy aging. Each individual in the study undergoes a 

series of physical examinations in the following domains: biochemistry, clinical 

medicine, oral medicine, neurology, anthropometry, psychology and sociology. Clinical 

examinations were performed every five years in subjects younger than 50 and every 

three years in subjects 50 and older. Bone lead measurements were conducted from 

1991 to 2002, with up to four consecutive measurements at tibia and patella bone sites. 

A graphical representation of exposure assessment and health outcome measurements 

is presented in Figure 4.1.  

Study Population  

The study was initially constituted of veterans from the Spanish-American war 

and later shifted to veterans who served in World War II. Subjects were enrolled through 

Veteran Administration outpatient clinics in Boston, Massachusetts. In 1972, an active 

cohort of 2032 subjects was retained in the study. Subjects were followed from 

enrollment until either death or withdrawal. Attrition rate did not exceed more than one 
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percent a year in the early study stage. Subjects in the study were selected to represent 

a wide range of socioeconomic classes and were ensured to be geographically stable. 

In the early stage of the study, the participants were mainly middle aged, with 35 

percent of subjects aged less than 40, and 60 percent aged between 40 and 59. 

Additionally, this study excluded participants with pre-existing health conditions with 

stringent criteria. For example, subjects with blood pressure higher than 140/90 mmHg 

were excluded from the study, which led to 50% of initial elderly subject exclusions. As 

a consequence, the remainder in the study are relatively healthier compared to the 

group being filtered out 29. This selection approach can lead to a ’healthy subject’ bias, 

which was foreseen by the researchers30. The initial recruitment included a wide range 

of social economic classes. Among the recruited participants, 14 percent had less than 

high school education, 25 percent were high school graduates, 35 percent were 

educated beyond high school and 26 percent were college graduates. This population 

structure shifted upwards with additional recruitment along with the upgrading of the 

educational system in recent decades. Occupations in the original study were evenly 

spread among managers, professionals, clerks, craftsmen, as well as service workers 

and with minor representation of operatives and laborers. However, at the initial stage, 

only 2% of the study participants were African-Americans.  

The current analyses were based on this existing cohort, targeting the 

subpopulation with bone lead measurement available. A total of 878 subjects with valid 

bone lead measurements were included in the current data set. The majority of the 

subjects were born in the middle1920’s. 
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Bone Lead Assessment  

Bone lead levels were measured using K shell X-ray fluorescence (K-XRF) 

approach at the Harvard University/Channing lab. Subjects who consented to lead 

measurements were asked to undergo a series of bone lead measurements at each 

clinic visit. The two bone sites were selected to represent the cortical and trabecular 

bone types. The tibia midpoint was selected to reflect lead burden in cortical bones; 

whereas patella was selected to reflect lead burden in trabecular bones. Due to low 

blood exchange rate, cortical bones have lower lead decay rate compared to trabecular 

bones therefore lead measured from cortical bones more accurately reflect the past 

history of lead exposures. Tibia lead reflects the retrospective lead exposures of the 

previous 14 to 16 years 31. Trabecular bones have higher exchange rate with blood 

compared to cortical bones and are the main contributors to endogenous lead 

exposure. In our analysis, some T2DM incidental cases occurred before the lead 

measurement. However as these two bone sites have good retention of lead and can 

refer to the exposure at retrospective time points, we decided to use the first bone lead 

measurement as a proxy of past lead exposure. To further clarify the temporality of lead 

effects with the information from two bone types, we obtained information about 24 hour 

urinary g-crosslinked N-telopeptides of type I collagen (NTx) as indicator of bone 

turnover. 

Type 2 Diabetes Identification 

The determination of T2DM cases in this study population was based on the 

American Diabetes Association standard published in 20027. Here, the incident cases of 
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T2DM met any of the following criteria: Single observation of plasma fasting glucose 

level greater than or equal to 126 mg/dL; current or ever anti-diabetic medication use 

indicated in the questionnaire; medical record of the diagnosis indicated in the 

questionnaire; or a 2 hour standardized glucose tolerance test value " 200 mg/dL. All 

the identified cases were classified as T2DM with cases evaluated at each clinical visit.  

Other Information 

Factors with regard to gaining effect estimates precisions or to controlling for 

confounding effect were body mass index (BMI), current smoking status, physical 

activity, educational level, and birthdates. This information was obtained via a series of 

questionnaires that were applied at the recruitment and during the follow-up clinical 

visits. BMI were derived from weight in kilogram divided by height in meter squared 

measured at each clinical visit.   

Urinary g crosslinked N-telopeptides of type I collagen (NTx ) levels were 

measured using archived 24-hour urine samples collected in 1987. NTx concentrations 

were measured via commercially available competitive-inhibition enzyme-linked 

immunosorbent assay32. Urinary NTx concentration was normalized to urinary creatinine 

secretion and is expressed as of nanomoles of bone collagen equivalents per mmol 

creatinnine (nM BCE/mM creatinine).  

Statistical Analyses  

Univariate and Bivariate Analyses 
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All statistical analysis was performed in R version 2.15 33. The R survival 

package was applied for survival analysis 34. Univariate analyses were performed to 

examine the distribution of variables of interest. Each bone lead marker was first used 

as a continuous variable to examine a potential dose-response relationship or deviation 

from linearity. For the purpose of significance testing, bone lead levels were categorized 

at the 25th and the 75th percentile. Covariates were determined based on biological 

relevance of confounding effects, and includes educational level, calorie consumption 

from physical activity (kcal/wk), current smoking status, birth date and BMI. Physical 

activity was log-transformed due to right skewed distribution. Educational level was 

categorized into less than high school, high school graduates, and higher than high 

school groups. Subjects were grouped into three cohorts based on birthdates 

information: born before 1920, between 1920 and 1930, and after 1930.  

Bivariate analyses were conducted to compare the distributions of covariates in 

the exposure groups or by the T2DM status. Additionally, to examine bias introduced by 

potential differential attrition in the subset with bone lead information, comparisons 

between baseline health status and health behaviors were made between subjects with 

and without bone lead measures by diabetes status observed later in the study. 

Comparisons of T2DM biomarkers, blood pressure and health behaviors were 

conducted among lead exposure groups and among the three birth cohorts.  

Survival Analyses  

Nelson-Aalen estimators were constructed and graphed for crude comparisons 

among exposure groups as well as the covariates of interest. Cox’s proportional hazard 

(PH) model using the semi-parametric maximum likelihood estimation method was 
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applied for model construction. Using age as the time scale, we tested the lead effect on 

incident T2DM with two choices of modeling with regard to handling ‘healthy subject’ 

effect- hereon referred to survivor effects. First we used stratified analysis by birth 

cohort as recommended by Korn et al 35. The lead effects were estimated conditional on 

arbitrary survival functions of three birth cohorts (Model 4.1). This method does not 

assume any type of probability distribution of birth cohort variable. Alternatively, we 

applied a gamma frailty model (Model 4.2) for effect estimates. This model assumes the 

survival function as independent among three birth cohorts while being correlated within 

the cohorts. bj denotes the frailty parameter, which is the random effect of birth cohort 

variable with three levels and follows the gamma distribution. Coefficients ! in model 4.2 

estimates conditional hazard ratios of variable Z in a given birth cohort. Maximum 

likelihood of the variance of random effect was derived using Expectation–Maximization 

algorithm36. In addition, the test for clustering bj is given by a score test, which is robust 

to distribution assumptions of the frailty term. All of the survival analyses were 

performed in a longitudinal data format. The time scale was defined as age at clinical 

visit during follow-up period.  BMI and smoking status were treated as time varying 

variables whereas the rest of covariates were time invariant. All test results were 

considered as significantly different from the null hypothesis at p< 0.05. 
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Caption: i- individual 1, 2#n; j- 1, 2, 3- levels in b; b- birth cohorts; Z, exposure and/or covariates of 
interest; a- age at clinic checkup; p, number of parameters of time-varying covariates; k, number of 
parameters of time invariant covariates. 
Model 4.1: stratified survival model, bi as strata term. 
Model 4.2: gamma frailty model, with bi as frailty term, which follows a gamma distribution. 
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Without prior knowledge on dose response relationship, decisions have been 

made to categorize tibia and patella lead levels at 25th and 75th percentile for the 

significance tests. Penalized spline smoothing methods were applied to visually 

examine the dose-response relationships.  

Model fit was diagnosed by examinations of Martingale residuals and Schoenfeld 

residuals methods36.The PH assumptions were tested by visual examination and by the 

test of constancy provided in the R survival package, which is based on scaled 

Schoenfeld residuals and indicates violation of PH assumption at p< 0.05. Influential 

data points were detected by identifying delta beta greater than 2/"n, which equaled to 

0.33 in our analyses. Test of significance of frailty parameter $ (variance) was 

performed using score test against null hypothesis that $=0. 

Sensitivity Analyses  

We examined the effects of lead stratified by urinary NTx level analyses. Urinary 

NTx level was dichotomized at the median. Two sets of models were fitted 

independently in low (less or equals to the median) and high (higher than the median) 

urinary NTx groups. Covariates were chosen as the same in main hypothesis models.  

Results  

During a median of 15.58 follow-up years, 230 out of 878 subjects who had bone 

lead measurement developed T2DM. Table 4.1 shows baseline comparisons of 

characteristics between subjects with and without bone lead measurement by T2DM 

status. In general, compared to subjects without bone lead measurements, subjects 

who underwent bone lead measurements were younger. There were fewer smokers in 
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the bone lead measurement group.  Further comparisons in T2DM subjects with regard 

to bone lead measurement statuses showed that subjects with bone lead measurement 

in general had late onset of T2DM, but tested worse on 2-hour glucose tolerance tests, 

and exhibited higher BMI with a corresponding higher prevalence of chronic diseases 

(data not shown).  

For subjects with bone lead measurements, we compared T2DM biomarkers and 

health behaviors among the three birth cohorts (Table 4.2). BMI gradually decreased 

from the young to the old cohorts. The younger cohorts had earlier T2DM onset: the 

averages of the onset age were 57.9 years (SD: 8.89) in the young, 64.89 years (SD: 

10.37) in the middle, and 68.3 years (SD 9.4) in the old cohorts, respectively. The 

proportions of current or ever smokers were higher in younger groups. The oldest 

cohort showed lower values on lipid and glucose metabolism tests.  

Table 4.3 shows the distributions of diabetic markers and health behaviors by 

patella bone lead levels among diabetic subjects. Patella bone lead levels were 

categorized at the 25th and 75th percentiles, which corresponded to 18 µg/g and 39 

µg/g, respectively. Compared to the lower 25th percentile group, subjects in the higher 

patella lead groups were older, yet had lower fasting glucose and cholesterol levels. 

Late onset of T2DM was observed in the higher patella lead level groups. Heavier 

smokers were more frequently observed in higher patella lead groups. Similar results 

were found in tibia lead groups (data not shown). 

Table 4.4 shows the comparisons on effect estimates of bone lead with different 

choices of adjustments in the models. The effect estimates reached statistical 
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significance in the most of the patella lead models. Patella lead manifested a ceiling 

effect with respect to the risk of T2DM. It showed that the medium patella lead group 

had higher risk than the high patella lead group. The directions of effect estimates from 

these modeling approaches were consistent. Compared to the birth cohort stratified 

analysis, gamma frailty modeling did not improve statistical efficiency drastically. 

However, the result from score test confirmed significance of dependence in the frailty 

term. The magnitude of patella lead effects was increased in the models with 

adjustment on birth cohort.  In the tibia lead models, the effect estimates oscillated 

around null and none of the models found a statistically significant effect of tibia lead.  

Table 4.5 showed the result from the final models using gamma frailty modeling 

method. Compared to the lower 25th percentile bone lead group, the group in 25th to 75th 

percentile bone lead group had hazard ratios (HRs) of 1.57 (95%CI: 1.26, 1.94) in the 

patella lead model and 1.02 (95%CI: 0.83,1.25) in the tibia lead model. The HRs 

estimated from both patella and tibia lead models showed non-linear patterns in 

penalized spline smoothing plots (Figure 4.3, 4.4). In the patella lead model, the lead 

effect appeared to plateau at 30 µg/g, whereas the effect of tibia lead did not exhibit 

drastic increase at low levels and slowly declined after around 30 µg/g.  

Current smoking status was positively associated with risk of T2DM. Compared 

to current nonsmokers, the HR for a current smoker was 1.58, (95% CI: 1.17, 2.13) in 

patella lead model and 1.64, (95% CI: 1.22, 2.21) in tibia lead model. Physical activities 

showed a protective effect of T2DM in both models.  Increase in BMI was positively 

associated with T2DM with HR of 1.11, (95% CI: 1.09, 1.13) in patella lead model and 
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1.10, (95% CI; 1.08, 1.12) in tibia lead model. Educational level did not show significant 

impacts on T2DM risk in any of the models. 

After stratifying by urinary NTx levels, lead effect in the low NTx group showed 

an increased dose-response relationship, while in the higher NTx group lead effect 

estimates showed a reverse U-shape relationship (Table S 4.1). None of the lead effect 

estimates reached to statistical significance. 

Discussion  

In this longitudinal analysis with data on cumulative lead exposures, we found a 

significant association of incident T2DM with patella lead but not with tibia lead. Our 

analyses adjusted for smoking status, educational level, BMI, physical activity; thus the 

association with patella lead appears to be independent of these factors. We further 

examined lead effects stratified by urinary NTx levels. However, the results did not 

support the endogenous exposure suspicion. We also observed survivor effects in this 

dataset as the oldest cohort, who had the relatively higher bone lead concentrations, 

exhibited later onset of T2DM. Overall, the data supports the hypothesis that cumulative 

lead exposure increases the risk of T2DM.  

Justification of the Decisions in Survival Analyses 

Age at onset instead of time-on-study was chosen as the time scale in this 

survival analysis. We chose this because age is an important risk factor for the chronic 

diseases in longitudinal studies. Furthermore, in the case of using biomarkers to reflect 

cumulative exposure, the observed exposure level is a monotonic function of age. This 

situation has two implications.  
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First, age behaves as a confounder that is associated with both exposures and 

health outcomes. When applying the Cox’s regression with time-on-study scale, age 

should be adjusted in the model as in model 4.3. However, a simulation study showed 

that even with the adjustment considered, bias still cannot be eliminated 37. 

Alternatively, when using age as timescale, the effect estimate is conditional on the age 

effect; therefore the confounding effect of age can be eliminated (Model 4.4). 

Second, because the risk of T2DM showed age-dependent penetrance, age 

scale can capture the increasing trend of the disease’s hazard based on biological 

relevance therefore reflecting the true effects37. Hence the distribution of the hazard 

function on the age scale determines deviations of estimated effects from the true 

effects if other time scales were used. For instance, when the hazard function 

distribution follows exponential distribution family on the age scale, due to the 

memoryless property of exponential distributions, the effect estimates from other time 

scales behave in the same pattern as on the age scale. However, if the hazard function 

follows distributions other than exponential distribution, the effect estimates would 

behave differently between two scales (age scale and the other time scale). As a result, 

bias is introduced. The direction of the bias depends on the magnitude of the true effect 

and on the strength of correlations between the covariate (Z) and age as well as on if 

the adjustment of age was made37. 

 
Caption: t, time-on-study; a, biological age at the beginning of study; A, age at baseline; Z, variable of 
interest; b, Bj, birth year (Bj as random variables). 
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Model 4.3: time-on-study as time scale, adjusted for age at baseline  
Model 4.4: biological age as time scale without adjustment for birth cohorts 
Model 4.5: biological age as time scale stratified by birth cohorts. This model is recommended by Korn et 
al35. 

Furthermore, the PH assumption requires hazard ratio (!) to be independent of 

time. This can hardly be achieved in a longitudinal study, especially when the disease 

occurrence depending on age or when a biomarker is a function of time. In this study, 

bone lead monotonically increases with age. Similarly, BMI and smoking status varied 

along with age and were related to disease occurrence. Therefore, the PH assumption 

could barely hold if we used time-on-study as the time scale. In addition, the true 

influence of these risk factors on T2DM development varies at different stages of life. 

Therefore proportional hazard assumption could only be valid when conditioning on the 

age by treating age as timescale. Misspecifying timescale using time-on-study can lead 

to the departure from the PH assumption and introduce bias in the effect estimates. The 

direction of bias is unpredictable, and the magnitude of the bias is proportional to the 

true effect 37.  

In addition, due to the original inclusion criteria of the study, the subjects entered 

into the study were relatively healthier than the general population. This issue was 

especially pronounced in the subjects who were born before1920. Figure 4.2 shows that 

in the study subjects with bone lead measurements, those who borned earlier exhibited 

late onset of T2DM compared to subjects whom borned later. We here refer this 

survivor effect to the phenomenon that the old cohort that was selected in this study 

exhibited some extent of resistance to T2DM or to lead intoxication compared to the 

younger cohorts. We created a birth cohort variable that categorized the study 

population into three groups: born before 1920, born between 1920 and 1920 and born 
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after 1930. In order to control this survivor effect, stratification on birth cohort approach 

is recommended 35 as in Model 4.5. We tested our hypotheses in a set of models with 

different choice of adjustment for this survivor effect. Our result showed that with 

adjustment of birth cohort variable in the models generally reduced the survivor effect. 

However, the HR estimates at the higher tail of lead exposure were inevitably biased 

beyond the null.  

Lead exposure in the Etiology of Type 2 Diabetes  

Oxidative stress induced cellular dysfunction is the central pathophysiological 

mechanism involved in the genesis of metabolic disease1. Oxidative stress affects 

functions of intracellular organelles such as mitochondria and endoplasmic reticulum 

(ER). Mitochondria distress results in insufficient energy supply and deregulation of 

insulin pathway signaling 3. ER distress is the major pathological observation in 

diabetes38, which involves the induction of unfolded protein response39. As a 

consequence, ER stress response results in leptin/insulin resistance in hypothamus; 

inflammatory process in fat tissue induces, insulin secretion impairment and apoptosis 

of beta cells in pancreas 39.  

Lead induced oxidative stress can be observed in the many tissues 21, 40. For 

instances, lead binds to !-ALAD24 in erythrocytes, which leads to accumulation of !- 

aminolevulinic acid (!-ALA) in the cell cytoplasm. !-ALA is auto-oxidative at pH 7.0-8.0 

and generates free radicals 41. Lead inhibits the functions of a variety of reductases22, 25. 

Reduction in these bioactive antioxidants weakens defenses against oxidative stress. 

Moreover, lead imposes stress on mitochondria by impeding calcium reuptake and 
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stimulating calcium efflux from mitochondria 27, 42. Lead depletes the calcium from ER 

and triggers the ER stress responses 4, 43.  

On the other hand, recent studies showed that osteocalcin plays an important 

role in insulin production and in improving insulin resistance 44, 45. Under the physical 

conditions, osteocalcin requires calcium binding to become bioactive. Lead ion (Pb2+) 

can displace calcium ion (Ca2+ ) at sulfhydryl ligand 42, 43 and causes osteocalcin more 

adsorptive to hydroxyapatite at much lower concentration. This leaves decreased 

proportion of bioactive osteocalcin in the circulation46. Experimental evidence also 

showed that lead suppresses the mRNA expression of osteocalcin47, 48.  

Our results supported the contention that lead increases the risk of T2DM by 

showing the increased HRs in elevated patella lead groups. However, we did not 

observe the significant impact in tibia lead models. To elucidate the temporality of lead 

effect, we explored the bone lead effect on T2DM with regard to bone turnover activity. 

Urinary NTx is a reliable biomarker for bone resorption activity and was shown to help 

identifying the endogenous exposure to lead 49. Under the high bone turnover condition, 

lead in trabecular bones mobilizes into blood and creates secondary endogenous lead 

exposure. Therefore the prominent effect in patella lead could be explained by effect of 

endogenous exposure. If this were the case, the patella lead effect would be stronger in 

high urinary NTx group. However, the results from the stratified analyses did not support 

this contention. Further investigation is needed to explain the discrepancies observed 

between these two types of bones. 
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Limitations  

The findings from this analysis should be interpreted with cautions. The main 

concerns were raised from the structure of study population and the biomarker for 

cumulative lead exposure. First, as we illustrated in the discussion session, the study 

subjects recruited were relatively healthier than the general population. Loss of 

participation to bone lead assessment created a secondary sample attrition, which left 

the subjects remained in the subset slightly healthier. This issue becomes noteworthy in 

the oldest birth cohort since the most of susceptible subjects had been filtered out from 

the final dataset. Subjects in this birth cohort were less likely to be affected by the 

environmental lead exposures and were more resistant to T2DM. Secondly, due to the 

summary feature of bone lead, it was difficult to distinguish the effect of lead apart from 

the aging effect. It also created paradoxical relationship when the old cohort exhibited 

less susceptibility to lead intoxication and more resistance to the disease. In order to 

resolve this issue, we created birth cohort groups to quantify the frailties in the subjects 

that were born at different calendar periods. This method can reduce the bias in the 

effect estimates to some extent but could not completely remove the survivor bias. A 

better method should be developed to overcome this limitation in the population 

structure and to derive unbiased estimates. 

Other issues arisen from the lead exposure assessment and T2DM case 

identifications could also potentially affect the observed HRs. For example, all the DM 

cases identified in this study were classified as T2DM with a slim possibility that a few 

cases could belong to other types of DM. Additionally, the accuracy of bone lead 

concentration using K-XRF is affected by the thickness of skin. The measurement 
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uncertainties can be inflated with thicker skins, which is commonly seen in subject with 

high BMI. However the deviations of coefficient estimates from true effects with regard 

to these two issues were not well studied. Additionally, statistically significant 

associations were only observed in the patella lead models. Yet the NTx stratified test 

results did not support the endogenous exposure contention. This requires cautions 

when interpreting the lead effect with respect to the timing of lead exposure. 

Despite the limitations in our observations, our findings provided a valuable piece 

of evidence to establish the association between cumulative lead exposures and T2DM 

with a few strengths. First, this is the first study with long-term follow-ups and repeated 

measurements in health outcomes and confounding factors. It also adopted the 

biomarkers for cumulative exposure to lead, which renders higher power to detect 

biological associations. In addition, the observation of the survivor effect provided a 

piece of evidence showing the heterogeneities in the risk population with regard to the 

mechanism of lead exposure on the development of T2DM. This provokes further 

investigations on the interactions between genetic predispositions and environmental 

lead exposures in the development of T2DM.  

In conclusion, this analysis showed that cumulative exposure to lead increases 

the risk of T2DM with a ceiling effect. The observation of heterogeneities of 

susceptibility to T2DM in sub-study populations requires further investigations to 

elucidate the mechanisms of lead exposure on T2DM development. Animal studies are 

desired to clarify the biological pathways of lead involved in the pathogenesis of T2DM. 
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Tables 

Table 4.1 Characteristics of Study Population at Baseline in T2DM and Non-T2DM Groups 19 

 T2DM Group Non-T2DM Group 
 Without Pb measure With Pb measure  Without Pb measure With Pb measure  

 Mean SD Mean SD  Mean SD Mean SD  
Age 44.6 8.6 40.06 6.95 ** 43.6 10.58 39.89 7.32 ** 
Birth Year 1921.19 8.53 1925.89 6.88 ** 1922.14 10.51 1926.25 7.41 ** 
Education           

Less than high school [N (%)] 27(0.07) - 24(0.06) 0.57  153(0.09) - 63(0.04) - * 
High school graduates [N (%)] 98(0.25) - 144(0.37)   651(0.38) - 367(0.21) -  
More than high school [N (%)] 42(0.11) - 50(0.13)   308(0.18) - 194(0.11) -  

Smoking Pack-years 19.65 18.99 16.36 18.16  19.63 19.35 15.03 17.78 ** 
Ever Smoking           

Never smoker [N (%)] 28(20.89) - 49(28.32) -  212(23.32) - 161(30.61) -  
Regular smoker [N (%)] 56(41.79) - 66(38.15) -  411(45.21) - 179(34.03) -  
Quit smoking [N (%)] 50(37.31) - 58(33.52) -  286(31.46) - 186(35.36) -  

Total Cholesterol (mg/dL) 208.93 47.79 209.79 45.47  204.39 44.69 199.69 43.8 * 
Serum Triglycerides (mg/dL) 160.19 94.64 150.79 75.98  132.11 51.37 130.19 50.56  
Fasting Glucose (mg/dL) 101.7 11.75 101.27 9.55  97.66 9.68 97.52 9.85  
2-Hour Glucose Test (mg/dL) 113.94 25.47 112.02 20.23  103.52 18.98 103.14 18.35  
Body Mass Index 26.65 3.24 26.83 3.03  25.52 2.85 25.47 2.54  
Systolic Blood Pressure (mmHg) 125.89 11.93 124.82 11.68  123.77 11.97 122.84 11.14  
Diastolic Blood Pressure (mmHg) 77.98 7.4 78.37 7.56  76.93 7.78 76.73 7.91  

 

 

 

 

 

                                            
19 Comparisons were made in T2DM and non-T2DM groups separately by ANOVA or Fisher’s exact tests. *p< 0.05; **p<0.01 
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Table 4.2 Comparison of Characteristics in T2DM Subjects in the Final Dataset by Birth Cohorts 

  Old   Middle   Young 20   

 N Mean 
(or %) SD N Mean 

(or %) SD N Mean 
(or %) SD  

Birth Year 46 1915.8 2.88 119 1925.31 2.7 65 1934.01 3.11 ** 
Education           

Less than high school [N (%)] 4 0.09 - 113 2.12 - 5 0.08 -  
High school graduate  [N (%)] 25 0.58 - 15 0.13 - 49 0.79 -  
More than high school [N (%)] 14 0.33 - 70 0.62 - 8 0.13 -  

Smoking Pack-years 29 14.99 18.98 28 0.25 23.27 46 21.12 19.05  
Current Smoker [N (%)] 1 0.03 - 8 0.08 - 5 0.09 -  
Former Smoker [N (%)] 17 0.49 - 67 0.67 - 38 0.68 -  
Total HDL (mg/dL) 30 46.67 11.57 87 44.76 11.67 51 42.92 11.34  
Total Cholesterol (mg/dL) 46 229.07 52.14 119 235.51 51.33 65 226.74 47.61  
Serum Triglycerides (mg/dL) 46 147.24 58.48 116 198.17 111.59 63 185.68 81.87 ** 
Fasting Glucose (mg/dL) 46 132 48.67 118 131.84 36.2 65 133.52 38.77  
2-Hour Glucose Test (mg/dL) 40 197.1 47.62 103 198.07 70.59 59 224.51 87.25  
Body Mass Index 35 26.49 3.81 101 29.41 4 65 30.95 4.59 ** 
Systolic Blood Pressure (mmHg) 46 138.67 17.82 119 135.27 17.65 65 135.74 19.3  
Diastolic Blood Pressure (mmHg) 46 80.62 10.01 119 80.43 9.28 65 83.18 9.91  
Physical Activity (Fast walk adjusted, kcal/wk) 22 1806.32 1160.07 67 1290.29 1231.95 42 1285.13 1137.74  
Physical Activity (No fast walk, kal/wk) 22 1251.89 827.05 67 1200.41 1181.74 42 1193.86 1072.4  
Diabetes Diagnosis [N (%)] 46 0.22 - 119 0.17 - 65 0.25 -  
Diabetes Medication (Current) [N (%)] 45 0.02 - 119 0.09 - 65 0.05 -  
Diabetes Onset Age 23 68.3 9.44 58 64.89 10.37 38 57.9 8.89 ** 

 

                                            
20 The old cohorts were born before 1920; the middle cohort was born between 1920 and 1930; the young cohort was born later than 1930. p 
values are derived from either Fisher’s exact test or ANOVA tests. *, p<0.05; ** p<0.01 
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Table 4.3 Comparison of Characteristics in T2DM Subjects by Patella Lead Groups 21 

 !25 percentile 
(!18 µg/g) 

25-75 percentile 
(18 -39 µg/g) 

>75 percentile 
(>39 µg/g)  

 N Mean SD N Mean SD N Mean SD  
Birth Year 46 1928.51 7.32 117 1926.68 6.09 67 1922.63 6.79 ** 
Education           

Less than high school [N (%)] 4 0.09 - 15 0.13 - 5 0.08 - ** 
High school graduate [N (%)] 25 0.58 - 70 0.62 - 49 0.79 -  
More than high school [N (%)] 14 0.33 - 28 0.25 - 8 0.13 -  

Smoking Pack-years 27 20.96 18.3 85 22.06 22.26 40 23.73 22.45  
Current Smoker [N (%)] 37 0.11 - 100 0.08 - 54 0.04 -  
Former Smoker [N (%)] 37 0.62 - 100 0.62 - 54 0.69 -  
Total HDL (mg/dL) 32 44.94 10.53 89 44.2 11.74 47 44.91 12.07  
Total Cholesterol (mg/dL) 46 222.13 48.18 117 231.81 49.91 67 238.22 52.44  
Serum Triglycerides (mg/dL) 45 154.91 62.38 114 193.82 105.27 66 187.77 97.17  
Fasting Glucose (mg/dL) 46 134.65 44.72 117 132.26 43.77 66 130.91 25.92  
2-Hour Glucose Test (mg/dL) 43 215.7 73.65 100 200.19 73.32 59 207.41 71.97  
Body Mass Index 41 30.89 5.03 106 29.11 4.24 54 28.83 4.06 * 
Systolic Blood Pressure (mmHg) 46 141.5 17.57 117 132.21 18 67 139.12 17.45 ** 
Diastolic Blood Pressure (mmHg) 46 83.92 8.18 117 80.24 10.64 67 81.17 8.43  
Physical Activity (No fast walk, kal/wk) 26 1511.92 1041.61 65 1046.14 1049.84 40 1270.05 1152.68  
Diabetes Diagnosis [N (%)] 10 0.22 - 24 0.21 - 12 0.18 -  
Diabetes Medication (Current) [N (%)] 4 0.09 - 8 0.07 - 3 0.05 -  
Diabetes Onset Age (Self-Reported) 23 60.74 11.39 63 62.52 10.55 33 66.64 8.9  
Onset Age of T2DM (Calculated) 46 61.66 11.58 117 62.41 10.29 67 65.57 10.4  

 

 

 

 

                                            
21 p values are derived from either Fisher’s exact tests or ANOVA F-statistic tests. *, p<0.05; ** p<0.01 
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Table 4.4 Comparison of Coefficients in Tibia and Patella Lead Models22 

 Patella Lead Models  
 Q1 (!18"g/g) Q2-Q3 (18 –39"g/g)  Q4 (>39 "g/g)  p for trend 
N  221 437  214   
Events  46 117  67  0.01 
Model 1 - 0.17 (0.08) * 0.06(0.09)  0.74 
Model 2 - 0.40(0.11) ** 0.28(0.12) * 0.05 
Model 3 - 0.45(0.11) ** 0.39(0.12) ** <0.01 
Model 4 - 0.45(0.11) ** 0.39 (0.12) ** 0.11 
 Tibia Lead Models  
 Q1 (!13 "g/g) Q2-Q3 (13 –28"g/g)  Q4 (>28 "g/g)  p for trend 
N 230 443  204   
Events 51 118  61  0.07 
Model 1 - 0.02(0.08)  0.042(0.09)  0.64 
Model 2 - -0.02 (0.10)  -0.051(0.12)  0.67 
Model 3 - 0.01 (0.10)  0.051(0.12)  0.67 
Model 4 - 0.02(0.10)  0.05(0.12)  0.81 

 

 

 

 

 

 

 
                                            
22 Major covariates: current smoking status, physical activity, educational level, and BMI. Model 1: crude lead effect estimate; Model2: adjusted for 
major covariates; Model3: stratified on birth cohort; Model4: gamma frailty model, birth cohort as frailty term; p values (not presented in the table) 
are derived from score tests against H0 !=0. * p<0.05; ** p<0.01 
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Table 4.5 Hazard Ratios and 95% Confidence Intervals in the Final Models23 

 Patella Lead Model 24 Tibia Lead Model25 
 HR LCI UCI HR LCI UCI 
Lead (25th -75th percentile)  1.57 1.26 1.94 1.02 0.83 1.25 
Lead (>75th percentile)  1.48 1.16 1.89 1.05 0.83 1.34 
Current Smoker 1.58 1.17 2.13 1.64 1.22 2.21 
Physical Activity Expended (kcal/wk) 0.81 0.74 0.87 0.79 0.73 0.86 
Body Mass Index 1.11 1.09 1.13 1.10 1.08 1.12 
Education: High school graduate 1.11 0.86 1.44 1.10 0.85 1.42 
Education: More than high school 0.87 0.64 1.17 0.81 0.60 1.10 

 

 

 

 

 
 
 
 
 
 
 

                                            
23 The frailty terms in both models were significant  
24 Patella lead at 25th and 75th percentiles corresponded to 18 µg/g and 39 µg/g 
25 Tibia lead at 25th and 75th percentiles corresponded to 13 µg/g and 28 µg/g 
 



 

 

132 

 

Table S 4.1 Lead Effects Stratified by Urinary NTx Levels26 

  Tibia lead Models27 Patella lead Models28 
 Lead Levels Low NTx (!50%)29 High NTx (>50%) Low NTx (!50%) High NTx (>50%) 
  ! Se(!) p value ! Se(!) p value ! Se(!) p value ! Se(!) p value 

Model 1 25th -75th percentile 0.04 0.16 0.81 0.13 0.19 0.47 0.31 0.18 0.08 0.16 0.18 0.38 
 > 75th percentile 0.23 0.19 0.22 0.07 0.22 0.74 0.47 0.20 0.02 0.02 0.21 0.93 
Model 2 25th -75th percentile 0.04 0.16 0.83 0.11 0.19 0.55 0.32 0.18 0.08 0.16 0.19 0.40 
 > 75th percentile 0.23 0.19 0.21 0.06 0.22 0.77 0.47 0.20 0.02 0.02 0.21 0.92 
Model 3 25th -75th percentile 0.03 0.16 0.86 0.17 0.18 0.34 0.23 0.18 0.18 -0.01 0.17 0.96 
 > 75th percentile 0.22 0.18 0.22 0.04 0.21 0.86 0.41 0.20 0.04 -0.02 0.20 0.91 

 

 

 

 

 

 

 

 

                                            
26 Major covariates: current smoking status, physical activity, educational level, and BMI. Model1: Cox’s model, birth cohort as covariate; Model 2: 
Cox’s model, stratified on birth cohort; Model 3: gamma frailty model, birth cohort as frailty term. 
27 Tibia lead at 25th and 75th percentiles corresponded to 13 µg/g and 28 µg/g 
28 Patella lead at 25th and 75th percentiles corresponded to 18 µg/g and 39 µg/g 
29 The 50th percentile of NTx  level corresponded to 41.44 nM BCE/mM creatinine 



 

 
133 

Figures 

 

Figure 4.1 Event Timeline in NAS (Frequency Density Plot) 

Caption: The majority of the study subjects were born in early 1900’s (blue dashed line). 
They were recruited beginning in the early 1960’s with continuous enrollment until early 
1970’s (solid line). Physical checkups were performed every three years for each 
subject 50 or older and every five years for subjects younger than 50. Bone lead 
measurements were added to the study in 1991 and were continued until 2002 (red 
dotted line). Diabetes incidence, represented by the black dash line, rose from early 
1960’s till the end of study period. For purpose of this analysis, the density plot 
presented in this graph is limited to the subjects in the current study. The total number 
of subjects in this figure does not represent entire NAS study population. 
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Figure 4.2 Survivor Effect (T2DM Onset vs. Birth Year) 

Caption: X-axis: the birthdates of study subjects in calendar years. Y-axis: the age at 
T2DM onset.  
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Figure 4.3 Hazard Ratios vs. Tibia Lead Levels  

Caption: X-axis: the tibia lead level in µg/g. Y-axis: the hazard ratios estimated from the 
gamma frailty model treating the tibia lead as a continuous variable. 
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Figure 4.4 Hazard Ratios vs. Patella Lead Levels 

Caption: X-axis: the patella lead level in µg/g. Y-axis: the hazard ratios estimated from 
the gamma frailty model treating the patella lead as a continuous variable. 
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5. CHAPTER 5 CONCLUSIONS 

Lead exposure remains an enormous public health problem worldwide. Evidence 

from basic science, clinical and epidemiological studies has provided fundamental 

knowledge on the toxic effects of lead exposure on human health.  A majority of the 

epidemiologic research has focused on the cross-sectional links between lead 

exposures and health outcomes. In the handful of longitudinal studies, researchers have 

found that the effects of lead can be long lasting1, 2. Yet limited research has addressed 

the issue of timing of exposure to lead with respect to health outcomes in the long term. 

In this dissertation, I investigated the effect of exposure to lead in terms of windows of 

exposures. With the advantage of longitudinal study designs and the use of biomarkers 

for cumulative as well as short-term lead exposures, I aimed to establish the 

relationship between exposure to lead and a variety of health outcomes regarding the 

timing of lead exposure.  The scope of health outcomes in this thesis covered 

psychobehavioral development, degenerative neurological disease (Parkinson’s 

disease) and type 2 diabetes. Specifically, I investigated the timing of exposure to lead 

in the perinatal period and in early life in relation to the psychobehavioral development 

in children aged from 6 to 13 in Chapter 2. Chapter 3 and Chapter 4 focused on the 

potential influence of lifetime exposures to lead on risk of diseases that typically occur in 

late life. The goal of Chapter 3 was to understand the potential impact of lifetime 

exposure to lead on Parkinson’s disease occurrence in subjects with genetic 

predisposition to Parkinson’s disease in relation to polymorphisms of the SNCA gene. 
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Chapter 4 aimed to discover the relationship between lifetime lead exposure and risk of 

type 2 diabetes. All three chapters together attempted to assess the temporal dynamics 

of the influence of lead exposures across the lifespan.  

In Chapter 2, the results did not show statistically significant associations 

between lead exposures in early life and behavioral outcomes measured in childhood/ 

early adolescence. However, the data suggested that exposure to lead during the 

prenatal period and the first two years after birth have strong impacts on inattention and 

hyperactivity behaviors. It appeared to affect emotion controls and somatic perceptions 

in children. Compared to effects of exposures during the perinatal period, the effect of 

recent lead exposure did not show strong impact on children’s behaviors. These 

findings can be explained in relation to two respects. First, during early life, the 

immature brain does not have the protective mechanism to prevent against lead 

poisoning 3-5. Previous studies have shown that the immature brain is a particularly 

sensitive target for lead poisoning. Second, the limbic system, of which functions are 

involved in emotional memory and socialization, develops and matures quickly in the 

first three years of life 6, 7 

However the limitations in these observations are that, first, the exposure levels 

in perinatal period was relatively higher than the recent lead exposure levels and 

second, these observations were limited to the subjects who had complete exposure 

measurements over the years of observation, which rendered a significant drop in 

sample size. This decreased the study’s power. Third, the psychobehavioral 

assessments were only performed at one time point. We do not have observations of 

behavioral change overtime as a function of early life lead exposure. Future research 
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may need to clarify the effects of the temporal exposure patterns on a larger scale, as 

well as to provide new understanding on effect of timing of lead exposures on 

psychobehavioral development as a dynamic growing process. Nevertheless, this study 

provides an importance piece of evidence demonstrating the critical windows of lead 

exposures on the neurodevelopment in a long term.  

In Chapter 3, I focused on the effect of lead from cumulative exposure on 

Parkinson’s disease under different levels of genetic susceptibility. I investigated the 

lead effect among SNCA genetic variants on the disease occurrence. After counting for 

linkage disequilibrium, I found three loci that strongly predicted Parkinson’s disease.  

Lead increases the odds of PD only among subjects who were genetically relatively 

resistant to the disease. Subjects with higher genetic susceptibility were less affected by 

lead exposure. This result implies that lead exposure and genetic predisposition in 

SNCA gene does not have a synergistic effect on PD development. In addition, I did not 

observe that genotypes of SNCA were strongly associated with bone lead levels. This 

indicates that SNCA gene does not modify the toxicodynamic of lead. These findings on 

the main effects of genetic markers were consistent with current knowledge on genetic 

etiology to PD8-17. However the main effects of lead were attenuated compared to our 

previous findings from a bigger sample18.  In addition, this result showed that tibia lead 

appeared to be associated with PD when combined with genetic information more 

frequently than patella lead. This may be due to the low decay rate of cortical bone lead 

19. This underscores the importance of cumulative exposure to lead exposure on PD 

development, a topic that has been discussed in detail in our previous publications18.  
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The mechanism of how lead exposures may cause Parkinson’s disease is not 

clearly understood. The current conceptual framework involves oxidative stress 20-22and 

alpha synuclein aggregation 23-27in dopamine neurons. The result however was not in 

support of the idea of lead aggravating the effects of deleterious genetic variants of the 

SNCA gene. While these results are clearly preliminary, and are in need of replication, 

along with other work to better understand the pathogenesis of PD. 

Chapter 4 provided novel evidence that exposure to lead could affect energy 

metabolism and result in type 2 diabetes. I found a significant increase of T2DM risk 

with an incremental increase in patella lead levels. I observed a discrepancy between 

the tibia lead and the patella lead effects on T2DM development. The NTx stratified 

analysis results did not support the contention that secondary endogenous lead 

exposure from increased resorption of bone stores of lead plays a significant role in 

modifying the effects of bone lead. These findings suggested that cumulative exposure 

to lead increases the risk of T2DM with a ceiling effect. The biological plausibility of the 

findings relates to two potential mechanisms involving inflammation and osteocalcin 

pathways. Lead imposes great oxidative stress on cells28-31and affects osteocalcin 

through calcium interference 32, 33. Lead exposure results in impaired beta cell function 

and deranged osteocalcin hemostatsis, which may result in the perturbations of lipid 

and glucose metabolism.  

The use of cumulative exposure markers posed some particular methodological 

challenges. This use carries the inherent difficulty of distinguishing the effect of the long-

term exposure apart from the aging effect. It also created paradoxical relationships 

when an older cohort exhibits decreasing susceptibility to either the exposure or the 
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disease (“survivor effect”). On the other hand, the survivor effect reflects the 

heterogeneities in risk associated with the pool of subjects with late stage T2DM.  This 

will require additional investigations on the interactions between genetic factors and 

environmental lead exposures in the etiology of T2DM. In addition, animal studies may, 

in parallel, help clarify the biological pathways of lead effects in relation to T2DM.  

The studies in this thesis provide a landscape of lead effects on human health 

across the life span with consideration of the timing of the exposures, and interactions 

with genetic vulnerabilities. It explored the associations with diseases of which 

etiologies were not clearly understood and paves the way for future research.  
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