
Computational Study of and Model Development
for Morphological Evolution in

Metallic-Nanostructure Heteroepitaxy

by

Nirand Pisutha-Arnond

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Materials Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Associate Professor Katsuyo Thornton, Chair
Professor Mark Asta, The University of California, Berkeley
Professor Ken Elder, Oakland University
Professor Michael Thouless
Associate Professor Anton Van der Ven



c© Nirand Pisutha-Arnond 2013

All Rights Reserved



For my family and my high-school english teacher

ii



ACKNOWLEDGEMENTS

I am grateful to my thesis advisor Prof. Katsuyo Thornton for providing me sup-

port and guidance as well as being very patient with me for many years. Without her,

I would not have been able to complete my PhD. Without her, I would not have learnt

what it takes to be a scientific scholar. I am indebted to my committee members,

Prof. Mark Asta, Prof. Ken Elder, Prof. Michael Thouless, and Prof. Anton Van der

Ven, for reading my thesis and providing many constructive and valuable comments

on my work. I would like to thank the following project collaborators for lending their

expertise and for making the work in this thesis possible: Prof. Mark Asta, Prof. Ken

Elder and Prof. Vikram Gavini. Furthermore, I would like to thank my current and

past colleagues for their useful discussions and support Roberto, Dong-Hee, Hui-Chia,

Hsunyi, Larry, Victor, Chal, Chloe, Steve, Bernardo, Nick, Amber, Candace, Susan,

Tapiwa, Andrea, and Britta. In additional, I would like to acknowledge the funding

support from the National Science Foundation and the Thai Scholar fellowship. Also,

I am thankful to Prof. Elizabeth Hildinger for helping me with my English writing.

I would not have been able to go through my PhD study without support and en-

couragement from my parents and my sister. Lastly, I would like to thanks all Thai

people that I have met in Ann Arbor for their friendship and fond memories.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The First Contribution: Investigation of a Thermodynamic
Driving Force for Dewetting of Magnetic Thin Film with Misfit
Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Second Contribution: Numerical Techniques to Improve
the Phase-Field Crystal Method and Classical Density Func-
tional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Third Contribution: Calculations of Isothermal Elastic
Constants in the Phase-Field Crystal Method . . . . . . . . . 11

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Continuum Models of Dislocations and Misfit Dislocations . . 13

2.2.1 The Volterra Model . . . . . . . . . . . . . . . . . . 14
2.2.2 The Peierls-Nabarro Model . . . . . . . . . . . . . 19
2.2.3 Van der Merwe Models . . . . . . . . . . . . . . . . 26
2.2.4 Film-Substrate Potential . . . . . . . . . . . . . . . 34

2.3 Overview of the Phase-Field Crystal Model . . . . . . . . . . 36
2.3.1 Phenomenological Development . . . . . . . . . . . 36

iv



2.3.2 Theoretical Development . . . . . . . . . . . . . . . 41
2.4 Further Development of the Phase-Field Crystal Model . . . . 48

2.4.1 Extension of Free Energy . . . . . . . . . . . . . . . 49
2.4.2 Evolution Equation . . . . . . . . . . . . . . . . . . 50
2.4.3 Coarse-graining of the PFC equations using Ampli-

tude Formulations . . . . . . . . . . . . . . . . . . . 52

III. Stability of Strained Thin Films with Interface Misfit Dislo-
cations: A Multiscale Computational Study . . . . . . . . . . . 54

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Energy Considerations . . . . . . . . . . . . . . . . 57
3.2.2 Homogeneous Strain Energy . . . . . . . . . . . . . 57
3.2.3 Dislocation Elastic Energy . . . . . . . . . . . . . . 59
3.2.4 Plastic Deformation Energy . . . . . . . . . . . . . 63
3.2.5 Surface/Interfacial Energy . . . . . . . . . . . . . . 63

3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Dislocation Configuration . . . . . . . . . . . . . . . 68
3.3.2 Dislocation/Deformation Energy . . . . . . . . . . . 70
3.3.3 Effect of Surface Stress . . . . . . . . . . . . . . . . 72
3.3.4 Dislocation/Deformation and Surface/Interfacial En-

ergies . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.5 Applicability to Other Systems . . . . . . . . . . . . 77

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 78

IV. Modeling Classical Density Functional Theory and the Phase-
Field Crystal Method using a Rational Function to Describe
the Two-body Direct Correlation Function . . . . . . . . . . . 79

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Background and Motivation . . . . . . . . . . . . . . . . . . . 80

4.2.1 Classical Density Function Theory of Freezing . . . 80
4.2.2 Phase-Field Crystal Method . . . . . . . . . . . . . 82

4.3 Rational Function Fit . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Examining the Role of Short-Wavelength Contributions of the

Two-Body Direct Correlation Function . . . . . . . . . . . . . 85
4.4.1 The Rational Function Fits of the Two-Body Direct

Correlation Function of Fe . . . . . . . . . . . . . . 85
4.4.2 Procedures to Calculate Solid-Liquid Properties . . 86
4.4.3 Results and Discussions . . . . . . . . . . . . . . . . 88

4.5 Empirical Parametrization of the Two-Body Direct Correlation
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Application of RFF to the PFC Method . . . . . . . . . . . . 96
4.7 Real-Space Implementation . . . . . . . . . . . . . . . . . . . 99

v



4.8 Comparison of Fourier-Space and Real-Space Implementations 103
4.9 Chapter Summary and Discussions . . . . . . . . . . . . . . . 107

V. Calculations of Isothermal Elastic Constants in the Phase-
Field Crystal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 PFC Method . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Measure of Deformation . . . . . . . . . . . . . . . . 112
5.2.3 Definitions of Isothermal Elastic Constants from the

Thermoelasticity Theory . . . . . . . . . . . . . . . 114
5.2.4 Deformation Types . . . . . . . . . . . . . . . . . . 116

5.3 Calculations of Isothermal Elastic Constants using PFC Free
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 PFC Elastic Constants . . . . . . . . . . . . . . . . 119
5.3.2 TE Elastic Constants . . . . . . . . . . . . . . . . . 121
5.3.3 Numerical Comparison Between PFC and TE Elastic

Constants . . . . . . . . . . . . . . . . . . . . . . . 123
5.4 A General Procedure to Obtain the PFC Elastic Constants . 127
5.5 Thermodynamics of Stressed Solids . . . . . . . . . . . . . . . 129

5.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . 129
5.5.2 Taylor Expansions of Energy Functions . . . . . . . 132
5.5.3 Relationships Between the Coefficients of Taylor Ex-

pansions . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 138

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

VII. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

vi



LIST OF FIGURES

Figure

2.1 A single edge dislocation in a cylinder. This figure has been repro-
duced from Ref. [96]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 (a) Two semi-infinite cubic crystals with disregistry of b/2. (b) Dis-
tortion of the crystal after an introduction of the dislocation. The
figures have been reproduced from Ref. [96]. . . . . . . . . . . . . . 20

2.3 Misfit dislocation at an interface between an infinitely-thick substrate
and a finite-thickness film . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Contour plot of (Egsfe − E0)/V showing the BCC(110) substrate
potential. The constant r is the nearest-neighbor spacing. The dash
lines enclose one unit cell. . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Minimum-energy dislocation spacing considering only the disloca-
tion/deformation energy as a function of film thickness for the (a)
Fe/Mo(110) and (b) Fe/W(110) systems. The dislocation spacing is
normalized by the substrate lattice spacing (SLS). The film thick-
ness is measured in atomic layers (AL). The arrow indicates that the
dislocation spacing is infinitely large. The inset in (a) shows the dis-
location/deformation energies of misfit dislocations with the spacings
of 10 and 11 SLS versus 11 and 10 SLS along [1̄10] and [001̄] direc-
tions, respectively, in the Fe/Mo system. The intersection between
the two energy curves occurs between the film thickness of 17 and 18
AL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 (a) Dislocation/deformation energy per surface atom (in eV) associ-
ated with the minimum-energy dislocation configurations as a func-
tion of film thickness. (b) Dislocation/deformation energy of the
Fe/Mo system from the film thickness of 2-6 AL. The chord con-
struction illustrates local instability of the film with the thickness of
4 AL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



3.4 (a) Minimum-energy dislocation spacing, considering the surface stress
effect for the Fe/Mo system. (b) Surface/interfacial energy (in eV/surface
atom) of the Fe film on the Mo(110) substrate as a function of the
film thickness. The solid line (square markers) denotes the sur-
face/interfacial energy of the pseudomorphic film. The dash line
(circular markers) denotes the strain-dependent surface/interfacial
energy of the dislocated film. . . . . . . . . . . . . . . . . . . . . . . 73

3.5 The combination of dislocation/deformation and surface/interfacial
energies for the Fe/Mo system. (a) Film thickness from 1-10 AL.
(b) Film thickness from 1-3 AL. The chord construction illustrates a
metastability behavior of the thin film with the thickness of 2 AL. . 75

4.1 The different fits to the embedded-atom-method molecular dynamics
(EAM-MD) data, Ĉ
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ABSTRACT

Computational Study of Morphological Evolution in Metallic-Nanostructure
Heteroepitaxy

by

Nirand Pisutha-Arnond

Chair: Katsuyo Thornton

In this thesis, we describe computational studies relevant to morphological evolu-

tion in metallic-nanostructure heteroepitaxy. Our first contribution focuses on the un-

derstanding of the thermodynamic driving force behind morphological evolution of the

magnetic thin-film system. Specifically, we study the stability of thin single-crystal,

internal-defect-free Fe films on Mo(110) and W(110) substrates through calculations

of energetics including contributions from the misfit strain, interfacial misfit disloca-

tions, film surface and interface. The misfit dislocation model is developed through

the Peierls-Nabarro framework, employing ab initio calculations of the corrugation

potential at the film/substrate interface as an input to the model. The surface and

interfacial energies for pseudomorphic films are calculated as a function of film thick-

ness from 1 to 10 layers, employing first-principles spin-polarized density-functional

theory calculations in the generalized gradient approximation. First-principles calcu-

lations are also employed to obtain the Fe surface stress used in the Peierls-Nabarro

model to account for the strain dependence of the surface energy. It is found that the

xiv



competition between the misfit strain, misfit dislocations, film surface and interfa-

cial energies gives rise to a driving force for solid-state dewetting for a single-crystal,

internal-defect-free film, i.e., an instability of a flat film that leads to formation of

thicker and thinner regions. The details of the energetics are presented to demon-

strate the robustness of the mechanism. Our findings indicate that misfit dislocations

and their configurations play a significant role in a morphological evolution of metallic

thin films.

Our second contribution lies in the development of numerical methods for the

classical density functional theory (CDFT) and the phase-field crystal (PFC) method,

both of which are promising tools for modeling metallic-nanostructure hetereoepitaxy.

We introduce a new approach to represent a two-body direct correlation function

(DCF) in order to alleviate the computational demand of CDFT and enhance the

predictive capability of the PFC method. The approach utilizes a rational function

fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to

show that short-wavelength contributions of the two-body DCF play an important

role in determining the thermodynamic properties of materials. We further show that

using the RFF to empirically parameterize the two-body DCF allows us to obtain the

thermodynamic properties of solids and liquids that agree with the results of CDFT

simulations with the full two-body DCF without incurring significant computational

costs. In addition, the RFF can also be used to improve the representation of the two-

body DCF in the PFC method. Lastly, the RFF allows for a real-space reformulation

of the CDFT and PFC method, which enables descriptions of nonperiodic systems

and the use of non-uniform/adaptive grids.

Our third contribution involves an investigation on how to parameterize the PFC

method in a thermodynamically consistent manner; this is important to ensure ro-

bust predictions from the model. For this work, we examine procedures for calculating

isothermal elastic constants using the PFC method. We find that the conventional

xv



procedure used in the PFC method for calculating the elastic constants are incon-

sistent with those defined from a theory of thermoelasticity of stressed materials.

Therefore, we present an alternative procedure for calculating the elastic constants

that are consistent with the definitions from the thermoelasticity theory, and show

that the two procedures result in different predictions. Furthermore, we employ a

thermodynamic formulation of stressed solids to quantify the differences between the

elastic constants obtained from the two procedures in terms of thermodynamic quan-

tities such as the pressure evaluated at the undeformed state. The second and third

contributions together will provide necessary modeling capability for quantitative and

accurate simulations of morphological evolution in metallic thin films.

xvi



CHAPTER I

Introduction

Over the past several decades, a tremendous amount of research has gone into

exploring specific properties of materials that are not characteristic of their bulk

states. These properties are achieved through nanostructured materials that exhibit

special properties as a result of their interface-dominated structures. For example,

arrays of nanoscale islands made of semiconductor materials leads to confinement of

charge carriers [1]. This confinement, known as the quantum confinement, causes

the material to exhibit properties that are characteristic of a discrete molecule and

results in size-tunable electronic and optical properties [2, 3, 4]. As a consequence,

these properties are exploited in optoelectronic applications such as light-emitting

diodes (LED), lasers, and photovoltaic devices. Another example is a nanostructure

composed of alternating layers of ferromagnetic and nonmagnetic materials [5, 6].

This structure exhibits electrical resistance that depends on the magnetic states of

adjacent ferromagnetic layers, which in turn can be controlled by applying an external

magnetic field. This effect, known as giant magnetoresistance, leads to spintronic

applications such as magnetic sensors and magnetic memory devices such as hard

drives [7].

Nanomaterials can be fabricated in “top-down” and “bottom-up” manners. The

top-down techniques involve material removal such as cutting, milling and etching.

1



Examples of these techniques are a collective range of methods called lithography [8],

which is a process of fabricating a pattern on a polymer film, or a resist, by different

radiation sources such as photons (photolithography) [9], X-rays (X-ray lithography)

[10], electrons (electron beam lithography) [11], or ions (focused ion beam lithography)

[12]. The resist is then used to selectively etch the pattern onto the underlying

film or substrate by masking the underlying area. Other examples include scanning

probe techniques where atoms or molecules are manipulated using devices such as

the scanning tunneling microscope (STM) [13] or the atomic force microscope (AFM)

[14]. These techniques involve lifting or dragging atoms or molecules using either

mechanical or electrical force from the probe tips.

The top-down techniques play an important role in nanostructure fabrication; an

important example is the photolithography which is used for mass production of in-

tegrated circuits [15, 9]. However, these methods produce structural and chemical

imperfections such as surface defects and impurities, which in turn affect physical

properties of the nanostructures [9]. Furthermore, to produce high-resolution nanos-

tructures (with features of tens of nanometers), the top-down approach becomes in-

creasingly costly due to the need for more sophisticated instruments and a higher

level of serialism; for example, the scanning probe techniques involve manipulating

atoms one by one [9].

In contrast, the bottom-up techniques are based on building the nanostructure

from building blocks (e.g., atoms, molecules, and colloids). They often take advantage

of spontaneous formation of structures from atoms or molecules, the so-called self-

assembly and self-organization, during growth and annealing processes. An example

of these techniques is a vapor-liquid-solid (VLS) growth of nanowires, which is a

method where vapor of a growth species is absorbed into a catalytic liquid droplet

and precipitated at the growth surface (liquid/solid interface) [16]. Other examples

are molecular beam epitaxy (MBE) and chemical vapor deposition (CVD); MBE is

2



a technique where a beam of atoms or molecules from a heated source interacts with

a substrate material to form an epitaxial film under an ultra-high-vacuum condition,

and CVD involves reaction among volatile materials, or precursors, during deposition

on a substrate. Sputtering, electrochemical deposition and sol-gel processing are also

among the bottom-up techniques to produce thin films and nanostructures [9, 17].

The bottom-up techniques are promising for fabrication of nanoscale features with

structural homogeneity and a higher level of parallelism [18]. The challenge for the

bottom up techniques is, however, the fact that the nanoscale features are not con-

trolled by direct instrumentation, but instead controlled indirectly through complex

interplay between thermodynamic and kinetic processes. Therefore, physical under-

standing of the underlying processes is crucial for the fabrication of nanostructures

with desirable features such as those with uniform shape, size and chemical composi-

tion.

One of the widely investigated processes for nanostructure formation is epitaxy—

the process in which a monocrystalline solid, or a single crystal, forms on a single

crystal substrate, typically by bottom-up techniques such as MBE and CVD. The

epitaxial process can be further divided into homoepitaxy and hetereoepitaxy. Ho-

moepitaxy is a process in which a growth species and a substrate are the same material

whereas heteroepitaxy is a process in which a material are grown on a different sub-

strate material. In heteroepitaxy, a film grown on a substrate is typically strained

because of the difference between the lattice spacings of the film and the substrate.

This lattice mismatch results in the development of the strain energy in the system,

which in turn plays an important role in the morphological evolution of the film.

In heteroepitaxial growth, three growth modes are observed; these growth modes

can be characterized by the resulting film morphologies. They are:

• The Volmer-Weber (VW) mode [19]. This mode results in island formation on

a substrate without a wetting layer. An example of this mode is growth of Co
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on Cu(111) [20].

• The Frank-van der Merwe (FM) mode [21, 22, 23]. This mode results in layer-

by-layer formation of a flat film. An example of this mode is growth of Fe on

Cu(111) by pulsed laser deposition [24].

• The Stranski-Krastanov (SK) mode [25]. This mode results in island formation

on a wetting film layer. The initial growth stage proceeds in a layer-by-layer

fashion (as in the FM mode), followed by island formation (as in the VW mode).

The change in the growth behavior is attributed to the strain energy from the

lattice mismatch between the film and the substrate. An example of the SK

mode is growth of Fe on Mo(110) and W(110) [26, 27].

A thermodynamic criterion for determining the growth mode is to consider the chem-

ical potential, µ, (or equilibrium vapor pressure) as a function of film thickness, n:

∂u/∂n < 0 for the VM mode; ∂u/∂n > 0 for the FM mode; and ∂u/∂n > 0 followed

by ∂u/∂n < 0 for the SK mode [28].

For SK growth, different transition mechanisms of a film material from a two-

dimensional (2D) layer to three-dimensional (3D) islands have been identified. For

example, many researchers [29, 30, 31] have proposed a nucleationless process through

gradual evolution of surface roughness driven by a strain-relaxation mechanism, known

as the Asaro-Tiller-Grinfeld (ATG) instability [32, 33]. Another proposed mechanism

is sequential nucleation of islands and pits, known as cooperative nucleation, which is

proposed to explain a locally rippling morphology of Si0.5Ge0.5 grown on Si(001) [34].

While the proposed mechanisms listed above could be applied to semiconductor

systems such as SiGe/Si or InGaAs/GaAs, they are not directly applicable to other

technologically important heteroepitaxial system such as magnetic thin films on metal

substrates. The reason is that for a SiGe alloy film on a Si substrate, it is energetically

favorable for the film lattice to be coherent with that of the substrate (for relatively
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small island sizes) due to the strength of the covalent bonds and a relatively lower

lattice mismatch. However, in some other systems, higher lattice mismatch results

in early formation of interfacial dislocation networks, which contributes to a higher

interfacial energy that serves as a thermodynamic driving force for a morphological

evolution [35]. For example, it has been shown that continuous Fe films that are

grown on Mo(110) at room temperature break up into nanostripes when annealed at

elevated temperatures [26, 36]. In addition, Ag and Cu films grown on Ru(0001) form

nanowedge islands on thin wetting layers when annealed [37]. For these systems, due

to the presence of misfit dislocations, the evolution pathways from 2D to 3D mor-

phologies are different from those occurring in systems with coherent interfaces. This

is because the films with fully developed dislocation networks are nearly strain-free;

for example, a tensile strain measured from an Fe/Mo island is less than 0.1% [26]

while the bulk lattice mismatch is ≈10%. Therefore, the elastically driven mecha-

nisms described earlier (such as the ATG instability) cannot explain the observed

morphological changes in these systems.

To develop an understanding of nanostructure formation in metallic epitaxial sys-

tems, we have developed a simpler continuum-mechanical model of such systems and

more detailed atomistic model based on the phase-field crystal approach. In the

following three sections, we summarize the contributions we have made.

1.1 The First Contribution: Investigation of a Thermody-

namic Driving Force for Dewetting of Magnetic Thin

Film with Misfit Dislocations

Our first contribution lies in an investigation of the recently proposed mecha-

nism for a hereteroepitaxial system with misfit dislocations. This mechanism, termed

“dewetting,” is observed in growth of single-crystal, internal-defect-free Cr films on a
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vicinal W(110) substrate [38]. It is characterized by mass transport of the film ma-

terial across the substrate steps, leading to formation of locally thinner and thicker

film regions without nucleation of new layers. This discovery provides a new insight

into how dewetting occurs in absence of other conventional pathways such as those

mediated by grain boundaries [39, 40] or impurities [41]. Instead, the driving force

for this mechanism was proposed to be the thickness-dependent strain that alters the

surface energy due to the surface stress, which causes the energy of a flat film to be

higher than that of a film with regions of different thicknesses. However, in the for-

mulation of this theoretical model, the film/substrate interface was assumed to have

the same properties as the surface, and the effect of the interfacial misfit dislocations

on the film energetics was not explicitly considered.

Therefore, we examine the thermodynamic driving force for the dewetting mecha-

nism; we take into account the contributions of the misfit strain, interfacial misfit dis-

locations, film surface and interface to the stability of a single-crystal, internal-defect-

free, flat film. We use an equilibrium dislocation model based on the Peierls-Nabarro

(PN) formulation [42, 43], which describes long-range elastic fields by continuum

equations and takes into account a plastic deformation energy at the film/substrate

interface in terms of a corrugation potential that can be obtained from first-principles

calculations. In addition to the misfit dislocation/deformation energetics, we use a

first-principles method based on electronic density functional theory to calculate the

surface/interfacial energy as a function of film thickness and a surface strain. Specif-

ically, we focus on Fe/Mo(110) and Fe/W(110) systems, which are well characterized

through fundamental experimental studies that relate the growth, morphology and

properties of magnetic thin films [26, 36, 44, 45, 46, 47]. However, the method pre-

sented can be applied to a broader range of metallic thin film material systems that

form misfit dislocations. We find that, through the competition between energetics of

the misfit dislocations, misfit strain, film surface and interface, there is a significant
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driving force for a flat film to form thinner and thicker regions, leading to the dewet-

ting process. This driving force is more than one order of magnitude larger than that

originated from the film-thickness dependence of the energy arising from the surface

stress obtained in a recent study by McCarty et al. [38]. In addition, we find that

non-monotonic variations in the thickness-dependent surface/interfacial energy may

give rise to a metastable behavior of the film at certain thicknesses.

This work has provided an impetus for developing a more detailed, atomistic, yet

long-time-scale simulation approach as described below.

1.2 The Second Contribution: Numerical Techniques to Im-

prove the Phase-Field Crystal Method and Classical Den-

sity Functional Theory

Our analysis above gives an insight into a thermodynamic driving force for an

early stage of morphological evolution of a flat internal-defect-free thin film. How-

ever, at this point, the result should be interpreted only qualitatively due to several

simplifying assumptions made in the misfit-dislocation model; these assumptions en-

able a semi-analytical form of the solution to the model, which is computationally

inexpensive. For example, we have assumed that the material is elastically isotropic

whereas a single crystal film should be described with elastic anisotropy. We have

also assumed that the misfit dislocations form only a rectangular network whereas the

experimentally observed misfit-dislocation structures form more complex structures

such as a hexagonal structure [46]. Therefore, in order to predict a more quantitative

thermodynamic driving force, we need to consider a model that better represents

material properties and allows more complex misfit-dislocation structures.

Furthermore, to properly model the SK growth, we need to not only accurately

predict the thermodynamic driving force, but also take into account kinetic consid-
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erations. The reason is that morphological evolution during SK growth can also be

influenced by kinetic processes. For example, in a situation where the deposition

rate is high, the kinetics of surface diffusion become an important factor for the

morphological evolution of the growth species [48]; it has been shown that different

nanostructures can be tailored in the kinetic-dominant regime (low temperature and

high deposition rate) [49]. Therefore, we need to consider computational approaches

that take into account both thermodynamics and kinetics of the growth processes.

Considering available computational modeling tools, we can loosely categorize

them into atomistic models and mesoscale models. For the first class, a premier tool

is molecular dynamics (MD), which is a simulation of physical movements of atoms

or molecules using classical equations of motion. Given an appropriate interparticle

potential, MD can give a very accurate description of a dynamic system, which is very

appealing for the fact that no other input such as a priori knowledge of all possible

transitions for the system is required (as in a kinetic Monte Carlo method [50]).

However, a serious drawback of MD is that it requires a time step small enough to

resolve atomic vibrations (∼ 10−15 s), which limits MD simulations to very short time

scales, typically around microseconds [50]). Thus, it is not suitable for simulations

of physical processes of interest (such as surface diffusion) which occur over a much

longer time scales.1

For the class of mesoscale models, one of the well-established models is the phase-

field method. The phase-field method can be considered as a temporally and spatially

coarse-grained representation of the atomistic approach. Therefore, the inherent time

scales bypass atomic vibration time scales, enabling the phase-field method to capture

1In this aspect, the kinetic Monte Carlo (KMC) method can be a preferred method because
of its longer time scales. The KMC simulations do not follow the system’s dynamics through full
atomic trajectories within atomic hops, but rather consider the probability of atomic transitions
from one position to another and the corresponding rates, allowing simulations of dynamics over a
longer time-scale. However, the KMC method requires a priori knowledge of all possible transitions
and their rates. Missing transitions can preclude some evolutionary pathways and therefore can
potentially lead to incorrect predictions of the evolution of the system [50].
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material phenomena over the time scales that are physically meaningful. However,

the phase-field method lacks descriptions of atomistic phenomena, which limits the

predictive capability of the models without additional auxiliary field variables such

as those that describe grain orientations [51, 52, 53, 54, 55, 56] and dislocations

[57, 58, 59, 60]. Furthermore, when the physical problem involves multiple phe-

nomena, it becomes challenging to incorporate many auxiliary field variables in a

thermodynamically self-consistent manner.

Two approaches that address these issues are classical density functional theory

(CDFT) [61, 62, 63] and the phase-field crystal (PFC) method [64, 65, 66] (See also

a footnote2). A common feature of these approaches is the description of the system

via a free energy functional of an atomic density field that is minimized not only by

a uniform field (representing liquid) but also by a periodic field (representing solid).

The periodic field represents atomic arrangements, and thus it allows for an atomic-

scale description of materials [64, 65, 67, 68]. The evolution of the density field can be

described by dissipative dynamics [64, 69, 70, 71], which bypasses the lattice-vibration

time scale and enables consideration of diffusive times scales while retaining atomistic

resolution.

Despite the similarities, the origins of these two methods are different. CDFT is

derived from statistical mechanics and involves the description of material properties

through a correlation function that contains structural information at the atomistic

scale. On the other hand, the original form of the PFC method is derived from the

2We note two developments to MD that address the time-scale issue: hyper molecular dynamics
(HMD) [72, 73] and diffusive molecular dynamics (DMD) [74]. The HMD is based on the transition
state theory where a biased potential is added to the true potential in order to enhance the system’s
escape rate from the potential minima. As a result, the time scales of the simulations are increased.
The DMD is based on the variational gaussian (VG) method where the occupation probabilities
for each lattice site are introduced to characterize the system. The occupation probabilities are
ensemble average fields and evolve on the diffusive time scale. In comparison with CDFT and the
PFC method, both HMD and DMD are developed from the crystal theories and, therefore, are
appropriate for simulating solid-state processes. On the other hand, CDFT and the PFC method
are developed from the liquid theories [75, 76] and are appropriate for simulating high-temperature
processes.
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Swift-Hohenberg model of pattern formation [77] and is intended to provide phe-

nomenological descriptions of material behavior. Nevertheless, the link between the

CDFT and PFC method was established by Elder and co-workers [76], and the PFC

method can thus be considered a simplified form of the CDFT of freezing [67], with a

computational efficiency afforded by a lower spatial-resolution requirement than that

of CDFT.

While the approximation to obtain the PFC method alleviates the high computa-

tional cost of CDFT, it affects predictive capabilities of the formulation. Therefore,

the goal of the second contribution is to develop numerical techniques that increase

the computational efficiency of CDFT as well as improve the accuracy of the PFC

method without increasing the numerical stiffness of the evolution equation. In par-

ticular, we propose a rational function fit, a ratio of polynomials, to approximate the

Fourier-space two-body direct correlation function (DCF) that is typically used in

the CDFT of freezing. We henceforth refer to this approach as the rational function

fit (RFF) method. Additionally, the RFF method allows a real-space reformulation

of the governing equations when the rational function is expressed as a summation of

partial fractions, enabling the use of non-uniform/adaptive grids and descriptions of

nonperiodic systems.

We use the RFF method to examine the importance of short-wavelength contribu-

tions in the two-body DCF that is used in CDFT. Our studies on iron (Fe) show that

the short-wavelength contributions influence the thermodynamic properties not only

quantitatively, but also qualitatively. For example, the phase stability of the face-

centered-cubic (FCC) structure has a strong dependence on the short-wavelength

contributions in the DCF, which is typically not accurately accounted for in PFC

studies. We also show that, within the framework of the RFF method, it is possible

to empirically parameterize the two-body DCF to increase computational efficiency

of CDFT while retaining the accuracy of most predictions of the thermodynamic
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properties in comparison to those of CDFT with the full two-body DCF. Finally, we

demonstrate that the RFF can be used to improve the representation of the two-body

DCF in the PFC model.

1.3 The Third Contribution: Calculations of Isothermal Elas-

tic Constants in the Phase-Field Crystal Method

The benefits of the PFC method mentioned in the previous section suggest that

the PFC method can potentially be used to predict non-equilibrium behavior of a

material system over experimentally relevant time and length scales. However, be-

fore the PFC method can provide robust predictions, it must be parameterized with

known equilibrium properties of the materials of interest and be verified that the

model accurately predicts thermodynamic properties of the system at equilibrium

beyond those used in parameterization. Therefore, we now focus on how equilibrium

properties should be calculated within the PFC framework.

The equilibrium properties considered in this work are isothermal elastic con-

stants, which were calculated from the PFC approach in Refs. [64, 65, 78]. These

elastic constants, which will be referred to as the PFC elastic constants,3 are calcu-

lated from variations in the free energy density (total free energy per actual volume)

associated with various types of quasi-static deformation at a constant average num-

ber density. However, we have found that this procedure is inconsistent with the

definitions from a theory of thermoelasticity of stressed materials [79, 80, 81]. These

definitions are thermodynamically derived and are widely adopted. Therefore, we

propose an alternative procedure for calculating the elastic constants as defined by

the thermoelasticity theory, which will be referred to as the TE elastic constants. The

TE elastic constants are instead calculated from variations in the total free energy

per undeformed volume associated with quasi-static deformations at a constant num-
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ber of particles in the system. To give numerical examples, we use an existing PFC

model for iron (Fe) to show that the PFC and TE elastic constants can be signifi-

cantly different from one another. Therefore, we conclude that the conventional and

the proposed procedures are not interchangeable and, more importantly, one should

calculate the elastic constants using the proposed procedure in order to make fair

comparisons with values from other approaches such as classical density functional

theory [82, 83, 84], Monte Carlo [85], MD [86], and ab initio density functional theory

[87, 88, 89].

Finally, we employ a thermodynamic theory of stressed solids [90, 91, 92] to sys-

tematically define the PFC and TE elastic constants in the same framework. This

formulation allows us to obtain the relationships between the PFC and TE elastic

constants. These relationships not only facilitate conversions between the PFC and

TE elastic constants but also provide quantitative measures of the differences between

the PFC and TE elastic constants in terms of thermodynamic quantities such as the

pressure of the undeformed state.

3We use this term because the PFC elastic constants are not identical to standard elastic constants
such as the closed-system elastic constants or the open-system elastic constants.
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CHAPTER II

Background

2.1 Overview

This chapter contains the background information on the models that provide

the mathematical framework for the work in this thesis. In Section 2.2, we consider

the continuum mechanical model of the dislocations and misfit dislocations, which

are relevant to our work in Chapter III. Specifically, we review Volterra’s model of

dislocations [93] in Section 2.2.1 and the Peierls and Nabarro (PN) model [42, 43]

in Section 2.2.2. We then consider the misfit-dislocation model by van der Merwe

[94] and provide a discussion on the film-substrate interaction potentials in Sections

2.2.3 and 2.2.4, respectively. In section 2.3, we review the the development of the

phase-field (PFC) model as well as the classical density functional theory (CDFT).

This background information is intended for the work in Chapters IV and V.

2.2 Continuum Models of Dislocations and Misfit Disloca-

tions

In this section, we review selected continuum models to describe dislocations and

misfit dislocations; these models provide a mathematical framework for our study of

misfit dislocations in the next chapter. Here, we describe the models of only edge
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dislocations that are needed to represent the interfacial structures of the epitaxial

systems presented in Chapter III. We first consider Volterra’s model of dislocations

[93], which is a model of a straight dislocation in an infinite homogeneous, isotropic

medium. This model provides a description of the long-range stress fields outside the

dislocation core region. We then consider a model of a dislocation by Peierls and

Nabarro (PN) [42, 43]; the PN model addresses the limitation of the Volterra model

in describing the dislocation core due to divergence of the stress fields by includ-

ing a description of a lattice in a crystalline material. This description is achieved

through the potential energy as a function of a displacement with a period related

to the atomic spacing in the crystal. Furthermore, we consider a misfit-dislocation

model by van der Merwe [95, 94]; this model describes the interface between different

crystals with different lattice parameters by an array of PN dislocations. This model

is developed for an interface between two infinitely thick crystals and an interface

between an infinitely thick and a finite crystal. We will review the latter case because

the corresponding geometry is appropriate for modeling an epitaxial system. Lastly,

we discuss a development of the film-substrate potential used in misfit dislocation

models.

2.2.1 The Volterra Model

Let us denote x, y, and z as the Cartesian coordinate system. Considering a

cylindrical-shape material in Fig. 2.1, one can construct a dislocation by making a

cut along the half plane x = 0, y > 0, inserting an extra material slab of thickness

b, and welding the material together, which leaves the continuous body in a state of

residual stress. The straight edge dislocation generates a plane strain condition of

uz = 0 and ∂ui/∂z = 0, where ui is an i-component of a displacement vector and

i denotes x, y, and z. As a result, the Airy stress function, χ, which applies to a
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Figure 2.1: A single edge dislocation in a cylinder. This figure has been reproduced
from Ref. [96].

two-dimensional system, can be used to represent the stress state of the body [96]:

σxx =
∂2χ

∂y2
, σyy =

∂2χ

∂x2
, σxy = − ∂2χ

∂x∂y
, (2.1)

where σij denote an element of a stress tensor and j also denotes x, y, and z. The

equilibrium and the compatibility conditions require the Airy stress function to satisfy

∇4ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

ψ = 0, (2.2)

where r and θ denote the polar coordinate system and can be obtained from the

relationships x = r cos(θ) and y = r sin(θ). One can then define a function

Φ ≡ ∇2χ = σxx + σyy (2.3)
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and express Eq. (2.2) as

∇2Φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
Φ = 0. (2.4)

Applying a separation of variables to the function Φ, one obtains

Φ =
∑
n

Rn(r)Φn(θ). (2.5)

The general form of Φ can be found using the Michell’s solution [97]. Omitting the

terms that yield multi-valued solutions, the solution can be written as

Φ = (α0 + β0 ln r) +
∞∑
n=1

[
(αnr

n + βnr
−n) sinnθ + (γnr

n + δnr
−n) cosnθ

]
, (2.6)

where αn, βn, γn, and δn are constants. In the case of dislocation modeling, the fact

that the stress Φ = σxx + σyy should be symmetric with respect to y-axis and that Φ

should decrease with increasing r (see Figure 2.1) leads to a very simple expression

of Φ:

Φapp =
∞∑
n=1

βnr
−n sinnθ. (2.7)

In particular, the lowest-order term can be identified as:

ΦV ol = β1r
−1 sin θ. (2.8)

This term is a characteristic of the long-range stress field of an edge dislocation. It

has been noted that the omitted terms rn, n ≥ 1 correspond to the external applied

surface force [96], which is assumed to be absent, and the term ln(r) involves a

constant shear force on the surface [98]. Finally, the higher order terms r−n, n ≥ 2

pertain to types of singularities other than the point force of the dislocation. These

terms are omitted because they describe particular structures of the core (see Ref.
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[96] for a specific example) and are not related to the long-range properties of the

dislocation.

With the Volterra approximation discussed above (noted by the subscript vol),

the Airy stress function for a dislocation can now be determined from

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
Φvol = β1r

−1 sin θ. (2.9)

The solution is given by

χvol =
β1
2
r sin θ ln r. (2.10)

Since the dislocation is produced by inserting a half-infinite slab of thickness b, the

difference between the integral of elastic strain above and below the slip plane must

also be equal to b; that is

b = −
∞∫

−∞

[εxx(x, η)− εxx(x,−η)]dx, η → 0. (2.11)

Using Hooke’s law and the derivation of the stress from the Airy stress function, one

finds that

β1 =
−µb

π(1− ν)
, (2.12)

where ν and µ are the Poisson’s ratio and shear modulus, respectively. Therefore,

the stress function becomes

χvol = − µby

4π(1− ν)
ln(x2 + y2), (2.13)
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and the elements of the stress tensor can be obtained by using Eq. (2.1) to yield

σxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σyy =
µb

2π(1− ν)

y(x2 − y2)
(x2 + y2)2

σxy =
µb

2π(1− ν)

x(x2 − y2)
(x2 + y2)2

σzz = ν(σxx + σyy) = − µbν

π(1− ν)

y

x2 + y2

σxz = σyz = 0 . (2.14)

The energy per unit length along the z-direction of an edge dislocation can be esti-

mated by integrating the linear-elastic strain energy density. The integration between

two coaxial cylinders of radius r0 and R is

W

L
=

R∫
r0

rdr

2π∫
0

dθ

[
1

2µ
σ2
xy +

1

2E
(σ2

xx + σ2
yy − 2νσxxσyy − σ2

zz)

]

=
µb2

4π(1− ν)
ln
R

r0
, (2.15)

where r =
√
x2 + y2, E is the Young’s modulus, r0 represents the dislocation core

radius within which linear elasticity is invalid, and R is the distance to the outer

boundary of the crystal. As will be discussed in the next section, the energy of the

dislocation core (within r < r0) must be treated separately by taking into account

an effect from an atomic potential. The energy in the above equation represents the

energy stored in the deformation caused by the presence of a dislocation, and can be

considered as the dislocation energy with the given assumptions outlined above (as

well as excluding the chemical energy of the broken bond). The energy of a dislocation

diverges when R =∞, meaning that the energy depends on the size of the medium;

and r0 = 0 which is attributed to the failure of linear elasticity to describe large

lattice distortion near the core of the dislocation. It is generally considered that the
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linear theory holds for r0 ≈ b.

2.2.2 The Peierls-Nabarro Model

The Peierls-Nabarro (PN) model integrates Volterra’s treatment of dislocations

with Frenkel’s approach [99] of calculating the shear strength of a perfect crystal

with a periodic function of a displacement. This results in a dislocation model that

reflects the lattice periodicity. Here, we begin with formulating the model, and then

obtain the displacement profile as well as the shear stress along the interface. This

will be followed by the calculation of the energy of the dislocation.

2.2.2.1 Calculations of Displacement and Stress Fields

The PN model for an edge dislocation in a simple cubic structure is shown in

Figure 2.2. In this section, the x-axis is along the Burgers vector of the dislocations,

while the y-axis is taken to be normal to the glide plane. The two elastic semi-infinite

half planes are separated by a non-Hookean slab of material of width b. An edge

dislocation is formed by cutting the perfect crystal along the glide plane (y = 0) and

displacing the upper half by a distance b/2 along x-direction and rejoining the crystal

together. The displacement occurs in order to bring atoms into a perfect alignment

far away from the dislocation core. In this section, the sign convention is taken such

that the stress and displacement bear the sign consistent with the bottom half of the

crystal, which is symmetrically related to the top half of the crystal.

The equilibrium configuration is the result of a balance between two forces at the

interface. The first is the elastic force that opposes the matching of atoms across

the interface y = 0. The second force is the interatomic force that tends to bring

the atoms across the interface back to a perfect crystal. From Fig. 2.2, the initial

disregistry (i.e., the total relative displacement that includes both plastic and elastic

deformation) of the top half with respect to the bottom half of the crystal is b/2 for
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Figure 2.2: (a) Two semi-infinite cubic crystals with disregistry of b/2. (b) Distortion
of the crystal after an introduction of the dislocation. The figures have
been reproduced from Ref. [96].
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x > 0 and −b/2 for x < 0. If the x-component of the displacement vectors, ux(x)

and −ux(x), is imposed on the bottom and top sides of the glide plane, respectively,

to form an edge dislocation, the disregistry becomes

φx(x) =


2ux(x) + b/2, x > 0

2ux(x)− b/2, x < 0.

(2.16)

Far away from the dislocation core, the atoms across the interface coincide, yielding

the boundary condition:

ux(∞) = −ux(−∞) = −b/4 . (2.17)

We now consider the top half of the crystal. The elastic response from the dis-

placement is balanced by the restoring force from the bottom half. The atoms at

the interface can be viewed as being displaced from the potential troughs originating

from the bottom half of the crystal. As a first approximation, it is reasonable to

assume that the potential follows a sinusoidal function of the disregistry. The stress

caused by the restoring force resulting from this potential, σ0, which tends to bring

the atoms back to coincidence, is then given by the derivative of the potential with

respect to the displacement along x-direction:

σ0 = A sin

(
2πφx
b

)
= σxy(x, 0), (2.18)

where σxy(x, 0) is the elastic shear stress at the interface and A is a constant. For

small strain, the above expression can be approximated as

σ0 = A

(
2πφx
b

)
. (2.19)
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The constant A can be determined by requiring that Eq. (2.19) converges to Hooke’s

law, yielding,

σ0 = 2µεxy

=
µφx
d
, (2.20)

where d is the interplanar distance. From Eq. (2.19) and Eq. (2.20), one obtains

A

(
2πφx
b

)
≈ µφx

d

A ≈ µb

2πd
. (2.21)

Therefore, using Eq. (2.16) and Eq. (2.21), Eq. (2.18) can be written as

σ0 = − µb

2πd
sin

(
4πux
b

)
. (2.22)

From the Volterra dislocation, the relevant stress at the interface, σxy(x, 0), due

to an edge dislocation in the plane strain condition is (Eq. (2.14))

σxy(x, 0) = − µ

2π(1− ν)

b

x
. (2.23)

The equilibrium condition requires the stress from Eq. (2.18) and the stress from

Eq. (2.23) to be equal. As suggested by Eshelby [100], a distribution of infinitesimal

edge dislocations satisfies this condition. At a distance x′ away from the dislocation

core, b′(x′)dx′ is defined as the x-component of the Burgers vector of an infinitesimal

dislocation situated between x′ and x′ + dx′. The boundary condition of Eq. (2.17),

requires that

b =

∞∫
−∞

b′(x′)dx′ = −2

∞∫
−∞

dux
dx

∣∣∣
x=x′

dx′. (2.24)
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The shear stress at (x, 0) can be expressed as

σxy(x, 0) = − µ

2π(1− ν)

∞∫
−∞

b′dx′

x− x′

= − µ

2π(1− ν)

∞∫
−∞

(dux/dx)|x=x′dx′
x− x′ . (2.25)

It is noted that the variable x in the denominator of Eq. (2.25) is an independent

variable while the variable x in the numerator is evaluated at x′. In addition, the

quantity (x− x′) denotes the distance from the dislocation core.

At equilibrium, the elastic stress must equal the restoring force stress, leading to

an integro-differential equation for the displacement ux.

∞∫
−∞

(dux/dx)|x=x′dx′
x− x′ =

b(1− ν)

2d
sin

(
4πux
b

)
. (2.26)

The solution to Eq. (2.26) is given by

ux = − b

2π
tan−1

x

ξ
, (2.27)

where ξ = d/2(1− ν). Therefore from Eq. (2.24), one can obtain the distribution of

the Burgers vector component,

b′(x′) =
b

π

ξ

x′2 + ξ2
. (2.28)

One can now obtain the stress function of this distribution from the solution of a
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Volterra edge dislocation (Eq. (2.13)):

ψ =
µ

2π(1− ν)

∞∫
−∞

b′y ln[(x− x′)2 + y2]1/2dx′

=
µbξy

4π2(1− ν)

∞∫
−∞

ln[(x− x′)2 + y2]

x′2 + ξ2
. (2.29)

With the evaluation of the integral, Eq. (2.29) becomes

ψ =


µb

4π(1−ν)y ln[x2 + (y + ξ)2], y > 0

µb
4π(1−ν)y ln[x2 + (y − ξ)2], y < 0.

(2.30)

The complete stress distribution can be expressed as

σxy =
−µb

2π(1− ν)

{
x

x2 + (y + ξ)2
− 2xy(y + ξ)

[x2 + (y + ξ)2]2

}
σxx =

µb

2π(1− ν)

{
3y + 2ξ

x2 + (y + ξ)2
− 2y(y + ξ)2

[x2 + (y + ξ)2]2

}
σyy =

µb

2π(1− ν)

{
y

x2 + (y + ξ)2
− 2x2y

[x2 + (y + ξ)2]2

}
σzz = ν(σxx + σyy) =

µbν

π(1− ν)

y + ξ

x2 + (y + ξ)2
. (2.31)

By comparing Eq. (2.31) with Eq. (2.14), it is clear that the Peierls-Nabarro disloca-

tion converges to the Volterra dislocation when r =
√
x2 + y2 � ξ. It is important

to note that the parameter ξ regularizes the singularity at the origin r = 0 appearing

in the Volterra dislocation. This parameter originates from the treatment of the un-

derlying crystal lattice in the PN model, and thus the regularization stems from the

discrete nature of a crystalline solid at the atomic scale.
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2.2.2.2 Calculation of Dislocation Energy

With the expressions of the displacement and stress, the energy associating with

the PN dislocation can be calculated. The energy is divided into two parts. The first

energetic contribution is the elastic strain energy stored outside the dislocation core,

which is related to the strain energy calculated from the Volterra formulation. The

second energetic contribution stems from the distortion of bonds across the interface,

which is important in calculating the dislocation-core energy.

For the first energy contribution, the elastic strain energy stored in the crystal

equals the work done by the surface force to generate the displacement ux. The work

per area δx and per unit length in the z-direction (out of the paper on Fig. 2.2) is

δW =

ux∫
0

σxyδxdu =
1

2
σxy(x, 0)uxδx. (2.32)

By integrating this along x from −a to a, the energy stored in the crystal is

W =
µb2

4π(1− ν)
ln

a

2ξ
, (2.33)

which is similar to Eq. (2.15). As discussed later, a will be set by the dislocation

spacing in the case of a dislocation array.

The second contribution is the dislocation-core energy (energy resulting from lat-

tice deformation) arising from the shear strain on the slip surface, expressed as

εxy(x, 0) = −φx
2d

= −2ux + (b/2)

2d
. (2.34)

The total contribution to the dislocation-core energy is σ0dεxy + σ0dεyx = 2σ0dεxy.

The dislocation-core energy in a block of height d, width δx and a unit length in the
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z-direction is given by:

δW = −2

∫
δxσ0dεxy = 2

ux∫
ux(−∞)

δxσ0du′x

= −µbδx
πd

ux∫
b/4

sin
4πu′x
b

du′x

=
µb2δx

4π2d

(
1 + cos

4πux
b

)
. (2.35)

The total dislocation-core energy in the glide plane can now be obtained by integrating

this along the glide plane:

Wcore =
µb2δx

4π2d

∞∫
−∞

(
1 + cos

4πux
b

)
dx

=
µb2

4π(1− ν)
. (2.36)

2.2.3 Van der Merwe Models

We now consider an interface between an epitaxial film and a substrate with

different lattice spacings (often referred to as lattice mismatch or lattice misfit). This

misfit causes the system to respond in order to accommodate the misfit strain. If

the total misfit strain is accommodated by the homogeneous strain, the lattices of

the film and the substrate are deformed to match, resulting in a coherent interface.

On the other hand, the lattices can shear in a manner that introduces dislocations

between the film and the substrate (or in some cases in an atomic layer near the

interface). At some distances away from this local distortion, the lattices perfectly

match. Such dislocations induced by the lattice mismatch are referred to as misfit

dislocations. It is also possible for the misfit strain to be accommodated by both the

interfacial dislocations and homogeneous strain simultaneously.

The mathematical descriptions of misfit dislocations was pioneered by van der
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Merwe, who modeled an array of dislocations using both discrete [101] and continuum

approaches [95, 94, 102]. For the discrete approach, van der Merwe [103] modeled an

epitaxy using a chain of balls connected through springs subjected to the sinusoidal

potential. The energy calculation shows that there are cases when the chain of atoms

preferred to match the substrate, and other cases when the chain of atoms remained

mismatched. For the latter circumstance, the preferred configuration consists of a

periodic arrangement of regions with near lattice match separated by regions with

large lattice mismatch; the latter regions can be considered as the localized core

regions of the misfit dislocations.

Subsequently, van der Merwe proposed continuum models of misfit dislocations

based on the PN model introduced in the previous subsection. For a case of an

interface between two infinitely thick crystals, van der Merwe obtained the exact

analytical solutions for the interfacial energy of the misfit dislocations between both

elastically similar [102] and elastically dissimilar materials [95]. Both results show

that the strain energy due to the misfit dislocation is localized, which is consistent

with the result from the discrete model. In addition, both works showed that the

infinite film can be a good estimation for cases when the thickness of the film is larger

than half the dislocation spacing.

The model that will be described below is an extension to the continuum model de-

scribed above. This model describes an interface between an infinitely thick substrate

and a finite-thickness film [94]. For simplicity, van der Merwe employed a parabolic

potential instead of a sinusoidal potential as in the PN model and his earlier models

[101, 95, 94]. The parabolic potential allows the stress fields and dislocation energy

to be expressed analytically. In the next chapter, we will extend this model by using

a sinusoidal potential, which is a more accurate representation of a film-substrate

interaction in a material system.
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2.2.3.1 Calculations of Displacement and Stress Fields

z

xh film

substratep

Figure 2.3: Misfit dislocation at an interface between an infinitely-thick substrate and
a finite-thickness film

Let us consider a system of two crystals separated by an interface, as shown in Fig.

2.3. The finite crystal will be referred to as a film and the infinite-thick crystal will

be the substrate. For simplicity, the lattice parameters of the film and the substrate

are assumed to be different only along the x-direction. The misfit dislocations can

be represented by an array of PN edge dislocations along the x-direction with the

spacing

p = Pas = (P + 1)af =

(
P +

1

2

)
c (2.37)

where p is the dislocation spacing, c is the reference lattice spacing, P is an integer,

af and as are the lattice parameters of the film and substrate, respectively. This

plain-strain problem can be described by the Airy stress functions, χa, which are

related to elements of the stress tensor by

σaxx =
∂2χa

∂z2
, σazz =

∂2χa

∂x2
, σazx = − ∂

2χa

∂z∂x
. (2.38)

We use the superscript a to denote the quantities in the film (a = f) and the substrate

(a = s) regions. Due to the assumed periodic arrangement of the dislocations, the

stress is sinusoidal in x-direction over a period, p. The appropriate general expression
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can be written as [94]

χs =
∞∑
n=1

(Fn +Gnz)emz cos(mx)

χf =
∞∑
n=1

[(An + Cnz) cosh (mz) + (Bn +Dnz) sinh (mz)] cos (mx) , (2.39)

where m = 2πn/p and the superscripts f and s denote the quantities of the film

and the substrate, respectively. The constants An, Bn, Cn, Dn, Fn, and Gn are Fourier

coefficients which need to be determined. According to Eq. (2.38) and the plain-strain

condition, the stresses in the film (z > 0) are given by

σfxx =
∞∑
n=1

[
2Cnm+ (Bn +Dnz)m2

]
sinh (mz) cos(mx)

+
∞∑
n=1

[
(An + Cnz)m2 + 2Dnm

]
cosh (mz) cos(mx)

σfzz = −
∞∑
n=1

{(Bn +Dnz) sinh (mz) + (An + Cnz) cosh (mz)}m2 cos (mx)

σfzx =
∞∑
n=1

[(An + Cnz)m+Dn]m sin (mx) sinh (mz)

+
∞∑
n=1

[Cn + (Bn +Dnz)m]m sin (mx) cosh (mz)

σfyy = νf (σfxx + σfzx)

σfyx = σfyz = 0, (2.40)

where νf is the Poisson’s ratio of the film material. The stresses in the substrate
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(z < 0) are

σsxx =
∞∑
n=1

(
2Gnm+ (Fn +Gnz)m2

)
emz cos (mx)

σszz = −
∞∑
n=1

(Fn +Gnz)m2emz cos (mx)

σszx =
∞∑
n=1

(
Gnm+ (Fn +Gnz)m2

)
emz sin (mx)

σsyy = νs(σsxx + σszx)

σsyx = σsyz = 0, (2.41)

where νf is the Poisson’s ratio of the substrate material. The boundary conditions

for the stresses are as follows:

σsxx = σszz = σszx = 0 at z = −∞ (2.42)

σfzx = σszx = 0 at x = 0,±p/2 (2.43)

σfzz = σfzx = 0 at z = h (2.44)

σfzx = σszx at z = 0 (2.45)

σfzz = σszz at z = 0. (2.46)

The first condition originates from the assumption that the substrate is infinitely

thick; this is a reasonable assumption in the epitaxial thin film. The second condition

implies that the shear stress is zero at the dislocations and halfway between them.

The third condition states that the film surface is stress free. The remaining boundary

conditions ensure the continuity of the normal and shear stresses across the interface.

The first two conditions are automatically satisfied by the functional forms of the
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Airy stress functions and the remaining boundary conditions give the relations:

An = Fn

Cn +mBn = Gn +mFn

(Bnm+ Cn +Dnmh) cosh (mh) = − (Cnmh+Dn +mAn) sinh (mh)

(An + Cnh)m cosh (mh) = − (Bn +Dnh)m sinh (mh) . (2.47)

The remaining two expressions that will be used to solve for the Fourier coefficients

will be obtained from the conditions that the forces (or stresses) from the elastic body

is balanced with the forces (or stresses) arising from the atomic potential energies that

account for the discrete nature of a crystal lattice; these conditions are analogous to

Eq. 2.22 from the PN model and will be referred to as the PN conditions. The

potential energies considered in this model are parabolic functions of the relative

tangential displacement, Ux, and the relative normal displacement, Wx defined as

[94]

Ux =
cx

p
+ uf (x, 0)− us(x, 0),

Wx = wf (x, 0)− ws(x, 0), (2.48)

where ua(x, 0) and wa(x, 0) are tangential and normal displacements at the interface,

respectively, and the term cx/p refers to the relative displacement of the corresponding

atoms across the interface without the elastic deformation. The PN conditions then

give [94]

σazz(x, 0) =
2Vn
dz

Wx, (2.49)
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and

σazx(x, 0) =
Vt
c
Ux, (2.50)

where dz is the interplanar spacing along the z-direction and Vn as well as Vt are

related to the bond strength. The left-hand sides in Eqs. (2.49) and (2.50) are the

stresses from the elastic body and the right-hand sides are the stresses from the atomic

potentials (obtained from taking the first derivative of the potentials with respect to

Ux or Wx). In Chapter III, we will use a sinusoidal potential, which yields sinusoidal

shear stress as a function of Ux, instead of the parabolic form, which yield a linear

functional form of the stress as in Eq. (2.50).

Next, one needs to obtain the expressions of ua(x, 0) and wa(x, 0) in terms of the

Fourier coefficients. The plain-strain condition relates the stress to the elastic strain

by the following expressions:

eaxx =
1

2µa
[(1− νa)σaxx − νaσazz]

eazz =
1

2µa
[(1− νa)σazz − νaσaxx]

eazx =
σazx
2µa

eayy = 0 = eayz = eayx, (2.51)

The elastic strain can be written in terms of ua and wa as follows:

eaxx =
∂ua

∂x

eazz =
∂wa

∂z

eazx =
1

2

(
∂ua

∂z
+
∂wa

∂x

)
, (2.52)

The expression for the tangential and normal displacement at the interface z = 0 can
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be obtained:

uf (x, 0) =
∞∑
n=1

(
mAn
2µf

+
Dn

ωf

)
sin(mx)

us(x, 0) =
∞∑
n=1

(
mFn
2µs

+
Gn

ωs

)
sin(mx)

wf (x, 0) = −
∞∑
n=1

(
mBn

2µf
− Cn

2ψf

)
cos(mx)

ws(x, 0) = −
∞∑
n=1

(
mFn
2µs

− Gn

2ψs

)
cos(mx), (2.53)

where ωa = µa/(1− νa), and ψa = µa/(1− 2νa). Using the above equations and Eqs.

(2.49) and (2.50), one obtain the last two expressions that will be used to solve for

the Fourier coefficients:

m2dAn
Vn

− mBn

µf
+
Cn
ψf

+
mFn
µs
− Gn

ψs
= 0, (2.54)

and

m

(
mc

Vt
− 1

µf

)
An +

mc

Vt
Cn −

1

ωf
Dn +

m

µs
Fn +

1

ωs
Gn = − 2c

mp
(−1)n (2.55)

Equations (2.47), (2.54) and (2.55) provide a system of equations required to de-

termine the Fourier coefficients, An, Bn, Cn, Dn, Fn, and Gn. With all the coefficients

determined, one can now evaluate the energetic contributions of the misfit dislocations

to the total energy of heteroepitaxial thin films.

2.2.3.2 Calculation of Misfit Dislocation Energy

The nonzero contributions to the energy per unit area associating with the for-

mation of the misfit dislocations are the long-range elastic energy, Ee, which can be
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calculated from

Ee = − 1

2p

p/2∫
−p/2

σazx(x, 0)
(
uf (x, 0)− us(x, 0)

)
dx (2.56)

and the plastic deformation energy, which can be obtained by

Ep =
1

p

p/2∫
−p/2

Ux∫
0

σazx(x, 0)dUxdx. (2.57)

Using the expression of σazx(x, 0) from Eq. (2.40) and the relationships in Eqs. (2.48)

and (2.50), we can express the total energy as

Ee + Ep =
c

2p

∞∑
n=1

(mBn + Cn) . (2.58)

When the energy of the homogeneous strain was incorporated into the analysis,

van der Merwe found that there was a critical misfit strain above which the misfit

dislocations are spontaneously created and below which the film remains coherent

with the substrate. The magnitude of the critical misfit depends on the film thickness,

the ratio of the shear moduli of two materials, and the bond strength; the critical

misfit is large when the film is relatively soft and the bonding is relatively strong.

2.2.4 Film-Substrate Potential

Following the Peierls-Nabarro and Frenkel-Kontorova models [104], van der Merwe

first employed the following energy potential in the misfit-dislocation model to rep-

resent the film-substrate interaction across the interface [102]:

V =
1

2
V0

[
1− cos

(
2πU

c

)]
, (2.59)
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where V0 is the bonding strength across the interface, U is the disregistry of corre-

sponding atoms across the interface and, c is the period of the misfit dislocation. The

expression from Eq. (2.59) can be viewed as a Fourier series truncated at the first

harmonic term. For a two-dimensional system, the interaction across the interface

becomes [103]:

V =
1

2
Vx

[
1− cos

(
2πUx
c

)]
+

1

2
Vy

[
1− cos

(
2πUy
c

)]
, (2.60)

where the subscripts x and y denote the directions along the two axes.

Further attempts to refine the film-substrate interactions include the parametric

modification of the force law by Foreman [105], which yields a different parameter-

ization of the sinusoidal interaction potential. The modified potential allows the

dislocation width to be adjusted so that the resulting stresses and strains agree with

the experimental observations made on macroscopic systems (bubble rafts). In addi-

tion, Ball [106] and Foreman [107] included the second harmonic term of the Fourier

series in order to flatten the steep maximum of the sinusoidal approximation and

properly reflect the dissociation of dislocations in a cubic crystal.

As opposed to the empirical expressions of the sinusoidal potential, a more physical

description of the potential can be obtain from the generalized stacking fault energy

(GSFE) or the γ surface [108]. The GSFE is obtained by displacing one half of

the crystal along the glide plane with respect to the other by a vector in the glide

plane. The crystal is then rejoined and allowed to relax. The GSFE is given by the

difference between the energy of the displaced crystal and that of the perfect crystal

[109]. The earlier calculations of GSFE employ simplified interactomic interactions

that take into account a few atomic neighbors [108]. Today, due to the advances

in quantum mechanical calculations and computational power, the GSFEs are often

calculated using ab initio atomistic simulations (e.g., Refs. [110], [111]) to provide
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realistic film-substrate interaction potentials.

The work in Chapter III utilizes the GSFE of the Fe/Mo and Fe/W systems from

the ab initio simulations. This GSFE will serve as an input to the misfit dislocation

model in order to provide a more quantitative description of the misfit dislocations.

2.3 Overview of the Phase-Field Crystal Model

In this section, we review the development of the phase-field crystal (PFC) model;

in the process, classical density functional theory (CDFT) will also be reviewed.

Specifically, we consider two derivations of what is considered the “original” PFC

equations [64, 76]. Hereafter, we refer to the two approaches as Phenomenological De-

velopment (as an extension of pattern-formation modeling) and Theoretical Develop-

ment (based on the CDFT). In the phenomenological development, the PFC method

is formulated from the concepts of the Ginzburg-Landau model [112], phase-field

model [113], and the Swift-Hohenberg [77] equation, all of which are phenomenologi-

cal approaches. In particular, the Swift-Hohenberg equation was originally developed

to describe pattern formation arising from convective instability. In the theoretical

development, the PFC method is considered an approximation of the CDFT [62],

which is a reformulation of statistical mechanics. While both of them can be de-

scribed as theory, we here distinguish them by how they are derived – the former was

suggested based on the behavior of the solutions to the Swift-Hohenberg equation,

while the latter begins with statistical mechanics, which leads to an identical equation

after a number of approximations.

2.3.1 Phenomenological Development

The phenomenological development of the PFC model can be traced back to the

Ginzburg-Landau formulation for order-disorder phase transformations [112]. The

starting point of the formulation is the introduction of a field variable, referred to
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as an order parameter, φ(r), to describe physically relevant field quantities such as

crystalline order, concentration, or magnetization; the vector r denotes a position

vector. The order parameter is typically a ratio or scaled quantity that defines the

thermodynamic state of the system. For example, when the order parameter takes a

value of zero, the system can be defined as being in a disordered state such as liquid

or paramagnetic state. When the order parameter takes a finite value, the system can

be considered as being in an ordered state such as solid or ferromagnetic state. Along

with the order parameter to characterize the state, one also needs to formulate a

free energy expression that governs the thermodynamics of the system. The simplest

form of the free energy expression can be written in terms of (i) a bulk contribution

that reflects thermodynamics of an infinite and uniform system and (ii) a gradient

contribution that describes the energy associated with interfaces between different

phases. Such free energy functionals can be written in the following form:

F
(
φ(r)

)
=

∫
f
(
φ(r)

)
dV. (2.61)

The functional, f
(
φ(r)

)
, is a free energy density and is typically of the form

f
(
φ(r)

)
= w

(
φ(r)

)
+K|∇φ(r)|2, (2.62)

where K is a positive constant related to interfacial energy. The function w
(
φ(r)

)
,

referred to as the Landau free energy, gives a bulk contribution and is written as a

polynomial of the order parameter with temperature-dependent coefficients.

The free energy of the form given in Eqs. (2.61) and (2.62) provides the foundation

for the phase-field model [113], which, as the name implies, is a conceptual predecessor

of the PFC method. The free energy of the phase-field model can be obtained by (i)

approximating w
(
φ(r)

)
with a double-well potential, i.e., only retaining even-order

polynomial terms, and (ii) considering φ(r) as a concentration field. In the phase-
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field model, the equilibrium profile of φ(r) is uniform in the bulk region and has

a smoothly varying behavior at the interfaces. From this behavior, homogeneous

regions, such as areas inside bulk regions or crystal grains, are described by a uniform

order-parameter value. On the other hand, inhomogeneous regions, such as interfaces

or grain boundaries, are described by a spatially varying order-parameter value.

Instead of formulating a free energy of which the equilibrium state of a bulk system

is described by a uniform order parameter, one may desire to construct a free energy

functional of which the equilibrium state is characterized by a non-uniform order

parameter. The non-uniform behavior of the order parameter that is convenient in

the context of phase transformation is one that is spatially periodic because one can

consider an ordered phase as a periodic arrangement of its constituents. For example,

we may consider a bulk solid as a collection of periodically arranged atoms, instead of

a region that has a uniform concentration of species. In fact, a free energy functional

of which the equilibrium state is characterized by a periodic field variable has been

used in other areas of study such as order-disorder transformation of alloy phases

[114, 115] and pattern formation [116]. However, it was not until the work by Elder

et al. [64, 65] that the free energy developed for pattern formation was employed to

describe atomic arrangements. They proposed the free energy density of the form

f
(
φ(r)

)
= w

(
φ(r)

)
+
φ(r)

2
G
(
∇2
)
φ(r), (2.63)

where the operator G (∇2) is designed so that the gradient of the order parameter is

favored, while a penalty is imposed on the magnitude of the Laplacian of the order

parameter. This choice of G (∇2) is identical to that of the Swift-Hohenberg (SH)

model for convective instabilities [77]:

G
(
∇2
)

= λ(q20 +∇2)2, (2.64)
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where λ is a fitting parameter and q0 is a constant that sets the periodicity of the

order-parameter variation. Along with the fourth-order polynomial form of w
(
φ(r)

)
,

the PFC free energy was proposed to be

Fs(φ(r)) =

∫
fs
(
φ(r)

)
dr =

∫
dr

[
g
φ(r)4

4
+ α

φ(r)2

2
+
φ(r)

2
λ(q20 +∇2)2φ(r)

]
,(2.65)

where g and α are analogous to the coefficients in the Landau free energy. The

coefficient α is set to be proportional to a degree of undercooling, or α = as∆T , where

∆T is the temperature difference from the melting point. We denote the form of Eq.

(2.65) as the SH-PFC form and denote the corresponding free energy, Fs, and free

energy density, fs, with the subscript s. The variable φ(r) is considered as an atomic

number density in this formulation. Depending on the values of the fitting parameters,

the free energy yields two classes of equilibrium profiles of φ(r). One is a uniform

profile representing a liquid state, and the other is a periodically non-uniform profile

representing a crystalline state, which may have multiple patterns corresponding to

different atomic structures. The periodicity of φ(r) in the crystalline state gives rise

to (i) anisotropic elasticity and interfacial energies that correspond to the symmetry

of the crystal and (ii) defects in patterns that are representative of crystal defects such

as dislocations and grain boundaries. These features are not present in the phase-field

free energy without augmenting the free energy with auxiliary field variables.

The equation that governs the evolution of φ(r) is formulated by assuming dissi-

pative dynamics with mass conservation [64, 65]:

∂φ(r)

∂t
= Γ∇2 δFs

(
φ(r)

)
δφ(r)

+ η = Γ∇2µ+ η, (2.66)

where µ is the chemical potential and η is the stochastic thermal fluctuations. Equa-
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tions (2.65) and (2.66) can be nondimensionalized [65, 78]:

F̃s =
g

λ2q8−d0

Fs =

∫
f̃sdr̃, (2.67)

where

f̃s =
g

λ2q80
fs =

φ̃(r̃)

2

[
−ε̃+

(
∇̃2 + 1

)2]
φ̃(r̃) +

φ̃(r̃)4

4
. (2.68)

and the evolution equation becomes

∂φ̃(r̃)

∂t̃
= ∇̃2 δF̃s

(
φ̃(r̃)

)
δφ̃(r̃)

+ η̃, (2.69)

where η̃ is the scaled thermal fluctuations. The scaled variables are defined as

r̃ = q0r, ε̃ = − α

λq40
, φ̃(r̃) =

√
g

λq40
φ(r), t̃ = Γλq6−d0 t. (2.70)

where the tilde indicates a scaled quantity and d denotes the dimensionality of the

problem.

The parameter ε in the scaled form of the free energy is related to undercooling.

For small undercooling, the minimization of F̃s with varying ε provides the phase

diagram with the following stable phases [117]: a liquid state and three types of crys-

talline states that includes body-centered cubic (BCC), effectively two-dimensional

hexagon (rods), and effectively one-dimensional stripe phases. For large undercool-

ing, additional stable crystal phases emerge, such as face-centered cubic (FCC) and

hexagonal close packed (HCP) phases [117]. Even though the phase diagram does not

resemble that of a real material, a portion of the liquid-triangular coexistence region

can be superimposed onto the liquid-solid coexistence region of the phase diagram of

argon [65], thereby providing a link of the model to a real material system.
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Using the PFC evolution equation, one can model a variety of complex phenomena

that involve the interplay between crystal orientations, anisotropic interfacial energy,

and plastic and elastic deformations. It should be emphasized that all of these ef-

fects are naturally included within one consistent formulation in the PFC model. In

contrast, the phase-field model requires auxiliary field variables to incorporate these

effects. This approach becomes increasingly challenging when multiple effects are

simultaneously governing the evolution process.

Despite the success of the PFC method in tackling complex material phenomena,

it is still challenging to model real material systems. First, due to the phenomeno-

logical origin of its free energy, it is not clear how each parameter affects the material

properties, which makes the tunability of the model limited. Second, the number of

fitting parameters in Eq. (2.65) is small, which means that the model can only de-

scribe a few material parameters correctly. Furthermore, an extension of the model on

a phenomenological basis can be less convincing and unsystematic. Recently, Elder et

al. [76] established a connection between the PFC method and classical density func-

tional theory (CDFT), which provides the PFC framework with fundamental rigor

and enables several consistent and systematic improvements to the model.

2.3.2 Theoretical Development

Subsequent to the phenomenological development of the PFC method, it was

shown that, after several approximations, (i) the PFC-type free energy can be derived

from the free energy from CDFT [62], and (ii) the evolution equation can be derived

from dynamic density functional theory (DDFT) [69, 70, 71]. The connection between

the free energies was first presented by Elder et al. [76] in 2007, and established the

facts that (i) the PFC free energy is equivalent to the Helmholtz free energy, and (ii)

the order parameter of the PFC free energy can be described as an atomic-probability

density. These two facts justify the use of the PFC free energy to calculate various
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thermodynamic quantities and enables one to consistently compare the predictions

from the PFC method to those of other theories and models. This connection also

motivates one to incorporate several extensions that have been made to CDFT into

the PFC model. These extensions include formulations of the free energy to describe

binary systems [76], anisotropic lattices [118], and liquid-crystalline systems [119].

Later, in 2009, a link to DDFT was proposed by Teeffelen et al. [120]. This link

provides insight into the underlying assumptions that have been implicitly made in

the dynamics of the standard PFC model. Together with the free-energy link, the

connection between DDFT and the PFC model suggests an alternative form of the

PFC equations based on CDFT and DDFT with fewer approximations.

2.3.2.1 Derivation of Free Energies of PFC from CDFT

Here, an alternative form of the PFC free energy functional will be derived from

the free energy functional of CDFT; this free energy functional will be referred to

as the CDFT-PFC free energy. We will first give a brief introduction of CDFT

in order to formally define the atomic probability density and the Helmholtz free

energy. The theory bears close resemblance to the density functional treatment used

in quantum mechanics of which the energy can be expressed as a functional of the

electron-density field. However, different from the density functional treatment used

in quantum mechanics, CDFT considers the equilibrium one-body density ρeq(r),

which is the grand canonical average of the density operator,
∑

i δ(r− ri) [62, 61]:

ρeq(r) =

〈∑
i

δ(r− ri)

〉
GC

, (2.71)

where ri is the particle position, δ(r) is the Dirac delta function, and the subscript GC

denotes the grand canonical ensemble. One important mathematical theorem to the

CDFT formulation is that there is a one-to-one correspondence between ρeq(r) and

42



an external potential Vext(r) at any given temperature T , and chemical potential µ.

This theorem enables the formulation of an intrinsic free energy functional F
(
ρ(r)

)
that is a functional of atomic-probability density, ρ(r), which is not necessarily an

equilibrium quantity. When ρ(r) = ρeq(r), for a corresponding Vext(r), the quantity

F
(
ρ(r)

)
becomes the Helmholtz free energy and satisfies [62, 63]

δF
(
ρ(r)

)
δρ(r)

∣∣∣∣∣
ρ=ρeq

+ Vext(r)− µ = 0. (2.72)

Following Ref. [62], we divide the free energy functional into the ideal and excess

parts, i.e., F
(
ρ(r)

)
= Fid

(
ρ(r)

)
+Fex

(
ρ(r)

)
. The ideal contribution can be obtained

exactly from the ideal gas system and is given by

Fid
(
ρ(r)

)
= kBT

∫
drρ(r)

{
ln[ρ(r)λ3T ]− 1

}
, (2.73)

where λT is the de Broglie wavelength and kB is the Boltzmann constant. The excess

contribution yields a hierarchy of direct correlation functions (DCF) through the

functional derivative

c(n)(r1, ..., rn; [ρ]) = −β δnFex[ρ(r)]

δρ(r1)...δρ(rn)
, (2.74)

where β = 1/kBT . The function c(n)(r1, ..., rn; [ρ]) is the n-body DCF, which contains

the information of the inter-particle interactions and determines structural properties

of the system. In general there is no exact expression for Fex
(
ρ(r)

)
, and thus numer-

ous techniques have been proposed to approximate this quantity [62]. In the context

of freezing, the commonly used approach is to approximate Fex
(
ρ(r)

)
by a functional

Taylor expansion around a uniform density ρ0 and truncate the expansion beyond the

second-order term. By combining the approximate form of Fex
(
ρ(r)

)
with Fid

(
ρ(r)

)
,
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the free energy can be expressed as follows [67]:

βF
(
ρ(r)

)
= βF [ρ0] + βµ0

∫
dr∆ρ(r) +

∫
dr

{
ρ(r) ln

[
ρ(r)

ρ0

]
−∆ρ(r)

}
−1

2

∫ ∫
dr1dr2∆ρ(r1)c

(2)(r1, r2; [ρ0])∆ρ(r2), (2.75)

where µ0 is the chemical potential of the reference state, ∆ρ(r) = ρ(r)− ρ0, and the

function c(2)(r1, r2; [ρ0]) is the two-body DCF of the reference uniform-density state.

In order to obtain the CDFT-PFC form of the PFC free energy functional, we first

write Eq. (2.75) in terms of a scaled density, n(r) = (ρ(r)− ρ0)/ρ0, and obtain

β∆F
ρ0

=

∫
dr

{
[1 + n(r)] ln[1 + n(r)]− n(r) + βµ0n(r)

−ρ0n(r)

2

∫
dr′c(2)(|r− r′|)n(r′)

}
, (2.76)

where the two-body DCF is now assumed to be spherically symmetric. This assump-

tion is valid for a system whose interaction potential is isotropic. Subsequently, two

approximations are applied to Eq. (2.76), as proposed in Ref. [76]. The first approx-

imation is the Taylor expansion of the first two terms of the integrand in Eq. (2.76)

[76]:

[1 + n(r)] ln[1 + n(r)]− n(r) ≈ 1

2
n(r)2 − at

6
n(r)3 +

bt
12
n(r)4, (2.77)

where the constants at and bt are set to 1. The constants can be set to other values

to account for contributions from the zeroth-mode of higher-order direct correlation

functions, [121, 122, 123, 124, 125, 126]. The second approximation is the Taylor

expansion of the Fourier transform of the two-body DCF:

ρ0ĉ
(2)(k) ≡ Ĉ(2)(k) ≈ −C0 + C2k2 − C4k4, (2.78)
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where C0, C2, and C4 are fitting constants, k is the magnitude of the reciprocal vector,

and the hat denotes the Fourier transform of the corresponding quantity.

Substituting Eq. (2.77) and the inverse Fourier transform of Eq. (2.78) into Eq.

(2.76), we arrive at

β∆Fc
(
n(r)

)
ρ0

=

∫
dr

[
βµ0n(r) + n(r)

1 + C0 + C2∇2 + C4∇4

2
n(r)

−at
6
n(r)3 +

bt
12
n(r)4

]
≡

∫
fc
(
n(r)

)
dr, (2.79)

where ∆Fc is the CDFT-PFC form of the PFC free energy functional and fc is the

CDFT-PFC form of the PFC free energy density. The connection between the CDFT

and the PFC free energies enables one to identify the PFC free energy as the Helmholtz

free energy when n(r) takes the equilibrium profile for a given external potential. The

connection also suggests several extensions to the PFC free energy. First, one could

improve the approximations in Eq. (2.77) and Eq. (2.78) by including higher-order

terms in the series expansions. Alternatively, one could choose different methods

to approximate the two-body DCF. Finally, one could consider a different form of

Fex
(
ρ(r)

)
and apply appropriate approximations to arrive at a different variant of

the PFC model.

To better understand the effects of the approximations made in Eq. (2.77) and

(2.78), let us consider the equilibrium dimensionless one-body density, neq(r), which

can be expressed as a summation of density waves [78]:

neq(r) = n̄

(
1 +

∑
i

uie
iGi·r

)
, (2.80)

where n̄ is an average of neq(r), Gi is a reciprocal lattice vector, and ui is a density

wave amplitude. A typical two-body DCF, without the approximation of Eq. (2.78),
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yields a density profile (neq(r)) of the crystal phase that is sharply peaked around

crystal lattice positions. Thus, the summation in Eq. (2.80) contains a large num-

ber of required terms in order to account for high frequency modes associated with

localized peaks, which leads to a large system of equations to be solved. When the

approximation in Eq. (2.78) is applied, high-frequency components of neq(r) becomes

energetically unfavorable and subsequently leads to fewer summation terms needed to

represent the profile. Additionally, when the approximation in Eq. (2.77) is applied,

the amplitude of neq(r) becomes smaller due to a larger energy penalty for large values

of neq(r). As a result of these two approximations, the profile of neq(r) is significantly

less localized, resulting in a density profile that needs less spatial resolution to resolve

and ultimately leading to more computationally efficient calculations.

2.3.2.2 Derivation of PFC Evolution Equations from DDFT

We will now present the link between the evolution equation of the PFC method

and that of CDFT, known as dynamic density functional theory (DDFT). We begin

by providing a brief overview of DDFT. The evolution equation for CDFT can be

formulated by introducing the time-dependent one-body density, ρ(r, t), as a noise-

average of an instantaneous density operator [69, 70, 71]. By considering overdamped

Brownian dynamics without hydrodynamic interactions, one can describe an evolution

of a particle system by stochastic differential equations governing particle positions

(Langevin equations), or a deterministic evolution equation of a probability density

(Smoluchowski equation). Marconi and Tarazona [70, 71] employed the former equa-

tions while Archer and Evans [69] started with the latter equation to arrive at the

equation of motion for ρ(r, t):

∂ρ(r, t)

∂t
= γ−1∇ ·

[
ρ(r, t)∇δF

(
ρ(r, t)

)
δρ(r, t)

]
, (2.81)
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where γ is the friction coefficient. By writing ρ(r, t) = ρ0(n(r, t) + 1), the evolution

equation in Eq. (2.81), becomes

∂n(r, τ)

∂τ
= ∇ ·

{
[n(r, τ) + 1]∇δ∆F̃

(
n(r, τ)

)
δn(r, τ)

}
, (2.82)

where τ = γ−1kBTρ0t is the rescaled time and ∆F̃ = ∆F/kBTρ0 is the dimensionless

free energy.

As suggested by Teeffelen et al. [120], one can obtain the PFC evolution equation

by replacing the spatially dependent factor in front of the gradient term with its

average value. In this case, we let n(r, τ) + 1 ≈ n̄ + 1. With this approximation, we

obtain

∂n(r, τ)

∂τ
= (n̄+ 1)∇2 δ∆F̃

(
n(r, τ)

)
δn(r, τ)

, (2.83)

which, aside from the noise term, has a similar form to the PFC evolution equation,

Eq. (2.69). From the DDFT derivation, the noise term will not be present in the

evolution equation because of the noise averaging procedure that is performed on the

Langevin equations. Therefore, the presence of the noise term in Eq. (2.69) is not

justified from fundamental considerations because one would overestimate the fluctu-

ations [71]. However, the study by Archer and Rauscher [127] showed that the noise

term is present in the evolution equation if one instead interprets the density field as

a temporally coarse-grained density operator. Nevertheless, if one adopts this inter-

pretation, the free energy functional in the evolution equation will no longer be the

Helmholtz free energy and is generally unknown. Despite these different viewpoints,

the noise term is usually included on the basis of necessity to model phenomena such

as homogeneous nucleation that cannot be simulated without the noise term.

To evaluate whether or not a more rigorous evolution equation (Eq. (2.82)) would

improve the predictive capability of the original PFC model, a variant PFC model
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termed PFC1 was obtained by Teeffelen et al. by approximating the two-body DCF

(Eq. (2.78)) of the PFC free energy while using the full DDFT evolution equation

[120]. The PFC1 equations are more difficult to solve because of the nonconstant mo-

bility. They compared the two models by measuring the velocity of the crystal-liquid

interface during solidification. Their results showed that the velocities calculated for

both models as a function of the form of the two-body DCF are similar; the results

from the PFC1 model was slightly closer to those calculated from DDFT. This study

shows that the dynamics of both the PFC1 and the original PFC models are consistent

with that of DDFT. Nevertheless, if one seeks to obtain only qualitative consistency

with DDFT, the original PFC model is more attractive because of its simpler free

energy and evolution equations, which are computationally more efficient.

We have presented the two developments of the “original” PFC model, which

emerged as a promising continuum approach with atomic spatial resolution at diffu-

sive time scales. However, the model arising from these initial developments is limited

in its predictive capability and numerical efficiency. To enable the model to quantita-

tively predict material phenomena and to do this efficiently, several research groups

have extended the model from its initial development by incorporating more compli-

cated free energies and evolution dynamics, and a formulation that “coarse-grains”

the PFC order parameter for computational efficiency. These further developments

are briefly summarized in the next section.

2.4 Further Development of the Phase-Field Crystal Model

Further extensions to the PFC model can be divided into three categories. The

first category involves extensions of the PFC free energy to improve the capability of

the model to quantitatively predict thermodynamic properties of materials, and to

access different crystal structures or phases. The second category consists of adjust-

ments to the PFC evolution equations to describe mechanisms that occur on multiple
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time scales. The third category deals with coarse-graining of the model description

so that the evolution equation of the amplitude of the density waves is solved in place

of the dynamics of the density field. This approach increases numerical efficiency and

provides a promising framework for larger-scale simulations.

2.4.1 Extension of Free Energy

The free energy of the PFC model has been modified in four different ways to

improve the accuracy of the model when predicting material properties and its appli-

cation to a wider range of material systems. In the first modification, Jaatinen et al.

[121] was able to accurately predict multiple thermodynamic properties simultane-

ously by including additional fitting parameters into the PFC free-energy. This was

achieved by using the ideal contribution of the free energy in Eq. (2.77) where the

constants are not equal to one and approximating the two-body DCF to the eighth-

order in k [121]. These two improvements allow the PFC method to predict multiple

thermodynamic quantities of Fe in agreement with those from experiments and atom-

istic simulations. In a second modification, the free energy was extended to model

binary (two-component) systems by including the density field of a second species

[76, 123, 128, 129, 130]. The binary model was employed to study many phenomena

such as phase segregation [76], eutectic solidification [76, 131], and the Kirkendall

effect [132]. In a third modification, the gradient and nonlinear terms of the free

energy were modified to systematically model polymorphism. Wu and Karma were

able to stabilize an FCC structure over the BCC structure by extending the SH-PFC

form of the PFC free energy with a higher-order gradient term [78]. Greenwood et al.

were able to predict three-phase coexistence lines as well as peritectic points for both

two- and three-dimensional systems by phenomenologically constructing the peaks of

the two-body DCF in Fourier space using Gaussian kernels [122, 133]. And Wu et al.,

motivated by the techniques used to control stability of different patterns in the study

49



of pattern formation [134, 135, 136], showed that it is possible, in two-dimensions, to

yield triangle-square and square-liquid coexistence regions as well as a stable square

lattice by introducing terms of the form φ2∇2nφ2 and |∇φ|2n into the free energy func-

tional [137]. In a fourth modification, an orientational field was added to the PFC

free energy to account for orientationally anisotropic systems [119, 138, 139]. The

anisotropic model of [119] was used by Achim et al. [140] to calculate a liquid-crystal

phase diagram where the isotropic, stripe, nematic, smectic A, columnar, and plastic

(nonliquid) crystalline phases were found to be stable.

2.4.2 Evolution Equation

One of the additions to the PFC dynamics is the inclusion of a fast time scale to

accommodate processes that occur much faster than diffusion [141, 142]. For example,

to model elasto-plastic deformation, one needs the elastic relaxation to operate on a

shorter time scale than that of the diffusive time scale of mass transport. By including

a second-order time derivative, the modified PFC (MPFC) equation is expressed in

the form of the damped wave-equation:

∂2φ

∂t2
+ β

∂φ

∂t
= α2∇2 δF

δφ
, (2.84)

where α and β are phenomenological constants. This form of the evolution equation

allows a transient mode of wave propagation to mimic elastic relaxation, and a long

or diffusive mode of wave propagation for mass transport. From the linear stability

analysis, the values of α and β are determined so that the effective elastic interaction

length is larger than the system domain size and the effective elastic interaction time is

well separated from the diffusion time, but still kept several orders of magnitude larger

than the true phonon time scale to maintain computational efficiency. Together, this

scheme yields the elastic relaxation that is effectively instantaneous compared to the
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diffusive phenomena but still retains the efficiency of the PFC method over atomistic

models. With this approach, simulations of nanocrystalline samples under uniaxial

tensile load were performed, and the simulation results show multiple strain relaxation

mechanisms such as dislocations annihilation at surfaces or grain boundaries, grain

coalescence via grain rotation, and void formation at triple junctions and at high-angle

grain boundaries [142]. These results are consistent with experimental observations

[143, 144].

The MPFC has also been linked to a more general dynamic theory by Galenko et

al. [145]. They proposed that the MPFC as well as PFC dynamics are instances of a

more general evolution equation [146]:

∂φ

∂t
= ∇ ·

t∫
∞

M(t− t∗)∇δF
δφ
dt∗, (2.85)

where M(t − t∗) is a memory function that controls how the past trajectory affects

the current dynamics. By setting the memory function as a delta function, the stan-

dard diffusive dynamics is recovered. When the memory function is set to a constant

value, dissipative (undamped) dynamics is obtained. Lastly, when the memory func-

tion is set to an exponential function, the damped wave equation, analogous to the

MPFC arises. Furthermore, Majaniemi and Grant explored an alternative origin of

the MPFC model from extended hydrodynamics of solids [147]. They derived the

evolution equations that govern the displacement fields resulting from phonon inter-

actions as well as the hydrodynamic variables of a liquid system in order to model

non-equilibrium phenomena in crystalline solids. By assuming linear elastic coupling,

the set of hydrodynamic equations can be combined to yield one transport equation

governing the time variation of a number density. This transport equation exhibits

three characteristic time scales: a fast propagating and two slow diffusive time scales

[147]. In the limit where the diffusion current dominates, the MPFC can be obtained.
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2.4.3 Coarse-graining of the PFC equations using Amplitude Formula-

tions

Although the PFC model provides more numerical efficiency than CDFT and

MD, the atomic length-scale fluctuations of the atomic-number density still limit the

applicability of the PFC model to capture experimentally observable length scales.

For example, to obtain an accurate representation of the the fluctuations, approxi-

mately nine grid points per period of fluctuation in one dimension is required. As

one period of fluctuation is on the order of angstroms, a micron scale simulation will

take about 105 grid points on a uniform mesh in each direction. This would make

three-dimensional calculations beyond nanoscale difficult.

In order to circumvent these difficulties, an alternative description of the model can

be used. One method is to replace the modes with the amplitude of the basis vectors

of a given periodic structure. The motivation for this “coarse-graining” process can

be illustrated by representing the 1-dimensional density field of a perfect crystalline

phase with φ = A sin(kx). To numerically resolve the sinusoidal variation of φ, a

spatial grid with a sufficient resolution (∼ 9 points) is necessary. On the other hand,

φ can be equally represented by only keeping track of the amplitude A, which is

constant in this case. In inhomogeneous regions such as interfaces, the amplitude

will vary, but this variation is on a larger length-scale than the sinusoidal variation

of φ. The behavior of the amplitude function is therefore ideal for adaptive mesh

refinement (AMR) technique, which increases computational efficiency.

Once the amplitude functions of a crystal structure are chosen, the next step is

to derive an evolution equation for the amplitudes. Several techniques have been

developed for this purpose in pattern formation studies; we refer readers to a concise

overview of these methods in Ref. [148] and the references therein. However, due to

mathematical complexity of these methods, Goldenfeld, Athreya, and Dantzig (GAD)

[148, 149, 150] instead employed a heuristic approach, which is referred to as “quick

52



and dirty” RG (QDRG) method. This method is less mathematically rigorous than

the conventional methods but is appealing due to its simplicity.

The QDRG was employed to simulate grain nucleation and growth in two-dimensions.

Their results show good agreement with those from full PFC simulations, while the

simulation time is reduced by up to a factor of six [150]. In a later study, Athreya et

al. [151] presented a hybrid algorithm that solves the amplitude equation in different

regions using a cartesian or polar representation. Along with an approximation to the

polar representation, which is referred to as frozen phase gradient approximation, the

hybrid approach led to the acceleration of the simulation by three orders of magnitude

compared to the amplitude-based simulation of growth of solid precipitates using a

uniform grid in two-dimensions.

A further extension to the amplitude formulation was performed by Yeon et al.

[152] to describe a system in which the local average of the density field varies in

space. This extension enabled amplitude-based modeling of phase transformation

processes in systems where the solid density differs from that of the liquid, which

allowed simulations of coarsening in a system where the solid and liquid phases coex-

ist. A three-dimensional simulation was performed and shown to be computationally

inexpensive. The amplitude formulation was also applied to a binary system with

varying degrees of approximation [123, 130].

Apart from the benefit in computational efficiency, the amplitude formulation, or

coarse-graining techniques in general, provide a link between PFC-type or CDFT-type

models and phase-field-type models [153, 154, 155, 156]. This connection enables one

to relate the parameters calculated from PFC and CDFT models to those of the phase-

field models, giving the phenomenological phase-field order parameters more physical

basis. Furthermore, since the phase-field model can be related to the sharp-interface

model, the coarse-grain technique allows a multi-scale connection from atomic-scale

models such as CDFT to classical sharp-interface models.
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CHAPTER III

Stability of Strained Thin Films with Interface

Misfit Dislocations: A Multiscale Computational

Study

3.1 Overview

In this chapter, we examine the contributions of the misfit strain, interfacial

misfit dislocations, film surface and interface to the stability of a single-crystal,

internal-defect-free, flat film. We use an equilibrium dislocation model based on the

Peierls-Nabarro (PN) formulation [42, 43], which describes long-range elastic fields

by continuum equations and takes into account a plastic deformation energy at the

film/substrate interface in terms of a corrugation potential that can be obtained from

first-principles calculations. In addition to the misfit dislocation/deformation ener-

getics, we use a first-principles method based on electronic density functional theory

to calculate the surface/interfacial energy as a function of film thickness and a sur-

face strain. Specifically, we focus on Fe/Mo(110) and Fe/W(110) systems, which are

well characterized through fundamental experimental studies that relate the growth,

morphology and properties of magnetic thin films [44, 45, 46, 26, 47, 36]. However,

the method presented can be applied to a broader range of metallic thin film material

systems that form misfit dislocations. We find that, through the competition between
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energetics of the misfit dislocations, misfit strain, film surface and interface, there is

a significant driving force for a flat film to form thinner and thicker regions, leading

to the dewetting process. This driving force is more than one order of magnitude

larger than that caused by the film-thickness dependence of the energy arising from

the surface stress considered in a recent study by McCarty et al. [38]. In addition,

we find that non-monotonic variations in the thickness-dependent surface/interfacial

energy may give rise to a metastable behavior of the film at certain thicknesses.

In Section 3.2, we discuss the energetic contributions to the total energy of the

system. We consider the contributions to the energy from the misfit strain (Section

3.2.2), the misfit dislocations (Sections 3.2.3 and 3.2.4), and the surface/interface

(Section 3.2.5). We then present the results and discussions in Section 3.3. Specif-

ically, we discuss the prediction of the dislocation configuration from the model in

Section 3.3.1, followed by the result of the energies from the misfit dislocations and

the misfit strain in Section 3.3.2. The effect of the surface stress is discussed in

Section 3.3.3 and the combined energy from all contributions is presented in 3.3.4.

Furthermore, we discuss the applicability of our method to other epitaxial systems in

Section 3.3.5. Finally, we conclude the chapter with the summary in Section 3.4.

3.2 Formulation

For a system with a cubic structure, we consider a film with a finite thickness, h,

and a lattice mismatch from a semi-infinite substrate described by an intrinsic misfit

strain ηmkl = δkl(a
f − as)/as. The superscript m refers to misfit. The symbol δkl is the

Kronecker delta while af and as are lattice parameters of the film and the substrate,

respectively. The subscripts k and l (= 1, 2, 3) denote directions along an orthogonal

basis, xk, where x1 and x2 lie within the film/substrate interface plane and the x3

axis is normal to the interface. The origin is located at the interface between the film

and the substrate. In the Fe/Mo(110) and Fe/W(110) systems, ηmkl ≈ 10%.
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The misfit dislocations considered here are geometrically necessary defects that

occur as a part of a semicoherent interface to reduce misfit strain [157]. On the

body-centered-cubic (BCC) (110) plane, the dislocations are observed along the [001̄]

direction (dislocation array) and the [11̄1]/[11̄1̄] directions (dislocation network) [45,

46, 158]. To simplify the calculations, the relaxation directions are limited to the

orthogonal [001̄] and [1̄10] directions, corresponding to arrays of dislocations along

[1̄10] and [001̄], respectively. These two orthogonal dislocation arrays are assumed

to form a dislocation network. Along the [1̄10] and [001̄] directions, we consider a

periodic insertion of planes (edge dislocations) at every P substrate lattice spacing;

therefore, the dislocation spacing pi is given by

pi = Pasi ≡ Pci = (P + 1)(afi − uresi ), (3.1)

where afi (asi ) is the relaxed lattice spacing of the film (substrate) along the xi-

direction, and ci is the reference lattice spacing that is taken to be the substrate

lattice spacing. The subscript i (= 1, 2) denotes the orthogonal directions on the

interface plane and in this model, i = 1 and i = 2 refer to the [1̄10] and [001̄]

directions, respectively. In addition to the subscript i, the subscript j, where j = 1, 2,

and j 6= i, is used throughout the chapter, unless otherwise noted. The variable uresi

is the displacement along the xi-direction due to an average residual deformation that

needs to be accommodated in the film to maintain coherency of an interface in regions

between dislocations. It should be noted that for Fe/Mo and Fe/W parameters, uresi

is minimized when P = 10.

Equation (3.1) assumes that there is one extra lattice of the film material in a

dislocation period. For a simple-cubic lattice of which the lattice spacing is equal

to the interplanar spacing, this is equivalent to inserting one extra plane per one

dislocation period [159, 95]. On the BCC (110) plane, there are two planes per one
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lattice spacing along the [001̄] and [1̄10] directions. Therefore, Eq. (3.1) implies that

two extra planes are inserted per one dislocation spacing instead, which is necessary

to satisfy periodicity of the atomic structure.

3.2.1 Energy Considerations

Analogous to the work by Cammarata et al. [160], the energy of the system is

partitioned into three parts.

(i) Homogeneous strain energy, Eh, which approximates an energy resulting from

uresi . This is similar to volume elastic energy resulting from coherency strain in

Cammarata’s formulation [160].

(ii) Energy associated with the formation of misfit dislocations. Following the PN

formulation [96] and the work by Willis et al. [161], this energy can be fur-

ther divided into (a) dislocation elastic energy, Ee, associated with long-range,

periodic elastic fields originating from the misfit dislocations and (b) plastic

deformation energy (often termed “misfit” energy [96]), Ep, associated with an

atomic disregistry across the glide plane.

(iii) Surface/interfacial energy, Es, associated with the chemical contribution from

missing bonds at the surface and dissimilar bonds at the film/substrate interface.

For brevity, we will also refer to the combination of Eh + Ee + Ep as the disloca-

tion/deformation energy hereafter.

3.2.2 Homogeneous Strain Energy

In the absence of misfit dislocations, the film is strained to coherently match the

substrate lattice. Following Ref. [161], the displacement, umk , is a function of x3 only.

Together with the conditions of a stress-free film surface, free expansion along the
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x3-direction and elastic isotropy,

um1 = um2 = 0, um3 =

[
ν

1− ν (ηm11 + ηm22) + ηm33

]
x3, (3.2)

where ν is the Poisson’s ratio. Throughout this chapter, the Voigt average elastic

constants tabulated in Ref. [96] will be used for the Fe/Mo and Fe/W systems.

The square dislocation network results from the formation of two perpendicular

dislocation arrays whose Burger’s vectors are (b1, 0, 0) per period p1 and (0, b2, 0) per

period p2. This dislocation network reduces the effect of ηmkl through contributions

from the displacements [161]:

un1 = − b1
p1
x1, un2 = − b2

p2
x2,

un3 =
ν

1− ν

[
b1
p1

+
b2
p2

]
x3. (3.3)

This form of the displacement fields is chosen to yield a homogeneous stress state

with the same boundary conditions as those corresponding to Eq. (3.2).

The resulting strain (ēkl) and stress (σ̄kl) tensors originating from umk + unk con-

tribute to the homogeneous strain energy Eh. Using Hooke’s law, σ̄kl can be expressed

as

σ̄11 = − 2µ

1− ν

[
b1
p1

+ ηm11 + ν

(
b2
p2

+ ηm22

)]
,

σ̄22 = − 2µ

1− ν

[
ν

(
b1
p1

+ ηm11

)
+
b2
p2

+ ηm22

]
, (3.4)

where µ is the shear modulus and all other elements of the stress tensor are zero. Here,

the Burger’s vectors are assumed to be equal to the lattice spacing of the film material,

bi = afi . In this case, the quantity bi/pi+η
m
ii (no summation) at the right-hand side of

Eq. (3.4) can be written, using Eq. (3.1), as [afi −(afi −uresi )]/(afi −uresi ), which is the
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misfit strain between the bulk film (a lattice spacing of afi ) and the homogeneously

deformed film with a lattice spacing of afi − uresi .

The homogeneous strain energy per unit area can then be expressed as

Eh =
h

2
σ̄kl(ēkl − ηmkl). (3.5)

Due to the boundary condition at the film surface, Eh is independent of ηm33.

3.2.3 Dislocation Elastic Energy

In order to calculate Ee, we follow a formulation of the misfit dislocation model

proposed by Merwe [94]. This method employs the Airy stress function, χi, repre-

sented by a Fourier series, to describe the stress fields associated with misfit disloca-

tion arrays (along xj-direction) in the form of

χsi =
∞∑
n=1

(Fn +Gnz)emx3 cos(mxi),

χfi =
∞∑
n=1

[
(An + Cnx3) cosh (mx3)

+ (Bn +Dnx3) sinh (mx3)

]
cos (mxi) , (3.6)

where m = 2πn/pi. The variables An, Bn, Cn, Dn, Fn, and Gn are Fourier coefficients

which are to be determined. A plane strain condition is assumed throughout this

analysis and the corresponding stress tensor, σkl, can be calculated from

σii =
∂2χi
∂x23

, σ33 =
∂2χi
∂x2i

, σi3 = − ∂2χi
∂x3∂xi

, (3.7)

where the superscripts s and f have been omitted and σjj can be calculated from the

plane strain condition. There is no summation over the repeated indices. The stresses

in Eq. (3.7) must satisfy the mechanical equilibrium condition as well as the boundary
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conditions. In this model, the boundary conditions include (a) the vanishing stresses

at x3 → −∞, (b) the free surface at x3 = h, (c) the continuity of shear and normal

stresses at the interface (x3 = 0), (d) the continuity of the normal displacement at

the interface [162], and (e) the PN condition at the interface. The PN condition is

the balance between the elastic interfacial stress and the restoring force stress from

the atomic restoring force potential. For the BCC (110) plane, the restoring force

stress can be obtained by taking a derivative of the generalized stacking fault energy,

Egsfe, also referred to as the γ surface, in the first-harmonic Fourier expansion of the

form:

Egsfe = E0 + V cos

[
3π

r

( U1√
6

+
U2√

3

)]
+ V cos

[
3π

r

( U1√
6
− U2√

3

)]
, (3.8)

where Ui is the disregistry, or the relative displacement of the film atoms at the

interface from their equilibrium positions (without dislocations) along the xi-direction

[163]. The contour plot of Egsfe on the BCC (110) plane is shown in Fig. 3.1. The

variable r =
√

3as/2 is the nearest-neighbor spacing of the reference lattice. The

coefficient V parameterizes the resistance of the glide plane to shear and the details

of the first-principles calculations are discussed below.

The generalized stacking fault energy1 is calculated using the Vienna ab-initio

simulation program (VASP) [164, 165, 166], which employs a plane-wave basis set for

the electronic states with a cutoff energy of 400 eV. The calculations make use of the

Projector Augmented Wave (PAW) method [167, 168], and the spin-polarized gen-

eralized gradient approximation (GGA) due to Perdew, Burke and Ernzerhof (PBE)

[169].

To compute Egsfe, we consider supercells consisting of 12 Mo(110) substrate layers,

followed by 12 Fe(110) layers pseudomorphically strained to the lattice constant of

1The calculations of the generalized stacking fault energies were performed by our collaborators,
Bo Yang, Dong-Hee Lim, and Mark Asta [170].
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Figure 3.1: Contour plot of (Egsfe−E0)/V showing the BCC(110) substrate potential.
The constant r is the nearest-neighbor spacing. The dash lines enclose
one unit cell.

the substrate. The 24 layers are periodically repeated in the direction normal to the

substrate, giving rise to two interfaces in the cell, with a periodic length adjusted to

give zero stress normal to the interface plane. The periodic directions for the supercell

in the interface plane are taken to be along the BCC directions [1/2,−1/2, 1/2] and

[1/2,−1/2,−1/2], giving one atom per layer. The electronic states are sampled by

employing a k-point mesh with a density of 16 × 16 × 1 in the Brillouin zone of the

supercell. The energy is calculated as a function of relative displacements, U1 and U2,

of the Fe layers relative to the substrate. For each value of U1 and U2 the positions

of all of the atoms in the supercell are allowed to relax in the direction normal to the

interface, under the constraint of fixed periodic length normal to the interface. The

resulting energies as a function of U1 and U2 are then used to extract the parameters

E0 and V in Eq. (3.8).

For the Fe/Mo system, we calculate V for two cases, one for the glide plane

between the substrate and the first layer of Fe (V
Fe/Mo
0/1 ), and another for the glide

plane between the first and the second layer of Fe (V
Fe/Mo
1/2 ). For the former, V

Fe/Mo
0/1 =
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−0.220 eV (per area of an interface atom), and for the latter V
Fe/Mo
1/2 = −0.218 eV. In

this study, V Fe
0/1 will be used in Eq. (3.8). As mentioned later, a small difference in these

values do not alter the conclusions. For the Fe/W system, we find V
Fe/W
0/1 = −0.266

eV.

By differentiating Eq. (3.8) with respect to Ui and dividing the resulting expres-

sion by an atomic area of 2
√

2r2/3, the restoring force stress along the i-direction is

obtained and the PN condition at the interface can be expressed as

τi
2π

sin

[
2πUi
ci

]
= σi3|x3=0, (3.9)

where σi3|x3=0 is the shear stress at the interface from Eq. (3.7). The variable τi takes

the value of −3
√

3π2V/r3 for the dislocation along [001̄] and −3
√

6π2V/r3 for the

dislocation along [1̄10].

The variable Ui can also be written as

Ui = −ci
2
− ci
pi
xi + ufi |x3=0 − usi |x3=0, (3.10)

where ufi |x3=0 (usi |x3=0) is the tangential displacement along the xi-direction at the

interface of the film (substrate). The term −ci/2− cixi/pi corresponds to the relative

displacement of atoms across the interface without a deformation from the misfit

dislocations.

The boundary conditions (a)-(e) mentioned previously yield a system of equations

to be solved for the unknown Fourier coefficients of the stress function. Here, we

employ a publicly available subroutine which finds the zero of a system of nonlinear

equations using the modified Powell hybrid method [171].

The dislocation elastic energy from the misfit dislocations per unit area can be
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calculated as

Ee = − 1

2pi

pi/2∫
−pi/2

σi3(u
f
i − usi )|x3=0 dxi. (3.11)

This equation gives an energy associated with a dislocation array along one direction.

Note that since there is no interaction term when dislocation arrays are perpendicular

to one another, the energy of the two perpendicular dislocation arrays is simply a sum

of the energies associated with each individual dislocation array.

3.2.4 Plastic Deformation Energy

By integrating the left hand side of Eq. (3.9) with respect to Ui and then inte-

grating over one dislocation spacing, the plastic deformation energy per unit area is

obtained:

Ep =
τici

4π2pi

pi/2∫
−pi/2

[
1− cos

(
2πUi
ci

)]
dxi. (3.12)

For each dislocation direction, the dislocation elastic energy in Eq. (3.11) and the

plastic deformation energy in Eq. (3.12) are summed, and subsequently added to the

homogeneous strain energy in Eq. (5) to obtain the dislocation/deformation energy.

It should be noted that in the results section, the dislocation/deformation energy will

be expressed in terms of an energy per area of a surface atom (energy/surface atom)

instead of per unit area.

3.2.5 Surface/Interfacial Energy

To obtain surface/interfacial energy, Es for the Fe/Mo system, we first calculate

the surface/interfacial energy of the pseudomorphic Fe film, Es
pseudo, and then cal-

culate the strain-dependent correction to Es
pseudo by considering the effect of surface
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stress.

3.2.5.1 Surface/Interfacial Energy of Pseudomorphic Film

The energy calculations are based on the framework of electronic density func-

tional theory employing VASP, the PAW method, and the PBE-GGA approximation,

as described above for the calculations of Egsfe. Surface and corresponding bulk ener-

gies are computed for four systems: (i) pure Fe with a (110) surface, and an in-plane

lattice constant strained to match that of bulk Mo, (ii) pure Fe with a (110) surface,

and an unstrained in-plane lattice constant, (iii) pure Mo with a (110) surface and

an unstrained in-plane lattice constant, and (iv) a Mo(110) substrate with a finite

number (n) of Fe layers.

For the systems (i)-(iii), energy calculations are performed for Fe and Mo slabs

containing variable numbers of layers within a supercell with a periodic length normal

to the surface of 26 Mo interplanar spacings (5.7912 nm). Using this supercell geom-

etry, the energy is computed for 4-18 layers bounded by vacuum, and the resulting

energy as a function of thickness is used to compute the energy per atom (EFe and

EMo) of the corresponding bulk system (from the slope of the total slab energy versus

number of layers), and the associated surface energies (from the total energy of the

slabs minus the number of layers times the corresponding bulk energies, divided by

the total surface area).

For the system (iv), the total excess energy (surface plus Fe/Mo interfacial ener-

gies) is calculated using similar supercell geometries with 9 Mo layers, bounded on

top and bottom by n Fe layers pseudomorphically strained to be epitaxial on the

substrate. For n=1-4 the total excess energy of the thin film is computed as

1

2A

(
Eslab − 9EMo − 2nEFe

)
, (3.13)
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where Eslab is the total energy of the Fe/Mo/Fe slab (system (iv)), EMo is the energy

per atom of bulk Mo (system (iii)), EFe is the energy per atom of bulk Fe (system

(i)) and A is the surface area on one side of the slab. This total excess energy per

surface atom is the surface/interfacial energy of pseudomorphic film, Es
pseudo.

The results for Es
pseudo are extended to n = 10 layers by employing slabs containing

10 Mo layers bounded on one side by an n-layer Fe film. The results presented below

are derived by employing a k-point mesh of 20× 20× 1, and a choice of the supercell

periodic length normal to the surface that ensures a minimum vacuum-layer spacing of

1.35 nm. Convergence checks are performed to examine the following effects: (i) slab

and vacuum thickness, (ii) Fourier grid density for the representation of the charge

density, (iii) plane-wave cutoff and (iv) k-point sampling. The values of Es
pseudo are

estimated to converge to a precision within 0.01 eV/surface atom, and differences in

Es
pseudo between films of differing thicknesses are estimated to converge to a higher

precision on the order of 0.001 eV/surface atom.

3.2.5.2 Surface Stress

The quantity Es
pseudo in the previous section includes the surface/interfacial energy

of the pseudomorphic Fe on Mo(110) substrate. However, the formation of misfit

dislocations reduces the strain on the surface significantly and changes the surface

energy. The strain-dependent correction to Es
pseudo can be calculated by taking into

account the effect of the surface stress.

We denote γ as the excess free energy per surface area due to the presence of the

surface and σsij as the surface stress in the Lagrangian coordinate. By definition [172]

σsij =
∂γ

∂esij
, (3.14)

where esij is the surface strain and the subscripts i and j denote directions on the
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surface plane (i, j = 1, 2). If the surface energy at a state of deformation esij(a) is

known, the surface energy at a state of deformation esij(b) can be obtained by

γb = γa +
2∑

i,j=1

b∫
a

σsijde
s
ij, (3.15)

where γa and γb are the surface energies at the states of deformation esij(a) and

esij(b), respectively. As a first-order approximation, it is assumed that σsij is constant

throughout the deformation process and independent of film thickness. With this

approximation, the surface energy is a linear function of the surface strain or

γb − γa =
2∑

i,j=1

σsij
[
esij(b)− esij(a)

]
. (3.16)

Since the misfit dislocations are restricted to form along x1- and x2-directions, the

surface strain tensor contains no shear terms and Eq. (3.16) can be simplified to

γb − γa =
2∑
i=1

σsii [e
s
ii(b)− esii(a)] . (3.17)

Values of the elements of the surface stress tensor are obtained from the first-

principles calculations of the surface energies of strained (system (i)) and unstrained

Fe (system (ii)) described in the previous section; we compute the trace of the surface

stress as σ22+σ11 = 0.531 eV/surface atom. Furthermore, we use a value for the ratio

of the surface-stress components derived previously by Yang et al. [173]: σ11/σ22 =

1.6. As a result, we obtain σs11 = 0.327 eV/surface atom and σs22 = 0.204 eV/surface

atom.

The formation of misfit dislocations reduces the misfit strain in the film mate-

rial from a bulk value of ηmii (no summation) by afi /pi. The misfit dislocations also

introduce a sinusoidal variation in the strain on the surface but have no overall first-

order effect on the surface energy due to the fact that the dislocation surface strain
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Figure 3.2: Minimum-energy dislocation spacing considering only the disloca-
tion/deformation energy as a function of film thickness for the (a)
Fe/Mo(110) and (b) Fe/W(110) systems. The dislocation spacing is nor-
malized by the substrate lattice spacing (SLS). The film thickness is mea-
sured in atomic layers (AL). The arrow indicates that the dislocation spac-
ing is infinitely large. The inset in (a) shows the dislocation/deformation
energies of misfit dislocations with the spacings of 10 and 11 SLS versus
11 and 10 SLS along [1̄10] and [001̄] directions, respectively, in the Fe/Mo
system. The intersection between the two energy curves occurs between
the film thickness of 17 and 18 AL.

averages to zero. If the energy at the reference deformation state is Es
pseudo, the

strain-dependent surface/interfacial energy as a function of film thickness, Es, can be

estimated as

Es = Es
pseudo −

2∑
i=1

σsiia
f
i

pi
. (3.18)

It should be noted that the negative sign in front of the term σsiia
f
i /pi comes from the

fact that for a given misfit strain, for example, ηii, the film is subjected to a strain of

−ηii.
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3.3 Results and Discussions

3.3.1 Dislocation Configuration

We perform the dislocation/deformation energy calculations for the Fe/Mo(110)

and Fe/W(110) systems by taking a glide plane to be at the film/substrate interface.

The energy is calculated as a function of the film thickness and dislocation spacing

in both the [001̄] and [1̄10] directions. For a given thickness, energies from different

dislocation spacings in two directions, as well as the pseudomorphic configuration (no

dislocation), are compared and the minimum-energy configurations of the misfit dis-

locations are shown in Fig. 3.2. For example, for the Fe/Mo system, the dislocation

configuration of 10 substrate lattice spacing (SLS) along [001̄] and 11 SLS along [1̄10]

has the lowest energy for the film with the thickness of 11 atomic layer (AL). At the

thickness of 1 AL for the Fe/Mo system and Fe/W system, the pseudomorphic con-

figuration has the lowest energy as indicated by the dislocation spacings approaching

infinity in all directions. Therefore, the results suggest that these thin films prefer to

remain pseudomorphic; this is consistent with experimental observations [45, 46] and

other theoretical calculations [161, 94].

For the film thickness of 2 AL for both systems, the lowest-energy configuration

consists of a finite dislocation spacing along the [001̄] direction (dislocation along the

[1̄10] direction), while the spacing along the other direction remains at infinity. This

type of dislocation array configuration relieves the misfit strain via plastic deforma-

tion along the [001̄] direction and results in elastic relaxations in both [1̄10] and [001̄]

through the Poisson effect. Comparing the dislocation arrays in both [1̄10] and [001̄]

directions, the dislocation along the [1̄10] direction yields a relatively narrow dislo-

cation core region, which results in a lower plastic deformation energy (Ep). Also by

experimenting with different values of V (related to bond strength at the interface)

and the shear modulus of the substrate material, µs, it is found that the disloca-
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tion along the [1̄10] direction, associated with the relaxation along the shorter lattice

spacing, is always energetically preferred. Experimentally such one-dimensional dis-

location arrays are observed in both Fe/Mo and Fe/W systems, but they instead lie

along the [001̄] direction (finite spacing along the [1̄10] direction) [45, 46]. This dis-

crepancy is likely due to other effects that are not accounted for in our model. For

example, with the elastic anisotropy, if the lattice spacings are equal, the relaxation

along the elastically soft direction would be preferred since the softer elastic response

yields dislocations with narrower cores, reducing Ep.

For the film thickness of 3-27 AL for the Fe/Mo and 3-33 AL for the Fe/W

systems, the dislocation spacing along both the [1̄10] and [001̄] directions are finite,

resulting in a dislocation network configuration. In this case, the homogeneous strain

energy (Eh), which scales with volume, begins to dominate and the dislocation array

formation in both directions is preferred. According to Eq. (3.1), the average residual

strain is still not minimized at this stage, as the dislocation spacing in both directions

are not 10 SLS. This is due to the contributions from Ee (dislocation elastic energy)

and Ep (plastic deformation energy), which are reduced when the dislocations are

further apart.

At the film thickness of 18 AL we observe a change of misfit configuration from

11 and 10 SLS to 10 and 11 SLS, along [1̄10] and [001̄] directions, respectively, in

the Fe/Mo system. The energies of these two dislocation configuration are shown in

the inset in Fig. 3.2a where the intersection of two energy curves occurs between film

thickness of 17 and 18 AL. The energy difference between these two configurations

is less than 1% of the dislocation/deformation energy and therefore, either configu-

ration may be observed experimentally. We do not, however, observe this change of

dislocation configuration in the Fe/W system.

Lastly, beyond the film thickness of 28 AL for the Fe/Mo and 34 AL for the Fe/W

systems, the contribution from Eh dominates and the dislocation spacings in both
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directions are 10 SLS, which minimizes the average residual strain.

The difference in dislocation configurations of the two systems can be seen at the

thickness of 2-5 AL, where the dislocation spacing in Fe/W system is larger. Also,

the transition from a partially to fully relaxed dislocation network occurs at larger

thicknesses in the Fe/W system than that in the Fe/Mo system. By comparing the

energies with various combinations of V and µs values from the Fe/Mo and Fe/W

systems, we found that these differences are mainly due of the higher shear resistance

(proportional to τi) of the glide plane in the Fe/W system (or larger V value). This

results in larger Ep and Ee relative to Eh. In addition, the larger shear modulus of

the substrate also yields a larger sum of Ep and Ee compared with Eh, but to a lesser

degree.

It should be noted that the assumption of the dislocation network formed by the

[1̄10] and [001̄] dislocation arrays would lead to an overestimation of the energies

compared with that of the [11̄1]/[111̄] network observed experimentally [45, 46, 158]

since the effective restoring force that is exerted on the atom is overestimated. How-

ever, the transition of the dislocation configurations (from pseudomorphic film to the

single dislocation array to the dislocation network) should be a general feature that

is relatively insensitive to the exact value of τi.

3.3.2 Dislocation/Deformation Energy

Figure 3.3(a) shows the dislocation/deformation energy per area of a surface atom

(= total dislocation/deformation energy divided by the total number of surface atoms)

from the minimum-energy configurations shown in Fig. 3.2, plotted as a function of

film thickness. The dislocation/deformation energies at the film thickness of 1 AL for

both systems are equal because the 1 AL films in both systems remain pseudomorphic.

Beyond the film thickness of 1 AL, the dislocation/deformation energies for both

systems increase monotonically with the rate of increase becoming less as the film
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Figure 3.3: (a) Dislocation/deformation energy per surface atom (in eV) associated
with the minimum-energy dislocation configurations as a function of film
thickness. (b) Dislocation/deformation energy of the Fe/Mo system from
the film thickness of 2-6 AL. The chord construction illustrates local in-
stability of the film with the thickness of 4 AL.

becomes thicker. The magnitude of the energy of the Fe/W system is larger than

that of the Fe/Mo system due to a larger value of V and a larger shear modulus of

the substrate.

The figure shows that the dislocation/deformation energy exhibits a concave de-

pendence on the film thickness, which indicates that the dislocation/deformation

energetics favors the formation of thick regions and a monolayer. The driving force

can also be identified by a chord construction. As an example, a chord is drawn from

the value of the energy at the film thickness of 1 AL to 6 AL, which is indicated

by the dash line in Fig. 3.3(a). Such a construction indicates that a flat film of,

for instance, 3 AL thickness can lower its energy by forming regions of 1 AL and 6

AL, and the driving force can be quantified by the difference between the values on

the energy curve and the value on the chord at 3 AL. Similarly, another chord can

be constructed from the film thickness of 1 AL to other film thicknesses. Thus we

find that dislocation/deformation energetics favors dewetting, i.e., the evolution of a

thin film to a configuration involving thicker regions separated by a single-monolayer

wetting layer.
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Similar to the effect of the dislocation/deformation energetics, the contribution

from the surface stress was proposed as the underlying energetics for the dewetting

process [38]. By comparing the energetics of the dislocation/deformation from Fig.

3.3(a) with energetics of the surface stress from Ref. [38], we find that the driving

force from the thickness dependence of the dislocation/deformation energy is more

than one order of magnitude larger than that from the surface stress. Thus, the

dislocation/deformation energetics should be expected to play a significant role in

the dewetting process.

In this analysis, we ignore the energy penalty due to the presence of steps, which

could play an important role when the thickness difference between regions is large.

(This is typically the limiting factor against the growth of very tall islands.) In addi-

tion, we assume that the dislocation configuration is adjusted to its minimum-energy

state for each thickness, which neglects the kinetic limitation as well as the disloca-

tion interaction with the substrate step. Therefore, this analysis applies to conditions

under which the annealing temperature and time is sufficient for the dislocation con-

figuration to attain a minimum-energy state and under which the substrate terrace

is wide enough to accommodate several periods of misfit dislocations.

3.3.3 Effect of Surface Stress

In this section, the effect of the surface stress is taken into account when de-

termining the minimum-energy dislocation configuration. The resulting dislocation

configuration is plotted in Fig. 3.4(a) for the Fe/Mo system. A pseudomorphic con-

figuration for 1 AL film is preferred, similar to the result considering only the disloca-

tion/deformation energy (Fig. 3.2(a)). However, the dislocation network forms with

higher densities, or smaller dislocation spacings, than the dislocation configurations

in Fig. 3.2(a). While the dislocation configuration is altered by the inclusion of the

surface stress effect, we find that the overall dislocation/deformation energetics (not
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Figure 3.4: (a) Minimum-energy dislocation spacing, considering the surface stress ef-
fect for the Fe/Mo system. (b) Surface/interfacial energy (in eV/surface
atom) of the Fe film on the Mo(110) substrate as a function of the film
thickness. The solid line (square markers) denotes the surface/interfacial
energy of the pseudomorphic film. The dash line (circular markers) de-
notes the strain-dependent surface/interfacial energy of the dislocated
film.

shown) remains nearly the same as that shown in Fig. 3.3(a).

The effect of the surface stress on the dislocation spacing can be understood by

considering the physical origin of the surface stress. The chemical bonds at the surface

are different from the bonds inside the bulk region, which contributes to a different

equilibrium spacing of the unconstrained surface atoms. To remain structurally co-

herent with the interior atoms, the surface atoms are strained by the bulk atoms.

Typically, for metal surfaces, the equilibrium lattice constant of the surface atoms

(i.e., the spacing that relaxes the surface atoms) is smaller than that of the bulk,

and thus the surface atoms are in a tensile state [174]. Therefore, the compressive

deformation on the surface will relax the surface atoms and thus reduce the surface

energy. Since higher dislocation density introduces more compressive strain, Es will

favor higher dislocation density or lower dislocation spacings, in agreement with the

lower dislocation spacings at the film thickness of 3 AL and 6-10 AL for the dislocation

network.

For a Pt(111) film on Al(111) substrate, it has been found that misfit dislocations
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form at a lower film thickness due to the surface stress [160]. While we observe

denser dislocation configurations with surface stress, we do not observe a decrease

in the critical thickness in the Fe/Mo system. This is likely due to a relatively

high lattice mismatch in the Fe/Mo system, which controls overall behavior of misfit

dislocations, and thus the surface stress does not play as important a role as that in

the Pt(111)/Al(111) system.

Using the dislocation configuration from Fig. 3.4(a), we calculate the residual

strain in the film and the correction to the surface/interfacial energy of the pseu-

domorphic film, Es
pseudo, can be obtained. Figure 3.4(b) shows the strain-dependent

surface/interfacial energy, Es, plotted as a function of the film thickness from 1 to

10 AL. The value of Es
pseudo is also plotted to demonstrate the difference between the

two surface energies. At the film thickness of 1 AL, the strain-dependence correction

to Es
pseudo is zero since the film is pseudomorphic. Beyond the film thickness of 1 AL,

the value of Es is lower than the value of Es
pseudo due to the formation of the misfit

dislocations that reduce the homogeneous strain. Also, both surface energies reduce

significantly between the film thickness of 1 AL and 2 AL, while at larger thicknesses

they exhibit smaller variations with the film thickness.

It should be noted that the effect of the surface stress considered above depends

on the amount of the average residual strain in the film, which is determined by the

misfit dislocation configuration. This is different from the effect of the surface stress

considered by McCarty et al [38], which depends on the thickness-dependent strain

originating from a difference between the lattice spacing of the bulk layers and that

of the “surface monolayer” of the film.

3.3.4 Dislocation/Deformation and Surface/Interfacial Energies

Figure 3.5(a) shows the combination of the strain-dependent surface/interfacial en-

ergy shown in Fig. 3.4(b) and the dislocation/deformation energy from the minimum-
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Figure 3.5: The combination of dislocation/deformation and surface/interfacial ener-
gies for the Fe/Mo system. (a) Film thickness from 1-10 AL. (b) Film
thickness from 1-3 AL. The chord construction illustrates a metastability
behavior of the thin film with the thickness of 2 AL.

energy dislocation configuration shown in Fig. 3.4(a) for the Fe/Mo system. The

energy is plotted as a function of the film thickness up to 10 AL. The driving force

for dewetting can be again identified by a chord construction, as shown in Fig. 3.5(a).

Similar to the dislocation/deformation energy, at any given film thickness greater

than 1 AL, a flat film can lower its energy by forming regions of 1 AL and a larger

thickness. This concave dependence of the film thickness is inherited from the dislo-

cation/deformation energy, not from the surface/interfacial energies, as seen in Fig.

3.3(a) and Fig. 3.4(b). In fact, by the same chord construction, the dependence of the

surface/interfacial energy on film thickness is such that the separation of the film into

a monolayer and a thicker region is not preferred. Therefore, the driving force from

the combined dislocation/deformation and surface/interfacial energies (Fig. 3.5(a))

is a result of two competing effects in which the dislocation/deformation energy dom-

inates.

3.3.4.1 Local Instability

In addition to the overall driving force for dewetting, local instability can be

investigated to gain insight into the energetic pathway of the dewetting process. This
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local instability refers to the instability of a flat film to small thickness perturbations.

This can be examined by an instability criteria [38]. If E(hi) is the energy per area

of a surface atom for the film thickness of i AL, the criteria for the film instability is

d2E

dh2
< 0 or

E(hi+1) + E(hi−1) < 2E(hi). (3.19)

In other words, the instability occurs when the local shape of E(hi) is concave down.

From Fig. 3.3(a), it is verified that the dislocation/deformation energy satisfies Eq.

(3.19) for both Fe/Mo and Fe/W systems for the film thickness up to 5 AL. The

driving force for local instability is larger for thinner films while beyond the film

thickness of 5 AL, the dislocation/deformation energy is almost linear and E(hi+1)

+ E(hi−1) − 2E(hi) ≈ 0. Figure 3.3(b) demonstrates that the shape of the plot of

the dislocation/deformation energy is concave down locally, for example, at the film

thickness of 4 AL by a chord construction. Therefore, we identify that, at least for

the film of 1 - 5 AL, the energetics of the misfit dislocations and misfit strain favors

instability of the surface to a small thickness perturbation. This is similar to the

effect of the surface stress discussed in Ref. [38].

By applying the instability criteria in Eq. (3.19) to the energy curve in Fig. 3.5(a),

we find that some thicknesses are unstable to thickness perturbations, while others

exhibit local stability, or metastability. At the film thickness of 2 AL, there is a large

driving force for local instability from the dislocation/deformation energy, which com-

petes with a large driving force for metastability from the surface/interfacial energy.

This results in a slight metastability at 2 AL. At a larger thickness, the driving force

from the dislocation/deformation energy is reduced to a small value, and small vari-

ations in the surface/interfacial energy with the thickness can lead to a metastable

behavior based on the combined energy. Due to the numerical errors inherent in
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the first-principles calculations as well as the neglect of finite-temperature corrections

and higher-order elastic effects (such as surface elastic constants), it is not possible

to predict which of the thicker layers are most stable against thickness perturbations.

However, the results do demonstrate local variations in the metastability of differ-

ent film thicknesses, which arises purely from electronic effects associated with the

thickness dependence of the surface/interfacial energy.

3.3.5 Applicability to Other Systems

Considering the dislocation/deformation energy, Eh+Ee+Ep, the thermodynamic

driving force for dewetting should exist for other systems where misfit dislocation for-

mation is a major strain-reduction mechanism. The dislocation/deformation energies

of the pseudomorphic and fully relaxed film scale almost linearly with thickness be-

cause the dominating homogeneous strain energy (Eh) approximately scales with the

volume. The slope of Eh also scales with the magnitude of the misfit strain. Since the

formation of misfit dislocations reduces the misfit strain, the slope of the energy curve

decreases with increasing film thickness, resulting in an overall concave-down depen-

dence of the energy on thickness. The degree of the driving force depends largely on

the lattice mismatch that determines the critical thickness as well as dislocation den-

sity. For systems with similar lattice mismatch, the difference in bond strength at the

interface (proportional to τi and V ) affects the magnitude of dislocation/deformation

energy to a greater degree than the difference in elastic constants, as seen in com-

parison between Fe/Mo and Fe/W systems. The surface energy, on the other hand,

depends on the specific electronic structure of each material systems and, as shown

in these specific systems, changes the metastability of the film at small thicknesses.
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3.4 Chapter Summary

We have developed a multiple-scale model for a thin film epitaxial system and

investigated the stability of single-crystal, internal-defect-free Fe films on Mo(110)

and W(110) by considering the energy contributions from the interfacial misfit dislo-

cations, misfit strain, film surface and interface. The misfit dislocation model is based

on the continuum-level Peierls-Nabarro formulation, combined with the corrugation

potential calculated from first-principles electronic density-functional-theory calcula-

tions. The energetics was then examined along with the first-principles calculated

surface/interfacial energy. Our model is able to capture the transition of the initially

thin pseudomorphic (no dislocation) film to a partially relaxed film (dislocation ar-

ray) and finally to a fully relaxed film (dislocation network), which is consistent with

the experimental observations in both Fe/Mo and Fe/W systems. Combining the

energetics of the misfit strain, misfit dislocations, film surface and interface, we have

identified that there is a net driving force for solid-state dewetting of a single crys-

tal, internal-defect-free film in which other dewetting mechanisms mediated by grain

boundaries or impurities are absent. The results also demonstrate how non-monotonic

dependencies of the surface/interfacial energy on film thickness from the electronic

effects can give rise to the metastability of flat films with certain thicknesses.
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CHAPTER IV

Modeling Classical Density Functional Theory and

the Phase-Field Crystal Method using a Rational

Function to Describe the Two-body Direct

Correlation Function

4.1 Overview

In this chapter, we use the RFF method to examine the importance of short-

wavelength contributions in the two-body DCF that is used in CDFT. Our studies

on iron (Fe) show that the short-wavelength contributions influence the thermody-

namic properties not only quantitatively, but also qualitatively. For example, the

phase stability of the face-centered-cubic (FCC) structure has a strong dependence

on the short-wavelength contributions in the DCF, which is typically not accurately

accounted for in PFC studies. We also show that, within the framework of the RFF

method, it is possible to empirically parameterize the two-body DCF to increase com-

putational efficiency of CDFT while retaining the accuracy of most predictions of the

thermodynamic properties in comparison to those of CDFT with the full two-body

DCF. We also demonstrate that the RFF can be used to improve the representation

of the two-body DCF in the PFC model.
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In Section 4.2, we present the CDFT and PFC equations that will be used through-

out this chapter and discuss the motivation for our numerical techniques. We then

propose the RFF method in Section 4.3. The importance of the short-wavelength

contributions is examined in Section 4.4, and the empirical parameterization of the

DCF is discussed in Section 4.5. The RFF method is then applied to the PFC formu-

lation in Section 4.6, followed by a discussion of the real-space reformulation of the

RFF method in Section 4.7. In Section 4.8, we compare Fourier-space and real-space

implementations. Lastly, we conclude the chapter with a summary.

4.2 Background and Motivation

4.2.1 Classical Density Function Theory of Freezing

As presented in Chapter II, the free energy of the CDFT of freezing can be ex-

pressed as [67]

βF
(
ρ(r)

)
= βF(ρ0) + βµ0

∫
dr∆ρ(r) +

∫
dr

{
ρ(r) ln

[
ρ(r)

ρ0

]
−∆ρ(r)

}
−1

2

∫ ∫
dr1dr2∆ρ(r1)c

(2)(r1, r2; [ρ0])∆ρ(r2), (4.1)

where µ0 is the chemical potential of the reference state, ∆ρ(r) = ρ(r)− ρ0, and the

function c(2)(r1, r2; [ρ0]) is the two-body DCF of the reference uniform density state.

We note that the formation of a solid phase occurs when the equilibrium density

profile is a periodic non-uniform function with symmetry corresponding to a crystal

lattice. By introducing a dimensionless one-body probability density,

n(r) =
ρ(r)− ρ0

ρ0
, (4.2)
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we write the scaled dimensionless energy as

∆F̃CDFT
(
n(r)

)
=
F
(
ρ(r)

)
−F(ρ0)

kBTρ0
=

∫
dr {[1 + n(r)] ln[1 + n(r)]− n(r)}

−ρ0
2

∫
dr

∫
dr′
{
n(r)c(2)(|r− r′|)n(r′)

}
, (4.3)

where we set the chemical potential of the reference state to be zero. It is assumed

that c(2) is isotropic.

The form of the two-body DCF plays an important role in determining the equilib-

rium density profile and, in turn, the numerical efficiency of the model. To illustrate,

let us consider a two-body DCF in Fourier space, ĉ(2)(k), where k is the magnitude

of the Fourier-space vector, k = |k|. The equilibrium profile, n(r), can be expressed

as a summation of density waves:

n(r) = n̄

(
1 +

∑
j

uje
iGj ·r

)
, (4.4)

where n̄ is the average density, Gj is a linear combination of the primitive reciprocal

lattice vectors, and uj is the corresponding density wave amplitude. The jth term

in the above expansion will decrease the excess contribution to the free energy if

ĉ(2)(|Gj|) is positive (indicating correlation); in such a case, the density wave mode

with the wave vector Gj is favored. On the other hand, the jth term in the expansion

above will increase the excess contribution to the free energy if ĉ(2)(|Gj|) is negative

(indicating anti-correlation), which tends to suppress that density wave mode.

Typical two-body DCFs in Fourier space have oscillations that contain positive

values even at large k, which imply the presence of short-wavelength correlations in

these systems. While these effects decrease with increasing k, they are nevertheless

important. These short-wavelength correlations give rise to sharp peaks in the atomic

probability density, which require a large number of basis functions or a very fine

81



computational grid to attain a sufficiently accurate numerical representation. These

computational limitations are alleviated in the PFC method, which is discussed below.

4.2.2 Phase-Field Crystal Method

As presented in Chapter II, the free energy functional of the PFC method can be

obtained from approximating the CDFT free energy [76]. First, the ideal contribution

in Eq. (4.3) is approximated by its Taylor expansion:

(1 + n(r)) ln(1 + n(r))− n(r) ≈ 1

2
n(r)2 − at

6
n(r)3 +

bt
12
n(r)4 , (4.5)

with at = bt = 1 in the original formulation of the PFC method. However, in a later

work [121], at and bt have been used as empirical parameters to fit specific properties

of liquid and solid. The second approximation constitutes a fourth-order fit (4P) of

the two-body DCF in Fourier space as

Ĉ
(2)
4P (k) ≡ ρ0ĉ

(2)
4P (k) = C0 + C2k2 + C4k4 , (4.6)

where the constants C0, C2, and C4 are fitting coefficients. These approximations yield

the PFC free energy functional of the form:

∆F̃4P

(
n(r)

)
=

∫
dr

[
n(r)

1− C0 + C2∇2 − C4∇4

2
n(r)− at

6
n(r)3 +

bt
12
n(r)4

]
. (4.7)

Recently, an expansion up to the eighth order was proposed in order to better

approximate the two-body DCF [121]:

Ĉ
(2)
8P (k) ≡ ρ0ĉ

(2)
8P (k) = Cm − Γ

(
k2m − k2
k2m

)2

− EB
(
k2m − k2
k2m

)4

, (4.8)
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where

Γ = −k
2
mCc
8

, EB = Cm − C0 − Γ, (4.9)

and km, C0, Cm, and Cc are fitting constants. We denote this approximation as the

eighth-order fit (8P). The corresponding free energy is

∆F̃8P

(
n(r)

)
=

∫
dr

[
n(r)

2

(
1− Cm + Γ

(
k2m +∇2

k2m

)2

+ EB

(
k2m +∇2

k2m

)4
)
n(r)

−at
6
n(r)3 +

bt
12
n(r)4

]
. (4.10)

The fitting parameters in Eqs. (4.6) and (4.8) are chosen so that these fits accurately

describe the two-body DCF up to the first peak [153, 121], and are employed in the

present work. Compared to the 4P, the 8P in Eq. (4.8) provides an additional fitting

parameter to better fit the DCF. Beyond the first peak, the values of the fits for both

4P and 8P become increasingly negative as k increases. These large anti-correlations

at short wavelengths results in the high-frequency density waves being energetically

unfavorable, thus resulting in nonlocalized, smooth equilibrium density profiles and

in turn improved computational efficiency.

The dynamics of the PFC method is given by:

∂n(r, τ)

∂τ
= ∇2 δ∆F̃PFC [n(r, τ)]

δn(r, τ)
, (4.11)

where the subscript PFC denotes the free energy given in Eq. (4.7) or Eq. (4.10), and

τ is time. This equation can be obtained from mass conservation where the flux is

driven by the gradient of the chemical potential [64], which is a variational derivative

of the free energy with respect to the atomic probability density.

A polynomial approximation of the two-body DCF is limited in the ability to
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represent the DCF accurately beyond the first peak. In order to improve the predictive

capability of the PFC method relative to CDFT, it may be important to consider the

short-wavelength correlations beyond the first peak. To this end, we propose an

alternative method for representing the two-body DCF using a ratio of polynomials

in the next section. We subsequently demonstrate that such an approach addresses

the limitation in the predictive capability of the PFC method and the computational

demand of CDFT, as well as enables a real-space reformulation of these methods.

4.3 Rational Function Fit

In order to address the aforementioned issues, we introduce a new method in

which a rational function—a ratio of polynomials—is used to fit the two-body DCF

in Fourier space. The resulting rational function can be decomposed into a summation

of partial fractions as

Ĉ
(2)
RFF (k) ≡ ρ0ĉ

(2)
RFF (k) =

∑
j

[
Aj

k2 + αj
+

A∗j
k2 + α∗j

]
, (4.12)

where Aj and αj are fitting coefficients which are generally complex numbers and

the asterisk denotes a complex conjugate. We refer to this approach as the rational

function fit (RFF) method, and denote the rational function fit comprising m partial

fraction terms as the mR. The above fit accurately captures the oscillatory behavior

of the two-body DCF and satisfies the short-wavelength limit, i.e., Ĉ
(2)
RFF (k) = 0 as

k →∞. The coefficients Aj and αj can be determined from curve fitting algorithms,

and we use the Curve Fitting Toolbox (version 2.2) in the Matlab software (version

7.10.0.499) in the present work. We find that odd numbers of partial fractions, which

results in one pair of coefficients, Aj and αj, being real values, are better suited for

the given problem. Therefore, we present only these cases.

In Sections 4.4, 4.5 and 4.6, we demonstrate how the RFF can be used to address
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the issues of high computational cost in CDFT and limited predictive capability of the

PFC method. To this end, we consider the two-body DCF of Fe, which is shown as a

solid line in Fig. 4.1. This data, provided by Wu [175], was obtained from embedded-

atom-method molecular dynamics (EAM-MD) simulations described in Ref. [154].

We will subsequently denote this data as ĉ
(2)
MD(k), or Ĉ

(2)
MD(k) ≡ ρ0ĉ

(2)
MD(k). This data

was obtained from a simulation at a temperature of T = 1772 K and a density of

ρ0 = 0.0801 Å
−3
, which is used as the reference density for normalizing the govern-

ing equations. Since MD simulations cannot provide the long-wavelength limit of

the two-body DCF due to the restricted size of simulation domains, this limit was

approximated from experimental data to be Ĉ
(2)
MD(0) ≈ −49 [121].

4.4 Examining the Role of Short-Wavelength Contributions

of the Two-Body Direct Correlation Function

In this section, we examine the importance of the short-wavelength contributions

in the two-body DCF to the thermodynamic properties computed using the CDFT

free energy. We employ the RFF method that enables us to systematically control the

short-wavelength contributions. We first describe various fits of Ĉ
(2)
MD(k) employed in

this work followed by the procedures used to calculate the relevant thermodynamic

quantities. We subsequently present the results of the calculations and discuss our

findings.

4.4.1 The Rational Function Fits of the Two-Body Direct Correlation

Function of Fe

We show the various fits of Ĉ
(2)
MD(k) using the RFFs in Figs. 4.1(a) and 4.1(b).

Figure 4.1(a) shows that all 4 RFFs satisfy the following two limits: Ĉ
(2)
RFF (0) = −49

and Ĉ
(2)
RFF (∞)→ 0. The difference between these 4 RFFs is the number of the partial
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fraction terms in the RFF, which determines the number of peaks of Ĉ
(2)
MD(k) that are

captured (see Fig. 4.1(b)). The 3-term RFF (the RFF that can be decomposed into

three partial fraction terms), denoted by 3R, captures Ĉ
(2)
MD(k) accurately up to the

first peak, while the 5R captures up to the second peak. The 7R and the 9R capture

up to the third and fourth peaks, respectively. In this manner, we systematically

improve the accuracy of the representation of the short-wavelength contributions in

the two-body DCF, making it possible to study their effect on the thermodynamic

properties.

In Fig. 4.1(c), we show the plots of the 8P and the 4P, whose coefficients are chosen

to describe Ĉ
(2)
MD(k) up to its first peak [153, 121]. Both fits become increasingly

negative beyond the first peak, approaching negative infinity as k →∞. We further

note that an additional fitting parameter in the 8P (compared with that of the 4P)

allows the 8P to capture the desired long-wavelength limit, Ĉ
(2)
8P (0) = −49, whereas

the 4P does not. To make consistent comparisons with RFF results, we will only use

the thermodynamic properties computed from using the 8P of Ĉ
(2)
MD(k).

4.4.2 Procedures to Calculate Solid-Liquid Properties

We consider the following thermodynamic properties: phase stability of body-

centered-cubic (BCC) and face-centered-cubic (FCC) solids; BCC solid and liquid

densities at solid-liquid coexistence; and solid-liquid interfacial free energies. These

properties are obtained from analyzing equilibrium free energies of bulk solid, bulk

liquid, and coexisting solid-liquid phase. The free energy of the bulk liquid can be

calculated analytically due to the uniformity of the bulk liquid-density profile, while

the free energies of the other systems are obtained from numerical calculations of the

equilibrium density profiles.

We use two methods to determine the equilibrium density profile. The first method

is a numerical relaxation based on globally conserved dynamics [176], also known as
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(2)
MD, 5R, 7R, 9R

k (1/Å)
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Figure 4.1: The different fits to the embedded-atom-method molecular dynamics
(EAM-MD) data, Ĉ

(2)
MD [175]. (a) The rational function fits (RFFs) with

different number of terms. (b) A magnified section of (a). (c) The fourth-
order fit (4P) and the eighth-order fit (8P) [153, 121].

the conserved Allen-Cahn dynamics:

∂n(r, τ)

∂τ
= −δ∆F̃CDFT

(
n(r, τ)

)
δn(r, τ)

+
1

V

∫
dr
δ∆F̃CDFT

(
n(r, τ)

)
δn(r, τ)

, (4.13)

where V is the volume of the system. This method is used in all cases except for the

calculations of the phase stability of the FCC solid. The second method is a semi-

analytical method where we approximate the equilibrium density profile constructed

from non-overlapping Gaussian functions centered at the lattice sites [63]. We then

minimize the free energy with respect to parameters that control the Gaussian peak

height/width and unit-cell size. The details of the Gaussian approximation are dis-
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cussed in Appendix A. This relaxation method is employed for the FCC solid as the

density profiles are sharply peaked around the lattice sites, making full numerical

relaxation too expensive.

Following the procedure in Ref. [121], we determine the solid-liquid coexistence

regions from a common-tangent construction of the free energy density curves1. The

solid-liquid interfacial free energy, γ, is evaluated by constructing a long slab whose

size is one unit-cell in the plane of the interface and 64 unit-cell long in the direction

perpendicular to the interface. One half of the slab is initialized as the bulk solid at

the solid density at solid-liquid coexistence and the other half is initialized as the bulk

liquid at the liquid density at the solid-liquid coexistence. The slab is then relaxed

numerically using Eq. (4.13) with periodic boundary conditions, and γ is calculated

by subtracting out free energies of the bulk phases.

4.4.3 Results and Discussions

The resulting thermodynamic properties from the CDFT simulations with the

different fits to Ĉ
(2)
MD(k) are shown in Table 4.1. Figure 4.2 shows the free energy

density curves of the liquid and the BCC solids, which are used to calculate the

densities at the solid-liquid coexistence and volume expansion during melting. The

integrated density profiles per unit area along the direction normal to (110) plane are

shown in Fig. 4.3 and the density profiles on the (100) crystal plane of the BCC solids

at the solid-liquid coexistence are shown in Fig. 4.4.

Table 4.1 also shows the stability of the FCC solids (bottom row) from the simu-

1In Ref. [121], the solid free energy curve is obtained by minimizing the free energy density
with respect to the lattice spacing for a prescribed solid average-density. However, we find that
the evaluation of the energy-minimizing lattice spacing for each prescribed density is not necessary
because the energy-minimizing lattice spacing is only weakly dependent on the average density. In

particular, we find that, by using Ĉ
(2)
MD(k), the energy-minimizing lattice spacing over the range of

(ρ−ρ0)/ρ0 from 0.1 to 0.3 only varies by 0.01%. The error introduced to the energy density by using
the same lattice spacing for the density range of interest is only on the order of 0.1%. Therefore,
we only calculate the energy-minimizing lattice spacing once for each free energy curve, making the
evaluation process significantly faster.
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lations using the RFFs and the 8P. The stable behavior (denoted by “S” in Table 4.1)

of the FCC solid is shown in Fig. 4.5(a) for the Ĉ
(2)
MD(k) CDFT simulation, where the

FCC solid attains stability at large densities. This behavior is captured by the 7R

and 9R CDFT simulations (see Figs. 4.5(c) and 4.5(b), respectively). However, the

5R CDFT simulation shows a metastable behavior (denoted by “MS” in Table 4.1)

of the FCC phase, where the FCC phase has energy minima that are higher than the

energy minima of the BCC phase. This metastable behavior can be seen from the

free energy curves of the FCC and BCC solids shown in Fig. 4.5(d). We further note

that the FCC phase is not stable (denoted by “NS” in Table 4.1) for the 3R and the

8P of the two-body DCF.

Comparing results from the 3R CDFT simulations with those of the 8P, we do

not find a significant difference in the solid and liquid properties as well as in the

density profiles. We note that these two fits capture the correlations accurately up to

the first peak in the two-body DCF, but do not account for the shorter wavelength

correlations. The more accurate asymptotic behavior of the 3R does not substantially

improve the accuracy of the computed thermodynamic properties in comparison to the

8P. However, the 5R to 9R CDFT simulations show progressively improved accuracy

in the predictions (see Table 4.1), with the most significant improvement between the

3R and the 5R. We note that the 5R accurately represents the correlations up to the

second peak in the two-body DCF. Further, the 7R and the 9R accurately represent

the correlations up to the third and fourth peaks, respectively. Although the accuracy

of the thermodynamic properties improves between the 7R and the 9R, the extent

of the improvement is not as significant as that seen between the 3R to the 5R, and

the 5R to the 7R. We attribute this observation to the fact that the amplitude of

the correlations in the two-body DCF asymptotically decays, and therefore the role

of increasingly shorter wavelength correlations to the thermodynamic properties is

progressively less significant. Nevertheless, the 5R does not predict the stability of
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the FCC phase, suggesting that the correlations up to the third peak in the two-

body DCF appear to be important for phase stability. Finally, by noting that the

predictions of the 3R does not significantly differ from those of the 8P, we believe

that the thermodynamic properties are relatively insensitive to the anti-correlations

beyond the first peak.

In this section, the short-wavelength correlations are shown to be important even

for a qualitative prediction of thermodynamic properties. Therefore, the computa-

tional demand of CDFT, arising from the sharp localized peaks in the density profiles,

cannot be alleviated by simply suppressing the short-wavelength correlations (as done

in most PFC methods) without sacrificing the predictive capability of the model con-

siderably. We now propose an empirical parameterization of the two-body DCF as a

RFF, which seeks to improve the predictive capability using fewer terms in the RFF.
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Figure 4.2: The normalized free energies per unit volume of the BCC solids corre-
sponding to different fits of the EAM-MD data. The blue-solid line de-
notes the liquid free energy density curve whereas the other lines denote
the solid free energy density curves. (a) Free energies of the BCC solids
from the CDFT simulations using the EAM-MD data, the 9R, the 7R
and the 5R. The cross signs at the solid curves denote the solid densities
at the solid-liquid coexistence. (b) Free energies of the BCC solids from
the CDFT simulations using the 8P and the 3R. The two cross signs show
the solid densities at the solid-liquid coexistence.
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Quantity Ĉ
(2)
MD 9R 7R 5R 3R 8P

CDFT CDFT CDFT CDFT CDFT CDFT

Liquid density (Å
−3

) 0.0877 0.0896 0.0909 0.0923 0.109 0.109
(% Difference

from Ĉ
(2)
MD CDFT) (2.1%) (3.6%) (5.2%) (24%) (24%)

Solid density (Å
−3

) 0.0902 0.0918 0.0930 0.0940 0.110 0.109
(% Difference

from Ĉ
(2)
MD CDFT) (1.9%) (3.1%) (4.3%) (22%) (21%)

Expansion in

melting (Å
3
/atom) 0.304 0.271 0.249 0.198 0.0373 0.0211

γ100 (erg/cm2) 88.7 84.3 81.3 67.4 13.7 6.53

γ110 (erg/cm2) 86.6 81.9 79.0 65.5 13.5 6.37
FCC crystal S S S MS NS NS

Table 4.1: The comparison of the liquid and solid properties computed from the
CDFT simulations using different fits of the EAM-MD data, Ĉ

(2)
MD(k). The

liquid and BCC-solid densities shown are at solid-liquid coexistence, and
the expansion in melting is for the BCC solid. The abbreviations S, MS,
and NS denote “stable,” “metastable,” and “not stable,” respectively (see
text). The data are rounded to three significant digits. The comparison

between the predictions from the CDFT simulations using Ĉ
(2)
MD(k) and

those from MD and experimental data can be found in Ref. [121] and
therefore is not included.

4.5 Empirical Parametrization of the Two-Body Direct Cor-

relation Function

As seen in the previous study, there is a significant improvement in the accuracy

of the predicted thermodynamic properties upon resolving the second peak in the

two-body DCF (as seen in the differences between the 3R and 5R CDFT results).

Thus, we seek to construct a parameterization of the two-body DCF that yields the

accurate thermodynamic properties of the liquid and solid phases, while providing

smoother atomic density profiles, by using a RFF that represents the correlations up

to the second peak. We begin with the 5R and systematically vary the value of the

function at both peaks, keeping the curvature values and the locations of the peaks

similar to those from Ĉ
(2)
MD(k). The locations of the peaks are fixed to maintain the
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Figure 4.4: The density profiles on the (100) crystal plane of the BCC solids at the
solid-liquid coexistence, where aBCC is the lattice spacing. It should be
noted that the vertical scales of (e) and (f) are different from the others.

lattice constants of the solid crystal, and the curvature values of the peaks are held

constant to retain the interfacial properties of the liquid-solid interface, as suggested

by Ref. [154].

In terms of implementation, an analytical expression of the modified 5R, M5R,

is manually constructed from a spline interpolation of discrete data points. We then

employ the semi-analytical method to determine the fit that yields similar solid free

energies to the simulations using Ĉ
(2)
MD at the solid density at the solid-liquid coex-

istence; this procedure allows us to quickly experiment with a large number of fits.
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Figure 4.5: The normalized free energies per unit volume of the BCC and FCC solids
from the CDFT simulations using the EAM-MD data, the 9R, the 7R,
and the 5R. The 5R-BCC and 5R-FCC curves do not intersect. The solid
free energies are evaluated from the semi-analytical method described in
Section 4.4.2. The blue solid curves denote the liquid free energy.

Subsequently, we fit the data with the RFF and use the numerical method to verify

the fit.

The M5R, shown in Fig. 4.6(a), is similar to the 5R except for a slightly higher

value of the function at the second peak. The corresponding free energy of the BCC

solid from the M5R CDFT simulations, shown in Fig. 4.6(b), is in good agreement

with those of Ĉ
(2)
MD(k). The slightly higher value at the second peak results in the

density profile from the M5R CDFT simulations being more localized than those from

the 5R. This is apparent from the higher amplitudes of density peaks at the BCC

lattice sites shown in Fig. 4.4, and from the integrated density profile per unit area
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shown in Fig. 4.3. The liquid and solid properties of the BCC phase from the M5R

CDFT simulations are tabulated in Table 4.2, and are in good agreement with the

results from the CDFT simulations using Ĉ
(2)
MD(k). Further, we note that most of

the thermodynamic properties computed from the M5R CDFT simulations are more

accurate than those computed from the 9R. However, the stability of the FCC phase is

not predicted by the M5R, further emphasizing the role of correlations corresponding

to the third peak in determining the FCC phase stability of Fe (see also a footnote2).

As demonstrated from the results, the M5R predicts most thermodynamic prop-

erties with greater accuracy than the 9R. As seen in Fig. 4.4, the density profiles from

the M5R CDFT simulations are considerably smoother than those of the 9R, which

leads to the improved computational efficiency of the CDFT simulations.
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Figure 4.6: (a) The comparison between the 5R and the M5R. The two fits are similar
except for the second peak of the M5R being slightly higher. The solid line
denotes the EAM-MD data. (b) The comparison between the normalized
BCC solid free energy densities from the CDFT simulations using the
EAM-MD data, the 9R, and the M5R. The cross signs indicate the solid
densities at solid-liquid coexistence. The cross signs on the M5R and
EAM-MD free energy curves nearly coincide at the current graphical scale.

2We note that the MD simulation employing the EAM potential used to generate Ĉ
(2)
MD(k) does

not predict stable FCC solid at zero pressure. This EAM potential is referred to as MH(SA)2 in
Ref. [177].

95



Quantity Ĉ
(2)
MD M5R 9R 5R

CDFT CDFT CDFT CDFT

Liquid density (Å
−3

) 0.0877 0.0879 0.0896 0.0923

(% Difference from Ĉ
(2)
MD CDFT) (0.19%) (2.1%) (5.2%)

Solid density (Å
−3

) 0.0902 0.0901 0.0918 0.0940

(% Difference from Ĉ
(2)
MD CDFT) -- 1 (1.9%) (4.3%)

Expansion in melting (Å
3
/atom) 0.304 0.279 0.271 0.198

γ100 (erg/cm2) 88.7 86.5 84.3 67.4

γ110 (erg/cm2) 86.6 83.9 81.9 65.5
FCC crystal S MS S MS

Table 4.2: The liquid and solid properties computed from the M5R CDFT simula-
tions, along with the 5R and 9R CDFT simulation results from Table 4.1.

4.6 Application of RFF to the PFC Method

As discussed in Section 4.2.2, it has been shown that the PFC method can be

derived from the CDFT of freezing by two approximations [76]: (i) a fourth-order

polynomial approximation of the ideal contribution; (ii) a polynomial approximation

to the two-body DCF in Fourier space. To date, the polynomial approximations of

the two-body DCF in the PFC formulations have at most considered resolving the

first two peaks [78]. It has been demonstrated in Sections 4.4 and 4.5 that the RFF

method can be used to accurately describe the two-body DCF up to the fourth peak,

and possibly beyond. Thus, we seek to apply the RFF to the PFC method to enhance

its predictive capability.

It is important to note that the RFF cannot be directly used in the PFC free energy

functional because the evolution equation can potentially yield a discontinuous density

profile as shown in Fig. 4.7(b). The reason for this is demonstrated by considering

the approximation of the ideal contribution in Eq. (4.5). For instance, by taking at =

0.6917 and bt = 0.0854 from Ref. [121], the approximation of the ideal contribution

yields a double-well function as opposed to a single-well function, as shown in Fig.

4.7(a). This double-well behavior energetically favors the value of n(r) to be separated
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into values corresponding to the densities associated with the minima, and potentially

leads to a discontinuous profile. In the PFC formulations such as those using the 4P

and the 8P, the large anti-correlations at short-wavelengths in these fits prevent such

discontinuity from forming. The asymptotic behavior of the RFFs at large k, on the

other hand, does not pose sufficient energy penalty to prevent such discontinuity from

forming. To illustrate this, we use the approximation to the ideal contribution in Eq.

(4.5) along with the 3R, and evolve the density profile using the equilibrium density

from the 3R CDFT simulation as the initial condition. After a few iterations, the

resulting density profile yields discontinuities as shown in Fig. 4.7(b). The values of

n(r) at the peaks and troughs are around 0 and 9, which are close to the densities

corresponding to the minima of the double-well function in Fig. 4.7(a).

In order to circumvent this issue, we propose an approximation to the two-body

DCF of the following form:

Ĉ
(2)
RP (k) =

∑
j=1

[
Aj

k2 + αj
+

A∗j
k2 + α∗j

]
+

p∑
l=0

Clk2l , (4.14)

where the subscript RP denotes the combined RFF and polynomial fit, and Aj, αj and

Cl are fitting coefficients. By setting Cp (the coefficient of the highest-order polynomial

term) to be negative, we can control Ĉ
(2)
RP (k) to approach negative infinity as k →∞,

thus increasing the energy penalty for short-wavelength density waves. Figure 4.8

shows the resulting fits using 3, 5, and 7 partial-fraction terms, respectively. For each

number of partial-fraction terms, we consider p = 1 and p = 2, which corresponds to

including polynomial terms up to second and fourth order, respectively.

Jaatinen and coworkers have shown that the PFC free energy can predict a stable

BCC phase of Fe whose properties are in agreement with those from experiments and

MD simulations [121]. This is achieved by fitting the 8P to Ĉ
(2)
MD(k) so that the fit

matches the value of Ĉ
(2)
MD(0), the k-value of the first peak, km, and the curvature at
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the first peak, d2/dk2
[
Ĉ

(2)
MD(km)

]
, as shown in Fig. 4.1(c). We demonstrate that the

combined RFF and polynomial fit can capture similar features of Ĉ
(2)
MD(k) by using

three terms in RFF and including up to the second-order polynomial term (p = 1).

The resulting fit is shown in Fig. 4.9(a) where our fit is termed 3R2P. The 3R2P is

almost identical to the 8P up to the first peak and begins to deviate from the 8P

for higher k. Nevertheless, we show in Table 4.3 that the 3R2P captures almost the

same features of the Ĉ
(2)
MD(k) as the 8P does. By using at = 0.6917 and bt = 0.0854

for the ideal contribution in PFC, the resulting equilibrium BCC density profile from

the 3R2P at n̄ = 0.1 is shown in Fig. 4.9(b). This density profile is very similar to the

equilibrium density profile from the 8P at the same average density (see Figs. 4.9(c)

and 4.9(d)).
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Figure 4.7: The ideal contribution to the free energy as a function of the normalized
density. The solid line denotes the ideal contribution from Eq. (4.3) while
the dash line denotes the approximation from Eq. (4.5), where at = 0.6917
and bt = 0.0854 [121]. (b) The density profile on the (100) crystal plane of
the BCC solid from the simulation using the 3R and the ideal contribution
represented by the dash line in (a).
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Figure 4.8: The different fits to the EAM-MD data (solid line) using the combined
rational and polynomial functions. From the label, “2nd Order Poly.”
denotes the fits that include up to k2 in Fourier space and “4th Order
Poly.” denotes those including k2 and k4 terms. The label “Terms” refers
to the number of partial fraction terms in Eq. (4.14).

Quantity 8P 3R2P

Ĉ(2)(0) -49.0 -49.0
km 2.99 2.98

d2/dk2
[
Ĉ(2)(km)

]
-10.4 -10.4

Table 4.3: Comparison of the 8P and the 3R2P: the long-wavelength limit, Ĉ(2)(0),
the location of the first peak, km, and the curvature of the first peak,

d2/dk2
[
Ĉ(2)(km)

]
.

4.7 Real-Space Implementation

In this section, we discuss numerical techniques for evaluating the convolution

integral from Eq. (4.3) in real space. The partial fraction decomposition allows the

convolution integral to be evaluated by solving a set of inhomogeneous Helmholtz

equations. The convolution integral in consideration is in the following form:

Ic(r) =

∫
C(2)(|r− r′|)n(r′)dr′. (4.15)
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Figure 4.9: (a) The comparison between the 8P and the 3R2P. The solid line denotes
the EAM-MD data. (b)-(c) The density profiles on the (100) crystal plane
of the BCC solids at the solid-liquid coexistence from the PFC simulations
using the 3R2P (b) and the 8P (c). (d) The difference between the density
profiles of the 3R2P and 8P PFC simulations, where the profile of the 8P
PFC is subtracted from that of the 3R2P PFC.

Using C
(2)
RFF (|r− r′|), we can rewrite the convolution integral as

Ic(r) =
∑
j

[
Lj(r) + L∗j(r)

]
, (4.16)

where Lj and L∗j can be obtained from solving the inhomogeneous Helmholtz equa-

tions:

−∇2Lj(r) + αjLj(r) = Ajn(r)

−∇2L∗j(r) + α∗jL
∗
j(r) = A∗jn(r) . (4.17)
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We note that Lj(r) and L∗j(r) can also be computed from the following integral

equations:

Lj(r) = Aj

∫ (
e−
√
αj |r−r′|

4π|r− r′|

)
n(r′)dr′

L∗j(r) = A∗j

∫ (
e−
√
α∗j |r−r

′|

4π|r− r′|

)
n(r′)dr′, (4.18)

where the kernels are the three-dimensional Green’s functions of the Helmholtz equa-

tion. The free energy in Eq. (4.3) becomes

∆F̃CDFT
(
n(r)

)
=

∫
dr {[1 + n(r)] ln[1 + n(r)]− n(r)}

−1

2

∫
dr

{
n(r)

∑
j

[
Lj(r) + L∗j(r)

]}
(4.19)

and the same approach can be used to compute the PFC free energy that employs

C
(2)
RP (|r− r′|). The free energy in the above form provides a real-space formulation of

the CDFT and PFC method, where the quantities Lj(r) and L∗j(r) can be evaluated

by direct methods such as LU factorization [178] or Krylov [179, 180] and classical

pointwise iterative methods [181]. For direct solves, efficient parallel direct-solver li-

braries are widely available (MUMPS [182, 183], PARDISO [184, 185], SuperLU [186])

and are much faster than iterative methods when the factorization matrices of the dis-

cretization matrix can be stored and reused. However, the storage requirement rapidly

increases with problem size, which becomes a limitation for large three-dimensional

simulations. Iterative solvers, on the other hand, do not require the storage of the

entire matrix and, therefore, are more suitable for large-scale simulations. However,

we note that the discretization matrix of the Helmholtz equations in Eq. (4.17) are

indefinite when the real part of αj is negative. As a result, the computation of Lj(r)

and L∗j(r) using the iterative methods requires special treatments [187]. Many efforts

over the past few decades have been devoted to the development of numerically ef-
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ficient solvers for the Helmholtz equation that leads to an indefinite matrix, and we

refer to a recent review article [188] and the references therein for a comprehensive

overview of this field.

In this work, we use a point-wise iterative method to demonstrate our real-space

formulation. We employ a two-step complex iterative Jacobi (CIJ) method [189]

to solve the indefinite Helmholtz equation. When the discretization matrix of the

Helmholtz equation is not indefinite3, a standard iterative Jacobi (SIJ) method [181]

is used. We note that the CIJ/SIJ method is chosen for its low memory requirement

and simplicity in parallelization. Better convergence speeds are expected from more

advanced methods such as the generalized minimal residual (GMRES) method [190]

with appropriate preconditioners [187].

We compute the free energy densities of the BCC solid from the M5R CDFT

simulations using the CIJ/SIJ method at different grid spacings: ∆h = aBCC/16,

aBCC/32, aBCC/64, and aBCC/128, where aBCC(= 2.95) is the normalized lattice

spacing of the BCC solid. We then compare the results with the solid free energy

density from the simulation using the Fourier spectral method at a smaller grid spac-

ing of ∆h = aBCC/256, for which numerical convergence has been verified. The

results are shown in Fig. 4.10(a) where the difference (as a measure of the numerical

error) reduces as the grid spacing becomes smaller. In addition, we use the CIJ/SIJ

method to simulate the interface between the liquid and BCC solid of the M5R CDFT

simulation, as shown in Fig. 4.10(b).

3For a set of coefficients (αi, Aj) where the real part of αj is positive, the discretization matrix
of the Helmholtz equation is not indefinite.

102



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Grid Spacing

%
 D

iff
er

en
ce

aBCC

128
aBCC

64
aBCC

32
aBCC

16

(a) (b)

Figure 4.10: (a) The difference between the solid free energy densities calculated from
the M5R CDFT simulations using the CIJ/SIJ method and the numer-
ically converged reference value. The reference value is calculated from
the M5R CDFT simulation using the Fourier spectral method at a fine
grid spacing of ∆h = aBCC/256. (b) The plot of n(r) showing the in-
terface between liquid and BCC solid from the M5R CDFT simulation
using the CIJ/SIJ method.

4.8 Comparison of Fourier-Space and Real-Space Implemen-

tations

In this section, we compare the Fourier spectral method and real-space methods

(CIJ/SIJ and LU factorization methods) for evaluating the convolution integral in Eq.

(4.15). In a situation where the density profile is relatively uniform and the periodic

boundary conditions are appropriate, the Fourier spectral method is a method of

choice due to two advantages. First, the Fourier transform of the convolution integral

in Eq. (4.15) can be written explicitly as

Îc(k) = Ĉ(2)(|k|)n̂(k), (4.20)

where n̂(k) is the Fourier transforms of n(r). Thus, the calculation of Ic(r) involves

only simple pointwise operations (multiplication) and the Fourier transform opera-

tions, which can be efficiently performed by a fast Fourier transform (FFT). Examples
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of open-source and commercial libraries/packages for FFT are FFTW [191] (employed

in this work), IBM PESSL [192] and, more recently, P3DFFT [193]. To illustrate the

advantage resulting from the expression in Eq. (4.20), we evaluate the convolution

integral in Eq. (4.15) where the two-body DCF is the 5R and density profile is the

equilibrium BCC-solid density profile from the 5R CDFT simulation with n̄ = 0.18

and the size of 32 × 32 × 32 grid points. The calculation using the Fourier spectral

method took 4.6×10−3 s whereas the calculations using the CIJ/SIJ and direct-solve

methods using the MUMPS library took 2.9 s and 0.6 s, respectively (see also a foot-

note4), all of which are performed on two Quad-Core AMD Opteron 2356 Processors,

with a total of eight processors.

The second advantage is that the Fourier spectral method allows for easy imple-

mentation of an implicit time stepping scheme in numerical integration. We note that

there are other more sophisticated numerical algorithms developed for evolving PFC

equations (see, for example, Refs. [194, 195, 196, 197, 198]). However, we consider

the backward Euler time stepping scheme for simplicity. The backward Euler time

stepping scheme can be written as

n̂u+1(k) =
1

1 + ∆τ |k|2(1− Ĉ(2)(|k|))

[
n̂u(k)−∆τ |k|2

(
−at

2
FT
[
n2
u

]
+
bt
3
FT
[
n3
u

])]
,

(4.21)

where ∆τ is the time step size, u and u + 1 denote the current and next time steps,

and FT denotes the Fourier transform operation. Here, the nonlinear terms, n2 and

4The reported time for the CIJ/SIJ method is obtained by using an initial condition that is slightly
perturbed from the solution to the Helmholtz equation. The amount of perturbation is equivalent to
time stepping Eq. (4.13) with a time step of 10−5. The calculation time using the CIJ/SIJ method
can be further reduced by choosing an initial condition that is perturbed even less from the solution.
For example, using a perturbation equivalent to the time step of 10−8, the calculation time reduces
to 0.02 s. However, during evolution, the speedup factor per iteration (3.4/0.02 = 170) is much less
than the factor of increase in the number of iterations (10−5/10−8 = 1000). Therefore, to optimize
the total simulation time, both calculation time per iteration and the number of iterations need to
be considered.
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n3, are treated explicitly; i.e., they are evaluated at the time u, not u+ 1.

As an example, we calculate the maximum time step using the the backward Euler

time stepping scheme for the 8P and the 3R2P. The maximum time step is determined

by a convergence test where the convergence values, Vw and Vn, for the energy and

the density profile, respectively, are defined by

Vw =

√ 〈
(w̃s − w̃r)2

〉〈
(w̃r − 〈w̃r〉)2

〉 × 100, (4.22)

and

Vn =

√ 〈
(ns − nr)2

〉〈
(nr − 〈nr〉)2

〉 × 100, (4.23)

where the subscript s denotes the quantity calculated from the simulation using

∆τ = s and the subscript r denotes the reference quantity which is taken to be

that calculated using ∆τ = 10−7. The notation 〈x〉 denotes the arithmetic mean of

x and the quantity w̃ ≡ w̃(r̃) is the position-dependent scaled energy density:

w̃(r̃) =
1

2
n(r̃)2 − at

6
n(r̃)3 +

bt
12
n(r̃)4 − n(r̃)

2

∫
C(2)(|r̃− r̃′|)n(r̃′)dr̃′, (4.24)

where r̃ and r̃′ denote the scaled spatial coordinates. The initial density profile is

the equilibrium BCC-solid density profile from the 5R CDFT simulations (size of

323 grid points) as shown in Fig. 4.4(d) and the simulation parameters are given by

at = 0.6917, bt = 0.0854, and the grid spacing of 0.093. We calculate the convergence

values at τ = 0.2 and tabulate the results in Table 4.4. For the convergence values

less than 0.01%, the largest time step sizes are on the order of 10−4.

However, when the density profile is nonperiodic and/or highly non-uniform, a

real-space implementation can be advantageous. First, the real-space formulation

allows reduction of the degrees of freedom through the use of adaptive mesh refinement
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(AMR) in finite element methods and finite difference methods. AMR can be useful in

a situation where a portion of the domain is liquid, which is represented by a uniform

density, as in the early stage of solidification, as well as in CDFT simulations in which

the density is highly concentrated only near the lattice positions and is nearly uniform

elsewhere. In such cases, a finely spaced mesh can be placed where the atomic density

changes rapidly, while a coarser mesh can be used elsewhere. Therefore, we expect

that the adaptivity of the mesh can play an important role in increasing numerical

efficiency. Another potential advantage is the flexibility in implementing different

basis functions. For example, for the CDFT case, a Gaussian basis may yield better

convergence and further reduction in the degree of freedom. Such an approach has

been applied to quantum density functional theory calculations [199]. Lastly, the

real-space formulation also allows for the development of multi-scale techniques such

as the quasicontinuum reduction of field theories [200, 201] (proposed originally in

the context of electronic structure calculations [200]), which can potentially enable

large-scale CDFT and PFC simulations.

8P 3R2P
∆τ Vw (%) Vn (%) Vw (%) Vn (%)

10−1 60 32 60 33
10−2 3.2 3.7 3.2 3.8
10−3 3.1× 10−1 3.6× 10−1 2.9× 10−1 3.4× 10−1

10−4 2.9× 10−2 3.4× 10−2 2.5× 10−2 2.9× 10−2

10−5 2.7× 10−3 3.0× 10−3 2.3× 10−3 2.7× 10−3

10−6 7.4× 10−4 2.6× 10−4 2.1× 10−4 2.4× 10−4

Table 4.4: The comparison of the convergence values at different time step sizes using
the backward Euler time stepping scheme. These values are evaluated at
τ = 0.2.
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4.9 Chapter Summary and Discussions

We proposed a rational function fit (RFF) to describe the two-body DCF in

Fourier space in order to alleviate the computational demand of the CDFT and en-

hance the predictive capability of the PFC method.

• We used the RFFs to show that the short-wavelength contributions of the two-

body DCF play an important role in determining the thermodynamic properties

of materials. Our studies demonstrate that an inaccurate representation of the

correlations in the two-body DCF in favor of more computationally efficient

density profiles may result in inaccurate predictions. In particular, we find that

the correlations up to the third peak of the Fe DCF are important.

• We showed that it is possible to empirically parameterize the two-body DCF

such that most of the predicted thermodynamic properties are in agreement with

the CDFT simulation using the full two-body DCF without incurring significant

computational costs.

• A combined RFF and polynomial fit was shown to provide an improved repre-

sentation of the two-body DCF in the PFC method.

• The RFF method allows the convolution integral to be numerically evaluated

in real space by solving a set of inhomogeneous Helmholtz equations. Such a

real-space formulation enables descriptions of nonperiodic systems and the use

of non-uniform/adaptive grids.

We note that another method of constructing the two-body DCF in Fourier space was

recently proposed using Gaussian functions and was applied to the PFC method to

study phase transformations [122, 133]. The use of Gaussian functions is a convenient

choice for constructing a kernel corresponding to the DCF that results in various

stable equilibrium crystal structures because it allows one to control the location
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and the width of the peaks precisely. However, the RFF is an appropriate choice

when the two-body DCF obtained from experiments or MD simulations needs to

be accurately described; it is difficult to use the Gaussian function to describe the

oscillatory behavior of two-body DCFs. Furthermore, the RFF allows for a real-space

formulation via the solution of Helmholtz equations, and provides the framework for

development of multiscale methods, which is a topic for future investigation.
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CHAPTER V

Calculations of Isothermal Elastic Constants in the

Phase-Field Crystal Model

5.1 Overview

In this chapter, we consider the isothermal elastic constants that were calculated

from the PFC approach in Refs. [64, 65, 78]. These elastic constants, which will be

referred to as the PFC elastic constants, are calculated from variations in the free

energy density (total free energy per actual volume) associated with various types

of quasi-static deformation at a constant average number density. However, we have

found that this procedure is inconsistent with the definitions from a theory of thermoe-

lasticity of stressed materials [79, 80, 81]. These definitions are thermodynamically

derived and are widely adopted. Therefore, we propose an alternative procedure for

calculating the elastic constants as defined by the thermoelasticity theory, which will

be referred to as the TE elastic constants. The TE elastic constants are instead cal-

culated from variations in the total free energy per undeformed volume associated

with quasi-static deformations at a constant number of particles in the system. To

give numerical examples, we use an existing PFC model for iron (Fe) to show that

the PFC and TE elastic constants can be significantly different from one another.

Therefore, we conclude that the conventional and the proposed procedures are not
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interchangeable and, more importantly, one should calculate the elastic constants us-

ing the proposed procedure in order to make fair comparisons with values from other

approaches such as classical density functional theory [82, 83, 84], Monte Carlo [85],

MD [86], and ab initio density functional theory [87, 88, 89].

Furthermore, by comparing the conventional and the proposed procedures, we

identify two differences in the calculation procedures that contribute to the discrep-

ancies between the PFC and TE elastic constants. The first is due to the frame in

which the free energy density is calculated; the PFC elastic constants are calculated

from the free energy density measured with respect to the deformed frame of reference

while the TE elastic constants are calculated from the free energy density measured

with respect to the undeformed frame. The difference arises due to the different vol-

umes in these two frames. The second difference is due to the constraint imposed

on the quasi-static deformations; the constraint for the PFC elastic constants is a

constant average number density, whereas the constraint for the TE elastic constant

is a constant number of particles.

Finally, we employ a thermodynamic theory of stressed solids [90, 91, 92] to sys-

tematically define the PFC and TE elastic constants in the same framework. This

formulation allows us to obtain the relationships between the PFC and TE elastic

constants. These relationships not only facilitate conversions between the PFC and

TE elastic constants but also provide quantitative measures of the differences between

the PFC and TE elastic constants in terms of thermodynamic quantities such as the

pressure of the undeformed state.

This chapter is organized as follows. In Section 5.2, we reintroduce the PFC

equations that will be used throughout the chapter, and briefly review continuum

mechanics and the theory of thermoelasticity of stressed materials. Next, we review

the conventional procedure for calculating the PFC elastic constants in Section 5.3.1

and propose the alternative procedure for calculating the TE elastic constants using
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the PFC method in Section 5.3.2. We then present numerical comparisons between

the PFC and TE elastic constants, and present further discussions in Section 5.3.3.

Furthermore, we present a more general procedure for calculating the PFC elastic

constants and propose formal definitions of the PFC elastic constants in Section 5.4.

We then derive the relationships between the PFC and TE elastic constants of a

system with cubic symmetry using the thermodynamic theory of stressed solids in

Section 5.5. Lastly, we conclude this chapter with a summary in Section 5.6.

5.2 Background

5.2.1 PFC Method

We consider the following free energy for the PFC method [65]:

F =

∫
w(φ) dR, w(φ) ≡ φ

2

[
at + λ(q20 +∇2)2

]
φ+ gt

φ4

4
, (5.1)

where, w(φ) is the free energy density, and at, gt, λ, and q0 are fitting parameters.

The number density field, φ, can be expressed in a Fourier expansion of the form:

φ(R, φave) = φave +
∑
i

Aie
iGi·R + c.c., (5.2)

where Ai is the amplitude, φave is the average number density, R is the real-space

position vector (R = R1i + R2j + R3k, where i, j and k constitute an orthonormal

Cartesian basis), Gi is the reciprocal lattice vector (RLV) that is constructed from

the reciprocal basis of a periodic structure, and c.c. denotes the complex conjugate.

We define the following dimensionless parameters [65]:

R̃ ≡ q0R, ε ≡ − at
λq40

, φ̃ ≡
√

gt
λq40

φ,

F̃ ≡ gt

λ2q8−d0

F , h̃ ≡ gt
λ2q80

h, (5.3)
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where d is the dimensionality of the problem. The PFC free energy can then be

written in a simpler form:

F̃ =

∫
w̃
(
φ̃
)
dR̃, w̃

(
φ̃
)

=
φ̃

2

[
−ε+

(
1 + ∇̃2

)2]
φ̃+

φ̃4

4
. (5.4)

In this work, we will consider a body-centered-cubic (BCC) crystal, of which the set

of smallest RLVs has the magnitude of 2π
√

2/La, where La is the side length of a

cubic unit cell. We will therefore set q0 = 2π
√

2/La in order to make the PFC free

energy functional favor the BCC structure. The simplest analytical expression for the

BCC structure, the so-called one-mode approximation, can be obtained by keeping

only the terms with |Gi| = 2π
√

2/La in the expansion of Eq. (5.2):

φ̃one(R̃, φ̃ave) = φ̃ave + Ãs

[
cos
(
q1R̃1

)
cos
(
q1R̃3

)
+ cos

(
q1R̃2

)
cos
(
q1R̃3

)
+ cos

(
q1R̃1

)
cos
(
q1R̃2

)]
, (5.5)

where Ãs is the nondimensionalized amplitude and q1 = 1/
√

2. Henceforth, we will

omit the tilde notation for the nondimensionalized quantities.

5.2.2 Measure of Deformation

We denote the undeformed state of a material as the state prior to the deformations

of the material. In other words, the material is subjected to zero strain, but not

necessarily zero stress. We use (R1, R2, R3) to denote the undeformed coordinates of

the position of a volume element in the material while using (r1, r2, r3) to denote the

deformed coordinates of the position. Since we assume that both coordinates share

the same basis, the deformation gradient tensor, αij, and the displacement gradient

tensor, uij, are written as

αij =
∂ri
∂Rj

, (5.6)
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and

uij =
∂(ri −Ri)

∂Rj

, (5.7)

where the subscripts i and j vary from 1 to 3, and it follows that uij = αij − δij.

The symbol δij is the Kronecker delta and the Einstein summation notation is used

throughout the chapter unless stated otherwise. The deformation considered in this

work is the affine or homogeneous deformation, and thus we can write [202, 203]

ri = αijRj = (uij + δij)Rj. (5.8)

Conversely, we can write Ri in terms of rj:

Ri = α−1ij rj, (5.9)

where α−1ij = ∂Ri/∂rj. For brevity, we write the above transformation in tensor

notation: R = α−1 · r, where r = r1i + r2j + r3k. The Lagrangian strain tensor is

expressed as

Eij =
1

2
(αkiαkj − δij) =

1

2
(uij + uji + ukiukj) , (5.10)

and is employed in a nonlinear elasticity theory. In a linear elasticity theory, one

assumes infinitesimal deformations and defines the symmetric small-strain tensor,

εij =
1

2
(uij + uji) , (5.11)

and the antisymmetric small-strain tensor,

ωij =
1

2
(uij − uji) . (5.12)
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Equations (5.11) and (5.12) can be used to calculate uij from

uij =
1

2
(εij + εji + ωij − ωji). (5.13)

5.2.3 Definitions of Isothermal Elastic Constants from the Thermoelas-

ticity Theory

The definitions of the isothermal elastic constants from the theory of thermoe-

lasticity of stressed materials [79, 80, 81] depend on the choice of the independent

variables of the Helmholtz free energy, F (not necessarily identical to F introduced

earlier). The Helmholtz free energy of a nonhydrostatically stressed system can be

written in the form:

F (θ, aij, N,Ri), (5.14)

where θ is temperature, aij denotes either Eij or εij, N is the number of atoms or

particles, and Ri is the reference or undeformed coordinates. Since we consider Ri as

constant, we will omit this dependence subsequently.

The elastic constants, as well as other thermodynamic quantities, can be defined

from the Taylor expansion of the free energy around the undeformed state and we

refer to Appendix B for more details. The coefficients of the first-order terms with

respect to the elements of the strain tensors give the following definitions [81, 202]:

T uij =
1

V
∂F

∂Eij

∣∣∣∣∣
u

θ,E∗mn,N

=
1

V
∂F

∂εij

∣∣∣∣∣
u

θ,ε∗mn,N

, (5.15)

where V is the volume of the system at the undeformed state and T uij is an element of

the symmetric second Piola-Kirchhoff stress tensor [202] evaluated at the undeformed

state. The subscripts E∗mn and ε∗mn indicate that the elements of the strain tensors

other than those involved in the partial derivative are held constant, and the super-
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script u indicates that the partial derivatives are evaluated at the undeformed state.

The coefficients of the second-order terms with respect to the elements of the

strain tensors yield the definitions of elastic constants [81, 202]:

Cijkl =
1

V
∂2F

∂Eij∂Ekl

∣∣∣∣∣
u

θ,E∗mn,N

, (5.16)

and

Kijkl =
1

V
∂2F

∂εij∂εkl

∣∣∣∣∣
u

θ,ε∗mn,N

, (5.17)

in the nonlinear and linear elasticity theories, respectively. The elastic constants Cijkl

and Kijkl, both referred to as the TE elastic constants, are fourth-order tensors with

complete Voigt symmetry for the indices, i.e., Cijkl = Cjikl, Cijkl = Cijlk, and Cijkl =

Cklij, and similarly for Kijkl. For a cubic material, each set of Cijlk and Kijkl reduces

to three independent values which are (no summation) C11 = Ciiii, C12 = Ciijj and

C44 = Cijij = Cijji with the other elements being zero. Similar notation applies to

the elastic constants Kijkl.

For a cubic material under hydrostatic pressure, Pu, of the undeformed state,

which is considered in this work, the relationships between Cαβ and Kαβ are [81]

C11 = K11 + Pu, C12 = K12, C44 = K44 +
Pu
2
, (5.18)

where the details of the derivation are shown in Appendix B.

The above relationships reveal the fact that the elastic constants defined by the

linear and nonlinear elasticity theories are not in general equal to one another even at

the limit of zero strain (undeformed state). Only when the pressure of the undeformed

state is zero do these two set of elastic constants become identical. For simulations
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of materials under ambient pressure, the magnitude of the pressure is typically much

smaller than that of the elastic constants, and therefore, the two sets of elastic con-

stants are approximately equal. However, for simulations of materials under high

pressure [89, 204, 205], the two sets of the elastic constants can differ significantly.

We find that, for the parameterized PFC model used in this work, the magnitude of

the pressure is not negligible compared with that of the elastic constants.

5.2.4 Deformation Types

In this work, we will calculate both the PFC and TE elastic constants using the

PFC approach. Since the PFC free energy is not an explicit function of the elements

of a strain tensor, one cannot directly calculate the elastic constants by taking the

second derivatives of the free energy with respect to the element of the strain tensors,

as shown in Eqs. (5.16) and (5.17). Instead, one extracts the values of the elastic

constants from variations in the free energy density with respect to various types of

quasi-static deformations, as will be shown in Section 5.3. For the elastic constants

of a cubic material, we need three deformation types in order to obtain a set of

linearly independent equations to solve for three unknowns. We choose to consider

the following types of deformation:

• isotropic deformation characterized by uij = δijξ, where ξ is a parameter quanti-

fying the amount of deformation (hereafter referred to as the “small deformation

parameter”),

• biaxial deformation where the nonzero elements are u11 = ξ and u22 = −ξ,

• simple-shear deformation where the nonzero element is u12 = −ξ.

These deformations are chosen because we are aiming to make a direct comparison

with the previous PFC studies [65, 78]. We note that we could use any other type of

affine deformation to extract the elastic constants as long as they give three linearly
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independent equations. For example, we could use a volume-conserving biaxial defor-

mation, where the nonzero elements are u11 = 1+ξ and u22 = 1/(1+ξ), instead of the

biaxial deformation presented above. If the volume-conserving biaxial deformation

were used along with the isotropic and simple-shear deformations, we would obtain

a different set of three linearly independent equations; nevertheless, the solution to

the system of equations would be the same, yielding the same values of the elastic

constants.
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5.3 Calculations of Isothermal Elastic Constants using PFC

Free Energy

In this section, we review the conventional procedure for calculating the PFC

elastic constants and propose the alternative procedure for calculating the TE elastic

constants using the PFC free energy. We present numerical results from an existing

PFC model for BCC Fe to show that the PFC and TE elastic constants can be

significantly different, and then discuss the implications of the results.

5.3.1 PFC Elastic Constants

We describe the procedure for obtaining the PFC elastic constants of a BCC

crystal using the PFC free energy and the one-mode approximation as a density

profile [78]. We first write φone(R, φave) in terms of the deformed coordinates, or

φone(α
−1 · r, φave), and then obtain the total energy by integrating w(φone) over the

deformed unit cell at a constant average density φave:

Fn(ξ, φave) =

∫
Vn(ξ)

w
(
φone

(
α−1 · r, φave

) )
dr, (5.19)

where the limit of the integration is shown in Table 5.1 and the variable Vn(ξ) is the

deformed volume. We have assumed an isothermal condition and thus omitted the

dependence of the free energy on θ. The subscript n(= 1, 2, 3) denotes the types of

deformation shown in Table 5.1, and we evaluate the quantities with the subscript n

separately for each deformation type. The PFC elastic constants are obtained from

calculating the following quantities:

∆hn(ξ, φave) ≡
Fn(ξ, φave)

Vn(ξ)
− Fn(0, φave)

Vn(0)

= hn(ξ, φave)− hn(0, φave), (5.20)
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where hn(ξ, φave) can be interpreted as the “bulk” free energy density because it

is spatially independent. The second-order coefficient of the Taylor expansion of

∆hn(ξ, φave) around ξ = 0 is related to the cubic elastic constants, Hαβ, as follows:

∆h1(ξ, φave) = ...+
1

2
(3H11 + 6H12) ξ

2 + ...

∆h2(ξ, φave) = ...+
1

2
(2H11 − 2H12) ξ

2 + ...

∆h3(ξ, φave) = ...+
1

2
(H44)ξ

2 + ..., (5.21)

where we use the subscript αβ to denote 11, 12, or 44. We note that Hαβ are functions

of φave, which is not explicitly indicated for brevity. To put the above calculation in

the same context as that in the next section, we note that the method in finding the

elastic constants in Eq. (5.21) is equivalent to calculating the second-order partial

derivative of the free energy density with respect to the small deformation parameter,

QPFCn (φave) ≡
∂2

∂ξ2

(Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

, (5.22)

and solving for the elastic constants from

QPFC1 (φave) = 3H11 + 6H12

QPFC2 (φave) = 2H11 − 2H12

QPFC3 (φave) = H44. (5.23)

We emphasize that the partial derivatives in Eq. (5.22) are performed at constant

φave, as indicated in the subscript at the vertical line. We also note that the two

procedures described above are only valid for the density profiles that minimize (or

maximize) the bulk free energy density with respect to deformations at a constant

average number density. For these density profiles, the first derivative of the free
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energy density with respect to a small deformation variable at a constant average

number density is zero. In the context of this work where the density profiles are

described by the one-mode approximation, the two procedures above are only valid

for the density profiles that minimize hn(ξ, φave) with respect to ξ at constant φave.

However, in Section 5.4, we will present a more general procedure to calculate the PFC

elastic constants that applies to a density profile that does not necessarily minimize

hn(ξ, φave) with respect to ξ at constant φave.

5.3.2 TE Elastic Constants

We now propose the alternative procedure for obtaining the TE elastic constants

defined in Eqs. (5.16) and (5.17) from the PFC free energy. We evaluate the integral

similar to that from Eq. (5.19), but with a condition that the total number of particles,

NT =

∫
V

φone(R, φave)dR, (5.24)

remains constant during the deformations. This means that the average density φave

will no longer remain constant and we write

φave ≡ φave,n(ξ) =
NT

Vn(ξ)
=

NT/V
Vn(ξ)/V =

φ′ave
Jn(ξ)

, (5.25)

where Jn(ξ) = Vn(ξ)/V and φ′ave is the total number of particles per undeformed

volume. Because the undeformed volume V is constant, holding φ′ave constant during

the deformations is equivalent to holding NT constant. The integration of the PFC

free energy with respect to the deformed coordinates is then

Fn(ξ, φ′ave) =

∫
Vn(ξ)

w

(
φone

(
α−1 · r, φ

′
ave

Jn(ξ)

))
dr, (5.26)
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where we have assumed that Fn is the total Helmholtz free energy. We then proceed

to calculate

QTEn (φ′ave) ≡
∂2

∂ξ2

(Fn(ξ, φ′ave)

V

) ∣∣∣∣∣
ξ=0

θ,φ′ave

, (5.27)

where we emphasize that Fn(ξ, φ′ave) is obtained from the deformations with constant

φ′ave. We note that in the limit of ξ = 0, we have V = V and therefore, φave = φ′ave.

Using the chain rule, one can write the second derivative with respect to ξ as

∂2

∂ξ2
=
∂2Eij
∂ξ2

∂

∂Eij
+
∂Eij
∂ξ

∂Ekl
∂ξ

∂2

∂Eij∂Ekl
, (5.28)

where the derivative is performed with constant θ and φ′ave. Using the transformation

in Eq. (5.28) with Eq. (5.27), one arrives at a system of equations to solve for the

elastic constants Cαβ (Refs. [82, 85]):

QTE1 (φ′ave) = 3C11 + 6C12 − 3Pu,

QTE2 (φ′ave) = 2C11 − 2C12 − 2Pu,

QTE3 (φ′ave) = C44 − Pu, (5.29)

where it is assumed that the material has cubic symmetry and is under the hydrostatic

pressure, Pu, in the undeformed state.1 The elastic constants Cαβ are functions of

φ′ave or, equivalently, φave because they are evaluated at the undeformed state. The

pressure can be calculated from the isotropic deformation (n = 1):

Pu = −1

3

∂

∂ξ

(F1(ξ, φ
′
ave)

V

) ∣∣∣∣∣
ξ=0

θ,φ′ave

. (5.30)

1The quantities QTEn are related to the bulk modulus, B, and the shear moduli, µ and µ′ (de-
fined in Ref. [206]), through the following equations: QTE1 (φ′ave) = 9B − 6Pu, QTE2 (φ′ave) = 4µ′,
QTE3 (φ′ave) = µ. The relationships between the set of elastic constants B, µ, and µ′, and the set of
Cαβ are reported in Eq. (3b) of Ref. [206], for example.
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After obtaining Cαβ, we can simply calculate Kαβ from Eq. (5.18). We emphasize

that we do not calculate Kαβ from the procedure similar to the one used to obtain

Cαβ because the procedure will yield values of Kαβ that are inconsistent with the

definition in Eq. (5.17). We discuss this issue in Appendix C.

5.3.3 Numerical Comparison Between PFC and TE Elastic Constants

To elucidate the implications of the above analysis, we proceed to numerically

compare the PFC and TE elastic constants. We use a PFC model for BCC Fe since it

has been more extensively studied. There have been two studies of BCC Fe using the

PFC method; one study was performed by Jaatinen et al. [121] and the other study

was conducted by Wu et al. [153] We do not examine the PFC model from the former

study here because the corresponding free energy is the energy difference from that

of the reference liquid state. As a result, we would need to consider the quantities

pertaining to the reference liquid state, which is beyond the scope of the present work.

On the other hand, the PFC free energy used by Wu et al. [153] (described in Section

5.2.1) is based on a phenomenological model [64] and can be considered as the total

energy of the system. Therefore, we will use the parameterization of the PFC method

presented in the study by Wu et al. [153] The values of the PFC fitting parameters

used in this work are as follows [153]: q0 = 2.985 Å−1, λ = 0.291 eVÅ7, ε = 0.0923,

and gt = 9.703 eVÅ9 (see also a footnote2).

Figure 5.1 shows the plots of the PFC elastic constants, the TE elastic constants,

and the pressure at the undeformed state as functions of φave; the values of these

elastic constants at the liquid-solid coexistence density (φave = −0.201) are reported

in Table 5.2 in Rows (i) to (iii). In Row (iv), we tabulate the PFC elastic constants

calculated in Ref. [78] for comparison with those calculated in the present study (Row

2We compute a slightly different value of gt from Eq. (45) in Ref. [153] (after a minor typographical
error in Ref. [153] is corrected, as noted in Ref. [121]). We obtain the value of gt to be 9.703
eVÅ9 instead of 9.705 eVÅ9 in Ref. [153] and the difference is due to the rounding-off of the input
parameters that enter Eq. (45) in Ref. [153].
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(i)). The small differences in values of the two sets of the elastic constants are due to

the slight difference in the values of gt. The values of the elastic constants calculated

from MD simulations [78] are also tabulated in Row (v) of Table 5.2. The procedure

for obtaining these MD results is similar to that used in Ref. [207] to obtain the elastic

constants of Ni [208]. Lastly, we find that this parameterization of the PFC method

yields the pressure at the solid-liquid coexistence of Pu = 184.5 GPa = 1.821 × 106

atm.

We note that Hαβ can be directly compared with both Cαβ and Kαβ only because

the density profile used in this work is constructed so that hn(ξ, φave) is minimized

with respect to ξ at constant φave. This construction makes the values of the PFC

elastic constants, defined by the linear and nonlinear elasticity theories, identical; this

justifies our comparisons between Hαβ and Cαβ and between Hαβ and Kαβ. For a

general form of a density profile, however, we can only directly compare the elastic

constants that are defined from the same measure of deformation; in this work, the

measure of deformation is either the Lagragian strain tensor or the small-strain tensor.

Therefore, in the next section, we will propose a general procedure for calculating the

two sets of PFC elastic constants: one defined by the linear elasticity theory and the

other one defined by the nonlinear elasticity theory.

By comparing the PFC and TE elastic constants, we find that the PFC elastic

constants, Hαβ, are equivalent to neither Cαβ nor Kαβ; both sets of the TE elas-

tic constants are significantly larger than Hαβ, especially for the 11-type constants.

Therefore, we find that the PFC and TE elastic constants cannot be used inter-

changeably. Consequently, since the thermoelasticity theory is widely adopted, one

should only use the TE elastic constants to make consistent comparisons of the elastic

constants from the PFC method with those from other theories such as classical den-

sity functional theory [82, 83, 84], Monte Carlo [85], MD [86], and ab initio density

functional theory [87, 88, 89].
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The reasons for the discrepancies between the PFC and TE elastic constants can

be understood by comparing Eqs. (5.22) and (5.27). The first difference is the frame

in which the free energy density is measured. The difference leads to the different

volume that divides the total free energy. The PFC elastic constants are derived from

the free energy per unit deformed volume, while the TE elastic constants are obtained

from the free energy per unit undeformed volume.

The second difference is whether or not φave or φ′ave is held constant when taking

the second derivative of the free energy density with respect to the small deformation

parameter. The constant-φave condition, which is used to obtain the PFC elastic con-

stants, causes the number of particles in the system to change when the volume of the

system is changing during the quasi-static deformations. However, the constant-φ′ave

condition, which is used to obtain the TE elastic constants, is equivalent to keeping

the total number of particles in the system constant during the deformations. There-

fore, we find that the choices of the frame of reference and the different constraints

imposed upon the quasi-static deformations contribute to the different values between

the PFC and TE elastic constants.

Since Hαβ cannot be compared with the elastic constants calculated using other

theories, we will instead compare the TE elastic constants with those from the MD

simulations [78]. We find that the values of 11- and 44-type constants for both Cαβ

and Kαβ are significantly larger than those of the MD results. This discrepancy is

not unexpected considering the fact that the model predicts a large pressure at the

liquid-solid coexistence density (1.821 × 106 atm)3, while the potential in the MD

simulations is constructed so that the predicted pressure is close to zero to model

normal experimental conditions [209]. This indicates that the systems described by

the PFC and MD simulations are in very different thermodynamic states. Therefore,

a different set of PFC parameters that yields a reasonable value of pressure should
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be obtained to improve the prediction of the elastic constants.

(a) (b)

(c) (d)

Figure 5.1: The plots of different sets of elastic constants and hydrostatic pressure
as functions of φave, or equivalently φ′ave. (a) The PFC elastic constants.
(b) The TE elastic constants in the nonlinear elasticity theory. (c) The
TE elastic constant in the linear elasticity theory. (d) The hydrostatic
pressure of the undeformed state.

3The BCC Fe at high pressure transforms to a hexagonal closed-pack (HCP) structure. Never-
theless, based on Fig. 2 in Ref. [210], the elastic constants of (metastable) BCC Fe under a pressure
of 184.5 GPa are expected to be much higher than what we calculated (C11 = 542.0 GPa). From the
figure, the value of C11 for a pressure of 40 GPa is approximately 450 GPa. Assuming a monotonic
increase of the values of the elastic constants with increasing pressure, we expect the values of the
elastic constants at a pressure of 184.5 GPa to be even higher than our calculated value.
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Elastic Constants 11-Type 12-Type 44-Type

(i) Hαβ 89.8 44.9 44.9
(ii) Cαβ 542.0 128.1 229.4
(iii) Kαβ 357.5 128.1 137.2
(iv) PFC-WAK 90.0 45.0 45.0
(v) MD 128.0 103.4 63.9

Table 5.2: The elastic constants of BCC Fe at the melting point. The unit of the
elastic constants is GPa. (i) The PFC elastic constants calculated in this
work using slightly different parameters from those in Ref. [78] (see text).
(ii) The TE elastic constants in the nonlinear elasticity theory. (iii) The
TE elastic constants in the linear elasticity theory. (iv) The PFC elastic
constants reported in Ref. [78]. (v) The elastic constants predicted by the
MD simulations [78]. For (i) to (iv), the elastic constants are evaluated at
φave = −0.201.

5.4 A General Procedure to Obtain the PFC Elastic Con-

stants

Up to this point, we have introduced the TE elastic constants defined by the linear

and nonlinear elasticity theories, which are Kijkl and Cijkl, respectively. However, we

have not specified whether Hijkl is defined by the linear or nonlinear elasticity theory.

As we have mentioned in the previous section, this specification is not necessary

for the particular form of the density profile used in this work because it minimizes

hn(ξ, φave) with respect to ξ at constant φave. However, for a general form of a density

profile, we need to be able to calculate the PFC elastic constants defined by both the

linear and nonlinear elasticity theories. Therefore, a more general procedure than

those presented in Section 5.3.1 is needed.

We first propose formal definitions of the PFC elastic constants from the second

derivatives of the free energy density with respect to the elements of the strain tensors;

these definitions are analogous to how the TE elastic constants are defined. By
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considering the procedure in Section 5.3.1, the two possible choices are

∂2

∂Eij∂Ekl

(F
V

) ∣∣∣∣∣
θ,φave,E∗mn

≡ HE
ijkl (5.31)

and

∂2

∂εij∂εkl

(F
V

) ∣∣∣∣∣
θ,φave,ε∗mn

≡ Hε
ijkl. (5.32)

The elastic constants HE
ijkl (Hε

ijkl) are analogous to Cijkl (Kijkl) in the sense that they

are defined by the nonlinear (linear) elasticity theory.

We then outline the procedure for calculating HE
αβ and Hε

αβ. Using a procedure

similar to that used to obtain Cαβ, we can obtain HE
αβ from

QPFC1 = 3HE
11 + 6HE

12 − 3P g
u

QPFC2 = 2HE
11 − 2HE

12 − 2P g
u

QPFC3 = HE
44 − P g

u , (5.33)

where

P g
u = −1

3

∂

∂ξ

(F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

. (5.34)

We emphasize that the partial derivative is performed with constant φave. Finally,

similar to how Kαβ is related to Cαβ from Eq. (5.18), we can relate Hε
αβ to HE

αβ from

the following relationships:

HE
11 = Hε

11 + P g
u , HE

12 = Hε
12, HE

44 = Hε
44 +

P g
u

2
. (5.35)

When P g
u = 0, HE

αβ = Hε
αβ, which is the case for the choice of the density profile used
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in this work. The term P g
u is analogous to Pu in that it is proportional to the first

derivative of the free energy density with respect to the deformation variable. How-

ever, the deformation process to obtain P g
u is performed with constant φave instead of

φ′ave. Furthermore, the free energy density to obtain P g
u is measured with respect to

the deformed frame instead of the undeformed frame. For the PFC free energy and

the one-mode approximation given in Eq. (5.5), the value of P g
u is equal to zero for

all values of φave because the form of the density profile minimizes hn(ξ, φave) with

respect to ξ at constant φave. However, P g
u = 0 does not correspond to Pu = 0 as we

have shown in Fig. 5.1(d).

5.5 Thermodynamics of Stressed Solids

In this section, we use a thermodynamic formulation to define the PFC and TE

elastic constants in a systematic manner. We then derive the relationships between

the PFC and TE elastic constants, as well as those among other thermodynamic

quantities resulting from Taylor expansions of thermodynamic energy functions. We

discuss the implications of the relationships among the thermodynamic quantities

and then present numerical verifications of the relationships between the PFC and

TE elastic constants.

5.5.1 Formulation

In addition to the thermoelasticity theory [81, 79], we employ a thermodynamic

theory of stressed solids by Larche and Cahn [90, 91] which considers the solid as a

network of lattices and allows a description of vacancies. In this work, we consider

only substitutional lattices which can be occupied by atomic species A and vacancies.

The Helmholtz free energy of such a system can be written in the following form:

Fs = Fs(θ,NA, aij, Ri), (5.36)
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where NA is the number of lattice sites occupied by atomic species A (not to be

confused with the Avogadro’s number), and the subscript s denotes that the material

is a crystalline solid. The fact that Fs depends on only NA and not the number of

lattice sites occupied by vacancies comes from the assumption that the total number

of lattice sites are conserved in all thermodynamic states. This assumption applies

when there is no consideration of defects such as surfaces, grain boundaries, and

dislocations that can alter the total number of lattice sites by acting as sources or

sinks of vacancies [90]. Again, since we consider Ri as constant, we will omit this

dependence subsequently.

From the form of Fs, we now redefine the stress and elastic constants in Eqs.

(5.15), (5.16), and (5.17):

T uij =
1

V
∂Fs
∂Eij

∣∣∣∣∣
u

θ,E∗mn,NA

=
1

V
∂Fs
∂εij

∣∣∣∣∣
u

θ,ε∗mn,NA

,

Cijkl =
1

V
∂2Fs

∂Eij∂Ekl

∣∣∣∣∣
u

θ,NA,E∗mn

,

Kijkl =
1

V
∂2Fs
∂εij∂εkl

∣∣∣∣∣
u

θ,NA,ε∗mn

, (5.37)

where the subscript N has been replaced by NA and F has been replaced by Fs.

The next step is to formulate thermodynamic energy functions that allow different

sets of elastic constants to be defined in a systematic manner. The energy function

that can be used to define HE
ijkl or Hε

ijkl is

gs ≡
Fs(θ, aij, ρA)

V
, (5.38)

where ρA = NA/V is the number of the lattice sites occupied by atomic species

A divided by the volume of the deformed system. On the other hand, the energy
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function that can be used to calculate Cijkl and Kijkl is

f ′s ≡
Fs(θ, aij, ρ

′
A)

V , (5.39)

where ρ′A = NA/V = JρA is the number of lattice sites occupied by atomic species A

divided by the volume of the undeformed system. The reason for defining ρ′A is that

the condition of constant ρ′A is the same as constant NA because V is constant.

For completeness, one could define the other two energy functions:

g′s ≡
Fs(θ, aij, ρA)

V ,

fs ≡
Fs(θ, aij, ρ

′
A)

V
, (5.40)

which can be used to define the other two sets of elastic constants that are different

from the PFC and TE elastic constants. We will not address these additional two

sets of elastic constants in this work.

Regarding the notation, we use the letters g and f to indicate that the energy

functions depend on ρA and ρ′A, respectively. The use of a prime in f ′s, g
′
s and

ρ′A indicates that the corresponding variables are quantities per unit volume of the

undeformed system. Without the prime, fs, gs and ρA are quantities per unit volume

of the deformed system.

Lastly, we define the quantities at the undeformed state as follows:

θ → θu, aij → 0, ρ′A → ρ′Au,

ρA → ρ′Au, gs → gsu, f ′s → f ′su, (5.41)

where gsu = f ′su.
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5.5.2 Taylor Expansions of Energy Functions

We are now in the position to define the elastic constants as well as other thermo-

dynamic quantities from the Taylor expansions of the energy functions. We expand

the energy functions around the undeformed state with respect to aij and ρA or ρ′A.

For f ′s, we write the expansion as follows:

f ′s(θu, aij, ρ
′
Au + ∆ρ′A) = f ′su + Ufps ∆ρ′A + Pfpij aij +Dfpij ∆ρ′Aaij

+
1

2
Afps (∆ρ′A)2 +

1

2
Lfpijklaijakl, (5.42)

where ∆ρ′A = ρ′A − ρ′Au, and

f ′su = f ′s(θu, 0, ρ
′
Au), Ufps =

∂f ′s
∂ρ′A

∣∣∣∣∣
u

θ,aij

, Pfpij =
∂f ′s
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

,

Dfpij =
∂

∂aij

∣∣∣∣∣
u

θ,ρ′A,a
∗
mn

 ∂f ′s
∂ρ′A

∣∣∣∣∣
θ,akl

 , Afps =
∂2f ′s
∂(ρ′A)2

∣∣∣∣∣
u

θ,aij

, Lfpijkl =
∂2f ′s

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

.

(5.43)

The superscript u denotes that the partial derivatives are evaluated at the undeformed

state, and the superscript fp denotes that the quantity is obtained from the Taylor

expansion of f ′s. For the Taylor expansion of gs, we write

gs(θu, aij, ρ
′
Au + ∆ρA) = gsu + Ugs∆ρA + Pgijaij +Dgij∆ρAaij

+
1

2
Ags(∆ρA)2 +

1

2
Lgijklaijakl, (5.44)
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where ∆ρA = ρA − ρ′Au, and

gsu = gs(θu, 0, ρ
′
Au), Ugs =

∂gs
∂ρA

∣∣∣∣∣
u

θ,aij

, Pgij =
∂gs
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρA

,

Dgij =
∂

∂aij

∣∣∣∣∣
u

θ,ρA,a∗mn

 ∂gs
∂ρA

∣∣∣∣∣
θ,akl

 , Ags =
∂2gs
∂(ρA)2

∣∣∣∣∣
u

θ,aij

, Lgijkl =
∂2gs

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρA

.

(5.45)

The superscript g indicates that the corresponding quantity is from the Taylor ex-

pansion of gs. Furthermore, whether aij refers to Eij or εij does not affect the values

of Uxs , Pxij, Axs , and Dxij, where the superscript x denotes either g or fp. However,

the choice of Eij or εij affects the values of Lxijkl, for a given x. Therefore, we define

Cxijkl ≡ Lxijkl for aij = Eij, and Kxijkl ≡ Lxijkl for aij = εij. As will be evident later, the

quantities Lxijkl are the elastic constants.

We can relate the coefficients of the Taylor expansions to some of the quantities

introduced previously. First, if we substitute φave = ρA and F = Fs in Eqs. (5.31)

and (5.32), it is clear from Eq. (5.45) and the definition of gs in Eq. (5.38) that

Cgijkl = HE
ijkl, and Kgijkl = Hε

ijkl. (5.46)

In other words, the quantities Lgijkl (i.e., Cgijkl and Kgijkl) are the PFC elastic constants.

Second, we show that Pfpij is equal to the stress tensor evaluated at the undeformed

state by considering Eqs. (5.37) and (5.43):

Pfpij =
∂f ′s
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

=
1

V
∂Fs
∂aij

∣∣∣∣∣
u

θ,a∗mn,NA

= T uij, (5.47)

where we emphasize that constant ρ′A is identical to constant NA. However, Pgij 6= T uij

because the constant-ρA condition does not equal to the constant-NA condition and

because gs is the free energy density measured with respect to the deformed frame
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whereas f ′s is the free energy measured with respect to the undeformed frame. For

isotropic pressure at the undeformed state, or T uij = −δijPu, the rotational invariance

of the free energy requires the quantities Pxij and Dxij to be represented by scalar

matrices (scalar multiples of the identity matrix) and we denote the value of their

diagonal entries to be Pxs and Dxs , respectively.

Third, from Eq. (5.43) and the definition of f ′s in Eq. (5.39), we can write

Lfpijkl =
∂2f ′s

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

=
1

V
∂2Fs

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,NA

. (5.48)

Comparing the above expression to that in Eq. (5.37), we obtain

Cfpijkl = Cijkl, and Kfpijkl = Kijkl, (5.49)

which means that the quantities Lfpijkl (i.e., Cfpijkl andKfpijkl) are the TE elastic constants.

For a cubic material under isotropic pressure at the undeformed state, the rela-

tionships between Cxαβ and Kxαβ is analogous to those in Eq. (5.18):

Cx11 = Kx11 − Pxs , Cx12 = Kx12, Cx44 = Kx44 −
Pxs
2
, (5.50)

where we note that the sign of Pxs is the opposite of the sign of Pu. These relationships

are derived from the same procedure described from Eq. (B.1) to (B.6) in Appendix

B.

5.5.3 Relationships Between the Coefficients of Taylor Expansions

We can now derive the relationships between the coefficients of the Taylor expan-

sions. In particular, we are interested in the relationships between HE
αβ (Hε

αβ) and

Cαβ (Kαβ), which are essentially the relationships between Lfpαβ and Lgαβ. This is ob-

tained by substituting ρA = ρ′A/J and gs = f ′s/J into Eq. (5.44), using the following
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expressions for J [92]:

J → (1 + ε11)(1 + ε22)(1 + ε33) (5.51)

or

J →
√

(1 + 2E11)(1 + 2E22)(1 + 2E33), (5.52)

depending on whether Eij or εij is considered. We then expand the resulting expres-

sion around the undeformed state and equate the coefficients of the Taylor expansion

with those from Eq. (5.42). We obtain the following relationships:

Ufps = Ugs

Pfps = Pgs − Ugs ρ′Au + gsu

Dfps = Dgs −Agsρ′Au

Afps = Ags. (5.53)

When we consider aij = Eij, we have

Cfp11 = Cg11 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs + Ugs ρ′Au − gsu

Cfp12 = Cg12 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs − Ugs ρ′Au + gsu (5.54)

and when aij = εij, we obtain

Kfp11 = Kg11 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs

Kfp12 = Kg12 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs − Ugs ρ′Au + gsu. (5.55)

The relationships in Eqs. (5.54) and (5.55) above not only facilitate conversions
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between the PFC and TE elastic constants, but also quantify the difference between

the PFC and TE elastic constants in terms of thermodynamic quantities. These

thermodynamic quantities are the coefficients of the Taylor expansion in Eq. (5.44),

which can be related to the thermodynamic quantities from the Taylor expansion in

Eq. (5.42) through the relationships in Eq. (5.53). For example, the quantity Pgs in

the above equation can be related to Pfps , which is in turn equal to the negative of

the pressure evaluated at the undeformed state (−Pu).

The thermodynamic quantities that quantify the difference between the PFC and

TE elastic constants depend on the specific parameterization of the model and in gen-

eral are nonzero. Furthermore, these quantities pertain to the undeformed state that

is characterized by the limit of strain approaching zero (or the limit of ξ approaching

zero). Therefore, we conclude that these quantities do not generally vanish at the

zero-strain limit, which also implies that the PFC and TE elastic constants are not

generally identical at this limit.

We now present verifications of Eqs. (5.54) and (5.55) from numerical calculations.

Specifically, we compare the values of Cfpαβ and Kfpαβ calculated from two different

procedures. The first procedure is described in Section 5.3.2, which is how we obtained

the TE elastic constants. We denote the resulting quantities Cfp1αβ and Kfp1αβ . The

second procedure is to use Eqs. (5.54) and (5.55), and we denote the resulting values

Cfp2αβ and Kfp2αβ . To use the second procedure, we calculate Cgαβ and Kgαβ from the

procedure in Section 5.4, which is the general procedure to calculate the PFC elastic

constants. We also need to calculate the values of Pgs , Dgs , Ugs , Ags, gsu, and ρ′Au from

the following equations:

Pgs =
1

3

∂

∂ξ

(F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

, (5.56)
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Dgs =
1

3

∂

∂ξ

∣∣∣∣∣
ξ=0

θ,φave

 ∂

∂φave

(F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
θ,ξ

 , (5.57)

Ugs =
∂

∂φave

(Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,ξ

, (5.58)

Ags =
∂2

∂φ2
ave

(Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,ξ

, (5.59)

gsu = Fn(ξ, φave)
∣∣ξ=0

, (5.60)

ρ′Au = φave
∣∣ξ=0

= φ′ave. (5.61)

We note that since Cgαβ and Kgαβ and the quantities from Eqs. (5.56) to (5.60) are

evaluated at the undeformed state, they can be equivalently expressed as functions

of φave or φ′ave. Also, Eqs. (5.56) and (5.57) only apply to the isotropic deformation

(n = 1) whereas Eqs. (5.58) to (5.61) is valid for all types of deformation. We verify

that Cfp111 = Cfp211 and Cfp112 = Cfp212 from Figs. 5.2(a) and 5.2(b), respectively. We also

show that Kfp111 = Kfp211 and Kfp112 = Kfp212 from Figs. 5.2(c) and 5.2(d), respectively.

These results validate the relationships in Eqs. (5.54) and (5.55).

We do not report the relationship between Lfp44 and Lg44 from the method used

to obtain Eqs. (5.54) and (5.55) because the method does not yield a correct result.

The reason is that the definitions of J in Eqs. (5.51) and (5.52) only apply to the

deformations where the angles of the cubic unit cell are not distorted [92], which is

apparent from the fact that no off-diagonal elements of the strain tensors are present
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in either Eq. (5.51) or (5.52). Unfortunately, there is no general form of J in terms

of Eij and εij alone that would apply to all types of affine deformation.4 Therefore,

we can only obtain the correct relationships for the elastic constants that are defined

from the second derivatives of the diagonal elements of the strain tensors. This issue

is a topic for future investigation.

5.6 Chapter Summary

We have investigated the methods for calculating the isothermal elastic constants

using the PFC method and found that the procedure outlined in Refs. [64, 65, 78]

is not consistent with the definitions from the theory of thermoelasticity of stressed

materials [79, 80, 81]. The PFC elastic constants (from the procedure outlined in Refs.

[64, 65, 78] ) are calculated from variations in the free energy density associated with

various types of quasi-static deformations at a constant average number density. In

this work, we proposed an alternative procedure for calculating the elastic constants

(termed the TE elastic constants in this article) that are consistent with the definitions

from the thermoelasticity theory. The TE elastic constants are calculated from

variations in the total free energy per undeformed volume associated with quasi-

static deformations at a constant number of particles in the system. Comparing the

conventional and the proposed procedures, we found that the discrepancies between

the PFC and TE elastic constants result from the choices of the frame of reference

used to calculate the free energy density and the different constraints imposed upon

the quasi-static deformations. The numerical results using an existing PFC model

for BCC Fe show that the two procedures can yield significantly different values

of the elastic constants. Therefore, the TE elastic constants should be used when

parameterizing the PFC model.

4In order to obtain a general form of J , one can either express J in terms of uij or supplement
εij with ωij .
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Furthermore, we derived the relationships between the PFC and the TE elastic

constants using the energy functions formulated from the thermodynamic theory of

stressed solids [90, 91, 92]. These relationships were obtained by performing Taylor

expansions of and changes of variables to the energy functions. From the relationships,

we have quantified the differences between the PFC and TE elastic constants in terms

of thermodynamic quantities such as the pressure of the undeformed state.
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(a) (b)

(c) (d)

Figure 5.2: The plots of elastic constants as functions of φave, or equivalently φ′ave.
The elastic constants Cfp1αβ and Kfp1αβ are calculated from the procedure
described in Section 5.3.2, which is similar to how the TE elastic constants
are obtained. The elastic constants Cfp2αβ and Kfp2αβ are obtained from
Eqs. (5.54) and (5.55) which in turn employ the values of Cgαβ and Kgαβ
calculated from the procedure in Section 5.4.
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CHAPTER VI

Conclusion

In this thesis, we have performed computational studies of morphological evolution

in metallic-nanostructure heteroepitaxy and associated model development. Through

these studies, we have made three main contributions. The first contribution is an in-

vestigation of an energetic pathway from 2D to 3D morphologies of internal-defect-free

magnetic thin films. Considering the energetics of the misfit strain, misfit disloca-

tions, film surface and interface, we have identified the existence of a driving force

for solid-state dewetting for a single crystal, internal-defect-free film in which other

dewetting mechanisms mediated by grain boundaries or impurities are absent. We

have also shown how non-monotonic dependencies of the surface/interfacial energy

on film thickness, arising from the electronic effects, can give rise to the metasta-

bility of flat films with certain thicknesses. Thus, our discovery has furthered an

understanding of thermodynamic driving force behind morphological evolution in

magnetic-nanostructure heteroepitaxy, which is crucial to the development of tech-

niques for fabricating nanostructures.

Our second contribution is the numerical techniques to improve the prediction

capabilities of classical density functional theory (CDFT) and the phase-field crystal

(PFC) method, both of which are promising tools for modeling material phenomena

due to their atomic-scale resolutions and diffusive time scales. Specifically, we have
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proposed a rational function fit (RFF) to describe the two-body direct correlation

(DCF) in Fourier space. The DCF contains atomic-scale structural information and

represents atomic interactions in the CDFT and PFC formulations. The RFF al-

lows flexibility in capturing and altering specific features of the two-body DCF. This

flexibility allows us to increase the numerical efficiency of the CDFT model through

reduction of the short-wavelength contributions in the density profile while still re-

taining most of the model’s accuracy. Also, the combination of the RFF with the

conventional polynomial fit further provides flexibility in manipulating the DCF in

the PFC model. Thus, our technique is a part of an ongoing effort to make CDFT

and PFC method viable material modeling tools.

As our third contribution, we have investigated the methods for calculating isother-

mal elastic constants using the PFC method and found that the procedure outlined

in Refs. [64, 65, 78] is not consistent with the definitions from the theory of ther-

moelasticity of stressed materials [79, 80, 81]. Since the PFC model often utilizes

elastic properties to parameterize the model, it is important that they are computed

in a manner that is consistent with experiments and other types of simulations. We

have proposed an alternative procedure for calculating, using the PFC method, the

elastic constants that are consistent with the definitions from the thermoelasticity

theory. Furthermore, we have quantified the differences between the elastic constants

calculated using the conventional method and the proposed method using the energy

functions formulated from the thermodynamic theory of stressed solids [90, 91, 92].

This quantification not only facilitates conversions among the different sets of elastic

constants but also provides quantitative measures of the differences among them. The

impact of our work is that we have provided a thermodynamically consistent method

to parameterize the PFC method in order to consistently predict material properties.
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CHAPTER VII

Future Work

Building on our contributions, one can further an understanding of underlying

mechanisms behind morphological evolution in magnetic-nanostructure heteroepitaxy

by employing the CDFT or PFC model with appropriate parameterization to real

material systems. Using these tools, one can study the thermodynamics of the mor-

phological evolution, which is similar to our work based on continuum mechanics, but

without restrictions on the structure of the misfit dislocations or the morphology of

the film. This study will give insights into how the system’s evolution will be ther-

modynamically driven when there are multiple strain-relaxation mechanisms (such as

surface instability and misfit dislocation formation) occurring simultaneously.

The CDFT and PFC model not only allow one to perform thermodynamics stud-

ies, but also simulations of morphological evolution of an epitaxial system. In other

words, the kinetics of the growth is taken into account; this consideration is impor-

tant because the epitaxial growth can undergo a non-equilibrium process [48]. One

can employ these modeling tools developed here to study morphological evolution in

situations where kinetic processes are important such as those occuring at low tem-

perature and/or with high deposition rate [49]. This study will be beneficial not only

for fundamental understanding of the growth mechanisms, but also for designing and

improving technology of fabricating nanostructures.
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APPENDIX A

Gaussian Approximation of Density Profiles

We present a method to construct an approximate density profile using a Gaussian

function. We assume that the atomic probability density around each lattice site

located at Ri is represented by a Gaussian function of the form:

G(r,Ri) =
(αg
π

)3/2
exp

(
−αg|r−Ri|2

)
, (A.1)

where the parameter αg controls the peak width. We can construct the approximate

scaled atomic probability density profile, ng(r), with an scaled average density of n̄

from a summation of the individual Gaussian peaks:

ng(r) =
n̄

Gave

∑
i

G(r,Ri), (A.2)

where

Gave =
1

V

∫
V

∑
i

G(r,Ri)dr. (A.3)

The semi-analytical method utilized in this work minimizes the free energy as a

function of n̄ with respect to αg and the lattice spacing. We note that this method
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does not enforce the integral of the density to be the number of atoms in the volume;

this implies that there can be vacancies or interstitials in the system.
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APPENDIX B

Taylor Expansion of the Helmholtz Free Energy

In this section, the Taylor expansion of the Helmholtz free energy in Eq. (5.14) is

performed in order to derive the definitions shown in Eqs. (5.15), (5.16) and (5.17).

The expansion of F (θ, Eij, N) with respect to Eij around the undeformed state gives

[202]

F (θ, Eij, N) = F (θ, 0, N) + VT uijEij +
V
2
CijklEijEkl + ..., (B.1)

where T uij and Cijkl are the coefficients of expansions written as

T uij =
1

V
∂F

∂Eij

∣∣∣∣∣
u

θ,E∗mn,N

, (B.2)

and

Cijkl =
1

V
∂2F

∂Eij∂Ekl

∣∣∣∣∣
u

θ,E∗mn,N

, (B.3)

respectively. These are the definitions in Eqs. (5.15) and (5.16).

From the expansion in Eq. (B.1), one can change the variables from Eij to uij

using Eq. (5.10), and subsequently change the variables from uij to εij and ωij by
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using Eq. (5.13). The resulting expansion is

F (θ, εij, N) = F (θ, 0, N) + VT uij
(
εij +

1

2
(εmi + ωmi)(εmj + ωmj)

)
+
V
2
Cijklεijεkl + ..., (B.4)

where we omit the higher-order terms in εij and ωij for brevity, and we also use the

symmetric property of εij and antisymmetric property of ωij to simplify the above

expression. Despite the fact that the above expression contains both εij and ωij, the

free energy must still be dependent on only εij and not on ωij due to the require-

ment that the free energy be rotationally invariant [81]. By rearranging the above

expression and omitting terms with ωij, we obtain

F (θ, εij, N) = F (θ, 0, N) + VT uijεij +
V
2
Kijklεijεkl + ..., (B.5)

where

Kijkl = Cijkl +
1

4
(T uikδjl + T uil δjk + T ujkδil + T ujlδik). (B.6)

For a cubic material under isotropic pressure, Pu, where T uij = −Puδij, Eq. (B.6)

simplifies to Eq. (5.18).

From Eq. (B.5), we can write an alternative definition of T uij,

T uij =
1

V
∂F

∂εij

∣∣∣∣∣
u

θ,ε∗mn,N

, (B.7)

and define another set of elastic constants,

Kijkl =
1

V
∂2F

∂εij∂εkl

∣∣∣∣∣
u

θ,ε∗mn,N

. (B.8)
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These are the definitions in Eqs. (5.15) and (5.17).
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APPENDIX C

Calculations of Kαβ

In this section, we discuss two issues that arise when the elastic constants Kαβ

are calculated from the procedure similar to the one used to obtain Cαβ in Section

5.3.2. We illustrate the first issue by using this procedure to calculate Kαβ. We first

calculate QTE
n (φ′ave) from Eq. (5.27) and then use the chain rule to transform the

partial derivative as follows:

∂2

∂ξ2
=
∂2εij
∂ξ2

∂

∂εij
+
∂εij
∂ξ

∂εkl
∂ξ

∂2

∂εij∂εkl
, (C.1)

Using the above equation to transform the partial derivative in Eq. (5.27), we obtain

QTE
1 (φ′ave) = 3K11 + 6K12 = 3C11 + 6C12 − 3Pu,

QTE
2 (φ′ave) = 2K11 − 2K12 = 2C11 − 2C12 − 2P,u

QTE
3 (φ′ave) = K44 = C44 − Pu, (C.2)

where the second equality in each line is taken from Eq. (5.29) for comparison. From

Eq. (C.2), we find that the relationship between K44 and C44 is different from that

given in Eq. (5.18), which indicates that K44 calculated from the procedure above
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is inconsistent with the definition given by the thermoelasticity theory in Eq. (5.17).

The second issue when using the above procedure to calculate Kαβ is that the resulting

value of Kαβ will depend on the choice of deformation, which contradicts the fact that

elastic constants are material properties.

In order to understand the cause of these issues, we first consider why the pro-

cedure from Eqs. (5.26) to (5.29) can be used to calculate Cαβ. The reason is that

the Taylor expansion of Fn(ξ, φ′ave) from Eq. (5.26) with respect to ξ around the

undeformed state,

Fn(ξ, φ′ave) = Fn(0, φ′ave) +
∂Fn(ξ, φ′ave)

∂ξ

∣∣∣∣∣
ξ=0

ξ +
V
2
QTE
n (φ′ave)ξ

2 + ..., (C.3)

is equivalent to the Taylor expansion,

Fn(Eij(ξ), φ
′
ave) = Fn(0, φ′ave) + VTijEij(ξ) +

V
2
CijklEij(ξ)Ekl(ξ) + ..., (C.4)

for all deformation types up to the second-order terms in ξ. This equality is the

underlying assumption in Eq. (5.29) and we confirm this equality by the fact that we

obtain the same values of Cijkl for all types of deformation.

However, we find that, due to the small-strain approximation, the expansion in

Eq. (C.3) is not equivalent to the Taylor expansion,

Fn(εij(ξ), φ
′
ave) = Fn(0, φ′ave) + VTijεij(ξ) +

V
2
Kijklεij(ξ)εkl(ξ) + ..., (C.5)

for all deformation types up to the second-order terms in ξ. Therefore, the equality

in Eq. (C.2) will not be valid in general, and we have to instead calculate Kαβ from

Eq. (5.18). With this alternative method, we confirm that the same values of Kαβ

are obtained regardless of the choice of deformation types.
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für Physikalische Chemie, 119:277, 1926.

[20] J. de la Figuera, J. E. Prieto, C. Ocal, and R. Miranda. Scanning-tunneling-
microscopy study of the growth of cobalt on Cu(111). Physical Review B,
47(19):13043, 1993.

[21] F. C. Frank and J. H. van der Merwe. One dimensional dislocations. I. Static
theory. Proceedings of the Royal Society A, 198:205, 1949.

[22] F. C. Frank and J. H. van der Merwe. One-dimensional dislocations. II. Misfit-
ting monolayers and oriented overgrowth. Proceedings of the Royal Society A,
198:216, 1949.

[23] F. C. Frank and J. H. van der Merwe. One-dimensional dislocations. III. In-
fluence of the second harmonic term in the potential representation, on the
properties of the model. Proceedings of the Royal Society A, 200:125, 1949.

[24] H. Jenniches, M. Klaua, H. Hoche, and J. Kirschner. Comparison of pulsed
laser deposition and thermal deposition: Improved layer-by-layer growth of
Fe/Cu(111). Applied Physics Letters, 69(22):3339, 1996.

[25] I. N. Stranski and L. Krastanov. Zur theorie der orientierten ausscheidung von
ionenkristallen aufeinander. Sitzungsber. Akad. Wiss. Wien, Math.-naturwiss.
Kl., 146:797, 1938.

154



[26] O. Fruchart, P. O. Jubert, M. Eleoui, F. Cheynis, B. Borca, P. David, V. San-
tonacci, A. Lienard, M. Hasegawa, and C. Meyer. Growth modes of Fe(110)
revisited: a contribution of self-assembly to magnetic materials. Journal of
Physics: Condensed Matter, 19(5):053001, 2007.

[27] D. Sander, A. Enders, C. Schmidthals, D. Reuter, and J. Kirschner. Mechan-
ical stress and magnetism of ferromagnetic monolayers. Surface Science, 402–
404(0):351–355, 1998.

[28] I. V. Markov. Crystal Growth for Beginners: Fundamentals of Nucleation,
Crystal Growth, and Epitaxy. World Scientific, Singapore, 1995.

[29] Y. Pang and R. Huang. Nonlinear effect of stress and wetting on surface evo-
lution of epitaxial thin films. Physical Review B, 74(7):075413, 2006.

[30] P. Sutter and M. Lagally. Nucleationless three-dimensional island formation in
low-misfit heteroepitaxy. Physical Review Letters, 84(20):4637, 2000.

[31] R. Tromp, F. Ross, and M. Reuter. Instability-driven SiGe island growth.
Physical Review Letters, 84(20):4641, 2000.

[32] R. J. Asaro and W. A. Tiller. Interface morphology development during stress
corrosion cracking: Part I. Via surface diffusion. Metallurgical and Materials
Transactions B, 3:1789, 1972.

[33] M. A. Grinfeld. Instability of the interface between a nonhydrostatically stressed
elastic body and a melt. Akademiia Nauk SSSR Doklady, 290:1358, 1986.

[34] D. E. Jesson, K. M. Chen, S. J. Pennycook, T. Thundat, and R. J. Warmack.
Morphological evolution of strained films by cooperative nucleation. Physical
Review Letters, 77(7):1330, 1996.

[35] P. O. Jubert, O. Fruchart, and C. Meyer. Self-assembled growth of faceted
epitaxial Fe(110) islands on Mo(110)/Al2O3(1110). Physical Review B,
64(11):115419, 2001.

[36] P. O. Jubert, O. Fruchart, and C. Meyer. Magnetic properties of step-decorated
Fe nanostripes and dots grown on Mo(110). Journal of Magnetism and Magnetic
Materials, 242:565, 2002.

[37] W. L. Ling, T. Giessel, K. Thurmer, R. Q. Hwang, N. C. Bartelt, and K. F.
McCarty. Crucial role of substrate steps in de-wetting of crystalline thin films.
Surface Science, 570(3):L297, 2004.

[38] K. F. McCarty, J. C. Hamilton, Y. Sato, A. Saa, R. Stumpf, J. de la Figuera,
K. Thuermer, F. Jones, A. K. Schmid, A. A. Talin, and N. C. Bartelt. How
metal films de-wet substrates-identifying the kinetic pathways and energetic
driving forces. New Journal of Physics, 11:043001, 2009.

155



[39] D. J. Srolovitz and S. A. Safran. Capillary instabilities in thin-films .1. Ener-
getics. Journal of Applied Physics, 60(1):247, Jan 1986.

[40] W. W. Mullins. Theory of thermal grooving. Journal of Applied Physics,
28(3):333, 1957.

[41] C. M. Kennefick and R. Raj. Copper on Sapphire - Stability of thin-films at
0.7-Tm. Acta Metallurgica, 37(11):2947, 1989.

[42] F. R. N. Nabarro. Dislocations in a simple cubic lattice. Proceedings of the
Physical Society, 59(332):256, 1947.

[43] R. Peierls. The size of a dislocation. Proceedings of the Physical Society, 52:34,
1940.

[44] J. Malzbender, M. Przybylski, J. Giergiel, and J. Kirschner. Epitaxial growth
of Fe on Mo(110) studied by scanning tunneling microscopy. Surface Science,
414(1-2):187, 1998.

[45] H. Bethge, D. Heuer, C. Jensen, K. Reshoft, and U. Kohler. Misfit-related
effects in the epitaxial growth of Iron on W(110). Surface Science, 331-333:878,
1995.

[46] S. Murphy, D. M. Mathuna, G. Mariotto, and I. V. Shvets. Morphology
and strain-induced defect structure of ultrathin epitaxial Fe films on Mo(110).
Physical Review B, 66(19):195417, 2002.

[47] I. V. Shvets, S. Murphy, and V. Kalinin. Nanowedge island formation on
Mo(110). Surface Science, 601(15):3169, 2007.

[48] A. Enders, R. Skomski, and J. Honolka. Magnetic surface nanostructures.
Journal of Physics: Condensed Matter, 22(43):433001, 2010.
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