
Mechanisms of Controlled Sharing for Social

Networking Users

by

Lujun Fang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Assistant Professor Kristen R. LeFevre, Chair
Assistant Professor Eytan Adar
Assistant Professor Michael J. Cafarella
Professor Hosagrahar V. Jagadish
Assistant Professor Qiaozhu Mei

To my wife, Mu Yiwen,
and my parents, Fang Ying and Dai Jianping.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Kristen LeFevre. During

my 5 years of Ph.D. study and research in Michigan, Kristen taught me how to be

a good researcher, and prepared me mentally and skill-wise for future challenges in

my career. Without Kristen’s guide and help, I could have never achieved so much

during my Ph.D. research. But what I learnt from Kristen is more than just how to

conduct world-class research. In fact, the problem solving skills and the ability of

independent and critical thinking that I developed during my work with Kristen can

be used for all occasions in my life.

I would like to thank my other committee members: H.V. Jagadish, Eytan Adar,

Michael Cafarella and Qiaozhu Mei, who spent valuable time on my dissertation. I

would also like to thank my collaborators at Google and Yahoo!, where I spent three

wonderful internships. They are Philip Bohannon, Anish Das Sarma, Alex Fabrikant,

Alon Halevy, David Huffaker, Hongrae Lee, Jessica Staddon, Fei Wu, Cong Yu, and

fellow interns Reynold Xin and Saranga Komanduri. In particular, I thank Anish

Das Sarma and Cong Yu, who provided me great mentorships at both Yahoo! and

Google, and helped me write REX paper on which Chapter 4 of this dissertation is

based. I thank Alex Fabrikant, with whom I collaborated on the circle sharing paper

while I was interning in Google, on which Chapter 5 of this dissertation is based.

It is a great honor to be part of the Michigan database group, and it was an

amazing experience to work with following past and current database group members:

iii

Dolan Antenucci, Rajesh Bejugam, Matt Burgess, Shirley Zhe Chen, Daniel Fabbri,

Fernando Farfan, Magesh Jayapandian, Heedo Kim, Fei Li, Bin Liu, Allie Mazzia,

Arnab Nandi, Eric Li Qian, Anna Shaverdian, Manish Singh, Aaron Tami, Jing

Zhang. And I would also like to thank my other friends in the Computer Science

and Engineering department: Yudong Gao, Junxian Huang, Fangjian Jin, Xiaoen

Ju, Yi Li, Feng Qian, Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Yunjing Xu, Jie

Yu, Caoxie Zhang, Xinyu Zhang, Zhao Zhe.

I would also like to thank people who I met before my Ph.D. and inspired me

to pursue research in computer science. I thank Wen Cao who taught me basics of

programming and algorithms in high school and Yonghui Wu, Zhongzhi Zhang and

Shuigeng Zhou for their mentorships in Fudan University while I was an computer

science undergraduate.

Finally I would like to thank my family. My wife Yiwen Mu and my parents Ying

Fang and Jianping Dai are always my biggest believers and supporters. They keep

me motivated and optimistic during my long journey of Ph.D.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Background and Related Work . 2
1.2 Challenges . 5
1.3 Approaches and Contributions . 6
1.4 Dissertation Organization . 8

II. Privacy Wizard: Privacy Setting Recommendation for Profiles 9

2.1 Problem Overview . 9
2.2 Wizard Framework . 11

2.2.1 Preliminaries . 11
2.2.2 Generic Wizard Design . 12

2.3 Active Learning Wizard . 14
2.3.1 Preference Model as a Classifier . 16
2.3.2 Feature Extraction . 16
2.3.3 Uncertainty Sampling . 19
2.3.4 Incremental Maintenance . 21

2.4 Evaluation . 22
2.4.1 Collecting Preference Data from Real Users 22
2.4.2 Experimental Setup . 24
2.4.3 Comparing Policy-Specification Tools 25
2.4.4 Comparing Features . 30

2.5 Related Work . 31
2.6 Summary . 34

III. Share Smart: Audience Recommendation for Shared Content 36

3.1 Problem Overview . 36
3.2 Problem Statement . 39
3.3 Interest Targeting . 41
3.4 Interest Group Construction . 43

v

3.4.1 Group Modularity . 43
3.4.2 Individual Filtering . 45
3.4.3 Group Filtering . 45
3.4.4 Interest Group Expansion . 46

3.5 Experimental Results . 48
3.5.1 The Twitter Dataset . 48
3.5.2 Interest Targeting . 49
3.5.3 Audience Group Summarization Algorithms 50
3.5.4 Modularity and Interest Density Tradeoff 51

3.6 Related Work . 51
3.7 Discussion . 53
3.8 Summary . 54

IV. REX: Relationship Explanation for Entity Pairs 55

4.1 Problem Overview . 55
4.2 Fundamentals . 59

4.2.1 Knowledge Base . 59
4.2.2 Relationship Explanation . 61
4.2.3 Properties of Explanations . 63

4.3 Explanation Enumeration . 65
4.3.1 Explanation Enumeration Framework 66
4.3.2 Path Explanation Enumeration . 68
4.3.3 Path Explanation Combination . 71

4.4 Interestingness Measures
and Explanation Ranking . 76

4.4.1 Structure-based measures . 78
4.4.2 Aggregate Measures . 78
4.4.3 Distribution-Based Measures . 80
4.4.4 Explanation Ranking . 81

4.5 Experiments . 83
4.5.1 Experimental Settings . 83
4.5.2 Performance of Enumeration Algorithms 84
4.5.3 Performance of Ranking Algorithms 86
4.5.4 Measure Effectiveness . 90

4.6 Related Work . 93
4.7 Summary . 95

V. Look Who I Found: Understanding the Effects of Sharing Curated Friend
Groups . 97

5.1 Problem Overview . 97
5.2 Overview of the Analyses . 100

5.2.1 Google+ Circle Sharing Feature . 100
5.2.2 Data Overview . 101
5.2.3 Analysis Road Map . 101

5.3 Categorizing Shared Circles . 102
5.3.1 Methodology . 102
5.3.2 Circle Clustering . 106

5.4 Impact of Shared Circles . 109
5.4.1 Methodology . 110
5.4.2 Edge Growth . 110
5.4.3 Structure of Edge Growth . 114
5.4.4 Circle Creation and Expansion of Recipients 115

vi

5.5 Recommending Circles to Share . 117
5.6 Related Work . 123
5.7 Summary . 125

VI. Conclusion and Future Work . 127

6.1 Contributions . 128
6.2 Future Work . 129

BIBLIOGRAPHY . 130

vii

LIST OF FIGURES

Figure

1.1 User interface for controlled sharing on Facebook (as of May 2012). 3

1.2 User interface for controlled sharing on Google+ (as of May 2012). 4

2.1 A sample user’s neighborhood graph, and her privacy preferences toward Date of
Birth. (Shaded nodes indicate allow, and white nodes indicate deny.) Notice that
the sample user’s privacy preferences are highly correlated with the community
structure of the graph. 13

2.2 Privacy Wizard Overview . 13

2.3 Example friend data with extracted features, including community-based features
(G0, G1, etc.) . 14

2.4 Screenshot of user study application, general questions 23

2.5 Screenshot of user study application, detailed questions. 23

2.6 Effort vs. Average Accuracy tradeoff (within limited effort 100) 26

2.7 Comparison Summary (Static Case); Difference between tools is statistically sig-
nificant based on a paired t-test . 27

2.8 Comparison Summary (Dynamic Case); Difference between tools is statistically
significant based on a paired t-test . 29

2.9 Effects of class distribution (Sstatic score) . 30

2.10 Comparing features (DTree-Active) . 31

3.1 Community finding result without using interest information. Interested users are
marked black. 46

3.2 Community finding result using interest information. Interested users are marked
black. 46

3.3 Dendrogram generated by Group-Exp. Each node in the dendrogram is a friend
group. A node is black if at least one friend in the group is interest annotated.
Each horizontal dash line represents a cut of the dendrogram. 49

3.4 Tradeoff between group modularity and interest density for Group-Exp1 52

viii

4.1 Related entities feature on left panel of Google (left) and Yahoo! (right). 57

4.2 An example explanation for “Lujun Fang” & “Kristen LeFevre” in the social net-
work domain. The graph pattern is on the left and one of the instances associated
with the pattern is on the right. 58

4.3 An example explanation for “Tom Cruise” & “Brad Pitt” in the entertainment
domain. The graph pattern is on the left and one of the instances associated with
the pattern is on the right. 58

4.4 A subset of the social graph. 60

4.5 A subset of the entertainment knowledge base from DBPedia. 60

4.6 Example explanation patterns. 62

4.7 Example non-minimal explanation patterns. 63

4.8 Example Minimal Explanations for Kate Winslet and Leonardo Dicarprio 67

4.9 Compare explanation enumeration algorithms. 84

4.10 Explanation enumeration time vs. number of explanation instances. 85

4.11 Effect of top-k (k = 10) pruning on monocount computing 87

4.12 Average compute time for different k in top-k pruning 88

4.13 Average time for computing top-10 explanation using distribution-based measure
Mposition. 89

5.1 Screenshot of the circle-sharing tool. 98

5.2 An example social network of 4 users. Each user has exactly one circle, and circle
memberships are represented by outgoing edges. 103

5.3 Probability density distributions of different circle features. 104

5.4 Within clusters sum-of-squares for different k when performing k-means circle clus-
tering. 107

5.5 Shared circle clustering using k-means (k = 4) algorithm. 108

5.6 Mean values of various circle metrics, for users who became circle-sharing-touched
(Figure 5.6(b) and 5.6(c)) or for circles got shared (Figure 5.6(a)) during the week
of November 2–8. The beginning and end of the circle sharing week are indicated by
the dashed lines. (The y-axis has been descaled to protect proprietary information.) 112

5.7 A comparison of shared and ordinary circles based on the probability density func-
tion of different features. 120

ix

LIST OF TABLES

Table

3.1 Comparison of different algorithms . 50

4.1 Comparing different interestingness measures. 92

5.1 Aggregated statistics of circle clusters. 109

5.2 Degree of user vs. new bidirectional link creations per week before and after a
circle-sharing event. (The six weekly link creation rate averages are rescaled to
protect proprietary information.) . 115

5.3 Correlation of sharing with various features. For both community and celebrity
circles. 122

5.4 Circle sharing prediction. 123

5.5 Targets of shared circles. 123

x

ABSTRACT

Mechanisms of Controlled Sharing for Social Networking Users

by
Lujun Fang

Chair: Kristen R. LeFevre

Social networking sites are attracting hundreds of millions of users to share infor-

mation online. One critical task for all of these users is to decided the right audience

with which to share. The decision about the audience can be at a coarse level (e.g.,

deciding to share with everyone, friends of friends, or friends), or at a fine level (e.g.,

deciding to share with only some of the friends). Performing such controlled sharing

tasks can be tedious and error-prone to most users. An active social networking user

can have hundreds of contacts. Therefore, it can be difficult to pick the right subset

of them to share with. Also, a user can create a lot of content, and each piece of it

can be shared to a different audience.

In this dissertation, I perform an extensive study of the controlled sharing prob-

lem and propose and implement a series of novel tools that help social networking

users better perform controlled sharing. I propose algorithms that automatically

generate a recommended audience for both static profile items as well as real-time

generated content. To help users better understand the recommendations, I propose

a relationship explanation tool that helps users understand the relationship between

a pair of friends. I perform extensive evaluations to demonstrate the efficiency and

effectiveness of our tools. With our tools, social networking users can control sharing

xi

more accurately with less effort. Finally, I also study an existing controlled-sharing

tool, namely the circle sharing tool for Google+. I perform extensive data analyses

and examine the impact of friend groups sharing behaviors on the development of

the social network.

xii

CHAPTER I

Introduction

Social networking sites like Facebook, Twitter, and Google+ are attracting hun-

dreds of millions of users to communicate and interact online everyday. For example,

Facebook alone reported over 1 billion active users as of December 2012 [4]. Social

networking users also created and shared a huge amount of information [30, 93, 61].

For example, on average a Facebook user has over 300 wall posts [30]. However, a

lot of times, information is shared to an improper audience, resulting in unpleasant

consequences [118, 117].

Research has shown that many users are indeed aware of and are concerned about

the risks of improper sharing [61]. However, the same users are struggling to pick

the right audience with whom to share [9, 41, 61, 82, 111]. The reasons behind this

kind of struggle is twofold. First, picking the right audience in real-time is indeed

difficult. An active social networking user has hundreds of friends [4], and under

different scenarios, the user might want to share information to different subsets of

friends (e.g., family, college friends, etc.). Second, existing tools are too preliminary

to help users to make the right sharing decisions [82]. Most of the time, a user needs

to hand-pick desired audience for each piece of content.

The goal of this dissertation is to design mechanisms that help social networking

1

2

users perform controlled sharing tasks more easily, more quickly, and more accu-

rately. For each piece of content users share online, either a fixed profile item or a

real-time generated post, I want to provide users with automatic audience recom-

mendations. I start to solve this problem by building a recommendation engine called

Privacy Wizard that recommends privacy settings for static profile items, with the

understanding of how relationships with friends are affecting the sharing decisions.

Then, by taking into consideration of the content being shared, I build Share Smart,

a recommendation engine that extends the power of Privacy Wizard to recommend

audiences for real-time generated content. Next, I propose a relationship explana-

tion tool REX that explains relationships between a pair of users (and more generally

a pair of entities) in a human-interpretable way. Finally, I perform a quantitative

study of the friend group sharing behaviors to understand the effect of sharing friend

groups.

1.1 Background and Related Work

In this section I introduce the basis of controlled sharing that helps us understand

the remaining of the thesis. I briefly review why controlled sharing is important

while difficult, how users can control sharing on social networking sites, and what

are the state-of-the-art tools that help users perform controlled sharing.

Social networking users share different kinds of information online reflecting dif-

ferent aspects of their lives [98, 50] (e.g., friends, family). Without proper access

control, some information could be shared to improper recipients, resulting in nega-

tive consequences [119, 117, 1]. For example, an Apple employee was fired because

his employer discovered his negative comments on Facebook about the company’s

products [1]. Therefore, proper tools are needed to allow social networking users to

3

share information to only those they selected, e.g., a subset of their friends.

(a) A user creates a post, and then clicks “custom” button to enter the audi-
ence picking interface.

(b) The user picks some pre-created friend lists and individ-
ual friends as the audience.

Figure 1.1: User interface for controlled sharing on Facebook (as of May 2012).

Facebook and Google+ allow their users to share content to a specific subset of

their friends. Figure 1.1 and Figure 1.2 show the user interfaces for controlled sharing

on Facebook and Google+, respectively. In either social networking site, a user can

create a piece of content and then select a subset of their friends as the audience.

The user can pick these target friends individually, or use pre-created friend lists.

Although these interfaces allow users to perform controlled sharing, most users

still find it difficult to specify the right audience in real-time. Studies have consis-

4

Figure 1.2: User interface for controlled sharing on Google+ (as of May 2012).

tently shown that users struggle to express and the right target audience [10, 40,

62, 83, 110], due in part to complex and unusable interfaces [110]. At the time of

sharing, a user might not recall immediately who are on the social networking sites,

and handpicking the audience is also time-consuming.

To make the audience selection process easier, social networking sites allow users

to create friend lists that include groups of friends. (On Google+ such friend lists

are called “circles”.) For example, on Google+ users have four default user lists:

friends, family, acquaintance, and following. However, creating such friend lists can

be time-consuming and difficult for users, because a social network user can have a

lot friends (e.g., the average Facebook user has 130 friends [4]), and numerous lists

may be required since target audience can be different for different pieces of items.

The address this problem, a lot of tools are proposed to help users create friend

lists [3, 5, 20]. Most of these tools use machine learning algorithms to identify groups

of similar or related users. Also notice that not all of these friend lists are created for

the purpose of information sharing (e.g., the “following” circle on Google+ is a user

list created mostly for the purpose of information consumption), and pre-created

lists might not satisfy all possible sharing scenarios a user might encounter. These

tools are complementary to the focus of this thesis. Our recommendation tools can

take advantage of existing user lists to simplify the recommendation. However, if

the audience cannot be described by one single existing friend list, our tools can use

5

the combination of individual friends and friend lists to describe the recommended

audience.

1.2 Challenges

Controlled sharing is about deciding whether to share specific information with a

specific set of friends or not. Therefore, two major factors affect a sharing decision:

relationships to the friends and the content to be shared.

Example I.1. Consider three different sharing decisions from a user:

1. Deny sharing of a party photo to her family members.

2. Allow sharing of a party photo to her college friends.

3. Allow sharing of basic profile information to her family members.

Decisions 1 and 2 are different (deny vs. allow) because relationships to friends are

different (family members vs. college friends). It is appropriate for college friends to

see a party photo of the user while not appropriate the family members. Decisions

1 and 3 are different (deny vs. allow) because content to be shared are different (a

party photo vs. basic profile information). It is appropriate for family members to

see the user’s basic profile information but not a party photo.

Therefore, the major challenges in designing controlled sharing aiding tools are to

properly extract and model both relationships and content and to generate automatic

audience recommendations based on both relationships and content:

• Relationship and content extraction: The first challenge is to properly

extract and represent users relationships to their friends as well the content to

be shared. It is also desirable to summarize and represent the relationships in

a human-interpretable way so that users can decide if the summarized relation-

ships are correct and make adjustment if necessary.

6

• Audience recommendation: With proper extraction and representation of

relationships and content, the next challenge is then make accurate audience rec-

ommendation based on these two factors. In particular, following requirements

are desirable while generating audience recommendations:

– High effectiveness, low user effort: Our system should provide accurate

recommendation and minimize the user effort to perform controlled sharing.

– Human-interpretable recommendations: Recommendation should be

easily interpretable. A recommendation system cannot provide 100% accu-

rate recommendation at all times. It is important that the rationale behind

the recommendation can be easily explained to the users so that the users

can make easy adjustments.

1.3 Approaches and Contributions

In order to address the problem of controlled sharing, this dissertation makes four

main contributions. The first contribution is a novel privacy policy recommendations

system called Privacy Wizard. Privacy Wizard makes audience recommends for

fixed profile items (e.g., gender, age) by building privacy preference models for social

networking users based on their connections to friends. Privacy Wizard does not take

into consideration of content to be shared. Given a fixed profile item, the wizard aims

to figure out which subset of friends the user wants to share with by asking minimum

number of questions to the user. The key of the algorithm is to incrementally build

the privacy preference model based on the user’s feedback. We use active learning

techniques to pick the best questions and require the user’s feedback. The trained

model can be used to recommend the audience to the user. If the user already

picked the audience, the model can also be used to detect the potential errors in the

7

audience picked by the user. A prototype of Privacy Wizard is built as a Facebook

application in which Facebook users can specify their privacy settings using our tool.

We systemically evaluated our algorithm and demonstrated the effectiveness of our

algorithm.

The second contribution of this dissertation is an audience group recommender

Share Smart for real-time generated content. Share Smart extends the recommen-

dation power of Privacy Wizard by handling dynamic items (e.g., a status update)

in addition to static profile items. In Share Smart, friend groups are summarized in

real-time by taking into consideration of both shared content and the connections

between users. A metric “group modularity” is proposed to measure the goodness

of a friend group with regard to a specific piece of content. Novel algorithms are

designed to find friend groups that are both interested in the content and of high

group modularity. We perform experiments to demonstrate the effectiveness of our

algorithm.

The next contribution of this dissertation is a system called REX that explains

the relationships between two social networking users in a human-interpretable way.

The relationships are extracted from the social graph and used for the purpose of

helping users understand the relationship-based recommendations generated by Pri-

vacy Wizard and Share Smart. Since the problem of relationship explanation is more

generally applicable than the social network domain, REX actually tries to address

the more general problem of explaining the relationship between a pair of entities

using a base knowledge graph. We formally define relationships as well as interesting-

ness measures for relationships. We also propose algorithms to efficiently enumerate

and rank the explanations. We perform extensive experiments to demonstrate the

effectiveness and efficiency of our algorithm.

8

The final portion of this dissertation studies the impact of an existing controlled-

sharing technology, namely Google+ Circles. Both Facebook and Google+ allow

users to create lists / circles for controlled sharing. However, these lists are typically

reserved for personal use (e.g., user Alice creates her own set of lists, but she does

not have any visibility into other users’ lists). One notable exception to this rule

is a recent ”circle-sharing” feature, introduced on Google+, which allows users to

create and share circles with other users. In the final chapter, we study the impact

of this tool, specifically focusing on characterizing the types of circles most frequently

shared and the impact of the feature on network growth.

1.4 Dissertation Organization

The remaining of the dissertation is organized as follows: Chapter II introduces

Privacy Wizard, which recommends privacy policies for fixed profile items. Chap-

ter III introduces Share Smart, the audience recommender for real-time generated

content. Then Chapter IV discusses how to summarize the relationships between

a pair of users (and more generally a pair of entities) from a graph and how these

relationships can be ranked and presented to a user in a human-understandable way.

Next, Chapter V performs detailed analyses on the friend group sharing behaviors.

Finally we conclude in Chapter VI.

Part of dissertation is from published conference proceedings from the same au-

thor. For example, Chapter II about modeling privacy preferences using relation-

ships are based on [48] in WWW 2010 and a demo presented in a CCS 2010 [47].

Chapter IV about relationship explanation is based on the VLDB 2012 paper [49].

Chapter V about friend group sharing analyses is based on the WebSci 2012 pa-

per [46].

CHAPTER II

Privacy Wizard: Privacy Setting Recommendation for
Profiles

2.1 Problem Overview

In this chapter, I propose Privacy Wizard, a privacy policy recommendation tool

for profiles on social networking sites. The goal of Privacy Wizard is to automatically

configure a user’s privacy settings for profiles with minimal effort from the user.

A growing number of social networking and social media sites allow users to cus-

tomize their own privacy policies for profiles. For example, Facebook has a “Privacy

Settings” page, which allows users to specify which pieces of profile data each friend

is allowed to view. Facebook also allows users to create friend lists, and then specify

whether a piece of profile data is visible or invisible to all friends in a particular list.

Unfortunately, studies have consistently shown that users struggle to express and

maintain such policies [10, 40, 62, 83, 110], due in part to complex and unusable

interfaces [110]. On Facebook, for example, the user must manually assign friends

to lists; because the average Facebook user has 130 friends [4], the process can be

very time-consuming. Worse, numerous lists may be required since a user’s privacy

preferences can be different for different pieces of profile data (e.g., Home Address

vs. Religious Views).

The goal of Privacy Wizard is to automatically configure a user’s privacy settings

9

10

for profiles using only a small amount of effort from the user. The design and

implementation of a suitable wizard present a number of difficult challenges. Ideally,

the wizard should satisfy the following requirements:

• Low Effort, High Accuracy: The wizard may solicit input from the user. Research

has shown, however, that users have trouble reasoning holistically about privacy

and security policies [102, 83]. Thus, the user’s input should be simple in form,

and also limited in quantity.

At the same time, the settings chosen by the wizard should accurately reflect the

user’s true privacy preferences. A naive approach would ask the user to manually

configure her privacy settings for all friends. While this approach may produce

perfect accuracy if carried to completion, it also places an undo burden on the

user.

• Graceful Degradation: It is difficult to predict the amount of input that a particular

user will be willing to provide. As the user provides more input, the accuracy of

the resulting settings should improve. However, the wizad should assume that the

user can quit at any time.

• Incrementality: The settings constructed by the wizard should gracefully evolve

as the user adds new friends.

In response to these challenges, I developed a generic framework for the design of

a privacy wizard, which is described in Section 2.2. One of the key insights behind

our approach is the observation that real users conceive their privacy preferences

according to an implicit set of rules. Thus, using machine learning techniques, and

limited user input, it is possible to infer a privacy-preference model (i.e., a compact

representation of the rules by which an individual conceives her privacy preferences).

This model, in turn, can be used to configure the user’s settings automatically.

11

As one instance of the generic approach, I have developed the active-learning pri-

vacy wizard described in Section 2.3. The wizard implements the privacy-preference

model by learning a classifier. In the classifier, the features used to describe each

friend, including community membership, are extracted automatically from the data

visible to the user. The wizard provides very simple user interactions: Leveraging the

machine learning paradigm of active learning, it iteratively asks the user to assign

privacy labels (e.g., allow or deny) to specific, carefully-selected, friends. As the user

provides more input, the quality of the classifier improves, but the user can stop at

any time. Further, the wizard adapts gracefully as the user adds new friends.

To evaluate our solution, I conducted a detailed study of real users. Using raw

privacy preferences, which I collected from 90 real Facebook users, the experiments in

Section 2.4 show two important things: First, our wizard achieves a significantly bet-

ter effort-accuracy tradeoff than alternative policy-specification tools. On average,

if a user labels just 25 (of over 200) friends, the wizard configures the user’s settings

with > 90% accuracy. Second, communities extracted from a user’s neighborhood

are extremely useful for predicting privacy preferences.

2.2 Wizard Framework

2.2.1 Preliminaries

A user’s privacy preferences express her willingness (or unwillingness) to share

profile information with each of her friends. Formally, for a particular user, we will

denote the user’s set of friends as F . We will denote the set of information items in the

user’s profile as I. At the lowest level, the user’s privacy preferences can be expressed

in terms of the function pref : I × F → {allow, deny}. If pref(i, f) = allow, this

means that it is the user’s preference to allow friend f to see profile item i.

We will use the term privacy preferences to refer to the user’s idealized policy; we

12

will use the term privacy settings to refer to the policy that is actually encoded and

enforced by the social networking site. The privacy settings can also be viewed as a

function: setting : I × F → {allow, deny}.

For a particular friend set F and data item set I, the setting accuracy is the

proportion of preferences correctly encoded by settings. Formally,

(2.1) Accuracy =
|{(i, f) ∈ I × F : pref(i, f) = setting(i, f)}|

|I × F |
.

2.2.2 Generic Wizard Design

This section describes the design of a generic privacy wizard. Motivating the

design is the fundamental observation that real social network users actually conceive

their privacy preferences based on unique sets of implicit rules. The details of our

user study are postponed to Section 2.4.1, but the intuition is illustrated with an

example.

Example II.1. Figure 2.1 shows the neighborhood of a sample user, and her privacy

preferences toward Date of Birth. Each node in the graph represents one of the user’s

friends; there is an edge between two nodes if there is a friend relationship between

them.

In the user’s neighborhood network, observe that there are group of nodes clus-

tered together. (We plotted Figure 2.1 using the Fruchterman-Reingold force-based

layout, which places topologically near nodes close together, and others far apart.)

In social networks research, these groups are commonly called communities. We have

manually denoted some apparent communities on the figure: G0, G1, etc. Observe

also that the user’s privacy preferences tend to break down along the lines of the

community structure. She is willing to share her Date of Birth with the majority of

her friends. However, there are two communities (labeled G20 and G22) with whom

13

G0
G1

G2

G3
G
20

G
21

G
22

Figure 2.1: A sample user’s neighborhood graph, and her privacy preferences toward Date of Birth.
(Shaded nodes indicate allow, and white nodes indicate deny.) Notice that the sample
user’s privacy preferences are highly correlated with the community structure of the
graph.

she does not want to share this data item. This suggests that the user has implicitly

constructed her privacy preferences according to a set of rules, and that these rules

are related to the underlying community structure of her friend network.

Based on this observation, and in response to the requirements outlined in the

introduction, we propose a generic framework for constructing a privacy wizard,

which is shown in Figure 2.2. The framework consists of three main parts:

!"#$%&'(

!")*)")+&)

,-.)/

!"#$%&"

'($&#)$*&

Privacy

Settings

User Input

Answer

Question

Visible Data

Alice

Bob

Carol

Dave

(Auto-configure)

Figure 2.2: Privacy Wizard Overview

14

Age Gender G0 G1 G2 G20 G21 G22 G3 Obama Fan Pref. Label

(Alice Adams) 25 F 0 1 0 0 0 0 0 1 allow

(Bob Baker) 18 M 0 0 1 1 0 0 0 0 deny

(Carol Cooper) 30 F 1 0 0 0 0 0 0 0 ?

Figure 2.3: Example friend data with extracted features, including community-based features
(G0, G1, etc.)

• User Input: The wizard solicits input from the user regarding her privacy pref-

erences. In the most general case, this is in the form of questions and answers. At

any point, the user may quit answering questions.

• Feature Extraction: Using the information visible to the user, the wizard selects

a feature space ~X. Each of the user’s friends can be described using a feature vector

~x in this space.

• Privacy-Preference Model: Using the extracted features and user input, the

privacy wizard constructs a privacy-preference model, which is some inferred char-

acterization of the rules by which the user conceives her privacy preferences. This

model is used to automatically configure the user’s privacy settings. As the user

provides more input, or adds new friends, the privacy-preference model and con-

figured settings should adapt automatically.

Of course, each of these components is quite general. In the next section, we will

describe one specific instantiation of the framework.

2.3 Active Learning Wizard

In this section, we will describe a specific instantiation of the generic framework

outlined in the previous section. In building the wizard, one of our goals was to

keep the user interaction as simple as possible. It is widely accepted that users

have difficulty reasoning holistically about privacy and security policies [102, 83]. In

contrast, it is easier to reason about simple, concrete examples. Thus, our privacy

15

wizard solicits input from the user by asking her preference (allow or deny) for

specific (data item, friend) pairs (i, f) ∈ I × F . Without loss of generality, in the

remainder of this section, we will assume that the data item i is fixed (e.g., Date of

Birth), and the wizard simply asks the user to assign a preference label to a selected

friend f ∈ F .

Example II.2. The privacy wizard interacts with the user by asking a series of

simple questions. For example:

Would you like to share DATE OF BIRTH with ...

Alice Adams? (y/n)

Bob Baker? (y/n)

Carol Cooper? (y/n) ...

Given this form of user interaction, it is natural to view the preference model

as a binary classifier, trained using the friends that the user has labeled. However,

because the user’s effort is limited and unpredictable, it is important that the privacy

wizard “ask the right questions,” or intelligently request that the user provide labels

to the most informative unlabeled friends. In the machine learning literature, this

scenario, in which the learner can actively query the user for labels, is commonly

known as active learning.

In the remainder of this section, we will first describe the construction of a clas-

sifier for predicting privacy preferences. Then, we will describe feature extraction,

based on visible data, including automatically-extracted communities. Finally, we

will describe the application of a particular active learning technique known as un-

certainty sampling [80].

16

2.3.1 Preference Model as a Classifier

For a particular social network user, it is natural to view the privacy-preference

model as a classifier. Each of the user’s friends f can be represented by a vector of

extracted features ~x in a feature space ~X (see Section 2.3.2).

Using a set of labeled training examples (in this case, labeled friends) Flabeled,

many well-known algorithms (e.g., Decision Trees, Naive Bayes, Nearest Neighbor,

etc.) can be used to infer a classifier. (We tried several such algorithms in our exper-

iments.) In the most general sense, the classifier uses a feature vector representation

of a friend to predict the friend’s privacy label. Formally, for a particular data item

i ∈ I, the classifier can be viewed as a function of the form p̂ref : ~X → {allow, deny}

The resulting classifier can be used to predict the user’s privacy preferences for

unlabeled friends in Funlabeled. It is important to point out that, in the context of the

privacy wizard, we will assume that the labels the user assigns explicitly to friends

in Flabeled are always correct. The classifier p̂ref is only used to configure the user’s

privacy settings for friends whom she has not labeled explicitly.

2.3.2 Feature Extraction

In order to build a reasonable classifier, it is important to select a good set of

features. For the purposes of this work, we considered two main types of features:

features based on extracted communities, and other profile data.

• Community Structure: Let Flabeled and Funlabeled denote the user’s labeled and

unlabeled friends, respectively. We can automatically extract a set of communities

from the user’s full neighborhood (i.e., Flabeled∪Funlabeled, and the edges connecting

these friends) using techniques described in Section 2.3.2. Each extracted commu-

nity can be regarded as a boolean feature (i.e., a particular friend belongs to the

17

community or not). For example, suppose that we have extracted a community

G1 from the network. If a particular friend belongs to G1, then that friend has

feature value G1 = 1; otherwise, G1 = 0.

• Other Profile Information: There are additional attributes in the user’s friends’

profiles that can be used as features. Since our study wizard is implemented in the

context of Facebook, we consider the following when they are visible to the user:

Gender, Age, Education history (high school and college), Work History, Rela-

tionship Status, Political Views, and Religious Views. These items can be directly

translated to features. For example, Gender has nominal values {male, female}.

In addition, the user’s friends’ online activities can be used, including Facebook

groups, “fan” pages, events, and tagged photos. For these, we use binary features,

which indicate whether a particular friend is a member.

Example II.3. As a simple example, Figure 2.3 shows a set of labeled friends, using

a feature-vector representation. For example, Bob is a member of the extracted

communities G2 and G20, and Alice is a “fan” of Barack Obama. The user has

assigned preference labels to Alice and Bob, but Carol’s label is unknown.

In the remainder of this section, we briefly describe how we extract communities

from the user’s neighborhood network.

Community-Based Features

In the study of social networks, a network is often said to have a community

structure if its nodes can naturally be separated into groups, where the nodes in

each group are densely connected, but there are few connections between disparate

groups. For example, in Figure 2.1, it is easy to see several such communities, some of

which we have circled and labeled. From a sociological perspective, two individuals

18

in the same community are relatively more likely to know one another than two

individuals who are not in the same community.

Numerous algorithms have been developed for finding communities. (For an ex-

tensive survey on the topic, please see [53].) In this paper, our primary goal is

not to develop new community-finding algorithms. Instead, we will simply apply

a common algorithm based on the idea of edge betweenness [96]. Please note that,

in all cases, this algorithm can be replaced with any hierarchical (agglomerative or

divisive) community-finding algorithm.

When finding communities in a social network, it is often difficult to know the

right number of communities ahead of time. For example, in Figure 2.1, G0, G1,

and G3 seem to be well-defined communities. Looking at G2, however, it is not

immediately clear whether this is a single community, or if it makes sense to further

divide it into sub-communities G20, G21, and G22. This problem can be addressed

in several different ways. One option is to partition the network into communities

to maximize the modularity score [96]. In this case, the number of communities is

automatically selected based on modularity.

For the purposes of this work, it is not necessary to partition the graph into a single

set of communities. Because a user’s privacy preferences can be expressed at varying

degrees of granularity, it makes sense to retain some hierarchical structure (i.e.,

larger communities that fully contain several smaller communities). For example, in

Figure 2.1, we have marked a total of seven communities, but community G2 fully

contains three smaller communities.

In the remainder of the paper, we will extract multi-granularity communities

according to the following process: (1) First, we partition the full network into

communities using the edge-betweenness algorithm and maximizing modularity. (2)

19

For each resulting community, we discard the surrounding network, and view the

community as its own network. (3) We repeat this process recursively until each

community contains a single node.

Observe the community structure is only re-calculated when new friends are

added. Typically, this will be done offline. For the neighborhood networks typically

encountered in online social networks, which contain on the order of several hundred

friends, we do not expect the performance of the community-finding algorithm to be

a major issue.

2.3.3 Uncertainty Sampling

Ultimately, the accuracy achieved by the wizard depends on two factors: (1) The

number of friends that the user labels explicitly (these are always assumed to be

correct), and (2) The accuracy of the inferred classifier p̂ref in predicting the labels

of unlabeled friends. Since the amount of effort a user is willing to devote to labeling

friends is limited and unpredictable, it is important that we be able to learn an

accurate classifier with a limited amount of training data.

Motivated by the graceful degradation principle, which aims to achieve the best

accuracy possible, with the understanding that the user may quit labeling friends at

any time, we have chosen to address this problem using an active learning paradigm

known as uncertainty sampling [80].

Uncertainty sampling consists of two phases:

1. In the sampling phase, the wizard selects friends for the user to label.

2. Then, during the classifier construction phase, the wizard uses the labeled ex-

amples to build the actual classifier (p̂ref), which is used to configure the user’s

settings.

The sampling phase works as follows. Initially, all of a user’s friends are unlabeled.

20

The sampling proceeds in rounds. During each round, the wizard selects the k

unlabeled friends about which it is most uncertain, and asks the user to assign labels

to these friends. The process terminates after all friends have been explicitly labeled,

or when the user abandons the process, whichever comes first.1

The uncertainty of a class label is traditionally measured by training a classifier

(using labeled training data Flabeled), and using this classifier to predict the distri-

bution of class labels associated with each friend in Funlabeled. In our case, there

are two possible class labels, and the predicted distribution of class labels is of the

form P (allow) = Pallow, P (deny) = Pdeny, where Pallow ∈ [0, 1.0], Pdeny ∈ [0, 1.0],

and Pallow + Pdeny = 1.0. The uncertainty score is computed based on the entropy

of the predicted class distribution: Entropy =
∑

i∈{allow,deny}−Pi logPi. A large

entropy value indicates high uncertainty; entropy is minimized when Pallow or Pdeny

equals 1, which indicates that the probabilistic classifier is 100% sure about the class

prediction.

After the sampling phase terminates, the classifier construction phase trains the

classifier p̂ref using the labeled friends Flabeled.

Note that the classification algorithms used in the sampling phase and the classifier

construction phase need not be the same [79]. We tried a variety of classifiers in our

experiments. From a practical perspective, there may be additional considerations.

If the sampling process is interactive, it is important that the classifier used in that

phase be efficiently updatable; classifiers such as Naive Bayes appear to be a good

option for that phase. In contrast, for typical-size friend lists, we do not expect

performance to be much of a concern in the classifier-construction phase. For this

part, user attention, rather than performance is the main bottleneck; in most cases,

1In principle, we can also use the uncertainty score to suggest to the user when it would be prudent to stop
labeling.

21

the classifier can be trained within a few seconds.

2.3.4 Incremental Maintenance

Of course, users are always adding new friends. Suppose that the user has labeled

an initial set of friends, using the active learning wizard described above. Ideally, we

would like to satisfy the following two goals with respect to incremental maintenance:

1. When the user adds new friends, the classifier p̂ref , which has been learned by

the wizard, should make reasonable predictions for the new friends, without any

additional input from user.

2. After the user adds new friends, the user may continue labeling friends. The

wizard should use these new labels, in combination with the user’s original

input, without wasting the original labels.

Both of these goals are easily satisfied by the active learning wizard. Given the

original set of friends F with a subset Flabeled of them labeled, when some new set

of friends F ′ is added, the privacy settings for the new friends can be predicted by

constructing p̂ref using Flabeled, and applying it to each friend in F ′.

The only part of this process that is tricky is managing features based on com-

munity structure. Recall that community-membership features are extracted from

the labeled and unlabeled data. Thus, when new friends arrive, we will need to

reconstruct the communities using F ∪ F ′. However, the labels that the user has

assigned to individual friends remain valid. For example, in Figure 2.3, after new

friends are added, the community structure may change (i.e., we may need to replace

features G0, G1, ...). However, the label allow still applies to the (new feature-vector

representation of) friend Alice Adams.

Finally, if new friends are added and the user wishes to devote more effort to

refining her privacy settings, this is easy. The wizard simply adds F ′ to Funlabeled,

22

and continues the sampling process described in the last section.

2.4 Evaluation

The goal of our experiments is to analyze the effort-accuracy tradeoff achieved by

our privacy wizard. Specifically, we want to answer the following two questions:

• How effective is the active learning wizard, compared to alternative policy-

specification tools?

• Which features (e.g., community structure, profile information, etc.) are the

most useful for predicting privacy preferences?

To answer these questions, we collected raw privacy preference data from a pop-

ulation of real Facebook users. Our results indicate that the active-learning wizard is

more effective than existing alternatives. The results also indicate that automatically-

extracted communities are very effective features for predicting privacy preferences.

2.4.1 Collecting Preference Data from Real Users

As the basis for our evaluation, we collected detailed privacy preference informa-

tion from a group of real social network users. We conducted our study electronically

using Facebook. We selected Facebook in particular because of the availability of

an open development platform [2], and we built a Facebook application, which al-

lowed our study subjects (a set of Facebook users) to exhaustively label their privacy

preferences for all of their friends.

Our application presented each study subject with two questionnaires. The first

questionnaire consisted of a series of coarse-grained questions, which asked, for each

profile data item, whether the user would like to share the data item with all friends,

some friends, or no one. For the purpose of the user study, we selected a represen-

tative set of profile data items: Date of Birth, Home Address, Relationship Status,

23

Figure 2.4: Screenshot of user study application, general questions

Figure 2.5: Screenshot of user study application, detailed questions.

24

Photos, Political Views, Religious Views, and Status Updates. A screenshot of the

first questionnaire is shown in Figure 2.4.

The second questionnaire collected more detailed information. For each profile

data item for which the user selected some friends during the first phase, we solicited

detailed information during the second phase. The questionnaire listed the user’s

friends in a random order, and for each friend f , we asked the user to indicate her

preferred access level for the friend: Y ES (interpreted as allow), NO (deny). The

friends were presented in a sequence of pages, with 24 friends per page. A screenshot

of the second questionnaire is shown in Figure 2.5. (The names of the user’s friends

have been hidden for confidentiality.)

In addition to the privacy preference information, the Facebook application al-

lowed us to view the information about each subject’s neighborhood described in

Section 2.3.2.

A total of 45 people participated to our user study by labeling preferences. Of

the 45 respondents, 27 of them were male, and 18 of them were female. The re-

spondents are primarily the authors’ colleagues, and they volunteered to participate.

Our respondents had an average of 219 friends. The maximum number of friends was

826 and the minimum number of friends was 24. During the first phase, 30 of the

respondents indicated that at least one profile data item should be visible to some

friends. In total, there were 64 (user, data item) pairs that required fine-grained

privacy controls; that is, the users specified that these data items should be visible

to some friends.

2.4.2 Experimental Setup

Our experimental setup incorporated several open-source packages. For community-

finding, we used the implementation of the edge-betweenness in the iGraph li-

25

brary [8]. (We modified the algorithm as described in Section 2.3.2 to find hierarchical

communities.) For classification, we used the NaiveBayes, NearestNeighbors, and

DecisionTree operators found in the RapidMiner [90] package.

2.4.3 Comparing Policy-Specification Tools

Our first set of experiments compares the active-learning wizard with alterna-

tive policy-specification tools. Because our other experiments (Section 2.4.4) show

that community-based features are extremely effective, we use these features for the

experiments in this section. We include results for the following three approaches:

• DTree-Active: This is a specific implementation of the active learning wizard

described in Section 2.3. We used a Naive Bayes classifier in the sampling phase,

and a decision tree to construct the final classifer.

• DecisionTree: To isolate the effects of the uncertainty sampling, we have also

implemented a strawman solution. Whereas DTree-Active selects samples based

on an uncertainty estimate, this algorithm selects samples at random. Like the

previous approach, it uses the labeled examples to train a Decision Tree classifier.

• BruteForce: As a baseline, we evaluated a strawman policy-specification tool

based on the following process: The user selects a default setting (in our experi-

ments, this is assumed to be the majority class label). Then, the user can assign

labels, one-by-one, to friends. Any friend left unlabeled is given the default label.

The effort required by this process is very similar to the effort required to manually

assign friends to lists, as required by the Facebook policy-specification tool.

In addition to the three tools described above, we also evaluated some variations

of the active-learning and random-sampling wizards. In particular, we tried using

alternative classifiers (Naive Bayes, K-Nearest Neighbors, and Decision Trees) for

26

Figure 2.6: Effort vs. Average Accuracy tradeoff (within limited effort 100)

both sampling and classifier construction. The results were quite similar, and they

are omitted for space.

Static Case

We begin with the static case, where the user is constructing a policy from scratch

for a static set of friends. As the user applies more effort (i.e., labels more friends),

using each of the policy-specification tools, we expect that the user’s setting accuracy

will increase.

Figure 2.6 illustrates this effort-accuracy tradeoff in a very rough way. The x-axis

shows the number of friends labeled (up to 100), and the y-axis shows the average

setting accuracy. (This is the average across all 64 (user, data item) pairs for which

we obtained detailed preference information in our user study.) As expected, the

active-learning approach (DTree-Active) outperforms the random-sampling approach

(DecisionTree), and both outperform BruteForce. The results for DTree-Active are

promising from a practical perspective, too; by labeling just 25 friends, users achieve

27

an average setting accuracy of over 90%.

Of course, by averaging across different users and data items, Figure 2.6 does not

capture all of the interesting details of the comparison. To understand the results

better, we also developed a scoring approach. Intuitively, for a particular (user, data

item) pair, the score Sstatic is a real number in [0, 1.0] that measures the normalized

area beneath the effort-accuracy curve; higher scores are better.

Definition II.4 (Static Score). For a particular user and data item, the effectiveness

of a policy-specification tool can be summarized using a score, where AccuracyF (E =

e) is the setting accuracy achieved after applying effort e on the set of friends F :

Sstatic =
∑|F |

e=0 AccuracyF (E=e)

|F | .

Using this scoring mechanism, our results are summarized in Figure 2.7, which

shows the mean Sstatic score, as well as the standard deviation, across all 64 (user,

data item) pairs:

Tool
Sstatic

mean std
DTree-Active 0.94 0.04
DecisionTree 0.92 0.05
BruteForce 0.88 0.08

Figure 2.7: Comparison Summary (Static Case); Difference between tools is statistically significant
based on a paired t-test

For each (user, data item) pair, we obtained a Sstatic score for each alternative

policy-specification mechanism. Observe that, for example, the scores obtained for

user Bob’s Date of Birth using DTree-Active and DecisionTree can be treated as a

dependent pair. Thus, we can test whether, for example, the Sstatic score for DTree-

Active is significantly better than the score for DecisionTree using a paired-sample

t-test. After performing this test, we discovered that, while the mean scores are sim-

ilar, the differences between the policy specification tools are statistically significant.

28

(DTree-Active is superior to DecisionTree, which is superior to BruteForce.)

Finally, while the results are omitted for space, we observed that for other classi-

fiers the results are similar (i.e., active learning is superior to learning from a random

sample, which is superior to the brute force approach).

Dynamic Case

The previous experiments focused on policy-specification for a static set of friends.

In this section, we continue comparing the three policy-specification tools, but this

time in the dynamic case, where the user adds new friends over time. In the following,

we will denote the initial set of friends F , and suppose that the user adds a new set

of friends F ′.

To capture the dynamic case, we extend the scoring approach described in the

previous section. Specifically, we will use two new scores: Spred and Sdynamic.

The first score (Spred) is based on the following scenario. Using one of the policy-

specification tools, the user assigns labels to e of the friends in the original set F

(i.e., expends effort e). Then, the new set of friends F ′ arrives, and we measure the

setting accuracy for the new friends,2 which we denote AccuracyF ′(E = e). Like

before, for a particular user and data item, we will measure this across all values of

e, and summarize the result with a single score.

Definition II.5 (Prediction Score). The prediction quality of a policy-specification

tool can be summarized using the following score. AccuracyF ′(E = e) is the pre-

dictive accuracy of the settings, trained using effort e, and applied to a new set of

friends F ′: Spred =
∑|F |

e=0 AccuracyF ′ (E=e)

|F | .

The second score (Sdynamic) is based on a slightly different scenario. In this case,

2For DTree-Active and DecisionTree, the settings for the new friends are obtained by applying the classifer to F ′.
The best BruteForce can do is assign each of the new friends the default label.

29

we assume that the user labels E friends (from the original set F). Then, a new set

of friends F ′ is added, and the user labels E ′ more friends. We will use the notation

AccuracyF∪F ′(E = e, E ′ = e′) to denote the resulting setting accuracy for the full

friend set F ∪ F ′. In this case, we will measure the accuracy across all values of E

and E ′; Sdynamic is a real number in [0, 1.0].

Definition II.6 (Dynamic Score). The effectiveness of a policy-specification tool in

a dynamic setting can be summarized using the following score:

Sdynamic =
∑|F |

e=0

∑|F ′|
e′=0

AccuracyF∪F ′ (E=e,E′=e′)

|F ||F ′| .

Using both of these scoring mechanisms, our results are summarized in Figure 2.8.

In order to simulate the case of adding new friends, for each user, we randomly

pick 30% of their friends as new friends while the remaining are regarded as the

original friends. Again, based on a paired test, we also observe that DTree-Active is

significantly better than DecisionTree, which is significantly better than BruteForce.

Tool
Sdynamic Spred

mean std mean std
DTree-Active 0.92 0.05 0.82 0.15
DecisionTree 0.90 0.06 0.81 0.13
BruteForce 0.87 0.10 0.74 0.18

Figure 2.8: Comparison Summary (Dynamic Case); Difference between tools is statistically signif-
icant based on a paired t-test

Impact of Class Distribution

In our final set of comparison experiments, we observe that it is common for

different users to have different distributions of privacy preferences. For example,

user A may allow 90% of his friends to view Date of Birth, while user B may assign

only 40% of friends allow permission. Ideally, we should adopt a policy-specification

tool that adapts to these differences.

30

In order to measure the effect of skewed class distribution on each of the policy-

specification tools, we use p to represent the proportion of labels in the minority

class (i.e., 0 ≤ p ≤ 50%), and we partition our experimental data into three groups

according to p value: p ∈ (0%, 10%], p ∈ (10%, 30%] and p ∈ (30%, 50%].

Figure 2.9 summarizes the results, using the Sstatic score. In cases where p is

low (i.e., users have homogeneous preferences for all friends), the improvement from

using the active learning wizard is small. However, when the p value is larger (e.g.,

p ∈ (30%, 50%]), the active learning wizard is particularly helpful.

Tool
p ∈ (0%, 10%] p ∈ (10%, 30%] p ∈ (30%, 50%]
mean std mean std mean std

DTree-Active 0.95 0.04 0.93 0.02 0.92 0.06

DecisionTree 0.95 0.03 0.90 0.03 0.88 0.04

BruteForce 0.94 0.04 0.88 0.07 0.80 0.05

Figure 2.9: Effects of class distribution (Sstatic score)

2.4.4 Comparing Features

Our final set of experiments compares the effectiveness of different alternative

features, which can be used by learning-based wizards. In preliminary studies, we

observed that DTree-Active, which uses a Naive Bayes classifier during the sampling

phase, and then constructs a DecisionTree clasifier using the labeled data, resulted

in the highest accuracy of all our active learning wizards (by a slight margin). Thus,

in this section, we will present results based on the DTree-Active tool.

We compared five different combinations of features: (For more details, see Sec-

tion 2.3.2.)

• Community These experiments used only features based on extracted commu-

nities.

• Profile These experiments used only profile-based features such as gender, age,

education history (high school and college), work history, relationship status,

31

Features
Sstatic Sdynamic Spred

mean std mean std mean std
Community 0.94 0.04 0.92 0.05 0.82 0.15

Profile 0.87 0.07 0.84 0.08 0.67 0.15
Activity 0.89 0.07 0.88 0.08 0.78 0.16

None-Comm 0.87 0.06 0.85 0.07 0.70 0.15
All 0.92 0.05 0.89 0.06 0.78 0.13

Figure 2.10: Comparing features (DTree-Active)

political views, and religious views.

• Activity These experiments used only features based on online activities such as

Facebook groups, “fan” pages, events, and tagged photos.

• None-Comm These experiments used only Profile and Activity features.

• All These experiments used all of the above.

Figure 2.10 summarizes our results. In addition, as described in the last section,

we also conducted a paired sample t-test for each of the scores Sstatic, Sdynamic and

Spred). We observed that Community is statistically significant better than all other

feature combinations. It’s interesting to notice that features as profiles and online

activities are not helping much, it may be partially because that these features are

usually incomplete and they’re also conjecturable from the community features.

2.5 Related Work

The development of usable, fine-grained tools for protecting personal data is a

serious emerging problem in social media [10, 56, 60, 62, 64, 103]. In one study,

Acquisti and Gross discovered that while users of social networking sites (Facebook,

MySpace, Friendster, etc.) expressed high levels of concern about their privacy, the

same users often did not implement strict privacy controls over their profiles. In

many cases, this appeared to be due to users’ poor understanding of the available

privacy controls and the visibility of their profiles [10, 62].

32

%Several recent papers have proposed novel user interfaces for specifying Facebook-

style privacy settings, but none has constructed a wizard of the style described in

this paper, which models and anticipates a user’s preferences based on limited user

input. Most related to our work is a pair of proposals by Adu-Oppong et al. [12] and

Danezis [42]. Both propose partitioning a user’s friends into lists, based on communi-

ties extracted automatically from the network, as a way to simplify the specification

of privacy policies. ([42] describes this partitioning as a way of inferring a privacy

“context.”) While both are related to our work, neither studies real users’ privacy

preferences to evaluate their proposal. Also, in both cases, the proposed tools are

based on partitioning friends into a fixed set of non-overlapping communities, which

does not resolve the challenge of community granularity.

In a mobile location-based application, Ravichandran et al. [101] studied the

problem of predicting a user’s privacy preferences (i.e., share her location or not)

based on location and time of day; however, this work did not consider taking an

underlying social network structure into account when making these decisions.

After a policy is specified, many have observed that it is important to provide

tools to help users understand the resulting settings. Lipford et al. proposed and

evaluated an “audience view,” which allows a user to view her profile as it appears

to each of her friends [83]. A variation of this interface appears to have been recently

adopted by Facebook. This work is quite complimentary to ours; while the audience

view helps a user to understand and evaluate the correctness of an existing policy, it

does not assist the user in creating the policy in the first place.

In a similar vein, recent work has proposed a methodology for quantifying the risk

posed by a user’s privacy settings [89, 84]; at a high level, a risk score communicates

to a user the extent to which his privacy settings differ from those of other users

33

who are close to him in the social network graph. Like the audience view, the score

provides feedback to the user regarding his existing settings, but it does not help

him in creating an initial policy. Further, the tools only provide a single score, so if a

user’s privacy settings are out of line, they do not communicate to the user precisely

how he should refine his settings in order to achieve a more acceptable configuration.

Fong et al. [52] and Carminati et al. [36, 37] look to formalize the access control

model required by social networking sites. Our work is complementary; the goal is

to assist users in expressing their privacy preferences.

In this paper, we have focused on helping users to express simple privacy settings,

which is a difficult task on its own. We have not considered additional problems

such as inference [125], or shared data ownership [109]. As a simple example of

the former, suppose that a user Alice wishes to hide her political affiliation. The

first problem, which is the focus of this paper, is to make sure that Alice can even

express this preference to the social networking site. However, even if the site hides

Alice’s political affiliation, it may still be possible for an attacker to infer the hidden

information [125]. (For example, if 95% of Alice’s friends are liberal, then there is a

good chance that Alice is also liberal.) Interestingly, it is often not possible for Alice

to prevent this kind of inference by simply configuring her own privacy settings. The

PrivAware system [22] makes an initial step toward quantifying the risk of this type

of inference; as a solution, the authors suggest removing certain friend relationships

to reduce the inference risk.

Broadly-speaking, social networking websites have led to a number of interesting

research questions in information security and privacy. For example, in 2007, Face-

book opened a development API, which allows developers to construct their own

applications leveraging user profile data [2]. This was met with some concern for

34

personal privacy; for example, one study revealed that applications written using

this API could often access significantly more information than necessary for their

core functionality [51]. As an initial solution to this problem, Felt and Evans pro-

posed a proxy-based architecture, which limits the amount of information available

to installed applications [51]. Singh et al. propose a trusted third-party mediator

called xBook [105]. Lucas and Borisov [85] and Anderson et al. [17] consider an even

more restrictive case in which users are reluctant to share their personal information

with the Facebook service.

Social networking sites may also enable new forms of classical attacks, including

phishing [28] and spam [32]. [43] considers the new risk to anonymous routing that

is posed by an attacker who knows users’ social network graphs.

Finally, recent work has focused on the privacy risks associated with publishing

de-identified social network graphs for research. Even if all profile information is

removed, it is often possible to re-identify individuals in the published data simply

based on unique graph topologies [18, 65, 94].

2.6 Summary

Privacy is an important emerging problem in online social networks. While these

sites are growing rapidly in popularity, existing policy-configuration tools are difficult

for average users to understand and use.

This chapter presented a template for the design of a privacy wizard, which re-

moves much of the burden from individual users. At a high level, the wizard solicits

a limited amount of input from the user. Using this input, and other information

already visible to the user, the wizard infers a privacy-preference model describing

the user’s personal privacy preferences. This model, then, is used to automatically

35

configure the user’s detailed privacy settings.

To illustrate this idea in concrete terms, I have built a sample wizard, which is

based on an active learning paradigm. I have also constructed a visualization tool,

which allows advanced users to view and modify the resulting model. Our experimen-

tal evaluation, which is based on detailed privacy-preference information collected

from 45 Facebook users, indicates that the wizard is quite effective in reducing the

amount of user effort, while still producing high-accuracy settings. The results also

indicate that the community structure of a user’s social network is a valuable resource

when modeling the user’s privacy preferences.

In the future, I plan to conduct more user studies to understand how users like the

wizard comparing to alternative privacy settings tools, and how much time users are

willing to put into the policy specification process. I will also consider other instances

of privacy wizards. For example, our active learning wizard solicits user input in a

very simple form (i.e., asking the user to assign a label to a (friend, data item) pair),

which is easy for the user to understand. Perhaps there are other questions that would

yield more information, or require less user effort. Also, in this work, I considered

three main sources of information in a user’s neighborhood when constructing the

privacy-preference model: communities, profile data and online activities. In the

future, other sources of information may be taken into account. For example, it

would be interesting to understand whether ideas such as tie strength [58] are useful

in predicting privacy preferences.

CHAPTER III

Share Smart: Audience Recommendation for Shared
Content

3.1 Problem Overview

In this chapter, I address the problem of real-time audience recommendation for

shared content. An active social network user generates lots of content, and each

piece of content can potentially be targeted to different groups of friends. Sharing

content to friends who are not interested can be bothersome to the content recipients.

To properly control the sharing of real-time content (I also call them dynamic items in

comparison with static items like gender and home address), the user needs to select

the groups of friends who would be interested in the content at the time of sharing,

which is a non-trivial task. Therefore, tools are needed to help users automatically

specify the content recipients.

One example scenario of social sharing is when a user Alice wants to share about

her recent ski strip. In the past, Alice has divided her friends into four groups (“High

school”, “College”, “Grad School” and “Family”). However, she realizes that only a

subset of her high school and college friends will be interested in the post. She wants

to select these two groups of friends and share the post only with them.

Privacy Wizard [48] in the previous chapter was able to help a user create access

control lists for static items. However, Privacy Wizard neither takes into considera-

36

37

tion the content of the item (e.g., ski trip) to be shared, nor generates the recommen-

dations in real-time. Thus, privacy wizard falls short in helping controlled sharing

for dynamic items, such as the real-time generated content that I am addressing in

this chapter.

This chapter proposes algorithms to help social network users automatically gen-

erate friend groups whose members would be interested in some given content. A

naive approach would simply select all friends who show interest in the content. For

example, the straw man would simply pick all Alice’s friends who mentioned “ski”

and show them as a ranked list based on the frequency of the mentions. This straw

man is undesirable for at least two reasons: 1. Non-active friends whom do not post

frequently will most likely be excluded in the sharing audience. 2. The user would

never go through all the suggested recipients one-by-one (e.g., The average number

of friends a Facebook user has is 130 [4]) and hence it is difficult to know if some

friends are wrongly included or excluded.

Groups that contain dense connections (i.e., ”communities”) are better choices

for this scenario. Users can easily recognize a community by looking at a few of its

members, and friends who do not post frequently will be included in the sharing

audiences if enough of their neighbors show interest in the content. Therefore, the

goal of this chapter is to find densely connected friend groups / communities that

contain friends who are interested in the given content.

There are two sub-problems that are necessary to achieve this goal: finding users

who show interest in the given content, and identifying friend groups that contain

all of the interested friends. I use existing state-of-the-art technology for the first

problem, representing posts and user profiles as a combination of term frequency and

topic features [67], and I put our focus on the second problem. A naive approach to

38

the second problem would be to identify communities from the network structure, and

then pick the communities that contain enough friends who have shown an interest in

the given content. For example, in the case of Alice, she would pick her High School

and College friend groups as the target groups. This is a reasonable simulation of

what users can do with current tools; friend groups are built beforehand, and then

when some new content is generated, the users pick target groups from the pre-built

groups [73].

The inherent shortcoming of the straw man is that a limited number of friend

groups will never cover the infinite number of types of content a user will potentially

want to share. For example, Alice’s High School and College friend groups are too

general to represent the friends who are interested in the ski trip. The desired target

audience is in fact two sub-groups of the pre-built groups. To overcome this problem,

I propose to encode both structural objectives (e.g., modularity) and content related

objectives (e.g., interests in the content) into a novel metric called group modularity,

and use a variant of an existing agglomerative community finding algorithms to

perform real-time generation of friend groups. I demonstrate that the proposed

algorithm finds high-quality friend groups that are tailored to the given content.

The main contributions of this chapter include:

1. I propose the problem of audience (friend) group recommendation problem for

shared content and formally define interest friend groups.

2. I propose novel algorithms for identifying interest friend groups.

3. I perform experiments and user studies to demonstrate the effectiveness of pro-

posed algorithms.

The remainder of this chapter is organized as follows: Section 3.2 formally de-

fines what are interest friend groups, Section 3.3, 3.4 discussed details of proposed

39

algorithms for interest friend group search. Section 3.5 performs evaluations. Sec-

tion 3.6 discusses related work and Section 3.7 provides some further discussions

about alternative solutions to our problem. Section 3.8 concludes.

3.2 Problem Statement

In this section I introduction some necessary definitions and formulate the problem

statement.

Neighborhood network

The user who is sharing content is called the target user, represented as u. Friend

group search happens in u’s neighborhood network N(V,E), where V is the set of all

u’s friends, and E is the set of connections between them. In the chapter I assume

all the edges in E are undirected.

Friends can be put into different friend groups. Each friend group G is a subset

of V .

User interest

A piece of content c represents what will be shared with the friends. A score

f(v, c)→ [0, 1] represents the probability that a friend v’s is interested in the content

c, with f(v, c) = 1 indicating that v is for sure interested in the content. As I will

see in Section 3.3, I can decide f(v, c) = 1 if I observe signals (e.g., v posted about

content similar to c) that v is interested in c. N(V,E) and all friends’ interest

scores computed for a piece of content c is called the c-interest annotated network,

or annotated network for short.

The interest mapping function f can be also applied to a group of friends G. One

way of defining f(G, c) is to compute it as the average of f(v, c) for all v ∈ G, and I

call it the interest density of the group.

40

Interest friend group recommendation

Given a piece of content, the goal is to find groups of friends who are interested in

the given content. More formally, given c, I want to properly choose and compute the

score functionf , and find friends groups G1 .. Gn that satisfy following requirements:

• High modularity [96]. Modularity is a widely used quantitative measure for

goodness of partition1 of a network into groups. High modularity indicates

dense in-group connections and sparse cross-group connections. But modularity

is not directly applicable to our problem since G1 ... Gn is most likely not a

partition of the network (e.g., some friends in the neighborhood network may

not be contained in the union of Gi). I consider a variation of the modularity

in which I consider only those edges associated with nodes in G1...Gn. For each

group Gi, users in the group should be densely connected, but users in the group

should be sparsely connected with users outside the group.

• High interest density. For each friend group Gi, the percentage of users who

showed interest in the content (f(Gi, c)) should be high.

• High interest coverage. Most of friends who are interested in the content should

be contained in G1...Gn. I.e., 1 −
∑

v/∈(G1...Gn) f(v,c)∑
v f(v,c)

should be high. In fact, I

never want to hide information from a user if she showed interest. Therefore

the interest coverage is always expected to be 1.

The high modularity requirement ensures that each detected group is a well-

connected component, but also that it is relatively disconnected from other parts of

the social network. Such groups are usually more meaningful and easier to interpret.

E.g., by looking at a few of members in the group, the target user should have a

good understanding of who is in the group. The change I made to the modularity
1G1, ..., Gn is a partition of a network N(V,E) if and only if

⋃
i Gi = V and ∀i,jGi ∩Gj = ∅.

41

definition is also intuitive. When I measure the goodness of the groups containing

all the interested friends, I don’t really care about how friends who are not in the

selected groups are connected. E.g., when Alice selected the subset of high school

and college friends who are interested in ski, how her family members and grad school

friends are connected with each other should not affect the goodness of groups Alice

picked. Details about this variation is described in Section 3.4.

The second and third requirements are unique to our problem, but they are quite

intuitive. Our final goal is to find groups to include all the friends who are interested

in the content but exclude friends who are not interested.

The solution to the problem contains two major tasks. The first task is interest

targeting, which is focused on computing each user’s interest to a piece of content

based on the information I know about the user. I use existing methods to achieve

the task (discussed in Section 3.3). The result of this task will give us an interest

annotated network. The next task, which is the focus of this chapter, is to find friend

groups within the interest annotated network (discussed in Section 3.4).

3.3 Interest Targeting

In this section, I discuss how I use existing algorithms to decide whether a user

is interested in a piece of content or not, based on the information I know about the

user. The general approach is to build an interest profile for the user and compare

the content with the interest profile [112, 67, 26].

Details of text mining algorithms used to build user profiles and compare content

can be data-dependent. For example, modeling users interests from new articles can

be very different from modeling user interests from tweets, due to difference of text

length. It is not our goal to improve user interest profile creation in general or for any

42

specific dataset. Instead, I show how I can apply a novel algorithm on our dataset

to obtain the interest annotated neighborhood network, which is used as input for

audience group summarization in the next section.

User interest profile

I use a Twitter dataset (details in Section 3.5) throughout this chapter. [67] per-

forms an empirical study about different text mining and topic modeling approaches

for tweets, which is applicable to our dataset. In particular, [67] demonstrates the ef-

fectiveness of summarizing Twitter user profiles by aggregating the tweets published

by users and using TF-IDF as well as topic features to represent user profiles.

I follow the same approach to model use interest profiles in our chapter. In

particular, for each user, I aggregate the terms in all the tweets of the user to obtain

a set of terms. Then, for all the users I crawled, I view the set of terms of each user

as a separate document, and train a topic model. For each user, I compute its topic

mixture from the trained topic model. I then combine the set of terms and the topic

mixtures to represent the user profile.

Identifying interested users

Given a piece of content c, I want to compare it with each friend v’s interest profile

to see if v is interested in the content or not. Similar to user profiles, the content can

be represented by a combination of terms and topic features. With both content and

user profile represented as feature vectors, I compute the similarity between a user

profile and a piece of content as cosine similarity between the feature vectors. I set

f(v, c) = 1 if the similarity is larger or equal to than a threshold, while f(v, c) = 0 if

the similarity is smaller then a threshold. The reason to convert the similarity score

to a binary score is that the final decision about sharing is binary: the target user

43

either share or not share the content with a particular friend.

The result of this interest targeting process is an interest annotated neighborhood

network, which includes the network structure of the target user’s neighborhood as

well as an annotation of whether each user in the network showed interest to the

content or not.

3.4 Interest Group Construction

In this section, I discuss the algorithms for constructing friend groups that are of

high modularity, high interest density and high interest coverage, given the interest

annotated neighborhood network generated in Section 3.3. In Section 3.2 I men-

tioned that the modularity used in our paper is a variant of the standard modularity

definition. I start this section by discuss in detail how this variant, called group mod-

ularity, is different from the standard one, and why it is needed. I then introduce

two straw man friend group searching algorithms, Indiv-Filter and Group-Filter, each

focusing only one aspect of the first two requirements. Finally, I propose algorithm

Group-Exp which search for interest friend groups by taking into consideration both

modularity and interest density.

3.4.1 Group Modularity

I call our variant of modularity group modularity, because it is defined over several

groups that cover only part of the network, instead of a partition of network like

modularity. But it helps to explain modularity in more detail before introducing

our definition of group modularity. For a partition P = G1, ..., Gn over the network

N , modularity[96] measures goodness of the partition following the intuition that

for a good partition, nodes in a same group should be densely connected but nodes

in different groups should sparsely connected. The modularity of the partition is

44

therefore computed as the difference between the actual density of edges in groups

G1, ..., Gn and the expected edge densities in groups in G1, ..., Gn in a random graph

N ′(E ′, V ′) where edges E ′ in the network are added randomly but nodes V ′ in the

network have the same degrees as the set of nodes V in the original network. More

formally, modularity is defined as:

(3.1) Q =
∑
i∈1..n

(eii − a2
i),

where eii = li/m, ai =
∑

i di/m, and m = |E|. eii captures the actually edge density

within group Gi, and a2
i captures the expected in-group edge density in Gi if the

edges are randomly connected.

However, for a set of node groups G′1, ..., G
′
n′ that is not necessary a partition of N ,

its modularity is undefined. But a similar goodness measure that captures high in-

group connections and low cross-group connections still makes sense. Therefore it is

desirable to have a variant of modularity for the set of groups that is not a partition.

I define a goodness measure called group modularity for a set of non-partition groups

to fill this gap. In particular, I compute group modularity very similarly as I compute

modularity, but when compute the percentage of all the edges that have nodes within

the same group, I consider only those edges that are associated with nodes inside

G′1, ..., G
′
n′ . More formally, the group modularity Q′ for a set of groups G′1, ..., G

′
n′ is

computed as:

(3.2) Q′ =
∑

i∈1..n′

m′

m
(eii − a2

i),

where m′ is the number of edges that are associated with nodes in G′1, ..., G
′
n′ .

One can easily verify that if G′1...G
′
n′ is in fact a partition over the network N ,

group modularity Q′ is equivalent to the standard modularity Q.

45

3.4.2 Individual Filtering

The first straw man algorithm for interest friend group search, Indiv-Filter, simply

pick all the friends who have shown interests in the given content, as computed

with the algorithm in Section 3.3. Once all the interested friends are selected, the

algorithm either put them into one group, or perform community finding algorithm

(e.g., [95]) among them to find the best partition, which ever achieves the best group

modularity defined in Section 3.4.1.

Indiv-Filter guarantees 100% interest density and coverage, as it includes all but

only those friends who shown interests to the content. But it is expected to have low

group modularity if some users don’t show their interests through their posts.

3.4.3 Group Filtering

Unlike Indiv-Filter, which tries to maximize interest density, the second straw

man, Group-Filter, aims to maximize modularity and then pick the groups to cover

all the interested friends. The algorithm contains two steps. The first step is to

perform community detection without the knowledge of interest annotation. The

second step is to compute the interesting score for each detected friend group and

filter out groups with no interested friends. Notice that in the first step, modularity

instead of group modularity is maximized. This is because the algorithm has no way

to know which subset of all the groups will contain interested friends.

Group-Filter is a reasonable simulation of what users can do with current tools

- friend groups are built beforehand, and then when some content is generated, the

users pick target groups among those pre-built groups [73]. The main drawback of

the Group-Filter algorithm is that it only generates fixed number of possible friend

groups, regardless of what type of content a user wants to share. Since the groups

46

Figure 3.1: Community finding result without using interest information. Interested users are
marked black.

Figure 3.2: Community finding result using interest information. Interested users are marked black.

are summarized without the knowledge of the user interest, the groups generated can

be either too general, too specific or simply inaccurate.

One example of friend groups generated by the algorithm is shown in Figure 3.1.

The algorithm recognize two friend communities without using the interest annota-

tion. However neither group is a good summarization as only small percentage of

users in each group are associated with the given interest. A better grouping solution

is shown in Figure 3.2.

3.4.4 Interest Group Expansion

Indiv-Filter and Group-Filter either exclusively generated groups based on inter-

ested friends or completely ignoring the interest targeting results when summarizing

friend groups. Therefore the generated audience groups are expected to be of ei-

47

ther extremely low modularity or low interest density. To overcome the problems,

I propose Group-Exp to generate friend groups that take into consideration of both

friend interests and modularity. In particular, Group-Exp can be viewed as a variant

of popular agglomerative community finding algorithm [95]. Group-Exp uses an ag-

glomerative approach to merge groups starting from each node in a separately group.

It maximizes group modularity (with regard to those groups containing at least one

interested friend) during the friend group summarization process.

More specifically, Group-Exp works at follows: Initially, each friend in the neigh-

borhood network is put into separately group. At each step, I pick two groups by

merging which maximum group modularity increase (or minimal group modularity

decrease) is achieved, and I put them into one group. I never merge two groups that

are unconnected, nor merge two groups that do not contain any interested nodes.

The iterative merge process repeats until no more merge is possible (i.e., each con-

nected components in the network is in a separate group). The merge process can

be represented as a dendrogram and an example of such dendrogram (by applying

our algorithm on the example network of Figure 3.1) is shown in Figure 3.3.

Each step in the merge process corresponds to a cut in the dendrogram and a

number k, indicating how many friend groups are there at that step. For example, in

Figure 3.3, initially k = 11 (when each friend is in its own group) and finally k = 1

(when all the friends are in the same group). For each step, when computing group

modularity, I consider only those friend groups containing at least one interested

friend. For example, at the k = 7 cut, there are 7 friend groups, but only two

interested friend groups (the group containing C,D,E, F,G and the group containing

J). Group modularity will be computed on these two groups.

Therefore, by choosing different cuts in the dendrogram, I will have different sets

48

of interested groups. Each set of groups represent a possible solution for audience

group recommendation, with different interest density and group modularity. To

automatically decide the best cut without user involvement, the algorithm could

pick the cut to maximize the group modularity. ([95] uses a similarity approach of

maximizing modularity to pick the best partition for a network).

Notice that although interest density is not explicitly encoded into the objective

function (i.e., group modularity), the fact that group modularity consider only inter-

ested friend groups helps generating friend groups that are of relative high interest

density. But it is still possible that the merge process favors merge low density groups

instead of high density ones, if the benefits of merge low density groups is high. One

modification to encourage high interest density groups generated first is to change

the initial partition of groups. Instead just put each node to a separate group, I first

perform community finding among interested nodes to maximize modularity for the

sub-network containing only the interested nodes. Then, assuming each non-interest

node is in its separate group, I apply the iterative merging process discussed above.

This modified version of Group-Exp is called Group-Exp1.

3.5 Experimental Results

In this section we compare different friend group summarization algorithms to

decide which algorithm achieve the best balance between modularity and interest

density. For all these algorithms and interest coverage.

3.5.1 The Twitter Dataset

We collected data from Twitter using the Twitter API during the first two weeks

of January 2013. We randomly selected a set of 50 users as the target users. For each

user u, we collected her friends (the users who are both following and followed by

49

Figure 3.3: Dendrogram generated by Group-Exp. Each node in the dendrogram is a friend group.
A node is black if at least one friend in the group is interest annotated. Each horizontal
dash line represents a cut of the dendrogram.

u), and the connections between them. (This set of users comprise the neighborhood

network of u as defined in the previous section.) For each u, and each friend of u,

we also collect up to 200 recent Tweets in order to summarize interests.

We also collect a second dataset of 3800 users for the purpose of training topic

models. We collect this data set in combination with the first data set to train topic

models to avoid bias topics in certain neighborhoods. The users we collected are

from WeFollow2. We sample users from each category on WeFollow and crawled 200

most recent tweets for each of them.

3.5.2 Interest Targeting

For the purpose of modeling user interests and interest targeting, we train a topic

model using a combination of the two Twitter datasets. We set number of topics to

be 100 and we use the LDA implementation in the Mallet toolkit3. We randomly

2WeFollow (www.wefollow.com) is a directory of Twitter users organized by area of interest.
3http://mallet.cs.umass.edu/

50

selected a sample of 70 (friend, status) pairs, and manually inspected if the targeting

results are correct. The best accuracy of 79% is achieved when similarity threshold

is set to 0.31.

The result of interest annotated neighborhood networks are used in the exper-

iments in the remaining section. To isolate the impact of possible inaccuracy (in

particular we want to avoid false positive; false negative is tolerable as it is equiv-

alent to have some more users who don’t post) of interesting targeting, we apply a

more restrictive interesting targeting schema to ensure the interest annotated friends

are indeed interested in the content. In particular, we mark a friend as interested

in the content if the user profile shared at least one term with the content and the

most probable topic of the content and the user profile are the same.

3.5.3 Audience Group Summarization Algorithms

In Table 3.1, we shown the group modularity and interest density achieved by

different friend group search algorithm Group-Filter, Indiv-Filter,Group-Exp, Group-

Exp1. For Group-Exp and Group-Exp1, we report the state in the dendrogram when

best group modularity is achieved.

Group Modularity Interest Density
Group-Filter 0.44 0.29
Indiv-Filter 0.12 1.0
Group-Exp 0.52 0.41
Group-Exp1 0.52 0.44

Table 3.1: Comparison of different algorithms

Group-Exp1 achieves the best balance between group modularity and interest

density. In fact Group-Exp1 and Group-Exp achieve both higher group modularity

and higher interest density than Group-Filter, demonstrating the effectiveness to

take into consideration of user interests during friend group summarization. This is

expected, since Group-Filter tries to maximize modularity for both interested and

51

non-interested groups while Group-Exp1 and Group-Exp focuses on maximizing group

modularity for only interested friend groups. Group-Exp1 achieves slightly higher

interest density to achieve the same maximum group modularity as Group-Exp.

Of course, Indiv-Filter always has perfect density. But its group modularity score

is very low, indicting no significant group structure are detected among them4. Of

course, better group modularity of Group-Exp1 and Group-Exp is at the expense of

adding friends who didn’t show explicit interest in the content. Later we will examine

that whether they are indeed not interested in the content, or just that they didn’t

show explicit interest in the content.

3.5.4 Modularity and Interest Density Tradeoff

In Group-Exp1 and Group-Exp, there should be a tradeoff between interest density

and group modularity as we are selecting different k to cut the dendrogram. Group

modularity increases at the expense of decreased interest density. We illustrate such

trade-off for Group-Exp1 in Figure 3.4. For each interest density point on x-axis, we

plot the best group modularity it achieved on y-axis. We observe that adding non-

interested nodes into the result friend groups indeed help increase group modularity.

But after group modularity achieve to certain point (e.g., 0.4), the benefits of adding

additional non-interested nodes is marginal.

3.6 Related Work

This chapter is closely related to work in social recommendation systems, social

network group and community identification, retweet prediction, and access policy

configuration.

Social recommendation systems: Social recommendations systems are appli-

4Modularity Q = 0 indicates no community structure. Modularity 0.3 < Q < 0.7 indicates that there is significant
community structure [54].

52

Figure 3.4: Tradeoff between group modularity and interest density for Group-Exp1

cations of traditional recommendations systems in the online social network domain.

Fundamental recommendations approaches include content-based recommendation

and collaborative filtering based recommendation as well their combination - hybrid

systems [34]. Various social recommendation systems have been proposed [63, 25, 33].

For example, [63] discusses item recommendation in an enterprise social network, [25]

proposes an article and news sharing and recommendation system using email. Our

system handles recommendation of “friend groups”, which is different from all these

previous works.

Summarizing user profile is usually an important subcomponent for personalized

recommendation [112, 114]. [25] builds bag-of-words user profile to enable article

recommendation. Similar approaches are used in our paper.

Automatic friend group creation: There are also tools and products that aim

to help social network users create friend groups [5, 23, 16, 73, 107]. Community

finding algorithms [53, 59, 96, 95] are often used as the underlying algorithms in these

53

tools, but none of these works takes into consideration the content to be shared while

creating the friend groups.

Re-tweet prediction Specific to the Twitter, there are quite also a few works

discussing retweet prediction [123, 116, 99]. Based on the author related features,

tweet content features as well as retweet structure features, machine learning model

are built to predict whether or how often a retweet or hash tag will be re-tweeted.

However, the re-tweet prediction problem is different from our problem for the fol-

lowing reasons: 1. retweet prediction relies heavily on non-content features, such as

the in/out-degree of the tweet author, the retweet structure if the tweets are already

retweeted; 2. it only decides whether a tweet will be retweeted, but not to whom to

retweet.

Access policy configuration and recommendation: Online access policy

configuration and recommendation is closely related with audience recommendation,

and there have been quite a few works in the vein [48, 75, 108, 23, 83]. [48] first

proposed a privacy wizard to help online social network users to automatically con-

figure privacy settings based on the user’s attributes and social connections. [108, 75]

considered the problem of recommending privacy settings for images using tags and

metadata associated with the images.

3.7 Discussion

In this chapter, I focused on making audience recommendations in the form of

friend groups. Alternatively, I can also make an audience recommendation as a

ranked list of friends. This can be achieved using a two-step approach: (1) Attempt

to infer missing interests from the social graph and the interests you know [92].

(2) Use the basic interest-based targeting as mentioned in this chapter. The main

54

advantage of recommending friend groups instead of individual friends (even with

the help of missing interests inferring from the social graph) is easy interpretation.

For example, if recommended audience is in the form of friend groups, the user needs

to only inspect a few friend groups. But if recommended audience is in the form of

a long list of friends, the user might need to inspect each friend in the friend list one

by one and try to think about who are missing in the list. Of course, friends ranking

and friends listing has its own merit when it comes to some scenarios. For example,

if a user only wants to share a piece of content with limited number of top contacts,

ranking is more useful [25]. Also, when ranking of friends is concerned, it is quite

similar to standard social recommendation systems. Therefore, both content based

recommendation and collaborative filtering algorithms can be used [34]. While this

is orthogonal to our focus, a better ranking for friends could potentially improve the

quality of friend groups I identified.

3.8 Summary

In this chapter, I introduce a novel system Share Smart to make audience recom-

mendations for real-time generated content. I define group modularity to measure

to goodness of groups with regard to a given piece of content, and propose novel

algorithms to find friend groups that are both interested to the content and of high

group modularity. I perform experiments to demonstrate effectiveness of proposed

algorithms.

CHAPTER IV

REX: Relationship Explanation for Entity Pairs

4.1 Problem Overview

At the heart of the Privacy Wizard and Share Smart is the ability to map rela-

tionships (between the target user and her friends) to privacy decisions. But a lot of

times, how the target user is related to her friends, or how her friends are related to

each other are not clear even to the target user herself. Such unawareness of certain

relationships can lead to privacy recommendations that look mysterious to the target

user.

Example IV.1. Alice is surprised to see Privacy Wizard suggests to deny Bob (a

friend she met in a reading club) to see her wall posts. But Bob is actually connected

with most of Alice’s professional contacts who have no access to Alice’s wall posts,

and Alice didn’t notice those connections in the beginning. Explanation of Bob’s

relationships to these friends could help Alice reconsider her privacy decisions with

Bob.

Example IV.2. Carol should not be allowed to see Alice’s photos but Privacy Wiz-

ard suggests Carol should see Alice’s photos because Carol didn’t input her profile

information and is therefore excluded from a certain blacklist based on profile in-

formation. If this auto-detected relationship between Alice and Carol is shown to

55

56

Alice, Alice could realize the reason for this mis-recommendation and make proper

adjustment to the recommendation.

In both examples, explanations of the relationships between two users could

greatly improve the usability of Privacy Wizard. Therefore, in the chapter, I fo-

cus on this problem of relationship explanation. Given a pair of social networking

users, our goal is to effectively and efficiently produce explanations that describe how

these two users are related, based on the social graph. The social graph contains

users as well as objects like movies and books that users like, events that users attend,

photos that users are tagged in. As a very simple example of an explanation based

on the social graph, when to explain how “Lujun Fang” is connected with “Kristen

LeFevre”, I would like to let the users know that they both stayed at some same

institution(s) (with edges from “Lujun Fang” and “Kristen LeFevre” nodes connect-

ing to an institution node, and the edges are labeled as “student” and “professor”

respectively), perhaps including the name(s) of the institution(s), say “University of

Michigan”. This example is shown in Figure 4.2.

But it is interesting to notice that the relationship explanation problem is not

unique in the social network domain. In fact, relationship explanation for social

networking users can be viewed as instance of the more general problem of describing

relationships in an entity graph: for an entity graph where nodes represent entities

and edges represent primary relationships between the entities, solutions are needed

to explain how a pair of entities are related. To better movtivate this more general

problem, I provide another application of entity pair explanation in the web search

domain. When searching an entity in search engines like Google and Yahoo!, search

engines will provide a list of other entities that are related with the searched entity

(screenshots in Figure 4.1). However, how they are related is always mysterious to

57

Figure 4.1: Related entities feature on left panel of Google (left) and Yahoo! (right).

the search users. Knowledge base like DBPedia (stored as an RDF graph) can be

used as a source to explain their relationships.

In both the social network example and the web search example, the underlying

sources are graphs. Intuitively, I consider a relationship explanation as a constrained

graph pattern and its associated graph instances derivable from the underlying base

graph. Specifically, the graph pattern (similar to a graph query) contains variables

as nodes and labeled relationships as edges, and the instances can be considered as

the results of applying the graph pattern on the underlying knowledge base. One

such example for the social network domain is shown in Figure 4.2 and one such

example for the entertainment domain is shown in Figure 4.3. I shall introduce the

formal definitions in Section 4.2. Without loss of generaltiy, in the remaining of the

this Chapter, I will mostly use exmaples in the entertianment domain as our running

examples. I will only add examples in the social network domain when necessary.

The overall process of relationship explanation consists of two main steps: (1)

Explanation Enumeration: Given two entities, the starting one (i.e., the one user

searched for) and the ending one (i.e., the one being suggested by the search en-

gine), identify a list of candidate explanations; (2) Explanation Ranking: Rank the

candidate explanations based on a set of measures to identify the most interesting

58

Figure 4.2:
An example explanation for “Lujun Fang” & “Kristen LeFevre” in the social network
domain. The graph pattern is on the left and one of the instances associated with the
pattern is on the right.

Figure 4.3:
An example explanation for “Tom Cruise” & “Brad Pitt” in the entertainment domain.
The graph pattern is on the left and one of the instances associated with the pattern is
on the right.

explanations to be returned to the user. Both steps involve significant semantic and

algorithmic challenges. First, since the knowledge base typically contains several

million nodes, efficiently enumerating candidate explanations is an arduous task.

Second, explanation ranking involves two significant challenges: defining suitable

measures that can effectively capture explanations’ interestingness and computing

those measures for a large number of explanations in almost real time. Finally, I also

seek opportunities to perform aggressive pruning when combining enumeration and

ranking.

It is worth noting that there are quite a few existing works on mining connecting

structures from graphs, such as keyword search in relational and semi-structured

databases [13, 14, 21, 27, 72, 66, 68, 69, 87, 88, 113, 124, 70] and graph mining [38, 45,

74, 100, 115]. The key differentiating contribution of REX is to consider connection

structures that are more complex than trees and paths for explaining two entities,

59

and introduce two novel families of pattern level interestingness measures.

To the best of our knowledge, this is the first work addressing and formalizing

the problem of generating relationship explanations for a pair of entities. I make the

following main contributions: First, I formally define the notion of relationship ex-

planation and carefully analyze the properties of desirable explanations (Section 4.2).

Second, I design and implement efficient algorithms for enumerating candidate expla-

nations (Section 4.3). Third, I propose different interestingness measures for ranking

relationship explanations, and design and implement efficient algorithms for ranking

explanations efficiently(Section 4.4). Finally, I perform user studies and extensive

experiments to demonstrate the effectiveness and efficiency of our algorithms (Sec-

tion 4.5).

4.2 Fundamentals

In this section, we formally introduce the relationship explanation problem. We

start by describing the input knowledge base (Section 4.2.1) from which the relation-

ship explanations are generated. In Section 4.2.2, we introduce the formal definition

for relationship explanation, which is composed of two essential components: rela-

tionship explanation pattern and relationship explanation instances. In Section 4.2.3,

we describe important properties of relationship explanations in terms of the graph

structure. The subset of relationship explanations that best satisfy the desired prop-

erties are called minimal explanations and are explored in the remaining of our study.

4.2.1 Knowledge Base

As motivated in Section 4.1, we choose to construct explanations from an input

knowledge base, which is formally represented as a graph that consists of entities

(e.g., persons, movies, etc.) as nodes, and primary relationships between entities

60

Figure 4.4: A subset of the social graph.

Figure 4.5: A subset of the entertainment knowledge base from DBPedia.

(e.g., starring, spouse, etc.) as edges1. Entities have unique IDs (e.g., brad pitt)2 and

edges can be either directed (e.g., starring) or undirected (e.g., spouse). Therefore

a knowledge base can be represented as a three-tuple G = (V,E, λ), where V is the

set of nodes, E is the set of edges, and λ = E → Σ is the edge labeling function.

For differnet domains there are different knowledge bases. In the social network

domain, the knowledge base is the social graph. Figure 4.4 is an example of a social

graph. In a lot of other domains (including the entertainment domain), DBPedia can

be used as the knowledge base. Figure 4.5 illustrates such a example, which is a sub-

set of the entertainment knowledge base from DBPepdai (the actual knowledge base

contains 200K nodes and over 1M edges). In both knowledge base graphs, the pri-

mary relationships are represented as solid lines with arrows (directed relationships)

1We use the term primary relationships to distinguish them from the derived relationships that REX will infer
during the construction of the explanations.

2In practice, the IDs are system generated, but for the simplicity of discussion, we adopt readable titles/names
as the IDs.

61

or without arrows (undirected relationships).

4.2.2 Relationship Explanation

Intuitively, a relationship explanation is a constrained graph pattern along with

its associated instances that are derivable from the knowledge base. We use the

terms relationship explanation pattern and relationship explanation instance to de-

scribe the two components respectively. The existence of a relationship explanation

pattern is independent of the knowledge base. However, an explanation pattern is

only meaningful if its associated relationship explanation instances can be found in

the knowledge base with respect to the given entity pair. More concretely, the re-

lationship explanation pattern is modeled as a graph structure that connects two

target nodes representing the given entity pair. Edges in the structure have constant

labels and the remaining nodes in the structure are variables:

Definition IV.3 (Relationship Explanation Pattern). A relationship explanation

pattern can be represented as a 5-tuple, p = (V,E, λ, vstart, vend), where V is the set

of node variables, with two special variables vstart and vend, E is a multiset of edges,

and λ = E → Σ is the edge labeling function.

Relationship explanation instances, on the other hand, capture the actual data

instances from the knowledge base and are used to support an explanation pattern.

Intuitively, given the knowledge base G, a pair of related entities that map to two

nodes vstart and vend in G, and an explanation pattern p, explanation instances for p

can be defined based on mappings from p to G, identifying the subgraphs of G that

satisfy the explanation pattern.

Definition IV.4 (Relationship Explanation Instance). Given the knowledge base

G = (V,E, λ), an explanation pattern p = (V ′, E ′, λ′, v′start, v
′
end), and two target

62

Figure 4.6: Example explanation patterns.

nodes vstart, vend ∈ V , an explanation instance of p, denoted as i(p,G, vstart, vend), or

ip, is a mapping f : V ′ → V , where v′start is mapped to vstart, v
′
end is mapped to vend

and nodes in V ′ − {v′start, v′end} are mapped into V − {vstart, vend}. Edge constraints

must be satisfied: ∀e′ = (v′1, v
′
2) ∈ E ′ there must be an edge (f(v′1), f(v′2)) with label

λ′(e′) in G. The set of all p’s instances are denoted as I(p,G, vstart, vend), or Ip.

For a pair of entities vstart and vend, a relationship explanation is defined as

the pair (p, Ip) consisting of the explanation pattern p and the explanation instances

Ip, where |Ip| ≥ 0.

Example IV.5. Figure 4.6 illustrates some relationship explanation patterns that

have at least one instance from our entertainment knowledge base between ‘Brad Pitt’

and ‘Angelina Jolie’ or ‘Julia Roberts’. In particular, Figure 4.6(a) shows a most

simple spouse relationship pattern. Figure 4.6(b) shows the co-starring relationship

pattern, i.e., both ‘Brad Pitt’ and ‘Angelina Jolie’ starred together in one or more

63

Figure 4.7: Example non-minimal explanation patterns.

movies (which are collectively represented as the variable node v0). Figures 4.6(c)

and 4.6(d) illustrate more complicated relationship explanation patterns: the former

adds the producing relationship between ‘Brad Pitt’ and the movie variable v0 to

produce an explanation pattern slightly more complicated than co-starring, while the

latter introduces one additional movie variable (v2) and one director variable (v1) to

form the “collaborating with same director” explanation pattern.

4.2.3 Properties of Explanations

Definitions IV.3 and IV.4 allow a very large space of possible explanations, some

of which may not be semantically meaningful. This prompted us to identify desirable

structural properties of the explanations, which are described below. We note that

since the structures of the instances are enforced by their corresponding patterns, we

discuss the structural properties in terms of the patterns. Later, in Section 4.4, we

describe how instances are critical in determining the interestingness of the explana-

tions.

Essentiality

We want to capture the desideratum that explanation patterns contain only the

“essential” nodes or edges, i.e., all nodes and edges should be integral to the connec-

64

tion between the target nodes. In the definition below, we give a syntactic charac-

terization based on the graph structure of the explanation pattern.

Definition IV.6 (Essentiality). A node v (or an edge e) in an explanation pattern

p = (V,E, λ, vstart, vend) is essential if there is a simple path (i.e., without repeating

nodes or edges, and considering edges as undirected) through v (or e) from vstart to

vend. p is said to be essential if all of its nodes and edges are essential.

Example IV.7. Figure 4.7(a) shows a structure that is not essential: the node v1

and the edge (v1, v0) are not essential since they are not on any simple path from

vstart to vend.

Non-essential nodes and edges can be meaningful. For example, in Figure 4.7(a),

v1 provides information about the director for the movie node v0, which can be

interesting to users. In essence, this is akin to putting attribute constraints on the

essential nodes. However, the space of non-essential graphs is extremely huge since

they can be arbitrary graphs. As a result, in this paper, we will only consider

explanation patterns that are essential. Non-essential nodes and edges as well as

attribute constraints on essential nodes can be added in a separate stage when a

candidate set of most interesting essential patterns are generated, and the details of

this extension are beyond the scope of the current study.

Non-decomposability

The next desideratum is that we should not be able to “decompose” an explana-

tion pattern into an equivalent set of smaller explanation patterns. From an intuitive

semantic perspective, given an explanation pattern p = (V,E, λ, vstart, vend), p is de-

composable if there exist two explanation patterns, p1 = (V1, E1, λ1, v1start, v1end)

and p2 = (V2, E2, λ2, v2start, v2end), such that V1, V2 ⊂ V , and for all knowledge base

65

instances and entity pairs, we have: (Ip1 6= ∅ ∧ Ip2 6= ∅)⇒ Ip 6= ∅. In another word,

whenever the “sub-patterns” have some instances, then the entire pattern also must

have an instance for decomposable patterns. The following is a formal definition that

syntactically characterizes decomposability using the graph structure of explanation

patterns.

Definition IV.8 (Decomposability). An explanation pattern p =

(V,E, λ, vstart, vend) is decomposable if there exists a partition of E into E1, E2

such that 6 ∃v ∈ V − {vstart, vend} such that v is an endpoint of an edge e1 ∈ E1 as

well as an endpoint of an edge e2 ∈ E2. p is said to be non-decomposable if it is not

decomposable.

Example IV.9. The explanation pattern in Figure 4.7(b) can be decomposed

into two disjoint explanation patterns 4.6(a) and 4.6(b). The edge partitions of

{(vstart, spouse, vend)} and {(vstart, starring, v0) , (vend, starring, v0)} do not share

any nodes (besides the two target nodes).

We combine the properties of essentiality and decomposability to denote the no-

tion of minimality: An explanation pattern is said to be minimal if it is essential and

non-decomposable. An explanation is said to be minimal if its explanation pattern

is minimal.

4.3 Explanation Enumeration

In this section, we study how to efficiently enumerate minimal explanations upto

a limited size n (provided as a system parameter) for a given node pair vstart and

vend in the knowledge base G.

One naive approach is to take advantage of existing graph enumeration algo-

rithms [120] to generate all graph patterns and filter out the patterns that are either

66

non-minimal or with no instances. We call this naive algorithm NaiveEnum, which

is illustrated in Algorithm 1, and use it as the baseline in our experiments. During

the enumeration, any pattern that is either duplicated (i.e., isomorphism [55] to a

pattern discovered earlier) or with no instance will be pruned immediately. If the

pattern is minimal, then we add it (and its instances) to the result explanation queue

Q. However, minimality is not a pruning condition in NaiveEnum since non-minimal

graph patterns could later be expanded to minimal graph patterns under the graph

expansion rule of [120]. Not surprisingly, NaiveEnum is inefficient since it generates

a lot of non-minimal explanation patterns and requires explicit minimality check.

Algorithm 1 NaiveEnum(G,vstart,vend,n):Q

1: Q = ∅, Qp = ∅
2: Append a seed pattern (a graph with a single start node) to Qp

3: i = 0
4: while i < length of Qp do
5: Q′

p = expand(Qp[i]) (Following the graph expansion rules in the graph enumeration algorithm
gSpan[120], and recording the start and end node)

6: for p ∈ Q′
p do

7: Ip = instances of p in G with respect to vstart and vend (can be computed efficiently from Qp[i]’s
instances and G)

8: if p is not duplicated ∩ |Ip| > 0 ∩ |p.V | ≤ n then
9: Append p to Qp

10: if p is minimal then
11: Append the explanation re = (p, Ip) to Q
12: i = i + 1
13: return Q

4.3.1 Explanation Enumeration Framework

Our goal is to design explanation enumeration algorithms that directly generate all

and only minimal explanations with at least one instance in the knowledge base. The

intuition of our algorithm comes from the observation that any minimal explanation

pattern is covered by a set of path patterns, which is enforced by the essentiality

property in Section 4.2.3, stating that each node and edge in a minimal explanation

pattern must be on a single path between two target nodes. We call the set of path

patterns that cover a minimal explanation pattern the covering path pattern set of

67

Figure 4.8: Example Minimal Explanations for Kate Winslet and Leonardo Dicarprio

the explanation pattern:

Definition IV.10 (Covering Path Pattern Set). Given a minimal explanation

pattern p0 = (V,E, λ, vstart, vend), we say that a multiset of path patterns S =

{p1, p2, ..., pm} is a covering path pattern set if the set of path patterns in S cover

all the edges and nodes in p0; i.e., (1) each pi (1 ≤ i ≤ m) maps to a simple path

between vstart and vend through edges in E, and (2) every node in V and every edge

in E appears in at least one pi (1 ≤ i ≤ m).

Theorem IV.11. Each minimal explanation pattern must have at least one covering

path pattern set.

Proofs for the theorems are omitted due to space constraints. Some minimal ex-

planation patterns might have multiple covering path pattern sets. We also observe

that we can compute the instances of a minimal explanation pattern from the in-

stances of the path patterns in its covering path pattern set, instead of evaluating

against the knowledge from scratch.

Example IV.12. The minimal explanation pattern p0 in Figure 4.8(a) has a covering

68

path pattern set containing the path patterns p1 in Figure 4.8(b) and p2 in Figure

4.8(c). Similarly, the instance i1 of p0 can be computed from the instance i2 of p1

and the instance i1 of p2.

Theorem IV.11 suggests a general framework for minimal explanation enumer-

ation: (1) Enumerate all path explanation patterns, including their associated in-

stances; (2) Generate all the minimal explanation patterns (and their instances) by

combining the path explanation patterns (and their instances). We only need to do

explicit instance evaluation for the path explanations since instances of all other min-

imal explanations can be computed from them. When a pattern size limit n (i.e., the

number of nodes in the pattern) for a minimal explanation pattern is specified, we

can derive a corresponding path pattern length limit l for the covering path patterns

as l = n− 1.

Algorithm 2 GeneralEnumFramework(G,vstart,vend,n):Q

1: Qpath = PathEnum(G, vstart, vend, n− 1)
2: Q = PathUnion(Qpath, n)
3: return Q

The general enumeration framework is shown in Algorithm 2. It takes G, vstart,

vend and a pattern size limit n as input, and returns all minimal explanation with

size up to n. In particular, pathEnum enumerates over simple path explanations

(including the patterns and associated instances) for vstart and vend (Section 4.3.2),

with path pattern length up to n− 1; all path instances are directly extracted from

the knowledge base G. pathUnion combines those simple path explanations into the

minimal explanations (Section 4.3.3).

4.3.2 Path Explanation Enumeration

Path explanation enumeration takes vstart and vend as input, a length limit l and

the knowledge base G as parameters, and returns Qpath—the set of all path patterns

69

for vstart and vend with lengths up to l (and their instances). Since path explanation

enumeration can be viewed as a special case of keyword search in databases [13, 14,

21, 27, 72, 66, 68, 69, 87, 88, 113, 124, 70] when the queried keywords match exactly

two tuples, we adapt our algorithms from existing solutions instead of inventing

new algorithms. There are two typical paradigms in performing keyword search in

databases: (1) viewing databases as a tuple graph (tuples and their attribute values

are considered as nodes and key/foreign key relationships are considered as edges)

and directly searching for the instance level connecting structures[27, 72, 21, 66];

(2) first enumerating the schema level connecting structure (usually called candidate

networks, akin to our path pattens here) and then evaluating the candidate networks

to find out all the instances [13, 14, 68, 69, 87, 88, 113, 124, 70]. We describe our

algorithms of path enumeration following the first paradigm, since the knowledge

base is already represented as a graph. Once all path instances are generated, we

group them into path patterns by simply changing the nodes in the path instances

to variables, a relatively straightforward process. However, algorithms and intuitions

from both lines of work can be adapted into our framework.

The first path enumeration algorithm PathEnumBasic is adapted from BANKS [27].

BANKS runs concurrent single source shortest path algorithms from each source

node and finds the root node connecting a set of source nodes that describe all the

keywords. We apply a similar strategy to generate partial paths from both target

nodes vstart and vend concurrently. We generate all the path instances limited by

length dl/2e starting from vstart and all the path instances limited by length bl/2c

starting from vend, with shorter paths being generated first. Two path instances i1

and i2 from opposite directions can be connected to generate a full path instance if

they end at a common node. Although this algorithm is adapted from BANKS, the

70

same intuition also comes from Discover [69] if we are considering pattern level path

enumeration: in the candidate network evaluation step of Discover, the optimizer

iteratively chooses the most frequent (shared by most other candidate networks)

“small” (number of instances is restricted by the input keywords) relations to evalu-

ate. In our setting, this is equivalent to iteratively evaluate the shortest unevaluated

path patterns connecting to any target node.

The second path enumeration algorithm PathEnumPrioritized is again a direct

adaption from BANKS2 [72], an improved version of BANKS. When generating

paths from both target nodes, instead of always expanding the shortest partial paths,

an activation score is used to prioritize the expanding. The activation score captures

the following intuition: if expansion from one target node reaches a node with large

degree, it might be very expensive to do further expansion; instead, waiting for the

expansion from the other target node might be less expensive. The activation score

is defined as follows: Initially, the activation score of each target nodes is set to 1

divided by its degree. Each time the algorithm picks a node with largest activation

score to expand the paths ending at that node. During the expansion, activation

score of the node spread to its none target node neighbors (the activation score

spread to each new node is set to the activation score of the original node divided

by the degree of new node) and the activation score of original node is set to 0. For

each none target node, activation scores provided by different neighbors are added

up. If a node receives activation scores from both target nodes, it indicates the

identification of new connecting paths. Again, if our algorithm was adapted from

candidate network generation and enumeration, the intuition for the same strategies

comes from Discover [69] when we assume b > 0 in the cost model (i.e., we take into

consideration the estimated size of join results) for candidate network evaluation.

71

4.3.3 Path Explanation Combination

Path explanation combination takes the length-limited path explanations Qpath

as input, the pattern size limit n as parameter, and return Q—the set of all minimal

explanations with limited pattern size. Combing path explanations to generate min-

imal explanations is a non-trivial task. Any set of path explanation patterns could

be a covering path pattern set for some minimal explanation patterns and there are

many ways of combining path patterns in a covering path pattern set. In order to

have a better understanding of how we can generate all the minimal explanation pat-

terns (and hence the explanations), we partition the set of all minimal explanation

patterns MinP into disjoint sets, depending on the minimal cardinality (number of

path patterns) of any covering path pattern set of a minimal explanation pattern:

(4.1) MinP = {MinP (k), k = 1..∞},

where MinP (k) represents the set of minimal explanation patterns with minimal

covering path pattern set cardinality of k. In particular, MinP (1) represents all

path patterns. We can extend the notion of covering path pattern set to include

non-path minimal patterns:

Definition IV.13 (Covering Pattern Set). Given a minimal explanation pattern

p0 = (V,E, λ, vstart, vend), we say that a multiset of patterns S = {p1, p2, ..., pm} is a

covering pattern set if the set of patterns in S cover all the edges and nodes in p0;

i.e., (1) each pi (1 ≤ i ≤ m) maps to a sub-component of p0 connecting vstart and

vend through edges in E, and (2) every node in V and every edge in E appears in at

least one pi (1 ≤ i ≤ m).

Just like covering path pattern set, given a knowledge base, the instances of a

minimal pattern can be computed from instances of patterns in its cover pattern

72

set. The following theorem shows that MinP (k), k > 1 can be derived from minimal

patterns with smaller cardinality:

Theorem IV.14. Each explanation pattern in MinP (k) (k > 1) must have a cov-

ering pattern set composed of a pattern in MinP (k − 1) and a pattern in MinP (1).

Theorem IV.14 suggests that starting from MinP (1), we could iteratively enu-

merate MinP (k), k > 1 from MinP (k−1) and MinP (1). Our first path explanation

combination algorithm PathUnionBasic (Section 4.3.3) directly applies this finding

to reduce the enumeration space. In Section 4.3.3 we discuss additional pruning

opportunities for PathUnionBasic and propose an even more efficient combination

algorithm PathUnionPrune.

PathUnionBasic

Algorithm 3 illustrates the pseudocode for PathUnionBasic, and we explain its

critical components as follows:

Enumeration (Line 1 - Line 15): Path explanations in Qpath are used as the

seed explanations and put in an explanation queue Q. For each explanation re in Q,

the algorithm combines re with each path explanation in Qpath to generate new min-

imal explanations. The Explanation Merging component ensures that the generated

explanation patterns are minimal and each is associated with at least 1 instance. The

Duplication Checking component ensures that only unique explanations appended to

Q (i.e., duplicates are pruned). The process stops when all explanations in Q has

been expanded and no more explanations can be generated. All the minimal expla-

nations with limited pattern size are guaranteed to be in Q at the end of the process.

(Proof omitted due to space constraints.) Explanation Merging (Line 24 - Line

41): To define the merge of two explanations, we consider a partial one-to-one map-

73

Algorithm 3 PathUnionBasic(Qpath,n):Q

1: Q = Qpath; Qexpand = Qpath

2: while Qexpand 6= ∅ do
3: Qnew = ∅
4: for all (re1, re2) pair in Qexpand ×Qpath do
5: Qtemp = merge(re1, re2, n)
6: for re ∈ Qtemp do
7: if duplicated(re,Q ∪Qnew) = False then
8: Append re to Qnew

9: Append Qnew to Q
10: Qexpand = Qnew

11: return Q

12: function duplicated(re,Q):duplicated
13: for re1 ∈ Q do
14: if exist an ismorphism between re’s pattern and re1’s pattenrn then
15: return True
16: return False
17: end function

18: function merge(re1,re2,n):Qnew

19: (p1, Ip1) = re1’s pattern and instances
20: (p2, Ip2) = re2’s pattern and instances
21: Qnew = ∅
22: for all partial one-to-one mapping f from p1.V to p2.V do
23: pnew = p1 ∪f p2
24: Ipnew = ∅
25: for all (i1, i2) pair in Ip1 × Ip2 do
26: if i1, i2 is the same on every pair of matched nodes then
27: Append inew = i1 ∪f i2 to Ipnew

28: if |pnew.V | ≤ n and |Ipnew | > 0 then
29: Append renew = (pnew, Ipnew) to Qnew

30: return Qnew

31: end function

ping between the patterns of two explanations, say p1 = (V1, E1, λ1, v1start, v1end)

and p2 = (V2, E2, λ2, v2start, v2end):

(1) v1start and v1end should be mapped to v2start and v2end respectively.

(2) A non-target node v1 ∈ V1− {v1start, v1end} of p1 could be mapped to a non-

target node v2 ∈ V2− {v2start, v2end} of p2 or does not map to any node. (Same

restriction for v2)

(3) One-to-one mapping is enforced (when there is a mapping).

(4) At least one non-target node of p1 should be mapped to a non-target node of

p2.

Given this partial one-to-one mapping function f , a new explanation pattern can

74

be merged from p1 and p2 following the mapping function f . We use an operator

∪f to represent this merging: nodes and edges in both patterns should be put into

the new pattern, with each pair of matched nodes merged as one node. If there are

multiple edges with same label between a pair of nodes in the new pattern, they are

merged as well. Since each node and edge of the new pattern are coming from two

minimal explanation patterns, it is guaranteed to be on a single path between target

nodes. Therefore the new pattern is essential. On the other hand, requirement (4) of

the mapping guarantees that the new pattern is also non-decomposable. Therefore

the new explanation pattern is minimal. The instances of the new explanation can

be generated by enforcing the same mapping on each pair of instances from re1 and

re2, with the requirement that two instances agree on every pair of matched nodes.

The new explanation is kept only if it has at least one instance.

Example IV.15. Consider the two patterns p1 in Figure 4.8(b) and p2 in Fig-

ure 4.8(c). A valid partial one-to-one mapping between the two patterns is

p1.v(start)—p2.v(start), p1.v(end)—p2.v(end), nothing—p2.v1, p1.v2—p2.v2. Com-

bining p1 and p2 following the mapping yields the pattern p0. p0’s instance i1 can be

computed from i2 of p1 and i1 of p2 following the mapping.

Duplication Checking (Line 16 - 23): An explanation could be generated

multiple times during the enumeration (e.g., combination of different pairs of minimal

explanations could yield the same minimal explanation). We perform duplication

check for a new explanation by checking graph isomorphism [55] of its explanation

pattern against patterns of any existing explanations. If a graph isomorphism is

detected, then the new explanation is duplicated and therefore ignored.

75

PathUnion with Pruning

PathUnionBasic generates all but only the minimal explanations with at least 1

instance. Therefore it is much more efficient than the baseline algorithm. However,

since a minimal explanation might be generated multiple times during the enumer-

ation (indicating some of the combinations might be unnecessary), the efficiency of

the algorithm is still restricted by the number of times we need to merge the mini-

mal explanations. The following theorem allows us to decrease the number of merges

required:

Theorem IV.16. Each explanation pattern in MinP (k), (k > 2) must have a cov-

ering pattern set {p1, p0} of size 2, such that p0, p1 ∈ MinP (k − 1), and p0 and p1

share a MinP (k− 2) subcomponent p2. i.e., the pattern graph of p2 is a subgraph of

patterns of p0 and p1, and start and end node of p2 map to start and end node of p0

and p1.

Another way to interpret this theorem is that: Let p1 ∈ MinP (k) (k > 2), p2 ∈

MinP (k− 1) and p5 ∈MinP (1). In order to generate p1 from p2 and p5, there must

be p3 and p4 that satisfy following conditions: p3 ∈MinP (k− 1); p4 ∈MinP (k− 2)

and is a subcomponent of p2; p3 can be merged from p4 and p5. Based on this

interpretation, we can reduce the number of times we need to combine a minimal

explanation with a path explanation. Specifically, during the enumeration, for each

explanation in Q that has its pattern p2 in in MinP (k − 1), we record the pairs of

p4 ∈ MinP (k − 2) and p5 ∈ MinP (1) (and hence the corresponding explanations)

it was generated from. For an explanation with its pattern p2 ∈ MinP (k − 1), by

comparing the composition history with other explanations that have patterns in

MinP (k − 1) and enforcing the requirement from Theorem IV.16, we can decide

76

the subset of paths should be merged with p2.The pseudocode of the enumeration

algorithm with pruning is in Algorithm 4 and we call this algorithm PathUnionPrune.

We use queues Hexpand and Hnew to store the composition history for MinP (k − 1)

and MinP (k)’s corresponding explanations respectively.

Algorithm 4 PathUnionPrune(Qpath,n):Q

1: Q = Qpath; Qexpand = Qpath

2: while Qexpand 6= ∅ do
3: Qnew = ∅; Hnew = ∅
4: for all i1 in [0 .. length(Qexpand) - 1] do
5: Spath = ∅
6: if Qexpand = Qpath then
7: Spath = [0 .. length(Qpath) - 1]
8: else
9: for all i2 in [0 .. length(Qexpand) - 1] do

10: for all ((x, j1),(x, j2)) pair in Hexpand[i1]×Hexpand[i2] do
11: Add j2 to Spath

12: for all i2 in Spath do
13: Qtemp = merge(Qexpand[i1], Qpath[i2], n)
14: for re ∈ Qtemp do
15: if duplicated(re,Q) = False then
16: if duplicated(re,Qnew) = False then
17: Append re to Qnew

18: Append ∅ to Hnew

19: ire = re’s index in Qnew

20: Append (i1, i2) to Hnew[ire]
21: Append Qnew to Q
22: Qexpand = Qnew; Hexpand = Hnew

23: return Q

4.4 Interestingness Measures
and Explanation Ranking

When the number of minimal explanations is larger than what we can expect

users to consume, it is important to rank them in order of their “interestingness.”

This interestingness measure can be defined in a variety of different ways and is often

subjective. In this paper, we aim to present a comprehensive set of such measures

and design efficient algorithms for computing them. In Section 4.5, we conduct user

studies to analyze the effectiveness of our proposed measures.

We start by formally defining a generic interestingness measure. We pay particular

attention to one of the key properties of a measure, namely monotonicity. We shall

77

see that anti-monotonicity, which holds for some of our measures, can be used for

pruning in enumeration and ranking of explanations.

Definition IV.17 (Measure and Monotonicity). An interestingness measure M is

a function that takes as input the knowledge base G = (V,E, λ), an explanation

pattern p = (V ′, E ′, λ′, v′start, v
′
end), and target nodes vstart, vend ∈ G.V and returns a

number M(G, p, vstart, vend) ∈ R.

We say that a measure M is monotonic (anti-monotonic, resp.) if and only

if M(G, p1 = (V ′1 , E
′
1, λ
′
1, v
′
start, v

′
end), vstart, vend) ≥ (≤, resp.) M(G, p2 =

(V ′2 , E
′
2, λ
′
2, v
′
start, v

′
end), vstart, vend) whenever the graph G2 induced by V ′2 , E

′
2, λ
′
2 is a

subgraph of G1 induced by V ′1 , E
′
1, λ
′
1.

Note that although an interestingness measure is defined in terms of an explana-

tion pattern, by including the knowledge base as one of the inputs to the measure

function, the corresponding instances can also be derived. Therefore, an interesting-

ness measure actually measures the interestingness of explanations.

Most existing measures for connecting structures is derived from their topological

structures; examples of them include the size measure and random walk measure,

which we will discuss in Section 4.4.1. However, these measures do not capture the

aggregated information of the instances, e.g., co-starred in 10 movies. Therefore,

we propose two novel families of interestingness measures: aggregate measures and

distributional measures. Aggregate measures are obtained by aggregating over in-

dividual instances. One intuitive aggregate measure is the count measure, where

the interestingness of an explanation is proportional to the number of explanation

instances obtained by applying the explanation pattern to the knowledge base. We

can compare simple aggregate measures against those of other pairs of entities to

produce distributional measures. We describe aggregate and distributional measures

78

in Sections 4.4.2 and 4.4.3 respectively.

4.4.1 Structure-based measures

The structure of an explanation pattern can affect the interestingness of an ex-

planation. These kinds of interestingness measures are frequently used in existing

works [13, 14, 21, 27, 72, 66, 68, 69, 87, 88, 88, 70, 38, 45, 74, 100, 115]. We de-

scribe two representatives in this section: the size measure and the random walk

measure. Size of pattern is a simple while useful summarization of the structural

interestingness, and it can be easily used together with any other interestingness

measure. Another structural interestingness measure we consider is based on an ex-

tension of the random walk process described in [45]: each connecting instance graph

is regarded as an electrical network (e.g. each edge represents a resistor) and the

amount of current delivered from the start entity to the end entity is used as the

interestingness of the connecting graph. In our case, we apply the random walk on

the pattern and use the result as the interestingness measure for the explanation.

4.4.2 Aggregate Measures

Aggregate measures follow the intuition that the more instances an explanation

has, the more interesting it is. For example, consider the explanation in Figure 4.6(b)

(co-starring): the more movie instances v0 can map to, the higher the aggregate

measure is, and the more interesting the explanation is. We distinguish two ways of

aggregating the number of instances: count and monocount.

Count

The count measure simply gives the total number of distinct instances an expla-

nation has. Formally, we have:

79

Mcount(G, p, vstart, vend) = |{f |f satisfies Definition IV.4}|

While intuitive to define,Mcount is neither monotonic nor anti-monotonic[24], which

makes it difficult to compute due to the lack of pruning possibilities.

Monocount

To address the shortcoming of Mcount, we propose an alternative count measure

that has the anti-monotonicity property. Given G, p = (V ′, E ′, λ, v′start, v
′
end) and the

target nodes, let uniq(v), v ∈ V ′ denote the number of distinct assignments that can

be made to any variable over all instances:

uniq(v) = |{f(v)|f satisfies Definition IV.4}|

The monocount of p gives the fewest number of assignments over all variables (expect

the two target nodes):

Mmonocount(G, p, vstart, vend) = min
v∈p.V ′−{v′start,v′end}

uniq(v)

We override the above formula and define monocount to be 1 in the special case that

there is a direct edge between the target entities.

Example IV.18. Let us assume that in Figure 4.8(a), there is another instance with

v1 mapping to “sam mendes” and v2 mapping to “revolutionary road II ”. Then in

this case |uniq(v1)| = 1 and |uniq(v2)| = 2, therefore minvi(|uniq(vi)|) = 1 and the

monocount is 1. In comparison, the count would be 2 in this case.

80

Note that when there is a single non-target variable, Mmonocount = Mcount. Our

measure is an extension of the anti-monotonic support of sub-graphs within a single

graph that was introduced in [31].

4.4.3 Distribution-Based Measures

Aggregate measures are suitable for comparing explanations for a given pair of

target entities. However, they do not capture the “rarity” of an explanation across

different pairs of target entities. For example, a spousal relationship always has a

count of 1, but it is arguably more interesting than a co-starring relationship with

a count of 1. This is because co-starring relationships are much more common

than the spousal relationships. To capture such rarity information, we propose two

distributional measures—local and global—that compare the aggregate measure of

an explanation against the aggregate measures of a set of explanations obtained by

varying the target nodes. 3

Let Magg be the specific aggregate measures we adopt, and {a1, a2, . . . , an} be

the sequence ofMagg values in increasing order, local and global distributions Dl =

{(ali, cli)} and Dg = {(agi , c
g
i)} can be defined below, where the former is obtained by

varying only the end target node and the latter is obtained by varying both target

nodes:

cli = |y ∈ G.V | Magg(G, p, vstart, y) = ali|

cgi = |(x, y) ∈ (G.V ×G.V) | Magg(G, p, x, y) = agi |

Intuitively, cl and cg give the number of entity pairs whose explanations produce the

aggregate values of al and ag respectively. The entire distribution of these count

values is then used to compute the rarity of the given explanation and entity pair

3Although used in a completely different domain, aggregated measures and distribution-based measures are anal-
ogous to the TF-IDF measure in IR.

81

using standard statistical techniques. In particular, we compute the position of the

given explanation with respect to the distribution: Let A be the value of Magg for the

given explanation and D = {(a1, c1), . . . , (an, cn)} be the distribution to be compared

against, we have:

Mposition =
∑

i|ai>A

ci

Another alternative is to count how many standard deviations A is away from the

mean of D, which turns out to be similarly effective as Mposition. We ignore the

details here due to space constraints.

Example IV.19. Consider the co-starring explanation (Figure 4.6(b)) for Brad Pitt

and Angelina Jolie. The corresponding count is 1 since they co-starred in only 1

movie. The local distribution of counts for Brad Pitt and any other actor/actress is

shown as follows:

Dl = {(1, 130), (2, 8), (3, 10), (4, 2)}

Therefore the corresponding position in the local distribution is 8 + 10 + 2 = 20. In

contrast, their spousal explanation (Figure 4.6(a)) also has a count of 1. However,

its position in the local distribution is 0 since no other person with Brad Pitt has a

larger count for a spousal relationship. Therefore by comparing the positions in the

local distribution we can infer that the spousal explanation is more interesting than

the co-starring explanation.

4.4.4 Explanation Ranking

In this section we discuss how to efficiently rank the explanations given a pair

of target entities. Specifically, given an interestingness measure and a parameter k,

the explanation ranking algorithm returns a ranked list of top-k most interesting

explanations based on the interestingness measure.

82

Algorithm 5 GeneralRankFramework(G, vstart, vend,n,M,k):Q

1: Q = GeneralEnumFramework(G, vstart, vend, n)
2: Qint = ∅
3: for re ∈ Q do
4: Append M(G, re.pattern, vstart, vend) to Qint

5: Sort Q based on Qint

6: Q = first k entries in Q
7: return Q

Algorithm 5 illustrates the general ranking framework, which involves three steps:

explanation enumeration (based on Section 4.3), interestingness computation, and

explanation ranking. This general ranking algorithm can be applied to all interest-

ingness measures discussed in the previous subsections.

For certain interestingness measures, however, we can design more efficient ranking

algorithms: increased efficiency can be obtained by aggressively pruning explanations

while interleaving the enumeration, interestingness computation, and ranking steps.

The pruning for distribution based measures is described in Section 4.5.3. Here, we

briefly describe the case of ranking based on anti-monotonic interestingness measures.

Recall the anti-monotonicity property from Section 4.4 (which monocount measure

satisfies); the following theorem allows us to prune enumerations when considering

anti-monotonic measures.

Theorem IV.20. Given the knowledge base G = (V,E, λ) and target nodes vstart, vend,

and anti-monotonic interestingness measure M, suppose a relationship explanation

re′ = (p′, I ′) is derived from relationship explanation re = (p, I) using PathU-

nionBasic (Algorithm 3) or PathUnionPrune (Algorithm 4). We then have that

M(G, p, vstart, vend) ≥M(G, p′, vstart, vend). (Thereforem if re is not among the top-

k most interesting explanations, no re′ derived from it is.)

Intuitively, any expansion of an explanation can only reduce the value of an anti-

monotonic measure. Using the theorem, we can integrate the three steps of the

general ranking algorithm by maintaining a current top-k list of most interesting

83

explanations during enumeration. Upon generation of each explanation, we perform

the following steps:

Step 1: Calculating the interestingness of the explanation.

Step 2: Updating the top-k list of explanations; explanations not in the top-k

list are pruned out.

Step 3: Continue expansion only from the current set of top-k explanations.

Finally, the top-k most interesting explanations are returned. Intuitively, this algo-

rithm is more efficient than the general ranking algorithm since fewer explanations

are enumerated, and this intuition is supported by our experimental evaluation (Sec-

tion 4.5).

4.5 Experiments

We implemented the REX system in Python and performed extensive experi-

ments using a real world knowledge base to evaluate its efficiency and effectiveness.

Specifically, we analyze the performances of explanation enumeration algorithms and

ranking algorithms in Sections 4.5.2 and Section 4.5.3, respectively. We also perform

extensive quality assessments based on detailed user studies (Section 4.5.4) to verify

the necessity of our explanation definition (e.g., including non-path explanations) and

the effectiveness of explanations generated by REX. All experiments are performed

on a MacBook Pro with 2.53 GHz Dual Core CPU and 4GB RAM.

4.5.1 Experimental Settings

Knowledge Base: We extracted from DBpedia [29] all entertainment related

entities and relationships to form our experiment knowledge base. There are a total

of 20 entity types and 2, 795 primary relationship types. Overall, the knowledge base

contains 200K entities and over 1.3M primary relationships.

84

Figure 4.9: Compare explanation enumeration algorithms.

Target Entity Pairs: We generate related entities for evaluation as follows:

we randomly select an entity as the start entity from the knowledge base and then

randomly select one of its related entities as suggested by the search engine4. We

categorize the pairs based on their “connectedness”, which is computed by the num-

ber of simple paths that connect the two entities within a given length limit5: low

(connectedness: 0 - 30), medium (connectedness: 30 - 100), and high (connectedness

> 100). From each of the three groups, we randomly pick 10 related pairs; these 30

related entity pairs are used for performance evaluation.

4.5.2 Performance of Enumeration Algorithms

In this section, we compare the performance of our minimal explanation enumer-

ation algorithms. As discussed in Section 4.3, there are 3 types of optimizations we

consider: (a) using path enumeration and union framework instead of graph enumer-

ation, (b) picking the best path enumeration algorithm from existing solutions, (c)

optimizing the path union algorithm. To illustrate the usefulness of each optimiza-

tion decision, we consider the following combinations: 1. NaiveEnum (using graph

enumeration, note that graph enumeration cannot be used in combination with the
4http://search.yahoo.com/
5We set the length limit to 4 to match the pattern size limit of 5 in our experiments.

85

Figure 4.10: Explanation enumeration time vs. number of explanation instances.

other two types of optimizations), 2. PathEnumNaive6 + PathUnionBasic 3. Pa-

thEnumBasic + PathUnionBasic (using path enumeration and union framework with

baseline algorithms for both components), 4. PathEnumPrioritized + PathUnionBa-

sic (using prioritized path enumeration algorithm with basic path union algorithm),

5. PathEnumPrioritized + PathUnionPrune (using improved path enumeration and

union algorithms). We set the pattern size limit to 5 in the experiments.

Figure 4.9 shows the efficiencies of different explanation enumeration algorithms.

Any combination of the path enumeration and union algorithm, including the most

naive version PathEnumNaive + PathUnionBasic, shows orders of magnitude im-

provement over NaiveEnum, for all three entity pair groups (low, medium and high).

This demonstrates the efficiency of our framework, which does not generate any

non-minimal structure during the enumeration. The comparison of PathEnumBa-

sic + PathUnionBasic and PathEnumPrioritized + PathUnionBasic indicates Pa-

thEnumPrioritized is slightly more efficient than PathEnumBasic. (And both of

them are better than PathEnumNaive as expected.) Although this improvement

6PathEnumNaive is a most naive path enumeration algorithm: it enumerate all length-limited paths from start
entity and check if each path ends at the end entity. It is worse than any existing solution therefore we do not include
it in Section 4.3.2 as the baseline. However, because it uses the most naive design without any optimization, its
comparison with NaiveEnum should fairly show the improvement from adopting our framework.

86

is not our contribution, the result tells us which is the best path enumeration algo-

rithm to choose. Finally, the comparison of PathEnumPrioritized + PathUnionBasic

and PathEnumPrioritized + PathUnionPrune shows that PathUnionPrune is more

efficient than PathUnionBasic due to the additional shared-component pruning per-

formed during the enumeration process: on average, by using PathUnionPrune, it

takes only one third the time of when using PathUnionBasic.

Figure 4.10 shows the enumeration time (using algorithm PathEnumPrioritized +

PathUnionPrune) for all 30 entity pairs, where x-axis is the number of explanation

instances for the pair and y-axis is the enumeration time. The enumeration time

increases linearly with the number of explanation instances between the pairs, which

reaches as high as 5000, demonstrating the scalability of the REX system7.

4.5.3 Performance of Ranking Algorithms

In this section we evaluate the performance of ranking algorithms. The running

time with ranking is affected by two components: the time for enumeration and the

time for computing the measure. For simple aggregate measures such as count and

monocount, the enumeration time dominates. However, for distributional measures,

measure computation takes longer (because the same measure needs to be computed

for additional sample entity pairs). We show that our pruning algorithms successfully

improve the performances for all measures, either through reducing enumeration time

or measure computation time.

Top-k Pruning for Anti-monotonic Measures

Figure 4.11 shows the effects of top-k (k = 10) pruning for the measureMmonocount,

following the top-k pruning algorithm for anti-monotonic measures discussed in Sec-

7It is worth noting that density rather than the total size of the knowledge base affects the performance of
enumeration. Therefore the performance would not be affected much even if we adopt the full DBPedia knowledge
base in our experiments.

87

Figure 4.11: Effect of top-k (k = 10) pruning on monocount computing

tion 4.4.4. In all cases, top-k pruning reduces the running time to under 0.5 seconds,

and it is sometimes several hundred times more efficient than full enumeration. In

Figure 4.12, we examine how different values of k affect the running time. As ex-

pected, when k is very small using top-k pruning significantly improve the efficiency.

As k becomes larger, the improvement diminishes. When k is very large, the prun-

ing algorithm is close to (and in the medium group slower than) the non-pruning

algorithm, since very few results are pruned and maintaining the top-k list adds

overhead.

Computing and Pruning for Distribution-Based Measures

Despite the fact that distribution-based measures as described in Section 4.4.3 are

not anti-monotonic and therefore not subject to the aggressive pruning introduced

in Section 4.4.4, we can potentially optimize their computation by integrating the

measure computation with explanation ranking. Here, we use the local distribution-

based position measure to illustrate how the pruning can be done.

Specifically, given a pair of target nodes vstart and vend, the knowledge base G

88

Figure 4.12: Average compute time for different k in top-k pruning

with all the primary relationships stored in a relational table R(eid1, eid2, rel)8 , an

explanation pattern re, and itsMcount c, the local distributional position of re based

on Mcount can be computed via evaluating a SQL query describing re’s pattern.

Assuming re is the co-starring relationship, the corresponding SQL statement is as

follows:

SELECT v_start, R2.eid1, count(*) as count

FROM R as R1, R as R2

WHERE v_start = R1.eid1 AND R1.eid2 = R2.eid2

AND R1.rel = ‘starring’

AND R2.rel = ‘starring’

GROUP BY v_start, R2.eid1

HAVING count > c

The structure of the explanation pattern is encoded in the “FROM” and “WHERE”

clauses (e.g., each edge would be mapped to a table in the “FROM” clause). Each

8The knowledge base can be stored using other data models (e.g, RDF), and the same computing strategy can
still be applied.

89

Figure 4.13: Average time for computing top-10 explanation using distribution-based measure
Mposition.

returned record represents a pair of entities (within the local distribution) that have

count greater than the target entity pair. Therefore, the number of records in the

SQL statement gives the desired position of the explanation.

To improve upon the general brute force Algorithm 5, we maintain a top-k list

of explanations when computing the interestingness of the explanations and modify

the SQL query above for optimization. For example, if we know the current kth most

interesting explanation has a position of p, then we needn’t compute the position for

target entities whose position is guaranteed to be above p. This optimization can be

reflected by simply adding a LIMIT p clause in the SQL query above.

We implemented this pruning strategy and evaluated its effectiveness for top-k

(k = 10) explanation ranking using distribution-based measureMposition. There are

four different scenarios: local distribution, local distribution with pruning, global

distribution, and global distribution with pruning. Since the true global distribution

would be prohibitively time-consuming to compute, we use 100 local distributions

to estimate the global distribution, with each local distribution associated with ran-

90

domly chosen start entities. The computation time in all four scenarios are shown in

Figure 4.13. First, we note that pruning is beneficial regardless whether the measure

is local or global distribution based. In particular, pruning can speed up the com-

putation by 2 times for local distributional measures. However, ranking using global

distributional measure is still quite costly even with pruning. We note that the cost of

computing distributional measures can be further decreased by amortizing the com-

putation over different pairs by sharing the computation involved. For example, the

global distribution of counts of co-starring relationships computed for one given one

entity pair can still be used when we need to handle another pair with a co-starring

explanation. Finally, combination of distributional measures with other measures

could decrease the computation time. For example, we can use some other measure

(e.g., size) as the primary comparison index and use distributional measures only to

tie-break the less expensive primary index comparison. Our experiments show that

in average computation time based on such combinational measures are several times

faster than using distributional measures alone, and in the next section we will also

show such combinations are indeed very effective.

4.5.4 Measure Effectiveness

In this section, we analyze the effectiveness of explanations generated by REX. In

Section 4.5.4, we compares the relative effectiveness of different interesting measures

and their combinations. In Section 4.5.4 we show why only using path is not sufficient

to model all possible interesting explanations.

Effectiveness of Interestingness Measures

We compare the 6 measures discussed in Section 4.4: size (Msize), random walk

(Mwalk), count (Mcount), monocount (Mmonocount), position in local and global dis-

91

tributions (Mlocal
position,Mglobal

position). We also expect that combinations of different mea-

sures, especially combinations of structure based measures (e.g., Msize) with aggre-

gated and distributional measures (e.g., Mcount, Mmonocount, Mlocal
position, Mglobal

position),

could be very helpful since they try to capture the interestingness of explanations

from different while complementary directions. Therefore, we also include some com-

binational measures in the result to verify the idea.

We randomly selected 5 entity pairs for this study: P1: (brad pitt, angelina jolie),

P2: (kate winslet, leonardo dicaprio), P3: (tom cruise, will smith), P4: (james

cameron, kate winslet), P5: (mel gibson, helen hunt). For each pair, each measure is

used to rank the top-10 most interesting explanations. The resulting explanations are

randomized and mixed together so the user can’t tell how an explanation is measured

by each measure. The user is then asked to label each explanation as very relevant

(score 2), somewhat relevant (1), or not relevant (0). For each ranking methodology,

a DCG-style score 9 is computed as follows:

score(M) = mΣi(wi × si), i ∈ [1, 10]

where m is a normalization factor to ensure the scores fall within [0, 100], wi are the

weights given for each rank position (in our case, wi = 1/ log2(i+1))10, and si are the

individual explanation scores at position i as ranked by the corresponding measure.

A total of 10 users responded to our user study. The average scores of different

measures for each entity pair are shown in first 6 lines in Table 4.1. The effective-

ness of Msize, Mwalk, Mcount and Mmonocount are very similar. (The most simple

size measure is even slightly better.) As we expected, the two distribution-based

measures are statistically better than the simple aggregate measures and structure

9Discounted cumulative gain is a frequently used ranking measure in web search [71].
10The effects of the exact weight values do not change our results much as long as the relative orders are maintained.

92

Measure P1 P2 P3 P4 P5 Avg
size 50 51 33 51 52 47

random-walk 55 45 41 45 47 47
count 53 39 38 53 45 46

monocount 54 40 40 52 41 45
local-dist 62 47 53 58 59 55

global-dist 61 37 58 61 58 55
size + monocount 67 60 50 61 59 59
size + local-dist 67 60 50 62 60 60

Table 4.1: Comparing different interestingness measures.

based measures. It is interesting to see that, despite its much more limited sampling

scope,Mlocal
position performs as well asMglobal

position in terms of ranking quality. Given that

Mlocal
position is much cheaper to compute (Figure 4.13), we recommend that Mlocal

position

be always used in place of Mglobal
position if distribution-based measures are desired.

We also consider two very simple combinations of the measures: Msize&monocount

(usingMsize as the primary comparison index and useMmonocount as the secondary

comparison index),Msize&local−dist (usingMsize as the primary comparison index and

useMlocal−dist as the secondary comparison index). Intuitively, we expect these two

measures are much better than size measure alone since size measure is too coarse-

grained to distinguish all interesting explanations. The results of the combinations

are show in line 7 - 8 of Table 4.1. It turns out that their combinations are better than

any individual interesting measures. It is worth pointing out that these are two very

preliminary combinations, and we can definitely further improve the combinations

using machine learning techniques. While we believe the current results are sufficient

to demonstrate the idea and we leave the detailed study as future work.

Summary: When restricted to individual measures, distributional measures

achieves the best effectiveness. The combination of structure based measures (e.g.,

size) with aggregated and distribution-based measures provide better ranking results

than any individual measures. To achieve best effectiveness, machine learning algo-

93

rithms can be used to train best combination of all measures; when efficiency is also

a concern, we can restrict the combination on anti-monotonic measures (e.g.,Msize,

Mmonocount), which will still achieve reasonable effectiveness while can be computed

efficiently.

Comparing Path and Non-Path Explanations

Based on the user study of previous section, for each target entities pairs, we

can pick up to 10 most interesting explanations11 based on user judgement. Among

all top-5 explanations, only 36% of them are paths (64% are non-paths); among all

top-10 explanations, 38% of them are paths. The results demonstrate of necessity of

including non-paths in the explanation definition.

4.6 Related Work

There are a few recent studies on discovering relationships between various web

artifacts. E.g., [86] connects two search terms by extracting pairs of pages based on

their common search results; [104] extracts a chain of news articles that connect two

news articles based on shared words. Our work is complementary to these as we

study entities specifically and leverage a rich knowledge base and a comprehensive

set of interestingness measures based on both aggregates and distributions.

Our work is related to the vast literature on keyword search in relational and semi-

structured databases [13, 14, 21, 27, 72, 66, 68, 69, 87, 88, 113, 124, 70]. The two

major distinctions between REX and these works are: (1) We consider connection

structures that are more complex than trees and paths for explaining two entities;

(2) We introduce two novel families of pattern level interestingness measures.

Our path (instance and pattern) enumeration component can be viewed as a

11We also require the average score of an explanation to be at least 1 to avoid include uninteresting explanations

94

special case of keyword search in databases, where input keywords match exactly

two entities. Therefore we can directly adapt algorithms from these works. The

first algorithm PathEnumBasic is adapted from BANKS [27], which does concur-

rent shortest path run from each target node. The same intuition also comes from

Discover [69] if we are considering pattern level search. The restriction of “small”

relation and the evaluation ordering based on candidate network sharing “frequency”

leads us to a very similar solution in our problem settings. The second path enu-

meration algorithm PathEnumPrioritized with node activation score is adapted from

BANKS2 [72]. If we consider pattern level enumeration, the same intuition can also

come from Discover [69] when we assume b > 0 in the cost model (i.e., considering

the estimated size of join results) when prioritizing the candidate network evaluation.

We emphasize that path enumeration algorithms are not our primary contribution

and our framework is flexible enough to take advantage any state-of-art keyword

search or path enumeration algorithms. Other related work directly dealing with

path enumeration can be found in [122, 77, 35], although they either work in slightly

different problem settings or provide similar intuitions as discussed above.

A lot of keyword search papers also discuss ranking based on various interest-

ingness measures. Most of the papers focus on the interestingness at the instance

level. Usually, size of the connecting structure is used as the basic metrics. Other en-

hancements include taking into consideration edge weights [27, 72], node weights [21]

and keyword to structure mapping scores [68, 87] inspired by IR techniques. The

interestingness measures we proposed are orthogonal to these instance level interest-

ingness measures. We capture the pattern level interestingness by properly aggre-

gating (e.g., count based measures) and normalizing (distributional measures) the

instance level measures. Indeed, some work has also conisdered pattern-level inter-

95

estingness [113, 124]. However, their problem settings are different: They assume the

user of the system to be a domain expert or have a clear search intension (although

lack knowledge of the schema or format of data sources). Therefore, these works

mainly rely on user feedback to refine and discover the best queries.

There are also quite a few papers on graph mining that mine connecting structures

between a set of nodes [38, 45, 74, 100, 115]. However, these algorithms only return

a single large connection graph containing a lot of interesting facts, without distilling

individual explanations from the remaining part of the connection graph. REX, other

the other hand, finds multiple interesting explanations and ranks them to describe

different aspects of a relationship.

Our work is also closely related to various studies in the frequent graph mining

literature. In particular, [39, 120, 121] describes efficient algorithms for identifying

frequent sub-graphs from a database of many graphs. While our pruning techniques

for anti-monotonic measures are inspired by these algorithms, our problem setting is

fundamentally different from their transactional setting: we are mining interesting

patterns from a single large graph (i.e., the knowledge base) instead of a database of

(relatively) small graphs. More recently, [31] studies the notion of pattern frequency

in a single graph setting and proposes the notion of monocount as the minimum

number of distinct nodes in the original graph that any node in the pattern maps

to. Our Mmonocount is an extension of this notion. It is worthing noting that none

of those prior works studies distribution-based measures for interestingness.

4.7 Summary

Given the increasing importance of features like “related searches” on major search

engines particularly for entity searches, it is desirable to explain to the users why

96

a given pair of entities are related. And, as far as I know, our work is the first

to propose this relationship explanation problem. Furthermore, I studied the desir-

able properties of relationship explanations given a knowledge base, and formalized

both aggregate-based and distribution-based interestingness measures for ranking

explanations. The overall problem was decomposed into two sub-problems: explana-

tion enumeration and explanation ranking; I designed and implemented efficient and

scalable algorithms for solving both sub-problems. Extensive experiments with real

data show that REX discovers high quality explanations efficiently over a real world

knowledge base.

CHAPTER V

Look Who I Found: Understanding the Effects of Sharing
Curated Friend Groups

5.1 Problem Overview

Controlled sharing is often achieved by putting friends into appropriate groups,

and it is interesting to know if friend groups of one user can be useful to users.

Several social network sites (e.g., Google+ and Twitter) allow friend groups created

by one user to be used by other users. A screenshot of the friend group sharing tools

on Google+ (called “circle-sharing”) is shown in Figure 5.1. Recipients of a shared

circle (in Google+ a friend group is called a circle) can copy the circle as-is, merge

the circle into one of their existing circles, or cherry-pick people from the circle to

add to their own circles. In this chapter, I perform large scale quantitative studies of

the friend group sharing behaviors on Google+ to get more insights of how different

users’ controlled sharing behaviors affect each other. This work was done at Google,

with access to proprietary data.

Friend group sharing is an effective approach to help users build friend groups.

Every day, hundreds of millions of users enjoy sharing and consuming information

using online social network sites. At the same time, it can be difficult for users

to discover new contacts and to maintain contact groupings (e.g., Google+ circles,

Facebook friend lists)[106, 11]. Most contact management solutions focus on only

97

98

Figure 5.1: Screenshot of the circle-sharing tool.

one of these two tasks. A significant amount of research focuses on link prediction,

which can be used to recommend new contacts to social network users [81, 57].

These recommendations are often made based on the user’s existing connections,

which means that they are less accurate for new users (the “cold-start” problem).

Moreover, link prediction algorithms usually generate one recommendation at a time.

On the other hand, contact grouping is notoriously difficult for users [106]. A number

of data mining and machine learning approaches have been proposed and built to

automatically group contacts [3, 5, 20], but none of them generates satisfactory user

groups without user involvement. Further, existing tools typically cannot detect

real-life communities until many of the community’s interconnections are already

captured in the online system [54]. As a result, new users and users of nascent

social networks are often forced to manually curate and populate lists to capture the

natural groupings among their contacts.

I provide a large-scale data-driven examination of the impact that circle-sharing

99

(i.e., friend group sharing) has had on the Google+ social network, including a charac-

terization of the usage patterns that have driven this impact. Our main contributions

are the following:

• I observe that shared circles can be categorized into two distinct

types: communities and celebrities. Based on structural features of the

circles themselves, I use clustering techniques to discover two predominant clus-

ters of shared circles, which correspond to intuitive and qualitatively different

use cases. Circles in the first large cluster (“communities”) are characterized

by high within-circle link density, high link reciprocity with the circle owner,

and relatively low popularity among circle members. Circles in the second large

cluster (“celebrities”) are characterized by low within-circle link density, low

link reciprocity with the circle owner, and very high popularity among circle

members.

• I provide the first large-scale study of the impact of contact-group

sharing on the structure and growth of a social network. Past re-

search (e.g., [76]) has observed that the features and prevailing use cases of a

social networking site can have a substantial effect on the growth patterns and

structure of the resulting network graph. Our results demonstrate that use of

the circle-sharing feature is correlated with the densification of community-type

circles. I also observe that if circle-sharing is prevalent in a user’s social neigh-

borhood, this is correlated with a faster rate of network growth than predicted

by standard link-prediction techniques.

• I demonstrate the feasibility of algorithmically recommending circles

that a user should share. We indentify features that can differentiate shared

circles from “ordinary” circles (i.e., those created by users for personal use, but

100

never shared with others). In particular, I show that shared circles are more

“commonly useful” than ordinary circles. Using this characterization, I can

recommend circles that are good candidates for sharing.

5.2 Overview of the Analyses

The analyses presented in this chapter are intended to answer three key questions:

(1) Are there different types of shared circles, and how can we identify them? (2)

What is the impact of circle-sharing on the structure and growth of the Google+

social network?, and (3) Can we recommend to users which of their circles are suitable

to be shared?

5.2.1 Google+ Circle Sharing Feature

In Google+, a user can create circles reflecting different facets in her social life.

Each Google+ user has four default circles: friends, family, acquaintances and fol-

lowing. A user can also create other circles to describe other aspects of her life. If a

user UA puts another user UB into any of her circles, then we say that UA is following

UB. Connections on Google+ can be asymmetric (i.e., UA is following UB does not

imply that UB is following back UA).

The circle sharing feature launched in Google+ in September 2011. This feature

allows users to share their circles with other users. A user can choose to share any

of her circles, and she can choose with whom she wants to share the circles. When

a user notices that another user has shared a circle with her, she can decide to add

some or all of the members in the shared circle as her own contacts. She can either

add those members to one of her existing circles, or create a new circle for them.

101

5.2.2 Data Overview

All of our analyses are performed based on a large anonymized sample of Google+

circles and their adjacent edges. For each circle, we use identities of the person who

shared it, the members of the shared circle, and the time of the circle share, We

also use times when each node (member) joined Google+, and the circle membership

edges in the network at the time of the study, along with the times the edges were

created. All the user and circle IDs involved were then anonymized, and all other

information on node and circle identities was scrubbed from the dataset before the

study.

For each different analysis, we sampled a subset of these circles according to the

requirements of the analysis; details of the sampling are provided for each analysis.

All analyses are based on at least 5,000 circles.

5.2.3 Analysis Road Map

In order to understand the impact of circle-sharing, it is first important to under-

stand how people are utilizing the circle-sharing feature (i.e., which circles they are

sharing). We start by describing a clustering analysis. The analysis discovers two

large categories of shared circles: “communities” and “celebrities.” Both categories

of shared circles play an important role in the latter analyses.

Then, we move on to study the effect that circle sharing has had on the growth

and structure of the Google+ social graph. Using aggregated statistics about edge

creation times, we demonstrate that sharing both types of circles accelerates the

growth of the social network. We also observe that circle-sharing accelerates the

densification of community-type circles.

Finally, we develop a model to distinguish shared circles from ordinary circles

102

(i.e., circles that are not shared). One possible use for such a model is to recommend

to users which of their circles are good candidates for sharing. We identify a feature

called commonality which is predictive of a circle being shared. Using commonality

as well as some other features, we investigate the feasibility of classifying circles as

“shared” or “not shared.” We observe that sharing of community circles is more

easily predicted than sharing of celebrity circles.

5.3 Categorizing Shared Circles

In this section, I describe a cluster analysis with the goal of identifying different

types of shared circles. Based on our analysis, I identify two large clusters of shared

circles: those that contain primarily celebrities, and those that contain communities,

or groups of people who are socially interconnected.

5.3.1 Methodology

The shared-circle cluster analysis is based on a random sample of 9000 shared

circles with size ≥ 10. I use standard clustering techniques to group these circles on

the basis of several key features. Some of the features (e.g., density) can be derived

from understood features of communities in symmetric social networks [78, 54], while

some features (e.g., reciprocity, popularity) are unique to asymmetric networks.

Recall that Google+ connections can be asymmetric. Intuitively, the members of

some of a user’s circles (e.g., the user’s Cousins or Book Club circles) are more likely

to follow the user back than the members of other circles (e.g., the user’s Music Stars

circle). To capture the extent to which the users in a circle follow back the circle’s

owner, I define the reciprocity feature of a circle.

Definition V.1. Reciprocity The reciprocity of a circle is defined as the proportion

of the circle members who follow back the circle owner.

103

Alice

Bob Claire

Dan

K

Figure 5.2: An example social network of 4 users. Each user has exactly one circle, and circle
memberships are represented by outgoing edges.

Example V.2. Figure 5.2 describes a social network of 4 users: Alice, Bob, Claire,

and Dan. Suppose that users have the circles shown, with an edge from A to B

indicating that B is in some of A’s circles. Alice’s circle K contains Bob, Claire and

Dan. The reciprocity of K is 1/3 = 0.33, since among the members of K, only Bob

follows Alice.

To better understand the reciprocity feature, for all of the shared circles in our

sample, I compute their reciprocities and plot the probability density function for

their reciprocities (Figure 5.3(a)).1 It is interesting to observe that this distribution

is heavily bimodal; in other words, shared circles tend to have either high or low

reciprocity.

In addition to the owner, the individual members of a circle can be connected

to one another. For example, I would expect members of a family circle to be well

connected to one another. To capture the degree to which the members of a circle

are interconnected, I define the density feature of a circle.

1Note that probability density at a given point can be larger than 1.

104

(a) Reciprocity. (b) Density.

(c) Popularity.

Figure 5.3: Probability density distributions of different circle features.

105

Definition V.3. Density The density of a circle is defined as the actual number

of bi-directional edges between circle members divided by the maximum possible

number of bi-directional edges (i.e., n(n−1)
2

if the size of the circle is n).

Example V.4. In Figure 5.2, among members of Alice’s circle K, there is only one

bi-directional edge Bob↔Claire. The maximum possible number of such edges is

3 · 3−1
2

= 3, so the density of K is 1
3
.

Figure 5.3(b) shows the probability density function of circle density, as measured

from our sample of shared circles. The function reaches its peak at 0.1, although

there are indeed circles with density of 1, indicating existences of fully connected

circles.

Finally, I define the popularity of a circle based on the number of people who are

following the circle’s members.

Definition V.5. Popularity The popularity of a user is defined as the in-degree

(i.e., the number of followers) of the user in the social network. The popularity of a

circle is defined as median popularity of its members.

Example V.6. In Figure 5.2, K’s members have popularities 3 (Bob), 3 (Claire),

and 1 (Dan). The popularity of K is thus 3 (the median of {1, 3, 3}).

Note that I use median instead of mean of member popularities as the circle

popularity because the distribution of individual popularity is very heavy-tailed: a

few users have upward of millions of followers, but most have a modest number, which

would make the mean popularity dominated by a circle’s most popular members.

Figure 5.3(c) shows the probability density distribution of circle popularity, measured

using our sample of shared circles. I observe that the function reaches its peak around

200, although there are still a significant number of circles with very high popularity

106

(e.g., >1000).

There are undoubtedly other features (besides reciprocity, density, and popular-

ity) that are useful for characterizing circles. Circle name is another logical feature

to consider. For example, I would expect a circle named Family to represent a

community (with high density and high reciprocity); I would expect a circle named

Following to include a set of celebrities (with low reciprocity and high popularity).

Unfortunately, in many cases, the circle name alone is insufficient. For example,

a circle named Photographer could represent a community or a group of celebrity

photographers; in order to distinguish the two cases, I would end up looking at the

structure of the network graph. For these reasons, the remainder of our analysis

focuses on structural features, but future work could, with appropriate privacy safe-

guards, incorporate semantic signals from circle names, circle-share post annotations,

and more sophisticated signals of user engagement with the circles.

5.3.2 Circle Clustering

Using reciprocity, popularity, and density as features, I applied a standard clus-

tering technique (k-means) to the shared circles in our sample. Of course, circles (as

well as their feature values) change over time, and I use the feature values at the

time when each circle was shared.

Before clustering, I pre-processed the data in two ways: (1) Because the popularity

value is heavily skewed, I transformed this feature by taking its log. (2) I normalized

each of the features by centering the values around mean and scaling by the standard

deviation.

As a second preliminary step, I computed the within-clusters sum-of-squares for

different possible values of k (k = 2..15), and selected k = 4 by visually observing

the natural “knee” in the trend plot [44] of the within-cluster sum-of-squares, in

107

Figure 5.4:
Within clusters sum-of-squares for different k when performing k-means circle clustering.

Figure 5.4.

The result of clustering based on the processed features is shown in Figure 5.5.

Each triple of bars represent the mean processed feature values of a circle cluster.

Since the feature values are normalized, the numbers in the figure indicate a feature’s

relative, rather than absolute, value. The aggregate results of real feature values

(after reversing the normalization) are shown in Table 5.1.

The first two clusters of circles are of high reciprocity and relatively low popularity,

indicating that members of those circles are most likely to be ordinary users who are

friends with the circle owners, and the circles are very likely to describe real life

communities like families or groups of friends. Therefore I call them “community

circles”. I also notice that the circles in Cluster 1 are more dense than those in

Cluster 2, which suggests that some community circles have been well-developed,

108

Figure 5.5: Shared circle clustering using k-means (k = 4) algorithm.

while others are still nascent. These two clusters of circles combined comprise 52%

of all shared circles.

In contrast, the circles in Clusters 3 and 4 are of high popularity and low reci-

procity. This is in particular true for circles in Cluster 4; their median popularity is

more than 20000, and the mean reciprocity is only 0.11. I call circles in these two

clusters “celebrity” circles, since they mostly contain famous (i.e., high in-degree)

people, and the connections to them are mostly single-directional. It is interesting to

observe that celebrity circles, especially those in Cluster 4, have moderate densities.

This suggests that some of those celebrities are connected to each other. Circles in

Clusters 3 and 4 comprise the remaining 48% of all the shared circles.

109

Cluster Reciprocity Density Popularity
ID (mean) (mean) (median)
1 0.86 0.52 233
2 0.80 0.17 212
3 0.32 0.10 605
4 0.11 0.21 22561

Table 5.1: Aggregated statistics of circle clusters.

5.4 Impact of Shared Circles

In this section, I now turn our attention to understanding the impact that the

Google+ circle-sharing feature has had on the growth and structure of the network.

I describe a large-scale quantitative study, the results of which are the following

important observations:

• Circle-sharing events are correlated with acceleration of edge creations in the

social network. In particular, I find that circle-sharing events are correlated

with densification acceleration of community circles. I hypothesize that circle-

sharing are also correlated with popularity acceleration of celebrities, but I was

not able to confirm this hypothesis for reasons described in detail below.

• Circle-sharing events are correlated with disproportionate acceleration of edge

growth involving low-degree users. During the time of being exposed to a shared

circle, the degrees of low-degree users increase at a rate higher than predicted

by accepted models of network growth.

• Among users who are exposed to shared circles, circle-sharing events are cor-

related with acceleration of rate at which circles are created, and the rate at

which new people are added to circles.

110

5.4.1 Methodology

To understand how circle-sharing events have affected circles and users, I identify

important circle- and user-related metrics (e.g., the density of a circle), and measure

their values before and after the circle or user is affected by the circle-sharing feature

(I will define what I mean by “affected” for each analysis). Since each circle (user) is

affected by circle-sharing at a different time, to summarize the changes of multiple

circles (users), I group circles (users) in our dataset into cohorts according to the

week in which they are affected by circle sharing. For each cohort of circles (users), I

can then measure the changes in these metrics over time to understand if the change

of the metrics are correlated with circle sharing events.

5.4.2 Edge Growth

I start by investigating whether and how circle-sharing events are correlated with

the speed at which new edges are added to the social graph. Intuitively, I expect

that when a circle is shared, it will draw the attention of other users (the recipients

of the shared circle) to its members. As a result, I expect that the number of people

following the circle members (in-edges) will increase very quickly soon after the circle

is shared.

In addition to accelerating edge growth overall, I also hypothesize that circle-

sharing events will affect the network differently, depending on whether the shared

circle is a community or celebrity circle. Specifically, anecdotal evidence suggests that

community circles (e.g., the Knitting Club circle) are often shared with users who are

also members of the community. Thus, I suspect that circle-sharing will contribute to

the densification of the community, as members adopt the shared circle. In contrast,

I expect that shared celebrity circles (e.g., the Rock Stars circle) will serve primarily

111

to accelerate the popularity of circle members.

To verify these hypotheses, I use the same sample of shared circles as in the

previous section, first categorizing them into community and celebrity circles, and

then dividing them into cohorts based on the week during which they were shared.

Density increase of community circles In the previous section I defined circle

density. However, the density of a circle at any point in time is dependent not only on

the number of edges in the circle, but also on the number of members in the circle.

In order to reason about changes in density due to edge growth, in the following

analyses, in this section I use “density” to specifically refer to the density of edges

among a circle’s members at a globally-fixed date shortly before the beginning of the

study period.

For each weekly cohort of community circles, I compute their mean density over

time and plot the trend. Figure 5.6(a) shows the density trend over time of the

circle cohort CNov2 (i.e., circles shared during the week of November 2-8). I notice

that, aside from week of November 2, the growth of circle density is mostly linear.

However, during the week when the circle sharing events happen, I notice an obvious

jump in circle density. The same observation also holds for other weeks.

To better understand the density increase trend and the acceleration of density

increase during the circle-sharing week, I compute the density increase for each week,

and compare the weekly density increase of the circle sharing-week to that of other

weeks. The weekly density increase value ∆Dw(c) of a circle c for timestamp w,

expressed in weeks, is defined by:

(5.1) ∆Dw(c) = Dw+1.0(c)−Dw(c).

Based on weekly density increases, I compute the sharing-week acceleration rate RD,

which captures the amount of density increase during the week when the circle got

112

(a) Circle density. (b) Number of circles.

(c) Circle Size.

Figure 5.6: Mean values of various circle metrics, for users who became circle-sharing-touched (Fig-
ure 5.6(b) and 5.6(c)) or for circles got shared (Figure 5.6(a)) during the week of Novem-
ber 2–8. The beginning and end of the circle sharing week are indicated by the dashed
lines. (The y-axis has been descaled to protect proprietary information.)

113

shared, wc (rounded to the beginning of the week), as compared to the previous

week:

(5.2) RD(c) =
∆Dwc(c)

∆Dwc−1.0(c)
,

The mean RD for all the shared circles in our sample is 2.5. In other words, the

mean density acceleration is 150% during the week when the circle is shared.

Finally, I perform a one-sample t-test to see if the density increase during the

circle sharing week is significantly better than other weeks. I computed the p-value

for each circle cohort separately, and the density increase acceleration brought by

circle-sharing was statistically significant with p < 0.05 for all weeks.

Impact on popularity in celebrity circles I also performed a similar analysis to

test the hypothesis that circle-sharing events are correlated with increase of popular-

ity of celebrity circles. We see anecdotal evidence that in some cases, circle-sharing

events are helping celebrity circles attract a significant number of new followers.

However, our analysis did not show such a growth with statistical significance.

One possible explanation is that celebrity circles usually attract hundreds or thou-

sands of followers, while circles are often shared with smaller groups of people. Even

if the circle owner shares it publicly, the impact of the action is likely mostly limited

to those who follow the sharer. Thus, while the circle-sharing event may bring in

new edges, the total number of new edges is likely to be small in comparison to the

number of users already following the celebrities. Nonetheless, multiple shares of the

same circle of celebrities can attract larger audiences, and a closer look at the impact

of being included in many shared circles is an interesting topic for future research.

114

5.4.3 Structure of Edge Growth

So far I have demonstrated how circle-sharing events are correlated with the net-

work growth in term of edge additions, but I also want to see if circle-sharing events

are correlated with the structural properties of the network. Most social network

growth exhibits a phenomenon called preferential attachment [15, 97, 91]; new edges

are more likely to be connected to large-degree nodes than smaller-degree nodes. The

circle-sharing feature makes it easier for both low-degree and high-degree users to

discover groups of contacts, and low degree users might even benefit more since they

may find more new contacts from a shared circle. Therefore I expect the difference

between edge growth rates for low- and high-degree users becomes smaller as a result.

To test this hypothesis, I chose a random sample of users who were members

of a circle that got shared, and divided them into cohorts based on the number of

bidirectional edges they had before the relevant circle sharing event, and measured,

for 3 example cohorts, the change in the number of new bidirectional edges created

the week before the relevant circle share, and the week after. The results, with the

degree change figures descaled, are shown in Table 5.2.

As I have seen in the previous analysis, all the users can benefit from circle sharing

in terms of making new connections. However, this is particularly true for low-degree

users. During the week immediately after circle-sharing events, users of degree 10

make 1.63 times more connections than they did the week before. In contrast, users of

degree of 100 make 1.07 times as many as the week before. Before circles are shared,

users of degree 100 add 4 times as many connections as users of degree 10. After

circle-sharing events, users of degree 100 only add 2.6 times as many connections as

users of degree 10. Therefore, circle sharing is indeed changing the network growth

process by giving low degree users better chances to make new connections.

115

Degree when shared 10 50 100
Weekly link creations before share 87 195 348
Weekly link creations after share 142 252 372
Link creation acceleration ratio 1.63 1.29 1.07

Table 5.2:
Degree of user vs. new bidirectional link creations per week before and after a circle-
sharing event. (The six weekly link creation rate averages are rescaled to protect pro-
prietary information.)

5.4.4 Circle Creation and Expansion of Recipients

Next I examine whether and how shared circles are adopted or used by their

recipients. Upon seeing a shared circle, if the recipient decides to add some or all

of the contacts in the shared circle, she has two choices: add the contacts to one of

her existing circles, or create a new circle for the contacts. To verify the adoption

of these two types of shared circle-adoption behaviors, I select groups of users that

are recipients of shared circles and see if they are expanding their existing circles

and creating new circles as a result of seeing shared circles. (Note that data about

shared-circle uptake events was not available, so I had to observe these behaviors

indirectly by observing changes in circle sizes and changes in the number of circles

owned by a user.)

To perform the analyses, I randomly sampled 10000 users that became circle-

sharing-touched between September and December, 2011. We say a user becomes

circle-sharing-touched if the user shares a circle or is a member of a shared circle.

There are other ways to define circle-sharing-touched, but our main goal is to isolate

a set of users that are likely to have been recipients of a shared circle. Let w(u)

denote the timestamp, in weeks, of when user u was first touched by circle-sharing,

rounded down to the beginning of the calendar week to define weekly cohorts.

Number of circles owned per user. I first compute the mean number of circles

116

owned by different cohorts of users over time. If users are adopting shared circles

they see and creating new circles for them, then I would expect the mean number

of circles owned by users to increase faster when the users become circle-sharing-

touched. For each user cohort, I compute the mean number of circles owned by the

users over time; I show the trend of one example weekly cohort (those who became

circle-sharing-touched during the week of November 2–8) in Figure 5.6(b). I see

that users create more circles during the week they become circle-sharing-touched.

(Similar observations can be made for other groups, but are omitted for space.)

Following the same process I used in the previous analysis for circle density, I

compute the weekly increase in circle count C:

∆Cw(u) = Cw+1.0(c)− Cw(c),

and then compute sharing week acceleration rate as:

RC(u) =
∆Cw(u)(u)

∆Cw(u)−1.0(u)
.

The mean RC(u) for all selected users is 2.2. A one-sample t-test showed that users

create statistically significantly more circles after getting touched by circle sharing,

with p < 0.05 for each weekly cohort separately. This is a strong indication that

these users are creating new circles based on the shared circles they see.

Mean circle size. Finally, I measure the mean sizes of circles owned by each cohort

of users, before and after the owners become circle-sharing-touched. If users are

adopting the shared circles they see by adding all or some members of the shared

circle into their existing circles, then I would expect the mean size of existing circles

owned by users to increase more quickly when the users become touched by circle

sharing. For each user group, we compute the mean size of the associated circles

over time and show the trend of the example cohort (first touched by circle sharing

117

during the week of Nov 2) in Figure 5.6(c). I see that circles expand faster during

the week when their owners first became circle-sharing-touched. (Again, the same

observations are true for other user groups.)

Similar to the circle count case, I also compute the sharing week acceleration rate

for circle size increase and compute the p-values for statistical significance test. The

mean acceleration rate for circle size is 1.9, and all of the p-values for different cohorts

are below 0.05. These results demonstrate that the acceleration of users expanding

their existing circles is correlated with circle-sharing-touched events.

5.5 Recommending Circles to Share

With the impact of circle sharing events in mind, in this section, we focus our

efforts on distinguishing shared circles from ordinary circles (i.e., those that do not

get shared). Ultimately, this has interesting applications, including recommending

to the user which of his circles are good candidates for sharing. We identify a

quantitative feature of circles, which we call commonality, and we demonstrate how

commonality can be used to recommend circles for sharing.

One of the main goals of circle sharing it to let other users reuse all or part of a

shared circle to create similar circles. Thus, intuitively, we expect that the circles that

are the best candidates for sharing are those that are of common interest, or useful to

many people. Following this reasoning, we suspect that if many users have already

constructed the same circle (or a circle containing a very similar set of people), then

that is a good indication that the circle is a prime candidate for sharing.

Following this intuition, we define a property of a circle c called commonality,

which summarizes the extent to which other users have constructed a circle that is

similar to c. Before describing the details of the commonality definition, we first

118

define the co-existance probability of two users to capture the frequency with which

two users co-occur in the same circles. In particular, the co-existance probability of

two users is defined as the average conditional probability that having one user in a

circle would result the other user also being in the same circle2.

Example V.7. Consider the social network in Figure 5.2. Claire is in 3 circles and

Dan is in 1 circle. They co-occur in 1 circle. The conditional probability that a circle

including Claire would also include Dan is 1/3 = 0.33, the conditional probability

that a circle including Dan would also include Claire is 1/1 = 1. Therefore, the

co-existence probability of Claire and Dan is (0.33 + 1)/2 = 0.67.

Based on the co-existence probability of two users, we can then define commonality

as follows:

Definition V.8. (Global) Commonality The commonality of a circle is defined

as the average co-existence probability, taken over all pairs of users in the circle.

If there exist many other circles (created by other users) that are similar to circle c,

the we expect c to have high commonality; otherwise, it should have low commonality.

Since we consider circles owned by all social network users when computing the co-

existence conditional probability, we also call it global commonality (in analogy to

local commonality, which we will define later).

Example V.9. Consider the social network in Figure 5.2. Alice’s circle contains

three pairs of users: Bob and Claire with co-existence probability of 1, Bob and Dan

with co-existence probability of 0.67, Claire and Dan with co-existence probability

of 0.67. Therefore, the commonality of Alice’s circle is (1 + 0.67 + 0.67)/3 = 0.78.

To compare shared circles and ordinary circles, we randomly selected 9000 shared

2For consistency, we assume the circle owners are also in their own circles when computing co-existence probability.

119

circles and 9000 ordinary circles. To make sure the owners of ordinary circles are

aware of the option of circle sharing, when sampling the ordinary circles, we only

consider circles owned by a user who has shared at least one circle. Using this data

set, we compute the probability density function of global commonality, for both

shared circles and ordinary circles (Figure 5.7(a)). As expected, shared circles tend

to have higher global commonality than ordinary circles.

Note that global commonality considers all social network users’ circles when

computing co-existence probabilities. We suspect that this will be less meaningful

for community circles, since the members of a community circle are likely to be of

interest to only a small subset of the social network’s users. (On the other hand,

members of celebrity circles tend to be of more global interest.) To capture this

intuition, we define local commonality as follows:

Definition V.10. Local Commonality The local commonality of a circle is de-

fined as the average co-existence probability (considering only those circles owned

by members of the given circle), computed over all pairs of users in the circle.

Example V.11. Consider the social network in Figure 5.2, and imagine there is an

additional user Eva who has Bob, Claire and Dan in her circle. When computing the

local commonality for Alice, Eva’s circle would be ignored since Eva is not in Alice’s

circle; however in the case of global commonality, Eva’s circle would be considered.

We show the probability density functions of local commonality for both shared

and ordinary circles in Figure 5.7(b). Similar to the global commonality case, shared

circles are of higher local commonality comparing to ordinary circles, although the

difference is even larger comparing to the global commonality case. This indicates

that local commonality could be a better feature to distinguish shared and ordinary

120

(a) GlobalCommonality. (b) LocalCommonality.

(c) Reciprocity.

Figure 5.7: A comparison of shared and ordinary circles based on the probability density function
of different features.

121

circles than global commonality.

Aside from local and global commonalities, the features mentioned in previous

sections (e.g., reciprocity, density, popularity) can also be used to distinguish shared

and ordinary circles. For example, we show the probability density functions of

reciprocity for shared and ordinary circles in Figure 5.7(c). Compared to ordinary

circles, shared circles are more likely to have very high or low reciprocity. We also

notice that, even for non-shared circles, there is a tendency for circles to have either

very high or very low reciprocity, which indicates that the categorization of circles

into two types – celebrity and community – is applicable to circles in general, but

that the phenomenon is more pronounced for shared circles.

In the following, we categorize all the circles (i.e., the union of all sampled shared

and ordinary circles) in our dataset into celebrity and community circles and com-

pute the correlation between each feature (reciprocity, popularity, density, local and

global commonality) and the circle sharing decision. Of course, some outlier cir-

cles do not fit into either of the two categories (celebrity or community). However,

this is actually a good indication that they are less likely to be shared (e.g., see

Figure 5.7(c)). Therefore, it is less sensitive to which category we put them into.

The Pearson correlation coefficients between circle features and sharing decisions for

both celebrity and community categories are shown in Figure 5.3. We notice that

in both the celebrity and community cases, global commonality, local commonality,

popularity and density have positive correlation with circle sharing. As expected,

reciprocity is positively correlated with circle sharing for community circles, but neg-

atively correlated with circle sharing for celebrity circles. We also notice that, for all

of these features, they are more correlated with sharing behavior for community cir-

cles, indicating that recommendation for community circles can be made with better

122

accuracy than celebrity circles.

Feature
Correlation to sharing

(celebrity) (community)
GlobalCommonality 0.10 0.30
LocalCommonality 0.15 0.36

Reciprocity -0.09 0.26
Popularity 0.09 0.22

Density 0.16 0.32

Table 5.3: Correlation of sharing with various features. For both community and celebrity circles.

In summary, these results suggest that we can recommend to a user to share a

circle if either (1) it is a community circle, and it has high reciprocity, popularity,

density, local and global commonality, or (2) it is a celebrity circle, and it has low

reciprocity, high popularity, high density, and high local and global commonality.

We built such a recommender using an SVM classifier and the proposed features

to test the feasibility of such recommendation. This is a difficult problem since a user

might make the sharing decision for various unpredictable reasons (e.g., some users

might just want to try out the circle sharing feature and randomly pick some circles

to share). To evaluate the precision and recall of the recommendation, for both

the celebrity and community circles, we use 2/3 of them as training data to train a

classifier using the circles features mentioned above, then we compute the precision

and recall for the recommendations on the remaining 1/3 testing data. The results

are shown in Table 5.4. Compared to celebrity circles, sharing of community circles

can be predicted more accurately, although recalls and predictions in both cases

are not very high. Better predictions might be achieved by considering additional

features like time of sharing, the sharer’s online activity history, etc., and the details

are left as future work.

Finally, recalling that circles can be shared publicly or to selected smaller audi-

ences, we examine the ACL’d recipients of shared circles. For simplicity, we consider

123

Circle group Precision Recall
Community 0.66 0.78

Celebrity 0.63 0.60

Table 5.4: Circle sharing prediction.

just two categories (public to everyone, and selective, meaning that the circles was

shared with a smaller group of people). For both celebrity and community cases,

most circles are shared privately, although, unsurprisingly, celebrity circles are more

likely to be shared publicly than community circles.

Circle group Public Selective
Community 25% 75%

Celebrity 37% 63%

Table 5.5: Targets of shared circles.

5.6 Related Work

Fully 65% of online adults are using social networking sites [7], and Facebook

alone has over 1 billion active users [4]. One of the prevailing purposes of a social

networking site is to allow users to add and group their contacts for the purpose

of information sharing and consumption. Almost all major social networking sites

provide tools to help users find and group contacts (e.g., Google+ circles, Facebook

user lists, Twitter lists, and friend suggestion tools provided by each of these sites).

At the same time, finding and organizing one’s contacts on a social networking site

are still difficult tasks, largely due to the complex and faceted nature of users’ online

social spheres [98, 50].

A large body of prior work has focused on identifying and recommending potential

contacts for social network users; most existing techniques involve viewing the social

network as a graph (i.e., users as nodes and connections between users as edges) and

recommending new edges in the graph based on existing edges in the graph [81, 57].

124

Such recommenders usually do not capture the underlying relationships between the

recommendations. For example, although a recommender may find some of Alice’s

high school friends, it could not group them together and recommend the group as

a whole. There are indeed some “group recommendation” algorithms [19], however

they view group memberships as features of social network users, and make recom-

mendations about which groups to join, rather than recommendations of adding a

group of users as contacts.

The other limitation of such recommenders is that they fail to provide good recom-

mendations for users who have few existing connections. The recommenders are very

dependent on the target user’s existing connections. Therefore, it is often difficult for

new users to find contacts. However, the “cold start” problem of new social network-

ing users is not solely because of the ineffectiveness of contact recommenders. Social

network researchers have established theoretically [15, 97] and experimentally [91]

“preferential attachment” of social network edge creation process: new edges are

more likely to be connected to users of large degrees than those of small degrees. For

example, under the BA model of network growth [15], a social networking user with

100 contacts is 10 times more likely to add another contact before a social network-

ing user with 10 contacts. Google+ circle sharing tools help high-degree users to

share their connections with low-degree users, potentially alleviating the cold start

problem for new (low-degree) users.

There is also a body of literature about automatic group-creation algorithms,

which can be used to assist users with grouping contacts [3, 5, 20]. Unfortunately,

each of these techniques requires user involvement to create final groupings, and the

group creation process is isolated from membership suggestion. User list creation

through crowdsourcing is also a possible solution if the members in the lists are

125

all public figures [6]. However, this technique is less applicable to personalized lo-

cal communities (e.g., families). In contrast, as we will demonstrate in our paper,

the Google+ circle sharing tool can be successfully used for both “celebrity circles”

(circles containing popular and public figures) and “community circles” (circles con-

taining members of a local community or group).

Finally, past research has observed that the network structure articulated by users

of an online social network is often influenced by the features of the social network

service and predominant use cases. For example, Kwak et al. observed that the

structure of the Twitter network is qualitatively different from other social networks,

likely due to prevailing use cases (celebrity following and news consumption) [76].

Similarly, we observe that the Google+ circle-sharing feature has had a quantifiable

impact on network growth and structure.

5.7 Summary

In this chapter, I provided the first large-scale study of the usage and impact

of a contact-group sharing tool, the Google+ circle-sharing feature. I identified

two different types of shared circles, “communities” and “celebrities,” which are

characterized by different structural properties (density, reciprocity, and popularity),

and which also represent qualitatively different use cases for the feature.

I also observed that the circle-sharing feature has had measurable effects on the

growth and structure of the social network graph. Edges among circle members grow

150% faster during the week the circle gets shared. Recipients of shared circles create

significantly more new circles and add significantly more people to their existing

circles based on the shared circles.

Finally, I demonstrate the feasibility of recommending to users which circles they

126

should share with friends. I propose a feature called commonality that captures the

potential benefits to share a circle. Using commonality and other circle features, I

build a recommender and show that circle sharing events, especially those associated

with community circles, can be predicted with reasonable precision and recall.

In the future, I plan to study the interaction among different circle-sharing events.

It would be interesting to know if one circle-sharing event often triggers others, and

if yes, how such events propagate through the social network. I also plan to explore

how to combine the power of contact-group sharing tools with the intelligence of

friend recommenders based on link prediction.

CHAPTER VI

Conclusion and Future Work

In this thesis, I performed extensive studies on the controlled sharing problem

and presented novel algorithms and tools to help social network users better perform

controlled sharing. Controlling sharing is a difficult task for social network users, and

the most important contribution of this thesis to design mechanisms that allow users

to perform controlled sharing with high accuracy and low effort. I introduced three

tools to help users better perform controlled sharing and performed one quantitative

analysis of an existing controlled sharing tool. The underlying algorithms and the

analysis relies a lot on understanding the topological structure of the social network

and more specifically the neighborhood structure of the target user. I presented

Privacy Wizard and Share Smart to make audience recommendation for static profile

items and real-time generated content, and REX to explain the relationships between

a pair of users and more generally a pair of entities. I also performed extensive

quantitative analyses on the Google+ circle sharing feature to understand its impact

on the development of Google+ social network. More details of the contributions

will be summarized in Section 6.1, and future work will be discussed in Section 6.2.

127

128

6.1 Contributions

The first two major contributions are Privacy Wizard and Share Smart. They ad-

dress the key challenge of making audience recommendation with high accuracy and

low user effect. Privacy Wizard focuses on audience recommendation for static pro-

file items. Using only information visible in the target user’s neighborhood, Privacy

Wizard needs to decide which subset of friends can see each profile item. The key of

Privacy Wizard is to build an user’s privacy preference model as a machine learning

model to and generate automatic recommendations using the model. Share Smart

goes one step further to make audience recommendations for real-time generated con-

tent. The key of Share Smart is to measure the goodness of friend groups by taking

into consideration of both their interests to the content and the density of in-group

connections. I performed extensive experiments to demonstrate the effectiveness of

Privacy Wizard and Share Smart.

The next contribution of the thesis is REX. It focuses on generating relationship

explanations for a pair of users, and more generally a pair of entities. I introduced

the desired properties for relationship explanations and proposed algorithms to enu-

merate explanations. Two novel families of interestingness measures for relationships

were also proposed to help properly rank all the relationship explanations.

The final contribution of the thesis is a quantitative study of an existing controlled

sharing tool, namely circle sharing on Google+. I identified structural features that

are descriptives of Google+ circles, analyzed if shared circles can be categorized and

predicted, and examined the impact of circle sharing on the development of Google+

social network.

129

6.2 Future Work

There are two major directions of future work. The first direction is to design

tools to aid controlled sharing even further. Current audience recommendations are

made mostly based on content of the item and the relationships between users. An-

other piece of information that is useful for audience recommendation is the users’

own sharing histories. With the understanding of how users perform controlled shar-

ing before, I can make better predictions about how users will perform controlled

sharing in the future. The second direction is to better understand the impact of

controlled sharing. For example, it is interesting to know if controlled sharing affects

information dissemination in the social network, and if it does, how I can design bet-

ter mechanisms that improve the controlled sharing experience with minimal effects

on information dissemination in the social network.

BIBLIOGRAPHY

130

131

BIBLIOGRAPHY

[1] Apple reportedly fires employee for negative Facebook post.

[2] Facebook development platform. http://developers.facebook.com/.

[3] Facebook smart list. http://blog.facebook.com/blog.php?post= 10150278932602131.

[4] Facebook statistics. http://www.facebook.com/press/info.php?statistics.

[5] Katango. http://www.katango.com/.

[6] Listorious. http://listorious.com/.

[7] Social networking site coverage. http://www.pewinternet.org/reports/2011/social-
networking-sites.aspx.

[8] The igraph software package for complex network research. InterJournal Complex Systems,
2006.

[9] Alessandro Acquisti and Ralph Gross. Imagined Communities: Awareness, Information Shar-
ing, and Privacy on the Facebook. In Privacy Enhancing Technologies Workshop, 2006.

[10] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, information shar-
ing, and privacy on the facebook. In Privacy Enhancing Technologies Workshop, 2006.

[11] Paul Adams. Grouped: How small groups of friends are the key to influence on the social
web. New Riders Press, 2011.

[12] Fabeah Adu-Oppong, Casey Gardiner, Apu Kapadia, and Patrick Tsang. Socialcircles: Tack-
ing privacy in social networks. In Symposium on Usable Privacy and Security, 2008.

[13] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system for keyword-
based search over relational databases. In Proceedings of the IEEE International Conference
on Data Engineering, 2002.

[14] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying structured text in an xml
database. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2003.

[15] Reka Zsuzsanna Albert and Albert laszlo Barabasi. Statistical mechanics of complex networks.
Reviews of Modern Physics, 2002.

[16] Saleema Amershi, James Fogarty, and Daniel Weld. Regroup: Interactive machine learning
for on-demand group creation in social networks. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 2012.

[17] Jonathan Anderson, Claudia Diaz, Joseph Bonneau, and Frank Stajano. Privacy-enabling
social networking over untrusted networks. In Proceedings of the Workshop on Online Social
Networks, 2009.

132

[18] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In Proceedings
of International Conference on World Wide Web, 2007.

[19] Lars Backstrom, Dan Huttenlocher, and Jon Kleinberg. Group formation in large social net-
works: Membership, growth, and evolution. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2006.

[20] Kelli Bacon and Prasun Dewan. Towards automatic recommendation of friend lists. In
Proceedings of International Conference on Collaborative Computing, 2009.

[21] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objectrank: authority-
based keyword search in databases. In Proceedings of International Conference on Very Large
Data Bases, 2004.

[22] Justin Becker and Hao Chen. Measuring privacy risk in online social networks. In Web 2.0
Security and Privacy Workshop, 2009.

[23] Rajesh Bejugam and Kristen LeFevre. enlist: automatically simplifying privacy polices. In
IEEE International Conferences on Data Mining Workshops, 2011.

[24] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis. Mining graph
evolution rules. In The European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases, 2009.

[25] Michael Bernstein, Adam Marcus, David Karger, and Rob Miller. Enhancing directed con-
tent sharing on the web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2010.

[26] Michael S Bernstein, Bongwon Suh, Lichan Hong, Jilin Chen, Sanjay Kairam, and Ed Chi.
Eddi: interactive topic-based browsing of social status streams. In UIST, 2010.

[27] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S Suarshan.
Keyword searching and browsing in database using banks. In Proceedings of the IEEE Inter-
national Conference on Data Engineering, 2002.

[28] Leyla Bilge, Thorston Strufe, Davide Balzarotti, and Engin Kirda. All your contacts are
belong to us: Automated identity theft attacks on social networks. In Proceedings of Inter-
national Conference on World Wide Web, 2009.

[29] Christian Bizer, R Cyganiak, S Auer, and G Kobilarov. Dbpedia - querying wikipedia like a
database. In Proceedings of International Conference on World Wide Web, 2007.

[30] Kipp Bodnar. The Ultimate List: 100+ Facebook Statistics [Infographics].
http://blog.hubspot.com/blog/tabid/6307/bid/6128/The-Ultimate-List-100-Facebook-
Statistics-Infographics.aspx.

[31] Bjorn Bringmann and Siegfried Nijssen. What is frequent in a single graph. In Advances in
Knowledge Discovery and Data Mining Pacific-Asia Conference, 2008.

[32] Garrett Brown, Travis Howe, Michael Ihbe, Atul Prakash, and Kevin Borders. Social networks
and context-aware spam. In Proceedings of the ACM conference on Computer Supported
Cooperative Work, 2008.

[33] Matt Burgess, Alessandra Mazzia, Eytan Adar, and Mike Cafarella. Leveraging noisy lists
for social feed ranking. In ICWSM, 2013.

[34] Robin Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction, 2002.

133

[35] W Matthew Carlyle and R Kevin Wood. Near-shortest and k-shortest simple paths. In
Networks, 2005.

[36] Barbara Carminati, Elena Ferrari, and Andrea Perego. Rule-based access control for social
networks. In Workshop on Reliability in Decentralized Distributed Systems, 2006.

[37] Barbara Carminati, Elena Ferrari, and Andrea Perego. Private relationships in social net-
works. In Proceedings of the IEEE International Conference on Data Engineering Workshops,
2007.

[38] James Cheng, Yiping Ke, and Wilfred Ng. Efficient processing of group-oriented connection
queries in a large graph. In Proceedings of the ACM International Conference on Information
and Knowledge Management, 2009.

[39] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards verification free query
processing on graph databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2007.

[40] L. Church, J. Anderson, J. Bonneau, and F. Stajano. Privacy stories: Confidence on privacy
behaviors through end user programming. In Symposium on Usable Privacy and Security,
2009.

[41] Luke Church, Jonathan Anderson, Joesph Bonneau, and Frank Stajano. Privacy Stories:
confidence in Privacy Behaviors Through End User Programming. In Proceedings of the 5th
Symposium on Usable Privacy and Security, page 1, New York, New York, USA, 2009. ACM
Press.

[42] G. Danezis. Inferring privacy policies for social networking services. In AISec, 2009.

[43] Claudia Diaz, Carmela Troncoso, and Andrei Serjantov. On the impact of social network
profiling on anonymity. In Privacy-Enhancing Technologies Workshop, 2008.

[44] Brian Everitt and Torsten Hothorn. A Handbook of Statistical Analyses Using R. Chapman
and Hall/CRC, 2006.

[45] Christos Faloutsos, Kevin McCurley, and Andrew Tomkins. Fast discovery of connection sub-
graphs. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2004.

[46] Lujun Fang, Alex Fabrikant, and Kristen LeFevre. Look who i found: Understanding the
effects of sharing curated friend groups. In Proceedings of ACM Web Science, pages 137–146,
2012.

[47] Lujun Fang, Heedo Kim, Kristen LeFevre, and Aaron Tami. A privacy recommendation
wizard for users of social networking sites. In Proceedings of ACM Conference on Computer
and Communications Security, 2010.

[48] Lujun Fang and Kristen LeFevre. Privacy wizards for social networking sites. In Proceedings
of International Conference on World wide web, 2010.

[49] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohanno. Rex: Explaining relationships
between entities pairs. In Proceedings of International Conference on Very Large Data Bases,
2012.

[50] Shelly Farnham and Elizabeth Churchill. Faceted identity, faceted lives: social and techni-
cal issues with being yourself online. In Proceedings of the ACM conference on Computer
Supported Cooperative Work, 2011.

[51] Adrienne Felt and David Evans. Privacy protection for social networking platforms. In Web
2.0 Security and Privacy Workshop, 2008.

134

[52] Philip Fong, Mohd Anwar, and Zhen Zhao. A privacy preservation model for facebook-style
social network systems. University of Calgary Technical Report 2009-926-05, 2009.

[53] Santo Fortunato. Community detection in graphs. http://arxiv.org/abs/0906.0612v1
(Preprint), 2009.

[54] Santo Fortunato. Community detection in graphs. Physics Reports, 2010.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. W. H. Freeman, 1979.

[56] Carrie Gates. Access control requirements for web 2.0 security and privacy. In Web 2.0
Security and Privacy Workshop, 2007.

[57] Lise Getoor and Christopher P. Diehl. Link mining: A survey. SigKDD Explorations Special
Issue on Link Mining, 2005.

[58] Eric Gilbert and Karrie Karahalios. Predicting tie strength with social media. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2009.

[59] M. Girvan and M. Newman. Community structure in social and biological networks. Pro-
ceedings of the National Academy of Science, 99(12), 2002.

[60] Kiran Gollu, Stefan Saroiu, and Alex Wolman. A social networking-based access control
scheme for personal content. In Symposium On Usable Privacy and Security, 2007.

[61] Ralph Gross and Alessandro Acquisti. Information Revelation And Privacy in Online Social
Networks. In Proceedings of the ACM workshop on Privacy in the electronic society, 2005.

[62] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online social
networks. In Workshop on Privacy in the Electronic Society, 2005.

[63] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. Social media rec-
ommendation based on people and tags. In Proceedings of Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2010.

[64] Michael Hart, Rob Johnson, and Amanda Stent. More content - less control: Access control
in the web 2.0. In Web 2.0 Security and Privacy Workshop, 2007.

[65] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis. Resisting
structural re-identification in anonymized social networks. In Proceedings of International
Conference on Very Large Data Bases, 2008.

[66] Hao He, Haixun Wang, Jun Yang, and Philip Yu. Blinks: ranked keyword searches on graphs.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2007.

[67] Liangjie Hong and Brian D. Davison. Empirical study of topic modeling in twitter. In SOMA,
2010.

[68] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-style keyword
search over relational databases. In Proceedings of International Conference on Very Large
Data Bases, 2003.

[69] Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword search in relational
databases. In Proceedings of International Conference on Very Large Data Bases, 2002.

[70] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword proximity search
on xml graphs. In Proceedings of the IEEE International Conference on Data Engineering,
2003.

135

[71] Kalervo Jarvelin and Jaana Kekalainen. Cumulated gain-based evaluation of ir techniques.
In TOIS, 2002.

[72] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph databases. In
Proceedings of International Conference on Very Large Data Bases, 2005.

[73] Sanjay Kairam, Michael Brzozowski, David Huffaker, and Ed Chi. Talking in circles: selective
sharing in google+. In Proceedings of the ACM Conference on Human Factors in Computing
Systems, 2012.

[74] Gjergji Kasneci, Shady Elbassuoni, and Gerhard Weikum. Ming: mining informative entity
relationship subgraphs. In Proceedings of the ACM International Conference on Information
and Knowledge Management, 2009.

[75] P Klemperer, Y Liang, M Sleeper, B Ur, L Bauer, L Cranor, N Gupta, and M Reiter. Tag,
you can see it!: using tags for access control in photo sharing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2012.

[76] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a soial network or a news media?
In Proceedings of International Conference on World Wide Web, 2010.

[77] E L Lawler. A procedure for computing the k best solutions to discrete optimization problems
and its applications to the shortest path problem. In Management Science, 1972.

[78] J. Leskovec, K. Lang, and M. Mahoney. Empirical comparison of algorithms for network
community detection. In Proceedings of International Conference on World Wide Web, 2010.

[79] D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Proceedings of International Conference on Machine Learning, 1994.

[80] D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In Proceedings of
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, 1994.

[81] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the ACM International Conference on Information and Knowledge Manage-
ment, 2003.

[82] Heather Lipford, Andrew Besmer, and Jason Watson. Understanding Privacy settings in
Facebook with an Audience View. In Proceedings of the 1st Conference on Usability, Psy-
chology, and Security, page 2. USENIX Association, 2008.

[83] Heather Lipford, Andrew Besmer, and Jason Watson. Understanding privacy settings in face-
book with an audience view. In Proceedings of the 1st Conference on Usability, Psychology,
and Security, 2008.

[84] K. Liu and E. Terzi. A framework for computing the privacy scores of users in online social
networks. In Proceedings of the IEEE International Conference on Data Mining, 2009.

[85] Matthew Lucas and Nikita Borisov. flybynight: Mitigating the privacy risks of social net-
working. In Workshop on Privacy in the Electronic Society, 2008.

[86] Gang Luo, Chunqiang Tang, and Yingli Tian. Answering relationship queries on the web. In
Proceedings of International Conference on World Wide Web, 2007.

[87] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword query in relational
databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2007.

136

[88] Yi Luo, Wei Wang, and Xuemin Lin. Spark: a keyword search engine on relational databases.
In Proceedings of the IEEE International Conference on Data Engineering, 2008.

[89] E. Michael Maximilien, Tyrone Grandison, Tony Sun, Dwayne Richardson, Sherry Guo, and
Kun Liu. Privacy-as-a-service: Models, algorithms, and results on the facebook platform. In
Web 2.0 Security and Privacy Workshop, 2009.

[90] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. Yale: Rapid
prototyping for complex data mining tasks. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2006.

[91] Alan Mislove, Peter Druschel, Bobby Bhattacharjee, Krishna P. Gummadi, and et al. Growth
of the flickr social network. In Proceedings of the Workshop on Online Social Networks, 2008.

[92] Alan Mislove, Bimal Viswanath, Krishna Gummadi, and Peter Druschel. You are who you
know: inferring user profiles in online social networks. In Proceedings of ACM International
Conference on Web Search and Data Mining, 2010.

[93] Mor Naaman, Jeffrey Boase, and Chih-Hui Lai. Is It Really About Me?: Message Content in
Social Awareness Streams. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pages 189–192, New York, New York, USA, 2010. ACM Press.

[94] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In IEEE Sympo-
sium on Security and Privacy, 2009.

[95] M. Newman. Fast algorithm for detecting community structure in networks. Physical Review
E, 69(066133), 2004.

[96] M. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys-
ical Review, 69(2), 2004.

[97] Mark Newman. Clustering and preferential attachment in growing networks. Physics Review
E, 2001.

[98] Fatih Ozenc and Shelly Farnham. Life modes in social media. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2011.

[99] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting message propa-
gation in twitter. In Proceedings of International Conference on Weblogs and Social Media,
2011.

[100] Cartic Ramakrishnan, William Milnor, Matthew Perry, and Amit Sheth. Discovering infor-
mative connection subgraphs in multi-relational graphs. In SIGKDD Explorations, 2005.

[101] Ramprasad Ravichandran, Michael Benisch, Patrick Kelley, and Norman Sadeh. Capturing
social networking privacy preferences. In Symposium on Usable Privacy and Security, 2009.

[102] R. Reeder, L. Bauer, L. Cranor, M. Reiter, K. Bacon, K. How, and H. Strong. Expandable
grides for visualizing and authoring computer security policies. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2008.

[103] David Rosenblum. What anyone can know: The privacy risks of social networking sites.
IEEE Security and Privacy, 2007.

[104] Dafna Shahaf and Carlos Guestrin. Connecting the dots between news articles. In Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010.

[105] Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Redesigning privacy control in social
networking platforms. In USENIX Security, 2009.

137

[106] Meredith Skeels and Jonathan Grudin. When social networks cross boundaries: a case study
of workplace use of facebook and linkedin. In Proceedings of the ACM International Confer-
ence on Supporting Group Work, 2009.

[107] Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a success-
ful cocktail party. In Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2011.

[108] Anna Squicciarini, Smitha Sundareswaran, and Dan Lin. A3p: adaptive policy recommenda-
tion prediction for shared images over popular content sharing sites. In HT, 2011.

[109] Anna C. Squicciarini, Mohamed Shehab, and Federica Paci. Collective privacy management
in social networks. In Proceedings of International Conference on World Wide Web, 2009.

[110] K. Strater and H. Lipford. Strategies and struggles with privacy in an online social networking
community. In British Computer Society Conference on Human-Computer Interaction, 2008.

[111] Katherine Strater and Heather Lipford. Strategies and Struggles with Privacy in an Online
Social Networking community. In Proceedings of the 22nd British HCI Group Annual Con-
ference on People and Computers: Culture, Creativity, Interaction, pages 111–119. British
Computer Society, 2008.

[112] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. Adaptive web search based
on user profile constructed without any effort from users. In Proceedings of International
Conference on World wide web, 2004.

[113] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby Crammer,
Zachary Ives, Fernando Pereira, and Sudipto Guha. Learning to create data-integration
queries. In Proceedings of International Conference on Very Large Data Bases, 2008.

[114] Jaime Teevan, Meredith Ringel Morris, and Steve Bush. Discovering and using groups to
improve personalized search. In Proceedings of ACM International Conference on Web Search
and Data Mining, 2009.

[115] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem definition and fast
solutions. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006.

[116] Oren Tsur and Ari Rappoport. What’s in a hashtag? content based prediction of the spread
of ideas in microblogging communities. In Proceedings of ACM International Conference on
Web Search and Data Mining, 2012.

[117] Fernanda Viégas. Bloggers’ Expectations of Privacy and Accountability: An Initial Survey.
Journal of Computer-Mediated Communication, 2005.

[118] Yang Wang, Saranga Komanduri, Pedro Leon, Gregory Norcie, Alessandro Acquisti, and
Lorrie Crancor. “I Regretted the Minute I Pressed Share”: A Qualitative Study of Regrets
on Facebook. In Proceedings of the Seventh Symposium on Usable Privacy and Security, 2011.

[119] Yang Wang, Gregory Norcie, Saranga Komanduri, Alessandro Acquisti, Pedro Giovanni Leon,
and Lorrie Faith Cranor. ”I regretted the minute I pressed share”: a qualitative study
of regrets on Facebook. In Proceedings of the Seventh Symposium on Usable Privacy and
Security, page 1, New York, New York, USA, 2011. ACM Press.

[120] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In Proceedings
of the IEEE International Conference on Data Mining, 2002.

[121] Xifeng Yan and Jiawei Han. Closegraph: mining frequent graph patterns. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003.

138

[122] J Y Yen. Finding the k shortest loopless paths in a network. In Management Science, 1971.

[123] Tauhid Zaman, Ralf Herbrich, Jurgen van Gael, and David Stern. Predicting information
spreading in twitter. In Advances in Neural Information Processing Systems, 2010.

[124] Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and Wolfgang Nejdl. From keywords
to semantic queries - incremental query construction on the semantic web. In Journal of Web
Semantics, 2009.

[125] Elena Zheleva and Lise Getoor. To join or not to join: The illusion of privacy in social networks
with mixed public and private user profiles. In Proceedings of International Conference on
World Wide Web, 2009.

