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CHAPTER 1 INTRODUCTION

1.1 Introduction 

Metabolic syndrome is emerging as a global healthcare challenge. It is defined as a 

combination of multiple metabolic disorders, including obesity, fatty liver, type-2 diabetes, 

and dyslipidemia (Flier, 2004; Zimmet et al, 2001). According to data from Centers for 

Disease Control and Prevention (CDC) in 2009-2010, 35.9% of US adults aged 20 and 

over are obese. Similarly, data from World Health Organization indicates more than 1.4 

billion (approximately 1/3) adults aged 20 and over in the world, were overweight in 

2008. Besides, 10.7% of US adults 20 years and older was estimated to have diabetes 

during 2003-2006. The pessimistic estimation by International Diabetes Federation 

predicted that the total number of people worldwide with diabetes is expected to rise to 

552 million with diabetes and an additional 398 million people at high risk by 2030. 

Metabolic syndrome significantly increases the risk for cardiovascular disease, stroke, 

cancer, liver cirrhosis, and kidney failure. It was estimated that over 20% adults aged 20 

and over has uncontrolled high LDL cholesterol, which poses significant risks for 

cardiovascular disease and stroke. These facts underscore the importance of 

understanding the mechanisms of metabolic syndrome and developing novel therapeutic 

approaches.  
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One active area of metabolic research is to investigate the role of circadian clock disruption 

in the pathogenesis of metabolic disorders. Circadian clock is an intrinsic mechanism in the 

body to drive daily rhythms of biological processes. A variety of organisms evolve daily 

cycles of behaviors and physiological processes to adapt to the light-dark cycle on the earth. 

Maintaining normal circadian rhythm is essential for health. As such, individuals with 

chronic circadian disruption, e.g. night-shift workers, have a higher risk to develop cancer 

and metabolic diseases, such as obesity and diabetes (Antunes et al, 2010; Haus & 

Smolensky, 2012; Scheer et al, 2009; Spiegel et al, 1999).  

 

Why is the circadian rhythm required to maintain metabolic homeostasis? One explanation 

is that the disruption of circadian rhythm in the brain leads to sleep disorders, which have 

been shown to associate with respiratory, cardiovascular, and metabolic dysfunctions 

(Taheri, 2004). However, emerging data in the past decades suggest that the biological 

clock can directly regulate metabolic pathways in peripheral tissues. It can control the 

expression of a large number of genes in a variety of pathways (Panda et al, 2002). Genetic 

perturbations of peripheral clocks in the liver, adipose tissues, or pancreas have been shown 

to cause hyperglycemia, obesity, and diabetes (Bass & Takahashi, 2010), characteristics of 

metabolic syndrome. However, it remains unclear how major metabolic processes are 

integrated with the peripheral clocks. 
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One such critical process is autophagy. Autophagy is a cellular process that delivers cargo 

to lysosomes for degradation and is critical for degradations of long lived proteins, 

pathogens, protein aggregates, organelles, and other cellular components. Several studies 

in the 1970s showed that autophagosome number varies throughout the day (Pfeifer, 1972; 

Pfeifer & Scheller, 1975; Pfeifer & Strauss, 1981; Reme & Sulser, 1977; Sachdeva & 

Thompson, 2008). Although the methodology for assessing autophagy activity has been 

improved during the past four decades, the circadian autophagy phenomenon has not been 

conclusively established. In addition, the underlying mechanisms remain largely 

unexplored. This thesis focuses on defining the biological regulation of circadian 

autophagy rhythms (Chapter 2). Moreover, I explored the role of autophagy in the 

regulation of hepatic lipid metabolism and the pathogenesis of non-alcoholic fatty liver 

disease (Chapter 3).  

 

1.2 Mechanisms of metabolic regulation by circadian clock 

1.2.1 The core components of mammalian clock 

The circadian pacemaker consists of transcriptional activators and repressors assembled 

into auto-regulatory loops that generate cyclic transcriptional activation of target genes 

with a period of approximately 24 hours (Reppert & Weaver, 2001). Several core 

components of the clockwork have been identified, including transcriptional activators 

Bmal1 and Clock, and repressors Period (Per1, Per2, and Per3) and Cryptochrome (Cry1 

and Cry2) (Fig. 1.1). Heterodimer of Bmal1 and Clock promotes the transcription of Period 
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and Cryptochrome, which instead form a complex to inhibit Bmal1/Clock’s transcriptional 

activity (Etchegaray et al, 2003; Gekakis et al, 1998; Jin et al, 1999; Kume et al, 1999). In 

addition, the expression of Bmal1 is induced by the ROR/PGC-1α transcriptional activator 

complex while repressed by the Rev-erbα repressor complex (Cho et al, 2012; Liu et al, 

2007; Preitner et al, 2002; Sato et al, 2004; Ueda et al, 2002). As the transcription of 

Rev-erbα is controlled by Bmal1/Clock, the inhibition of Rev-erbα on Bmal1 mRNA forms 

a second inhibitory feedback loop. The components of the clock regulatory network are 

further modulated by post-translational mechanisms such as phosphorylation, acetylation, 

deacetylation, and ubiquitination, which modulate the stability and/or activities of clock 

proteins (Lee et al, 2001; Mehra et al, 2009). 

 

1.2.2 Reciprocal signaling between the clock and metabolic regulatory networks 

Nutrient and energy metabolism is temporally organized in mammalian tissues to 

synchronize the storage and utilization of energy with light/dark cycles (Asher & Schibler, 

2011; Green et al, 2008; Rutter et al, 2002). Circulating metabolites and hormones ebb and 

flow according to distinct diurnal patterns. In addition, rhythmic metabolic gene expression 

is prevalent in major metabolic tissues, such as the liver, adipose tissue, and skeletal muscle 

(Baggs & Hogenesch, 2010; Lowrey & Takahashi, 2004). As a consequence, the activities 

of many metabolic pathways are restricted not only to specific tissues in the body, but also 

to unique periods during the day. For example, hepatic gluconeogenesis, de novo 

lipogenesis, VLDL secretion, cholesterol biosynthesis, and xenobiotic detoxification are 
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precisely timed and reach their respective peaks at different time (Edwards et al, 1972; 

Gachon et al, 2006; Hems et al, 1975; Pan et al, 2010; Phillips & Berry, 1970). These 

observations form the basis for the emerging concept that nutrient and energy metabolism 

is tightly coupled to the timing cues in mammalian tissues. The temporal restriction of 

metabolic functions may provide advantages for organisms as they anticipate and 

synchronize their feeding and activity cycles to the environment. 

 

The integration of clock and metabolism is mediated through reciprocal crosstalk between 

these two pathways (Fig. 1.2). Transcriptional profiling revealed that a large number of 

genes involved in different metabolic pathways are temporally controlled. For example, 

diurnal regulation of xenobiotic detoxification is mediated through the DBP/TEF/HLF 

family of transcription factors, all of which are clock targets (Gachon et al, 2006). Hepatic 

lipogenesis is rhythmically controlled by histone deacetylase 3 (HDAC3), which interacts 

with core clock component Rev-erbα (Feng et al, 2011). Recent 

chromatin-immunoprecipitation sequencing studies support the notion that many of 

rhythmically expressed genes are direct transcriptional targets of clock genes, such as 

Bmal1 and Rev-erbα (Feng et al, 2011; Koike et al, 2012; Rey et al, 2011).  

 

Nuclear hormone receptors (NHR) are a family of transcriptional regulators that respond to 

diverse classes of metabolites and play important roles in metabolic regulation. The 

expression of many NHRs exhibits circadian regulation (Yang et al, 2006), some of which 
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also directly interact with clock proteins (Lamia et al, 2011; Schmutz et al, 2011), 

potentially synchronizing the expression of clock and metabolic genes. NHRs control the 

expression of target genes through recruiting coactivator and corepressor proteins that 

participate in chromatin remodeling. PGC-1α is a transcriptional coactivator initially found 

to stimulate mitochondrial biogenesis, fatty acid β-oxidation, and hepatic gluconeogenesis 

(Finck & Kelly, 2006; Lin et al, 2005). Recent work demonstrated that PGC-1α also 

directly regulates the expression of core clock genes and is indispensable for circadian 

pacemaker function (Liu et al, 2007). The expression of PGC-1α is diurnally regulated and 

it is modulated by casein kinase 1δ (CK1δ) (Li et al, 2011), an important regulator of the 

clock oscillator. Similarly, HDAC3 is recruited to Rev-erbα and regulates a program of 

metabolic and clock gene expression in the liver (Duez & Staels, 2009; Feng et al, 2011; 

Yin & Lazar, 2005). As such, the regulatory networks that govern clock and metabolism are 

highly intertwined and integrated.  

 

Nutrient signaling also directly exerts its effects on the clock network. Sirtuin 1 (SIRT1) is 

an NAD+-dependent histone deacetylase that deacetylates several clock proteins (Asher et 

al, 2008; Nakahata et al, 2008). Poly (ADP-ribose) polymerase 1 (PARP-1), an 

NAD+-dependent ADP-ribosyltransferase, poly(ADP-ribosyl)ates Clock and alters the 

affinity of the Bmal1/Clock transcriptional complex to its target DNA (Asher et al, 2010). 

PARP-1 also regulates SIRT1 activity indirectly through its modulation of NAD+ levels in 

the cell (Bai et al, 2011). In parallel, AMP-activated protein kinase (AMPK), a sensor for 
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cellular AMP/ATP and ADP/ATP ratios, phosphorylates clock proteins such as Cry and 

casein kinase 1ε (CK1ε) (Lamia et al, 2009; Um et al, 2007). Because intracellular NAD+ 

levels and energy charge are regulated by nutrient status, these studies highlight a direct 

role for metabolic signaling in fine-tuning pacemaker function. The reciprocal crosstalk 

between the clock and metabolic regulatory networks potentially provides a real-time 

mechanism for synchronizing cellular metabolism with other biological processes. 

 

1.2.3 Circadian clock and health 

Clock perturbations have been associated with disease pathogenesis in humans, including 

sleep disorder, metabolic syndrome, cardiovascular disease, rheumatoid arthritis, and 

cancer (Copinschi et al, 2000; Green et al, 2008). Acute disruption of sleep rhythm in 

healthy individuals results in decreased insulin sensitivity while chronic circadian 

misalignment increases the risk for metabolic disorders in shift workers (Antunes et al, 

2010; Scheer et al, 2009; Spiegel et al, 1999). Various clock-deficient animal models have 

been generated and characterized in recent years. Clock mutant mice develop symptoms 

reminiscent of metabolic syndrome, whereas pancreatic islets lacking clock have impaired 

glucose-stimulated insulin secretion (Marcheva et al, 2010; Turek et al, 2005). Disruption 

of liver clock perturbs hepatic gluconeogenesis, lipid metabolism, and bile acid 

homeostasis (Lamia et al, 2008; Le Martelot et al, 2009). Exposure of mice to inverted 

circadian environment has also been shown to cause excessive weight gain (Fonken et al, 

2010). These studies underscore a potentially important role for circadian misalignment in 
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the pathogenesis of metabolic disorders in humans. 

 

1.3 Role of autophagy in metabolic disease  

1.3.1 Introduction on autophagy process 

Autophagy literally means ‘self-eating’ and refers to a lysosome-dependent degradation 

process in the cell (Yang & Klionsky, 2010). Autophagy includes macroautophagy, 

microautophagy, and chaperone-mediated autophagy. This introduction focuses on 

macroautophagy and refers it as autophagy hereafter. Autophagy is initiated when 

double-membraned phagophore elongates, encloses cytosolic components, and fuses into 

autophagosome (Fig. 1.3). The autophagosome subsequently fuses with lysosome to form 

autolysosome, where degradation occurs. The identification of factors that carry out 

autophagy has led to discoveries of molecular framework for autophagic degradation and 

its physiological significance (He & Klionsky, 2009). These studies have led to the 

conclusion that autophagy is critical for cellular homeostasis and nutrient metabolism. 

Autophagy is induced in neonatal tissues and in adult tissues in response to starvation 

(Kuma et al, 2004; Mizushima et al, 2004). Defects in autophagy induction result in lower 

plasma glucose and amino acid levels and compromise survival during the early postnatal 

period. In parallel, autophagy is required for removing protein aggregates, damaged 

organelles, and certain pathogens (Mizushima & Komatsu, 2011). Autophagy deficiency 

has been implicated in the pathogenesis of various disease conditions, such as cancer, 
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diabetes, hepatic steatosis, skeletal myopathy and neurodegeneration (Ebato et al, 2008; 

Grumati et al, 2010; Jung et al, 2008; Komatsu et al, 2006; Liang et al, 1999; Singh et al, 

2009).  

 

1.3.2 Molecular control of autophagy 

Genetic screens for yeast mutants that are defective in nonselective autophagy, pexophagy, 

and the cytoplasm to vacuole targeting pathway led to the discovery of more than 30 genes 

involved in autophagy (Harding et al, 1995; Titorenko et al, 1995; Tsukada & Ohsumi, 

1993). Recent work has identified additional factors responsible for mitophagy (Kanki et al, 

2009; Okamoto et al, 2009). In addition, genome-wide RNAi screens and proteomic studies 

in mammalian cells or genetic screens in multicellular organisms have further extended the 

list of autophagy related genes (Behrends et al, 2010; Lipinski et al, 2010; Orvedahl et al, 

2011; Tian et al, 2010).  

 

The core autophagy machinery includes five complexes: Ulk1-FIP200-Atg13 complex, 

Beclin 1-PI3-kinase-Atg14 complex, Atg9, Atg5-Atg12-Atg16L1 complex, and 

LC3-phosphatidylethanolamine (PE) conjugation complex (He & Klionsky, 2009; 

Kroemer et al, 2010). The Ulk1-FIP200-Atg13 complex regulates the initiation of 

autophagy. Under nutrition rich condition, the mammalian target of rapamycin (mTOR) 

kinase interacts with Ulk1-FIP200-Atg13 complex and phosphorylates Ulk1 and Atg13, 

thereby inhibiting Ulk1 kinase activity and autophagy induction (Alers et al, 2012; He & 
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Klionsky, 2009). AMPK is a sensor for cellular energy status and is able to phosphorylate 

Ulk1 in response to energy stress. In contrast to mTOR, AMPK phosphorylation increases 

the kinase activity of Ulk1 and promotes autophagy (Egan et al, 2011). Other factors in the 

autophagy pathway may serve as targets for nutritional regulation. For example, ATG7 can 

be degraded by calcium-dependent protease in the liver, resulting in impaired autophagy in 

obesity (Yang et al, 2010). 

 

Transcriptional regulation of autophagy genes is emerging as an important mechanism in 

the control of cellular autophagy activity. Forkhead transcription factor O3 (FoxO3) 

induces the expression of several autophagy genes in skeletal myocytes, including LC3B, 

Gabarapl1, Bnip3, and Bnip3l (Mammucari et al, 2007; Zhao et al, 2007). The regulation of 

autophagic protein degradation by FoxO3 contributes to muscle atrophy induced by 

starvation. In addition to FoxO3, FoxO1 has also been reported to regulate autophagy in 

cardiomyocytes (Sengupta et al, 2009). An elegant recent study demonstrated that 

transcription factor TFEB controls a large number of genes involved in autophagy and 

lysosome dynamics in HeLa cells and is sufficient to promote lysosome biogenesis, 

autophagy, and lysosomal exocytosis (Medina et al, 2011; Sardiello et al, 2009; Settembre 

et al, 2011). Interestingly, TFEB is localized in cytosolic compartment under normal 

growth conditions and translocates into the nuclear in response to lysosomal stress or 

nutrient limitation. In addition, Seo et al. reported that SREBP-2, a key cholesterol 

metabolism regulator, can promote the expression of several autophagy genes (Seo et al, 
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2011).  

 

1.3.3 Regulation of hepatic lipid metabolism 

The liver regulates several major aspects of lipid metabolism, including lipogenesis, 

lipoprotein uptake and secretion, and fatty acid β-oxidation. These pathways are under the 

control of nutritional and hormonal signals.  

 

In the lipogenesis process, the liver either undergoes de novo lipogenesis or synthesizes 

triglycerides using non-esterified fatty acids (NEFAs), which derives from absorption of 

intestine or lipolysis of white adipose tissue (WAT) (Lavoie & Gauthier, 2006). Under 

fasting condition, hormone-sensitive lipase (HSL) in WAT is activated and enhances the 

hydrolysis and release of fatty acids from adipocytes. These fatty acids are subsequently 

taken up by the liver for fatty acid β-oxidation or serve as a source for triglyceride synthesis. 

Hepatic lipogenic pathway is regulated by several transcriptional factors, including 

SREBP-1c, LXR, ChREBP, and PPARγ (Lavoie & Gauthier, 2006).  

 

The synthesized triglyceride in the liver is either assembled as very low-density lipoprotein 

(VLDL) particles and secreted into circulation or stored as lipid droplets (LDs) in 

hepatocytes. VLDL assembly and secretion requires coordinated regulation of lipid 

synthesis, lipid transfer by microsomal triacylglycerol transfer protein (MTP), APOB 

assembly and trafficking through the secretory pathway. Currently, the mechanism for LD 
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formation is still elusive, except that LDs primarily arise from the ER (Walther & Farese, 

2012). It is also unclear what determines the fate of triglycerides in the liver.  

 

Fatty acid oxidation occurs in the liver and is strongly augmented during the fasting 

condition as a result of increased fatty acid influx and altered hormonal signals. The gene 

program of fat oxidation is regulated by several transcription factors and cofactors, 

including PPARα, AMPK, PGC-1α, and BAF60a (Lavoie & Gauthier, 2006; Li et al, 2008). 

The mobilization and oxidation of triglycerides in the lipid droplet was previously 

proposed to be catalyzed by cytosolic lipases, including adipose triglyceride lipase (ATGL), 

hormone-sensitive lipase (HSL), and monoacylglycerol lipase (MGLL) (Walther & Farese, 

2012). Recent research pointed out that triglyceride in lipid droplet can also be mobilized 

through autophagy process (Singh et al, 2009). Singh et al. showed that lipid droplets 

co-localize with autophagic components, and inhibition of autophagy increases triglyceride 

content in the hepatocytes. This study raised a novel mechanism of lipolysis, which 

prompted further investigation.  

 

1.3.4 The involvement of autophagy deficiency in diseases 

Autophagy is a fundamental cellular process that has been implicated in various disease 

conditions (Mizushima & Komatsu, 2011). Beclin 1 deletion was found in patients with 

breast cancer, providing the first link between autophagy and tumorigenesis (Liang et al, 

1999). Genetic deletion of Atg5 or Atg7 in the liver leads to the development of benign 
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liver adenomas, likely as a result of mitochondrial dysfunction, oxidative stress, and 

impaired DNA damage response (Takamura et al, 2011). The relationship between 

autophagy and cancer is likely complex as autophagy deficiency caused by FIP200 deletion 

suppresses mammary tumorigenesis (Wei et al, 2011). Because autophagy is critical for the 

removal of protein aggregates, defects in autophagy have also been linked to the 

pathogenesis of neurodegenerative disease, muscular dystrophy as well as liver damage 

caused by mutant α1-antitrypsin Z (Grumati et al, 2010; Hidvegi et al, 2010; Komatsu et al, 

2006). Genetic and pharmacological activation of autophagy alleviates disease progression 

and severity in these animal models.  

 

Potential involvements of autophagy in the pathogenesis of metabolic disease are drawing 

increasing attention. Autophagy activity appears to be reduced in the liver in diet-induced 

and genetic obese mice (Liu et al, 2009; Yang et al, 2010). Importantly, rescue of autophagy 

function in the liver restores hepatic insulin signaling and glucose homeostasis. Autophagy 

also plays a direct role in the hydrolysis of triglycerides stored in lipid droplets (Singh et al, 

2009). In this case, lysosomal hydrolysis of triglycerides provides a previously 

unappreciated mechanism for lipid hydrolysis and fatty acid β-oxidation. As hepatic 

steatosis is a common feature in insulin resistant state, it is possible that defects in 

autophagy may contribute to excess triglyceride accumulation in the liver. The extent to 

which autophagy contributes to hepatic steatosis and potentially non-alcoholic 

steatohepatitis remains to be established. A second pathway that links autophagy to hepatic 
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lipid metabolism is through autophagy-mediated ApoB degradation. Under physiological 

conditions, a significant proportion of nascent ApoB-containing VLDL particles is diverted 

from the secretory pathway for autophagic degradation (Ohsaki et al, 2006). It is possible 

that defective clearance of these lipid-containing particles may further aggravate hepatic 

steatosis. Finally, autophagy is also required for adipogenesis, insulin secretion by β-cells 

as well as muscle metabolism and function (Ebato et al, 2008; Grumati et al, 2010; Jung et 

al, 2008; Zhang et al, 2009). The coupling of autophagy and metabolism is emerging as a 

novel factor underlying metabolic homeostasis and disease. 
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Fig. 1.1. The core clock machinery. The center of core clock machinery is Bmal1/Clock 
heterodimer, which is regulated by two arms of inhibition feedback loop. One arm of 
inhibition is from Per/Cry complex, which regulates the transcriptional activity of 
Bmal1/Clock complex. The second inhibitory arm centers on the Rev-erbα repressor 
complex, which negatively regulates Bmal1 expression. In contrast, Bmal1 expression is 
positively regulated by ROR/PGC-1α complex. RORE, Rev-erb/ROR responsive element.  
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Fig. 1.2. Integration of clock and metabolism. Core components of the clock oscillator 
(pink) are gated by factors that relay nutrient and hormonal signals (green). In parallel, the 
timing cues are integrated with the metabolic regulatory network to drive rhythmic 
metabolic gene expression and output. GR, glucocorticoid receptor; RORE, Rev-erb/ROR 
responsive element.  
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Fig. 1.3. Transcriptional and post-translational regulation of autophagy. Nutrient regulation 
of autophagy is mediated by mTOR and AMPK, which phosphorylate components of the 
ULK1-FIP200-ATG13 complex. The autophagy and lysosome gene program is controlled 
by several transcription factors, including FOXO, SREBP2 and TFEB. Autophagy is 
involved in the degradation of certain cellular components, such as protein aggregates, 
damaged or polarized mitochondria, peroxisomes, lipid droplets, and certain pathogens.  
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CHAPTER 2 TEMPORAL ORCHESTRATION OF CIRCADIAN 

AUTOPHAGY RHYTHM BY C/EBPΒ

2.1 Abstract 

Temporal organization of tissue metabolism is important for maintaining nutrient and 

energy homeostasis in mammals. Autophagy is a conserved cellular pathway that is 

activated in response to nutrient limitation, resulting in the degradation of cytoplasmic 

components and the release of amino acids and other nutrients. Here we show that 

autophagy exhibits robust circadian rhythm in mouse liver, which is accompanied by cyclic 

induction of genes involved in various steps of autophagy. Functional analyses of 

transcription factors and cofactors identified C/EBPβ as a potent activator of autophagy. 

C/EBPβ is rhythmically expressed in the liver and is regulated by both circadian and 

nutritional signals. In cultured primary hepatocytes, C/EBPβ stimulates the program of 

autophagy gene expression and is sufficient to activate autophagic protein degradation. 

Adenoviral-mediated RNAi knockdown of C/EBPβ in vivo abolishes diurnal autophagy 

rhythm in the liver. Further, circadian regulation of C/EBPβ and autophagy is disrupted in 

mice lacking a functional liver clock. We have thus identified C/EBPβ as a key factor that 

links autophagy to biological clock and maintains nutrient homeostasis throughout 

light/dark cycles. 
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2.2 Introduction 

Organisms evolve diverse strategies to adapt their nutrient and energy metabolisms to the 

light/dark cycles on the earth. In mammals, the circadian clocks coordinate diurnal rhythms 

of behavior and physiology, including major pathways of nutrient and energy metabolism 

(Green et al, 2008; Rutter et al, 2002; Wijnen & Young, 2006). These pacemakers are 

self-sustained oscillators in the brain and peripheral tissues, which synchronize their 

downstream transcriptional output (Panda et al, 2002; Storch et al, 2002; Ueda et al, 2002). 

Clocks in different tissues can be entrained by distinct external cues, such as light, 

temperature and nutritional signals. Genetic disruption of components in mammalian clock 

results in metabolic disorders, including perturbations in lipid and glucose homeostasis 

(Lamia et al, 2008; Rudic et al, 2004; Turek et al, 2005). In humans, disruption of circadian 

rhythm has been associated with increased risk for obesity and cardiovascular disease 

(Leproult & Van Cauter, 2010).   

 

Autophagy is a cellular process that delivers cytosolic components to lysosomes for 

degradation (Levine & Kroemer, 2008; Mizushima et al, 2008; Yang & Klionsky, 2010). In 

response to metabolic stress, such as starvation, autophagy is highly induced to degrade 

glycogen, lipid droplets and cytosolic components to provide a source of nutrients and 

metabolic fuel (Rabinowitz & White, 2010). The essential role of autophagy is underscored 

by neonatal lethality in pups lacking ATG5, an essential factor in the autophagy pathway 
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(Kuma et al, 2004). In addition, autophagy plays an important role in removing protein 

aggregates and damaged organelles (Ebato et al, 2008; Jung et al, 2008; Komatsu et al, 

2006; Komatsu et al, 2007; Komatsu et al, 2005). Genetic disruption of autophagy genes 

results in the accumulation of ubiquitinated protein aggregates and abnormal organelles in 

hepatocytes, neurons and pancreatic β-cells. Recent studies have also implicated autophagy 

in the control of hepatic lipid metabolism and the development of insulin resistance (Singh 

et al, 2009; Yang et al, 2010).  

 

Electron microscopy studies conducted in 1970s have demonstrated that the abundance of 

autophagic vacuoles varies according to the time of day in several rat tissues (Pfeifer, 1972; 

Pfeifer & Scheller, 1975; Pfeifer & Strauss, 1981; Reme & Sulser, 1977; Sachdeva & 

Thompson, 2008). However, whether autophagy is regulated by clock and the molecular 

mechanisms underlying circadian autophagy rhythm have not been defined. In this study, 

we show that autophagy displays robust circadian rhythm in mouse liver, which is 

accompanied by rhythmic induction of autophagy genes. We further identified C/EBPβ as a 

key transcription factor that links autophagy to circadian pacemaker and maintain nutrient 

homeostasis throughout light/dark cycles. 
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2.3 Results 

2.3.1 Autophagy undergoes diurnal rhythm during the day 

To determine whether autophagy is rhythmically activated during light/dark cycle, we 

examined molecular markers of autophagy, performed electron microscopy and expression 

profiling of autophagy-related genes. Microtubule-associated protein 1 light chain 3 (LC3) 

is the mammalian homologue of yeast Atg8 that undergoes conjugation with 

phosphatidylethanolamine (PE) upon autophagy induction (Klionsky et al, 2012; 

Mizushima, 2004). The unconjugated LC3 (LC3-I) is localized to cytosol whereas 

lipid-conjugated form (LC3-II) resides on autophagosome membrane. Immunoblotting 

analyses of mouse liver lysates harvested at different time points indicate that relative 

amounts of LC3-I and LC3-II exhibit a strong circadian rhythm in the liver (Fig. 2.1A). In 

general, the ratio of LC3-I/LC3-II is higher in dark phase and lower in light phase. We 

further examined the expression of sequestosome 1 (p62), a protein that interacts with LC3 

and delivers autophagy cargos for lysosomal degradation (Komatsu et al, 2007). We found 

that p62 protein levels also undergo cyclic regulation through light/dark cycle (Fig. 2.1A). 

Circadian regulation of LC3-I/II and p62 was also observed in other tissues, including 

skeletal muscle, heart, and kidney (Fig. 2.S1).  

 

While the relative abundance of LC3-I and LC3-II is a useful marker for autophagy under 

certain conditions, their steady-state levels do not provide an accurate assessment of 

autophagy flux. A new method using leupeptin, a lysosomal protease inhibitor, was 
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recently developed to measure autophagy flux in mouse liver (Haspel et al, 2011). In this 

method, we used the rate of LC3-II degradation to estimate the autophagy flux. Specifically, 

we injected a single dose of PBS or leupeptin into mice kept under constant darkness and 

harvested tissues 3 hrs following injection. The leupeptin induced LC3-II accumulation 

was quantitated to represent autophagy flux. To evaluate autophagy flux throughout 24 

hours, a total of six time points spanning one light/dark cycle was examined. As shown in 

Fig. 2.1B-C, the leupeptin induced LC3-II accumulation peaks at Circadian Time (CT) 6-9 

and reaches a trough in the dark phase. We next performed transmission electron 

microscopy on liver samples to assess autophagosome formation at different time points. 

Consistent with the flux studies, we found that autophagosome is most abundant at 

Zeitgeber Time (ZT)11 in the afternoon, rapidly decreases at night (ZT17), and rise again 

throughout the light phase (ZT5) (Fig. 2.1D-E). Cyclic appearance of autophagic vacuoles 

was also observed in previous electron microscopy studies in rat tissues (Pfeifer & Scheller, 

1975; Reme & Sulser, 1977; Sachdeva & Thompson, 2008). Together, our results indicate 

that autophagy activity is highly rhythmic in the liver with the peak in the light phase. 

 

We next examined whether the expression of autophagy genes is regulated by circadian 

signals. Quantitative PCR (qPCR) analyses indicate that several genes involved in 

autophagy display robust oscillation throughout the light/dark cycle, including genes 

involved in the autophagosome formation (Unc-51 like kinase 1 (Ulk1), GABA(A) 

receptor-associated protein like 1 (Gabarapl1), LC3B), mitophagy (BCL2/adenovirus E1B 
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interacting protein 3 (Bnip3)), and lysosomal degradation (lysosomal protease Cathepsin L 

(Ctsl) and lysosomal ATPase subunit (Atp6v1d)) (Fig. 2.2A). Cyclic mRNA expression of 

these genes was also observed in microarray dataset of high-resolution temporal 

transcriptional profiling of livers from mice kept under constant darkness (Hughes et al, 

2009) (Fig. 2.S2). Similarly, protein levels of Ulk1 and Gabarapl1 are rhythmically 

regulated (Fig. 2.2B). In contrast, the expression of Atg7 and beclin 1 (Becn1) remains 

similar at different time points. Pronounced rhythmic autophagy gene expression was also 

observed in heart, and to a lesser extent, in the skeletal muscle (Fig. 2.S3 and 2.S4). Recent 

studies demonstrate that only a small fraction of rhythmic genes is truly clock-regulated 

(Vollmers et al, 2009). We next analyzed temporal regulation of autophagy genes under 

starvation conditions to assess the relative contribution of circadian and nutritional signals. 

While the mRNA levels of several autophagy genes (LC3B, Gabarapl1, Ulk1, Bnip3, and 

Ctsl) remain elevated at all time points in the fasted state, they appear to retain circadian 

regulation, albeit with altered phase characteristics (Fig. 2.S5).  

 

2.3.2 C/EBPβ induces autophagy gene expression and protein degradation 

In the liver, approximately 10% of all transcribed genes are rhythmically expressed (Panda 

et al, 2002; Storch et al, 2002; Ueda et al, 2002). Cyclic induction of autophagy genes 

suggests that transcriptional regulation may play an important role in driving the circadian 

autophagy rhythm. While the molecular components that execute various steps of 

autophagy have been extensively studied, the regulatory network that governs the program 
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of autophagy gene transcription remains poorly understood. Forkhead box O3 (Foxo3) has 

been recently implicated in the nutritional regulation of skeletal muscle autophagy 

(Mammucari et al, 2007; Zhao et al, 2007). However, we failed to observe robust induction 

of autophagy genes by Foxo3 in cultured primary hepatocytes, suggesting that 

tissue-specific regulatory mechanisms are likely involved.  

 

To identify factors that control the program of autophagy gene expression, we examined a 

set of transcription factors and cofactors known to regulate mammalian clock and/or 

hepatic starvation response, including Bmal1, RORα, RORγ, Crtc2, C/EBPα, C/EBPβ, 

BAF60a, BAF60c, and PPARα. We transduced primary hepatocytes with adenovirus 

expressing individual factors and analyzed autophagy gene expression and activation by 

qPCR and immunoblotting, respectively. These analyses revealed that C/EBPβ strongly 

stimulates the expression of autophagy genes and the appearance of LC3-II in transduced 

hepatocytes. In contrast, other factors have modest effects on this pathway. Microarray 

profiling of primary hepatocytes transduced with control (GFP) or C/EBPβ adenoviruses 

indicates that C/EBPβ stimulates the expression of many genes involved in different steps 

of the autophagy pathway, such as Ulk1, Gabarapl1, LC3B, and Bnip3 (Fig.2.3A-C). 

Notably, C/EBPβ also induces the expression of a number of lysosomal genes, particularly 

subunits of the vacuolar-type H+-ATPase that is responsible for lysosomal acidification. 

The expression of Atg4c and Atg7 appears largely unaffected by C/EBPβ, suggesting that 

not all autophagy genes are subjected to transcriptional regulation.  
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We next examined the effects of C/EBPβ on autophagic protein degradation in cultured 

hepatocytes. Compared to control, adenoviral-mediated expression of C/EBPβ 

significantly increased LC3-II levels in transduced hepatocytes (Fig. 2.3D-E). The 

induction of LC3-II is further augmented in the presence of concanamycin, a vacuolar 

ATPase inhibitor. The induction of LC3-II by C/EBPβ is abolished by 3-methyladenine 

(3-MA), an autophagy inhibitor, but not by proteasome inhibitor PS341 (Fig. 2.S6). We do 

not observe changes in p62 protein levels, likely as a result of concomitant increase in its 

mRNA expression and turnover when autophagy is stimulated by C/EBPβ. Interestingly, 

C/EBPβ increases LC3-II levels without affecting mTOR activity (Fig. 2.S7). Further, 

inhibition of mTOR by Torin1 leads to autophagy induction but has modest effects on 

C/EBPβ expression, suggesting that mTOR and C/EBPβ may regulate autophagy through 

distinct mechanisms. To determine whether C/EBPβ is sufficient to stimulate autophagic 

protein degradation, we transduced hepatocytes with GFP or C/EBPβ adenoviruses, labeled 

the cells with [3H]-valine for 24 hrs, and measured the release of radiolabeled amino acid in 

culture medium to estimate protein. Compared to GFP, protein degradation rate is 

significantly enhanced in primary hepatocytes transduced with C/EBPβ adenovirus. 

Further, this augmentation of protein degradation is sensitive to 3-MA treatments (Fig. 

2.3F). Together, we conclude that C/EBPβ stimulates the program of autophagy gene 

expression and is sufficient to enhance autophagic protein degradation.  
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2.3.3 C/EBPβ stimulates the transcription of autophagy genes through direct promoter 

occupancy 

To determine whether C/EBPβ directly regulates autophagy gene transcription, we 

constructed luciferase reporter constructs for the proximal promoters of Gabarapl1, Bnip3, 

and Ctsl, most highly induced genes by C/EBPβ, and examined the effects of C/EBPβ on 

their transcriptional activity. Transient cotransfection of C/EBPβ strongly induces 

luciferase activity in reporter gene assays (Fig. 2.4A). Motif analyses revealed several 

putative C/EBPβ binding sites on these promoter sequences. We next performed chromatin 

immunoprecipitation (ChIP) analyses to assess direct occupancy of C/EBPβ in the native 

chromatin environment using chromatin extracts prepared from mouse livers. Compared to 

IgG control, we observed robust enrichment of C/EBPβ in the proximity of predicted 

binding sites on Bnip3, Ctsl and Gabarapl1 promoters. In addition, we also found that 

C/EBPβ is recruited to a C/EBPβ binding site residing in the first intron of Bnip3l (Fig. 

2.4B).  

 

2.3.4 C/EBPβ is regulated by both circadian and nutritional signals 

We next explored whether C/EBPβ itself is under the control of biological clock and 

nutritional status in mice. qPCR analysis of liver RNA isolated at different time points 

revealed that C/EBPβ mRNA expression exhibits a robust diurnal rhythm and peaks at 

ZT13 (Fig. 2.5A). Accordingly, C/EBPβ protein expression is also cyclic and reaches its 
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highest levels during the dark phase (Fig. 2.5B). We note that the induction of several 

autophagy genes tends to lag C/EBPβ protein expression, likely reflecting the time needed 

for the accumulation of these target mRNA. In response to starvation, hepatic C/EBPβ 

mRNA and protein expression is significantly elevated (Fig. 2.5C-D), accompanied by 

increased LC3-II and reduced p62 protein levels. In addition, mRNA expressions of 

autophagy genes, such as Ulk1, Gabarapl1, LC3B, Bnip3, Bnip3l, and Ctsl, are also 

induced following starvation (Fig. 2.5E).   

 

Unlike the central pacemaker residing in the suprachiasmatic nucleus, peripheral clocks are 

highly sensitive to feeding (Damiola et al, 2000). Altered meal timing, or restricted feeding, 

in mice results in phase resetting of peripheral clocks within several days. To examine 

whether the phase of C/EBPβ expression and autophagy is tightly aligned with the phase of 

liver clock, we subjected C/57Bl6J male mice to night feeding from ZT13 to ZT1 for a 

period of ten days and switch half of the group to day feeding from ZT1 to ZT13 for an 

additional four days (Fig. 2.6A). We harvested the livers at the end of the feeding switch 

and examined autophagy gene expression and autophagy markers. As shown in Fig. 2.6B, 

we found that, as expected, feeding switch leads to phase resetting of the expression of 

Bmal1, a core clock gene that is indispensable for oscillator function. The expression of 

other clock genes also undergoes phase resetting following restricted feeding (Fig. 2.S8). 

C/EBPβ expression is higher at ZT13 before food addition in the night-feeding group and 

this temporal pattern is completely reversed following the switch to day-feeding (Fig. 
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2.6B-C). Phase resetting of C/EBPβ expression is accompanied by a switch of autophagy 

genes, such as Gabarapl1 and Bnip3, as well as a phase reversal of p62 protein levels. 

These results suggest that C/EBPβ is downstream of circadian and nutritional signaling 

pathways.  

 

To test whether diurnal regulation of C/EBPβ is dependent on a functional tissue clock, we 

examined hepatic gene expression in liver-specific Bmal1 knockout mice. Hepatic Bmal1 

deficiency disrupts clock in the liver without affecting the central pacemaker (Lamia et al, 

2008; Storch et al, 2007), allowing us to dissect tissue-autonomous role of the clock 

oscillator on C/EBPβ and autophagy gene expression. Similar to previous studies, rhythmic 

expression of core clock genes is defective in liver-specific Bmal1 knockout mice (Fig. 

2.7A and 2.S9). Interestingly, the amplitude of C/EBPβ mRNA oscillation is greatly 

diminished in the Bmal1-deficient mouse livers. In addition, diurnal regulation of Bnip3 

and Ulk1 mRNA expression is nearly completely abolished, whereas the amplitude of 

Gabarapl1 mRNA expression is significantly reduced in the absence of Bmal1. Autophagy 

marker and flux assays indicate that while the steady-state levels of LC3 isoforms and p62 

are modestly affected, peak autophagy flux (ZT6-9) is significantly diminished in 

clock-deficient mouse livers (Fig. 2.7B-C). These results strongly suggest that cyclic 

expressions of C/EBPβ and autophagy genes are under the control of biological clock in a 

tissue-autonomous manner.  
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2.3.5 C/EBPβ is essential for physiological regulation of autophagy in the liver 

To critically assess whether C/EBPβ is required for physiological regulation of autophagy, 

we performed in vivo RNAi knockdown of C/EBPβ in the liver. We transduced mice with 

adenoviruses that express control shRNA or shRNA directed against C/EBPβ through tail 

vein injection (Cui et al, 2005). Recombinant adenoviruses efficiently and selectively 

transduce hepatocytes and have been widely used to knock down endogenous genes in the 

liver. We first examined whether C/EBPβ is required for the induction of autophagy in 

response to starvation. Compared to control, C/EBPβ mRNA and protein levels are 

significantly reduced in livers transduced with siC/EBPβ adenovirus (Fig. 2.8). Basal and 

starvation-induced expression of autophagy genes, such as Gabarapl1, Bnip3, and Ulk1, is 

severely diminished when endogenous C/EBPβ is depleted. Further, p62 protein levels are 

drastically elevated in the knockdown liver, consistent with a blockade of autophagy in the 

liver of C/EBPβ knockdown mice.  

 

We next examined whether C/EBPβ is responsible for driving the daily cycles of autophagy 

gene expression and autophagy process in the liver. We harvested liver from mice 

transduced with control or siC/EBPβ adenoviruses at four time points. As expected, 

rhythmic expression of C/EBPβ mRNA and protein is significantly diminished in livers 

transduced with siC/EBPβ adenovirus (Fig. 2.9A-B). Gene expression analysis revealed 

that C/EBPβ knockdown significantly perturbs circadian regulation of autophagy genes, 

such as Ulk1 and Gabarapl1 (Fig. 2.9A). Immunoblotting analyses indicate that while p62 
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protein is cyclic in control livers, its levels are constitutively elevated in the knockdown 

livers (Fig. 2.9B). In addition, diurnal regulation of LC3-I and LC3-II protein levels are 

also altered when hepatic C/EBPβ is reduced. To ascertain whether autophagy flux is 

reduced in response to C/EBPβ knockdown, we examined leupeptin-induced LC3-II 

accumulation during peak hours of autophagy (ZT6-9) and found that autophagy flux was 

nearly abolished in mouse livers transduced with siC/EBPβ (Fig. 2.9C). Together, we 

proposed that C/EBPβ serves as a link between nutritional and circadian signals and the 

autophagy gene program to coordinate rhythmic activation of autophagy (Fig. 2.9D).  

 

2.4 Discussion 

In this study, we characterized the temporal organization of autophagy in mouse tissues and 

identified C/EBPβ as a key factor that orchestrates circadian autophagy rhythm in the liver. 

Circadian induction of autophagy was observed in mouse liver, skeletal muscle, heart, and 

kidney (Fig. 2.1 and 2.S1). In the liver, autophagy flux is highest in the afternoon, rapidly 

decreases at night, and rises again throughout the light phase. Interestingly, the periods with 

low autophagy activity appear to correlate with feeding that occurs after the onset of dark 

phase in rodents. This correlation is consistent with the fact that autophagy activity is 

highly sensitive to nutritional status. In mice fasted for 24 hours, hepatic expression of 

several autophagy genes still appears to be cyclic, suggesting that circadian timing cues 

also impinge on the autophagy gene program. Furthermore, liver-specific Bmal1 

deficiency results in altered rhythmic expression of autophagy genes and significantly 
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reduced autophagy flux at peak hours, indicating that the core molecular clock is required 

for normal circadian regulation of autophagy.  

 

Interestingly, robust rhythmic autophagy gene expression was only observed in the liver 

and heart, suggesting that autophagy is likely regulated by distinct mechanisms in 

peripheral tissues (Fig. 2.S3 and 2.S4). Previous studies have demonstrated that FoxO3 is 

nutritionally regulated and induces autophagy in skeletal muscle (Mammucari et al, 2007; 

Zhao et al, 2007). However, it only modestly increases autophagy gene expression in 

hepatocytes, suggesting that distinct transcriptional networks may be responsible for the 

regulation of autophagy in different tissues. In support of this notion, we identified bZIP 

transcription factor C/EBPβ as a potent activator of the autophagy gene program and 

autophagic protein degradation. C/EBPβ stimulates the expression of a set of core 

autophagy genes as well as lysosomal genes and is required for the induction of autophagy 

in response to starvation. Recently, transcription factor EB (TFEB) was found to regulate 

lysosomal biogenesis and play an important role in autophagy (Sardiello et al, 2009; 

Settembre et al, 2011). While the significance of TFEB in circadian autophagy remains 

unknown, together these studies underscore an important role of transcriptional control in 

physiological regulation of autophagy. 

 

C/EBPβ appears to serve as a target of both nutritional and circadian signals in the liver. 

Rhythmic expression of C/EBPβ requires a functional tissue clock, suggesting that the 
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circadian pacemaker may exert direct effects on C/EBPβ expression. Consistently, we 

found that rhythmic autophagy gene expression persists in constant darkness and during 

starvation (Fig. 2.S5). As such, nutritional and circadian signals likely provide distinct cues 

that are integrated by C/EBPβ in physiological regulation of autophagy. The molecular 

mechanism underlying clock regulation of C/EBPβ remains unknown. The significance of 

C/EBPβ in autophagy is supported by the observations that starvation-induced autophagy 

gene expression and autophagy flux are impaired in response to RNAi knockdown. In 

addition, knockdown of C/EBPβ severely impairs autophagy gene expression and disrupts 

physiological regulation of autophagy throughout light/dark cycles. These studies strongly 

implicate C/EBPβ as a key integrator of nutritional and circadian signals that orchestrates 

cyclic autophagy activation in the liver.  

 

Rhythmic activation of autophagy in mammalian tissues likely provides a steady supply of 

nutrients throughout the light/dark cycles. The bulk degradation of cellular components 

provides amino acids and lipids that serve as a critical source of fuel and substrates for 

biosynthetic pathways in the tissue. In addition, these nutrients also enter systemic 

circulation and supply metabolites for organismal energy homeostasis, such as blood 

glucose control. Recent studies have implicated autophagy in the regulation of hepatic lipid 

metabolism, adipocyte function, and the pathogenesis of insulin resistance (Singh et al, 

2009; Yang et al, 2010). Impaired autophagy reduces triglyceride hydrolysis in lipid 

droplets and may participate in the pathogenesis of hepatic steatosis. Whether C/EBPβ is 
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involved in this context remains presently unknown. Given that disruption of circadian 

clock increases the risk for metabolic disorders (Copinschi et al, 2000), it is possible that 

aberrant temporal regulation of autophagy may contribute to altered hepatic lipid 

metabolism in obesity.   

 

 

2.5 Materials and methods 

Animals - All animal experiments were performed according to procedures approved by 

the University Committee on Use and Care of Animals. C57BL/6J male mice were fed ad 

lib and maintained in 12/12 h light/dark cycles. For circadian studies, four mice were 

dissected every 3 hrs for a period of 24 hrs. Tissues were immediately frozen for the 

preparation of protein lysates and total RNA. Bmal1 flox/flox mice were purchased from 

Jackson Laboratory (Stock #007668) and crossed with Albumin-Cre transgenic mice 

(Stock #003574) to obtain the liver-specific Bmal1 knockout mouse. In restricted feeding 

experiment, C57BL/6J male mice were fed exclusively at night (night feeding from ZT13 

to ZT1, NF) for a total of 10 days. On day 11, the animals were divided into two groups that 

were kept on NF or switched to day feeding (DF) from ZT1 to ZT13. Animals were 

sacrificed at two time points (ZT1 and 13) four days following the feeding switch. For in 

vivo autophagy flux measurements, mice were injected intraperitoneally a single dose of 

PBS or leupeptin (40 mg/kg). Tissues were harvested 3 hrs following the injection during 

which food was restricted. All the procedures were performed in a red dim light for 
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constant darkness condition. Pooled liver lysates from 3-5 mice were used for LC3 

immunoblotting. Quantitation of LC3-II protein was performed using ImageJ 

(http://rsbweb.nih.gov/ij/). The autophagy flux rate was determined by leupeptin-induced 

LC3-II accumulation normalized to β-actin.  

 

In vitro and in vivo adenoviral transduction - Primary hepatocytes were transduced with 

recombinant adenoviruses expressing GFP or C/EBPβ with moiety of infection from 

approximately 2 to 10. For in vivo adenoviral transduction, C57BL/6J male mice (3-5 per 

group) were transduced with purified adenoviruses through tail vein injection (0.2 OD per 

mouse), as previously described (Li et al, 2008). The titers of all adenoviruses were 

determined based on the expression of GFP and adenoviral gene AdE4 before use to ensure 

similar doses were administered in the studies.  

 

Protein and RNA analysis - Immunoblotting studies were performed using specific 

antibodies for LC3 (LC3-5F10, Nanotools), p62 (PW9860, Enzo Life Sciences), Gabarapl1 

(11010-1-AP, ProteinTech Group, Inc), Ulk1 (A7481, Sigma), Atg4c (AP1810c, Abgent), 

Atg7 (AP1813b, Abgent), C/EBPβ (sc-150, Santa Cruz), and β-actin (A4700, Sigma). For 

inhibitor treatments, transduced hepatocytes were incubated in the presence of vehicle, 

100nM concanamycin A, 10mM 3-MA, or 500nM PS341 for 60 or 90 min before harvest. 

Hepatic gene expression was analyzed by qPCR using specific primers as previously 

described (Liu et al, 2007) or in Table. 2.S1. Data represent mean ± SD. Microarray was 
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carried out using total RNA from primary hepatocytes transduced with GFP or C/EBPβ 

adenoviruses for 48 hrs using Affymetrix mouse 430 2.0 chips and analyzed using dChip 

software. 

 

ChIP Assay - Chromatin immunoprecipitation assay was performed essentially as 

described (Li et al, 2008). To obtain chromatin lysates from mouse livers, liver nuclei were 

isolated and then crosslinked in 1% formaldehyde for 15 min followed by sonication. After 

being precleared with protein G agarose beads, chromatin lysates were immunoprecipitated 

using antibodies against C/EBPβ (sc-150X, Santa Cruz) or control mouse IgG in the 

presence of BSA and salmon sperm DNA. Beads were extensively washed before reverse 

cross-linking. DNA was purified using a purification kit (QIAGEN) and subsequently 

analyzed by qPCR using primers flanking the predicted binding sites on promoter or intron 

regions (Table. 2.S1). 

 

Reporter gene assays - AD293 cells were transiently transfected with indicated plasmids 

using polyethylenimine (Polysciences, Inc) in triplicates. Equal amounts of DNA were 

used for all transfection combinations by adding appropriate vector DNA. Relative 

luciferase activities were determined 24 hrs following transfection.  

 

Transmission electron microscopy - Mice were first perfused with Sorensen's buffer (0.1M, 

pH7.4) and then Karnovsky's fixative buffer. The liver is post-fixed in Karnovsky's fixative 
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buffer for 24-48 hrs before embedding. The sample preparation for EM was performed by 

Microscopy & Image Analysis Laboratory at University of Michigan. The images were 

taken by Philips CM-100 transmission electron microscope. The quantitation of 

autophagosome density was carried out on 10-16 hepatocytes per time point. The 

autophagosome number was counted manually, and the cytoplasmic area is measured using 

software ImageJ.  

 

Protein degradation assay - Primary hepatocytes transduced with GFP or C/EBPβ 

adenovirus were first labeled in valine-free DMEM containing 0.1% BSA plus 1.16 μM [3H] 

L-valine (863.0 mCi/mmol, Moravek Biochemicals, Inc) for 24 hrs, washed, and then 

chased in DMEM containing additional 10 mM unlabeled valine for 4 hrs. Following chase, 

the hepatocytes were washed and incubated in the same chase media in the presence of 

DMSO or 10mM 3-MA. The culture media was collected 12 hr after the treatments. 

Radioactive amino acid content in culture media and total radioactivity in hepatocytes 

lysates were determined (Mizushima, 2004). Protein degradation rate is calculated by 

normalization of released [3H] L-valine to total radioactivity in the cell. 
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Table. 2.S1. qPCR primer list. 
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Fig. 2.1. Rhythmic induction of autophagy in the liver. (A) Immunoblotting of liver lysates 
using indicated antibodies. Pooled samples from 4 mice were used for each time point. ZT0 
and 12 represent the onset of light and dark cycles, respectively. The figure represents one 
of three independent sets of circadian samples. (B) Immunoblots showing LC3-II levels in 
the livers from mice injected with PBS (-) or leupeptin (+) 3 hrs before tissue harvest. 
Pooled samples from three mice were used for each lane. (C) Quantitation of in vivo 
autophagy flux. Following normalization to β-actin in B, relative leupeptin-induced LC3-II 
accumulation was calculated by subtracting LC3-II levels in PBS-treated from 
leupeptin-treated mice for each time point. Data represent mean ± SD of one representative 
experiment. (D) Transmission electron micrograph of liver sections at ZT5, 11, 17, and 23. 
The scale bar in the upper right corner of ZT5 figure represents 2 microns. The right lower 
corner shows the higher magnification highlighting a cytosolic region. Note the presence of 
double-membraned autophagosomes (arrow head). (E) Quantitation of autophagosome 
abundance in D. Data represent mean ± SE. * p<0.000001 (ZT11 vs. 17, n=10-16 cells). 
Student’s t-test was applied. 
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Fig. 2.2. Rhythmic induction of autophagy gene expression in the liver. (A) qPCR analysis 
of autophagy genes at different time points of mouse livers. Pooled samples from 4 mice 
were used for each time point. Data represent mean ± SD of one of three independent 
studies. Becn1 serves as an example gene with modest diurnal oscillation at mRNA level. 
(B) Immunoblots of autophagy proteins in mouse livers at indicated time points. Pooled 
samples from four mice were used for each time point.   
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Fig. 2.3. Induction of autophagy gene expression and autophagy process by C/EBPβ. (A) 
Clustering analysis of autophagy-related genes in primary hepatocytes transduced with 
GFP or C/EBPβ adenoviruses for 48 hrs. Blue and yellow represent low and high mRNA 
expression, respectively. (B) qPCR analysis of autophagy gene expression. Shown is 
fold-induction by C/EBPβ in primary hepatocytes 24 hrs (blue) or 48 hrs (red) following 
adenoviral transduction. Data represent mean ± SD of one representative experiment. (C) 
Protein expression of autophagy genes in hepatocytes transduced with GFP or C/EBPβ 
adenoviruses. Arrowheads point to two C/EBPβ isoforms generated from alternative 
translation start sites. (D) Immunoblots of total lysates from transduced primary 
hepatocytes treated with vehicle or concanamycin in triplicates. Blots with different 
exposure time were shown to illustrate LC3-I and LC3-II signals. (E) Quantitation of 
LC3-II protein levels following normalization to β-actin. Data represent mean ± SE. 
Student’s t-test was applied. * p<0.01. ** p<0.001. (F) Protein degradation assay in 
transduced hepatocytes in the absence (open) or presence of 3-MA (filled). Note that 
C/EBPβ-inducible proteolysis is sensitive to 3-MA treatment. Student’s t-test was applied. 
* p<0.05. 
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Fig. 2.4. C/EBPβ stimulates the transcription of autophagy genes through direct promoter 
occupancy. (A) Transcriptional assays using indicated promoter luciferase constructs in the 
presence of vector (open), 25 ng (grey), or 100 ng (filled) of C/EBPβ expression plasmid. 
Predicted C/EBPβ binding sites are indicated with solid bars. Data represent mean ± SE. 
Student’s t-test was applied. * p<0.01 (vector vs. 25ng C/EBPβ), **p<0.001 (vector vs. 
100ng C/EBPβ). (B) ChIP assay using control IgG (open) or C/EBPβ (filled) antibodies. 
Relative enrichment was determined by qPCR.  
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Fig.2.5. C/EBPβ expression is regulated by circadian and nutritional signals. (A and B) 
Hepatic C/EBPβ mRNA and protein expression at different time points. (C) 
Immunoblotting of liver lysates from fed, 24h-fasted or 24h-refed mice (after 24h-fast). 
Samples were collected at ZT4. (D and E) qPCR analysis of hepatic gene expression from 
fed, 24h-fasted or 24h-refed mice, the same group as in C. Pooled samples from 3-5 mice 
were used for each data point. Data in A, D, and E represent mean ± SD. 
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Fig. 2.6. Regulation of C/EBPβ and autophagy by restricted feeding. (A) The diagram 
indicates restricted feeding schedule and food availability (grey box, arrows indicate tissue 
harvest times). (B) qPCR analysis of hepatic gene expression in mice fed during dark (NF) 
or light (DF) phase. (C) Immunoblotting of liver lysates from mice undergoing restricted 
feeding. Pooled samples from 3-5 mice were used for each data point. Data in B represent 
mean ± SD. 
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Fig. 2.7. Liver autonomous clock is required for normal autophagy rhythm. (A) qPCR 
analysis of hepatic genes in control (filled diamond) and liver-specific Bmal1 knockout 
mice (open square, Bmal1 LKO). (B) Immunoblots of total liver lysates in control and 
Bmal1 LKO mice using indicated antibodies. (C) In vivo autophagy flux assay was 
performed at ZT6-9. Pooled samples from 3-4 mice were used for each group. Data in A 
represent mean ± SD.  
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Fig. 2.8. C/EBPβ is essential for physiological regulation of autophagy in the liver. (A) 
qPCR analysis of hepatic genes in mice transduced with control (Scrb) or siC/EBPβ (siC) 
adenoviruses under fed (open) and 16 hr-fasted (filled) conditions. Samples were harvested 
at ZT19. (B) Immunoblots of liver lysates in mice from A under fed and fasted conditions. 
Pooled samples from 3-5 mice were used for each data point. Data in A represent mean ± 
SD. 
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Fig. 2.9. C/EBPβ is essential for circadian autophagy regulation in the liver. (A) qPCR 
analysis of hepatic genes in mice transduced with control (Scrb, filled diamond) or 
siC/EBPβ (siC, open square) adenoviruses harvested at indicated time points. Data 
represent mean ± SD. (B) Immunoblots of liver lysates in mice from A at indicated time 
points. (C) In vivo autophagy flux assay was performed in mice transduced with control 
(Scrb) or siC/EBPβ (siC) adenoviruses at ZT6-9. Pooled samples from 3-5 mice per group 
were analyzed. (D) Model depicting circadian autophagy regulation through C/EBPβ. Note 
that C/EBPβ receives both circadian and nutritional input and coordinately regulates the 
program of autophagy gene expression. 
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Fig. 2.S1. Rhythmic induction of autophagy in the heart, skeletal muscle and kidney. 
Immunoblots of total tissue lysates using indicated antibodies. Ponceau S staining serves as 
loading control.  
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Fig. 2.S2. Oscillation of autophagy genes according to online database Circa. Graphs of 
autophagy gene expression generated using dataset provided at: 
http://wasabi.itmat.upenn.edu/circa (Hughes et al. 2009). Note that transcriptional profiling 
was performed every hour for a total of 48 hrs in livers from mice kept under constant 
darkness. 
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Fig.2.S3. Rhythmic expression of autophagy genes in the heart. Shown is qPCR analysis of 
Per1 and autophagy genes at different time points. Data represent mean ± SD. ZT0 and 12 
represent the onset of light and dark cycles, respectively.  
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Fig. 2.S4. Daily expression of autophagy genes in skeletal muscle. Shown is qPCR analysis 
of Per1 and autophagy genes at different time points. Data represent mean ± SD. ZT0 and 
12 represent the onset of light and dark cycles, respectively.  
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Fig. 2.S5. qPCR analysis of hepatic autophagy and core clock gene expression under 
starvation. The expression level in fed (filled diamond) or 24-hour fasted mice (open 
square) was plotted against Zeitgeber time. For fasted group, food had been withdrawn for 
exactly 24 hours before harvest. Pooled samples from 3-4 mice were used per data point. 
Data represent mean ± SD. 
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Fig. 2.S6. Immunoblotting analyses of total lysates from primary hepatocytes transduced 
with GFP or C/EBPβ adenoviruses in the presence of vehicle, 3-MA, or PS341. 
Immunoblots with different exposure time were shown to illustrate LC3-I and LC3-II in 
cells. Pooled samples from triplicates were used for each condition. 
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Fig. 2.S7. Interaction between C/EBPβ and mTOR pathways. (A) C/EBPβ overexpression 
does not alter nutrient regulation of mTOR, as indicated by S6 phosphorylation. The amino 
acid was deprived for 1 hour. The lanes shown were from same original immunoblots. (B) 
Inhibition of mTOR activity by Torin1 for 4 hours does not alter C/EBPβ expression in 
primary hepatocytes.  
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Fig. 2.S8. qPCR analysis of hepatic autophagy and core clock gene expression under 
restricted feeding. The expression levels at ZT1 and ZT13 in mouse fed during dark (NF) or 
light (DF) phase were displayed. Pooled samples from 3-5 mice were used for each data 
point. Data represent mean ± SD. 
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Fig. 2.S9. Bmal1 LKO abolishes the rhythmic expression of hepatic clock genes. qPCR 
analysis of hepatic clock genes in control (filled diamond) and liver-specific Bmal1 
knockout (open square) mice was performed. Pooled samples from 3-5 mice were used for 
each data point. Data represent mean ± SD. 
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CHAPTER 3 THE ROLE OF AUTOPHAGY IN NON-ALCOHOLIC 

FATTY LIVER DISEASE

3.1 Abstract 

Previous literatures indicate that autophagy plays a direct role in the mobilization of 

triglycerides stored in lipid droplets, and thus autophagy deficiency leads to massive 

accumulation of lipids in liver. These findings raised a very interesting possibility that 

autophagy may serve an important function in the physiological regulation of lipid 

metabolism in the liver and may contribute to the development of hepatic steatosis. 

However, by analyzing livers with FIP200 deletion in short-term or long-term, as well as 

those with Atg7 knockdown, we found that defective autophagy per se is not sufficient to 

cause fatty liver. After further examining the liver injury in autophagy deficient mice, we 

found that chronic suppression of autophagy leads to liver fibrosis. Our findings suggest 

that instead of causing steatosis, autophagy deficiency may serve as the long-sought second 

hit that drives the progression from relatively benign fatty liver to steatohepatitis (NASH). 

 

3.2 Introduction 

Non-alcoholic fatty liver disease (NAFLD) emerged as a significant public health 
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challenge worldwide. In the US, it was estimated to occur in 10%-46% of the general 

population (Polyzos et al, 2012). NAFLD encompassed a disease spectrum developed in 

the absence of excessive alcohol intake, ranging from simple steatosis (NAFL) to 

steatohepatitis (NASH). The histological hallmark for NAFL is the accumulation of lipid 

droplet as triglycerides within the hepatocytes, and the hallmarks for NASH include 

inflammatory cell infiltration, liver injury, and fibrosis (Hebbard & George, 2011). While 

the health of NAFL patients are largely unaffected, 10%-15% of NASH patients evolve to 

cirrhosis and even hepatocellular carcinoma (HCC) in ten years (Polyzos et al, 2012). 

Recent genome wide association studies (GWAS) have identified several genes involved in 

non-alcoholic fatty liver disease (NAFLD) (Chalasani et al, 2010; Speliotes et al, 2011; 

Stefano et al, 2008). Patatin-like phospholipase domain containing family member A3 

(PNPLA3) was identified as the most robust hit, associated with both hepatic fat level and 

hepatic inflammation (Stefano et al, 2008).  

 

It is known that 15%-30% NAFL patients will progress to NASH (Polyzos et al, 2012). 

However, the factors that determine this progression are still under investigation. Several 

models were proposed, including a traditional 'two-hit' model, a current 'multiple-hit' 

model, and an 'integrated response' model emphasizing the crosstalk between tissues 

(Hebbard & George, 2011; Polyzos et al, 2012). Nonetheless, who pulls the trigger in the 

progression is still under debate. Thus far, possible triggers include gut-derived bacterial 

toxins, cytokine imbalance, mitochondrial dysfunction, oxidative stress, ER stress, and so 
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on (Hebbard & George, 2011; Pagliassotti, 2012; Polyzos et al, 2012). Would there be a 

unified mechanism that could potentially explain all these trigger factors? 

 

Emerging evidence from recent reports points to a possible candidate, autophagy. 

Autophagy is a lysosome-dependent degradation process. Upon activation, 

autophagosomes are formed, enclose cytosolic components, and fuse to lysosome for 

degradation. It is important for removing damaged organelles, protein aggregates, and 

pathogens (Mizushima & Komatsu, 2011; Yang & Klionsky, 2010). It is activated in a 

circadian rhythmic manner in liver and several other tissues (Ma et al, 2011). Currently, 

four lines of evidences suggest that autophagy may play an important role in maintaining 

lipid homeostasis and preventing liver injury. First, autophagosome machinery proteins are 

found to co-localize with lipid droplets (Shibata et al, 2009; Singh et al, 2009), and 

autophagy is directly involved in removing lipid droplet (Singh et al, 2009). Second, 

autophagy activity is compromised by excessive lipid intake (Koga et al, 2010; Yang et al, 

2010). Third, autophagy deficiency in liver leads to liver tumors in the long run (Inami et al, 

2011; Takamura et al, 2011). Last, Mallory-Denk bodies, cytoplasmic hyaline inclusions in 

hepatocytes of patients with hepatitis, contain p62, an adaptor for autophagosome cargo 

(Zatloukal et al, 2007). 

 

Based on these data, we hypothesized that autophagy deficiency plays a key role in 

entering the vicious cycle of lipid accumulation, and mediating the deterioration of 
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steatosis. To our surprise, we did not observe a lipid accumulation in the livers with long 

term or short term autophagy deficiency, by using FIP200 liver specific knockout and Atg7 

knockdown models. Nonetheless, we observed a striking liver injury in the autophagy 

deficient mouse livers with hallmarks of NASH, including inflammatory cell infiltration, 

hepatocellular ballooning and fibrosis. Our data indicate autophagy could play a crucial 

role in preventing liver injury and progression from NAFL to NASH. However, this role is 

unlikely to attribute to its function in removing lipid droplets. Moreover, considering the 

complex phenotypes of autophagy deficiency in lipid metabolism, our study prompted 

further investigation in other roles that autophagy may play in maintaining lipid 

homeostasis.  

 

3.3 Results 

3.3.1 Liver-specific FIP200 knockout mice have defective autophagic degradation 

To examine the influence of autophagy deficiency on hepatic lipid metabolism, we 

generated liver-specific FIP200 knockout mice (FIP200 LKO) by breeding FIP200 

flox/flox mice with transgenic mice expressing Cre under liver specific albumin promoter 

(Gan et al, 2006). In FIP200 LKO, protein level of FIP200 is significantly decreased (Fig. 

3.1A, Fig. 3.S1). The residual FIP200 protein in liver is likely due to the FIP200 expressed 

by the infiltrated inflammatory cells (Fig. 3.4E). Consistent with other autophagy 

deficiency mouse models, autophagic degradation process in FIP200 LKO liver is severely 
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blocked, causing decreased autophagy flux, accumulation of insoluble protein aggregates 

comprising ubiquitinated protein, p62, mitochondria and autophagosome marker such as 

LC3 (Fig. 3.1A-D). The formation of these aggregates has been reported to be due to 

impaired turnover of p62 (Komatsu et al, 2010; Komatsu et al, 2007). Interestingly, the 

Mallory-Denk body, one hallmark for hepatitis, comprises abundant amount of p62 (Strnad 

et al, 2008). Under electron microscope, we observed clusters of abnormal vacuoles 

containing a large number of small vesicles and structures similar to multilamellar bodies 

(MLBs) only present in FIP200 LKO (Fig. 3.1E). Besides, Ulk1, which requires FIP200 for 

appropriate phosphorylation, increases in protein level when FIP200 is deleted (Fig. 3.1A) 

(Hara et al, 2008). Atg7, another essential autophagy gene, is decreased dramatically in 

FIP200 LKO (Fig. 3.1A).  

 

3.3.2 Lipid content does not increase under chronic or acute deletion of FIP200 

regardless of dietary conditions 

To test whether hepatic lipid metabolism is affected by autophagy deficiency, we first 

examined the liver triglyceride (TG) content in chow fed FIP200 LKO and control mice 

under random fed and 16-h fasted conditions. Under fed condition, lipid droplet deposition 

in the liver is very low in both FIP200 LKO and control mice (Fig. 3.2A, B). Under fasted 

condition, the surging influx of free fatty acid from adipose tissue boosts triglyceride 

synthesis in the liver. While a significant increase in lipid accumulation occurs in control 

mice, the lipid content in FIP200 LKO liver only mildly increases by fasting (Fig. 3.2B). 
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This dramatic difference can be also visualized as lipid droplet amount in the liver section 

using Oil Red O staining (Fig. 3.2A). Consistent with the idea that TG secretion is 

proportional to the lipid in the liver, plasma TG are also lower in knockout mice (Fig. 

3.2C).  

 

To examine whether autophagy deficiency can cause further lipid accumulation under 

obese condition, we measured liver TG in control and FIP200 LKO mice under fed 

condition and 16-fasted condition after feeding high-fat diet for 5 weeks. As shown in Fig. 

3.2E, liver TG content in FIP200 LKO is similar to control in fed condition and is 

significantly lower under fasted condition. This can also be observed in Oil Red O staining 

(Fig. 3.2D). The decrease of liver TG content in FIP200 LKO does not appear to be caused 

by increased VLDL secretion, as the plasma TG does not differ among groups (Fig. 3.2F). 

 

To exclude the possibility that chronic absence of FIP200 affects food absorption, we tested 

our hypothesis in mice that are deleted with FIP200 after 1-month high-fat feeding. As 

FIP200 flox/flox mice were equally fed with high-fat diet before the injection, the fat loads 

should be comparable in the two groups. After feeding high-fat diet for a month, we 

injected these mice with either GFP or Cre adenovirus, which specifically infects liver. As 

expected, autophagic degradation is blocked in the mouse livers infected with Cre virus 

(Fig. 3.3A). In this acute FIP200 deficiency model, we also observed a decrease of TG 

contents in Cre infected mouse livers (Fig. 3.3B, C). This finding suggests the decrease in 
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liver TG is a specific effect of autophagy deficiency.  

 

3.3.3 Autophagy is essential for preventing liver injury, inflammation and progression 

to fibrosis 

Although autophagy deficiency in FIP200 mouse model is not sufficient to cause hepatic 

steatosis, it could still be crucial in determining the progression to NASH. So we first 

examined liver injury by measuring serum aminotransferase activity, Aspartate 

Aminotransferase (AST) and Alanine Aminotransferase (ALT). We observed a 22-fold and 

6-fold induction in FIP200 LKO’s ALT and AST respectively (Fig. 3.4A, B). We then 

performed real-time PCR analysis to examine the mRNA expression of genes involved in 

inflammation and liver fibrosis. The expression of Acta2, Ccl5, Ccl2, Tgfb1, Col1a1, and 

Mmp13 are all significantly elevated in FIP200 LKO livers (Fig. 3.4C). In addition, we 

examined the phosphorylation of JNK at T183 and Y185 sites, an indicator for cell stress. 

We found a dramatic increase in phosphorylated JNK in FIP200 LKO liver lysates, while 

the total JNK amount remains the same (Fig. 3.4D). The results of all three analyses point 

to a more severe liver injury, inflammation, and higher chance of developing liver fibrosis. 

 

To provide histological evidences to support this notion, we performed hematoxylin and 

eosin stain (H&E stain) to stain the nucleus and cellular structures. We found a strikingly 

large number of inflammatory cells in FIP200 LKO livers, which is absence in control, 

even though all of them were fed with high-fat diet (Fig. 3.4E). Furthermore, we performed 
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Sirius Red Collagen Staining, counterstained proteins with Fast Green (Fig. 3.4F). In the 

FIP200 LKO liver sections, we observed chicken-wire pattern with collagen surrounding 

hepatocytes indicating pericellular fibrosis as well as portal-portal bridging fibrosis (Fig. 

3.4G). We conclude that hepatic autophagy activity is essential to prevent liver injury and 

fibrosis.  

 

3.3.4 Short-term knockdown of Atg7 or acute inhibition of lysosomal degradation 

increases liver injury 

To further demonstrate that autophagy deficiency is insufficient to lead to lipid 

accumulation, we obtained the shAtg7 adenovirus from the Hotamisligil lab (Yang et al, 

2010). We first confirmed the knock-down efficiency of shAtg7 adenovirus in vivo. As 

expected, LC3 and p62 trends higher in shAtg7 treated mouse livers (data not shown). Then 

we compared the liver TG in shAtg7 treated mice with scrambled shRNA treated mice. 

Under both chow and high-fat diet fed conditions, liver TG does not increase in shAtg7 

treated mice (Fig. 3.S2A, Fig. 3.5A). This observation indicates that at least short-term 

suppression of autophagy through Atg7 knockdown is not sufficient to cause lipid 

accumulation. This is somewhat consistent with previous report showing liver TG is 

decreased under fasted condition in Atg7 knockout mice at P22 and 8-week-old (Shibata et 

al, 2009).  

 

We then examined whether short-term Atg7 knock-down can cause liver injury. We 
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measured plasma ALT and AST in both chow and high-fat diet fed mice. Under both 

situations, Atg7 knock-down mice show significantly more severe liver injury (Fig. 3.S2C, 

D, and Fig. 3.5C, D). 

 

To further study whether autophagy deficiency can serve as a ‘hit’ in promoting the 

progression to NASH, we examined the effect of autophagy inhibition in High-fat/LPS 

model, a ‘two-hit’ NASH model mimicking the challenge from excessive lipid and leaking 

gut (Hebbard & George, 2011). When we inhibited autophagy flux by leupeptin, a chemical 

inhibitor of lysosomal H+ pump, we observed a robust accumulation of LC3-II, indicating 

that the autophagy flux is dramatically suppressed (Fig. 3.5E). Interestingly, when we 

injected the high-fat diet fed mice with LPS, the autophagy flux increases (Fig. 3.5E). This 

may suggest a need for activating autophagy flux to respond to bacteria invasion. We then 

evaluated the liver injury by measuring ALT and AST level in the plasma. In contrast to the 

mild induction of ALT and AST value by LPS treatment alone or leupeptin treatment alone, 

the combination of leupeptin and LPS treatment leads to a synergetic boost in liver injury 

(Fig. 3.5F, G). This result indicates that autophagy may be required to guard liver from not 

only intracellular stress but also intestinal bacteria insult. This finding suggests that 

autophagy deficiency can be an important trigger for the progression to NASH.  

 

3.4 Discussion 

In this study, we examined the role of autophagy in formation and progression of NAFLD. 
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We found that autophagy deficiency is not sufficient to lead to hepatic steatosis. 

Nonetheless, autophagy deficiency could be an important trigger that determines the 

progression from NAFL to NASH.  

 

A number of reports have proposed a tight relationship between autophagy and lipid 

metabolism. The dominant working hypothesis is that autophagosomes directly sequester 

entire or a portion of lipid droplet and deliver it for degradation in lysosome. Before the 

discovery of this novel lipolysis model, lipid droplets were degraded through cytosolic 

lipases, including adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and 

monoacylglycerol lipase (MGLL) (Walther & Farese, 2012). After the first report on 

removal of lipid droplet by autophagy, several publications mentioned the findings of 

hepatic lipid accumulation in different autophagy deficiency mouse models (Jaber et al, 

2012; Takamura et al, 2011; Xiong et al, 2012).  

 

However, the field requires further scrutiny for the following three reasons. First, it is 

unclear whether the age of mice plays a role in lipid accumulation phenotype in autophagy 

deficiency mouse model. For example, Atg7 knockout mice do not have increased liver 

triglyceride content at all ages. Kominami and Uchiyama lab has reported decreased liver 

triglyceride content in Atg7 knockout mice under fasting condition at P22 and 8-week-old 

(Shibata et al, 2009). Second, it remains uncharacterized whether chronic liver damage or 

other pathology could alter hepatic lipid metabolism in the mouse models. For example, 
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increased lipid accumulation in Atg5 mosaic knockout mice was observed at 19 month old, 

whereas multiple tumors have already formed in the liver since 12 month old (Takamura et 

al, 2011). In another example of Vps34 liver specific knockout mice, although increased 

lipid accumulation was observed in these mice, the significantly smaller size of knockout 

mice indicates a systematic defect, putting the comparison under question (Jaber et al, 

2012). Third, our results using long term as well as short term liver specific FIP200 

knockout mice under various dietary conditions indicate autophagy deficiency is not 

sufficient to lead to excess lipid accumulation. We strengthened our conclusion by 

performing experiments in liver specific Atg7 knockdown mice. Based on these three 

reasons, it will be very helpful for the field to examine lipid phenotype in different 

autophagy deficiency models side by side under the same age, health condition, and 

nutritional condition.  

 

Although the relationship between autophagy and lipid metabolism seems to be 

complicated, abundant evidences indicate autophagy is essential for liver health and 

autophagy deficiency could be a trigger for progression to NASH. Hepatic deletion of Atg5 

or Atg7 leads to the accumulation of p62-dependent protein aggregates (Komatsu et al, 

2007; Komatsu et al, 2005; Ni et al, 2012). In addition, Atg5 mosaic knockout mice and 

Atg7 liver specific knockout mice have been found to develop liver tumors at about 1 year 

old (Inami et al, 2011; Takamura et al, 2011). In our study, we observed the development of 

NASH in FIP200 liver specific knockout mice, which could be the early stage before liver 
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tumors. We proposed that during the progression from NAFL to NASH, the deficiency of 

autophagy derived from genetic, nutritional, or chemical causes, could synchronize with 

other ‘hits’ to boost the transition. Further examination on autophagy activity in human 

NAFLD patients, deeper GWAS analysis in patients with liver diseases, and the 

identification of autophagy-suppressing nutritional or chemical stimuli are needed to fully 

strengthen this model. In addition, given several drugs can promote autophagy activity, this 

model may point to a new direction of therapy to prevent progression to NASH.  

 

3.5 Materials and methods 

Animals - All animal experiments were performed according to procedures approved by the 

University Committee on Use and Care of Animals. The strain of FIP200 flox/flox mice 

was a gift from Jun-lin Guan Lab (Gan et al, 2006). Albumin-Cre mice were purchased 

from Jackson Laboratory. High-fat diet used for experiment is purchased from Research 

Diets (D12492). Genotyping of FIP200 LKO using primer P1, P2, and P3 follows previous 

protocol (Gan et al, 2006). For High fat/LPS model, wild type male mice were fed with 

high fat diet for 1 month. On the day of harvest, the mice were injected intraperitoneally a 

single dose of LPS or saline (0.8mg/kg) at 11am and a single dose of leupeptin (40mg/kg) 

or phosphate-buffered saline (PBS) at 2pm. Tissues were harvested at 5pm and food was 

restricted during 2-5pm.  

 

In vivo adenoviral transduction and metabolic analyses - 3-month-old FIP200 flox/flox 
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male mice (3–5 per group) fed with high-fat diet for 1 month were transduced with 

purified GFP or Cre adenoviruses through tail vein injection (0.2 OD per mouse), as 

previously described (Li et al, 2008). The mice were harvested 7 days post infection 

under 16h-fasted condition. For Atg7 knock-down experiments, siAtg7 adenovirus was 

generated by Hotamisligil Lab (Yang et al, 2010). Wild type male mice fed with either 

chow or high-fat diet were transduced with purified scrambled (0.18OD per mouse) or 

siAtg7 (0.1OD per mouse) adenovirus through tail vein. The mice were harvested 6 days 

post infection under 16h-fasted condition. The titres of all adenoviruses were determined 

based on the expression of GFP and adenoviral gene AdE4 before use to ensure similar 

doses were administered in the studies. Triglyceride, AST, ALT concentrations were 

measured using commercial assay kits (Sigma, Stanbio Laboratory).  

 

Protein and RNA analysis - Immunoblotting studies were performed using specific 

antibodies for FIP200 (10043-2-AP, Proteintech Group), LC3 (LC3-5F10, Nanotools), 

p62 (PW9860, Enzo Life Sciences), Ulk1 (A7481, Sigma), and Atg7 (AP1813b, Abgent). 

The fractionation of liver lysates to separate soluble and insoluble proteins was performed 

following published protocol (Waguri & Komatsu, 2009). Hepatic gene expression was 

analyzed by qPCR using specific primers in Table 3.S1. Data represent mean±SE. 

 

Transmission electron microscopy - 2-month-old control and FIP200 LKO male mice 

were first perfused with Sorensen's buffer (0.1 M, pH 7.4) and then Karnovsky's fixative 

http://www.nature.com/emboj/journal/v30/n22/suppinfo/emboj2011322as1.html
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buffer. The liver is post-fixed in Karnovsky's fixative buffer for 24–48 h before 

embedding. The sample preparation for EM was performed by Microscopy and Image 

Analysis Laboratory at University of Michigan. The images were taken by Philips 

CM-100 transmission electron microscope.  

 

Immunohistochemistry, H&E, Oil Red O staining, and Sirius Red staining - 

Paraffin-embedded tissue sections were deparaffinized in xylene, then rehydrated through a 

graded ethanol series (100, 95, 80, and 70%). Immunohistochemistry using antibodies 

against p62 (PW9860, Enzo Life Sciences), Tom20 (sc-11415, Santa Cruz BioTech), or 

Ubiquitin (P4D1, sc-8017, Santa Cruz BioTech) were performed after microwave antigen 

retrieval (20 min) in 10 mM sodium citrate. A 5% solution of bovine serum albumin in PBS 

with 0.5% Tween 20 was used as blocking buffer. Sections were incubated with the primary 

antibodies overnight at 4 degree. Immunoperoxidase staining was detected using the 

Vectastain Elite ABC and the diaminobenzidine substrate kits according to manufacturer’s 

instructions (Vector Laboratories, Burlingame, CA). Nuclei were counterstained with 

Gill’s hematoxylin. For Sirius Red staining, paraffin sections were de-waxed and hydrated. 

Then stain nuclei with haematoxylin for 8 minutes, and wash the slides for 10 minutes in 

running tap water. Stain in picro-sirius red for one hour. After that, wash in two changes of 

acidified water and dehydrate in three changes of 100% ethanol. Clear in xylene and mount 

in a resinous medium. H&E staining and Oil Red O staining were performed as previously 



 

84 

described (Ma et al, 2010). 
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Table. 3.S1. qPCR primer list. 
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Fig. 3.1. FIP200 LKO mice have defective autophagic degradation in the liver. (A) Protein 
expression of autophagy genes in the liver and heart of control and FIP200 LKO. Ponceau 
S stain serves as an internal control. (B) In vivo liver autophagy flux assay of control and 
FIP200 LKO. The amount of increase of LC3-II by leupeptin injection represents the 
autophagy flux. * refers to a non-specific band. (C) Immuno-staining of p62 or ubiquitin in 
liver sections of control and FIP200 LKO mice. The slides were counter-stained with H&E 
(for p62) or Hematoxylin (for ubiquitin). Scale bar represents 40μm. (D) Protein 
expression of ubiquitin, p62, and LC3 in soluble and insoluble fractions of liver lysates 
from control and FIP200 LKO mice. Ponceau S stain serves as an internal control. (E) 
Electron microscopy image showing abnormal intracellular structures only present in 
FIP200 LKO mouse liver. Red arrows point to abnormal vacuoles containing a large 
number of small vesicles and structures similar to multilamellar bodies (MLBs). Scale bar 
under the left image represents 0.5μm. 
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Fig. 3.2. Lipid content does not increase under chronic deletion of FIP200 regardless of 
dietary conditions. (A) Oil Red O staining of liver sections from control and FIP200 LKO 
mice under fed or fasted condition. Scale bar represents 100μm. The third row shows the 
enlarged images from insets of the images in second row. Scale bar represents 20μm. (B) 
and (C) Liver triglyceride content (B) and plasma triglyceride level (C) of control and 
FIP200 LKO mice under fed or fasted condition. Data represent mean ± SE. Student’s t-test 
was applied. * p<0.05, ** p<0.01, *** p<0.001. (D) Oil Red O staining of liver sections 
from control and FIP200 LKO mice fasted overnight after 7-week high fat diet feeding. 
Scale bar represents 40μm. (E) and (F) Liver triglyceride content (E) and plasma 
triglyceride level (F) of control and FIP200 LKO mice under fed or fasted condition after 
4-week high fat diet. Data represent mean ± SE. Student’s t-test was applied. ** p<0.01.  
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Fig. 3.3. Lipid content does not increase under acute deletion of FIP200 after 1-month high 

fat diet. (A) Protein expression in liver lysates of GFP or Cre infected FIP200 flox/flox 

mice. Ponceau S stain serves as an internal control.(B) Liver triglyceride content of GFP or 

Cre infected FIP200 flox/flox mice. Data represent mean ± SE. Student’s t-test was applied. 

* p<0.05. (C) Oil red O staining of liver sections from GFP or Cre infected FIP200 

flox/flox mice. Scale bar represents 40μm. 
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Fig. 3.4. Autophagy deficiency in FIP200 liver specific knockout mice causes increased 
inflammation and liver injury leading to hepatic fibrosis. (A) and (B) Serum ALT level (A) 
and AST level (B) in control and FIP200 LKO mice. Data represent mean ± SE. Student’s 
t-test was applied. * p<0.05. ** p<0.01. (C) qPCR analysis on mRNA expression of genes 
involved in inflammation and fibrosis. Data represent mean ± SE. Student’s t-test was 
applied. * p<0.05, ** p<0.01. (D) Phosphorylation of JNK on T183/Y185 sites in liver 
lysates of control and FIP200 LKO mice. Total JNK and ponceau S stain serve as positive 
controls. (E) H&E stain of liver sections from control and FIP200 LKO mice after high fat 
diet feeding for 4 weeks. Red arrow points to clusters of inflammatory cells. Scale bar 
represents 100μm. (F) Sirius Red/Fast Green staining of liver sections from control and 
FIP200 LKO mice after high fat diet feeding for 4 weeks. Red arrow points to collagen 
deposits. Scale bar represents 500μm. 
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Fig. 3.5. Short-term knockdown of Atg7 or acute inhibition of lysosomal degradation 
causes liver injury. (A)-(D) Liver triglyceride content (A), plasma triglyceride level (B), 
plasma ALT level (C), and plasma AST level (D) of fasted high fat diet fed mice infected 
with shRNA against Atg7 or scrambled (Scrb) RNA. Data represent mean ± SE. Student’s 
t-test was applied. * p<0.05. (E) Protein expression of LC3 in liver lysates of high fat diet 
fed mice injected with saline/PBS, saline/leupeptin, LPS/PBS, and LPS/leupeptin. Ponceau 
S serves as an internal control. (F)-(G) Plasma AST level (F) and plasma ALT level (G) of 
mice examined in E. Data represent mean ± SE. Student’s t-test was applied. * p<0.05, ** 
p<0.01, *** p<0.001. (H) Model depicting the potential role of autophagy in the 
progression of NASH.  

 

 
  



 

91 

Fig. 3.S1. FIP200 is deleted in the liver of Albumin-Cre;FIP200 flox/flox mice. (A) 
genotyping of Albumin-Cre;FIP200 flox/flox mice. P1, P2, and P3 refer to three primers 
previously used (Gan et al, 2006). P2 and P3 amplify franking flox region. The weaker flox 
allele band in FIP200 LKO liver may be derived from non-hepatocytes in the liver. P1 and 
P3 confirm the deletion of floxed region. (B) FIP200 protein expression in livers of control 
and FIP200 LKO mice. The size of FIP200 is confirmed by comparing with the 
overexpressed FIP200 in cell culture lysates. Ponceau S stain serves as an internal control. 
* refers to a non-specific band. 
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Fig. 3.S2. Atg7 knockdown in chow fed mice is not sufficient to cause lipid accumulation 
under fasted condition, but it leads to liver injury. (A)-(D) Liver triglyceride content (A), 
plasma triglyceride level (B), plasma ALT level (C), and plasma AST level (D) of fasted 
chow fed mice infected with shRNA against Atg7 or scrb RNA. Data represent mean ± SE. 
Student’s t-test was applied. * p<0.05, ** p<0.01. 

 

 
 

 

  



 

93 

3.7 References 

Chalasani N, Guo X, Loomba R, Goodarzi M, Haritunians T, Kwon S, Cui J, Taylor K, 
Wilson L, Cummings O, Chen Y-DI, Rotter J, Nonalcoholic Steatohepatitis Clinical 
Research N (2010) Genome-wide association study identifies variants associated with 
histologic features of nonalcoholic Fatty liver disease. Gastroenterology 139: 1567 
 
Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan J-L (2006) Role of FIP200 in cardiac and 
liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J 
Cell Biol 175: 121-133 
 
Hara T, Takamura A, Kishi C, Iemura S-I, Natsume T, Guan J-L, Mizushima N (2008) 
FIP200, a ULK-interacting protein, is required for autophagosome formation in 
mammalian cells. J Cell Biol 181: 497-510 
 
Hebbard L, George J (2011) Animal models of nonalcoholic fatty liver disease. Nature 
reviews Gastroenterology & hepatology 8: 35-44 
 
Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, 
Iwadate M, Yamamoto M, Lee M-S, Tanaka K, Komatsu M (2011) Persistent activation of 
Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275-284 
 
Jaber N, Dou Z, Chen J-S, Catanzaro J, Jiang Y-P, Ballou L, Selinger E, Ouyang X, Lin R, 
Zhang J, Zong W-X (2012) Class III PI3K Vps34 plays an essential role in autophagy and 
in heart and liver function. Proc Natl Acad Sci U S A 109: 2003-2008 
 
Koga H, Kaushik S, Cuervo A (2010) Altered lipid content inhibits autophagic vesicular 
fusion. Faseb J 24: 3052-3065 
 
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y-S, Ueno 
I, Sakamoto A, Tong K, Kim M, Nishito Y, Iemura S-i, Natsume T, Ueno T, Kominami E, 
Motohashi H, Tanaka K, Yamamoto M (2010) The selective autophagy substrate p62 
activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. 
Nature cell biology 12: 213-223 
 
Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I, Ezaki 
J, Murata S, Hamazaki J, Nishito Y, Iemura S-I, Natsume T, Yanagawa T, Uwayama J, 
Warabi E, Yoshida H, Ishii T, Kobayashi A et al (2007) Homeostatic levels of p62 control 
cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163 
 
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi 
Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced 



 

94 

and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425-434 
 
Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, Lin JD (2008) Genome-wide 
coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid 
metabolism. Cell Metab 8: 105-117 
 
Ma D, Li S, Lucas E, Cowell R, Lin J (2010) Neuronal inactivation of peroxisome 
proliferator-activated receptor γ coactivator 1α (PGC-1α) protects mice from diet-induced 
obesity and leads to degenerative lesions. J Biol Chem 285: 39087-39095 
 
Ma D, Panda S, Lin J (2011) Temporal orchestration of circadian autophagy rhythm by 
C/EBPβ. EMBO J 30: 4642-4651 
 
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 
728-741 
 
Ni H-M, Boggess N, McGill M, Lebofsky M, Borude P, Apte U, Jaeschke H, Ding W-X 
(2012) Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against 
acetaminophen-induced liver injury. Toxicological sciences : an official journal of the 
Society of Toxicology 127: 438-450 
 
Pagliassotti M (2012) Endoplasmic reticulum stress in nonalcoholic fatty liver disease. 
Annu Rev Nutr 32: 17-33 
 
Polyzos S, Kountouras J, Zavos C, Deretzi G (2012) Nonalcoholic fatty liver disease: 
multimodal treatment options for a pathogenetically multiple-hit disease. Journal of 
clinical gastroenterology 46: 272-284 
 
Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M, Arai H, Tanaka K, 
Kominami E, Uchiyama Y (2009) The MAP1-LC3 conjugation system is involved in lipid 
droplet formation. Biochem Biophys Res Commun 382: 419-423 
 
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A, Czaja 
M (2009) Autophagy regulates lipid metabolism. Nature 458: 1131-1135 
 
Speliotes E, Yerges-Armstrong L, Wu J, Hernaez R, Kim L, Palmer C, Gudnason V, 
Eiriksdottir G, Garcia M, Launer L, Nalls M, Clark J, Mitchell B, Shuldiner A, Butler J, 
Tomas M, Hoffmann U, Hwang S-J, Massaro J, O'Donnell C et al (2011) Genome-wide 
association analysis identifies variants associated with nonalcoholic fatty liver disease that 
have distinct effects on metabolic traits. PLoS Genet 7 
 
Stefano R, Julia K, Chao X, Alexander P, David C, Len AP, Eric B, Jonathan CC, Helen HH 



 

95 

(2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver 
disease. Nature Genetics 40 
 
Strnad P, Zatloukal K, Stumptner C, Kulaksiz H, Denk H (2008) Mallory-Denk-bodies: 
lessons from keratin-containing hepatic inclusion bodies. Biochimica et biophysica acta 
1782: 764-774 
 
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, 
Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. 
Genes Dev 25: 795-800 
 
Waguri S, Komatsu M (2009) Biochemical and morphological detection of inclusion 
bodies in autophagy-deficient mice. In Methods in enzymology, Volume 453: Autophagy in 
disease and clinical applications. Part C, Klionsky DJ (ed). San Diego, Calif.: Academic 
Press/Elsevier 
 
Walther T, Farese R (2012) Lipid droplets and cellular lipid metabolism. Annu Rev 
Biochem 81: 687-714 
 
Xiong X, Tao R, Depinho R, Dong X (2012) The Autophagy-related Gene 14 (Atg14) Is 
Regulated by Forkhead Box O Transcription Factors and Circadian Rhythms and Plays a 
Critical Role in Hepatic Autophagy and Lipid Metabolism. J Biol Chem 287: 39107-39114 
 
Yang L, Li P, Fu S, Calay E, Hotamisligil G (2010) Defective hepatic autophagy in obesity 
promotes ER stress and causes insulin resistance. Cell Metab 11: 467-478 
 
Yang Z, Klionsky D (2010) Eaten alive: a history of macroautophagy. Nature cell biology 
12: 814-822 
 
Zatloukal K, French S, Stumptner C, Strnad P, Harada M, Toivola D, Cadrin M, Omary M 
(2007) From Mallory to Mallory-Denk bodies: what, how and why? Experimental cell 
research 313: 2033-2049 
 
 

 

  



 

96 

CHAPTER 4 CONCLUSIONS AND FUTURE DIRECTIONS

4.1 Summary 

Autophagy is an essential cellular process responsible for eliminating long half-life 

proteins, protein aggregates, damaged organelles, and pathogens. However, how autophagy 

is regulated by physiological signals and its significance in hepatic metabolism remain 

incompletely understood.  

 

In this thesis, we first explored the temporal regulation of autophagy and its underlying 

mechanisms. By examining autophagy flux at a series of time points throughout 24 hours, 

we found that autophagy is most active during the day time. Meanwhile, we discovered that 

the expression of genes involved in autophagy pathways displays an unexpected oscillatory 

pattern throughout the light/dark cycles. These observations led us to examine the 

transcriptional regulation of autophagy circadian rhythm. Functional screening of 

transcription factors important for clock or nutritional signaling resulted in the 

identification of C/EBPβ as a potent regulator of autophagy. C/EBPβ overexpression is 

sufficient to induce autophagy in primary hepatocytes, and it is required for normal 

autophagy activity. Moreover, its mRNA expression is regulated by both clock and 

nutritional signals. Our data indicates that C/EBPβ is an essential mediator for clock and 
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nutritional signals to regulate autophagy circadian rhythm. In the following discussion 

(Chapter 4.2.1-4.2.3), I will elaborate on our experiments that support key conclusions, and 

propose three potential functions that autophagy circadian rhythm may play in maintaining 

hepatic homeostasis.  

 

In addition to studying circadian regulation of autophagy, we examined the role of 

autophagy in hepatic lipid metabolism and non-alcoholic steatohepatitis (NASH). Previous 

studies suggest that autophagy deficiency may exacerbate lipid accumulation in fatty liver 

and chronic autophagy deficiency leads to hepatic adenoma (Inami et al, 2011; Takamura et 

al, 2011; Yang et al, 2010). Based on these data, we set out to test the hypothesis that 

autophagy contributes to NAFLD formation and progression. We first examined whether 

autophagy deficiency leads to excessive lipid accumulation. In contrary to the concept that 

autophagy is responsible for lipid hydrolysis and fat oxidation, we found that autophagy 

deficiency is not sufficient to cause hepatic steatosis. We then examined whether 

autophagy is involved in the progression of NAFLD to NASH. Using multiple autophagy 

inhibition mouse models, we found that autophagy deficiency accelerates the liver injury in 

NAFLD mouse model. Our results suggest that autophagy deficiency is not sufficient to 

cause fatty liver and autophagy plays an important role in the progression of NAFLD to 

NASH. In the following discussion (Chapter 4.2.4-4.2.6), I will focus on our key studies, 

explore the potential causes for autophagy deficiency, and describe the new direction of 

therapy for NAFLD by autophagy-enhancing drugs.  
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4.2 Key conclusions and future directions 

4.2.1 The circadian rhythm of autophagy activity 

In the 1970s, a series of electron microscopy studies demonstrated that the number of 

autophagic vacuoles varies throughout the day in several tissues, including the inner 

segment of retina rod cells, cardiomyocytes, hepatocytes, pancreatic acinar cells, and 

proximal tubules of kidney in rats (Pfeifer, 1972; Pfeifer & Scheller, 1975; Pfeifer & 

Strauss, 1981; Reme & Sulser, 1977). In addition, the activity of certain lysosomal 

hydrolases exhibits diurnal rhythm in the liver (Bhattacharya & von Mayersbach, 1976). 

Using more specific molecular markers for autophagy, our study indicates that autophagy 

activity is temporally restricted in several mouse tissues, including the liver, heart, and 

skeletal muscle (Ma et al, 2011). We used a recently developed method for measuring 

autophagy activity in vivo and found that autophagy flux peaks during the light phase and 

decreases to lower levels in the dark phase. The cyclic activation of autophagy flux in the 

liver is associated with changes in autophagosome abundance and rhythmic expression of 

autophagy genes.  

 

Interestingly, the expressions of autophagy genes also oscillate in the yeast during 

continuous growth under nutrient-limited conditions (Tu et al, 2005). In this case, 

autophagy appears to be restricted to a specific temporal phase associated with reductive 
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metabolic activities. While the timing cues that drive rhythmic autophagy activation in 

mammalian tissues and in yeast cells are likely different, the autophagy cycles may reflect a 

conserved property of cellular metabolism and homeostasis. 

 

4.2.2 The regulation of autophagy circadian rhythm 

The nature of timing cues that drive circadian autophagy appears to involve both clock and 

nutritional signals (Ma et al, 2011). Liver-specific Bmal1 null mice, a liver clock deficient 

model, have dampened rhythm of autophagy gene expression and autophagy flux, 

suggesting that clock exerts its effects on circadian autophagy, at least in part, through 

cell-autonomous mechanisms. Nutritional status provides a strong entrainment signal for 

peripheral tissues. Restriction feeding resets the phase of peripheral clocks in rodents 

without affecting the central clock (Damiola et al, 2000). Notably, the phase of autophagy 

gene expression is also reversed following the feeding switch (Ma et al, 2011; Pfeifer, 

1972). While meal timing dominantly resets the phase of autophagy rhythm, it remains 

unknown whether this is secondary to the realignment of clock with feeding status. 

 

In term of molecular mechanism, C/EBPβ plays a crucial role in coordinating rhythmic 

expression of autophagy genes in response to circadian and nutritional signals (Ma et al, 

2011). C/EBPβ is a basic leucine-zipper transcription factor that regulates diverse 

biological processes, including immune response, cell differentiation, and metabolism 

(Akira et al, 1990; Cao et al, 1991; Croniger et al, 2001; Tanaka et al, 1995; Wang et al, 
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2000). The expression of C/EBPβ is highly responsive to nutritional signals and at the same 

time regulated by the liver clock in a tissue-autonomous manner. Adenoviral-mediated 

expression of C/EBPβ stimulates the program of autophagy gene expression and induces 

autophagic protein degradation in cultured hepatocytes. C/EBPβ directly binds to the 

promoters of autophagy genes and activates their transcription. Knock-down of C/EBPβ 

abolishes the diurnal autophagy rhythm. Our data indicates C/EBPβ mediates the 

nutritional and circadian signals in regulating circadian rhythm of autophagy. 

 

4.2.3 What are the metabolic functions of circadian autophagy rhythm? 

While it is clear that autophagy is rhythmically activated in the body, it is far from clear 

regarding the significance of autophagy cycles in physiology and disease. Conceptually, 

close coupling of autophagic degradation to biological clock may provide distinct 

advantages for multicellular organisms to maintain nutrient and energy homeostasis, 

remodel proteomes and organelles, and achieve temporal compartmentalization of tissue 

metabolism (Fig. 4.1). 

 

Nutrient and energy homeostasis  

A major function of autophagy is to degrade cellular components when nutrients become 

limited. The concentrations of plasma amino acids and metabolites exhibit robust circadian 

oscillation that is partially mediated through autophagy (Ezaki et al, 2011; Minami et al, 

2009). Thus, the cyclic regulation of amino acid concentrations in plasma, liver, and 
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skeletal muscle is diminished in liver-specific Atg7 deficient mice. Disruption of circadian 

autophagy rhythm in liver-specific Bmal1 null mice is also associated with impaired 

hepatic gluconeogenesis and hypoglycemia during late light phase (Lamia et al, 2008), 

which coincides with peak autophagy flux.  

 

Proteome and organelle remodeling  

Rhythmic autophagic induction may be important for temporal remodeling of proteomes 

and organelles. A surprising finding with regard to the circadian regulation of hepatic 

proteome and transcriptome came from comparative analysis of diurnal regulation of 

protein and mRNA expression (Reddy et al, 2006). While up to 20% of soluble proteins 

assayed in mouse liver exhibit circadian oscillation, nearly half of them lack corresponding 

mRNA cycles. Additionally, these oscillated proteins tend to peak in the dark phase when 

autophagy and lysosomal activity is lower, suggesting that circadian autophagy could play 

a role in proteome remodeling in the liver. Recently, Gachon group reported the circadianly 

regulated ribosome biogenesis, which occurs in the opposite phase of autophagy and may 

coordinate the remodeling of proteome (Jouffe et al, 2013). Moreover, the abundance of 

mitochondria, peroxisomes, and endoplasmic reticulum varies throughout the day, which is 

likely mediated through cyclic activation of autophagy (Uchiyama, 1990; Youle & 

Narendra, 2011). The periodical removal of mitochondria and other organelles may 

facilitate the modulation of the bioenergetic properties throughout different circadian 

phases.  
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Temporal compartmentalization of tissue metabolism  

Autophagy-mediated proteome and organelle remodeling may provide an important 

mechanism for the temporal compartmentalization of tissue metabolism. Biological 

rhythm is an intrinsic cellular property that is conserved from single-cell eukaryotes to 

different kingdoms of multicellular eukaryotes. Yeast grown under nutrient-limited 

condition exhibits robust cycles of oxygen consumption and redox changes in the cell (Tu 

et al, 2005). In each phase, a subset of oscillating genes peaks, including those involved in 

ubiquitin/proteasome function and autophagy. It is possible that this rhythmic induction of 

degradation pathways is necessary for large-scale removal of cellular components that 

paves the way for metabolic phase transition. As such, the metabolic functions in higher 

organisms are not only restricted to specific tissues, but also compartmentalized along the 

temporal axis. The cyclic activation of autophagy may remodel cellular proteomes and 

organelles, thus defining distinct temporal compartments of metabolic activities.  

 

4.2.4 The role of autophagy in non-alcoholic fatty liver disease 

NAFLD is a world-wide public health challenge, as a significant portion of NAFLD 

patients develop liver fibrosis, cirrhosis, and even hepatocellular carcinoma (Polyzos et al, 

2012). The turning point of this disease is the progression from a relatively benign form of 

fatty liver (NAFLD) to steatohepatitis (NASH). Although a variety of factors, including 

gut-derived bacterial toxins, cytokine imbalance, mitochondrial dysfunction, oxidative 
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stress, and ER stress, have been proposed to play important roles in the progression, it is 

still unclear whether a shared mechanism can reconcile these diverse causal factors 

(Hebbard & George, 2011; Polyzos et al, 2012; Tuyama & Chang, 2012).  

 

Previous studies suggest that autophagy impairments may influence the progression of 

NAFLD by promoting excessive accumulation of lipid in liver. Indeed, chronic high 

fat-diet feeding impairs autophagy activity (Yang et al, 2010). On the other hand, 

autophagy was reported to be directly involved in lipid droplet hydrolysis and fat oxidation 

(Singh et al, 2009). This raises an interesting possibility that autophagy deficiency can lead 

to a virtuous cycle in lipid accumulation, which can accelerate NASH progression through 

promoting ER stress and lipid toxicity.  

 

By using a new mouse model of liver-specific autophagy deficiency (FIP200 LKO), we 

found that genetic ablation of autophagy itself is not sufficient to lead to lipid accumulation. 

These results were further confirmed in Atg7 knockdown studies. Nonetheless, we 

observed that chronic FIP200 deletion in liver causes liver fibrosis. This indicates that 

autophagy may play a protective role in preventing the progression from fatty liver to more 

severe forms of NASH. However, this protective role of autophagy is not related to its 

potential role in maintaining lipid homeostasis. To further confirm the protective role of 

autophagy, we transiently deleted FIP200, knocked down Atg7, or suppressed autophagy 

flux in mouse livers. Our data indicates a strong correlation between autophagy deficiency 
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and liver damage. These results are consistent with the development of liver adenoma in 

aged Atg5 mosaic mouse model and Atg7 liver knockout model (Inami et al, 2011; 

Takamura et al, 2011).  

 

4.2.5 How could autophagy activity be compromised in the liver? 

We hypothesized that the autophagy activity plays an important role in determining the 

progression to liver fibrosis. If this hypothesis is true, then figuring out the factors that 

compromise autophagy activity may help protect NAFLD patients from progression. Here 

we propose several possible factors that may influence autophagy activity in the liver. 

 

First, excessive lipid accumulation and hepatic insulin resistance may impair autophagy 

activity. Long-term high fat diet feeding was reported to decrease autophagy flux in the 

liver (Yang et al, 2010). Our unpublished data on a variety of obesity mouse models 

supports this notion. It is under investigation how excessive lipid influences autophagy 

activity. There are currently two working hypotheses. The first one hypothesizes that the 

cleavage of Atg7 is enhanced in chronic high fat diet fed mice (Yang et al, 2010). 

Alternatively, it is possible that excessive lipid intake can change the property of lipid on 

autophagosome membrane, rendering an impaired fusion ability (Koga et al, 2010).  

 

Besides, other environmental factors such as toxins and pathogens derived from intestinal 

circulation may inhibit autophagy activity. Interestingly, some bacteria can inhibit or delay 
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autophagosome maturation to promote its replication (Cemma & Brumell, 2012; Choy et al, 

2012). However, hepatitis B virus and hepatitis C virus require normal autophagy process 

for their replication (Ke & Chen, 2011; Sir et al, 2010). Therefore, further study is needed 

to identify specific pathogen species that suppress autophagy activity in the liver.  

 

Finally, genetic polymorphism may contribute to the susceptibility of autophagy 

impairment. Recent genome-wide association study (GWAS) discovered an association 

between autophagy and diseases such as Crohn's disease and tuberculosis (King et al, 2011; 

Songane et al, 2012; Stappenbeck et al, 2011). Whether autophagy genes associate with the 

risks of NASH progression is still to be determined.  

 

4.2.6 The potential for autophagy enhancing drug for treating non-alcoholic fatty liver 

disease 

Our study points to a new direction of developing potential therapies to treat NAFLD 

patients. Autophagy modulating drugs have been tested as potential therapies for 

conformation disease (Rubinsztein et al, 2012). For example, carbamazepine, an 

autophagy-enhancing drug, promotes the degradation of toxic protein aggregates formed 

by mutant α1-antitrypsin Z in the hepatocytes and alleviates the liver injury in the mouse 

model (Hidvegi et al, 2010). Rapamycin, which activates autophagy by inhibiting mTOR, 

has shown therapeutical benefits to mouse models with neurodegenerative diseases, 

including Parkinson’s disease, Huntington's disease, and Alzheimer's disease (Bové et al, 
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2011). It is of great interest to test whether compounds specifically activating autophagy 

can provide beneficial effects in animal models and patients with NAFLD.  
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Fig. 4.1. Autophagy rhythm and diurnal metabolic homeostasis. Rhythmic activation of 
autophagy is controlled by biological clock as well as nutritional signals, and may 
contribute to nutrition and energy homeostasis through light/dark cycles, proteome and 
organelle remodeling, and the temporal compartmentalization of tissue metabolism.  
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APPENDIX A NEURONAL INACTIVATION OF PGC1Α 

PROTECTS MICE FROM DIET-INDUCED OBESITY AND LEADS 

TO DEGENERATIVE LESIONS

A.1 Abstract 

PGC-1α is a transcriptional coactivator that regulates diverse aspects of energy metabolism 

in peripheral tissues. Mice deficient in PGC-1α have elevated metabolic rate and are 

resistant to diet-induced obesity. However, it remains unknown whether this alteration in 

energy balance is due to PGC-1α’s action in peripheral tissues or the central nervous system. 

In this study, we generated neuronal PGC-1α knockout mice (BαKO) using CaMKIIα-Cre 

to address its role in the regulation of energy balance and neuronal function. Unlike whole 

body PGC-1α null mice, BαKO mice have normal adaptive metabolic response to 

starvation and cold exposure in peripheral tissues. In contrast, BαKO mice are 

hypermetabolic, and similar to whole body PGC-1α null mice, are also resistant to 

diet-induced obesity, resulting in significantly improved metabolic profiles. Neuronal 

inactivation of PGC-1α leads to striatal lesions that are reminiscent of neurodegeneration in 

whole body PGC-1α null brain and impairs nutritional regulation of hypothalamic 

expression of genes that regulate systemic energy balance. Together, these studies have 

demonstrated a physiological role for neuronal PGC-1α in the control of energy balance. 
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Our results also implicate CaMKIIα-positive neurons as an important part of the neural 

circuitry that governs energy expenditure in vivo. 

 

A.2 Introduction 

Metabolic syndrome is emerging as a global epidemic in both industrialized and 

developing countries. Obesity is a central component of this syndrome and arises from a 

chronic imbalance of energy intake and energy expenditure (Flier, 2004; Spiegelman & 

Flier, 2001). Excess fat storage in the adipose tissue, and more importantly, ectopic lipid 

accumulation in skeletal muscle and the liver lead to development of insulin resistance and 

type 2 diabetes (Erion & Shulman, 2010). While there is no doubt that environmental 

factors, particularly high-calorie diets and sedentary life style, contribute to the 

pathogenesis of metabolic syndrome, various genetic and epigenetic factors underlie the 

predisposition of individuals to metabolic disorders. The homeostatic control of energy 

intake and expenditure is achieved through a complex network of nutritional, hormonal, 

and neural cues, which coordinates nutrient storage and fuel oxidation in peripheral tissues. 

In mammals, nuclear hormone receptors as well as their coactivators and corepressors play 

an important role in the regulation of diverse aspects of tissue metabolism (Beaven & 

Tontonoz, 2006; Chawla et al, 2001; Feige & Auwerx, 2007; Lin, 2009). 

 

The PPARγ Coactivator 1 (PGC-1) family of transcriptional coactivators regulates glucose, 

lipid, and mitochondrial oxidative metabolism through physical interaction with a selective 
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subset of nuclear hormone receptors and other transcription factors (Finck & Kelly, 2006; 

Handschin, 2009; Kelly & Scarpulla, 2004; Lin et al, 2005a). PGC-1α and its close 

homolog PGC-1β are abundantly expressed in tissues with high oxidative capacity, 

including brown fat, brain, liver as well as cardiac and skeletal muscle (Lin et al, 2002a; 

Puigserver et al, 1998). Their expression is highly regulated in response to various 

physiological and environmental signals. For example, PGC-1α is rapidly induced in 

skeletal muscle following physical exercise (Baar et al, 2002; Goto et al, 2000), whereas 

its expression is cold-inducible in brown fat (Puigserver et al, 1998). In the skeletal muscle, 

PGC-1α induces mitochondrial biogenesis and activates a metabolic and contractile 

program characteristic of slow-twitch myofibers (Lin et al, 2002b; Wu et al, 1999). In the 

brown fat, it promotes adaptive thermogenesis through stimulating UCP1 expression and 

mitochondrial respiration (Puigserver et al, 1998). In the liver, PGC-1α regulates hepatic 

gluconeogenesis and a broader program of metabolic response to starvation (Handschin et 

al, 2005; Koo et al, 2004; Yoon et al, 2001). The physiological role of this coactivator in 

adaptive energy metabolism has been demonstrated in multiple tissues in PGC-1α deficient 

mice (Arany et al, 2008; Arany et al, 2005; Huss et al, 2007; Leone et al, 2005; Lin et al, 

2004) . Recent studies demonstrate that reduced PGC-1α expression in skeletal muscle is 

associated with insulin resistance in humans (Mootha et al, 2003; Patti et al, 2003). 

 

Because PGC-1α stimulates mitochondrial fuel oxidation, a likely outcome of PGC-1α 

deficiency is increased susceptibility to the development of obesity. Paradoxically, whole 
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body PGC-1α null mice are resistant to high-fat diet induced obesity (Lin et al, 2004). This 

alteration in systemic energy balance is associated with elevated metabolic rate and 

physical activity levels as well as disrupted circadian rhythm (Liu et al, 2007). However, it 

remains unknown whether PGC-1α influences energy balance and clock function directly 

through its action in peripheral tissues or via its function in the central nervous system. 

PGC-1α mRNA and protein expression has been observed in several brain areas and 

neuronal cell types (Cowell et al, 2007; Tritos et al, 2003). Whole body PGC-1α null mice 

develop spongioform neurodegeneration, most notably in the striatum and the deep layers 

of the cerebral cortex. In addition, dysregulation of the PGC-1α pathway was recently 

implicated in Huntington’s disease and Parkinson’s disease (Cui et al, 2006; Lin et al, 2004; 

St-Pierre et al, 2006). These studies strongly suggest PGC-1α plays a critical role in 

maintaining neuronal health. Whether neuronal PGC-1α is required for systemic metabolic 

homeostasis has not yet been explored.   

 

To address the role of neuronal PGC-1α in the regulation of energy balance, we generated 

forebrain-specific PGC-1α null mice by crossing PGC-1α flox/flox mice with 

CaMKIIα-Cre transgenic mice. We found that inactivation of PGC-1α in 

CaMKIIα-positive neurons leads to resistance to diet-induced obesity and results in 

neurodegenerative lesions in the striatum. Our studies reveal an essential role of PGC-1α in 

CaMKIIα-positive neurons in the regulation of energy balance and neuronal function. 
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A.3 Results 

A.3.1 Generation of brain-specific PGC-1α-deficient mice (BαKO) 

PGC-1α deficiency impairs adaptive metabolic responses in multiple tissues, including the 

liver, brown adipose tissue as well as skeletal and cardiac muscle (Arany et al, 2005; Leone 

et al, 2005; Lin et al, 2004). Paradoxically, whole body PGC-1α null mice are resistant to 

diet-induced obesity and have elevated metabolic rate. These findings raise the possibility 

that PGC-1α may play an important role in the regulation of energy balance through its 

action in the central nervous system. To test this possibility, we generated brain-specific 

PGC-1α null mice using the Cre-loxP system. We chose to use CaMKIIα-Cre transgenic 

mice because PGC-1α is abundantly expressed in forebrain, including cerebral cortex, 

hippocampus, basal ganglia and hypothalamus (Liu & Jones, 1996). Transgenic expression 

of Cre recombinase under the control of CaMKIIα promoter has been widely used to 

inactivate genes in the forebrain (Casanova et al, 2001; Tsien et al, 1996). We generated 

PGC-1α flox/flox and PGC-1α flox/flox; CaMKIIα-Cre (BαKO) mice for our studies (Fig. 

A.1A). As shown in Fig. A.1B, BαKO mice have selective deletion of exons 3-5 within the 

PGC-1α locus in several brain areas, including cerebral cortex, striatum, olfactory bulb, 

and hypothalamus, but not in any of the peripheral tissues examined.   

 

A.3.2 BαKO mice have normal adaptive metabolic response 

We next examined whether adaptive metabolic responses in peripheral tissues are affected 

in BαKO mice fed chow diet. In contrast to whole body PGC-1α null mice, which are 
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cold-sensitive due to defects in adaptive thermogenesis, BαKO mice maintain their core 

body temperature following 3-hr cold exposure at 4℃. We observed a modest but similar 

decrease in body temperature in both control and BαKO groups (Fig. A.2A). Histological 

analysis of brown adipose tissues reveals that brown adipocytes appear normal in size with 

similar accumulation of multilocular lipid droplets (Fig. A.2B). Consistently, 

cold-inducible expression of genes involved in adaptive thermogenesis, including PGC-1α, 

deiodinase 2 (Dio2), uncoupling protein 1 (Ucp1), and mitochondrial genes, are similar in 

control and BαKO brown fat (Fig. A.2C and data not shown). PGC-1α has been 

demonstrated to regulate multiple aspects of hepatic starvation response. PGC-1α deficient 

hepatocytes have defective gluconeogenic response and heme biosynthesis (Handschin et 

al, 2005; Lin et al, 2004). Compared to the control group, BαKO mice have normal 

induction of gluconeogenic genes following overnight fasting (Fig. A.S1). Plasma glucose 

levels are also similar in chow-fed control and BαKO mice under both fed and fasted 

conditions (Fig. A.S1). These results indicate that adaptive energy metabolism in 

peripheral tissues is largely unperturbed in brain-specific PGC-1α deficient mice. 

 

A.3.3 BαKO mice are resistant to diet-induced obesity 

PGC-1α deficient mice have elevated metabolic rate and are resistant to diet-induced 

obesity. However, whether this can be attributed to neuronal PGC-1α function remains 

unknown. To determine the significance of central PGC-1α in energy balance, we subjected 

control and BαKO mice to high-fat diet feeding. While body weight of these two groups of 
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mice remains similar under chow-fed condition, BαKO mice are significantly resistant to 

weight gain when fed high-fat diet (Fig. A.3A). The body weight of BαKO mice is 

approximately 20% lower than control mice following ten weeks of high-fat feeding. 

Transgenic expression of Cre recombinase alone does not affect body weight upon high-fat 

feeding (data not shown). Resistance to weight gain following high-fat feeding appears to 

be more pronounced in whole body PGC-1α null group, which weighs approximately 40% 

less than the wild type group. Consistently, epididymal white adipose tissue (eWAT) weight 

and eWAT/body weight ratio are significantly lower in the BαKO and whole body PGC-1α 

null mice compared to their respective control (Fig. A.3C). In contrast to whole body 

PGC-1α null mice, which have lower plasma glucose concentrations, plasma glucose 

remains similar in control and BαKO mice following high-fat feeding (Fig. A.3D). Resting 

core body temperature is also slightly but significantly higher in the BαKO mice, but not 

whole body PGC-1α null mice (Fig. A.3E). These results suggest that neuronal PGC-1α 

participates in the regulation of systemic energy balance and contributes to weight gain 

resistance in whole body PGC-1α null mice.  

 

A plausible explanation for the resistance to diet-induced obesity in BαKO mice is that they 

have elevated metabolic rate. We measured metabolic rate and physical movements in 

control and BαKO mice using the Comprehensive Lab Animal Monitoring System 

(CLAMS). BαKO mice have increased food intake when normalized to their body weight 

(Fig. A.4A). On a per mouse basis, food intake is similar between these two groups. 
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Oxygen consumption rate (VO2) is approximately 30% higher in BαKO group than control 

(Fig. A.4B). When normalized to total lean mass, VO2 remains significantly higher in 

BαKO mice. Respiratory exchange ratio, a measurement of in vivo fuel preference, is 

slightly lower in BαKO mice (data not shown), suggesting that BαKO mice may prefer 

fatty acid oxidation for energy production. Surprisingly, total physical activity level and 

diurnal locomotor profiles appear unaffected in these mice (Fig. A.4C and Fig. A.S2). 

Analyses of plasma hormones indicate that both insulin and leptin concentrations are 

significantly lower in BαKO mice, suggesting that they may have improved insulin 

sensitivity. However, we were unable to observe significant improvement in glucose 

tolerance in insulin and glucose tolerance tests (data not shown).   

 

To explore whether neuronal deficiency of PGC-1α alters the expression of key regulators 

of energy balance, we analyzed hypothalamic gene expression using qPCR. The expression 

of thyrotropin-releasing hormone (TRH), proopiomelanocortin (POMC), Orexin, 

Melanin-concentrating hormone (MCH), and prohormone convertase 2 (PC2) remains 

similar in control and BαKO hypothalamus under both fed and fasted conditions (Fig. A.5 

and data not shown). In contrast, fasting induction of Agouti-related protein (AgRP) and 

neuropeptide Y (NPY), two factors known to regulate energy balance, is significantly 

diminished in hypothalamus from BαKO mice. Similar defects in AgRP and NPY 

expression were also observed in whole body PGC-1α null hypothalamus. These findings 

strongly suggest that neuronal PGC-1α may affect diet-induced obesity through its 
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regulation of hypothalamic neuropeptides that control energy balance. 

 

A.3.4 High-fat diet fed BαKO mice have reduced hepatic steatosis 

We further examined the impact of neuronal PGC-1α inactivation on hepatic metabolism 

following high-fat feeding. Analysis of hepatic triglyceride content indicates that BαKO 

mice have significantly less lipid accumulation in the liver (Fig. A.6A). In fact, liver 

triglyceride is reduced by approximately 57% in BαKO mice. Hepatocyte swelling and 

lipid accumulation is evident in high-fat fed control mice (Fig. A.6B). In contrast, the 

overall liver appearance and histology are significantly improved in the BαKO group. 

Analysis of hepatic gene expression indicates that the expression of several lipogenic genes, 

including fatty acid synthase (FAS) and stearoyl-CoA desaturase (SCD-1) as well as Fsp27, 

a gene involved in lipid droplet formation, are significantly decreased in BαKO mouse 

livers (Fig. A.6C). The expression of gluconeogenic genes, such as PEPCK and 

Glucose-6-phosphatase, and fatty acid β-oxidation genes, remain largely unaltered. These 

results suggest that neuronal deletion of PGC-1α significantly improves the metabolic 

profile in the liver following high-fat diet feeding. 

 

A.3.5 Region-specific degenerative lesions in BαKO mouse brains 

To determine the effects of PGC-1α inactivation on neuronal health, we performed 

histological analyses in several brain regions. Consistent with previous findings (Lin et al, 

2004), whole body PGC-1α deficiency leads to spongiform neurodegeneration, most 
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readily observed in striatum and deep layers of cerebral cortex (Fig. A.7). Remarkably, 

striatum from BαKO mouse brain also contains numerous degenerative lesions that are 

similar but slightly smaller than those seen in whole body PGC-1α null mice. BαKO mice 

tend to have fewer lesions in both striatum and deep cortical layers. Immunohistochemical 

staining using an antibody against neurofilament light chain (NFL), a marker for nerve 

fibers, indicates that the lesions correlate with apparent degeneration of fibers in the 

striatum from BαKO mice (Fig. A.8). Our results strongly suggest that PGC-1α is essential 

for maintaining axon integrity in CaMKIIα-positive neurons in the brain. 

 

A.3.6 PGC-1α deficiency does not perturb autophagy in central nervous system 

Autophagy is responsible for bulk degradation of cytoplasmic components in the cell and 

plays an important role in nutrient homeostasis during starvation (Kuma et al, 2004; 

Mizushima et al, 2004; Mortimore & Schworer, 1977). Autophagy is also required for the 

clearance of damaged organelles, such as mitochondria (Sandoval et al, 2008). Inhibition 

of autophagy leads to accumulation of ubiquitinated protein and results in neuronal death 

and neurodegeneration (Komatsu et al, 2006; Komatsu et al, 2007b). To determine 

whether PGC-1α inactivation perturbs autophagy, we performed immunoblotting analyses 

using antibodies against LC3 and p62, two molecular markers of autophagy activity 

(Klionsky et al, 2007; Mizushima, 2004; Mizushima et al). LC3 is a cytosolic protein 

(LC3-I) that, upon autophagy induction, undergoes covalent lipid modification and 

translocates to the autophagosome membrane (LC3-II) (Kabeya et al, 2000). Relative 
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abundance of these two LC3 isoforms is indicative of autophagy activity (Komatsu et al, 

2007a). As shown in Fig. A.9, LC3-I and LC3-II levels are similar in the posterior cortex 

and striatum of wild type and whole body PGC-1α null mouse brains. Similarly, we did not 

observe differences in LC3-I and LC3-II levels in control and BαKO mouse brains. In 

addition, the protein levels of p62, an LC-3 binding protein that is involved in the formation 

of ubiquitin-containing inclusions, also remain largely unchanged (Fig. A.9) (Komatsu et 

al, 2007a). We further examined the expression of genes in the autophagy pathway and 

found that mRNA levels of autophagy genes are similar between control and PGC-1α null 

brains (data not shown). Together, these results suggest that impaired neuronal autophagy 

is not a significant mediator of neurodegeneration in PGC-1α deficient neurons.  

  

A.4 Discussion 

The brain is a highly metabolically active tissue and relies on mitochondrial oxidative 

metabolism for ATP production under normal conditions. Not surprisingly, neurons are 

exquisitely sensitive to perturbations of mitochondrial function. Impaired mitochondrial 

energy metabolism has been implicated in numerous heritable neurological disorders as 

well as neurodegenerative diseases, including Huntington’s disease, Parkinson’s disease, 

and Alzheimer’s disease (DiMauro & Schon, 2008; Lin & Beal, 2006; Schon & Manfredi, 

2003). PGC-1α is abundantly expressed in the brain and its deficiency leads to degenerative 

lesions in several brain regions. However, whether these lesions arise from 

cell-autonomous functions of PGC-1α in neurons remains unknown. In addition, the 
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neuronal cell types that require PGC-1α for their normal function have not been identified. 

In this study, we demonstrate that PGC-1α in CaMKIIα-positive neurons plays an 

important role in maintaining systemic energy balance and neuronal health.  

 

We have previously reported that mice lacking PGC-1α are resistant to high-fat diet 

induced obesity and have significantly improved insulin sensitivity (Lin et al, 2004). This 

lean phenotype is associated with elevated metabolic rate and activity levels. Because 

PGC-1α is expressed in several key metabolic tissues, including skeletal muscle, adipose 

tissues, and liver (Puigserver et al, 1998), it was not immediately clear which tissue(s) 

underlies altered systemic energy balance in whole body PGC-1α null mice. To complicate 

the matter further, PGC-1α regulates distinct metabolic programs in different tissues, which 

influence systemic metabolism through crosstalk and secondary effects. To resolve these 

issues, we generated brain-specific PGC-1α null mice using CaMKIIα-Cre transgenic line. 

PGC-1α is abundantly expressed in pyramidal neurons, many of which also express 

CaMKIIα (Ouimet et al, 1984), as well as GABAergic neurons (Cowell et al, 2007; Tritos 

et al, 2003). BαKO mice are capable of mounting normal metabolic responses in peripheral 

tissues. For example, the induction of genes involved in hepatic gluconeogenesis and fatty 

acid β-oxidation following starvation is similar in control and BαKO mice. In addition, the 

activation of adaptive thermogenesis in brown fat in response to cold exposure is normal in 

BαKO mice. Unlike whole body PGC-1α null mice, which are extremely cold-sensitive, 

BαKO mice are indistinguishable from control mice in maintaining their core body 
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temperature. These observations allow us to assess the biological function of neuronal 

PGC-1α in the absence of the confounding metabolic perturbations in peripheral tissues 

caused by global PGC-1α deficiency.  

 

Perhaps the most remarkable outcome of neuronal PGC-1α deficiency is its influence on 

systemic energy balance when the mice were fed a high-fat diet. Compared to control mice, 

BαKO mice gain significantly less body weight and have lower adiposity following ten 

weeks of high-fat feeding. The resistance to weight gain in BαKO mice appears to be 

quantitatively less pronounced than whole body PGC-1α null mice, suggesting that 

PGC-1α in CaMKIIα-negative cells in nervous system and/or peripheral tissues may also 

contribute to its effects on systemic energy balance. Additionally, in both BαKO and whole 

body PGC-1α null mice, fasting-induced expression of AgRP and NPY in hypothalamus is 

impaired in the absence of PGC-1α. These observations are consistent with previous 

studies that implicate FoxO1, a transcriptional partner for PGC-1α, in the regulation of 

AgRP gene expression in hypothalamus (Kitamura et al, 2006; Puigserver et al, 2003). A 

recent report showed that PGC-1α expression is present in NPY expressing neurons of the 

dorsalmedial hypothalamic nucleus (Draper et al, 2010). Together, these findings illustrate 

a potential role for FoxO1/PGC-1α pathway in the regulation of hypothalamic transcription 

and function. The significance of AgRP and NPY in mediating the effects of PGC-1α on 

energy balance remains unknown at present. 
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Besides less weight gain under high-fat diet, BαKO mice also have reduced hepatic lipid 

content and lower plasma insulin levels, suggesting that these mice are more 

insulin-sensitive. However, BαKO mice are similar to control group in insulin tolerance 

and glucose tolerance tests. In contrast, whole body PGC-1α null mice have significantly 

lower blood glucose levels and improved glucose tolerance. A plausible explanation for 

these differences is that hepatic glucose output is impaired in whole body PGC-1α null 

mice while it remains normal in BαKO mice. In fact, fasting glucose levels are similar 

between control and BαKO mice when kept on chow diet (Fig. A.S1). As such, impaired 

hepatic gluconeogenesis may significantly contribute to improved glucose homeostasis in 

whole body PGC-1α null mice. 

 

Surprisingly, while BαKO mice have increased oxygen consumption rate in CLAMS 

studies, these mice appear to have normal activity levels. In addition, diurnal regulation of 

locomotor activity is apparently unaffected in these mice. These results suggest that distinct 

neuronal populations might mediate the function of PGC-1α in the regulation of energy 

balance and circadian pacemaker. In this case, PGC-1α activity in CaMKIIα-positive 

neurons is essential for the control of metabolic rate and body weight homeostasis, whereas 

its regulation of biological clock is mediated by a distinct population of PGC-1α expressing 

neurons. Previous studies have shown that PGC-1α is also expressed in GABAergic 

neurons (Cowell et al, 2007), which are typically negative for CaMKIIα expression. 

Whether PGC-1α in GABAergic neurons is required for maintaining normal circadian 
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metabolic rhythms remains to be addressed. It is also possible that certain CaMKIIα 

neurons may lack Cre expression. We cannot rule out the possibility that intact PGC-1α 

expression in a subset of CaMKIIα-positive neurons could mediate its role in circadian 

regulation.   

  

We observed neurodenegerative lesions in the striatum of BαKO mouse brain. The striking 

similarity in the appearance of vacuoles in BαKO and whole body PGC-1α null mice 

strongly suggests that the deficiency of PGC-1α in CaMKIIα-positive neurons is the major 

neuronal population affected in whole body PGC-1α null mouse brain. Interestingly, we 

observed fewer lesions in the striatum and deep layers of cerebral cortex in BαKO mice. It 

remains to be determined whether this is due to partial deletion of PGC-1α in 

CaMKIIα-positive neurons or other cell types also contribute to neurodegeneration in 

whole body PGC-1α null mice. Because CaMKIIα is only modestly expressed in the 

striatum, our data suggest that the degenerative lesions are most likely due to the defects of 

neurons that reside in other brain areas, such as the cortex. While autophagy is emerging as 

an important mechanism in neuronal homeostasis, we did not observe significant changes 

in autophagy activity in whole body PGC-1α null and BαKO mice compared to their 

respective control. It is likely that disruption of mitochondrial function and reactive oxygen 

species metabolism may be responsible for the development of neuronal lesions in the 

absence of PGC-1α. 
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In summary, we have demonstrated that PGC-1α activity in CaMKIIα neurons plays a key 

role in the regulation of energy balance and neuronal health. The resistance to diet-induced 

obesity and brain lesions in BαKO mice are strikingly similar to whole body PGC-1α null 

mice. These results strongly suggest that neuronal PGC-1α exerts profound effects on the 

neural circuitry that governs systemic energy balance. 

 

A.5 Materials and methods 

Mice - All animal experiments were performed according to procedures approved by the 

University Committee on Use and Care of Animals. Mice carrying PGC-1α flox alleles 

were generated as previously described (Lin et al, 2004). These mice were mated with 

CaMKIIα-Cre transgenic mice to generate flox/flox control and BαKO mice. PCR analysis 

was performed on genomic DNA isolated from different tissues to assess Cre-mediated 

deletion. Wild type allele and Cre-mediated deletion allele was detected using primer 1 and 

2, 3 and 4, respectively: forward primer1, GTCTAAGATGTCTGCTCTTGAGG; reverse 

primer2, CCAGTTTCTTCATTGGTGTG; forward primer3, 

TCCAGTAGGCAGAGATTTATGAC; reverse primer4, 

CCAACTGTCTATAATTCCAGTTC. Mice were maintained on a standard rodent chow or 

a high-fat diet containing 60% fat-derived calories (D12492, Research Diets) with 12hr 

light and dark cycles. For cold exposure, 11-week-old female mice were individually 

housed in cages prechilled at 4℃ with free access to food and water. Core body 

temperature was monitored using a rectal thermometer 3 hrs after the initiation of cold 
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exposure. Brown fat was dissected following cold exposure for gene expression and 

histological analyses. For hypothalamus analysis, 3-4 months old control, whole body 

PGC-1α null, and BαKO mice were either fed or fasted for 48 hrs before harvest.  

 

Metabolic analysis - Metabolic rate and activity were measured using a Comprehensive 

Lab Animal Monitoring System (CLAMS) that simultaneously measures whole-body O2 

consumption and physical movements (Frayn, 1983; Simonson & DeFronzo, 1990). Mice 

were acclimated in the monitoring chambers for 3 days before the experiment to minimize 

the effects of housing environment changes on animal behaviors. Data were collected every 

10 min for each mouse over a period of three light/dark cycles. CLAMS study was 

conducted by University of Michigan Animal Phenotyping Core. Plasma concentrations of 

triglyceride, insulin, and leptin were measured using commercially available assay kits. 

Liver triglyceride content was extracted and measured using previously described 

procedures (Lin et al, 2005b).  

 

Histological analysis - Brains were fixed in situ by intracardiac perfusion with 15ml PBS 

followed by 15ml 4% PFA in PBS, post-fixed in 4% PFA in PBS overnight at 4℃ after 

dissection, dehydrated in 70% ethanol, and embedded in paraffin. Coronal sections (8μm) 

were stained using H&E staining method. Immunohistochemistry using antibody against 

neurofilament light chain (NFL) was performed as previously described (Lin et al, 2004). 

Other tissues were fixed directly by 4% PFA in PBS overnight at 4℃ after dissection and 
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underwent the same procedure as the brain for H&E staining. Frozen livers were embedded 

in O.C.T., sectioned into 12 μm sections, and stained using Oil Red O method. 

 

RNA and protein analysis - Total RNA was isolated from tissues using Trizol reagents 

(Invitrogen). For quantitative real time PCR (qPCR) analysis, RNA samples were reverse 

transcribed and used in quantitative PCR reactions in the presence of Sybr Green (Applied 

Biosystems). Relative abundance of mRNA was normalized to ribosomal protein 36B4 or 

β-actin. Sequences for qPCR primers used in this study were shown in Supplementary 

Table A.S1 or previously described (Li et al, 2008; Lin et al, 2004). Immunoblotting 

studies were performed using specific antibodies for LC3 (LC3-5F10, Nanotools), p62 

(PW9860, Enzo Life Sciences) and ubiquitin (sc-8017, Santa Cruz Biotechnology). 
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Table. A.S1. qPCR primer list. 
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Fig. A.1. Generation of BαKO mice. (A) Strategy for Cre recombinase-mediated deletion 
of PGC-1α exons 3-5 in the brain. (B) PCR analysis of genomic DNA isolated from tissues 
of flox/flox (-) and BαKO (+) mice. Note the deletion of PGC-1α exons is only detected in 
cortex, striatum, olfactory bulb, and hypothalamus. PCR primers are indicated in A. 
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Fig. A.2. Adaptive thermogenesis in response to cold exposure. (A) Rectal temperature of 
flox/flox (filled box) and BαKO (open box) mice kept at room temperature (RT) or exposed 
to 4℃ for 3 hrs. * p<0.05. (B) H&E staining of paraffin-embedded brown fat sections. (C) 
qPCR analysis of gene expression in brown fat. Data represent mean±SEM (n=3 per group). 
* p<0.004. 
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Fig. A.3. High-fat diet induced obesity. (A) Body weight of flox/flox, BαKO, wildtype 
(WT), and whole body PGC-1α null (KO) mice fed high-fat diet for ten weeks. * p<0.001; 
** p<0.01 BαKO vs. KO group. (B) Appearance of control and BαKO mice following 
high-fat diet feeding. (C) Epididymal fat (eWAT) weight and eWAT to body weight ratio in 
flox/flox, BαKO, wildtype (WT) and whole body PGC-1α null (KO) mice. *p<0.02. 
(D)-(E), Plasma glucose (D) concentration and rectal temperature (E) in high-fat fed 
flox/flox, BαKO, wild type (WT), and whole body PGC-1α null mice (KO). Data represent 
mean±SEM (n=7-8 per group). * p<0.02. 
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Fig. A.4. CLAMS studies in high-fat diet fed flox/flox and BαKO mice. (A) Food intake in 
flox/flox and BαKO mice. Data represent food consumption per day following 
normalization to body weight (left) or on a per mouse basis (right). *p<0.01. (B) Metabolic 
rate in flox/flox (filled box) and BαKO mice (open box). Shown is oxygen consumption 
rate as normalized to body weight (left) or lean mass (right). * p<0.05, # p<0.09. (C) Total 
activity level during night (N) and day (D) phases. Shown are average movement counts 
for flox/flox (filled box) and BαKO (open box) mice. (D)-(E), Plasma insulin (D) and 
leptin (E) concentrations in high-fat diet fed flox/flox and BαKO mice. Data represent 
mean±SEM (n=7-8 per group). * p<0.02.  
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Fig. A.5. Hypothalamic gene expression. (A) qPCR analysis of gene expression in 
hypothalamus of wild type (WT) and whole body PGC-1α null (KO) mice under fed and 
fasted conditions. Pooled RNA from 3-5 mice in each group was used in the analyses. Data 
represent mean±SD. * p<0.005. (B) qPCR analysis of hypothalamic gene expression in 
flox/flox and BαKO mice under fed and fasted conditions. Pooled RNA from 6-8 mice in 
each group was used. Data represent mean±SD. * p<0.005. 
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Fig. A.6. Hepatic triglyceride content and gene expression. (A) Liver triglyceride content 
in control (filled box) and BαKO (open box) mice following ten weeks of high-fat feeding. 
* p=0.009. (B) H&E (top panel) and Oil Red O staining (lower panel) of liver sections. (C) 
qPCR analysis of gene expression. Data represent mean±SEM (n=7-8 per group). * p<0.05. 
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Fig. A.7. H&E staining of brain sections from flox/flox, BαKO, whole body PGC-1α null 
(KO) mice. Shown are cerebral cortex (cx) and striatum (str) regions. Lower panel, high 
magnification of striatum sections. Scale bar, 500μm. Note the absence of clear 
degenerative lesions in flox/flox mouse brain (arrow). 
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Fig. A.8. Immunohistochemical staining using antibody against neurofilament light chain. 
Shown are cerebral cortex (cx), corpus callosum(cc) and striatum (str) regions in forebrain 
sections at low (top) and high (bottom) magnification in flox/flox and BαKO mice. Note 
the presence of small (arrowhead) and large (arrow) lesions in the striatum (str). 
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Fig. A.9. Immunoblotting analysis of proteins in the autophagy pathway. Total tissue 
lysates were prepared from posterior cortex and striatum dissected from wild type (WT), 
whole body PGC-1α null (KO), flox/flox, and BαKO mice. Immunoblotting was 
performed using indicated antibodies. Two different exposure times were included for LC3. 
Ponceau S stain was used as loading control. 
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Fig. A.S1. Adaptive hepatic gluconeogenesis in response to starvation and liver 
morphology. (A) Plasma glucose level of chow fed flox/flox (filled box) and BαKO (open 
box) mice after starvation for 24 hrs. (B) H&E staining of liver sections from chow fed 
flox/flox and BαKO mice under fed condition. (C) qPCR analysis on mRNA expression of 
hepatic gluconeogenesis genes in response to 24-hr fasting. Fed flox/flox (filled box) mice 
were compared with fasted flox/flox (gray box) and BαKO (open box) mice. * p<0.05. 
Data represent mean±SEM (n=3-4 per group).  
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Fig. A.S2. CLAMS study on average activity trace during three days in high-fat fed mice. 
Data were collected every 10 minutes and averaged for the flox/flox (blue) or BαKO (red) 
group. Data represent mean±SEM (n=7-8 per group).  
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