
An Experimental Investigation of Human/Bicycle Dynamics and Rider Skill in 

Children and Adults 

by 

Stephen Matthew Cain 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Biomedical Engineering) 

in the University of Michigan 

2013 
 

 

 

 

 

 

 

 

 

 

 

Doctoral Committee: 

 

Professor Noel C. Perkins, Chair 

Research Professor James A. Ashton-Miller 

Professor Karl Grosh 

Professor Dale A. Ulrich 

 

 

 



 

 

 

 

 

 

 

© Stephen Matthew Cain 

2013 



 

ii 
 

DEDICATION 

 

To my parents, who in so many ways have inspired and supported me 

and 

In memory of my friend, Pablo 



 

iii 
 

ACKNOWLEDGEMENTS 

 

I could not have completed the work herein without the help, friendship, mentorship, and 

love of many. My journey to this point has been a great experience, thanks mainly to the 

people that I have had the opportunity to interact with along the way. It was incredibly 

difficult to write these acknowledgements because it is so difficult to communicate just 

exactly what I am thankful for and how much and I have appreciated everything when I 

am limited by words and space. I hope that the words I have written sufficiently express 

my gratitude. I am sure I forgot someone, so if that person is you I hope I get a chance to 

thank you in person. 

First I thank my advisor, Professor Noel Perkins, who in so many ways made my 

dissertation work possible. From the beginning, you encouraged me to be the driving 

force behind the research and provided me with the resources and support to accomplish 

everything I aimed to complete. As a result, I can truly call the work I completed my 

own. You also taught me, by example, what it means to be a good advisor, professor, and 

colleague. You are an extraordinary person and I am thankful to have the opportunity to 

work with you. 

I had amazing committee members who helped significantly improve the quality of my 

work. Professor James Ashton-Miller: Thank you for the use of your lab and the 

resources needed to complete the work in Chapter 5, the many discussions that helped to 



 

iv 
 

improve the quality of my work, your kind words at the defense, and the post-defense 

advice—I look forward to our future interactions. Professor Dale Ulrich: Thank you for 

giving me the opportunity to collect data during the bicycle camps—I learned so much 

from watching and working with the children. Moreover, thank you for your non-

engineering perspective and your careful review of my work. Professor Karl Grosh: 

Thanks for your careful review of my work, your interest in my work, your feedback, and 

your positive attitude—I have enjoyed working with you. 

Thank you to all the subjects that made the studies possible—it was a pleasure working 

with all of you. 

Thank you to Lose the Training Wheels for providing access to the adapted bicycles and 

training program and the National Institute on Disability and Rehabilitation Research for 

a grant to Professor Dale Ulrich that made the work in Chapter 4 possible. 

Thank you to the National Science Foundation's Graduate Research Fellowship Program, 

the Department of Mechanical Engineering, the School of Kinesiology, and the 

Department of Biomedical Engineering for supporting my research and education with 

fellowships and teaching appointments. 

I have had some amazing lab mates throughout the completion of my dissertation work. 

Kevin King: Thanks for getting me started in the lab and thanks for the friendship. Ryan 

McGinnis and Andrew Hirsh: Thank you for your friendship and many research and non-

research conversations. 



 

v 
 

Leah Ketcheson, Janet Hauck, Andy Pitchford, and Vince Irully Jeong: Thank you for 

accommodating me at the bicycle camps and making me feel welcome as part of your 

research team. Leah, Janet, and Andy: Thanks for tracking down subject details. 

Thanks to Nicholas Groeneweg and Aliaksandra Kapshai for helping me get started 

collecting data in the Biomechanics Research Laboratory. 

Thank you to the bicycle and motorcycle research community: Arend Schwab, Jodi 

Kooijman, Jason Moore, Luke Peterson, Mont Hubbard, Andrew Dressel, Matteo 

Massaro, Adrian Cooke, and Anthony Doyle. It has been so wonderful to interact with 

everyone. Your kindness and friendship has made working in this field incredibly 

enjoyable and rewarding; our conversations and your feedback have greatly influenced 

and improved the quality of my work. 

I appreciate the time I spent working in the Human Neuromechanics Laboratory, under 

the direction of Professor Daniel Ferris. During that time, I had meaningful scientific 

interactions with many people (especially during the weekly neuromechanics meetings) 

that helped shape me as a scientist. I also formed many important friendships. Keith 

Gordon: Thank you for getting me started in the lab and for your mentorship through the 

years—I’ll never forget many of your jokes. Greg Sawicki: Thanks for being a great 

office mate, friend, and mentor. You helped me become more social and have really 

helped me expand my scientific network. Antoinette Domingo: Thanks for your 

friendship, all the nights of watching television, and for trusting me to take care of Cherry 

(especially during one special afternoon in the summer of 2008!). Monica Daley: Your 



 

vi 
 

friendship and mentorship was incredibly important to me—you were a large part of 

helping me establish my scientific confidence. 

Rachael Schmedlen: I am thankful I had the opportunity to work with you—I appreciate 

your friendship and the support along the way. 

The excellent staff at the University of Michigan made many tasks significantly more 

enjoyable. Specifically, I’d like to thank Kelly Chantelois and Maria Steele: Your 

consistent friendly demeanor, smiling faces, and seemingly always happy moods 

brightened my day many times. 

Jeffrey and Denise Turck, Dexter Bike and Sport: Thanks for providing some of the 

essential parts for my experimental setups and thank you for the opportunity to work at 

the shop. Thanks for the friendship and for providing me something important along my 

journey. 

Professor Stephen Piazza: I am glad I had the opportunity to work with you and look 

forward to talking with you at future meetings. The advice and insights you have given 

me at various times along my journey have been priceless. 

Thank you to all my friends—you made Ann Arbor my home and helped ensure that I 

stayed balanced. To those that have moved away—you’ve created many places around 

the country that I now feel welcome. I cannot list everyone, but I would specifically like 

to thank Nick Boswell, Mike Bartlett, Neal Blatt, Sean Murphy, Kris Potzmann, Annie 

Mathias, Joaquin Anguera, Christine Walsh, and Mr. and Mrs. Bartlett. Nick, Mike, Neal, 

and Sean: Thanks for making it easy to take a break from science and always being up for 

a ride, a beer, or just hanging out—I could write on and on but I would rather thank you 



 

vii 
 

in person. Kris: Thanks for the good times and great skiing. Annie: Your friendship has 

been invaluable throughout my entire journey—thanks for always being there. Joaquin 

and Christine: Thanks for the advice and the place to stay in San Francisco in 2009—I 

have enjoyed watching your relationship grow. Mr. and Mrs. Bartlett: Thank you for 

making me part of your family and thanks for all the great times up north. 

Jen and Dan: I am glad you are part of my family—I can’t ask for a better sister-in-law 

and brother-in-law; it is comforting knowing that that you care a lot about me. 

To my sister, Emily: Thank you for your love and inspiration. I am so glad you are my 

sister and I look forward to future hootenannies with you. 

To my brother, Greg: Thanks for being my best friend and making sure I take time to get 

into the mountains. I am sure we will have many more trips and adventures together. 

To my parents (Mum and Dad): It is impossible to communicate how much I appreciate 

what you have done for me in only a short paragraph. You gave me an amazing 

childhood and helped me get the tools that I needed to start this journey. I appreciate all 

the sacrifices you made through the years. I am most thankful for all the time we got to 

(and still get to) spend together—you truly shaped who I am today. You have always 

given the support I needed to succeed, and as a result, I never question whether or not 

you are proud of me—I clearly know you are proud of me. 

To my love, Melissa: I am so lucky to have met you. You help make me a better person 

and bring so much happiness into my life. I am not sure I would have completed this 

journey without your love. I look forward to a sharing a lifetime with you. 



 

viii 
 

TABLE OF CONTENTS 

DEDICATION ....................................................................................................................... ii 

ACKNOWLEDGEMENTS ...................................................................................................... iii 

LIST OF FIGURES ............................................................................................................... xi 

LIST OF TABLES .............................................................................................................. xvii 

ABSTRACT ...................................................................................................................... xviii 

CHAPTER 1: MOTIVATION, LITERATURE REVIEW, AND RESEARCH OBJECTIVES ....... 1 

1.1 Motivation ........................................................................................................... 1 

1.2 Background ......................................................................................................... 1 

 Stability of an Uncontrolled Bicycle and the Whipple Model ...................... 1 1.2.1

 Human Control of Bicycles .......................................................................... 3 1.2.2

 Assessing Rider Skill/Performance............................................................... 5 1.2.3

 Human Balance Skill .................................................................................... 7 1.2.4

1.2.4.1 Human standing balance ....................................................................... 7 

1.2.4.2 Human balance during walking ............................................................ 9 

1.3 Relationship of bicycle riding to other human balancing tasks ................... 10 

1.4 Research Objective and Specific Aims ........................................................... 11 

CHAPTER 2: DEVELOPMENT OF AN INSTRUMENTED BICYCLE ................................... 13 

2.1 Chapter Summary ............................................................................................ 13 

2.2 Brief review of instrumented bicycles ............................................................ 13 

2.3 Description of the instrumented bicycle ......................................................... 14 

 Bicycle ........................................................................................................ 14 2.3.1

 Instrumentation ........................................................................................... 15 2.3.2

CHAPTER 3: MEASUREMENT AND ANALYSIS OF STEADY STATE TURNING ............... 20 

3.1 Chapter Summary ............................................................................................ 20 

3.2 Background and organization of chapter ...................................................... 21 

3.3 Methods ............................................................................................................. 24 



 

ix 
 

 Experimental protocol ................................................................................. 24 3.3.1

 Data analysis ............................................................................................... 25 3.3.2

 Theoretical model for steady-state turning ................................................. 31 3.3.3

 Comparison of the model to experimental data .......................................... 34 3.3.4

3.4 Results ............................................................................................................... 35 

3.5 Discussion .......................................................................................................... 44 

3.6 Summary and Conclusions .............................................................................. 48 

CHAPTER 4: QUANTIFYING THE PROCESS OF LEARNING TO RIDE A BICYCLE USING 

MEASURED BICYCLE KINEMATICS .................................................................................. 50 

4.1 Chapter summary ............................................................................................ 50 

4.2 Introduction ...................................................................................................... 50 

4.3 Methods ............................................................................................................. 54 

 Training camp program............................................................................... 55 4.3.1

 Instrumentation ........................................................................................... 58 4.3.2

 Experimental protocol ................................................................................. 59 4.3.3

 Data reduction ............................................................................................. 61 4.3.4

 Data analysis ............................................................................................... 67 4.3.5

4.4 Results ............................................................................................................... 68 

4.5 Discussion .......................................................................................................... 74 

4.6 Conclusions ....................................................................................................... 78 

Acknowledgements ..................................................................................................... 79 

CHAPTER 5: MEASUREMENT OF HUMAN/BICYCLE BALANCING DYNAMICS AND 

RIDER SKILL ..................................................................................................................... 80 

5.1 Chapter summary ............................................................................................ 80 

5.2 Introduction ...................................................................................................... 81 

5.3 Methods ............................................................................................................. 85 

 Protocol ....................................................................................................... 87 5.3.1

 Instrumented bicycle ................................................................................... 88 5.3.2

 Motion capture system ................................................................................ 89 5.3.3

 Force platform mounted rollers .................................................................. 91 5.3.4

 Calculation of center of pressure and center of mass positions .................. 95 5.3.5

 Rider lean angle and rider lean rate ............................................................ 99 5.3.6

 Selection of data for analysis .................................................................... 101 5.3.7

 Statistics .................................................................................................... 101 5.3.8



 

x 
 

5.4 Results and Discussion ................................................................................... 102 

 Relationship between the center of mass and center of pressure .............. 103 5.4.1

 Steering ..................................................................................................... 106 5.4.2

 Rider lean .................................................................................................. 111 5.4.3

 Differences between cyclists and non-cyclists ......................................... 115 5.4.4

5.5 Conclusion ....................................................................................................... 118 

CHAPTER 6: SUMMARY AND CONTRIBUTIONS........................................................... 120 

6.1 Summary, contributions, and conclusions of each study ............................ 120 

6.2 Overarching conclusions ............................................................................... 133 

APPENDIX A: MEASUREMENT OF BICYCLE PARAMETERS ....................................... 136 

A.1 Wheel base ( w ) ............................................................................................... 136 

A.2 Wheel radius ( Fr , Rr ) ...................................................................................... 136 

A.3 Steer axis tilt ( ) ............................................................................................ 137 

A.4 Fork rake/offset ( of ) ...................................................................................... 137 

A.5 Trail ( c )........................................................................................................... 137 

A.6 Mass ................................................................................................................. 138 

A.7 Center of mass location: bicycle .................................................................... 138 

A.8 Center of mass location: handlebars, stem, and fork ( Hx , Hz ). ................. 139 

A.9 Center of mass location: wheels. ................................................................... 139 

A.10 Center of mass location: bicycle and rider ( Tx , Tz ) .................................... 139 

A.11 Inertia of wheels about axles ( FyyI , RyyI ) ....................................................... 141 

A.12 Calculation of stiffness matrices ( 0K , 2K ) .................................................... 142 

REFERENCES ................................................................................................................... 146 

 

  



 

xi 
 

LIST OF FIGURES 

Figure 2.1. The instrumented bicycle. The instrumented bicycle is a standard geometry 

mountain bike equipped to measure: steering torque, steering angle, bicycle speed, 

bicycle angular velocity about three axes, and acceleration along three axes. A laptop 

computer, A/D boards, battery, and circuitry are supported in a box at the rear. ............. 15 

Figure 2.2. The instrumented fork. We constructed a custom instrumented fork to 

measure steering torque. (A) An exploded view of the steerer tube of the instrumented 

fork. (B) A section view of the assembled instrumented fork. (C) A photograph of the 

disassembled instrumented fork. ....................................................................................... 16 

Figure 2.3. The encoder and encoder disk used to measure the steering angle. The 

encoder module was fastened to a custom aluminum plate secured to the bicycle frame 

using the upper headset cup. The encoder disk was secured to the steerer tube of the fork, 

similar to a headset spacer. ............................................................................................... 17 

Figure 2.4. A custom inertial measurement unit (IMU). The IMU was secured to a 

custom aluminum plate which was fastened to the bicycle by utilizing the water bottle 

cage mounting holes. ........................................................................................................ 19 

Figure 3.1. Identification of a region of steady-state turning. Bicycle speed, roll rate, 

steering angle, and instantaneous turn radius were used to identify a region of steady-state 

turning for processing. The region of steady turning for the example trial shown (a 

medium speed, clockwise turn with a turn radius of 9.14 meters) lies within the two 

vertical (black) lines. Another large region of steady-state turning begins around 90 

seconds and ends at approximately 125 seconds. The turn radius data has been truncated 

to highlight the steady-state turning region of interest. .................................................... 26 

Figure 3.2. (A) The rotation of the bicycle-fixed frame )ˆ,ˆ,ˆ( kji eee  relative to the sensor-

fixed frame )ˆ,ˆ,ˆ( 321 eee . (B) The rotation of the bicycle-fixed frame relative to the inertial 

frame )ˆ,ˆ,ˆ( ZYX eee . (C) A sketch of a bicycle showing the relationship of the sensor-fixed 

frame )ˆ,ˆ,ˆ( 321 eee  to the conventional vehicle dynamics coordinate system ),,( ZYX  when 

the bicycle is in the upright position. Note that )ˆ,ˆ,ˆ( ZYX eee  is aligned with ),,( ZYX . .... 28 

Figure 3.3. A jig was used to validate our method of estimating the bicycle roll angle by 

allowing us to orient the inertial measurement (IMU) at a fixed simulated roll angle. The 

simulated roll angle was independently measured using an inclinometer that can resolve 

the roll angle to within   0.01 degrees (inset photograph). The jig was secured to a 

bicycle trailer and pulled behind the instrumented bicycle on level pavement. The white 

rectangle indicates the location of the IMU on the jig secured to the trailer. ................... 30 



 

xii 
 

Figure 3.4. Bicycle roll angle versus normalized lateral acceleration. The experimental 

data are predicted well by the model (slope = 1.00, R
2
 = 0.956). Deviation from the 

model prediction can be interpreted as additional roll of the bicycle caused by a lateral 

shift in the bicycle/rider system center of mass. Positive values of lateral acceleration 

correspond to clockwise turns; negative values correspond to counter-clockwise turns. 

Note that the model predicted bicycle roll angle is nearly linear in lateral acceleration; the 

non-linear effects for the experimental conditions are contained within the width of the 

plotted line. ....................................................................................................................... 37 

Figure 3.5. Measured steering angle versus model predicted steering angle. The 

experimental data are predicted well by the model (slope = 0.96, R
2
 = 0.995). The 

clusters of data correspond to the different radii of turns tested experimentally. Scanning 

from left to right, the data groups correspond to: counter clockwise turning around radii 

of approximately 12.2, 18.3, 28.0 and 32.5 meters and clockwise turning around turns of 

22.9 and 9.1 meters. .......................................................................................................... 39 

Figure 3.6. Measured steering torque versus the model predicted steering torque. The 

linear fit of the measured values to the model changes appreciably with different rider-

lean conditions. The model provides a good fit to the ‘normal riding’ condition (slope = 

0.86, R
2
 = 0.566), but provides poor fits to the ‘rider lean into turn’ (slope = -1.33, R

2
 = 

0.155) and ‘rider lean out of turn’ (slope = 3.98, R
2
 = 0.634) conditions. ....................... 40 

Figure 3.7. The ratio of steering torque to steer angle versus bicycle speed squared. A 

negative ratio means that a rider must apply a counter-clockwise (negative) steering 

torque when applying a clockwise (positive) steer angle, whereas a positive ratio means 

that a rider must apply a clockwise (positive) steering torque when applying a clockwise 

(positive) steer angle. Both riders were able to significantly change the ratio by leaning 

into or out of a turn. .......................................................................................................... 42 

Figure 3.8. The ratio of bicycle roll angle and steering angle versus bicycle speed 

squared. Both subjects were able to significantly change the y-intercept of a linear fit to 

the data by leaning into or out of a turn. ........................................................................... 44 

Figure 4.1. An adapted bicycle. The adapted bicycles used by Lose the Training Wheels 

utilize crowned rollers in place of a rear wheel. The roller is driven by a belt, which is 

driven by a pulley connected to a standard bicycle transmission. In addition, the bicycles 

also have a handle attached to the rear of the bicycle that allows a trainer to assist the 

rider as needed. For this study, three wireless inertial measurement units (IMUs) were 

mounted the bicycles: one on the frame (frame mounted IMU), another on the handlebar 

stem (stem mounted IMU), and one on the spokes of the front wheel (wheel mounted 

IMU). ................................................................................................................................ 57 

Figure 4.2. The rollers used on the adapted bicycles. A series of crowned rollers is used 

to modify the characteristics of the adapted bicycle. Roller number 1 (top) has the 

smallest crown (less lean/greater stability) while roller number 8 (bottom) has the largest 

crown (most lean/least stability). Participants often begin with roller number 3 and end 

with roller number 6 before advancing to a traditional bicycle. ....................................... 58 



 

xiii 
 

Figure 4.3. The sensor-fixed and bicycle-fixed frames. Measurements in the sensor-fixed 

frames  321
ˆ,ˆ,ˆ eee  and  654

ˆ,ˆ,ˆ eee  must be resolved in bicycle-fixed frames relevant to 

understanding bicycle dynamics;  
kji eee ˆ,ˆ,ˆ  for roll/lean motion and  nml eee ˆ,ˆ,ˆ  for steer 

motion. The rotation angles   and   are used to align the sensor-fixed frame  321
ˆ,ˆ,ˆ eee

 
with the bicycle-fixed frame  

kji eee ˆ,ˆ,ˆ . The steer axis tilt angle,  , is used when resolving 

the steer rate. The frame  654
ˆ,ˆ,ˆ eee  is not always exactly equal to  nml eee ˆ,ˆ,ˆ  due to 

potential slight misalignment of the two frames. .............................................................. 62 

Figure 4.4. Peak cross-correlation squared ( 2R ) between steer and roll angular velocities 

versus training day/time for each subject (labeled A-O). Results of riders who learned to 

ride a traditional bicycle are plotted in black, whereas those who did not are plotted in 

gray. Dots signify trials on adapted bicycles whereas open circles signify trials on 

traditional bicycles. The peak cross-correlation significantly increased with training time 

(F = 44.203, p < 0.001). .................................................................................................... 70 

Figure 4.5. Mean peak cross-correlation squared ( 2R ) between steer and roll angular 

velocities of those who learned to ride versus those that did not. The error bars represent 

± one standard deviation. Riders who learned to ride a traditional bicycle exhibited a 

significantly higher correlation between steer and roll angular velocities than riders who 

did not learn (t = 5.434, p = 0.003). .................................................................................. 71 

Figure 4.6. Slope of the linear fit of steer angular velocity to roll angular velocity at the 

time shift required for peak correlation versus training time. Plots for individual riders 

(labeled A-O) are provided to illustrate change as riders progressed through the camp. 

The results of riders who learned to ride a traditional bicycle are plotted in black, whereas 

the results of riders who did not are plotted in gray. Trials in which the rider rode a 

traditional bicycle are plotted with a circle. The slope significantly increased with 

training time (F = 31.931, p < 0.001). ............................................................................... 71 

Figure 4.7. Standard deviation of the steer angular velocity versus training time. Plots for 

individual riders (labeled A-O) are provided to illustrate change as riders progressed 

through the camp. The results of riders who learned to ride a traditional bicycle are 

plotted in black, whereas the results of riders who did not are plotted in gray. Trials in 

which the rider rode a traditional bicycle are plotted with a circle. The standard deviation 

of the steer rate increased significantly over time for all trials (F = 27.579, p < 0.001) and 

for the subset of trials on the adapted bicycles (F = 25.196, p < 0.001). .......................... 73 

Figure 4.8. Standard deviation of the roll angular velocity versus training time. Plots for 

individual riders (labeled A-O) are provided to illustrate change as riders progressed 

through the camp. The results of riders who learned to ride a traditional bicycle are 

plotted in black, whereas the results of riders who did not are plotted in gray. Trials in 

which the rider rode a traditional bicycle are plotted with a circle. The standard deviation 

of the roll rate increased significantly over time for all trials (F = 30.254, p < 0.001) and 

for the subset of trials on the adapted bicycles (F = 8.238, p = 0.008). ............................ 74 



 

xiv 
 

Figure 5.1. A cyclist riding a bicycle on rollers. ............................................................... 86 

Figure 5.2. A platform placed over the rollers allows subjects to safely dismount the 

bicycle and a railing beside the rollers allows subjects to support themselves during trials. 

The roller drums are mounted to a frame that is attached to a force platform near the 

center of the assembly. ...................................................................................................... 88 

Figure 5.3. Three markers (1, 2, and 3) are attached to a rigid plate (black) which is fixed 

to the headtube of the bicycle. .......................................................................................... 90 

Figure 5.4. Relationship of the bicycle to the inertial frame. The inertial frame ),,( ZYX  

is fixed to the force platform. The dashed line tangent to the rear wheel represents the roll 

axis of the bicycle. ............................................................................................................ 91 

Figure 5.5. The custom rollers. ......................................................................................... 93 

Figure 5.6. The custom rollers. ......................................................................................... 93 

Figure 5.7. The rollers are designed to be bolted to a force platform. Four brackets on the 

base of the rollers are used to secure the rollers to the force platform using four bolts. .. 93 

Figure 5.8. The front roller can be adjusted to ensure that the bicycle is level (adjustment 

up and down) and to ensure that the roller contacts the front tire appropriately 

(adjustment fore and aft). .................................................................................................. 94 

Figure 5.9. A photograph of the instrumented bicycle on the custom rollers. Note that the 

bicycle is leaning against the wall to stay upright. ........................................................... 94 

Figure 5.10. Rider lean as viewed from behind the bicycle/rider. The rider lean angle 

quantifies how a rider is shifting his/her center of mass relative to the bicycle. The arrows 

define the positive sense of all angles. Rider lean )( lean  is defined as the center of mass 

roll angle )( COM  minus the bicycle roll angle )( . For the example illustrated, the rider 

lean angle is negative. ..................................................................................................... 100 

Figure 5.11. Lateral (y) center of pressure location and center of mass location versus 

time. Data from a representative trial (non-cyclist,    7.46 m/s) demonstrates the lateral 

center of mass location closely tracks the lateral center of pressure location during 

bicycle riding. ................................................................................................................. 104 

Figure 5.12. Cross-correlation of the lateral position of the center of mass to the center of 

pressure versus speed. The cross-correlation decreases significantly with increasing speed 

(F = 29.113, p < 0.001) and decreases significantly more with increasing speed for non-

cyclists than cyclists (F = 14.843, p < 0.001). ................................................................ 105 

Figure 5.13. Slope of the linear fit of the lateral position of the center of mass to the 

center of pressure versus speed. The slope decreases significantly with increasing speed 



 

xv 
 

(F = 11.352, p = 0.001) and decreases significantly more for non-cyclists than cyclists (F 

= 11.263, p = 0.001). ....................................................................................................... 106 

Figure 5.14. Bicycle roll rate and steer rate versus time. Data from a representative trial 

(non-cyclist, v 7.96 m/s) demonstrates that the steer rate ( ) lags and is correlated to 

the bicycle roll rate ( ) during riding. ............................................................................ 107 

Figure 5.15. Cross-correlation of steer rate to bicycle roll rate versus speed. The cross-

correlation decreases significantly with increasing speed (F = 34.307, p < 0.001) and 

decreases significantly more with increasing speed for cyclists than non-cyclists (F = 

4.650, p = 0.035). ............................................................................................................ 108 

Figure 5.16. Slope of the linear least-squares fit of steer rate to bicycle roll rate versus 

speed. The slope decreases significantly with increasing speed (F = 142.123, p < 0.001). 

There are no significant differences between cyclists and non-cyclists. ........................ 109 

Figure 5.17. Standard deviation of steer angle versus speed. The standard deviation of 

steer angle decreases significantly with increasing speed (F = 114.264, p < 0.001). 

Cyclists exhibit significantly less steer angle variation than non-cyclists (F = 13.904, p < 

0.001). ............................................................................................................................. 110 

Figure 5.18. Average positive steering power versus speed. All riders produce less 

positive power to steer the bicycle as speed increases (F = 10.547, p = 0.002). Cyclists 

produce less positive power than non-cyclists (F = 19.213, p < 0.001). ........................ 111 

Figure 5.19. Bicycle roll angle and rider lean angle versus time. Data from a 

representative trial (cyclist, v 2.526 m/s) demonstrates that rider lean ( lean ) is highly 

correlated with and opposite to the bicycle roll angle ( ). Refer to Figure 5.10 for 

definitions of lean  and  . ............................................................................................... 112 

Figure 5.20. Cross-correlation of rider lean angle to bicycle roll angle versus speed. The 

cross-correlation decreases significantly with increasing speed (F = 32.948, p < 0.001) 

and decreases significantly more with increasing speed for non-cyclists than cyclists (F = 

17.639, p < 0.001). .......................................................................................................... 113 

Figure 5.21. Slope of the linear least-squares fit of rider lean angle to bicycle roll angle 

versus speed. The magnitude of the slope decreases significantly with increasing speed (F 

= 19.220, p < 0.001) and decreases significantly more with increasing speed for non-

cyclists than cyclists (F = 13.865, p < 0.001). ................................................................ 114 

Figure 5.22. Standard deviation of rider lean angle versus speed. Cyclists exhibit 

significantly less rider lean than non-cyclists (F = 19.643, p < 0.001). .......................... 115 

Figure 5.23. Standard deviation of the lateral position of the center of pressure versus 

speed. The standard deviation of the lateral position of the center of pressure decreases 

significantly with increasing speed (F = 25.294, p < 0.001). Although it may appear that 



 

xvi 
 

cyclists exhibit less variation in the center of pressure position than non-cyclists, there 

was not a significant difference between the two groups (F = 3.695, p = 0.059). .......... 117 



 

xvii 
 

LIST OF TABLES 

Table 3.1. Differences between the estimated bicycle roll angle and the model predicted 

roll angle for different lean conditions. A positive value indicates that a rider can increase 

the magnitude of the bicycle roll angle by leaning, whereas a negative value indicates that 

rider can decrease the magnitude. ..................................................................................... 37 

Table 3.2. Summary of the linear fit )( bmxy   of measured values to model predicted 

values. ............................................................................................................................... 38 

Table 3.3. Summary of the linear fit bvmT  )()/( 2 . ................................................ 42 

Table 3.4. Summary of the linear fit bvm  )()/( 2 . ................................................. 43 

Table 4.1. Subject details. ................................................................................................. 55 

Table 5.1. Comparison of kinematic-based and kinetics-based estimates of center of mass 

location and acceleration................................................................................................... 98 

Table 5.2. Summary of statistical tests. Significant effects are denoted with an asterisk 

(*). ................................................................................................................................... 103 

Table A.1. Body segment properties (from Clauser et al. [136] and Dempster [128]). The 

mass of each segment is calculated as a fraction of the body mass and the location of the 

center of mass of each segment is calculated as a fraction of the segment length. ........ 140 

Table A.2. Bicycle parameters for use in the model. ...................................................... 145 



 

xviii 
 

ABSTRACT 

 

An Experimental Investigation of Human/Bicycle Dynamics and Rider Skill in Children 

and Adults 

by Stephen Matthew Cain 

 

Chair: Noel C. Perkins 

While humans have been riding bicycles for nearly 200 years, the dynamics of how 

exactly they achieve this are not well understood. The overall goals of this dissertation 

were to identify the major control strategies that humans use to balance and steer 

bicycles, as well as to identify performance metrics that reliably distinguish rider skill 

level. To achieve these goals, we introduced: a) a novel instrumented bicycle to measure 

rider control inputs and bicycle response outputs, b) an experimental design and 

analytical approach for tracking and quantifying rider learning, and c) an experimental 

design and analytical approaches to measure the dynamics of human/bicycle balance and 

quantify rider balance performance. We employed variations of the instrumented bicycle 

in three studies that focused on: 1) how adult riders control bicycle kinematics during 

steady-state turning, 2) the initial learning of steering and balance control as children 

learn to ride bicycles, and 3) the balance skill of adult expert and novice riders. 
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The findings from these studies advance our understanding of the types of control used 

by human riders, and simultaneously, quantify rider learning and skill. During steady-

state turning, rider lean strongly influences steering torque, suggesting that rider lean 

plays an important role in bicycle control. Children learned to ride after successfully 

learning how to steer in the direction of bicycle roll, thereby increasing the correlation 

between steer and bicycle roll angular velocities (coefficient of determination increased 

from 0.22 to 0.75 during the learning process). In adults, the superior balance 

performance of skilled versus novice riders is revealed by highly correlated lateral 

positions of the center of pressure and center of mass (coefficients of determination of 

0.97 versus 0.89, respectively). In achieving their superior balance performance, skilled 

riders employed more rider lean control, less steer control, and used less control effort 

than novice riders. We conclude that rider lean (i.e., any lateral movements of the rider) 

plays a dominant role in both steering and balancing a bicycle, and that achieving balance 

requires coordinating both steer and rider lean (the two rider control inputs) with bicycle 

roll (the bicycle response). 
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CHAPTER 1: MOTIVATION, LITERATURE REVIEW, AND RESEARCH OBJECTIVES 

1.1 Motivation 

Humans have ridden bicycles (two-wheeled, single track vehicles) since the early 1800’s 

[1], yet human/bicycle dynamics are far from well understood. Recent work [2] has 

established the so-called Whipple bicycle model [3] as the simplest model of a bicycle 

that can predict the self-stability of an uncontrolled bicycle. By contrast, there is still little 

understanding of the fundamental characteristics of human riders, the types of control 

that humans use, and the skills that distinguish riders of different ability levels. 

Understanding rider learning and skill could help to improve programs that teach affected 

populations to ride, such as Programs to Educate All Cyclists
1 

(PEAC) and Lose the 

Training Wheels
2
 and provide a way to objectively measure whether a specific bicycle is 

better or worse for a particular rider. 

1.2 Background 

 Stability of an Uncontrolled Bicycle and the Whipple Model 1.2.1

The dynamics of an uncontrolled bicycle, either without a rider or with a rigid but non-

actuating rider, are well understood. The relatively recent work by Meijaard et al. [2] 

presents complete equations of motion for what is referred to as the Whipple bicycle 

model. The authors also present bicycle parameters that can be used for benchmarking 

                                                 
1
 www.bikeprogram.org 

2
 www.losethetrainingwheels.org 
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and a thorough review of the bicycle dynamics literature, arguing that no prior journal 

publication in English presents complete and correct equations for the Whipple model. 

The Whipple bicycle model consists of four rigid bodies: a rear wheel, a rear frame with 

a rider rigidly attached to it, a front frame consisting of the front handlebar and fork 

assembly, and a front wheel. The model assumes that all bodies are laterally (left-right) 

symmetric and that the wheels have circular symmetry. Motion of the rider relative to the 

frame, structural compliance and damping, joint friction, and tire compliance and slip are 

neglected. Tire contacts with the ground are approximated by knife-edge rolling point-

contacts. The model is described by seven generalized coordinates. As noted in [2], only 

three of the generalized coordinates are independent upon accounting for four non-

holonomic rolling constraints. After linearizing the model about upright, straight-line 

motion and treating forward speed as a parameter, the model is reduced to two 

generalized coordinates; namely the steer angle and the lean (or roll) angle. The model 

successfully explains the observed self-stability of an uncontrolled bicycle (within a 

specific speed range) and the coupling between lean and steer. 

Extensions of the Whipple model have been proposed to investigate added complexities 

for an uncontrolled bicycle. Meijaard and Schwab [4] expanded the Whipple model to 

include the effects of tire shape, a linear tire model, road gradient, and driving and 

braking torques. Sharp [5] investigated acceleration, finite cross-section tires, tires as 

force and moment generators, tire dynamics, frame compliance, and rider compliance. 

Peterson and Hubbard [6] and Schwab et al. [7], among others, added an additional 

degree of freedom to allow rider lean relative to the bicycle. Schwab and Kooijman [8] 

investigated the effects of coupling between the passive rider and the bicycle. All of these 
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additional effects lead to different open-loop dynamics—however, these differences are 

also relatively minor.  

The Whipple bicycle model is useful for predicting the stability of real bicycles. 

Kooijman et al. demonstrated that the eigenvalues predicted by the Whipple model are in 

good agreement with the experimentally measured eigenvalues for a riderless bicycle 

both overground [9] and on a treadmill [10]. In [11], Kooijman et al. used the Whipple 

bicycle model to design a self-stable bicycle with no gyroscopic effects or trail (also 

known as caster [11]), which are two properties of typical bicycles that were thought to 

be essential for a bicycle to be self-stable. These studies demonstrate that the Whipple 

model is sufficient for understanding the stability and open-loop dynamics of bicycles. 

Under the assumption that the open-loop dynamics of a bicycle relate to “rideability” or 

maneuverability of the bicycle, a number of studies investigated how changes in 

parameters affect bicycle stability. Moore and Hubbard [12] investigated the effects of 

front wheel diameter, steer axis tilt (or head tube angle), trail, and wheelbase on the range 

of stable speeds predicted by the Whipple model. Tak et al. [13] performed a sensitivity 

analysis on the range of stable speeds with respect to changes in all 25 bicycle parameters 

and found that head tube angle had the greatest effect on stability. Not surprisingly, real 

bicycles are not designed to be as stable as possible—they must also be easily 

maneuverable [14]. 

 Human Control of Bicycles 1.2.2

Sheridan and Ferrell in their book about man-machine systems [15] state that “…the 

quality of performance of either the human or the machine component by itself does not 
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determine the quality of system performance.” The quality of a bicycle cannot be 

determined from only looking at the bicycle’s open loop dynamics. Throughout the 

history of the bicycle, humans have demonstrated that they are capable of successfully 

riding a wide range of bicycle designs, including bicycles that have no self-stability. In 

fact, early bicycles likely had very little self-stability, as they had vertical steering axes 

and little to no trail [1]. Researchers also set out to design bicycles with no self-stability 

[16] and bicycles that are “unrideable” [17, 18]; however, such bicycles have proven to 

be easily rideable [16, 17] or rideable after practice. In addition, even bicycles that are 

self-stable are only self-stable for a limited range of speeds; outside of the limited speed 

range the bicycles must be stabilized by human control. Therefore, understanding the 

human rider and the control that a rider uses are important for understanding bicycles and 

bicycle design. 

Researchers have modeled human control of bicycles as a steering torque (applied by a 

rider through the handlebars) and a leaning torque (applied by a rider by leaning relative 

to the bicycle) [6, 7, 19]. These control inputs are similar to those considered in the study 

of motorcycles [20-22]. However, the ratio of rider mass to vehicle mass is much greater 

for a bicycle rider than for a motorcycle rider, which makes other and more subtle control 

possible. For example, experimental observations of human control reveal that human 

riders may use lateral knee movements and more complex upper body movements, 

especially at lower speeds [23, 24]. A number of studies have investigated automatic or 

robot control of a bicycle [25-29], and reveal that human-like control (steering angle and 

simulated rider lean) as well as control schemes not accessible to humans (gyroscopic 

stabilization) can successfully keep a bicycle upright. These studies highlight the fact that 
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a human rider (or robot rider) has many ways of controlling and balancing a bicycle—yet 

not all of these control movements are easy to model or measure. 

As expected, a wide range of controllers successfully stabilize and steer bicycle models. 

These controllers include: steer-into-the-lean (intuitive) model [7], linear quadratic 

regulator [7], cross-over control model [30], optimal linear preview [19], among others 

[6, 31, 32]. However, the primary goal of these controllers has been to evaluate bicycle 

design. For example, Schwab et al. [7] investigate the gains that must be used by the 

controller; Sharp [19] quantifies the preview time necessary to achieve certain levels of 

performance with a given bicycle design; and, Hess et al. [30] quantify the handling 

qualities of bicycles using a handling qualities metric originally proposed for evaluating 

aircraft. However, none of these controllers were developed with the idea of investigating 

the performance of the human rider. 

Researchers used various forms of system identification to solve for parameters of 

modeled controllers. Work by van Lunteren and Stassen [33] utilized a bicycle simulator 

instead of a real bicycle and revealed that controller parameters can be quite variable both 

for different trials with the same rider and between different riders. Preliminary work by 

Moore [34] demonstrates similar findings. Therefore, it is not clear how control 

parameters might be correlated with rider skill or performance. 

 Assessing Rider Skill/Performance 1.2.3

Bicycle riding skill or performance has previously been assessed by instructing subjects 

to ride around a prescribed course or to perform a prescribed task. In general, the time to 

complete a course/task and the number of errors committed are used to quantify 
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performance. In the majority of studies that use these techniques, the goal has been to 

evaluate the performance or safety of a particular bicycle or bicycle configuration [35-

40]. In a study investigating the maneuverability of children’s bicycles [40], Lewis noted 

that there was more variation between subjects than between the use of different bicycles. 

The time to complete a course and number of errors were used to investigate the 

correlation between physical and perceptual-motor abilities and riding performance [41, 

42] and to evaluate the effect of alcohol consumption on the ability to safely ride a 

bicycle [43]. While quantifying performance by time to complete a course/task and the 

number of errors is useful for the questions posed in the previously mentioned studies, 

the results from these studies are task specific and do not translate to new tasks. In 

addition, the methods of quantifying performance do not allow continuous monitoring of 

skill because the methods rely on completion of specific courses/tasks. The methodology 

is also not useful if it is not possible for a rider to complete a task; for example, a child 

that has not yet learned to ride a bicycle would not be able to successfully ride around a 

course. 

Some motorcycle research suggests that riders of different skill levels use different body 

lean relative to the motorcycle and steering torque. For example, Rice [44] found that 

riders of different skill levels phased body lean and steering torque differently when 

executing a lane change maneuver. Similarly, Prem [45] found that novice riders in an 

evasive maneuver used lean torque and steering torque differently from expert riders. 

Prem also used skill tests to differentiate rider ability, similar to the bicycle studies 

mentioned above. However, these studies also provide little insight on how to 

continuously monitor skill or motor learning for bicycle riders. 
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In the absence of quantitative tools to evaluate rider learning and rider skill, researchers 

and programs that teach children how to ride must resort to qualitative assessments. For 

example, the Lose the Training Wheels
3
 program uses specially trained floor managers to 

observe riders who determine if the rider is learning. The floor manager observes the 

speed of pedaling, whether a rider leans into turns, relaxes his/her arms and uses the 

handlebars to turn and control the bicycle [46]. However, it is unclear how these 

qualitative assessments correlate to riding skill. A quantitative measure of skill would 

allow bicycle programs to monitor rider progress more effectively and potentially create 

better methods to teach bicycle riding. 

 Human Balance Skill 1.2.4

The ability to balance the bicycle is necessary to successfully complete any riding task. 

Therefore, it seems logical to investigate possible ways to quantitatively evaluate the skill 

or ability of a rider to balance. Other fields of research have investigated human 

balancing skills and performance and these provide insight into how bicycle balancing 

skill could be quantified. Two such fields are human postural control and human walking. 

1.2.4.1 Human standing balance 

The tools used to evaluate human postural control are an essential part of both clinical 

evaluation of patients and research into how humans maintain upright posture. Some of 

the most basic methods used to evaluate human postural control involve monitoring the 

location of the center of pressure (COP) and the center of mass (COM) [47]. By using an 

ideal inverted pendulum model of standing balance, Winter [47] explains that the (COP-

COM) signal is directly related to the horizontal acceleration of the COM and can be 

                                                 
3
 www.losethetrainingwheels.org 
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considered to be the error signal detected by the balance control system. The assumption 

is that the goal of the balance control system is to maintain an upright posture and to 

control postural sway. While it is assumed that human standing balance can be modeled 

effectively as an inverted pendulum, it is important to note that more complex balancing 

tasks cannot be explained by this simple approach and require a more complex model of 

the body [48]. Researchers have used COP measurements to investigate standing balance 

using a wide range of statistics, including: root mean square (RMS) distance from the 

mean COP [49, 50], excursions of the COP [51-53], COP sway amplitude [54], velocity 

of the COP [55, 56], and the area enclosed by the COP trajectory [55, 57], among others.  

More advanced methods of quantifying balance performance have investigated the 

frequency content of the COP movement [56], the relationship of the COP to the COM 

movement [47], and the relationship of the COP and/or COM movement to muscle 

activation patterns [52, 58]. Researchers have also used system identification techniques 

to identify various transfer functions for standing balance [59, 60]. Depending on the 

experimental protocol, identified system parameters or attributes can be used to 

understand the controller or plant during standing balance [61, 62]. However, there is not 

yet a clear way to use these measures for diagnosing balance disorders [63, 64]. 

Basic quantitative measures of postural control identify at risk populations and 

differences in balance performance. Maki et al. [49] demonstrated that postural sway, as 

measured by COP displacement, is correlated with future falling risk. Prieto et al. [57] 

found that the mean velocity of the COP signals differences between healthy young and 

elderly adults and differences between eyes-open and eyes-closed standing balance 

conditions. Pellecchia [50] demonstrated that postural sway, as measured by movement 
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of the COP, increases when subjects performed difficult cognitive tasks. Jeka and 

Lackner [54] demonstrated that the addition of fingertip contact could reduce postural 

sway, as measured by movement of the COP. These studies represent a small sample of 

the extensive literature in the field of human postural control that utilize measures of 

body sway, usually movement of the COP, to quantify balance performance. As a result, 

these types of measures are utilized by clinicians to identify patients with balance 

disorders [47, 63, 65]. 

1.2.4.2 Human balance during walking 

Similar to human postural control is the study of human balance during walking. Like 

standing balance, simple models have proven to be useful. Passive dynamic walking 

models suggest that the sagittal plane motion of walking is passively stable [66, 67], 

whereas the lateral motion is unstable [67]. Kuo [67] demonstrated through the use of a 

walking model that medial-lateral foot placement can effectively stabilize the lateral 

dynamics of passive walking models. When humans walk with reduced visual 

information the variability of medial-lateral foot placement increases [68], suggesting 

that this variation is related to decreased performance. Similarly, passive walking models 

suggest that wider step widths are more stable than narrow step widths [67], and therefore 

may also be useful for quantifying balance during walking. The work of Donelan et al. 

[69] demonstrated that providing external lateral stabilization to human subjects during 

walking resulted in decreased step width variability and narrower step width, which 

supports the idea that step width measurements can be useful for quantifying human 

balance during walking. 
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The basic methods of quantifying the lateral dynamics of human walking are useful for 

assessing balance during human walking. Variability of step width remains a good 

predictor of falling in the elderly [70-72] that can be used in a clinical setting. Applying 

external lateral stabilization to subjects with myelomeningocele allows them to walk with 

decreased step width and decreased medial-lateral motion of the COM [73]. Given the 

ability to quantify balance skill, researchers investigated the use of physical guidance and 

error augmentation to affect the motor learning of human subjects walking on a narrow 

beam [74, 75]. 

1.3 Relationship of bicycle riding to other human balancing tasks 

Both standing and walking require maintaining a specific relationship between the center 

of mass of the body and the base of support. In static situations, the vertical projection of 

the center of mass should fall within the base of support. However for dynamic situations, 

this description is insufficient [76, 77]. In dynamic balancing tasks, both center of mass 

position and velocity must be considered to understand balance limits [76-78].  

Riding a bicycle is similar to standing and walking in that it requires the human to 

maintain balance. Instead of maintaining the center of mass of the body within some 

margin of the base of support, a bicycle rider must maintain the center of mass of the 

bicycle/rider system within some limits of the base of support defined by the contact of 

the bicycle tires with the ground. Most likely these limits are a function of the bicycle 

speed and yaw rate, which are important for understanding the lateral acceleration and 

thus the roll angle of a single track vehicle [79]. As discussed in Sections 1.2.4.1 and 

1.2.4.2, dynamic measurements such as the center of pressure position/velocity, center of 

mass position/velocity, and step width can be useful for evaluating stability or balance 
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performance during standing and walking tasks. Unlike standing and walking, it is 

unclear how dynamic measures of the bicycle/rider system might be related to stability or 

balance performance. Bicycle riding is also unlike standing and walking in that the rider 

must control more than just his/her body. In addition to applying joint torques to alter 

body posture (as in standing balance [48, 80]), a bicycle rider can also steer the bicycle to 

maintain balance. Analyses of rider motion reveal that riders use both lateral body 

movements and steering while riding [24], but it remains unclear which rider motions are 

essential for balance. 

1.4 Research Objective and Specific Aims 

Following the above review of human/bicycle dynamics and rider skill, the overall 

objectives of this dissertation are to: 1) understand how humans balance and steer 

bicycles, and 2) quantify the skill of human riders. To meet these objectives, the 

following specific aims are pursued: 

1. Design and build an instrumented bicycle that is capable of measuring the 

primary human control inputs (steer torque and rider lean) and fundamental 

bicycle kinematics. 

2. Investigate human/bicycle dynamics and control during steady-state turning 

using experimental and analytical approaches. 

3. Quantify the changes that occur as learners transition from non-riders to 

riders. 

4. Quantify the differences between skilled and novice riders when balancing a 

bicycle. 
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In Chapter 2 (specific aim 1) we describe and document the instrumented bicycle. In 

Chapter 3 (specific aim 2) we discuss our investigation of steady-state turning, in which 

we employ the instrumented bicycle to make experimental measurements and present a 

steady-state turning model to interpret our results. Specific aim 3 is addressed by Chapter 

4, in which we describe results from our study that uses measured bicycle kinematics to 

quantify rider learning as novice riders with disabilities progress through a specialized 

bicycle camp. Differences between skilled and novice riders (specific aim 4) are 

quantified in Chapter 5. 
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CHAPTER 2:  DEVELOPMENT OF AN INSTRUMENTED BICYCLE 

2.1 Chapter Summary 

In this chapter we describe the design of an instrumented bicycle. The instrumented 

bicycle is capable of measuring steering torque (the primary human control), bicycle 

speed, steering angle, acceleration of the bicycle frame, and angular velocity of the 

bicycle frame. Using the methodology discussed in Chapter 3 Section 3.3.2, it is possible 

to resolve the bicycle roll angle and the additional roll of the bicycle caused by rider lean 

relative to the bicycle frame for steady turning of a bicycle. As later discussed in Chapter 

5, the instrumented bicycle can also be used to resolve the roll and yaw rates of the 

bicycle frame and to quantify the amount of work done by a rider to balance a bicycle. 

We begin this chapter with a brief review of other instrumented bicycles, and then 

describe the instrumentation and data acquisition system. The content of this chapter also 

appears in a published conference paper [81] and a published journal article [82]. 

2.2 Brief review of instrumented bicycles 

Instrumented bicycles have been used to investigate the human control and dynamic 

behavior of bicycles. Roland [31] instrumented a bicycle to measure the rider lean angle 

and the steering angle, roll angle and speed of the bicycle in order to verify simulation 

results of a riderless bicycle and to analyze the steer and lean control used by a human 

rider. Jackson and Dragovan [83] instrumented a bicycle to measure the steering angle, 

speed and angular velocity of the bicycle during no-hands riding in conjunction with 
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simplified equations of motion to understand the torque applied to the front wheel by the 

ground reaction force and the gyroscopic moment. Cheng et al. [84] instrumented a 

bicycle to measure steering torque and confirm that larger torques are required to initiate 

turns with larger steering angles. Kooijman et al. [9] instrumented a riderless bicycle for 

angular rates, steering angle, and speed to validate a model of an uncontrolled bicycle at 

low speeds. More recently, Kooijman and Schwab [23] instrumented a bicycle for roll, 

yaw, and steering rates, steering angle, rear wheel speed, pedaling cadence as well as 

video capture of rider motion. They conclude that during normal cycling, most rider 

control is imparted through steering as opposed to upper body lean. 

2.3 Description of the instrumented bicycle 

An instrumented bicycle was constructed to measure the primary human control used by 

a human rider (steer torque) and the most relevant bicycle kinematics. In the following, 

we describe the bicycle, the sensors, the power supplies, and the data acquisition system.  

 Bicycle  2.3.1

The bicycle shown in Figure 2.1 is a standard geometry (steer axis tilt = 18.95 degrees, 

trail = 64 mm, wheel base = 1.060 m), rigid (unsuspended) mountain bike (1996 Schwinn 

Moab 3, size 19 inch frame) equipped with 660.4 mm x 49.5 mm (26 in x 1.95 in) slick 

tires (Tioga City Slicker 26 x 1.95, ETRTO 48-559). The wheel bearings were properly 

adjusted and the wheels were trued by a professional bicycle mechanic prior to testing. 

To accommodate the torque sensor, the stock fork was replaced with an aftermarket rigid 

(unsuspended) fork (Surly 1x1, 413 mm axle-to-crown length, 45 mm rake/offset). 
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Figure 2.1. The instrumented bicycle. The instrumented bicycle is a standard geometry mountain bike 

equipped to measure: steering torque, steering angle, bicycle speed, bicycle angular velocity about three 

axes, and acceleration along three axes. A laptop computer, A/D boards, battery, and circuitry are 

supported in a box at the rear. 

 Instrumentation 2.3.2

The instrumentation selected for this study enables the simultaneous measurement of the 

steering torque, the steering angle, the bicycle speed, and the acceleration and angular 

velocity of the bicycle frame as described below. 

Steering torque. We constructed the custom instrumented fork shown in Figure 2.2 to 

measure the steering torque. The placement of a torque sensor (Transducer Techniques 

SWS-20) within the steerer tube permitted the measurement of the torque transmitted 

between the handlebars and the front wheel. We isolated the torque sensor from 

unwanted bending moments and axial loading by using angular contact bearings (Enduro 

7901) in conjunction with the pair of angular contact bearings in the bicycle headset; the 

bearings were preloaded prior to testing, similar to the way that a threadless headset is 

adjusted. Following installation, we calibrated the torque sensor in situ by orienting the 
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bicycle such that the steering axis was parallel to the ground, securing a long length of 

threaded rod in the fork dropouts, and then placing known masses at measured distances 

from the steering axis to create known torques. Following calibration, we measured the 

stiffness of the torque sensor to be 4.97 Nm/deg. The signal from the torque sensor was 

amplified using a load cell signal conditioner (Transducer Techniques TMO-1) and was 

sampled at 1000 Hz in the experiments described below. The range and resolution of the 

torque measurements are +/- 7.512 Nm and 0.005 Nm, respectively.  

 
Figure 2.2. The instrumented fork. We constructed a custom instrumented fork to measure steering torque. 

(A) An exploded view of the steerer tube of the instrumented fork. (B) A section view of the assembled 

instrumented fork. (C) A photograph of the disassembled instrumented fork. 

Steering angle. We employed an optical encoder to measure the steering angle. We 

secured a custom encoder disk (US Digital HUBDISK-2-1800-1125-I) to the bicycle fork 

similar to a headset spacer as illustrated in Figure 2.3. We attached the encoder module 
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(US Digital EM1-2-1800) to a custom aluminum plate, which was secured to the bicycle 

frame by using the top headset race as shown in Figure 2.3. An encoder chip (LSI/CSI 

LS7183 in    resolution mode) was used to convert the raw signal from the encoder 

module to up and down counts and was sampled at 200 Hz, which is the maximum 

sampling rate for a digital input to the data acquisition board. Due to the flexibility of the 

steering assembly caused by the torque sensor, the steering angle is corrected as 

described in Chapter 3 Section 3.3.2. The optical encoder measures the steering angle 

with a resolution of 0.1 degrees. 

 
Figure 2.3. The encoder and encoder disk used to measure the steering angle. The encoder module was 

fastened to a custom aluminum plate secured to the bicycle frame using the upper headset cup. The encoder 

disk was secured to the steerer tube of the fork, similar to a headset spacer. 

Bicycle speed. We calculated the average bicycle speed for each revolution of the front 

wheel by dividing the circumference of the front wheel by the time required for each 

revolution. The circumference of the front wheel was calculated from the rolling radius of 

the front wheel, which was measured as described in Section A.2 of Appendix A. Wheel 

revolutions were measured using a magnetic reed switch (Cateye 169-9772) and a single 
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wheel mounted magnet (Cateye 169-9691). We sampled the signal from the magnetic 

reed switch at 1000 Hz. Speed updates, obtained once per wheel revolution, translate to 

update rates from 0.5 to 4.7 Hz for the bicycle speeds in our experiments. Assuming 

resolutions of 0.001 seconds and 0.001 meters for the measured time for a wheel rotation 

and wheel circumference, respectively, we estimate that the maximum error occurs at the 

fastest speed (+/- 0.049 m/s or +/- 0.5%) and the minimum error occurs at the lowest 

speed ( +/- 0.001 m/s or +/- 0.1%). 

Acceleration and angular velocity. A custom inertial measurement unit (IMU) shown in 

Figure 2.4 was constructed using a three-axis accelerometer (Analog Devices ADXL335) 

and three single-axis angular rate gyros (Murata ENC-03M). We secured the IMU to a 

custom aluminum plate which is fastened to the seat tube of the bicycle frame utilizing 

the water bottle cage mounting holes (Figure 2.4). The angular velocity measurements 

were used to calculate the turn radius and the acceleration measurements were used to 

calculate the bicycle roll angle as further described in Section 3.3.2. The signals from the 

accelerometer and three angular rate gyros were sampled at 1000 Hz. The IMU, 

calibrated using the technique described by King [85], yields acceleration measurements 

with a range and resolution of +/- 29.43 m/s
2
 and 0.067 m/s

2
, respectively, and angular 

velocity measurements with a range and resolution of +/- 300 deg/s and 3.04 deg/s, 

respectively. 
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Figure 2.4. A custom inertial measurement unit (IMU). The IMU was secured to a custom aluminum plate 

which was fastened to the bicycle by utilizing the water bottle cage mounting holes. 

Data acquisition. We used a small laptop computer (Dell Inspiron mini) running a 

custom LabVIEW (National Instruments) program and two data acquisition boards 

(National Instruments USB-6008) to convert analog signals to digital and to log data 

collected during each trial. The laptop and data acquisition boards were carried in a foam-

padded wooden box mounted to the rear of the bicycle (Figure 2.1). 

Power Supplies. Four 3.7 volt, 900 mAh polymer lithium ion batteries (Sparkfun PRT-

00341) were used to supply power to the instrumentation. We created the required 

voltage for each sensor by wiring the required number of batteries in series. Voltage 

inputs for each sensor were regulated by a step-up / step-down switching DC-DC 

converter (All-Battery.com, AnyVolt Micro). 
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CHAPTER 3:  MEASUREMENT AND ANALYSIS OF STEADY STATE TURNING 

3.1 Chapter Summary 

The steady-state turning of a bicycle arises when the bicycle/rider system negotiates a 

constant radius turn with constant speed and roll angle. This chapter explores steady-state 

turning by employing the previously described bicycle instrumented to measure steering 

torque, steering angle, and bicycle speed, acceleration, and angular velocity. We report 

data obtained from 134 trials using two subjects executing steady turns defined by nine 

different radii, three speeds, and three rider lean conditions. A model for steady-state 

turning, based on the Whipple bicycle model, is used to interpret the experimental results. 

Overall, the model explains 95.6% of the variability in the estimated bicycle roll angle, 

99.4% of the variability in the measured steering angle, and 6.5% of the variability in the 

measured steering torque. However, the model explains 56.6% of the variability in 

steering torque for the subset of trials without exaggerated rider lean relative to the 

bicycle frame. Thus, the model, which assumes a rigid and non-leaning rider, reasonably 

predicts bicycle/rider roll and steering angles for all rider lean conditions and steering 

torque without exaggerated rider lean. The findings demonstrate that lateral shifting of 

the bicycle/rider center of mass strongly influences the steering torque, suggesting that 

rider lean plays an important role in bicycle control during steady-state turning. By 

contrast, the required steering angle is largely insensitive to rider lean, suggesting that the 

steering angle serves as a superior cue for bicycle control relative to steering torque. The 

experimental data presented in this chapter also appears in a published conference paper 
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[81] and a published journal paper [82]. The journal paper contains the same steady-state 

model presented herein, whereas the conference paper presents a simplified model that 

accounts for rider lean. 

3.2 Background and organization of chapter 

The design of the modern bicycle is the result of almost two centuries of trial and error. 

Recent research has helped us understand the stability of a bicycle [2, 11] and has shown 

that the current bicycle configuration could be made more stable with relatively small 

adjustments to standard bicycle geometry [12]. While much is known about bicycle 

stability based on models of riderless bicycles [9, 11], less is known about the dynamics 

and control of the entire bicycle/rider system.  

One step towards this understanding is to consider the bicycle/rider system during steady-

state turning. Steady-state turning of a bicycle arises when the bicycle/rider system 

negotiates a constant radius turn with constant speed and roll angle. Steady-state turning 

has been investigated most recently by Basu-Mandal et al. [86] and Peterson and 

Hubbard [87]. Basu-Mandal et al. [86] employ the nonlinear equations of motion for an 

idealized benchmark bicycle to identify hands-free (zero applied steer torque) steady-

state turning motions. Doing so provides evidence that a rider need not impart large 

steering torques during steady-state turning. Peterson and Hubbard [87] also employ the 

benchmark bicycle model to identify all kinematically feasible steady-state turns and the 

associated steering torque and bicycle speed. Their results reveal that the steering torque 

can reverse sign depending on the bicycle steer and roll angles and bicycle speed. Franke 

et al. [88] investigate the stability of steady-state turning using a nonlinear bicycle model 

that includes lateral displacement of the rider center of mass. They report that stability is 
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extremely sensitive to rider lean. Rider lean was also considered in the steady-state 

turning analysis of Man and Kane [89] who employ bicycle parameters from Roland [31]. 

They conclude that rider lean alters the bicycle roll angle and consequently alters the 

maximum speed to negotiate a steady turn. In addition, a rider may use a wide range of 

steer angles to negotiate a turn, depending on the bicycle roll angle and speed. These 

findings, however, have also been questioned [86]. 

Related to the steady-state behavior of bicycles are numerous theoretical and 

experimental studies of the steady-state turning of motorcycles. Fu [90] developed a 

model for steady-state turning, and tested this model using a motorcycle equipped with 

steering angle and roll angle sensors. Experimental measurements of the motorcycle roll 

angle matched those predicted by the model and confirmed the importance of gyroscopic 

effects. The measured steering angles were somewhat less than theoretical predictions, 

which led Fu to suggest that the lateral tire force develops mainly from tire camber as 

opposed to tire side slip. Prem [45] used an instrumented motorcycle to measure the 

speed, steering torque, roll rate, yaw rate, steer angle, lateral acceleration, rider lean, and 

rider pitch for a wide range of steady turns in order to identify motorcycle steady-state 

control gains. Results demonstrated substantially different steady-state response 

parameters for motorcycles with ‘acceptable’ handling characteristics. Cossalter et al. 

[79] developed a mathematical model of the steering torque as a function of speed, turn 

radius, tire properties, and motorcycle geometry/mass distribution. The sign of the 

“acceleration index” [79, 91, 92] indicates whether steering torque must be applied in the 

same direction as the turn (positive) or in the opposite direction (negative). Bortoluzzi et 

al. [92] constructed an instrumented motorcycle capable of measuring steering torque, 
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steering angle, roll angle, velocity, roll rate, and yaw rate for the purpose of testing a 

steady-state model similar to that of [79]. The measured acceleration index remained in 

good agreement with theoretical predictions and was relatively insensitive to changes in 

tire properties and rider mass distribution. By contrast, the lateral displacement (i.e., the 

lean) of the rider relative to the bicycle frame had a pronounced effect on the acceleration 

index, especially at smaller lateral accelerations. 

While bicycles and motorcycles share common features as two-wheeled single track 

vehicles, there are also key distinctions. For a bicycle, a rider may comprise 85-95% of 

the total mass, whereas for a motorcycle, a rider may only account for 15-30% of the total 

mass [6]. When the ratio of vehicle to rider mass is large (i.e., for motorcycles), the rider 

steering torque is the dominant control input [79]. By contrast, when the vehicle/rider 

mass ratio is small (i.e., for bicycles), other control mechanisms arise, such as upper body 

lean and knee movement [93]. 

The aim of this chapter is to report experimental measurements on steady-state turning 

using a novel instrumented bicycle. Secondarily, we employ a model for steady-state 

turning to interpret measured bicycle roll angle, steer angle, and steer torque over a wide 

range of steady-state turning conditions. We open the Methods Section by describing the 

experimental protocol and data analysis used to evaluate steady turning on a bicycle. 

Starting from the Whipple bicycle model presented in [2], we derive a model governing 

the steady-state turning of the bicycle/rider system. The Results and Discussion Sections 

summarize statistical comparisons of experimental and theoretical results for the bicycle 

roll angle, steering angle, and steering torque. 
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3.3 Methods 

 Experimental protocol 3.3.1

Two subjects rode the instrumented bicycle around a course containing nine curves of 

constant radius (radii of magnitude 9.14, 12.19, 18.29, 22.86, 27.74, 28.35, 32.31, 32.61, 

and 32.92 meters). All of the curves, located outdoors on smooth and level pavement, 

were clearly marked with chalk. Each subject selected his/her seat height and remained 

seated during each trial. We instructed the subjects to ride the course three times and at 

constant speeds that the subjects considered slow, medium, and fast. A bicycle computer 

with a visual display (Cateye Velo 8) allowed subjects to monitor their speed if desired. It 

is important to note that subjects were required to pedal the bicycle to maintain speed; no 

motors were used to remove the task of pedaling. Allowing the subjects to select 

approximate slow, medium, and fast speeds eliminated the additional mental task 

associated with maintaining a prescribed speed. As a result, each subject chose speeds 

corresponding to his/her preferred pedaling frequency. Furthermore, for a given curve 

and speed, the subjects were instructed to complete three trials distinguished by the 

degree of rider lean relative to the bicycle frame (lateral shifting of the bicycle/rider 

center of mass): natural rider lean (normal riding), exaggerated rider lean into the turn 

(leaning body into turn), and exaggerated rider lean out of the turn (leaning body out of 

turn). In summary, 81 trials were recorded for each subject: 9 curves x 3 speeds x 3 rider 

lean conditions. Prior to these trials, the tire pressure was set to 2.76 bar (40 psi).  
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 Data analysis 3.3.2

We first reviewed the data for each trial to identify time periods of steady-state turning as 

seen in the example of Figure 3.1. During steady-state turning, the bicycle speed, roll 

rate, steering angle, and turn radius remain nearly constant. Through visual inspection of 

bicycle speed, roll rate, steering angle, and turn radius, we selected areas of potential 

steady-state turning from each trial. We then analyzed each period of steady-turning by 

parsing this data into five-second blocks that were also shifted by 0.5 seconds. As a 

result, the first block of data began at the beginning of the period of steady turning, the 

second block of data began 0.5 seconds after the beginning of the period, and so on. The 

data for each five-second block was then averaged (to filter any modest transients) and 

this averaged data was used for all subsequent calculations described in the following. 

We used the following criteria to determine whether or not a block of data was 

considered steady-state:  

 The magnitude of the forward acceleration of the bicycle during a five-second 

block, as calculated from the measured bicycle speed, must be less than or equal 

to 0.1 m/s
2
. 

 The standard deviation of the measured steering angle for a five-second block 

must not exceed three degrees. 
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Figure 3.1. Identification of a region of steady-state turning. Bicycle speed, roll rate, steering angle, and 

instantaneous turn radius were used to identify a region of steady-state turning for processing. The region 

of steady turning for the example trial shown (a medium speed, clockwise turn with a turn radius of 9.14 

meters) lies within the two vertical (black) lines. Another large region of steady-state turning begins around 

90 seconds and ends at approximately 125 seconds. The turn radius data has been truncated to highlight the 

steady-state turning region of interest. 

The inertial measurement unit defines a sensor frame of reference ( ̂   ̂   ̂ ) which 

differs from the bicycle-fixed frame ( ̂   ̂   ̂ ) illustrated in Figure 3.2A. The orientation 

of the sensor frame of reference relative to the conventional vehicle dynamics axes [94] 

for a bicycle is illustrated in Figure 3.2C. The acceleration and angular velocity 

components measured in the sensor-fixed frame (    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) must be transformed 

into components measured in the bicycle-fixed frame (    ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) for subsequent data 

reduction. This is achieved using, for example, 
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     ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [
            
   
           

]     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (3.1) 

 

where   denotes the seat tube angle relative to vertical. For the instrumented bicycle used 

in this study,         degrees.  

The average radius of the turn for each five-second block was then determined from 

 
  

 

√((  )  (  )
 
)

 
(3.2) 

 

where   denotes the corresponding bicycle speed and    and    denote the angular 

velocities about the axes defined by  ̂  and  ̂  illustrated in Figure 3.2B. The angular 

velocities    and    were determined using the outputs from the three sampled single-

axis angular rate gyros. Note that upon assuming the pitch rate of the bicycle is 

negligible, the denominator of (3.2) represents the yaw rate; in a steady turn, the angular 

velocity is vertical (i.e., the  ̂  component is zero). 
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Figure 3.2. (A) The rotation of the bicycle-fixed frame )ˆ,ˆ,ˆ( kji eee  relative to the sensor-fixed frame 

)ˆ,ˆ,ˆ( 321 eee . (B) The rotation of the bicycle-fixed frame relative to the inertial frame )ˆ,ˆ,ˆ( ZYX eee . (C) A 

sketch of a bicycle showing the relationship of the sensor-fixed frame )ˆ,ˆ,ˆ( 321 eee  to the conventional 

vehicle dynamics coordinate system ),,( ZYX  when the bicycle is in the upright position. Note that

)ˆ,ˆ,ˆ( ZYX eee  is aligned with ),,( ZYX . 

The bicycle roll angle ( ), which we define as the roll angle of the rear of the bicycle 

frame relative to vertical as in [2], follows from the measured bicycle-fixed frame 

acceleration,     ⃗⃗ ⃗⃗ ⃗⃗  ⃗ by exploiting the fact that the accelerometer functions as an 

inclinometer during steady-state turning. In particular, the IMU measures the acceleration 

at the location of the sensor plus the acceleration of gravity. Therefore,     ⃗⃗ ⃗⃗ ⃗⃗  ⃗ includes the 

centripetal acceleration for steady turning (directed in the horizontal plane) and the 

acceleration due to gravity (directed along the vertical): 

     ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ̂     ̂     ̂    ̂  
  

 
 ̂    ̂  (3.3) 

 

where   is the forward bicycle speed and   is the turn radius; positive values of   

correspond to clockwise turns whereas negative values correspond to counter-clockwise 

turns. The frame ( ̂   ̂   ̂ ) is related to the frame ( ̂   ̂   ̂ ) through: 
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 ̂ 
 ̂ 
 ̂ 

] (3.4) 

 

Substituting (3.4) into (3.3) and solving for the bicycle roll angle ( ) yields: 

        (
  

  
)       (

  

  
) (3.5) 

 

where    and    are the (average) values of the measured acceleration along the  ̂  and  ̂  

axes in Figure 3.2. The results (3.3) and (3.5) also assume that the distance between the 

accelerometer and the center of mass of the bicycle/rider system is negligible compared 

to the radius of the turn and that the bicycle-fixed axis defined by  ̂  is the heading 

direction. 

We confirmed the accuracy of the above technique to estimate the bicycle roll angle by 

comparing the roll angle estimated from (3.5) to independently measured simulated roll 

angles. We created simulated roll angles by installing the IMU on a jig fastened to a two-

wheeled bicycle trailer (Figure 3.3) that allows us to set and measure the simulated roll 

angle of the IMU using a high-precision inclinometer (resolves the pre-set roll angles to 

within   0.01 degrees). Assuming that the roll of the trailer remains negligible, the 

simulated roll angle of the inertial measurement unit remains constant at a pre-set and 

measured value when the bicycle pulls the trailer around a constant radius turn on level 

pavement. We conducted 20 trials, in which we varied the turn radius (9.14, 27.73, and 

32.31 meters), the bicycle speed (slow, medium, and fast), and the jig roll angle (-17.34, 

11.49, 1.63, and -30.51 degrees). The difference between the estimated roll angle and the 
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independently measured simulated roll angle was 1.10 ± 0.78 degrees (mean ± standard 

deviation) confirming that the acceleration-based measurement technique successfully 

estimates the roll angle during steady-state turning. 

 
Figure 3.3. A jig was used to validate our method of estimating the bicycle roll angle by allowing us to 

orient the inertial measurement (IMU) at a fixed simulated roll angle. The simulated roll angle was 

independently measured using an inclinometer that can resolve the roll angle to within   0.01 degrees 

(inset photograph). The jig was secured to a bicycle trailer and pulled behind the instrumented bicycle on 

level pavement. The white rectangle indicates the location of the IMU on the jig secured to the trailer. 

Theoretically, the bicycle roll angle could also be estimated by using the measured 

angular velocities: 

         (
  

  
) (3.6) 

 

However, this method yields poor estimates for roll angles less than four degrees due to 

the limited resolution of the rate gyros. The estimate provided by (3.5) does not suffer 

from this limitation and yields superior estimates.  
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Due to the placement of the steering angle optical encoder relative to the steering torque 

sensor, the angular displacement of the handlebar and stem about the steering axis 

(         ) was recorded instead of the angular displacement of the front wheel about 

the steering axis (     ). However, these values differ by a small but measurable twist of 

the assembly. The true steering angle, or angular displacement of the front wheel about 

the steering axis, is given by 

                 
  
     

 (3.7) 

 

where    is the measured steer torque and 4.97 Nm/deg is the aforementioned stiffness of 

the torque sensor assembly. For all our analyses and figures we use       per (3.7). 

For statistical analysis and for plotting, we averaged the results from the five-second 

blocks for each trial (one combination of subject, lean condition, speed and radius), 

which yields one set of values per trial. The total number of trials used for analysis is 134 

instead of the total measured (2 x 81 = 162) because data for 28 trials failed the 

aforementioned criteria for steady-state. 

 Theoretical model for steady-state turning 3.3.3

We employ the Whipple bicycle model [3] as presented by Meijaard et al. [2] to derive a 

model for steady-state turning similar to that for a vehicle [95-97]. The Whipple bicycle 

model consists of four rigid bodies: a rear wheel, a rear frame with a rider rigidly 

attached to it, a front frame consisting of the front handlebar and fork assembly, and a 

front wheel. The model assumes that all bodies are laterally (left-right) symmetric and 

that the wheels have circular symmetry. Motion of the rider relative to the frame, 
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structural compliance and damping, joint friction, and tire compliance and slip are 

neglected. The tire contacts with the ground are modeled as knife-edge rolling point-

contacts. The model is configured with seven generalized coordinates: the location of the 

rear-wheel contact with the ground (     ), the rotation of the front and rear wheels 

(     ), the yaw rotation ( ), the roll or lean angle ( ) of the bicycle frame, and the 

steering angle ( ). As noted in [2], only three of the generalized coordinates are 

independent upon accounting for four non-holonomic rolling constraints. After 

linearizing the model about upright, straight-line motion and treating forward speed as a 

parameter, only two independent generalized coordinates remain: steer ( ) and lean or 

roll ( ). 

The resulting linearized equations of motion, as presented in [2] (Equation 5.3 therein), 

are: 

   ̈      ̇  [     
   ]    (3.8) 

 

where   [   ]  are the remaining generalized coordinates for the roll (lean) and steer 

angles and   [     ]
 
 are the associated generalized forces representing the lean and 

steer torques. The first and the second equation of (3.8) are referred to as the lean 

equation and the steer equation, respectively [2]. The other quantities appearing in (3.8) 

include the forward speed   , gravity  , and the matrices          and    as defined in 

Appendix A of [2]. 

During a steady turn, the steering angle ( ) and the lean or roll angle ( ) remain constant, 

reducing (3.8) to the equilibrium equation 
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 [     
   ]    (3.9) 

 

Assuming that the lean torque in a steady-state turn vanishes (    ), the lean and steer 

equations become 

        ( 
           )    (3.10) 

   

        ( 
           )     (3.11) 

 

where                      and      are constants defined by Equations (A.14)-

(A.19) in Appendix A. Note that Equation (3.11) yields the steering torque (  ) in terms 

of the bicycle configuration (   ) and forward speed   . Under the same conditions, the 

yaw rate ( ̇) given by Equation B6 in [2] reduces to 

  ̇  
       

 
 
 

 
 (3.12) 

 

where   is the steer axis tilt,   is the bicycle wheel base, and   is the radius of the steady 

turn. (Note that  ̇ and   are positive for clockwise turns and negative for counter-

clockwise turns and that   is measured from the center of the turn to the rear wheel 

ground contact point.) The required steer angle is therefore  

   
 

     
 (3.13) 

 

and substitution of this result into (3.10) yields the required lean angle 
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  (            )

     ( )    
 (3.14) 

 

Finally, substitution of (3.13) and (3.14) into (3.11) yields the required steering torque 

    
  ( (    

          )   
 (                 ))

    ( )    
 (3.15) 

 

 Comparison of the model to experimental data 3.3.4

In the following, we compare the measured roll angle, steer angle and steer torque to 

those predicted by the model above. In particular, we use the measured bicycle speed ( ) 

and nominal turn radius ( ) in the following sequence of calculations. 

(1) The bicycle roll angle ( ), or roll of the bicycle frame, is calculated using 

Equation (3.14). 

(2) The steer angle ( ) is calculated using Equation (3.13). 

(3) The steering torque (  ) is calculated using Equation (3.15). 

 

We also compute the steering torque/steer angle ratio and the roll angle/steer angle ratio. 

The calculations require knowledge of the bicycle parameters described in Appendix A 

and summarized in Table A.2 for both subjects. 

The statistical fit of the experimental data to the model predictions is determined by 

calculating the correlation coefficient between the experimental and theoretical results 

and the linear least squares fit of the experimental to theoretical results. Where the model 
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predicts linear relationships, we compared the linear least squares fits of the experimental 

data to the linear relationships predicted by the model. We used t-tests with an alpha level 

of 0.05 to determine statistical significance. 

3.4 Results 

Roll angle. The estimated bicycle roll angle, calculated from Equation (3.5), is plotted 

versus normalized lateral acceleration in Figure 3.4 together with the roll angle predicted 

by the model, calculated from Equation (3.14). Due to the fact that the magnitude of      

is only about 2.5% of the magnitude of     , the model predicted roll angle is nearly 

linear in lateral acceleration, as shown in Figure 3.4. The non-linear effects for the 

experimental conditions are contained within the width of the plotted line. The model 

predicts 99.8% of the variation of the measured bicycle roll angle for the normal riding 

trials, i.e. trials without exaggerated rider lean relative to the bicycle frame. Moreover, 

the model predicts 95.6% of the variation of the estimated bicycle roll angle, regardless 

of rider posture (normal riding or leaning body into or out of the turn relative to the 

bicycle frame). The linear fit of measured versus predicted bicycle roll angle for all lean 

conditions has a slope that is not statistically significantly different from 1.0 (Table 3.2), 

which further confirms that this model closely predicts the measured lean angle. 

A rider leaning into or out of a turn relative to the bicycle frame can significantly alter the 

slope of the linear fit by approximately ±13%. This arises from the additional roll of the 

bicycle caused by the lateral offset of the center of mass of the bicycle/rider system. For 

example, a rider leaning into a clockwise turn will cause the bicycle roll angle to 

decrease, resulting in a bicycle roll angle slightly less than that predicted by the model. 
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Both subjects clearly exhibit this trend, as shown by the dark gray ‘ ’ symbols in Figure 

3.4. The opposite trend arises for a rider leaning out of a clockwise turn, as shown by the 

light gray ‘ ’ symbols in Figure 3.4. If we assume that the estimated bicycle roll angle is 

accurate, we can then also estimate the additional roll of the bicycle caused by a lateral 

shift in the center of mass as the difference between the estimated and the model 

predicted roll angles. The mean values for the estimated additional roll are reported in 

Table 3.1. Both riders were able to create significant additional roll of the bicycle by 

leaning; on average, the estimated additional roll angle of the bicycle was -2.5 degrees 

and 2.0 degrees when the riders leaned into and out of the turn, respectively. During 

normal riding, riders tended to lean slightly into the turn relative to the bicycle frame, 

generating an estimated additional roll angle of -0.2 degrees. The very small deviations 

between the normal riding data and the model could derive from small lateral shifts in the 

center of mass, asymmetric stance on the bicycle, errors in the estimated bicycle roll 

angle (see Section 3.3.2), and transient as opposed to steady-state conditions. 
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Figure 3.4. Bicycle roll angle versus normalized lateral acceleration. The experimental data are predicted 

well by the model (slope = 1.00, R
2
 = 0.956). Deviation from the model prediction can be interpreted as 

additional roll of the bicycle caused by a lateral shift in the bicycle/rider system center of mass. Positive 

values of lateral acceleration correspond to clockwise turns; negative values correspond to counter-

clockwise turns. Note that the model predicted bicycle roll angle is nearly linear in lateral acceleration; the 

non-linear effects for the experimental conditions are contained within the width of the plotted line. 

Table 3.1. Differences between the estimated bicycle roll angle and the model predicted roll angle for 

different lean conditions. A positive value indicates that a rider can increase the magnitude of the bicycle 

roll angle by leaning, whereas a negative value indicates that rider can decrease the magnitude. 

Subject normal riding leaning body into turn leaning body out of turn 

1 -0.4° -1.7° * 1.0° * 

2 -0.1° -3.1° * 2.7° * 

1 & 2 -0.2° -2.5° * 2.0° * 

Note: * indicates that the mean value is significantly different than the ‘normal riding’ lean condition (  = 

0.05). 

Steering angle. The measured steering angle (     ) shown in Figure 3.5 is also predicted 

well by the model, as evidenced by the linear fit and R
2
 values reported in Table 3.2. The 

model predicts 99.5% of the variation in the measured steering angle for all lean 

conditions. Linear fits to the measured steering angle for specific lean conditions were 

not significantly different than the fit to all trials. However, all linear fits had slopes 

significantly less than 1.0, indicating that the model slightly over-predicts the measured 

steering angle. Measured steady turning steering angles ranged in magnitude from 

approximately zero to 7.5 degrees. Some deviations of the experimental data from the 
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model can likely be attributed to the transient dynamics that arise when the human rider 

makes steering corrections to remain upright and to follow the desired path. For example, 

the data point located far below the model prediction (predicted steering angle   7 

degrees, measured steering angle   5 degrees) is from a trial where the subject was 

required to ride around the smallest radius curve at the slowest speed while leaning his or 

her body into the turn, which was the most challenging riding condition. While the data 

from this trial formally met our criteria for steady-state (see Section 3.3.2), closer 

inspection of the trial revealed that the subject used small steering angles for the majority 

of the trial and used occasional larger steering corrections to stay on the prescribed path. 

Table 3.2. Summary of the linear fit )( bmxy   of measured values to model predicted values.  

Lean 

condition 

Predictor, from 

model ( ) 
Predicted variable ( ) Slope ( ) y-intercept ( ) R

2 

all bicycle roll angle estimated bicycle roll angle 1.00 † 0.56° 0.956 

normal bicycle roll angle estimated bicycle roll angle 0.99 † 0.47° * 0.998 

rider lean 

into turn 
bicycle roll angle estimated bicycle roll angle †* 0.87 †* 1.45° 0.968 

rider lean 

out of turn 
bicycle roll angle estimated bicycle roll angle †* 1.14 * -0.11° 0.971 

all steering angle measured steering angle † 0.96 † -0.28° 0.995 

normal steering angle measured steering angle † 0.97 † -0.26° 0.995 

rider lean 

into turn 
steering angle measured steering angle † 0.94 † -0.26° 0.994 

rider lean 

out of turn 
steering angle measured steering angle † 0.98 † -0.32° 0.998 

all steering torque  measured steering torque 1.04 -0.07 Nm 0.065 

normal steering torque  measured steering torque 0.86 † -0.07 Nm * 0.566 

rider lean 

into turn 
steering torque  measured steering torque †* -1.33 †* -0.68 Nm 0.155 

rider lean 

out of turn 
steering torque  measured steering torque †* 3.98 †* 0.54 Nm * 0.634 

Note: All reported slopes ( ) are significantly different than zero and all values of R
2
 are significant 

(      ). 

* indicates that a value is significantly different than the value for the corresponding ‘all’ lean condition.  

† indicates that a linear fit constant is significantly different from a fit to the model (m = 1.0, b = 0.0). 
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Figure 3.5. Measured steering angle versus model predicted steering angle. The experimental data are 

predicted well by the model (slope = 0.96, R
2
 = 0.995). The clusters of data correspond to the different radii 

of turns tested experimentally. Scanning from left to right, the data groups correspond to: counter clockwise 

turning around radii of approximately 12.2, 18.3, 28.0 and 32.5 meters and clockwise turning around turns 

of 22.9 and 9.1 meters. 

Steering torque. The steering torque for all lean conditions is not predicted well by the 

model, as shown in Figure 3.6. However, the model does provide a reasonable fit to the 

normal riding case, as evidenced by the linear fit and R
2
 values reported in Table 3.2. For 

normal riding, the slope of the linear fit is not significantly different from 1.0, indicating 

that the measured steering torque is not significantly different from the model 

predictions. However, the model is only able to account for 56.6% of the variation in the 

experimental data. For the rider-lean conditions, the model is not as useful for predicting 

the steering torque. For the rider leaning into the turn relative to the bicycle frame, the 

model predicts steering torques that are in the opposite direction with magnitudes 

approximately 33% less than the measured steering torque. For the rider leaning out of 
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the turn relative to the bicycle frame, the model predicts steering torques approximately 

300% less than the measured steering torques. These results highlight the fact that rider 

lean can have a significant effect on the steering torque required for a steady-state turn. 

Measured steering torque ranged in magnitude from approximately zero to 2.4 Nm; the 

average standard deviation for each five-second window of data was 0.74 Nm. The 

maximum steering torque was achieved when the rider leaned out of the turn. 

 
Figure 3.6. Measured steering torque versus the model predicted steering torque. The linear fit of the 

measured values to the model changes appreciably with different rider-lean conditions. The model provides 

a good fit to the ‘normal riding’ condition (slope = 0.86, R
2
 = 0.566), but provides poor fits to the ‘rider 

lean into turn’ (slope = -1.33, R
2
 = 0.155) and ‘rider lean out of turn’ (slope = 3.98, R

2
 = 0.634) conditions. 

Ratio of steering torque and steer angle. The ratio of steering torque and steer angle is 

plotted versus the square of the bicycle speed in Figure 3.7 for both subjects. The model 

predicts a linear relationship between this ratio and the square of the bicycle speed. The 

linear fits to the model and to each data set (combinations of subject and lean condition) 

are reported in Table 3.3. 
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For both subjects, the model predicts a positive slope of approximately 0.1 kg/radian. The 

linear fits to the data for Subject 1 all have negative slopes; however, only the slope of 

the fit to the ‘normal’ lean condition is significantly different from the model and 

significantly different from zero. By contrast, the linear fits to the data for Subject 2 all 

have positive slopes; none of the slopes are significantly different from the model or 

significantly different from zero. For both subjects, the model predicts a y-intercept of 

approximately -5.9 Nm. Both subjects were able to significantly change the y-intercept 

by leaning their bodies into or out of a turn relative to the bicycle frame. A rider leaning 

his/her body into a turn causes a positive steering torque/steering angle ratio, requiring a 

rider to apply steering torque in the same direction as the steering angle. A rider leaning 

his/her body out of a turn causes a negative steering torque/steering angle ratio, requiring 

a rider to apply steering torque in the opposite direction from the steering angle. Only one 

of the R
2
 values for the linear fits is significantly different from zero (Subject 1, normal 

lean condition), which is expected from slope values not significantly different from zero. 

A linear model adequately predicts the data for the normal lean condition, as evidenced 

by the sum of squared errors (SSE) in Table 3.3. 
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Table 3.3. Summary of the linear fit bvmT  )()/( 2 . 

Subject Lean condition Slope (m) y-intercept (b) R
2
 SSE 

model (subject 1) -- 0.097 kg -5.986 Nm 1 0 (Nm)
2
 

subject 1 all -0.070 kg -0.250 Nm * 0.008 18508 (Nm)
2
 

subject 1 normal †* -0.088 kg * -0.374 Nm †* 0.202 367 (Nm)
2
 

subject 1 rider lean into turn -0.058 kg †* 16.490 Nm * 0.007 4518 (Nm)
2
 

subject 1 rider lean out of turn -0.051 kg †* -17.238 Nm * 0.012 1794 (Nm)
2
 

model (subject 2) -- 0.100 kg -5.868 Nm 1 0 (Nm)
2
 

subject 2 all 0.142 kg -7.708 Nm * 0.015 61924 (Nm)
2
 

subject 2 normal 0.159 kg † -9.781 Nm * 0.127 2988 (Nm)
2
 

subject 2 rider lean into turn 0.117 kg †* 26.432 Nm * 0.027 7786 (Nm)
2
 

subject 2 rider lean out of turn 0.127 kg †* -36.509 Nm * 0.047 4060 (Nm)
2
 

Note: For the linear fits to experimental data,  

* indicates that a value (m, b, or R
2
) is significantly different than the model 

† indicates that a value is significantly different from zero. 

 

 
Figure 3.7. The ratio of steering torque to steer angle versus bicycle speed squared. A negative ratio means 

that a rider must apply a counter-clockwise (negative) steering torque when applying a clockwise (positive) 

steer angle, whereas a positive ratio means that a rider must apply a clockwise (positive) steering torque 

when applying a clockwise (positive) steer angle. Both riders were able to significantly change the ratio by 

leaning into or out of a turn. 

Ratio of roll angle and steer angle. The ratio of the roll angle and steer angle is plotted 

versus the square of the bicycle speed in Figure 3.8 for both subjects. The model predicts 

a linear relationship between this ratio and the square of the bicycle speed. The linear fits 

to the model and to each data set (combinations of subject and lean condition) are 

reported in Table 3.4. 
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For both subjects, the model predicts a positive slope of approximately 0.1 s
2
/m

2
. Almost 

all of the linear fit slopes for Subject 2 are significantly different than the model, whereas 

only one of the linear fit slopes (rider lean out of turn) for Subject 1 is significantly 

different than the model. However, all of the slopes are positive, which indicates that the 

ratio of roll angle/steer angle increases with increasing speed. For both subjects, the 

model predicts a y-intercept of approximately -0.02. Both subjects were able to 

significantly change the y-intercept by leaning their bodies into or out of a turn relative to 

the bicycle frame. A rider leaning his/her body into a turn reduces the roll angle/steer 

angle ratio, whereas a rider leaning his/her body out of a turn increases the roll 

angle/steer angle ratio. For most trials and speeds, the ratio of roll angle/steer angle is 

positive, indicating that in a steady turn a rider must lean the bicycle in the same direction 

that he/she is steering. However, at low speeds and when a rider leans out of a turn, the 

ratio can be negative indicating that a rider must actually lean the bicycle in the opposite 

direction that he/she is steering. A linear model adequately predicts the data for all lean 

conditions, as evidenced by the R
2
 values and sum of squared errors (SSE) in Table 3.4. 

Table 3.4. Summary of the linear fit bvm  )()/( 2 . 

Subject Lean condition Slope (m) y-intercept (b) R
2
 SSE 

model (subject 1) -- 0.092 s
2
/m

2
 -0.024 1 0 

subject 1 all † 0.085 s
2
/m

2
 -0.115 †* 0.895 25.3 

subject 1 normal † 0.090 s
2
/m

2
 -0.164 †* 0.975 2.5 

subject 1 rider lean into turn † 0.080 s
2
/m

2
 †* -0.568 †* 0.894 7.3 

subject 1 rider lean out of turn †* 0.085 s
2
/m

2
 †* 0.429 †* 0.972 1.6 

model (subject 2) -- 0.092 s
2
/m

2
 -0.021 1 0 

subject 2 all †* 0.080 s
2
/m

2
 0.103 †* 0.816 66.3 

subject 2 normal †* 0.085 s
2
/m

2
 -0.007 †* 0.987 1.7 

subject 2 rider lean into turn † 0.082 s
2
/m

2
 †* -0.977 †* 0.886 13.7 

subject 2 rider lean out of turn †* 0.072 s
2
/m

2
 †* 1.263 †* 0.926 5.2 

Note: For the linear fits to experimental data,  

* indicates that a value (m, b, or R
2
) is significantly different than the model 

† indicates that a value is significantly different from zero. 
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Figure 3.8. The ratio of bicycle roll angle and steering angle versus bicycle speed squared. Both subjects 

were able to significantly change the y-intercept of a linear fit to the data by leaning into or out of a turn. 

3.5 Discussion 

As illustrated in Figure 3.4, the estimated roll angle of the bicycle is predicted well by the 

steady-state turning model developed in Section 3.3.3. For a motorcycle in steady 

turning, Fu [90] showed that the roll angle is predicted best when the model includes the 

gyroscopic effects of the motorcycle wheels and engine, as well as tires with a circular 

cross-section, a conclusion also supported by Prem [45]. In contrast, we find that for a 

bicycle, the roll angle is predicted rather well upon considering the wheel as a thin disk 

with a zero-radius edge. 

The above results also demonstrate that a seated rider can generate significant additional 

roll of a bicycle (Table 3.1) simply by leaning his/her upper body into or out of a turn 

relative to the bicycle frame. In fact, lean dynamics arise even while riding in a straight 

line as observed by riders maintaining position on a treadmill [93]. In practice, cyclists 

often lean their bodies into a turn relative to the bicycle frame to increase pedal clearance, 

such as a road cyclist racing in a criterium. As illustrated in Figure 3.4, by leaning into 
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the turn, the cyclist decreases the roll angle of the bicycle, and therefore gains pedal 

clearance. Alternatively, cyclists may lean their bodies out of a turn relative to the bicycle 

frame, as in the case a mountain biker leaning to avoid trees or branches lining the trail. 

As illustrated in Figure 3.4, by leaning out of the turn, the cyclist increases the roll of the 

bicycle but decreases the lateral distance of her/his body from the base of support of the 

bicycle.  

The steer angle of the bicycle is predicted well by the model (Table 3.2 and Figure 3.5). 

The linear fit of the data to the model results yields values of the slope slightly less than 

one (Table 3.2), indicating that the model slightly over-predicts the steer angle. Similar to 

these results, Fu [90] and Prem [45] observed that for a motorcycle in a steady-turn, the 

steering angle is over-estimated by steady-state turning models. The y-intercept of the 

linear fit is approximately -0.3 degrees, regardless of rider lean, indicating that perhaps 

the method of zeroing the steering angle encoder introduced a slight systematic error.  

The steady-state turning model reasonably predicts the steering torque of a bicycle when 

there is no exaggerated rider lean relative to the bicycle frame. The model explains 56.6% 

of the variation in the measured data for the normal riding condition and the slope of the 

linear fit to the data is not significantly different from 1.0. The discrepancies between the 

model and experimental data for the normal riding condition might arise from the 

measurement limitations of the current torque sensor. In particular, all measured steering 

torques were less than 10% of the full scale range of the sensor, rendering the torque 

measurements sensitive to both small systematic and random error sources. The steering 

torque required to steer a bicycle around a steady curve is substantially smaller than that 

for a motorcycle; we measured a maximum steering torque of 2.4 Nm for the tested 
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conditions, whereas Prem [45] and Bortoluzzi et al. [98] measured steering torques up to 

approximately 10 Nm for a motorcycle with a non-leaning rider. In addition, the steering 

torque during each five second window varied significantly, with an average standard 

deviation of 0.74 Nm. Another source of error could derive from the fact that the model 

predicted steering torque calculation is sensitive to the configuration of the bicycle; 

deviations of the measured steer angle and estimated bicycle roll angle from model 

predictions translate to errors in the predicted steering torque. Another possibility is that 

any inaccuracies in the parameters used to calculate the model predicted steering torque 

for the instrumented bicycle will have a larger effect on the fit when the range of steering 

torque is small, such as in the normal riding condition. For example: when a subject 

changes his/her position on the bicycle, the bicycle/rider center of mass location (     ) 

changes, which alters the magnitude of the steering torque required by the rider. In 

addition to measurement errors, discrepancies between the data and the model could also 

arise from simplifications in the model. In particular, the accuracy of the model could 

likely be improved by allowing tires with circular cross sections, large roll angles, large 

steer angles, and more realistic tire parameters (particularly pneumatic trail) [6, 79, 87, 

92]. The model also does not account for torque that could arise from other factors, such 

as the effects of the cable housing and transient dynamics. 

The accuracy of the steering torque predicted by the model varies significantly depending 

on the rider-lean condition (Table 3.2). The model does not account for rider lean relative 

to the bicycle frame, which can significantly change the roll angle of the bicycle. The 

experimental results demonstrate that a rider can significantly change the steering torque 

required to negotiate a steady-turn by simply leaning into or out of the turn. Leaning into 
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the turn can produce a dramatic effect, namely the complete reversal of the required 

steering torque. If the roll of the bicycle is changed by a leaning rider, the first term of 

Equation (3.11) is affected, which can reverse the sign of the steering torque. Several 

models have been derived to explore how a rider is able to ride a bicycle with no-hands, 

i.e., ride with zero steering torque [5-7, 88]. These models incorporate the lean (reaction) 

torque that is applied between the rider’s upper body and the bicycle. While lean torque is 

not measured herein, the results clearly demonstrate that upper body lean can control the 

sign and magnitude of the steering torque required to negotiate a steady-turn. Therefore, 

it is also possible for a rider to adjust his/her body lean to achieve zero steering torque, 

thereby enabling no-handed riding. Similarly, for “hands-on” riding, a rider may adjust 

his/her lean to control the steering torque. The discrepancies between the model and 

measured steering torque highlight that a rider can significantly alter the required steering 

torque by simply adjusting his or her lateral position on the bicycle. 

The ratio of the steering torque to the steering angle is similar to the acceleration index 

employed in the motorcycle handling literature as a measure of maneuverability [79, 92, 

99]. The steering torque/steering angle ratio represents ‘steering stiffness,’ which has 

been identified as a useful parameter for designing bicycles [100]. However, as noted by 

Prem [45], steady-state response parameters (including the acceleration index and 

steering stiffness) can vary substantially among different motorcycles with ‘acceptable’ 

handling characteristics. The acceleration index indicates the direction of the steering 

torque relative to the direction of the steady turn [91]. Similarly, the sign of the steering 

torque/steering angle ratio indicates whether steering torque must be applied in the same 

direction as the steer angle (usually into the turn) or in the opposite direction (usually out 
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of the turn). Similar to the steady turning of a motorcycle [92, 98], we find that the lateral 

displacement of a rider’s center of mass (rider lean) relative to the bicycle frame has a 

significant effect on the direction of the required steering torque. 

The above discussion suggests that the steering torque is not an easy quantity for a rider 

to predict or interpret, a conclusion also supported by Prem [45] and Watanabe and Segel 

[101] who noted that measured steering torque does not provide useful feedback to a 

motorcycle rider. For instance, a rider can simply change the required control strategy 

from applying a steer torque out of the turn to applying a steer torque into a turn by 

leaning into the turn. In addition, a dynamically leaning bicycle rider constantly changes 

the required steering torque when pedaling and shifting weight from side-to-side. A more 

predicable or useful cue is suggested by the steer angle results, which are insensitive to 

even exaggerated rider lean during steady-state turning. 

3.6 Summary and Conclusions 

Steady-state turning arises when the bicycle/rider negotiates a constant radius turn at 

constant speed and roll angle. This chapter examines steady-state turning using a bicycle 

instrumented to measure steering torque, steering angle, bicycle speed, bicycle 

acceleration, and bicycle angular velocity. We report data obtained from 134 trials using 

two subjects executing steady turns defined by nine different radii, three speeds (slow, 

medium, fast), and three rider lean conditions relative to the bicycle frame (normal, 

leaning into the turn, leaning out of the turn). We also introduce a model for the steady-

state turning of the bicycle/rider system and compare the experimental data to the model 

predictions for the bicycle roll angle, steering angle, steering torque, steering torque/steer 

angle ratio, and roll angle/steer angle ratio. 



 

49 
 

The model explains 95.6% of the variability in the measured bicycle roll angle for all lean 

conditions, 99.5% of the variability in the measured steering angle for all lean conditions, 

and 56.6% of the variability in the measured steering torque for the normal riding lean 

condition. The experimental data demonstrate that rider lean (lateral shifting of the 

bicycle/rider center of mass relative to the bicycle frame) strongly influences the steering 

torque, suggesting that rider lean plays an important role in the control of a bicycle. By 

contrast, the steering angle is largely insensitive to rider lean, suggesting that using the 

steering angle as a cue for bicycle control is advantageous over using steering torque. 
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CHAPTER 4: QUANTIFYING THE PROCESS OF LEARNING TO RIDE A BICYCLE USING 

MEASURED BICYCLE KINEMATICS 

4.1 Chapter summary  

Currently, it is difficult to determine when a novice bicycle rider is ready to ride without 

training wheels or external assistance. It is also unclear what must be learned by a rider in 

order for him/her to be successful riding a bicycle. In this study, we quantify the changes 

that occurred as 15 children with disabilities learned to ride bicycles during a specialized 

bicycle training camp. These changes are revealed by three inertial measurement units 

(IMUs) used to measure bicycle kinematics. Out of 15 subjects, 11 were successful in 

riding a bicycle without assistance by the end of the camp. The peak value of the cross-

correlation between steer and roll angular velocities was significantly greater for riders 

who ultimately succeeded in riding a bicycle without assistance. This finding suggests 

that rider learning can be quantified by increased correlation between bicycle steer rate 

and roll rate. In essence, learning to steer in the direction of lean is an essential skill in 

learning to ride a bicycle. 

4.2 Introduction 

Riding a bicycle is a skill that many people learn quite easily as reflected in the common 

assertion, “it’s as easy as riding a bike.” However, there is little scientific understanding 

about how we learn to ride and balance a bicycle. What does a new rider learn when s/he 

finally is able to balance on a bicycle? When is s/he ready to ride without assistance? 
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What underlying skills define the learning process? These questions may seem 

unimportant to those who have quickly learned to ride, but to those who have not 

succeeded in learning to ride or to those struggling to help others learn to ride, these 

questions remain perplexing.  

Learning to ride a bicycle has many benefits, especially for populations possessing 

learning disabilities. For example, learning to ride increases the physical activity of 

children with Down syndrome [46]. Also, being able to ride a bicycle can provide those 

who cannot drive a car due to their disabilities with a means of efficient transportation. 

Understanding rider learning could improve programs that teach affected populations to 

ride and could also promote bicycle designs and assistive technologies that aid the 

learning process or help humans maintain stability when riding. 

By analogy, to balance during standing or walking, a person must position their mass 

center above their center of pressure [47, 76]. Doing so requires significant coordination 

of body movements, especially in challenging balancing tasks [48]. Researchers have 

quantified this coordination to understand the development of mature gait [102] and to 

detect differences in balance performance [49, 54, 57, 68]. Unfortunately, this 

understanding has not yet translated to balancing a bicycle, which further requires 

coordination of body movements with bicycle movements. 

This additional coordination of bicycle and body movements is often learned with the 

assistance of others and/or with training aids. However, it remains unclear what 

assistance works best or when a learner is ready to advance to a bicycle without training 

aids. Typical training aids include training wheels and balance bikes. Training wheels 
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significantly increase the base of support when a bicycle begins to tip. The same effect 

arises on pedal-less balance bikes on which a learner uses his/her feet to propel the 

bicycle forward. Additionally, a balance bike rider’s feet can also readily stabilize the 

bike during incipient tipping. A relatively new training aid [103] uses a gyroscope 

mounted in the front wheel to augment stability. While any of these training aids can 

ultimately help riders learn to ride, it remains unclear what underlying skill (or set of 

skills) defines this learning process. 

The task of human/bicycle balance is complex and not well understood. While recent 

studies expose the self-stability of bicycles alone [2], other studies demonstrate that 

humans can readily balance bicycles that lack self-stability [16, 17]. In addition, a 

number of proposed control systems successfully stabilize bicycle models [5, 7, 19, 30], 

yet they do not model or expose the human learning process. Despite our lack of 

understanding of this learning process, the basic strategy to keep a bicycle upright, 

namely steering into the lean, is well known. Schwab et al. [7] demonstrate that a simple 

steer-into-the-lean intuitive controller is capable of stabilizing a bicycle. Likewise, a 

patented training method [104] reinforces this skill. Kooijman et al. [11] further explain 

that the aforementioned self-stability of a bicycle results from its reaction to steer into the 

lean. Clearly, balancing a bicycle requires a specific relationship between steer and lean 

dynamics. 

Doyle [16] demonstrated this relationship by measuring the cross-correlation of bicycle 

steer and lean (also referred to as roll) responses. In particular, the steer angle was highly 

correlated to the roll angle at some time shift or lag. Similar to the findings of Doyle are 

the findings of van Lunteren and Stassen [105] who utilized a bicycle simulator to study 
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human/bicycle dynamics. Their results confirm that the steer angle lags and is highly 

correlated to the roll angle. A human riding a bicycle represents a closed-loop system in 

which the rider employs sensory feedback to achieve stabilization of the bicycle/rider 

system. Because successful bicycle riding requires a well-defined relationship of steer 

and roll dynamics, we hypothesize that this relationship must also develop as a novice 

rider successfully learns to ride. 

The objective of this study is to quantify how human subjects learn to ride a bicycle by 

tracking key kinematic changes in bicycle roll and steer dynamics during the learning 

process. The subjects for this study are children who participated in a specialized bicycle 

training camp called Lose the Training Wheels; refer to www.losethetrainingwheels.org. 

Children enter this camp having no ability to ride a bicycle and either acquire that ability 

or make significant progress towards that goal by the end of the week-long camp [46, 

106]. Therefore, this camp provides an ideal setting for tracking the changes that arise as 

a child transitions from a non-rider to a rider. A previous analysis of pilot data [107] 

helped develop our hypotheses and methods. We hypothesize that the measured bicycle 

steer and roll angular velocities will become significantly correlated as a successful 

subject progresses through training. In addition, we hypothesize that the average bicycle 

speed, the standard deviation of the roll angular velocity, and the standard deviation of 

the steer angular velocity will all increase with training. We open the Methods section by 

summarizing the training protocol, instrumentation, experimental protocol, and data 

analysis methods. In the Results and Discussion section, we quantify the salient changes 

in the measured kinematical variables that emerge as subjects successfully learn to ride. 
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4.3 Methods 

We measured the steer and roll dynamics bicycles ridden by 15 participants as they 

progressed through a bicycle training camp organized by the organization Lose the 

Training Wheels. The camp provides five consecutive days (Monday-Friday) of 

individual instruction for 75 minutes per day for each participant. The children (ages 8-19 

years) in the camp had a range of disabilities, which included primary diagnoses of Down 

syndrome (n = 3), Autism Spectrum Disorder (n = 10), cerebral palsy (n = 1), and 

attention deficit hyperactivity disorder (n = 1); Table 4.1 reports subject details. None of 

the participants were able to ride/balance a bicycle prior to entering the camp. Our goal 

was to reveal the underlying changes in bicycle steer and roll dynamics as each 

participant learned to balance a bicycle, regardless of disability. The experimental 

protocol was approved by the University of Michigan Institutional Review Board and this 

included written informed consent from parents/guardians and assent from the 

participating subjects. 
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Table 4.1. Subject details. 

Subject Age (years) Learned to ride? Primary Diagnosis 

A 19 yes Down syndrome 

B 15 yes autism spectrum disorder 

C 12 yes autism spectrum disorder 

D 14 yes autism spectrum disorder 

E 9 yes autism spectrum disorder 

F 8 no Down Syndrome 

G 18 yes autism spectrum disorder 

H 10 no Down Syndrome 

I 15 no cerebral palsy 

J 16 no attention deficit hyperactivity disorder 

K 18 yes autism spectrum disorder 

L 11 yes autism spectrum disorder 

M 14 yes autism spectrum disorder 

N 10 yes autism spectrum disorder 

O 10 yes autism spectrum disorder 

 

 Training camp program 4.3.1

The training program developed by Lose the Training Wheels facilitates success for 

individuals with disabilities by taking advantage of both innovative teaching techniques 

and specialized equipment. An overview of the training program is given in [46]. 

The training camp utilizes adapted bicycles having crowned rollers in place of the rear 

wheel; refer to Figure 4.1 and Figure 4.2. The roller is driven by a belt from an otherwise 

standard bicycle transmission. Unlike training wheels, the crowned rollers allow the 

bicycles to roll/lean similar to traditional bicycles. As a rider demonstrates improvement, 

the bicycle is altered by increasing the gearing or by changing to a more crowned roller 

that permits greater bicycle lean (less stability) (Figure 4.2). The concept underlying the 

design of the adapted bicycles is explained in [18], which states that the adapted bicycles 

behave similar to traditional bicycles, but allow self-stabilizing behavior to be maintained 



 

56 
 

at slower speeds. During training each participant is accompanied by a trainer, who 

assists and protects the participant. 

Participants typically begin the camp using roller number 3, which allows modest lean 

and substantial stability; refer to Figure 4.2. The participants ride the adapted bicycles 

around the perimeter of an indoor gymnasium. The floor manager at the training camp 

continuously observes the participants to determine which participants are ready to 

advance to the next roller. Rider improvement is qualitatively evaluated by the floor 

manager who observes rider pedaling speed, and whether the rider leans into turns, has 

relaxed arms, and is using the handlebars to turn and control the bicycle. After a rider 

demonstrates proficiency riding an adapted bicycle with a highly crowned roller 

(typically roller number 6 in Figure 4.2), the staff moves the rider onto a traditional 

bicycle. All riders, regardless of skill, are moved onto traditional bicycles on the last day 

of the camp.  

Riders first ride traditional bikes indoors where they are ‘launched’ by the floor manager. 

To launch a rider, the floor manager uses the handle to push the rider up to speed and 

then releases the handle, allowing the rider to coast freely. During coasting, the floor 

manager runs alongside the rider to prevent falls. After demonstrating the ability to 

balance a bicycle, the participant then practices riding around the perimeter of the 

gymnasium, working on pedaling and turning skills. After further demonstrating the 

ability to turn and stop a bicycle, the rider advances to an outdoor paved closed course 

(paved track or parking lot) where s/he continues developing riding skills. 
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During training each participant is accompanied by a trainer, who helps guide and protect 

the participant. Handles attached to all of the bicycles (both adapted and traditional 

bicycles) allow the trainers to control the speed of the bicycles and allow trainers to catch 

riders who are in danger of tipping over. Trainers are instructed to only use the handles if 

their participant is in danger of falling. 

 

 
Figure 4.1. An adapted bicycle. The adapted bicycles used by Lose the Training Wheels utilize crowned 

rollers in place of a rear wheel. The roller is driven by a belt, which is driven by a pulley connected to a 

standard bicycle transmission. In addition, the bicycles also have a handle attached to the rear of the bicycle 

that allows a trainer to assist the rider as needed. For this study, three wireless inertial measurement units 

(IMUs) were mounted the bicycles: one on the frame (frame mounted IMU), another on the handlebar stem 

(stem mounted IMU), and one on the spokes of the front wheel (wheel mounted IMU). 

stem mounted IMU 

wheel mounted IMU 

frame mounted IMU 

crowned roller 
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Figure 4.2. The rollers used on the adapted bicycles. A series of crowned rollers is used to modify the 

characteristics of the adapted bicycle. Roller number 1 (top) has the smallest crown (less lean/greater 

stability) while roller number 8 (bottom) has the largest crown (most lean/least stability). Participants often 

begin with roller number 3 and end with roller number 6 before advancing to a traditional bicycle. 

 Instrumentation 4.3.2

We employ three wireless inertial measurement units (IMUs) to measure the essential 

kinematics of the bicycles per Figure 4.1. We utilize two IMU designs. The first is a 

highly miniaturized wireless IMU developed at the University of Michigan as detailed in 

[108]. This design includes a 3-axis accelerometer (Analog Devices ADXL345) with a 

measurement range of ±157 m/s
2
 and resolution of 0.038 m/s

2
 and a 3-axis angular rate 

gyro (Invensense ITG-3200) with a measurement range of ±2000 deg/s and resolution of 

0.061 deg/s. These components, along with the battery and a switch, are packaged within 

a small box (40x40x20 mm) yielding a total device mass of 25 grams. The embedded 

WiFi radio permits synchronous data collection from up to eight IMU nodes. The second 

IMU is a commercially available design (Yost Engineering, Inc. TSS-DL-HH-S) which 

includes a 3-axis accelerometer with a measurement range of ±59 m/s
2
 and resolution of 
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0.029 m/s
2
 and a 3-axis angular rate gyro with a measurement range of ±2000 deg/s and 

resolution of 0.070 deg/s all within a small box (35x60x15 mm) and possessing a total 

mass of 28 grams. This second design does not permit synchronous data collection from 

multiple nodes and therefore requires introducing a synchronization event (discussed 

below) to synchronize data during post-processing. Prior to use, all IMUs were calibrated 

as described in [85]. 

We mounted three IMU nodes on each bicycle using custom brackets (Figure 4.1). One 

node was fastened to either the seat tube or downtube of the bicycle (with two sense axes 

within the plane defined by the bicycle frame). This IMU detects the roll, yaw, and pitch 

rates of the bicycle frame. A second node mounted to the stem of the bicycle (with one 

sense axis parallel to the steering axis) detects the rotation of the front assembly, which 

when used in tandem with the frame mounted IMU, yields the steering rate. A third node 

was secured to the spokes of the front wheel to detect the angular velocity of this wheel 

about the front axle, hence the bicycle speed. The University of Michigan design samples 

the accelerometers at 800 Hz and the gyros at 256 Hz while the Yost IMUs sample the 

accelerometers and gyros at 1000 Hz. The data reduction section details how the recorded 

accelerations and angular velocities are reduced prior to analysis. 

 Experimental protocol 4.3.3

We instrumented the bicycle assigned to each participant prior to their arrival to each 

camp session and recorded the location and orientation of each IMU node. A high 

precision digital inclinometer (Dong-Do IM-2D) provided the head tube angle (or steer 

axis tilt) for the stem mounted IMU and the frame tube (or downtube) angle for the frame 

(or downtube) mounted IMU as shown in Figure 4.3. All angles were measured with the 
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bicycle secured in an upright position with zero steer angle. We also recorded the 

European Tire and Rim Technical Organization (ETRTO) tire size of the front wheel so 

that the circumference of the wheel could be computed. For the traditional bicycles, we 

also measured the roll or lean angle of the bicycles when they were resting on their 

kickstands so we could confirm the alignment of the IMUs with the bicycle during data 

reduction. 

To reduce disruptions to the training sessions, no special instructions or explanations 

were offered to the participants. During each 75 minute session, we recorded data for four 

2-minute periods of riding which essentially filled the University of Michigan IMU 

memory at the chosen sampling rates. For each session, we also recorded the subject 

identifier, the bicycle used, the roller number and gear, and the starting time for data 

collection. The riding task for a participant during each session depended on the 

participant’s progress in the camp. 

For trials collected using Yost IMUs, we created a synchronization event at the beginning 

of each trial by subjecting all three IMUs to the same oscillating angular velocity. We 

accomplished this by holding the handlebars fixed relative to the bicycle frame and 

rocking the bicycle back and forth about its roll axis. During post-processing, we used the 

magnitudes of the measured angular velocity vectors to synchronize the data by finding 

the time shifts needed to align the angular velocities measured by the steer and wheel 

mounted sensors with the angular velocity measured by the frame mounted sensor. 
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 Data reduction 4.3.4

Our goal is to compute three things: roll rate, steer rate, and bicycle speed. The IMUs do 

not directly measure the quantities of interest, so we must instead use the accelerations 

and angular velocities measured by the IMUs to make additional calculations. First, the 

measured accelerations and velocities must be resolved in bicycle-fixed frames relevant 

to understanding bicycle dynamics (roll/lean and steer). 

In order to define the orientation of each IMU relative to the bicycle, we use a 

combination of the measured accelerations and the frame angles that were measured with 

the precision digital inclinometer before each training session. First, we use the plots of 

accelerations versus time and angular velocities versus time for the frame mounted IMU 

to select a range of data to be used for determining sensor orientation. Ideally, the bicycle 

was at rest at some point during the trial. Because the acceleration measured by the IMU 

includes the acceleration of gravity, the IMU functions as an inclinometer when the 

bicycle is at rest, which makes it easy to extract the IMU orientation relative to the 

gravitational field. Due to some difficulties with wireless communication when using the 

custom IMUs, the bicycle was not at rest for some of the trials. For these trials, a period 

of straight riding at a relatively constant speed was selected to determine IMU 

orientation. During straight riding at a constant speed the average orientation of the 

bicycle is upright, so average accelerations can still be used reliably to determine the 

orientation of the IMU. After selecting an appropriate section of data (either when the 

bicycle is at rest or going straight at a relatively constant speed), we then calculate the 

average acceleration along each sensor axis for the selected time range. Using the average 

accelerations, we construct rotation matrices that allow us to resolve the accelerations and 
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angular velocities measured in sensor-fixed frames  321
ˆ,ˆ,ˆ eee  and  654

ˆ,ˆ,ˆ eee
 

into 

accelerations and angular velocities in bicycle-fixed frames  
kji eee ˆ,ˆ,ˆ  and  nml eee ˆ,ˆ,ˆ ; 

these frames are shown in Figure 4.3. 

 
Figure 4.3. The sensor-fixed and bicycle-fixed frames. Measurements in the sensor-fixed frames 

 321
ˆ,ˆ,ˆ eee  and  654

ˆ,ˆ,ˆ eee  must be resolved in bicycle-fixed frames relevant to understanding bicycle 

dynamics;  
kji eee ˆ,ˆ,ˆ  for roll/lean motion and  nml eee ˆ,ˆ,ˆ  for steer motion. The rotation angles   and   

are used to align the sensor-fixed frame  321
ˆ,ˆ,ˆ eee

 
with the bicycle-fixed frame  

kji eee ˆ,ˆ,ˆ . The steer 

axis tilt angle,  , is used when resolving the steer rate. The frame  654
ˆ,ˆ,ˆ eee  is not always exactly equal to 

 nml eee ˆ,ˆ,ˆ  due to potential slight misalignment of the two frames. 

For the frame mounted IMU, we first calculate two rotation angles ( and  ) using the 

average measured accelerations in the frame mounted IMU sensor-fixed frame: 

 





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21tan
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where 1a , 2a , and 3a  are the average measured accelerations in the frame mounted IMU 

sensor-fixed frame. The calculated rotation angles ( and  ) are then compared to 

expected rotation angles, which are calculated using the known location and orientation 

of the IMU and the frame angles previously measured with the digital inclinometer. For 

example, if the IMU is mounted to the downtube of a bicycle that has been secured in an 

upright position (zero roll angle), we would expect one of the calculated rotation angles 

)(  to be equal to the angle that the downtube makes with horizontal (±5° due to 

misalignment or error) and the other calculated rotation angle ( ) to equal approximately 

zero (±5° due to misalignment or error). In the case of an upright bicycle the bicycle-

fixed frame is aligned with the inertial frame. The orientations of all frame mounted 

IMUs used for all trials were double-checked in this way. Only after confirming that the 

IMUs were oriented as expected did we proceed with the data processing. 

For a bicycle leaning on a kickstand, one rotation angle should be equal to the previously 

measured roll of the bicycle on its kickstand, plus or minus some error. In this case the 

rotation angle needed to align the sensor-fixed frame with the bicycle-fixed frame ( ) 

was corrected using the measured roll of the bicycle on its kickstand. 

Next, the rotation matrix ( 123Rijk ) is defined to allow us to resolve the accelerations and 

angular velocities in the sensor-fixed frame to accelerations and angular velocities in a 

bicycle-fixed frame. 
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We then apply the rotation matrix to the time series of measured accelerations and 

angular velocities in the frame mounted IMU sensor-fixed frame  321
ˆ,ˆ,ˆ eee , yielding 

measured accelerations and angular velocities in the bicycle-fixed frame  
kji eee ˆ,ˆ,ˆ .  
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The roll rate of the bicycle frame is the component of angular acceleration in the iê  

direction measured by the frame mounted IMU: 

 i   (4.6) 

 

For the stem mounted IMU, we ensured that one axis of the IMU ( 6ê ) was parallel to the 

steer axis of the bicycle. Similar to the frame mounted IMU, we used average measured 

accelerations and measured bicycle angles to check the alignment of the IMU relative to 

the bicycle steer axis. We define the sensor-fixed axis for the stem-mounted IMU by

 654
ˆ,ˆ,ˆ eee . Misalignment of the IMU axes with the steer axis was corrected using a 
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procedure similar to that described above for resolving measurements in the sensor-fixed 

frame  654
ˆ,ˆ,ˆ eee  into a bicycle-fixed frame  nml eee ˆ,ˆ,ˆ . 

After resolving the IMU measurements in bicycle-fixed frames, we can calculate the steer 

rate. The stem-mounted IMU measures both the angular velocity due to rotations of the 

bicycle frame and due to rotations of the bicycle front assembly (handlebars, stem, and 

fork) relative to the bicycle frame. Steer velocity or rate is defined as the rotation rate of 

the front assembly relative to the bicycle frame. Therefore, the angular velocities 

measured by the frame mounted IMU and stem-mounted IMU must be used to resolve 

the steer velocity. 

First the angular velocities measured by the frame-mounted IMU that are resolved the 

bicycle-fixed frame  
kji eee ˆ,ˆ,ˆ  must be resolved the bicycle-fixed frame  nml eee ˆ,ˆ,ˆ : 
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where   is the measured steer axis tilt or head angle of the bicycle. After resolving the 

angular velocities in the bicycle-fixed frame  nml eee ˆ,ˆ,ˆ
 

with an axis parallel to the 

steering axis, the steer velocity or rate ( ) is given by: 

 nsnf    (4.8) 

 

where ns  is the angular velocity in the nê  direction measured by the stem mounted IMU 

and nf  is the angular velocity in the nê  direction measured by the frame mounted IMU. 
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We calculate the speed of the bicycle by using the magnitude of the angular velocity 

measured by the wheel-mounted IMU ( wheel ) and the estimated front wheel 

circumference ( fr2 ). The magnitude of the angular velocity of the front wheel can be 

calculated by: 

      29

2

8

2

7  wheel  (4.9) 

 

where 7 , 8 , and 9 are the components of the angular velocity measured by the wheel 

mounted IMU in the wheel mounted sensor-fixed frame  987
ˆ,ˆ,ˆ eee . The radius of the 

front wheel can be estimated using the ETRTO tire size of the front tire, which gives the 

tire width ( tirew ) and inner diameter of the tire ( tired ) in millimeters: 

 



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


 tire
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f w

d
r

2
 (4.10) 

 

Bicycle speed ( v ) is then calculated: 

  
fwheel rv   (4.11) 

 

Before analyzing the data, the roll rate ( ) and steer rate ( ) were low-pass filtered 

using a fourth-order Butterworth filter with a cutoff frequency of 5 Hz; bicycle speed ( v ) 

was low-pass filtered using a cutoff frequency of 10 Hz. After filtering, we used 

numerical differentiation to calculate steer acceleration ( ) and roll acceleration ( ) 

from the appropriate signals. 
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 Data analysis 4.3.5

Trials with incomplete data sets were discarded resulting in a net retention of 207 out of 

250 trials. In each trial retained, we selected periods of riding with approximately 

constant speed by visual inspection of the computed bicycle speed and the angular 

velocities of the frame mounted IMU and stem mounted IMU. We use bicycle speed to 

identify when a subject is moving. Inspection of the angular velocities helps confirm that 

the subject is riding without assistance, as the oscillations of the signals visibly decrease 

for an assisted rider. For each period of selected data, we calculated the means and 

standard deviations of the bicycle speed, steer angular velocity, and roll angular velocity. 

We also calculated the normalized cross-correlation [15] of steer angular velocity (  ) to 

roll angular velocity ( ) as well as the normalized cross-correlation of steer angular 

acceleration ( ) to roll angular acceleration ( ); this was done using the xcorr function 

in the MATLAB Signal Processing Toolbox. Cross-correlation analysis is a standard 

system identification technique [15] that reveals relationships between system inputs and 

outputs. Depending on the system and experimental methods, cross-correlations may 

provide detailed information about the plant and/or controller transfer functions [61]. We 

squared the peak value of the normalized cross-correlation to yield the peak coefficient of 

determination, or 2R  value, between the two signals. The 2R  value provides a measure 

of the similarity between two signals. We recorded the time shift between the two signals 

required to produce the peak 2R value; the time shift provides a measure of the lag or 

delay before a change in one signal is correlated to a change in the other signal. For 

bicycle riding, changes in steer angular velocity/acceleration typically lag changes in roll 
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angular velocity/acceleration. We used the time shift for peak correlation between signals 

to calculate the linear least-squares fits between both the steer and roll angular velocities 

and steer and roll angular accelerations. For these fits, we used the roll angular 

velocity/acceleration as the predictor. The slope of the linear fit can be thought of as a 

simple gain between steer and roll velocity/acceleration. 

We performed our statistical analyses using an alpha level of 5% (      ). We used 

mixed linear models [109] (allowing us to account for repeated measures and unequal 

variances) to test for the significant effects of training time. We implemented the mixed 

linear models using a statistics package (IBM SPSS Statistics), assuming an auto 

regressive covariance model with an order of one. We included a fixed effect of training 

time and a random effect of bicycle type (adapted bicycle roller number or traditional 

bicycle). Because qualitative measurements of rider improvement are used by the bicycle 

camp staff to determine when a rider is ready to advance to a more challenging bicycle 

(i.e. a more crowned roller or a traditional bicycle), bicycle type is not independent of 

training time and therefore we did not include bicycle type as a main effect. We used an 

independent samples t-test assuming unequal variances to compare the highest peak 

cross-correlation 2R  values from each rider that learned to ride a traditional bicycle to 

those who did not learn. 

4.4 Results 

Results for each of the 15 riders, labeled as subjects A-O, are shown in Figure 4.4 

through Figure 4.8. These results include the peak cross-correlation between steer and 

roll angular velocity (Figure 4.4 and Figure 4.5), the slope of the fit of steer rate to roll 
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rate (Figure 4.6), the standard deviation of the steer angular velocity (Figure 4.7), and the 

standard deviation of the roll angular velocity (Figure 4.8). The results of riders who 

learned to ride a traditional bicycle (n = 11) are plotted in black whereas those who were 

not successful (n = 4) are plotted in gray. Riders that learned to ride were able to start and 

stop riding without assistance and were capable of riding a minimum of 30 meters 

independently. Dots signify trials on adapted bicycles whereas open circles signify trials 

on traditional bicycles. Subjects who advanced to a traditional bicycle but were not 

successful (subjects F, H, and J) were assisted by trainers who prevented falls. Subject I 

did not advance to a traditional bicycle. The pilot study [107] contains data for subjects 

A-J. 

Observe in Figure 4.4 that the peak cross-correlation between steer and roll angular 

velocities increased significantly with training time for all trials (F = 44.203 p < 0.001) as 

well as for the subset of trials on adapted bicycles (F = 14.861, p = 0.001). Those subjects 

who successfully learned to ride a traditional bike also exhibited significantly higher 

maximum peak cross-correlation compared to those who did not learn (t = 5.434, p = 

0.003) as reported in Figure 4.5. Regardless of subject, the peak cross-correlation 

between the steer and roll angular velocities always occurred at negative time shift 

values, indicating that changes in steer angular velocity always lag changes in roll 

angular velocity. This is consistent with the expectation that a rider must steer into the 

lean in order to maintain balance. Interestingly, there was no significant change in the 

time shift with training time (F = 2.066, p = 0.157). For all trials, the mean and standard 

deviation of the time shift were -90.1 ms and 32.5 ms, respectively. The slope of the 

linear least-squares fit of the steer angular velocity to the roll angular velocity reported in 
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Figure 4.6 increased significantly with training time for all trials (F = 31.931, p < 0.001) 

as well as for the subset of trials on adapted bicycles (F = 27.300, p < 0.001). 

 
Figure 4.4. Peak cross-correlation squared (

2R ) between steer and roll angular velocities versus training 

day/time for each subject (labeled A-O). Results of riders who learned to ride a traditional bicycle are 

plotted in black, whereas those who did not are plotted in gray. Dots signify trials on adapted bicycles 

whereas open circles signify trials on traditional bicycles. The peak cross-correlation significantly increased 

with training time (F = 44.203, p < 0.001). 
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Figure 4.5. Mean peak cross-correlation squared (

2R ) between steer and roll angular velocities of those 

who learned to ride versus those that did not. The error bars represent ± one standard deviation. Riders who 

learned to ride a traditional bicycle exhibited a significantly higher correlation between steer and roll 

angular velocities than riders who did not learn (t = 5.434, p = 0.003). 

 
Figure 4.6. Slope of the linear fit of steer angular velocity to roll angular velocity at the time shift required 

for peak correlation versus training time. Plots for individual riders (labeled A-O) are provided to illustrate 

change as riders progressed through the camp. The results of riders who learned to ride a traditional bicycle 

are plotted in black, whereas the results of riders who did not are plotted in gray. Trials in which the rider 

rode a traditional bicycle are plotted with a circle. The slope significantly increased with training time (F = 

31.931, p < 0.001). 
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Consistent with the peak cross-correlation between steer and roll angular velocities, the 

peak cross-correlation between steer and roll angular acceleration also increased 

significantly with training time for all trials (F = 41.570, p < 0.001) as well as for the 

subset of trials on adapted bicycles (F = 8.606, p = 0.006). The peak cross-correlation 

between the steer and roll angular accelerations occurred at negative time shift values, 

indicating that changes in steer angular acceleration lag changes in roll angular 

acceleration. There was no significant change in the time shift with training time (F = 

0.929, p = 0.340). For the collected trials, the time shift had a mean of -79.2 ms with a 

standard deviation of 20.2 ms. The slope of the linear least-squares fit of the steer angular 

acceleration to the roll angular acceleration at the time shift for peak cross-correlation 

increased significantly with training time for all trials (F = 36.198, p < 0.001) as well as 

for the subset of trials on adapted bicycles (F = 18.115, p < 0.001). 

The average speed of the riders increased significantly with time across all trials (F = 

27.660, p < 0.001) and for the subset of trials on the adapted bicycles (F = 6.055, p = 

0.018). The standard deviation of the steering rate reported in Figure 4.7 increased 

significantly with training time for all trials (F = 27.579, p < 0.001) and for the subset of 

trials on the adapted bicycles (F = 25.196, p < 0.001). Similarly, the standard deviation of 

the roll rate reported in Figure 4.8 increased significantly with training time for all trials 

(F = 30.254, p < 0.001) and for the subset of trials on the adapted bicycles (F = 8.238, p = 

0.008). 
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Figure 4.7. Standard deviation of the steer angular velocity versus training time. Plots for individual riders 

(labeled A-O) are provided to illustrate change as riders progressed through the camp. The results of riders 

who learned to ride a traditional bicycle are plotted in black, whereas the results of riders who did not are 

plotted in gray. Trials in which the rider rode a traditional bicycle are plotted with a circle. The standard 

deviation of the steer rate increased significantly over time for all trials (F = 27.579, p < 0.001) and for the 

subset of trials on the adapted bicycles (F = 25.196, p < 0.001). 
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Figure 4.8. Standard deviation of the roll angular velocity versus training time. Plots for individual riders 

(labeled A-O) are provided to illustrate change as riders progressed through the camp. The results of riders 

who learned to ride a traditional bicycle are plotted in black, whereas the results of riders who did not are 

plotted in gray. Trials in which the rider rode a traditional bicycle are plotted with a circle. The standard 

deviation of the roll rate increased significantly over time for all trials (F = 30.254, p < 0.001) and for the 

subset of trials on the adapted bicycles (F = 8.238, p = 0.008). 

4.5 Discussion 

The findings reveal that rider learning can be quantified by increasing correlation 

between the steer and roll angular velocities (and angular accelerations). Novice riders 

that successfully rode unassisted on traditional bicycles achieved a high cross-correlation 

(mean peak R
2
 = 0.81) between steer and roll, similar to the skilled riders of [16] and 

[105]. However, the peak cross-correlations did not increase similarly for all riders. For 

example, the peak R
2
 between steer and roll velocities (Figure 4.4) for subject M 

increased steadily with training time, even on the adapted bicycle, whereas it increased 

little (or even decreased) for subjects C and D until they advanced to a traditional bicycle. 

Thus, the adapted bicycles appear quite effective for some riders (e.g. subjects B, K, and 
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M) but not for all. One explanation is that the adapted bicycles offer too much lateral 

stability for some riders, similar to a bicycle with training wheels, and do not promote the 

critical learning of steering into the lean. Thus, bicycles that specifically permit roll 

enhance balance skill, a conclusion that supports the use of balance bicycles and bicycles 

with pedals removed. 

Riders who succeeded riding traditional bicycles without assistance achieved different 

levels of peak cross-correlation between roll and steer. The peak cross-correlations for 

successful riders ranged from              . The mean of these values,  
      , 

is similar to the average value         reported in [16] for riders riding a destabilized 

bicycle. Additionally, subject F achieved relatively high cross-correlation (       ) 

but was not successful riding a traditional bicycle. Prior studies demonstrate that some 

riders utilize body lean in addition to steering to maintain balance. Lean control stabilizes 

a bicycle model [5-7] and leaning alters steer torque [82] (and therefore steer angle). 

Moreover, experiments utilizing a bicycle simulator [105] demonstrate negative 

correlation between rider lean and bicycle roll angle. Therefore, it is likely that a rider 

preferentially using lean control may not exhibit large correlation between steer and roll. 

The mean time shift of approximately 90 ms between steer rate and roll rate is consistent 

with the findings of Doyle [16], who found time shifts ranging from 60 to 120 ms for 

riders on a destabilized bicycle. As noted by researchers in the study of human standing 

balance, the time shift between signals is related in a complicated way on the system 

parameters and on the noise in the system [61, 62]. Therefore, it seems unlikely that the 

magnitude of the time shift has any meaning for the experimental conditions in this study. 
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The slopes of the linear fit of steer angular velocity to roll angular velocity and the linear 

fit of steer angular acceleration to roll angular acceleration increased with training time. 

However, it is unclear whether this is due to the riders learning to control the bicycles to 

maintain balance, the increased speed that riders exhibit as they progress through the 

camp, or due to different dynamic properties of the adapted bicycles. Our results in 

Chapter 5 demonstrate that the slope decreases with increasing speed, so it is unlikely 

that the observed increase in this study is related to the increased speed that riders exhibit 

with training. 

As expected, changes in the gearing and the progression from a very stable adapted 

bicycle to a traditional bicycle were reflected in changes in the average speed and roll 

rate. Higher gearing results in faster average speeds on the adapted bicycles, and the 

transition to a traditional bike results in even faster speeds. More crowned rollers 

theoretically allow the adapted bicycles to tip more, which can result in increased bicycle 

roll rate. Our results demonstrate that the standard deviation of roll rate does increase 

with training time, and therefore support the hypothesis transitioning to less stable 

bicycles increases the roll rates of the bicycles. However, it may be possible that the 

increased roll rate is an effect of the faster average speeds that riders achieve with 

increased training. Faster speeds make it possible for a rider to create higher lateral 

acceleration for a given steer angle, which would result in higher roll rates. Additionally, 

the standard deviation of the steer rate increased with time, suggesting that initially 

fearful riders learn to relax their arms and use the handlebars to control and balance the 

bicycles. The increased steer rates are also likely a result of the subjects responding to 

increased roll rates. 
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There are a few limitations to this study. First, the measurements were taken on a 

population with disabilities, which includes subjects with Down syndrome, cerebral 

palsy, autism spectrum disorder, and attention deficit hyperactivity disorder. It is not 

clear how useful the measurements will be for a non-affected population. However, the 

primary finding that steer must be highly correlated to roll is in agreement with past 

studies [16, 105, 110] on non-affected populations. Children with disabilities such as 

Down syndrome and autism spectrum disorder have motor deficits that may make it 

difficult to learn new motor skills [111, 112]. Despite learning deficits, children with 

disabilities must still learn the same skill as non-affected children in order to balance a 

bicycle. Therefore, we are confident in our conclusion that riding a bicycle requires a 

high correlation between steer and roll.  

A second limitation is that measurements were taken on modified bicycles (the adapted 

bicycles) that are not available to the general public. It is not clear to what degree the 

adapted bicycles influence or limit performance measures or how the performance 

measures translate to other training techniques. The dynamics and controls approach used 

to develop the adapted bicycles has also been applied to develop an ‘unrideable’ bicycle 

as well as a bicycle similar to the unrideable bicycle that was made easily rideable by 

using a bicycle model to guide slight design modifications [18]. Therefore, all of the 

bicycles (adapted and traditional) have very similar dynamic properties. The main effect 

of the adapted bicycles seems to be that they reduce the correlation between steer and roll 

needed to maintain balance. The rear roller on the adapted bicycle functions similar to 

training wheels, providing a corrective force that allows a rider to maintain balance 

despite incorrect steering inputs. Unlike training wheels, the adapted bicycles maintain 
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the ability to roll. Our belief is that the adapted bicycles make it possible for riders to 

learn incrementally, which is in contrast to the typical fail/succeed nature of learning to 

ride a traditional bicycle. The incremental learning that riders demonstrate when using 

the adapted bicycles made it possible to capture the learning process.  

Learning to balance a bicycle is only one part of learning to ride. Riders must also learn 

how to get on a bicycle, how to start pedaling/riding, how to avoid obstacles, and how to 

stop safely, among other skills. The primary benefit of adapted bicycles and other 

training aids are that they allow riders to become familiar with the controls of a bicycle 

and the attention and physical demands that riding a bicycle requires. Adapted bicycles 

and balance bikes allow riders to focus on learning the dynamics of a bicycle, whereas 

training wheels and tricycles allow riders to learn pedaling, steering, and traffic skills.  

Our results suggest several measures that could be used to quantify the learning of novice 

riders—especially the peak cross-correlation between steer and roll rates and angular 

accelerations. Most importantly, we were able to quantify learning by measuring the 

kinematics of bicycles as a riders trained uninterrupted. These measures could be used to 

evaluate the effectiveness of existing training techniques and to help develop new 

training techniques. 

4.6 Conclusions 

We measured the essential bicycle kinematics of childern with disabilities during a 

specialized bicycle training camp to unravel how they learn to ride bicycles. Of the 15 

subjects, 11 successfully rode a traditional bicycle without assistance by the end of the 

camp. Three wireless IMUs revealed the bicycle roll rate, steer rate, and speed during the 
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learning process. The peak value of the cross-correlation between steer and roll angular 

velocities was significantly greater for the 11 subjects who learned to ride compared to 

the 4 who did not. This finding suggests that rider learning is quantified by increased 

correlation between bicycle steer rate and roll rate. In essence, learning to steer in the 

direction of lean is an essential and quantifiable skill in learning to ride. Average speed 

also increased with time, likely due to the increased gearing used as a rider progressed 

through the camp. The standard deviation of the steer rate also increased with time, 

suggesting that initially fearful riders learn to relax their arms and use the handlebars to 

balance the bicycles. Existing and future training techniques can be systematically 

evaluated using this novel method. 

Acknowledgements 

We thank Lose the Training Wheels for providing access to the adapted bicycles and 

training program and the National Institute on Disability and Rehabilitation Research for 

a grant to Dr. Dale A. Ulrich that made this research possible.  



 

80 
 

CHAPTER 5:  MEASUREMENT OF HUMAN/BICYCLE BALANCING DYNAMICS AND 

RIDER SKILL 

5.1 Chapter summary 

Analytical analyses of the stability of bicycle/rider systems have limited use for 

understanding the behavior and performance of human bicycle riders and human/bicycle 

systems. Experimental measurements of human/bicycle dynamics are needed to advance 

our understanding of how humans maintain balance of a bicycle and to identify metrics 

useful for quantifying rider skill. In this study, we measure the dynamics of human 

bicycle riding as 14 subjects ride an instrumented bicycle on training rollers mounted on 

a force platform at speeds ranging from approximately 1.3 to 7.2 m/s. Of the 14 riders, 

we classified 7 as cyclists (skilled riders) and 7 as non-cyclists (novice riders). The 

instrumented bicycle measures steer angle/rate, steer torque, bicycle speed, and bicycle 

roll rate and also enables the calculation of steering power. A motion capture system 

enables measurement of the roll angle of the bicycle. A force platform beneath the roller 

assembly measures the net force and moment that the bicycle/rider/rollers exert on the 

floor, which enables calculation of the lateral positions of the bicycle/rider center of mass 

and center of pressure. We find that the cross-correlation of the lateral position of the 

center of mass to the lateral position of the center of pressure quantifies balance 

performance, the cross-correlation of steer angle/rate to bicycle roll angle/rate quantifies 

steer control, and the cross-correlation of rider lean angle to the bicycle roll angle 

quantifies rider lean control. All riders achieved similar balance performance at the 
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lowest speed while utilizing similar control strategies. However at higher speeds, skilled 

riders (cyclists) achieved greater balance performance by employing more rider lean 

control and less steer control compared to novice riders (non-cyclists). In addition, skilled 

riders used less steer control effort (measured by average positive steering power and 

standard deviations of steer angle and rate) and less rider lean control effort (measured by 

the standard deviation of the rider lean angle) regardless of speed. The reduction in 

balance effort for skilled riders is not due to any reduced demands for balance. In 

summary, skilled riders achieve higher levels of balance performance using less effort 

than novice riders.  

5.2 Introduction 

There is little understanding of the fundamental characteristics of human bicycle riders, 

the types of control that humans use to balance bicycles, and the skills that distinguish 

riders of different ability levels. Humans have ridden bicycles (two-wheeled, single track 

vehicles) since the early 1800’s [1], yet human/bicycle dynamics are far from well 

understood. Recent work [2] has established the so-called Whipple bicycle model [3] as 

the simplest model of a bicycle that can predict the self-stability of the bicycle alone; 

however the behavior of an uncontrolled bicycle provides little insight into the behavior 

of a bicycle controlled by a human. Identifying the types of control that humans use and 

differences between skilled and novice riders would simultaneously advance two uses. 

First, it would provide researchers with metrics to evaluate rider skill and human/bicycle 

stability; and second, it could provide bicycle designers with tools to objectively measure 

whether a specific bicycle is better or worse for a particular rider. 
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Bicycle riding skill or performance has previously been assessed by instructing subjects 

to ride around a prescribed course or to perform a prescribed task. In general, the time to 

complete a course/task and the number of errors committed are used to quantify 

performance. In the majority of studies that use these techniques, the goal has been to 

evaluate the performance or safety of a particular bicycle or bicycle configuration [35-

40]. In a study investigating the maneuverability of children’s bicycles [40], Lewis noted 

that there was more variation between subjects than between the use of different bicycles. 

The time to complete a course and number of errors were used to investigate the 

correlation between physical and perceptual-motor abilities and riding performance [41, 

42] and to evaluate the effect of alcohol consumption on the ability to safely ride a 

bicycle [43]. While quantifying performance by time to complete a course/task and the 

number of errors is useful for the questions posed in these studies, the study results are 

task specific and do not translate to new tasks. In addition, the methods of quantifying 

performance do not allow continuous monitoring of skill because the methods rely on 

completion of specific courses/tasks. 

Some research on motorcycles suggests that riders of different skill levels use different 

body lean relative to the motorcycle and steering torque. For example, Rice [44] found 

that riders of different skill levels phased body lean and steering torque differently when 

executing a lane change maneuver. Similarly, Prem [45] found that novice riders in an 

evasive maneuver used lean torque and steering torque differently from expert riders. 

Prem also used skill tests to differentiate rider ability, similar to the studies of bicycles 

mentioned above. However, these studies also provide little insight on how to 

continuously monitor skill for bicycle riders. 
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The ability to balance a bicycle is necessary to successfully complete any riding task. 

Therefore, it seems logical to investigate possible ways to quantitatively evaluate the skill 

of a rider to balance a bicycle. Other fields of research have investigated human 

balancing skills and performance and these may also provide insight into how bicycle 

balancing skill can be quantified. One such field is human postural control. 

The tools used to evaluate human postural control are an essential part of both clinical 

evaluation of patients and research into how humans maintain upright posture. Some of 

the most basic methods to evaluate human postural control involve monitoring the 

location of the center of pressure (COP) and the center of mass (COM) of subjects [47]. 

During standing, the center of mass and center of pressure are highly correlated, with the 

center of pressure being below and tracking the center of mass [113]. By using an ideal 

inverted pendulum model of standing balance, Winter [47] explains that the (COP-COM) 

signal is directly related to the horizontal acceleration of the COM and can be considered 

to be the error signal detected by the balance control system. The assumption is that the 

goal of the balance control system is to maintain an upright posture and to control 

postural sway. While the assumption that human standing balance can be modeled 

effectively as an inverted pendulum, it is important to note that more complex balancing 

tasks require a more comprehensive model of the body [48]. Researchers have used COP 

measurements to investigate standing balance using a wide range of measures, including: 

root mean square (RMS) distance from the mean COP [49, 50], excursions of the COP 

[51-53], COP sway amplitude [54], velocity of the COP [55, 56], and the area enclosed 

by the COP trajectory [55, 57], among others. These studies represent a small sample of 

the extensive literature in the field of human postural control that utilize measures of 
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body sway, usually movement of the COP, to quantify balance performance. As a result, 

these types of measures are utilized by clinicians to identify patients with balance 

disorders [47, 63, 65]. 

Similar to research in the field of human postural control, our aim is to identify methods 

to evaluate human/bicycle control and balance. Studies of human postural control 

highlight the importance of the relationship between the center of mass and center of 

pressure. However unlike standing balance, balancing a bicycle is a highly dynamic task 

that also requires coordination of the human subject and the bicycle. For standing in static 

situations, stability requires that the vertical projection of the center of mass falls within 

the base of support; during more dynamic tasks, the projection of the center of mass can 

fall outside of the base of support, but must remain within some range of the base of the 

support [76]. By logical extension, it will be important to investigate the relationship of 

the center of mass to the center of pressure during bicycling. 

Previous work highlights possible control methods that can be used by riders [82, 114], 

methods to quantify control [16, 105, 107], and differences between skilled and unskilled 

riders [115]. Lean control and steer control are effective methods to maintain stability of 

a bicycle model [5-7] and are observed experimentally for human riders [24, 114]. Lean 

control can also be used to alter steer torque [82], which can in turn alter steer angle. 

Both lean control and steer control can be observed by calculating cross-correlations of 

lean angle and steer angle/rate with bicycle roll angle/rate [16, 105]. Our pilot experiment 

found that skilled cyclists steer less and use less power to steer than non-skilled cyclists 

[115], suggesting that the effort used for control as well as variation of control can be 

used to distinguish rider skill. 
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Following from the pilot study, the objectives of this study are three-fold: to quantify 1) 

the relationship between center of pressure and center of mass movement of the 

bicycle/rider system, 2) the types of control used by riders, and 3) the differences 

between skilled and novice riders. We hypothesize that the lateral position of the center 

of mass will be highly correlated to the lateral position of the center of pressure, steer rate 

will be highly correlated to the roll rate of the bicycle, rider lean will be highly correlated 

to bicycle roll, and skilled riders will use significantly less steering effort and variation 

than novice riders. We open with the Methods section describing the experimental 

protocol, the instrumentation used to measure human/bicycle dynamics, and data 

analysis. In the Results and Discussion section, we present the results and quantify 

differences between skilled and novice riders by highlighting the relationship of the 

center of mass to the center of pressure, types of control used, and control effort. 

5.3 Methods 

We tested a total of 14 subjects (4 females, 10 males; age = 26.4 ± 6.0 years, body mass = 

71.1 ± 12.8 kg; mean ± standard deviation). The University of Michigan Health Sciences 

and Behavioral Sciences Institutional Review Board approved the study, and all subjects 

gave informed consent. 

We classified seven subjects as “cyclists” and seven subjects as “non-cyclists.” All 

cyclists go on training rides regularly, belong to a cycling club or team, compete several 

times per year, and have experience using rollers for training. Skilled riders often use 

training rollers, such as those illustrated in Figure 5.1, to practice cycling indoors. All 

subjects classified as cyclists identify themselves as skilled cyclists. All non-cyclists 
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know how to ride a bicycle but do so only occasionally for recreation or transportation 

and do not identify themselves as skilled cyclists. 

 
Figure 5.1. A cyclist riding a bicycle on rollers. 

To measure the dynamics of human bicycle riding, we conduct experiments indoors 

utilizing an instrumented bicycle, a motion capture system, and training rollers mounted 

on a force platform. The instrumented bicycle from Chapter 2 is again used. Recall that 

this bicycle has embedded sensors that measure steer angle, steer torque, bicycle speed, 

and bicycle frame roll rate. In addition, we calculate the steering power from the steer 

torque and steer angular velocity. The motion capture system measures the positions of 

three markers attached to the bicycle frame, which we use to calculate the roll angle of 

the bicycle frame. The force platform beneath the roller assembly measures the net force 

and moment that the rider/bicycle/rollers exert on the ground. These reactions are later 

used to calculate the lateral position of the bicycle/rider center of pressure and center of 
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mass. Utilizing the measured and calculated quantities, we examine standard deviations 

of signals and cross-correlations between signals to reveal differences in rider skill. 

 Protocol 5.3.1

Each subject rode in five experimental conditions distinguished by pedaling cadence (via 

a metronome) and bicycle speed (via gearing). The five conditions were executed in the 

following order: 1) cadence 80 rpm and speed 5.08 m/s, 2) cadence 80 rpm and speed 

7.19 m/s, 3) cadence 80 rpm and speed 6.98 m/s, 4) cadence 80 rpm and speed 2.58 m/s, 

and 5) cadence 40 rpm and speed 1.29 m/s. Each subject rode for a minimum of 2 

minutes in each condition until s/he could ride for at least 30 seconds without support. A 

platform placed over the rollers allows subjects to safely dismount the bicycle and a 

railing beside the rollers allows subjects to support themselves during trials (Figure 5.2). 

Some subjects were not able to successfully ride on the rollers at the slowest speed 

defined in condition 5, and instead rode with a cadence of 50 rpm and a speed of 1.61 

m/s. We only instructed riders to ride on the rollers for at least 30 seconds without 

support and to match their pedaling rate to the beat of the metronome as closely as 

possible. We did not, for example, instruct riders on how to ride the rollers or what type 

of control to use.  
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Figure 5.2. A platform placed over the rollers allows subjects to safely dismount the bicycle and a railing 

beside the rollers allows subjects to support themselves during trials. The roller drums are mounted to a 

frame that is attached to a force platform near the center of the assembly. 

Prior to the data collection, we allowed all subjects to practice riding the instrumented 

bicycle on the rollers as long as they needed to become comfortable. During this time, we 

also ensured that the seat height was set properly for each subject. Cyclists generally 

needed only a few minutes to familiarize themselves with the instrumented bicycle. Non-

cyclists, all of whom had no experience riding on rollers, generally needed 10 to 15 

minutes to become familiar with the bicycle and to learn how to ride on rollers. 

 Instrumented bicycle 5.3.2

The instrumented bicycle is described in detail in Chapter 2 and [81, 82]. The 

instrumented bicycle is a standard geometry rigid (no suspension) mountain bike 

equipped with slick tires. A torque sensor (Transducer Techniques SWS-20) integrated 

into the fork steerer tube measures the steer torque applied by the bicycle rider (  ) with a 

range of ±7.512 Nm and a resolution of 0.005 Nm. An optical encoder disk (US Digital 

HUBDISK-2-1800-1125-I) and encoder module (US Digital EM1-2-1800) capture the 



 

89 
 

steer angle of the bicycle ( ) with a resolution of 0.1 degrees. Numerical differentiation 

of the steer angle yields steer angle velocity ( ̇), which when multiplied by steer torque 

yields the instantaneous power used by the rider to steer the bicycle. Integration of 

steering power yields the steering work which is further decomposed into positive and 

negative work components. We obtain the bicycle speed ( ) by using the measured 

circumference of the front wheel and wheel revolutions recorded using a magnetic reed 

switch and magnet (Cateye 169-9772 and 169-9691). A three-axis accelerometer (Analog 

Devices ADXL335) and three single-axis angular rate gyros (Murata ENC-03M) measure 

the acceleration of the bicycle frame with a range and resolution of ±29.43 and 

0.067m/s
2
, respectively, and the angular velocity of the bicycle frame with a range and 

resolution of ±300 deg/s and 3.04 deg/s, respectively. From the measured accelerations 

and angular velocities, we calculate the bicycle roll rate ( ̇) as described in Chapter 4. 

We sample all signals at 1000 Hz except the steer angle, which is sampled at 200 Hz. 

 Motion capture system 5.3.3

A motion capture system (Optotrak 3020, Northern Digital Inc.) measures the positions 

of three markers rigidly attached to the headtube of the instrumented bicycle (Figure 5.3) 

at a sampling rate of 750 Hz. We apply a low-pass filter with a cut-off frequency of 10 

Hz to the position data. Using three markers allows us to calculate roll, pitch, and yaw of 

the bicycle frame relative to an inertial frame. For this study, only the roll angle is 

required. We calculate the roll angle of the bicycle per: 

        (
     
|   ⃗⃗⃗⃗  ⃗|

)     (5.1) 
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where    and    are the (vertical) z-coordinates of markers 2 and 3 relative to the inertial 

frame (Figure 5.4), respectively, |   ⃗⃗⃗⃗  ⃗| is the magnitude of the position vector from marker 

2 to marker 3, and    is the known angle that    ⃗⃗⃗⃗  ⃗ makes with the horizontal plane when 

the roll angle of the bicycle is zero. 

 
Figure 5.3. Three markers (1, 2, and 3) are attached to a rigid plate (black) which is fixed to the headtube of 

the bicycle. 

The camera system measures the position of the markers with a maximum RMS error of 

0.15mm. This RMS error in position translates to the maximum RMS error of 0.09 

degrees for the bicycle roll angle. 
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Figure 5.4. Relationship of the bicycle to the inertial frame. The inertial frame ),,( ZYX  is fixed to the 

force platform. The dashed line tangent to the rear wheel represents the roll axis of the bicycle. 

 Force platform mounted rollers 5.3.4

We chose to study bicycle riding on rollers to investigate the differences between cyclists 

and non-cyclists. As stated previously, rollers are a type of bicycle training tool that 

allows a rider to ride his/her bicycle indoors and with limited space. Rollers, which 

constrain the bicycle in the fore/aft direction but allow free lateral movement, require the 

rider to maintain balance of the bicycle. While riding on rollers, a rider must pedal and 

balance the bicycle, similar to riding outdoors. Rollers have existed since the late 1800’s; 

the earliest US Patent for rollers that we identified was issued in 1897 [116]. The 

dynamics of a bicycle on rollers are similar to that of a bicycle overground [117] with the 

following distinctions. The cylindrical surface of rollers introduces: 1) a different shape 

for the tire contact patch, 2) a geometric constraint between the front wheel and front 

roller as the bicycle steers and yaws, and 3) moments exerted on the rear wheel from the 

two rollers it contacts [117]. Because the bicycle is stationary in the fore/aft direction, 

X 

Y 
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riders do not experience the same visual cues riding rollers as they do when riding 

outdoors. 

Rollers offer distinct advantages for investigating human/bicycle dynamics. Most 

importantly, rollers allow one to study bicycle riding in a laboratory setting. 

Alternatively, one could also employ a treadmill as in [24, 114, 118]. However, rollers 

weigh less than a treadmill which is advantageous when also mounting to a force 

platform, which often places strict size limits on ground reactions. In addition, riding on 

rollers is a safer task than riding on a treadmill. On a treadmill, a rider must carefully 

maintain both fore/aft and lateral positions, whereas on rollers a rider only needs to 

maintain lateral position. Stopping riding on rollers poses none of the risks of stopping on 

a (moving) treadmill. Riding a bicycle on rollers is also more challenging than riding 

overground, and therefore may be particularly useful in eliciting differences between 

skilled riders (cyclists) and less skilled riders (non-cyclists). 

We designed and constructed custom rollers (Figure 5.5 and Figure 5.6) to be mounted on 

a force platform (OR6-5-2000, Advanced Mechanical Technology, Inc.). The custom 

rollers consist of commercially available drums and belt (Kreitler Challenger 4.5, 

Mountain Racing Products) and a frame built from aluminum T-slotted framing (15 

Series T-slotted aluminum and joining plates, 80/20 Inc.). The drums selected for the 

custom rollers are the largest diameter commercially available. We specifically chose 

these rollers because larger drums produce less rolling resistance (making it easier for 

subjects to pedal) and are easier to balance a bicycle on than smaller drums [119]. The 

construction of the frame allows the rollers to be mounted to a force platform (Figure 5.7) 

so that the ground reactions acting on the bicycle/rider/roller system can be measured. 
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Figure 5.5. The custom rollers. 

 
Figure 5.6. The custom rollers. 

 
Figure 5.7. The rollers are designed to be bolted to a force platform. Four brackets on the base of the rollers 

are used to secure the rollers to the force platform using four bolts. 
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Figure 5.8. The front roller can be adjusted to ensure that the bicycle is level (adjustment up and down) and 

to ensure that the roller contacts the front tire appropriately (adjustment fore and aft). 

 
Figure 5.9. A photograph of the instrumented bicycle on the custom rollers. Note that the bicycle is leaning 

against the wall to stay upright. 

The design of the custom rollers allows adjustment of both the horizontal and vertical 

position of the front roller (Figure 5.8), which allows the bicycle to be level (vertical 

adjustment) and to allow the front roller to contact the front wheel directly below the 



 

95 
 

front axle (horizontal adjustment). When a bicycle rolls overground, the ground contacts 

the front wheel directly below the front axle of the wheel. Adjusting the front roller 

appropriately ensures that controlling the bicycle on rollers is similar to riding 

overground.  

 Calculation of center of pressure and center of mass positions 5.3.5

We utilize the force and moment measurements from the force platform (OR6-5-2000, 

Advanced Mechanical Technology, Inc.) to calculate the bicycle/rider/roller center of 

pressure (COP) and center of mass (COM) locations in the lateral or y-direction. We 

sample all six channels from the force platform at 1000 Hz. After bolting the rollers to 

the force platform, we zero all signals. In addition, we also include about 10 seconds of 

data at the beginning of each trial so that offsets can be identified and removed during 

post-processing. We apply a low-pass filter with a cut-off frequency of 10 Hz to the 

measured forces and moments. 

The center of pressure is calculated as follows: 

      
 (       )

  
 (5.2) 

   

      
(       )

  
 (5.3) 

 

where      and      are the coordinates of the center of pressure,   ,   , and    are 

forces measured by the force platform,    and    are moments measured by the force 

platform, and    is the vertical distance from the origin of the force platform coordinate 

system to the plane representing the surface that the bicycle is riding on. The surface is 
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defined by a horizontal plane tangent to the top surface of front roller. Equations (5.2) 

and (5.3) assume that the force platform and rollers represent a single rigid body and that 

there is no couple applied about the x or y axis; creating a pure couple about the x or y 

axis would require attachment of the bicycle to the rollers. We only are interested in the 

lateral position of the center of pressure,      in the subsequent analysis 

To calculate the lateral position of the bicycle/rider center of mass (    ), we implement 

a zero-point-to-zero-point integration technique [120, 121] that is a proven for evaluating 

postural control [120, 122, 123]. Double integration of the bicycle/rider lateral 

acceleration (  ) yields displacement of the bicycle/rider center of mass; however, the 

initial constants of integration (initial velocity and initial position) are not known. The 

zero-point-to-zero-point integration method is based on the assumption that when the 

lateral force is zero (    ), the horizontal position of the gravity line and the center of 

pressure coincide (          ). By integrating from one zero point to another zero 

point, both the initial velocity and position can be determined. The zero-point-to-zero-

point integration technique is not the only method that can be used to estimate the center 

of mass displacement using force platform measurements; other methods utilize dynamic 

models of the balancing system and specific filtering techniques [124-127]. 

Using force platform data to estimate the center of mass position (kinetics-based method) 

has several advantages over using a motion capture data (kinematic-based method). 

Kinematic-based methods rely on modeling the human body with a number of rigid body 

segments. By estimating the mass properties of each segment, usually using 

anthropometric data [128], the position of the total-body center of mass can be calculated 

if the location and orientation of each segment is known [113, 129]. Kinematic-based 
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methods require the use of many markers so that the location and orientation of each 

body segment can be measured accurately as well as a sufficient number of cameras to 

continuously track all markers. In addition, kinematic-based methods are more sensitive 

than kinetics-based methods to inaccuracies in body segment parameters, especially in 

regard to segment lengths and head-arms-trunk parameters [123]. By choosing a kinetics-

based method to calculate center of mass displacement, we avoid inaccuracies due to 

errors in estimated body segment properties and, in addition, simplify the experimental 

setup.  

To our knowledge, the zero-point-to-zero-point integration technique has not been 

applied to study center of mass location during cycling. Therefore, we conducted four 

trials in which we compared the lateral location of the center of mass calculated from 

force platform data using the zero-point-to-zero-point integration technique (      ) 

with that calculated using extensive motion capture data (      ). The kinematic 

method utilizes a 14-segment model to estimate the total body center of mass [113]. The 

motion capture system tracks markers attached to each body segment and markers 

attached to the bicycle frame. Using the known location of the bicycle center of mass 

relative to the bicycle mounted markers (Appendix A) and assumed mass fractions for 

each body segment [113], we calculate the center of mass location for the bicycle/rider 

system. 

Similar to [120] and [122], we compared the center of mass location estimated using 

kinematic data (      ) to that estimated using kinetic data (      ) by calculating: the 

standard deviation (or root mean square) of each estimate [120], the standard deviation 

(or root mean square) of the difference between the estimates [120, 122], and the    
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correlation between the estimates [120]. In addition, we also calculated the slope of the 

least squares linear fit of        to       . In an attempt to quantify the accuracy of the 

kinematic method estimate of the center of mass location, we numerically differentiated 

the center of mass lateral position twice to obtain the lateral acceleration of the center of 

mass ( ̈     ) and compared the result to the lateral acceleration calculated from the 

force platform data ( ̈     , measured lateral force divided by the mass of the 

bicycle/rider system). Similar to the center of mass comparisons, we compared the 

signals by calculating the    correlation and the slope of the least squares linear fit of 

 ̈      to  ̈     . Table 5.1 summarizes the results of these comparisons. 

Table 5.1. Comparison of kinematic-based and kinetics-based estimates of center of mass location and 

acceleration. 

trial 
stdev 

(yCOMmc) 

stdev 

(yCOMfp) 

stdev 

(yCOMmc - yCOMfp) 

R2  

(yCOMmc, yCOMfp) 

slope 

(yCOMmc,yCOMfp) 

R2 

(ÿCOMfp,ÿCOMmc) 

slope 

(ÿCOMfp,ÿCOMmc) 

1 16.8 mm 26.2 mm 13.0 mm 0.825 1.41 0.387 0.36 

2 17.0 mm 24.7 mm 10.5 mm 0.881 1.37 0.461 0.45 

3 22.3 mm 31.5 mm 11.9 mm 0.921 1.36 0.574 0.66 

4 18.1 mm 26.1 mm 10.2 mm 0.917 1.38 0.705 0.60 

 

Similar to the findings of [120], we find that        is highly correlated to       . In 

[120], the authors report cross-correlations ( ) between the kinetics-based method to the 

kinematic-based method ranging from 0.79 to 0.96, which translate into    correlation 

values between 0.62 and 0.92. Therefore, the cross-correlation results indicate that 

utilizing the zero-point-to-zero-point integration technique for bicycle riding seems to be 

as good if not better than using the technique for postural analysis. As evidenced by the 

standard deviations of        and        and the slope of the linear fit of        to 

      , the kinetics-based approach results in estimates of      approximately 40% 

greater than the kinematic-based approach, with an RMS difference of about 11mm; 
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these results suggest that perhaps using the zero-point-to-zero-point integration technique 

introduces some error due to the assumption that        is equal to      when the lateral 

force is zero. However, there is a low correlation of  ̈      to  ̈      and  ̈      is 

approximately 50% less than  ̈     ; these results suggest that using a kinematic-based 

approach may also be inaccurate. One explanation is that modeling the bicycle/rider as a 

system of rigid links does not allow small but important motions to be measured 

accurately during bicycle riding, which results in errors in       . Using a kinematic-

based approach may be inaccurate in arriving at the acceleration of the mass center due to 

errors introduced in successive differentiations. For our application, we believe the 

kinetics-based method is superior because it is not sensitive to errors in marker 

placement, errors in modeling the body, and errors in body segment parameters. 

 Rider lean angle and rider lean rate 5.3.6

In addition to the prior measurements and calculations, we also calculate a rider lean 

angle (     ) and rider lean rate ( ̇    ). We define the rider lean angle (Figure 5.10) as: 

              (5.4) 

 

where   is the bicycle roll angle and      is the angle formed by the line connecting the 

center of pressure (    ) and the center of mass (    ) with vertical; see Figure 5.10. 

The rider lean angle quantifies how a rider is shifting his/her center of mass relative to the 

bicycle. Note that a rider lean angle can be created in many ways, including: leaning the 

upper body, shifting laterally on the bicycle saddle, knee movements, arm movements, 

and head movements. We use the term “rider lean angle” for simplicity, as all of these 
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motions can have the effect of moving a rider’s center of mass outside of the plane of the 

bicycle frame. The center of mass roll angle,     , is computed via 

         
  (

         
   

) (5.5) 

 

where      is the lateral position of the center of pressure,     is the lateral position of 

the center of mass, and    is the location of the bicycle/rider center of mass in the z-

direction when the bicycle and rider are upright, as described and as measured in 

Appendix A and [82]. The rider lean rate ( ̇    ) is calculated from the rider lean angle 

(     ) via numerical differentiation. 

 
Figure 5.10. Rider lean as viewed from behind the bicycle/rider. The rider lean angle quantifies how a rider 

is shifting his/her center of mass relative to the bicycle. The arrows define the positive sense of all angles. 

Rider lean )( lean  is defined as the center of mass roll angle )( COM  minus the bicycle roll angle )( . 

For the example illustrated, the rider lean angle is negative. 
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 Selection of data for analysis 5.3.7

As discussed in Section 5.3.1, each subject rode continuously for at least 30 seconds in 

each trial. To identify periods of continuous riding, we examined plots of: vertical force 

measured by the force platform (  ), steer torque (  ), and bicycle speed ( ). We use 

bicycle speed to identify when a subject is pedaling. Inspection of the vertical force 

reveals when a subject is supported by the railing or platform (decrease in vertical force). 

Examination of the steer torque also identifies periods that a subject uses the railing for 

support (oscillations decrease, non-zero offset). After identifying a period of continuous 

riding, we use only the last 30 seconds of each period for analysis. 

 Statistics 5.3.8

In order to quantify rider skill, we looked at the standard deviations of signals, cross-

correlations between signals, and linear relationships between cross-correlated signals. 

Normalized cross-correlations [15] are calculated using the xcorr function in the 

MATLAB Signal Processing Toolbox. For a given pair of signals, we square the peak 

value of the normalized cross-correlation to yield the peak coefficient of determination, 

or    value, between the two signals. The    value provides a measure of the similarity 

between the pair of signals. The time shift between two signals required to produce the 

peak    value provides a measure of the lag or delay before a change in one signal is 

correlated to a change in the other signal. Using the time shift for peak correlation 

between a pair of signals, we calculate the linear least-squares fit. The slope of the linear 

fit can be thought of as a simple gain between signals. We use the following notation for 

these quantities: 
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 standard deviation of a signal: stdev(signal) 

 peak value of the normalized cross-correlation of signal 2 to signal 1:   (signal 1, 

signal 2) 

 time shift of signal 2 to signal 1: lag(signal 1, signal 2) 

 slope of linear least-squares fit of signal 2 to signal 1: slope(signal 1, signal 2) 

 

We performed our statistical analyses using an alpha level of 5% (      ). We use 

mixed linear models [109] (allowing us to account for repeated measures and unequal 

variances) implemented using a statistics software package (IBM SPSS Statistics) to test 

for significant effects. We assume an auto regressive covariance model with an order of 

one and performed our statistical analyses using an alpha level of 5% (      ). The 

models include effects of rider type (cyclist or non-cyclist), speed, and the interaction of 

rider type with speed. This approach yields two linear fits (one for each rider type) for 

each dependent variable. Including the effect of rider type allows each fit to have a 

different y-intercept, and including the rider type/speed interaction allows each fit to have 

a different slope. Therefore, significant effects of either rider type or the rider type/speed 

interaction indicate significant differences between cyclists and non-cyclists.  

5.4 Results and Discussion 

We present the experimental results in Figure 5.11 through Figure 5.23; statistical results 

are summarized in Table 5.2. We begin by examining the relationship of the center of 

mass to the center of pressure and then investigate the types of control used by riders. 
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After presenting these results, we discuss the differences between cyclists and non-

cyclists. 

Table 5.2. Summary of statistical tests. Significant effects are denoted with an asterisk (*). 

Dependent Variable 

Effects 

rider type speed rider type*speed 

F p F p F p 

     ( ) 13.904 *0.001 114.264 *< 0.001 2.316 0.136 

     ( ̇) 15.121 *< 0.001 32.223 *< 0.001 0.728 0.397 

     (  ) 24.866 *< 0.001 10.870 *0.002 2.439 0.124 

     ( ) 12.081 *0.001 0.650 0.800 0.813 0.372 

     ( ̇) 5.304 *0.027 31.998 *< 0.001 7.753 *0.007 

     (     ) 19.643 *< 0.001 4.885 *0.031 0.750 0.390 

     (    ) 3.106 0.086 9.013 *0.004 7.402 *0.009 

     (    ) 3.695 0.059 25.294 *< 0.001 0.037 0.848 

     (    ) 2.483 0.120 29.458 *< 0.001 0.627 0.431 

  (   ) 1.501 0.228 214.928 *< 0.001 10.951 *0.002 

   (   ) 0.036 0.851 30.815 *< 0.001 3.617 0.063 

     (   ) 0.632 0.432 167.203 *< 0.001 1.481 0.230 

  ( ̇  ̇) 0.411 0.526 34.307 *< 0.001 4.650 *0.035 

   ( ̇  ̇) 0.799 0.377 10.357 *0.002 1.624 0.208 

     ( ̇  ̇) 0.673 0.417 142.123 *< 0.001 1.269 0.266 

  (       ) 0.182 0.672 32.948 *< 0.001 17.639 *< 0.001 

   (       ) 0.015 0.902 7.973 *0.006 6.981 *0.010 

     (       ) 0.017 0.896 19.220 *< 0.001 13.865 *< 0.001 

  ( ̇  ̇    ) 0.863 0.359 1.336 0.252 5.211 *0.026 

   ( ̇  ̇    ) 2.457 0.125 0.069 0.793 0.969 0.330 

     ( ̇  ̇    ) 0.852 0.362 43.120 *< 0.001 12.613 *0.001 

  (         ) 0.041 0.841 29.113 *< 0.001 14.843 *< 0.001 

     (         ) 0.000 0.998 11.352 *0.001 11.263 *0.001 

average positive steering power 19.213 *< 0.001 10.547 *0.002 1.743 0.194 

normalized average positive steering power 25.108 *< 0.001 51.694 *< 0.001 10.612 *0.002 

 

 Relationship between the center of mass and center of pressure 5.4.1

For a perfectly balanced bicycle/rider traveling in a straight line, we would expect      

to exactly equal     . However during actual bicycle riding, similar to human standing, 

     will not always be exactly equal to     . Instead, we expect that the center of mass 



 

104 
 

will track the center of pressure. Figure 5.11 illustrates, using a representative trial, that 

the center of mass does indeed track the center of pressure during bicycle riding. 

 
Figure 5.11. Lateral (y) center of pressure location and center of mass location versus time. Data from a 

representative trial (non-cyclist,    7.46 m/s) demonstrates the lateral center of mass location closely 

tracks the lateral center of pressure location during bicycle riding. 

We quantify balance performance by calculating the cross-correlation (  ) and the slope 

of the linear least-squares fit of the center of mass location (    ) to the center of 

pressure location (    ). For a perfectly balanced bicycle, both    and the slope would 

be equal to one (1.0). For actual bicycle riding, the values are less than one. Figure 5.12 

and Figure 5.13 illustrate these findings.  
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Figure 5.12. Cross-correlation of the lateral position of the center of mass to the center of pressure versus 

speed. The cross-correlation decreases significantly with increasing speed (F = 29.113, p < 0.001) and 

decreases significantly more with increasing speed for non-cyclists than cyclists (F = 14.843, p < 0.001). 

As expected, the lateral positions of the center of mass and center of pressure are highly 

correlated during bicycle riding (Figure 5.12). Our data do not indicate a significant 

effect of rider type (F = 0.041, p = 0.841; see Table 5.2), but do show significant effects 

for both speed (F = 29.113, p < 0.001) and the rider type/speed interaction (F = 14.843, p 

< 0.001). All riders demonstrate high correlation at low speeds. As speed increases, 

cyclists maintain higher correlation than non-cyclists. Also as expected, the slope of the 

linear fit of      to      is close to one during bicycle riding (Figure 5.13). Similar to 

the   (         ) results, the slope does not exhibit a significant effect of rider type (F 

= 0.000, p = 0.998) but there are significant effects of both speed (F = 11.342, p = 0.001) 

and the rider type/speed interaction (F = 11.263, p = 0.001). Again, cyclists and non-

cyclists have slopes close to one at low speeds but the slopes for the non-cyclists 

diminish significantly at increased speeds. Our findings suggest that riders with higher 
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skill (cyclists) maintain a higher correlation between lateral center of mass and center of 

pressure positions than less-skilled riders (non-cyclists) across all speeds. 

 
Figure 5.13. Slope of the linear fit of the lateral position of the center of mass to the center of pressure 

versus speed. The slope decreases significantly with increasing speed (F = 11.352, p = 0.001) and decreases 

significantly more for non-cyclists than cyclists (F = 11.263, p = 0.001). 

 Steering 5.4.2

Bicycle riders utilize two primary control inputs to maintain balance during riding: 

steering and leaning. Here we investigate how cyclists and non-cyclists utilize steering. 

Subsequently, we turn attention to rider lean; see Section 5.4.3. As expected, we observe 

that the steer angle (or steer rate) lags and is correlated to the bicycle roll angle (or roll 

rate) during riding (Figure 5.14). Similar to the methods used in Chapter 4, we quantify 

steer control by calculating the cross-correlations between steer angles/rates and bicycle 

roll angles/rates and the slopes of the linear fits of steer angles/rates to bicycle roll 

angles/rates. 
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Figure 5.14. Bicycle roll rate and steer rate versus time. Data from a representative trial (non-cyclist, v

7.96 m/s) demonstrates that the steer rate ( ) lags and is correlated to the bicycle roll rate ( ) during 

riding. 

All riders demonstrate significant correlation between steer angle and bicycle roll angle 

and also steer rate and bicycle roll rate; Figure 5.15 illustrates the results for the cross-

correlation of steer rate to bicycle roll rate. The cross-correlation of steer rate to bicycle 

roll rate (Figure 5.15) decreases significantly with increasing speed (F = 34.307, p < 

0.001) and decreases significantly more with increasing speed for cyclists than non-

cyclists (F = 4.650, p = 0.035). The cross-correlation of steer angle to bicycle roll angle 

results (Table 5.2) are similar to the results for angular rates; the cross-correlation 

decreases significantly with increasing speed (F = 214.928, p < 0.001) and decreases 

significantly more for cyclists than non-cyclists (F = 10.951, p = 0.002). The peak cross-

correlations between steer and bicycle roll rates for the riders in this study are somewhat 

less than those exhibited by riders who just learned to ride a bicycle (Chapter 4). There 

are no significant differences between cyclists and non-cyclists in the slope of the linear 
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least-squares fits of either steer angle to bicycle roll angle or steer rate to bicycle roll rate 

(Figure 5.16)—only speed has a significant effect (Table 5.2). The results suggest that 

cyclists and non-cyclists use steering similarly to control the bicycle when riding at low 

speeds, but then employ different control strategies at higher speeds. 

 
Figure 5.15. Cross-correlation of steer rate to bicycle roll rate versus speed. The cross-correlation decreases 

significantly with increasing speed (F = 34.307, p < 0.001) and decreases significantly more with 

increasing speed for cyclists than non-cyclists (F = 4.650, p = 0.035). 
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Figure 5.16. Slope of the linear least-squares fit of steer rate to bicycle roll rate versus speed. The slope 

decreases significantly with increasing speed (F = 142.123, p < 0.001). There are no significant differences 

between cyclists and non-cyclists. 

To quantify the steering effort, we calculated the standard deviations of the steer angle 

(Figure 5.17) and steer rate (Table 5.2) and average positive steering power (Figure 5.18). 

The standard deviations of the steer angle and steer rate and the average positive steering 

power decrease significantly with increasing speed for all riders (Table 5.2). These results 

are consistent with subject comments that riding at higher speeds seems easier than riding 

at lower speeds—lower speeds require more steering effort, as measured by both the 

variation of the steer angle and the amount of positive power that a rider must produce for 

steering. Our finding that increased speed results in decreased standard deviation of steer 

angle is consistent with the results of Moore et al. [114], who found that the variation of 

the steer angle decreases with increasing speed for a bicycle ridden on a treadmill. 

Cyclists exhibit less variation of steer angle (F = 13.904, p = 0.001), less variation of 

steer rate (F = 15.121, p < 0.001), and less positive steering power (F = 19.213, p < 
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0.001) than non-cyclists. The higher skill level of the cyclists enables less steering effort 

to maintain balance of the bicycle during riding. 

 
Figure 5.17. Standard deviation of steer angle versus speed. The standard deviation of steer angle decreases 

significantly with increasing speed (F = 114.264, p < 0.001). Cyclists exhibit significantly less steer angle 

variation than non-cyclists (F = 13.904, p < 0.001). 
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Figure 5.18. Average positive steering power versus speed. All riders produce less positive power to steer 

the bicycle as speed increases (F = 10.547, p = 0.002). Cyclists produce less positive power than non-

cyclists (F = 19.213, p < 0.001). 

 Rider lean 5.4.3

We observed that riders utilize body movements to shift the center of mass of the 

bicycle/rider system outside of the plane of the bicycle frame and use the term “rider 

lean” to describe the effect of these movements. Refer to Figure 5.10 for definitions of 

rider lean and bicycle roll angles. During riding, rider lean is correlated with and opposite 

to the bicycle roll angle, as shown in Figure 5.19. For example, when the bicycle rolls to 

the left, the rider leans to the right. By leaning to the right, the rider shifts the lateral 

position of the center of mass of the bicycle/rider closer to the lateral position of the 

center of pressure. Rider lean is exaggerated and most easily observed when watching a 

professional road cyclist climb out of the saddle or a BMX racer sprinting—the rider’s 

body remains primarily above the tire contact patch (i.e. center of pressure) as the bicycle 

rocks back and forth beneath the rider. If rider lean (     ) is equal and opposite of the 
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bicycle roll angle ( ), then the lateral position of the center of mass (    ) will be equal 

to the lateral position of the center of pressure and the center of mass roll angle (    ) 

will be equal to zero. If a rider is riding such that      is always equal to      while the 

bicycle is rolling, then the cross-correlation (Figure 5.20) and magnitude of the slope of 

the linear least-squares fit (Figure 5.21) of       to   will be equal to one (1.0). 

 
Figure 5.19. Bicycle roll angle and rider lean angle versus time. Data from a representative trial (cyclist, 

v 2.526 m/s) demonstrates that rider lean ( lean ) is highly correlated with and opposite to the bicycle roll 

angle ( ). Refer to Figure 5.10 for definitions of lean  and  . 

We quantify rider lean control by calculating the cross-correlations and linear fits of rider 

lean angle/rate to bicycle roll angle/rate. The cross-correlation of the rider lean angle to 

the bicycle roll angle (Figure 5.20) decreases with increasing speed for all riders (F = 

32.948, p < 0.001) and decreases more for non-cyclists than cyclists (F = 17.639, p < 

0.001). Similarly, the cross-correlation of rider lean rate to bicycle roll rate decreases 

more with increasing speed for non-cyclists than cyclists (F = 5.211, p = 0.026). As 

expected, rider lean is opposite to bicycle roll, as evidenced by the negative slopes of the 
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linear fits of rider lean angle to bicycle roll angle (Figure 5.21). Both the slopes of the fits 

of rider lean to bicycle roll and rider lean rate to bicycle roll rate decrease in magnitude 

with increasing speed and decrease in magnitude more for non-cyclists than cyclists 

(Table 5.2). Like the findings for steer control, these results suggest that cyclists and non-

cyclists use similar rider lean strategies at low speeds, but use different strategies at 

higher speeds. 

 
Figure 5.20. Cross-correlation of rider lean angle to bicycle roll angle versus speed. The cross-correlation 

decreases significantly with increasing speed (F = 32.948, p < 0.001) and decreases significantly more with 

increasing speed for non-cyclists than cyclists (F = 17.639, p < 0.001). 
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Figure 5.21. Slope of the linear least-squares fit of rider lean angle to bicycle roll angle versus speed. The 

magnitude of the slope decreases significantly with increasing speed (F = 19.220, p < 0.001) and decreases 

significantly more with increasing speed for non-cyclists than cyclists (F = 13.865, p < 0.001). 

In order to gauge rider lean effort, we report the standard deviation of the rider lean angle 

as a function of speed in Figure 5.22. Cyclists use less rider lean than non-cyclists (F = 

19.643, p < 0.001) and riders use less rider lean as speed increases (F = 4.885, p = 0.031). 

The results suggest that all riders use less lean effort at higher speeds and that skilled 

riders (i.e. cyclists) use less lean effort overall to maintain balance. 
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Figure 5.22. Standard deviation of rider lean angle versus speed. Cyclists exhibit significantly less rider 

lean than non-cyclists (F = 19.643, p < 0.001). 

 Differences between cyclists and non-cyclists 5.4.4

The above results for cyclists and non-cyclists are most similar at low speeds, but diverge 

as speed increased. At low speeds, all subjects commented that it is more difficult to 

maintain balance of the bicycle and to avoid riding off of the rollers. Therefore, it is 

likely that all riders had to attain similarly high levels of balance performance at the 

lowest speeds. At higher speeds, all subjects noted that riding on the rollers was easier. 

Therefore, it is possible for a rider to relax his/her balance performance at higher speeds 

while still maintaining balance of the bicycle on the rollers. We believe that the best 

measure of balance performance is the cross-correlation of the lateral center of mass 

location (    ) to the lateral center of pressure location (    ). At low speeds, 

  (         ) is similar between cyclists and non-cyclists, whereas at higher speeds 

  (         ) is significantly less for non-cyclists. 
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To achieve high balance performance, cyclists use a different control strategy than non-

cyclists. We quantified two types of control strategies, steering and rider lean, by 

investigating the correlation of steer angle/rate and rider lean angle/rate to bicycle roll 

angle/rate. Compared to non-cyclists, cyclists utilize greater rider lean than steering to 

maintain balance, especially at higher speeds. Greater rider lean control decreases the 

need for additional steer control required to maintain balance. This conclusion is 

supported by the above observation that cyclists achieve higher balance performance than 

non-cyclists despite exhibiting lower cross-correlation between steer and bicycle roll 

rates. In Chapter 4, we hypothesized that some children were able to ride a bicycle with a 

lower cross-correlation between steer and bicycle roll rates than other children because 

they were utilizing rider lean to control balance in addition to steering; the results of this 

study support that hypothesis. 

To assess the relative importance of steer versus lean control on balance performance, we 

used a mixed linear model to address whether any measures of control (i.e. cross-

correlations) predict the cross-correlation of      to     , the adopted measure of 

balance performance. Again we used an alpha level of 5% and an auto regressive 

covariance model with order of one. The dependent variable was   (         ) and the 

effects were   (   ),   ( ̇  ̇),   (       ), and   ( ̇  ̇    ). Of the tested effects, 

only   (       ), the cross-correlation of rider lean to the bicycle roll angle, was a 

significant predictor of balance performance (F = 84.768, p < 0.001). Therefore, we 

conclude that rider lean is the dominant control strategy for balance performance for 

riding on rollers. The above results demonstrate that cyclists exploit rider lean control 

significantly more than non-cyclists to achieve higher balance performance.  
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In addition to achieving higher balance performance, cyclists also employ significantly 

less overall balance control effort than non-cyclists. Cyclists and non-cyclists show 

similar variation in the lateral position of the center of pressure during riding (Figure 

5.23). Thus, cyclists are not simply riding a significantly straighter path than non-cyclists. 

The similar movements of the center of pressure for cyclists and non-cyclists confirm that 

both groups respond to essentially the same balancing task. In other words, not only do 

cyclists use less effort to maintain balance, they use less effort despite facing the same 

balancing task as non-cyclists. 

 
Figure 5.23. Standard deviation of the lateral position of the center of pressure versus speed. The standard 

deviation of the lateral position of the center of pressure decreases significantly with increasing speed (F = 

25.294, p < 0.001). Although it may appear that cyclists exhibit less variation in the center of pressure 

position than non-cyclists, there was not a significant difference between the two groups (F = 3.695, p = 

0.059). 

We have identified several metrics that distinguish rider skill in balancing, and hence 

stabilizing, a bicycle. Skilled riders exhibit higher correlation between the lateral 

positions of the center of mass and center of pressure, consistently use more rider lean 
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than less skilled riders, and use significantly less effort than less skilled riders. While 

dynamic models of bicycles, such as the Whipple model [3], successfully predict the 

stability of an uncontrolled bicycle [12], they ignore the above stabilizing actions of the 

human rider. Metrics that define rider skill (such as those above) could become useful for 

understanding how bicycle design can influence rider balance performance. For example, 

any bicycle designed to help riders maintain balance at low speeds should increase the 

cross-correlation between the lateral positions of the center of pressure and center of 

mass. Metrics of balance performance could also serve to evaluate the effectiveness of 

bicycle training programs. For example, riders with initially poor balancing skills could 

undergo a training program (perhaps riding a bicycle on training rollers, as shown in 

Figure 5.1) to help improve their skills. By quantifying differences between skilled and 

novice riders, we have provided researchers and practitioners with tools to objectively 

measure the effects of different bicycle designs on real-life bicycle riding. 

5.5 Conclusion 

We measured the dynamics of human bicycle riding as 14 subjects rode an instrumented 

bicycle on training rollers mounted on a force platform and at speeds ranging from 

approximately 1.3 to 7.2 m/s. Of the 14 riders, we classified 7 as cyclists (skilled riders) 

and 7 and non-cyclists (novice riders). The instrumented bicycle measured steer 

angle/rate, steer torque, bicycle speed, and bicycle roll rate and also enabled the 

calculation of steering power. A motion capture system enabled the measurement of the 

roll angle of the bicycle. A force plate beneath the roller assembly measured the net force 

and moment that the bicycle/rider/rollers exerted on the floor, which also enabled 

calculation of the lateral position of the bicycle/rider center of mass and center of 
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pressure. We found that the cross-correlation of the lateral position of the center of mass 

to the lateral position of the center of pressure quantifies balance performance, the cross-

correlation of steer angle/rate to bicycle roll angle/rate quantifies steer control, and the 

cross-correlation of rider lean angle to the bicycle roll angle quantifies rider lean control. 

All riders achieved similar balance performance at the lowest speed while utilizing 

similar control strategies. However at higher speeds, skilled riders (cyclists) achieved 

greater balance performance by employing more rider lean control and less steer control 

compared to novice riders (non-cyclists). In addition, skilled riders used less steer control 

effort (measured by average positive steering power and standard deviations of steer 

angle and rate) and less rider lean control effort (measured by the standard deviation of 

the rider lean angle) regardless of speed. The reduction in balance effort for skilled riders 

is not due to any reduced demands for balance. The metrics introduced herein could also 

quantify balance performance of the bicycle/rider system in broad contexts including 1) 

the analysis of bicycle designs, 2) the performance of assistive technologies, and 3) the 

assessment of training programs. 
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CHAPTER 6:  SUMMARY AND CONTRIBUTIONS 

The overall goal of this dissertation was to advance our understanding of how human 

riders control bicycles, the types of control that humans utilize to balance and steer 

bicycles, and the skills that distinguish human riders of different ability levels. In order to 

achieve this goal, we pursued the following four specific aims: 

1. Design and build an instrumented bicycle that is capable of measuring the 

primary human control inputs (steer torque and rider lean) and fundamental 

bicycle kinematics. 

2. Investigate human/bicycle dynamics and control during steady-state turning 

using experimental and analytical approaches. 

3. Quantify the changes that occur as learners transition from non-riders to 

riders. 

4. Quantify the differences between skilled and novice riders when balancing a 

bicycle. 

Below, we discuss each specific aim by providing a brief summary, listing the main 

contributions and conclusions, and then discussing some limitations. Major overarching 

conclusions drawn from all four studies follow this discussion. 

6.1 Summary, contributions, and conclusions of each study 

Specific Aim 1: Design and build an instrumented bicycle that is capable of 

measuring the primary human control inputs and fundamental bicycle kinematics 
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(Chapter 2). Developing and building an instrumented bicycle was critical to the 

completion of this dissertation. In particular, it was important to have a bicycle and 

measurement techniques that could be used outside the confines a laboratory. Our 

instrumented bicycle measures steer angle, steer torque, angular velocity of the bicycle 

frame, acceleration of the bicycle frame, and bicycle speed. Through numerical 

differentiation, we obtain steering angular velocity or rate. Multiplication of measured 

steering torque by steering rate yields steering power, which quantifies rider steering 

effort. During steady-state turning, measurements of the acceleration of the bicycle frame 

and the bicycle speed provide an estimate of the bicycle roll angle, which further enables 

computation of rider lean angle. The battery-powered sensors and on-board data 

acquisition computer are self-contained, which allows the instrumented bicycle to be used 

in non-laboratory environments. Additionally, the design does not require any 

attachments or special interfaces with the rider. The rider is unconstrained and therefore 

free to employ the very same natural movements and control for riding any bicycle. 

Specific Aim 1: Major contributions 

 Designed and constructed a novel instrumented bicycle, which places no 

constraints on rider movement and can be used outside of laboratory 

environments 

Specific Aim 1: Major conclusions 

 The instrumented bicycle directly measures a primary human control input (steer 

torque) and fundamental bicycle kinematics (steer angle, roll rate, and bicycle 

speed) 
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 Additional measures of human/bicycle dynamics are calculated from the 

measured data including the second primary human control input (rider lean) in 

addition to other kinematic measures (steering angular rate, steering power, 

bicycle roll angle) 

The instrumented bicycle is limited in that it measures rider lean and bicycle roll angles 

during steady-state turning, not during arbitrary or straight line riding. Conducting riding 

tests in a laboratory equipped with a motion capture system allowed us to overcome these 

limitations quite easily (Chapter 5); however, there are some elegant solutions that would 

allow us to measure the rider lean and bicycle roll angles outside of a laboratory 

environment. A simple trailer can be used to measure the roll angle of the bicycle [130]; 

and both [31] and [45] present simple and inexpensive methods to estimate rider lean 

angle using potentiometers. While the trailer would be straight forward to implement, the 

proposed methods to measure rider lean angle introduce limitations. Both methods 

require a rod to be secured to the rider and only consider rider lean developed from lateral 

flexion of the trunk. As demonstrated in [114] and [24], riders use many motions besides 

lateral flexion of the trunk to generate what we define as rider lean (lateral shifting of 

rider mass center). Therefore, measurements of only lateral flexion of the trunk would 

fail to capture many of the motions that we believe are important for maintaining balance 

of a bicycle. An extreme approach is to eliminate all rider motion expect for steering 

[118, 130].This approach includes using a body orthosis to prevent trunk movement, 

eliminating the task of pedaling by using an electric motor to power the bicycle, and 

securing the rider’s feet and knees to the bicycle frame to eliminate all leg movement. 

Depending on the research question, eliminating all rider motions except steering may be 
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justified. However, our research goal was to understand the natural control humans 

employ while riding a bicycle and therefore it was imperative to maintain all control 

degrees of freedom.  

Specific Aim 2: Investigate human/bicycle dynamics and control during steady-state 

turning using experimental and analytical approaches (Chapter 3). The steady-state 

turning of a bicycle arises when the bicycle/rider system negotiates a constant radius turn 

with constant speed and roll angle. We explored steady-state turning by employing the 

instrumented bicycle to measure steering torque, steering angle, and bicycle speed, 

acceleration, and angular velocity. We used a model for steady-state turning, based on the 

Whipple bicycle model [2, 3], to interpret our results. 

Our experimental and analytical investigation of steady-state turning served several 

purposes. Consideration of the bicycle/rider system during steady-state turning was our 

starting point for understanding basic bicycle/rider dynamics and control. Steady-state 

turn testing allowed us to tightly control bicycle speed, turn radius, and rider lean to 

assess the effects of these variables on bicycle kinematics (roll and steer angles) and what 

has been considered the primary human input to the bicycle (steering torque). 

Additionally, because we used a steady-state formulation of the Whipple bicycle model 

to interpret our results, we were able to extend the utility of this commonly used model 

for predicting the dynamics of human bicycle riding. 

In Chapter 3, we reported data obtained from 134 trials using two subjects executing 

steady turns defined by nine different radii, three speeds, and three rider lean conditions. 

A model for steady-state turning is used to interpret the experimental results. Overall, the 
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model explains 95.6% of the variability in the estimated bicycle roll angle, 99.4% of the 

variability in the measured steering angle, and 6.5% of the variability in the measured 

steering torque. However, the model explains 56.6% of the variability in steering torque 

for the subset of trials without exaggerated rider lean relative to the bicycle frame. Thus, 

the model, which assumes a rigid and non-leaning rider, reasonably predicts bicycle/rider 

roll and steering angles for all rider lean conditions and steering torque without 

exaggerated rider lean. The findings demonstrate that lateral shifting of the bicycle/rider 

center of mass strongly influences the steering torque, suggesting that rider lean plays an 

important role in bicycle control during steady-state turning. By contrast, the required 

steering angle is largely insensitive to rider lean, suggesting that the steering angle serves 

as a superior cue for bicycle control relative to steering torque. 

Specific Aim 2: Major contributions 

 Provided novel experimental data for steady-state turning that includes steer 

torque, steer angle, and roll angle over a wide range of turn radii, bicycle speeds, 

and rider lean conditions 

 Adapted the Whipple bicycle model for steady-state turning. 

Specific Aim 2: Major conclusions 

 The model, which assumes a rigid and non-leaning rider, successfully predicts 

bicycle kinematics (roll and steer angles) for all rider lean conditions 

 The model only reasonably predicts steering torque for normal riding (no 

exaggerated rider lean) 
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 Lateral shifting of the bicycle/rider center of mass (i.e. rider lean) strongly 

influences steering torque, suggesting that rider lean plays an important role in 

bicycle control during steady-state turning 

 The required steering angle for a given turn radius is largely insensitive to rider 

lean, suggesting that steering angle is a better cue for bicycle control than steering 

torque 

The steady-state turning study has the following limitations. First, we chose to compare 

the experimental data to a steady-state turning model based on the Whipple bicycle 

model. The primary shortcoming of this model is that it ignores rider lean. Nevertheless, 

we chose the Whipple model due to its wide use in bicycle research. As a result, our 

results also provide other researchers with data to evaluate the limitations of the Whipple 

model for understanding human bicycle riding. In an earlier study [81], we introduced an 

alternative, simplified steady-state turning model that explicitly incorporates rider lean. 

This model yields more accurate predictions of steering torque than the steady-state 

turning version of the Whipple model. The study is also limited because it only considers 

two riders and one bicycle design. A more complete study would assess several bicycle 

designs and riders. Different bicycle designs could arise from simply turning the fork 

backwards, installing different front wheels, and adding weight to different places on the 

bicycle to affect the mass distribution and inertia. 

Specific Aim 3: Quantify the changes that occur as learners transition from non-

riders to riders (Chapter 4). Riding a bicycle is a skill that many people learn quite 

easily as reflected in the common assertion, “it’s as easy as riding a bike.” However, 

there is little scientific understanding about how we learn to ride and balance a bicycle. 
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The objective of the study detailed in Chapter 4 was to quantify how human subjects 

learn to ride a bicycle by tracking key kinematic changes in bicycle roll and steer 

dynamics during the learning process. The subjects for this study were children who 

participated in a specialized bicycle training camp called Lose the Training Wheels; refer 

to www.losethetrainingwheels.org. Children enter this camp having no ability to ride a 

bicycle and either acquire that ability or make significant progress towards that goal by 

the end of the week-long camp [46, 106]. Therefore, this camp provides an ideal setting 

for tracking the changes that arise as a child transitions from a non-rider to a rider. A 

previous analysis of pilot data [107] helped develop our hypotheses and methods. We 

hypothesized that the measured bicycle steer and roll angular velocities would become 

significantly correlated as a successful subject progressed through training. In addition, 

we hypothesized that the average bicycle speed, the standard deviation of the roll angular 

velocity, and the standard deviation of the steer angular velocity would all increase with 

training. 

We measured the fundamental bicycle kinematics of novice riders with disabilities during 

the specialized bicycle training camp to unravel how they learn to ride traditional 

bicycles. Of the 15 subjects, 11 successfully rode a traditional bicycle without assistance 

by the end of the camp. Three wireless IMUs revealed the bicycle roll rate, steer rate, and 

speed during the learning process. The peak value of the cross-correlation between steer 

and roll angular velocities was significantly greater for the 11 subjects who learned to 

ride compared to the 4 who did not. This finding suggests that rider learning is quantified 

by increased correlation between bicycle steer rate and roll rate. In essence, learning to 

steer in the direction of bicycle lean is an essential and quantifiable skill in learning to 
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ride. Average speed also increased with time, likely due to the increased gearing used as 

a rider progressed through the camp. The standard deviation of the steer rate also 

increased with time, suggesting that initially fearful riders learn to relax their arms and 

use the handlebars to balance the bicycles. As expected, the standard deviation of the 

bicycle roll rate also increased with time, likely due to the more crowned rollers that 

learners use as they progress towards riding a traditional bicycle. Existing and future 

training techniques can be systematically evaluated using this new skill assessment 

method. 

Specific Aim 3: Major contributions 

 We developed a novel experimental method utilizing three synchronized inertial 

measurement units (IMUs) to measure the bicycle kinematics critical for 

understanding rider learning 

o The IMUs are easily and quickly mounted to any bicycle 

o The IMUs can be reliably used in both indoor and outdoor environments 

Specific Aim 3: Major conclusions 

 Rider learning can be quantified by increasing correlation between the steer and 

roll angular velocities (and angular accelerations) 

 Average speed of the riders increased with training time, likely due to increases in 

gearing as riders progress through the camp 

 Standard deviation of the steer rate increased with time, suggesting that initially 

fearful riders learn to relax their arms and use the handlebars to balance the 

bicycles 
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 Standard deviation of the bicycle roll rate increased with time, likely due to the 

more crowned rollers that learners use as they progress towards riding a 

traditional bicycle 

 Learning to steer in the direction of lean is an essential skill in learning to ride a 

bicycle 

We duly note the following limitations to this study. First, the measurements were taken 

on a population with disabilities, which includes subjects with Down syndrome, cerebral 

palsy, autism spectrum disorder, and attention deficit hyperactivity disorder. It is not 

clear how all of the findings may translate to a non-affected population. However, the 

primary finding that steer must be highly correlated to roll is in agreement with past 

studies [16, 105, 110] on non-affected populations. Children with disabilities such as 

Down syndrome and autism spectrum disorder have motor deficits that may make it 

difficult to learn new motor skills [111, 112]. Despite learning deficits, children with 

disabilities must still learn the same skill as non-affected children in order to balance a 

bicycle. In addition, our results from Chapter 5 demonstrate that non-affected subjects 

(cyclists and non-cyclists) also exhibit a high correlation of steer rate to bicycle roll rate. 

Therefore, we remain confident in the conclusion that riding a bicycle requires a high 

correlation between steer and roll.  

A second limitation is that measurements were taken on modified bicycles (the adapted 

bicycles) that are not available to the general public. It is not clear to what degree the 

adapted bicycles influence or limit performance measures or how the performance 

measures translate to other training techniques. The approach used to develop the adapted 

bicycles has also been applied to develop an ‘unrideable’ bicycle as well as a bicycle 
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similar to the unrideable bicycle that was made rideable by using a bicycle model to 

guide slight design modifications [18]. Therefore, we believe that all of the bicycles (both 

adapted and traditional) exhibit very similar dynamic properties. The main effect of the 

adapted bicycles is that they reduce the correlation between steer and roll needed to 

maintain balance. The rear roller on an adapted bicycle functions similar to training 

wheels, providing a corrective force that allows a rider to maintain balance despite 

incorrect steering inputs. Unlike training wheels, the adapted bicycles maintain the ability 

to roll, albeit with limits on roll. We hypothesize that the adapted bicycles make it 

possible for riders to learn incrementally, which is in contrast to the typical fail/succeed 

nature of learning to ride a traditional bicycle. The incremental learning that riders 

demonstrate when using the adapted bicycles made it possible to capture and study the 

learning process. 

Specific Aim 4: Quantify the differences between skilled and novice riders when 

balancing a bicycle (Chapter 5). There is little understanding of the fundamental 

characteristics of human bicycle riders, the types of control that humans use to balance 

bicycles, and the skills that distinguish riders of different ability levels. Identifying the 

types of control that humans use and differences between skilled and novice riders would 

simultaneously advance two uses. First, it would provide researchers with metrics to 

evaluate rider skill and human/bicycle stability. Second, it could provide bicycle 

designers with tools to objectively measure whether a specific bicycle design enhances or 

diminishes the balance skill of a particular rider. The objectives of the study detailed in 

Chapter 5 were three-fold: to quantify 1) the relationship between center of pressure and 

center of mass movement of the bicycle/rider system, 2) the types of control used by 
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riders, and 3) the differences between skilled and novice riders. We hypothesized that the 

lateral position of the center of mass would be highly correlated to the lateral position of 

the center of pressure, that steer rate would be highly correlated to bicycle roll rate , that 

rider lean would be highly correlated to bicycle roll, and that skilled riders would use 

significantly less steering effort and variation than novice riders. 

This study reports the dynamics of human bicycle riding as 14 subjects rode an 

instrumented bicycle on training rollers mounted on a force platform and at speeds 

ranging from approximately 1.3 to 7.2 m/s. Of the 14 riders, we classified 7 as cyclists 

(skilled riders) and 7 and non-cyclists (novice riders). The instrumented bicycle measured 

steer angle/rate, steer torque, bicycle speed, and bicycle roll rate and also enabled the 

calculation of steering power. A motion capture system enabled the measurement of the 

roll angle of the bicycle. A force plate beneath the roller assembly measured the net force 

and moment that the bicycle/rider/rollers exerted on the floor, which also enabled 

calculation of the lateral position of the bicycle/rider center of mass and center of 

pressure. We found that the cross-correlation of the lateral position of the center of mass 

to the lateral position of the center of pressure quantifies balance performance, the cross-

correlation of steer angle/rate to bicycle roll angle/rate quantifies steer control, and the 

cross-correlation of rider lean angle to the bicycle roll angle quantifies rider lean control. 

All riders achieved similar balance performance at the lowest speed while utilizing 

similar control strategies. However at higher speeds, skilled riders (cyclists) achieved 

greater balance performance by employing more rider lean control and less steer control 

compared to novice riders (non-cyclists). In addition, skilled riders used less steer control 

effort (measured by average positive steering power and standard deviations of steer 
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angle and rate) and less rider lean control effort (measured by the standard deviation of 

the rider lean angle) regardless of speed. The reduction in balance effort for skilled riders 

is not due to any reduced demands for balance. In summary, skilled riders achieve higher 

levels of balance performance using less effort than novice riders. 

Specific Aim 4: Major contributions 

 Developed a novel method to measure the dynamics of human/bicycle balance 

that utilized custom designed rollers mounted to a force platform 

Specific Aim 4: Major conclusions 

 The cross-correlation of the lateral position of the center of mass to the lateral 

position of the center of pressure quantifies balance performance 

 The cross-correlation of steer angle/rate to bicycle roll angle/rate quantifies steer 

control 

 The cross-correlation of rider lean angle to bicycle roll angle quantifies rider lean 

control 

 At all speeds above 1.3 m/s (the lowest speed), skilled riders (cyclists): 

o achieved higher levels of balance than novice riders (non-cyclists) 

o used more rider lean control than novice riders 

o used less steer control than novice riders 

 Regardless of speed, skilled riders used less control effort than novice riders 

o Skilled riders used less positive steering power than novice riders 

o Skilled riders exhibited less steer angle/rate variation 
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Our investigation of human/bicycle balancing dynamics is limited by several factors. 

First, we chose to conduct our experiments on a custom set of bicycle training rollers. 

The relationship of bicycle riding on rollers to riding overground has not been quantified, 

and there is some disagreement about the differences and similarities between the two 

tasks [117, 131, 132]. Therefore, it is not yet clear if all the metrics that distinguish rider 

skill on rollers would also distinguish rider skill overground. We recognized this 

limitation before the onset of the study and decided to conduct the experiments on rollers 

because of several advantages they present: 1) riding on rollers is more challenging than 

riding overground, and therefore this task may be particularly useful in eliciting 

differences between skilled riders and less skilled riders, 2) rollers can be easily and 

securely mounted to a force platform, and 3) riding on rollers is safer than riding on a 

treadmill, which is the primary alternative for studying human/bicycle dynamics in a 

laboratory setting. We carefully designed the custom rollers to ensure that the balancing 

dynamics would be as similar as possible to riding overground. The adjustable front drum 

ensures that the bicycle is level and that the trail of the bicycle is the same on the rollers 

as overground. Our choice of the largest diameter drums minimizes differences between 

the front tire ground contact when riding on rollers versus when riding overground. 

Another final limitation is that subjects were not able to ride their own bicycles—they 

were required to ride the instrumented bicycle. While we did adjust the seat height for 

each subject and allowed each subject ample time to adjust to the instrumented bicycle, 

the fit was not ideal for every subject. The role of bicycle fit on bicycle control has not 

been quantified, but it is possible that a non-ideal fit may result in diminished 

performance. Despite this limitation, we still were able to detect significant differences 
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between skilled and novice riders and believe that these differences would persist if all 

subjects rode their own bicycles. 

6.2 Overarching conclusions 

While the above studies target different aims, their results highlight two overarching 

conclusions.  

Overarching conclusion 1: Rider lean (i.e., lateral movement of the rider relative to 

the bicycle frame) plays a dominant role in steering and balancing a bicycle. 

Theoretical studies demonstrate that rider lean can maintain bicycle stability, even in the 

absence of steer control [5-7]. All three studies herein provide experimental evidence that 

rider lean is important for balancing and steering a bicycle. In the study on steady-state 

turning (Chapter 3), we conclude that lateral shifting of the bicycle/rider center of mass 

(i.e. rider lean) strongly influences steering torque. Because steer torque directly 

influences steer angle, it follows that a rider can easily influence the steer angle through 

leaning. In the study of rider learning (Chapter 4), results demonstrate that not all riders 

that learned to ride achieved similarly high levels of cross-correlation between steer and 

bicycle roll rates. In particular, some riders achieved very high cross-correlations (R
2 

= 

0.9) whereas others only achieved modest cross-correlations (R
2 

= 0.7) only slightly 

larger than some riders that were not successful riding a bicycle. We hypothesized that a 

rider using lean control could reduce the otherwise required correlation between steer and 

roll. Our results from the study of rider balance skill (Chapter 5) confirm that a rider can 

indeed reduce the required correlation between steer and roll by exploiting rider lean 

control. In fact, we found that cross-correlation between rider lean angle and bicycle roll 
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angle was a significant factor in predicting balance performance (the cross-correlation 

between the lateral positions of the center of mass and center of pressure). 

Analyses of rider movements during bicycle riding reveal a wide variety of motions [23, 

24, 114], including lateral bending, leaning, and twisting of the upper body and lateral 

knee movements. Not surprisingly, many of these motions are not present when the rider 

is not required to pedal the bicycle [24]. This result has led some researchers to 

hypothesize that lean, bend, and twist of the upper body are not movements fundamental 

to balance control and are only reactions to pedaling [24]. However, as our results in 

Chapter 5 demonstrate, not all riders use lateral body movements in the same way. Riders 

that correlate rider lean to bicycle roll are able to significantly reduce the effort needed to 

maintain balance. Therefore, we conclude that rider lean and lateral movement of the 

rider relative to the bicycle frame plays an important role in controlling and balancing a 

bicycle. 

Overarching conclusion 2: Correlating steer and rider lean (the two rider control 

inputs) with the bicycle roll angle/rate (the bicycle response) is essential for balance 

performance. 

In Chapters 2 and 3, we demonstrated that steer control and rider lean control can be 

quantified by calculating the cross-correlations of steer angle/rate and rider lean 

angle/rate to the bicycle roll angle/rate. Therefore, we conclude that correlating steer and 

rider lean to the bicycle roll angle (and roll rate) is essential for balance performance. .  

This conclusion has important implications for how we teach people to ride bicycles. Our 

results suggest that is crucial for the learner to experience bicycle roll and for the 
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learner’s control actions to affect the roll of a training bicycle in a way similar to a 

traditional bicycle. For example, training wheels by design prevent bicycle roll, render it 

impossible for the learner to experience bicycle roll, and therefore impossible for the 

bicycle to respond similarly to one without training wheels. Without experiencing bicycle 

roll and how steering and rider lean affect bicycle roll, the rider has no opportunity to 

learn appropriate control actions. Unlike bicycles with training wheels, the adapted 

bicycles detailed in Chapter 4 allowed the riders to experience bicycle roll dynamics and 

to gradually learn distinctions between correct and incorrect control actions. 

Unfortunately for children that use training wheels, learning correct and incorrect control 

actions usually occurs only after removal of the training wheels. At that point, the penalty 

for a wrong control action is typically a crash. Training wheels are excellent for helping 

children learn pedaling and navigation skills, but they are not ideal for teaching balance 

skills. Fortunately, society is gradually recognizing the limitations of training wheels, as 

evidenced by the recent popularity of balance bikes. Balance bikes or run bikes have no 

pedals, drivetrain, or training wheels, and require the rider to kick his/her feet to propel 

the bike forward. Because balance bicycles allow bicycle roll, it is possible for the rider 

to learn how to correlate steer and rider lean to bicycle roll, which inevitably leads to 

successful riding. 
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APPENDIX A: MEASUREMENT OF BICYCLE PARAMETERS 

The procedures used to determine the parameters of the instrumented bicycle for the 

steady-state turning model (Section 3.3.3) are presented below. These procedures are 

guided by previous studies [9, 133-135]. The measured parameters are reported in Table 

A.2. 

A.1 Wheel base ( w ) 

With the bicycle secured in an upright position (roll angle = 0 degrees) and with the front 

wheel aligned with the plane defined by the bicycle frame (steer angle = 0 degrees), we 

measured: the distance from the rear wheel axis to the front wheel axis on both the left 

and right sides of the bicycle (with a tape measure, resolution = 0.001 m), the width of 

the front axle, and the width of the rear axle (with calipers, resolution = 0.03 mm). We 

used the four measurements to define a trapezoid; solving for the height of the trapezoid 

yields the length of the wheel base of the bicycle,  . 

A.2 Wheel radius ( Fr , Rr ) 

Similar to [9, 133-135], we estimated the radii of the front (  ) and rear (  ) wheels by 

measuring the linear distance traveled on the ground through 14 rotations of each wheel. 

During each trial, a subject sat on the bicycle (tire pressure = 2.76 bar) with the seat 

height adjusted properly as he/she was pushed from behind while making his/her best 

effort to follow a straight course. We measured the distance covered in each trial using a 

30 m long tape measure (resolution = 1.6 mm). We collected three trials for each wheel 
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for each subject. The measured distances were divided by     to obtain the effective 

rolling radius for each trial; trials were averaged to obtain values for each wheel for each 

subject. The effective rolling radii were not significantly different between subjects. 

A.3 Steer axis tilt ( ) 

We measured the steer axis tilt by securing the bicycle with each subject seated on the 

bicycle in an upright position (roll angle = steer angle = 0 degrees) and measuring the 

angle of the head tube of the bicycle using a digital inclinometer (resolution = 0.01 

degrees). To account for the floor potentially being out of level, we measured the steer 

axis tilt with the bicycle in two configurations—the first as described above and the 

second simply with the bicycle facing the opposite direction. We took the average of the 

two measurements as the steer axis tilt of the loaded bicycle. The steer axis tilt was not 

significantly different between subjects. 

A.4 Fork rake/offset ( of ) 

We measured the fork rake (also known as fork offset) as described in [133] and found 

the measured fork rake to agree with the rake value provided by the manufacturer to the 

nearest millimeter. 

A.5 Trail ( c ) 

Instead of measuring the trail ( ) of the bicycle directly, we calculated the trail using the 

following equation [133]: 

   
         
     

 (A.1) 



 

138 
 

where    is the measured radius of the front wheel,   is the steer axis tilt, and    is the 

fork rake or offset. 

A.6 Mass  

The total mass of the bicycle, including the instrumentation described in Chapter 2, was 

measured using a digital scale (resolution = 10 g). We measured the mass of each wheel 

(with the quick release skewers removed), the mass of the front assembly (handlebars, 

stem, fork, and front quick release skewer), and the mass of the data acquisition hardware 

(computer, battery, DAQ box, and cables) using a smaller digital scale (resolution = 1 g). 

We measured the mass of each subject using an upright physicians scale (resolution = 0.1 

kg). 

A.7 Center of mass location: bicycle  

We estimated the location of the center of mass of the bicycle with the seat set to 

appropriate heights for each subject using methodology similar to [9, 134, 135], assuming 

the bicycle is laterally symmetric. The complete bicycle was suspended from a string, 

allowed to come to rest, and photographed ensuring that the plane of the bicycle defined 

by the wheels was perpendicular to the lens of the camera. We photographed the bicycle 

in four different orientations. We opened each photo in MATLAB (The MathWorks, 

Inc.) and used the image tools to rotate the each photograph so that the bicycle was in its 

normal loaded upright position. We then calculated the slope and intercept of the string in 

the coordinate system of the bicycle using the conventions of vehicle dynamics [94]. We 

calculated the meter to pixel scale factor by using 23 known dimensions of the bicycle. 

After finding the equation of the line defining the string in each photograph, we used the 
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least squares method to solve for the intersection of the four lines [133]. The intersection 

is the estimated center of mass location for the bicycle. The process was repeated with the 

seat height adjusted to the appropriate height for each subject.  

A.8 Center of mass location: handlebars, stem, and fork ( Hx , Hz ).  

We estimated the center of mass location for the handlebar, stem, and fork assembly 

using the methodology described for the bicycle (Section A.7). We suspended the 

assembly in four orientations and used nine known dimensions to calculate the meter to 

pixel scale factor. The center of mass location was found relative to the front fork dropout 

and later converted to coordinates in the bicycle coordinate system. 

A.9 Center of mass location: wheels.  

The centers of mass of the wheels were assumed to be at their geometrical centers. 

A.10 Center of mass location: bicycle and rider ( Tx , Tz ) 

Similar to the center of mass for the bicycle, we estimated the center of mass location for 

the bicycle/rider system for each subject by using photographs. We used the data of both 

Clauser et al. [136] and Dempster [128] to estimate the mass properties of the following 

13 body segments: head and trunk, two arms, two forearms, two hands, two thighs, two 

legs, and two feet. For all segments except the hands, we used the data of [136] to 

calculate the mass of each segment (as a percentage of a subject’s total weight) and the 

location of the center of mass (as a percentage of the limb length from one end of the 

segment). We chose to use the data of [136] because segment lengths are defined relative 

to anatomical landmarks that are easily identified by palpation. We calculated the mass of 

the hands using data from [136] but used data from [128] to calculate the location of the 
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center of mass; we made this choice because [128] found the center of mass location of 

hands with a similar configuration to that of a hand gripping a handlebar whereas [136] 

located the center of mass of hands with extended fingers. The values used to estimate 

segment properties as well as the landmarks used to identify each segment can be found 

in Table A.1. 

Table A.1. Body segment properties (from Clauser et al. [136] and Dempster [128]). The mass of each 

segment is calculated as a fraction of the body mass and the location of the center of mass of each segment 

is calculated as a fraction of the segment length. 

Segment 
(segment mass) 

/ (body mass) 

(Location of center of 

mass from proximal 

or superior end of 

segment) / (segment 

length) 

Proximal (superior) 

end point 

Distal (inferior) 

end point 

head and 

torso 
0.580 0.592 vertex of head trochanterion 

upper arm 0.026 0.513 acromiale radiale 

forearm 0.016 0.390 radiale 
styloid process of 

ulna 

hand 0.007 0.506 styloid process of ulna 

proximal 

interphalangeal 

knuckle of finger II 

thigh 0.103 0.372 trochanterion 
tibiale mediale or 

tibiale laterale 

leg 0.043 0.371 
tibiale mediale or 

tibiale laterale 

sphyrion fibulare or 

sphyrion laterale 

foot 0.015 0.449 dorsal surface of heel tip of longest toe 

 

Prior to photographing each subject on the bicycle, we used palpation to identify: the 

acromiale, radiale, styloid process of the ulna, trochanterion, tibiale mediale, tibiale 

laterale, sphyrion fibulare, and sphyrion laterale [137]. After identification, we marked 

the location of each landmark with small dots of tape. Each subject then sat on the 

instrumented bicycle with the seat height adjusted appropriately. We secured the 

bicycle/rider in an upright position (lean angle = steer angle = 0) and photographed the 

bicycle/rider from the side, ensuring that the plane of the bicycle defined by the wheels 

was perpendicular to the lens of the camera. We opened each photo (one for each subject) 
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in MATLAB and used the image tools to rotate each photograph so that the bicycle was 

in its normal loaded upright position. We calculated the meter to pixel scale factor by 

using 23 known dimensions of the bicycle. Using the dots of tape as a guide, the locations 

of the end points of each segment were digitized. We estimated the location of the 

segment centers of mass by using the ratios in Table A.1, assuming that the center of 

mass for a segment falls on a line connecting the two endpoints. We calculated the center 

of mass locations for the thigh, leg, and foot segments independently for each leg, but 

assumed that the left upper arm, forearm, and hand segments were symmetric to the 

segments on the right side of the body. Given the center of mass of the segments and the 

bicycle (Section A.7), we calculated the rider/bicycle center of mass: 

    
 

  
∑    

  

   

 (A.2) 

   

    
 

  
∑    

  

   

 (A.3) 

 

where (     ) is the location of the bicycle/rider system center of mass,   is a subscript 

denoting a segment or the bicycle,    is the total mass of the bicycle/rider system,    is 

the mass of a segment or the bicycle, and (     ) is the center of mass location of a 

segment or the bicycle. 

A.11 Inertia of wheels about axles ( FyyI , RyyI ) 

To measure the mass moment of inertia of a wheel about its axle, we hung the wheel as a 

compound pendulum by hanging the wheel from a thin horizontal rod parallel to the 

wheel axle [9, 133-135]. We secured a wireless angular rate gyro (InvenSense ITG-3200) 
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to the hub of the wheel with one axis oriented parallel to the axle of the wheel, and 

perturbed the wheel to oscillate about the axis of the rod. Using the measured angular rate 

about the axis parallel to the wheel axle, we measured the time required for the wheel to 

complete 35 oscillations; dividing the time by 35 yields the period ( ) of oscillation. We 

measured the period of oscillation for each wheel in six different orientations, and used 

the average period for each wheel to calculate the inertia of each wheel about its axle 

[134]: 

      (
  
  
)
 

(        )   (        ) 
  (A.4) 

 

where   is a subscript denoting the front ( ) or rear ( ) wheel,    is the time of one 

oscillation,    is the mass of the wheel,       is the mass of the angular rate gyro used 

for measurement (25 g),   is gravity (9.81 m/sec
2
), and   is the distance from the thin rod 

to the center of mass of the wheel (pendulum arm length). We assumed that the distance   

was equal to the inner radius of the rim, which we measured using a three-dimensional 

digitizing system (MicroScribe G2X, resolution = 0.23mm). 

A.12 Calculation of stiffness matrices ( 0K , 2K ) 

The terms of the two stiffness matrices that appear in our steady-state turning equations 

must be calculated from the measured parameters. We calculate the stiffness matrices as 

described in [2], and reproduce the equations here for completeness. 

First, the mass properties of the front assembly (front wheel, handlebars, and fork) must 

be calculated: 
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          (A.5) 

   

    
        

  
 (A.6) 

   

    
         

  
 (A.7) 

 

Next, we calculate the perpendicular distance between the center of mass of the front 

assembly and the steering axis: 

    (      )             (A.8) 

 

The ratio of the mechanical trail to the wheel base is given by: 

   
     

 
 (A.9) 

 

The gyrostatic coefficients are given by: 

    
    

  
 (A.10) 

   

    
    

  
 (A.11) 

   

          (A.12) 

 

A frequently appearing static moment term is defined as: 

               (A.13) 

 

Finally, we can calculate the gravity-dependent stiffness terms: 
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           (A.14) 

   

               (A.15) 

   

              (A.16) 

 

and the velocity-dependent stiffness terms: 

             (A.17) 

   

      
(       )     

 
 (A.18) 

   

      
(         )     

 
 (A.19) 

 

which form the stiffness matrices: 

    [
        
        

] (A.20) 

   

    [
        
        

] (A.21) 
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Table A.2. Bicycle parameters for use in the model. 

Parameter Symbol value for subject 1 value for subject 2 

Wheel base   1.060 m 1.060 m 

Steer axis tilt   0.3307 rad 0.3307 rad 

Fork rake/offset    0.045 m 0.045 m 

Trail   0.064 m 0.064 m 

Gravity   9.81 m/sec
2 

9.81 m/sec
2
 

Rear wheel radius    0.322 m 0.322 m 

Rear wheel mass    2.420 kg 2.420 kg 

Rear wheel mass 

moment of inertia 

about axle 

     0.127 kgm
2
 0.127 kgm

2
 

Front wheel radius    0.326 m 0.326 m 

Front wheel mass    1.885 kg 1.885 kg 

Front wheel mass 

moment of inertia 

about axle 

     0.128 kgm
2
 0.128 kgm

2
 

Bicycle/rider system 

total mass 
   85.400 kg 89.400 kg 

Bicycle/rider system 

center of mass location 
(     ) (0.383, -0.996) m (0.355, -1.053) m 

Front handlebar and 

fork assembly mass 
   2.442 kg 2.442 kg 

Front handlebar and 

fork assembly center 

of mass location 

(     ) (0.890, -0.765) m (0.890, -0.765) m 

Gravity-dependent 

stiffness matrix 
   [

        
        

] [
             
            

] kgm 
[
             
            

] 

kgm 

Velocity-dependent 

stiffness matrix 
   [

        
        

] [
       
      

] kg [
       
      

] kg 
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