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CHAPTER I

Introduction

1.1 Dissertation Objective

The quest for high performance mechanical systems often forces dynamic structures

to adopt complex geometry. A well studied example includes the complex geometry of

blades inside gas turbine engines. Because the geometry of the blade can have signifi-

cant effects on turbine performance, a number of research endeavors have been carried

out to find better geometry to increase performance. As a consequence, blade geometries

continue to evolve in complexity. As the geometric complexity of these and other simi-

lar structures grows, the uncertainty in computational predictions of vibration responses

also increases. Therefore, it is important to monitor the vibration characteristics (such as

frequency and amplitude) for safety of the structures, especially for large and complex air

and space structures.

Vibration monitoring systems are greatly needed to forecast sudden failures caused

by damages or fatigue fracture. Such vibration monitoring is used to diagnose structural

health by analyzing vibrations of the system. However, vibrations of turbomachinery ro-

tors can be affected by several factors, such as multi-stagestructural coupling, aerody-

namic coupling, damping, damage (i.e., cracks), and mistuning. The vibration analysis

of bladed disks in a turbomachinery can be carried out easilyif it is assumed that all of

1
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their sectors are identical because cyclic symmetry can be employed. In reality, how-

ever, there are unavoidable small differences among the structural properties or geometric

characteristics between individual sectors due to manufacturing tolerances, material devi-

ations, and non-uniform operational wear. These small differences are commonly referred

to as mistuning. Even though the mistuning level is typically small in terms of individ-

ual blade properties, this small mistuning can have a considerable impact on the forced

response. Namely, mistuning can cause a localization of vibration to a few blades, which

leads to a drastic increase in the response amplitude for those blades. Vibration localiza-

tion can be induced not only by mistuning but also by damages to the bladed disk, such

as cracks. Damages can result during operation, from material defects, and from fatigue.

It is well known that cracks can induce a nonlinearity due to crack-closing effect which is

a displacement-dependent nonlinearity caused by repetitive opening and closing of crack

surfaces. Since the crack-induced nonlinearity can changea vibration localization, it is im-

portant to be able to accurately predict the vibration of dynamical systems with piece-wise

linear nonlinearity to detect cracks.

Finite element analysis (FEA) has been used to analyze the vibration of structures. If a

structure is small and its geometry is simple, then it can be modeled using low dimensional

finite element (FE) models. For low dimensional models, fullorder analysis can be used.

For large and complex structures such as turbine bladed disks, however, the system is

modeled using high dimensional FE models for accurate analysis. Thus, the computational

cost required to analyze full order FE models can often be prohibitive. Thus, reduced order

modeling methods have been investigated. However, many methods have been focused on

obtaining reduced order models (ROMs) for linear systems. ROMs for linear systems

can be efficiently constructed by using approaches based on linear transformations such

as component mode synthesis (CMS). Constructing ROMs for systems with nonlinearity
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(caused for example by intermittent contact) require careful treatment and new modeling

methods. For example, mistuned bladed disks can experiencenonlinear vibrations due to

cracks. To capture the nonlinearity, the physical degrees of freedom (DOFs) of the nodes

on the crack surfaces are typically chosen as active DOFs in the ROMs so that the motion

of the nodes in the physical three-dimensional space can be tracked. Therefore, the number

of nodes on the crack surfaces significantly affects on the size of the ROMs.

Vibration characteristics such as frequency and amplitudecan be used to diagnose

damages in dynamic systems. Among the vibration characteristics used, the vibration

amplitude is especially important because it can directly affect the life of the system.

Predicting the vibration amplitude with efficiency requires the calculation of nonlinear

forced responses. One way to obtain the nonlinear forced responses is to use ROMs with

direct numerical integration (e.g., by using a variable step Runge-Kutta method). That

approach incurs a large computational cost despite the factthat the ROMs are low di-

mensional. Therefore, to obtain the amplitude of vibrationat the resonant frequencies,

nonlinear forced responses need to be calculated using moreefficient numerical methods

such as hybrid frequency/time domain (HFT) methods, which employs the harmonic bal-

anced method. However, computational cost is still large especially when the size of the

ROMs is large (e.g., due to a large number of DOFs involved in the nonlinearity). Also,

the method requires a iterative calculations to obtain converged solutions.

The primary purpose of this research is to develop efficient and accurate reduce order

modeling methods for nonlinear vibration analysis of dynamic structures with complex

geometries, and use the modeling methods to detect damages.In particular, the objectives

of this research can be summarized as follows:

• To develop an efficient vibration analysis method for analyzing the effect of aerody-

namic coupling with structural models in turbomachinery;
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• To develop an efficient method to predict nonlinear forced responses of mistuned

blade disks with a crack and a novel method to detect cracks inthe bladed disks;

• To develop a novel technique to approximate the vibration amplitude at the resonant

frequencies of dynamical systems with piecewise-linear nonlinearity;

• To develop efficient reduced order models to capture the effects of (nonlinear) Coulomb

friction on the dynamics of combustors.

1.2 Dissertation Background

Vibration monitoring is desirable for robust diagnosis (and prognosis) of structural

health. Many systems have coupling between structures, coupling between fluids and

structures, and friction damping. In addition, some other factors can induce nonlinear

vibrations during operation, such as damages (i.e., cracks).

In this dissertation, novel and efficient methods are developed for capturing the dy-

namics of the structures subjected to 1) coupling between structures, 2) coupling between

fluids and structures, 3) cracks, and 4) friction damping.

1.2.1 Reduced order modeling methods developed for analyzing aerodynamic ef-
fects on structures with complex geometry such as bladed disks

Turbomachinery rotors experience aerodynamic loads that induce fluid-structural cou-

pling as well as interblade coupling. These couplings can significantly change the vibra-

tion response of mistuned bladed disks. Thus, to carry out accurate vibration analysis, one

needs to consider aerodynamic effects. A large amount of research has been performed

for coupling aerodynamic and structural models. Early aeroelastic models used simple

lumped parameter models for the structure [2–5], which did not quantitatively capture the

dynamics of industrial bladed disks. To obtain better quantitative results, structural ROMs
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were developed from FE models of the structure, and cantilever blade modes were used

to compute the aerodynamic forcing. To understand the aerodynamic coupling between

blades and the mistuning effects, Pierre and Murthy [6] usedperturbation methods. Later,

an iterative approach to determine the eigenvalues and eigenvectors of an aeroelastic sys-

tem was proposed by Moyroudet al. [7]. A technique that uses the ROMs of a structural

model developed by Bladhet al. [8, 9] combined with inviscid fluid dynamic models in-

vestigated flutter and the forced response of single-stage bladed disks [10,11]. An iterative

aeroelastic coupling method that models the aerodynamics by a quasi-three dimensional

potential flow and the structure using component mode mistuning (CMM) [12] was devel-

oped by Heet al. [13,14].

1.2.2 Reduced order modeling approach for analyzing dynamics of structures with
nonlinearity and complex geometry

Health monitoring systems for structures with complex geometry (such as turboma-

chinery rotors) may use measured vibration data. For instance, vibration localization in

bladed disks can be detected by monitoring vibration amplitudes. This vibration localiza-

tion is caused mainly by two reasons: mistuning and damages (such as cracks).

Mistuning refers to small deviations among the structural properties or geometric char-

acteristics of the blades. Even small mistuning may cause localization of vibration energy

to a few blades (which can increase vibration amplitudes andstresses). Also, mistuning

destroys the cyclic symmetry of bladed disks. A number of studies have been conducted to

investigate the effects of mistuning on bladed disks [15–17]. Some of the early studies used

lumped parameter models [18–26]. In general, the effects ofmistuning can be understood

qualitatively by these simple models (in single stage systems) [27–29]. However, these

models are only partially able to accurately predict the vibration characteristics of bladed

disks [13,14,30–32] especially in multi-stage systems [1]. For efficient modeling of blade
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mistuning, Limet al. [12] developed the CMM method to generate ROMs for mistuned

bladed disks. In CMM, the mistuned bladed disk is partitioned into a tuned bladed disk

component and a virtual blade mistuning component. The mistuning component is defined

by the differences between the mistuned and the tuned blade mass and stiffness matrices.

For the case of small stiffness-only blade-to-blade variations, mistuning becomes simply

an eigenvalue mistuning, and can be defined as the differencebetween the eigenvalues of

the mistuned cantilevered blades and the tuned cantilevered blade.

Vibration localization can be induced not only by mistuningbut also by damages to

the bladed disk. Several investigators have tackled vibration localization due to cracks by

assuming that the cracked blade is an Euler-Bernoulli beam or by using a lumped-mass

beam model [33–38]. In those studies, the nonlinearity caused by the crack opening and

closing was not considered. However, this piece-wise linear nonlinearity may change the

dynamic response of the cracked blades significantly [39–41]. The effects of intermittent

crack opening and closing have been investigated by a few researchers using time march-

ing and frequency responses based on a bi-linear oscillatorrepresentation [42]. Those

studies were later extended to a cracked beam model [43] which was validated by com-

paring the predicted lowest natural frequencies of the cracked beam with experimentally

measured values. Effects of multiple closing cracks on a beam were also investigated us-

ing dynamic responses [44]. Although these studies succeeded in capturing the effects

of the nonlinearity due to cracks, they were limited becausethe systems considered were

very simple structures.

Recently, Saitoet al.[45,46] presented an efficient reduced-order modeling method for

mistuned bladed disks with a cracked blade. They used a hybrid CMS method to obtain

ROMs. To calculate the nonlinear forced responses, they used a HFT method based on

the harmonic balanced method [47] and fast Fourier transforms. A modal analysis of the
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full mistuned bladed disk with a cracked blade was employed to obtain ROMs. Therefore,

the computational costs was significant especially when many mistuning patterns have to

be considered. This is important when investigating real bladed disks because mistuning

patterns are always present and they are usually random.

Nonlinear forced responses of cracked structures can be calculated by a HFT method

based on the harmonic balanced method [47]. In particular, the HFT method of Guillen

and Pierre [48, 49] was extended to obtain a compact size of ROM by removing linear

DOFs [50] using the Craig-Bampton method [51]. The method has been applied for an-

alyzing the vibration of systems with intermittent contact[52, 53]. The HFT method has

been numerically validated by comparisons with direct timeintegration for both simple

and complex systems. For example, the HFT method has been validated numerically for

ROMs of a cantilevered cracked beam by comparisons with direct time integration [54].

1.2.3 Damage detection in complex structures using vibration characteristics

The reliability and safety of air and space structures are very important. To ensure

safety, real-time and on-board health monitoring systems are needed. During normal op-

eration cycle, turbine engines experience high centrifugal stresses as well as high thermal

stresses. Because of those stresses, damages can be inducedin bladed disks. More im-

portantly, these damages can create a crack over time. If thelength of the crack reaches

a critical size, it can eventually lead to the burst of the bladed disk and failure of the en-

gine. Thus, it is important to have robust on-board health monitoring systems. Vibration

data can be used to monitor structural health. Vibration data can be measured using tip

timing [55] in an engine during operation. Tip timing is a non-contacting measurement

method which uses optical probes. It can be used to measure the vibration displacements

and frequencies of every blade on a rotating bladed disk.



8

To study vibrations of damaged structures, FEA is often employed. However, the

computational cost required to analyze the vibration of full order FE model is frequently

prohibitive. To circumvent this difficulty, a novel reducedorder modeling approach is in-

troduced. Saitoet al. [45, 46] presented an reduced order modeling method for mistuned

bladed disks with a cracked blade using a hybrid CMS method. They investigated forced

responses of a mistuned bladed disk with a cracked blade using a nonlinear cracked blade

model [54]. They showed that cracks may lead to nonlinear behavior and the resonant

peaks associated with the cracked blade are nonlinear (e.g., for the10th mode family) in

terms of both the amplitude of vibration and the peak frequency. They suggested that

localization due to cracks may be distinguishable from localization due to mistuning be-

cause localization at the cracked blade was observed to occur for various mode families.

However, that observation alone is not sufficient to establish a metric for differentiating lo-

calization due to mistuning from localization due to a crackand identifying blades which

have cracks.

1.3 Dissertation Outline

The remaining chapters of this dissertation are intended tobe self-contained. There-

fore, some of the materials are repetitive.

Chapter II introduces efficient reduced order modeling methods to investigate the ef-

fects of aerodynamic coupling with structural multi-stageturbomachinery models. The

method consists of first creating efficient structural ROMs of a multi-stage rotors. Cyclic

symmetry and CMM are used to form single-stage ROMs (using only single sector models

and single sector calculations). The approach then combines these single-stage ROMs by

projecting the motion at the interface between stages alonga set of harmonic shape func-

tions. Next, complex aerodynamic matrices are iterativelycalculated for each stage using
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an inviscid, irrotational and isentropic flow solver based on the full potential equation.

The multi-stage complex aerodynamic matrix is then assembled using each of the single-

stage complex aerodynamic matrices. Aeroelastic ROMs are constructed by combining the

multi-stage aerodynamic matrix with the multi-stage structural ROMs developed. In this

chapter, the effects of a frequency shift due to mistuning onthe complex aerodynamic ma-

trix is also accounted for using liner interpolations between columns of the aerodynamic

matrix. Additionally, a new classification of complex multi-stage aeroelastic modes is in-

troduced. This classification method first distinguishes the energy distribution of modes

amongst stages, and then determines the alignment of the aeroelastic multi-stage modes

with single stage modes. Furthermore, the effects of the aerodynamics and mistuning on

the multi-stage forced response are explored.

Chapter III proposes a novel methodology to detect the presence of a crack and to

predict the nonlinear forced response of mistuned turbomachinery rotors with a cracked

blade and mistuning. The combined effects of the crack and mistuning are captured us-

ing a novel reduced order modeling method. This method differs from previous tech-

niques which need full-order analysis to construct ROMs fora mistuned bladed disk with

a cracked blade whenever mistuning patterns change. First,a hybrid interface method

based on CMS is employed to develop ROMs of the tuned system with a cracked blade.

Constraint modes are added to model the displacements due tothe intermittent contact

between the crack surfaces. The DOFs on the crack surfaces are retained as active DOFs

so that the physical forces due to the contact/interaction (in the three-dimensional space)

can be accurately modeled. Next, the presence of mistuning in the tuned system with a

cracked blade is modeled. CMM is used to account for mistuning present in the uncracked

blades while the cracked blade is considered as a reference (with no mistuning). By using

CMM, high efficiency is obtained when calculating system normal modes of a mistuned
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bladed disk for many mistuning patterns, which is one of the important contributions of

the proposed modeling method. Next, the resulting (reduced-order) nonlinear equations of

motion are solved by applying an alternating frequency/time-domain method. Using these

efficient ROMs in a forced response analysis, it is found thatthe new modeling approach

provides significant computational cost savings, while ensuring good accuracy relative to

full-order finite element analyses. Furthermore, the effects of the cracked blade on the

mistuned system are investigated. A new method is proposed for damage detection. For

the first time the proposed approach is able to detect statistically the presence of a crack

and to identify which blade of a full bladed disk is cracked. In particular, it is shown that

cracks can be distinguished from mistuning.

Chapter IV is devoted to the development of an efficient method to predict vibration

amplitudes at the resonant frequencies of dynamical systems with piecewise-linear non-

linearity. This technique is referred to as the bilinear amplitude approximation (BAA).

Previously, the amplitudes at the resonant frequencies of piecewise-linear systems were

calculated using nonlinear forced responses across frequency ranges of interest using full-

order models or (nonlinear) ROMs. The BAA enable accurate predictions of the resonant

amplitudes using only a few linear calculations. BAA constructs a single vibration cycle at

each resonant frequency to approximate the periodic steady-state response of the system.

It is postulated that the steady-state response is piece-wise linear and can be approximated

by analyzing the response over two time intervals during which the system behaves lin-

early. Overall the dynamics is nonlinear, but the system is in a distinct linear state during

each of the two time intervals. Thus, the approximated vibration cycle is constructed using

linear analyses. The equation of motion for analyzing the vibration of each state is pro-

jected along the overlapping space spanned by the linear mode shapes active in each of the

states. This overlapping space is where the vibratory energy is transferred from one state to
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the other when the system switches from one state to the other. The overlapping space can

be obtained using singular value decomposition. The space where the energy is transferred

is used together with transition conditions of displacement and velocity compatibility to

construct a single vibration cycle and to compute the amplitude of the dynamics. Since the

BAA method does not require numerical integration of nonlinear models, computational

costs are very low, which is one of the important contributions of the BAA method. In

this chapter, the BAA method is first applied to a single-DOF system. Then, a three-DOF

system is introduced to demonstrate a more general application of BAA. Finally, the BAA

method is applied to a full bladed disk with a crack. Results comparing numerical solu-

tions from full-order nonlinear analysis and results obtained using BAA are presented for

all systems.

Chapter V presents an efficient methodology to capture the nonlinear responses of

combustor systems with pre-stress and friction. Instead ofusing direct numerical integra-

tion with full-order models, one can use the proposed ROMs toinvestigate the nonlinear

dynamics of systems with Coulomb friction. Combustor systems experience wear at the

interface between components due to flow-induced vibrations. In particular, wear has been

observed at the interface between the transition piece and the hula seal, and at the interface

between the hula seal and the liner. These interfaces are pre-stressed, and their vibratory

response has a softening nonlinearity caused by Coulomb friction combined with micro-

slip. In addition, the contact between the hula seal and the transition piece is that between

a convex surface and a concave surface. Hence, geometric nonlinearity of the contact

stiffness in the normal direction is present also. These phenomena are hard to capture

by full order finite element approaches because they requiretime marching or harmonic

balancing of very large models. To address this issue, we develop ROMs which are specif-

ically designed to capture Coulomb friction (combined withmicro-slip and macro-slip).
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To demonstrate the proposed approach, a simplified hula sealis placed between two very

rigid plates (which relate to the transition piece and the liner). Contact elements are used

to model the interface between the plates and the hula seal. Transient dynamic analysis

(TDA) in ANSYS is applied to the full-order model. The model is shown to exhibit soft-

ening nonlinearity and micro-slip at all levels of pre-stress. To show that ROMs for this

system are possible, we use proper orthogonal decomposition to show that the dynamics

is dominated by a low number of spatial coherences. For a variety of frequency ranges

and pre-stress levels, we show that a single such coherence is dominant. Next, low order

models are proposed and their parameters are identified. A systematic method to identify

these parameters is developed. Particular attention is paid to the amount of calculations

needed for obtaining these parameters. The ROMs are validated by comparing their pre-

dictions with results from TDA for the full-order model. It is shown that these ROMs

can accurately predict the nonlinear response of the systemwith considerable savings in

computational costs.

Finally in Chapter VI, conclusions are addressed and the contributions of this disserta-

tion are summarized. Ideas for future work are discussed also.



CHAPTER II

Analyzing Mistuned Multi-Stage Turbomachinery Rotors
with Aerodynamic Effects

2.1 Introduction

Turbomachinery modeling and analysis is an active area of research. A comprehensive

review of research in this field was conducted by [17]. The initial modeling approach for

these systems used simple lumped parameter models that usually contained one or two

degrees of freedom per sector of a single-stage rotor [19, 20, 23–25]. These models were

useful in gaining an understanding of the qualitative properties of bladed disks such as

mistuning. Mistuning is small blade-to-blade differencesin a bladed disk, which are in-

herent due to manufacturing processes and can be further exacerbated from operational

wear. Mistuning is important in bladed disks because it breaks the designed cyclic sym-

metry of the system, which can lead to a localization of the vibration energy to a few

sectors of the bladed disk in the operating frequency range.Due to the innate randomness

of mistuning it must be studied in a statistical manner usingmany different mistuning re-

alizations for a given design. The simple lumped parameter models were well suited for

statistical study due to their low dimensionality; however, analyses of these systems do not

provide accurate quantitative results for realistic industrial bladed disks.

High dimensional finite element models (FEMs) of bladed disks were developed to

13
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obtain accurate quantitative results for these systems. Although running simulations on

some of these FEMs is possible, performing a statistical analysis on a realistic model of

an industrial bladed disk, to understand for example the effect of mistuning on a particular

bladed disk design, would have a prohibitive computationalexpense. To overcome this

high computational cost, reduced order models (ROMs) basedon component mode syn-

thesis [51,56] (CMS) were developed. Eventually powerful ROMs were created that were

of the order of the number of sectors in a bladed disk yet very accurate over a specified

frequency range. [57] introduced the first of these powerfulROMs called the subset of

nominal modes method. The key idea behind this approach is that for small mistuning the

tuned system modes make an excellent basis for the mistuned modes. Component mode

mistuning [12] (CMM) is another powerful ROM for bladed disks and it uses the blade

component modes in addition to the system normal modes. The mistuning is handled in a

systematic manner using the blade alone frequencies and thecantilever blade modes.

Although much research has been conducted on single-stage models, in practical ap-

plications there are multiple stages in a turbomachinery rotor. [58] showed that important

multi-stage effects occur in certain frequency ranges where the motion of the disk is domi-

nant. Multi-stage lumped parameter models were used by [59]to gain a qualitative under-

standing of the dynamics of these systems, but were not useful in quantitatively analyzing

realistic multi-stage systems. [60] developed a novel way to create ROMs of multi-stage

turbomachinery FEMs by projecting the motion along the interfaces between stages along

a common set of harmonic basis functions and then enforcing compatibility. Their method

was combined with CMM [12] to create compact multi-stage turbomachinery ROMs with

mistuning. Their method was further developed to show its applicability to mistuning

identification and structural health monitoring [61, 62]. Asimilar approach to [60] was

later developed by [63, 64], and used to perform forced response and modal analysis cal-
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culations on multi-stage turbomachinery bladed disks. There has also been recent work

on the effects of coupling flexible rotors and shafts [65–69]. Recently, a novel way to cre-

ate and analyze robust multi-stage ROMs was introduced using only single sector models

of the stages [1, 39]. These works also demonstrate the effects of cracks in multi-stage

models [39] and introduce a new way to classify structural multi-stage modes [1].

A considerable amount of research has also been conducted oncoupling the aerody-

namics with the structural models. One area of particular importance is the instabilities

that can occur due to the aerodynamics [70–74]. Just as in thestructure only case, early

aeroelastic models used simple lumped parameter models forthe structure [2–5], which

did not quantitatively capture the dynamics of industrial bladed disks. To obtain better

quantitative results, structural ROMs were developed fromFEMs of the structure, and

cantilever blade modes were used in computing the aerodynamic forcing. To understand

the aerodynamic coupling between blades and the mistuning effects, [6] used perturbation

methods. Later, an iterative approach to determine the eigenvalues and eigenvectors of

an aeroelastic system was proposed by [7]. A technique that uses the ROMs of a struc-

tural model developed by [8,9] combined with inviscid fluid dynamics models investigated

flutter and the forced response of single-stage bladed disks[10,11]. An iterative aeroelas-

tic coupling method that models the aerodynamics by a quasi-three dimensional potential

flow and the structure using CMM was developed by [13,14].

In this work, the aerodynamics are coupled with structuralmulti-stageturbomachin-

ery models for the first time. The aerodynamic models are developed using the method

of [13, 14, 32], while the structural models are created using the method of [1] and [39],

which only requires single sector models of each stage. A newgeneralized characteriza-

tion of the multi-stageaeroelasticmodes is also developed based on a method to char-

acterize structural modes [1]. The methodology for constructing multi-stage ROMs with
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aerodynamic effects and the classification of thecomplexmodes are flexible and work

for any frequency domain aerodynamic models such as linearized or harmonic balance

methods [75–78]. Also, the novel formulation of the multi-stage ROMs with aerodynamic

effects accounts for the shift in frequency due to mistuningwhen computing the complex

aerodynamic matrix. Many numerical simulations are performed to demonstrate the effec-

tiveness of the methodology for Monte Carlo simulations andexplore the interactions of

the aerodynamics, the mistuning, and the damping in multi-stage systems.

2.2 Methodology

In this section, a brief overview of the construction of multi-stage ROMs with aerody-

namic effects is given. Also, an approach to handle the shiftin frequency due to mistuning

in aeroelastic systems is discussed. After that, a new classification scheme for multi-stage

systems with complex modes is introduced.

2.2.1 Multi-Stage Reduced Order Models with Aerodynamic Effects

A general procedure for constructing multi-stage models and account for the aerody-

namics in tuned and mistuned systems is presented using previously developed structural

methods [1,12,39,51,60]. The aerodynamic model [13,14,32,79] is separately applied to

each single-stage. The approach developed in this work for constructing aeroelastic ROMs

is general and can be applied with alternative techniques for obtaining the complex aero-

dynamic matrix such as those based on linearized or harmonicbalance methods [75–78].

Also, a new metric to characterize the combined effects of the mistuning and the aerody-

namics is introduced.

A key advantage of the multi-stage structural ROM is that it can be constructed using

single-sector models of each stage. The single-sector modeling takes advantage of the

inherent cyclic symmetry of each tuned stage. The first step in the modeling procedure
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is to use CMS [51] to divide each single-stage sector model into active interface degrees

of freedom (DOFs) and fixed interface normal modes. The interface DOFs correspond to

the interstage boundary DOFs that are used later to couple all stages together. The normal

modes are then used with CMM to efficiently account for mistuning in each stage [12].

Finally, the active DOFs along the interstage boundary are projected onto a set of harmonic

basis functions and compatibility is enforced between stages. The result yields reduced

order massMROM,m and stiffnessKROM,m matrices for the mistuned multi-stage system.

These structural ROMs can be created quickly and efficientlyfor many mistuning patterns

and levels.

The complex aerodynamic matrix can be computed in a variety of ways including new

linearized and harmonic balance methods [75–78]. In this work, the method developed

by [13,14,32] and [79] is used to compute the complex aerodynamic matrix of the system

Ka(ω). This matrix is calculated in the space of generalized/reduced coordinatesq which

represent complex amplitudes of multi-stage modes withoutmistuning. The method has

been validated by comparing its results with that of other unsteady codes and experimen-

tal results [80–82] for (single-stage) cascade flows. The method uses the full potential

equation in a quasi-three dimensional model of a cascade discretized by a Galerkin for-

mulation [83]. The flow is thus considered inviscid, irrotational and isentropic. In this

work, the complex aerodynamic matrix is calculated separately for each stage using the

same subspace of modes as that used in the structural model. The multi-stage complex

aerodynamic matrix is then assembled using each of the single-stage complex aerody-

namic matrices. The result is an aeroelastic system that is not aerodynamically coupled

between stages (it is structurally coupled); therefore, there is no influence of the upstream

aerodynamics on the downstream stages or vice versa. Note that the decoupling of the

aerodynamics is due to the choice of aerodynamic solver usedto extract the complex aero-
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dynamic matrix and is not a limitation to the approach in general. Also, the aerodynamic

effects (on each stage) have multi-stage consequences because of the structural coupling

between stages. For example, if a multi-stage mode is exposed to an increased aerody-

namic damping on stage1, its amplitude is reduced in stage2 also (not just in stage1).

This occurs even though the flow solver is not multi-stage. Thus, the aerodynamic effects

have complex multi-stage consequences.

The forced response in the reduced coordinates for the mistuned system is given by

[−ω2MROM,m + (1 + jγ)KROM,m +Ka(ω)]q = F(ω), (2.1)

wherej is the imaginary unit,γ is the structural damping,F(ω) is the forcing projected

onto the reduced coordinates, andω is the excitation frequency.

For forced response calculations, the frequency of the response is established by the

forcing frequencyω. Thus, using Eq. (2.1) requires the calculation ofKa at that fre-

quency. However, for free response calculations, the eigenvectors and eigenfrequencies

are affected by mistuning. Accounting for the frequency dependence ofKa is the primary

concern becauseKa(ω) is expressed in the space of multi-stage modeswithoutmistuning.

That is possible because, when mistuning is small, the mistuned aeroelastic modes can be

represented by a linear combination of multi-stage modes without mistuning.

The shape of the vibratory motion of each multi-stage structural mode (without mistun-

ing) is used to compute the corresponding column ofKa(ω). The dependence ofKa(ω)

on the multi-stage mode shapes (without mistuning) is very strong because these mode

shapes have different interblade phase angles, and the aerodynamics is strongly dependent

on these angles. However, the dependence ofKa(ω) onω is quite smooth.

For free response calculations, the frequencies of the mistuned system are calculated

iteratively. First,Ka is computed at the frequencies of the structure-only mistuned system.
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The aeroelastic frequencies are then computed using Eq. (2.1) with F(ω) = 0. Next,Ka

is calculated at those aeroelastic frequencies. The process is repeated until convergence of

the aeroelastic frequencies is obtained. Typically, only2 − 3 iterations are needed [32].

This process requires repetitive calculations ofKa at various frequencies. Similarly, forced

response predictions require computations at many different frequencies.

To alleviate the high computational cost of these calculations, the smooth dependence

of Ka on ω can be exploited. Complex aerodynamic matricesKa(ωs) are calculated for

frequenciesωs in increments of1% to±5% of the structure-only natural frequencies (i.e.,

s = 1, . . . , 11). These matrices are then used to evaluateKa(ω) by interpolations based

onω. Specifically, the columns ofKa(ω) are estimated by linearly interpolating between

the columns ofKa(ωs) matrices based onω. For example, consider the case where the

mistuning has increased thejth frequencyω of the system by4.2%. This frequency value

is between the values of4% (s = 10) and5% (s = 11). Thejth column of the mistuned

complex aerodynamic matrixKa
j (ω) is approximated by linear interpolation,

Ka
j (ω) = 0.8 ∗Ka

j (ω10) + 0.2 ∗Ka
j (ω11). (2.2)

This procedure is carried out for each column of the complex aerodynamic matrix for the

mistuned system.

2.2.2 Generalized Classification of Complex Multi-Stage Mode

In this section, a new generalized classification scheme is developed for multi-stage

systems withcomplexmodes. This scheme generalizes the classification method devel-

oped by [1] that was designed to show the effects of the inter-stage coupling and mistuning

on structure-only models of multi-stage systems. The generalized classification is based

on two principles, namely the energy distribution and the modal alignment. The strain
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energyEa
ij in theith aeroelastic mode of thejth stage is given by

Ea
ij = real(φaij)

TK
ROM,t
j real(φaij), (2.3)

whereKROM,t
j is the structure only stiffness of thejth stage in the reduced coordinates,

andφaij is the portion of the aeroelastic mode that corresponds to the jth stage. Only the

real part of the aeroelastic mode is used because for the strain energy only the energy from

the physical displacement of the structure is of interest. Similarly, only the motion of the

structure is of concern for the energy in the stages, so the aeroelastic stiffness matrix is

not included in the strain energy calculation. Note that since these calculations are done in

the reduced order space, they can be done very efficiently. The strain energy ratio can be

calculated for theith mode of stage1 of a two stage aeroelastic system as

ERa
i1 =

Ea
i1

Ea
i1 + Ea

i2

, (2.4)

and for stage2 as

ERa
i2 =

Ea
i2

Ea
i1 + Ea

i2

. (2.5)

The energy ratiosERa
i1 andERa

i2 indicate the distribution of the strain energy of each

aeroelastic mode in each stage.

The modal alignment criterion for the classification of the aeroelastic modes is differ-

ent from the classification of structure only modes due to theadditional imaginary compo-

nent of the aeroelastic modes. A similar method to the modal assurance criterion (MAC)

is once again used. The MAC number is a quantitative measure of the alignment of two

modes, where the MAC is one if the modes are parallel, and zeroif the modes are or-

thogonal. Complex aeroelastic modes can be separated into their real and imaginary parts,

thus forming a plane in theNj dimensional space, whereNj is the size of the reduced

order model of thejth stage. A complex MAC numberMACc can be defined from the
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Figure 2.1: Schematic of the intersection of two planes in anNj dimensional space.

alignment of these planes. The plane defined by the complex modeφaij can be defined as

Φ
a,m
ij = [real(φaij) imag(φaij)]. The alignment of this plane must be compared against the

complex modesϕakj, which are the single-stage aeroelastic modes of thejth stage, where

k ∈ nj andnj is the set of singlejth stage modes that are within a particular frequency

range. The plane formed byϕakj can be similarly defined asΦa,s
kj = [real(ϕakj) imag(ϕakj)].

The frequency range when single-stage aeroelastic modes will be checked against the

multi-stage mode is given by

ε ≥
| ωi − ωkj |

| ωi |
, (2.6)

whereωi is theith multi-stage frequency,ωkj is thekth single-stage frequency of thejth

stage, andε is the tolerance, which in this work was set to10%.

To determine the angle between the planes defined by two complex aeroelastic modes

in anNj dimensional space one can take a singular value decomposition of the composite

systemΦa,c
kij = [Φa,m

ij Φ
a,s
kj ] to obtain

Φ
a,c
kij = [u1 u2 u3 u4]diag(σ1, σ2, σ3, σ4)V

T, (2.7)

whereσp are positive numbers called singular values,up areNj × 1 orthonormal left

singular vectors, andV is a4 × 4 matrix which contains the right singular vectors. The
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singular values are ordered from highest to lowest and can bethought of as the level of

contribution of the left singular vectors to the range spaceof Φa,c
kij. If σ4 > 0, then the

two planes do not intersect in theNj dimensional space, andMACc
ij = 0. If σ4 = 0 and

σ3 = 0, then the subspace inhabited by the two planes is two dimensional, which means

the planes inhabit the same subspace andMACc
ij = 1. If σ4 = 0 andσ3 > 0, then the

planes intersect but do not overlap, and the line of intersection is the dominant portion

of the range space, which is given byu1. To quantitatively determine the alignment of

these planes one must first find a line on each plane that is orthogonal tou1. Then, by

finding the alignment of these two vectors using a MAC calculation one also determines

the alignment of the planes. Using the Gram-Schmidt processone can identify a vector

ϕa,okj that is orthogonal tou1 within the space spanned byΦa,s
kj as

ϕa,okj = real(ϕakj)− (uT

1 real(ϕ
a
kj))u1. (2.8)

Similarly, one can find a vectorφa,oij that is orthogonal tou1 within the space spanned by

Φ
a,m
ij as

φa,oij = real(φaij)− (uT

1
real(φaij))u1. (2.9)

The physical idea behind this approach is shown in Fig. 2.1 for the case where there is an

intersection of the two planes in theNj dimensional space. The MAC number can then be

computed for these two vectors as

MACc
ij = max

k∈nj

√

((ϕa,okj )
Tφa,oij )

2

‖ ϕa,okj ‖‖ φa,oij ‖
. (2.10)

The multi-stage complex modes can now be classified using Eqs. 2.4, 2.5 and 2.10.

First, the modes can be classified by the energy distributionto determine whether the en-

ergy is isolated to a single-stage or whether it is split amongst the stages. Next, the modes

are classified on their alignment with single-stage modes. Asummary of the classification

types of multi-stagecomplexmodes for a two stage system are given in Tab. 2.1.
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Mode Classification Energy Distribution Modal Alignment Symbol

Stage 1 - single-stage mode (S1 ) ER
a

1  > 0.9 MAC c
1  > 0.9

Stage 1 - multi-stage mode (MS1 ) ER
a

1  > 0.9 MAC c
1  < 0.9

Stage 2 - single-stage mode (S2 ) ER
a

2  > 0.9 MAC c
2  > 0.9

Stage 2 - multi-stage mode (MS2 ) ER
a

2  > 0.9 MAC c
2  < 0.9

Multi-stage - double single- 

stage mode (MS1,S2 )

ER
a

1  < 0.9 AND 

ER
a

2  < 0.9

MAC c
1  > 0.9 AND

MAC c

2  > 0.9 

Multi-stage mode (M 1,2)
ER

a

1  < 0.9 AND 

ER
a

2  < 0.9

MAC c

1  < 0.9 OR 

MAC c

2  < 0.9 

o
o

Table 2.1: Classification of six types of aeroelastic modes using the energy distribution
and the modal alignment criterion.

Figure 2.2: Multi-stage turbomachinery rotor.

2.3 Results

The system analyzed in this section is shown in Fig. 2.2. Thissystem has25 blades

in the first stage and23 blades in the second stage. Many multi-stage ROMs with aero-

dynamic effects were created from this system using a variety of mistuning levels and

patterns by following the procedure highlighted in Sec. 2.2.1. The aeroelastic ROMs have

592 DOFs, which is about0.5% of the original FEM size. The structural portion of the

ROMs were developed from single sector models of each stage of the system. The stages

were connected by projecting the motion along the interstage boundary onto23 harmonic

basis functions. The construction of the full multi-stage FEM shown in Fig. 2.2 was done



24

for validation of the structural ROMs, which has been presented in the literature [39]. The

complex aerodynamic matrix was calculated using a flow solver for inviscid, irrotational,

isentropic flow [13, 14, 32, 79, 82]. The validation of the aerodynamic code has been pre-

sented in the literature [13, 14, 32, 79]. The reduced frequency was approximately6.15

and7.65 near the hub for the frequency range of the first mode family ofthe first and

second stage, respectively. The reduced frequency is basedon the half chord and inlet

velocity near the hub. The upstream far-field Mach number near the hub is0.25. These

flow conditions are below the flutter speed.

Many structural ROMs were developed at different mistuninglevels and for different

randomly chosen mistuning patterns. A complex aerodynamicmatrixKa was calculated at

each eigenfrequency of each realization of the system by using a linear interpolation based

on theKa(ωs) matrices as described in Sec. 2.2.1. The ROMs developed werevalid for the

frequency range0− 20 kHz; however the results in this work are focused on the narrower

range0− 7 kHz. Since, the flow conditions are below the flutter speed, the analyses focus

on the forced response of the fluid-structural system ratherthan on self-excited vibrations

(flutter). The response corresponds to forcing due to interactions with other stages, the

rotor, or other forces applied to the two stage system. In this context, the fluid-structure

interaction adds mass, stiffness, and damping effects. Thus, the fluid-structure interaction

changes the forced response, but it is not the cause of the dynamics or of any instability

such as flutter.

The first set of multi-stage results are presented in Fig. 2.3. Fig. 2.3(a) is the classifi-

cation of the tuned aeroelastic multi-stage modes using theclassification criteria presented

in Tab. 2.1. Thex-axis is the eigenvalue index, while they-axis is the real part of the

multi-stage frequency. For comparison, the classificationof the tuned multi-stage modes

(without aerodynamic effects) [1] is presented in Fig. 2.3(b). The influence of each stage
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Figure 2.3: Frequencies and classification of the tuned multi-stage system (a) with aero-
dynamics effects and (b) without aerodynamic effects [1]. Energy distribution
for the tuned multi-stage modes (c) with aerodynamics effects and (d) without
aerodynamic effects [1].

is indicated by the shape of the symbol in the plots. These symbols are explained in

Tab. 2.1 (i.e., the triangles correspond to stage1 modes, the circles to stage2 modes, and

the squares to multi-stage modes). There is an added complexity when modeling the aero-

dynamic effects which results in more multi-stageMS1 andMS2 modes occurring in the

multi-stage frequency ranges (near3 kHz, 4.5 kHz and6.5 kHz). The energy distribution

for the system with aerodynamics is shown in Fig. 2.3(c) and for the system without aero-

dynamic effects [1] in Fig. 2.3(d). These plots show that forthe tunedcase the energy

distribution between stages does not change due to the aerodynamic effects. However, the

complex multi-stage modes are less likely to align with their single-stage counterparts.

This suggests the need for multi-stage analysis which accounts for aerodynamic effects
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Figure 2.4: Frequencies and classification of the mistuned multi-stage system (a) with
aerodynamics effects and (b) without aerodynamic effects [1]. Probability of
classification for the mistuned multi-stage modes (c) with aerodynamics ef-
fects and (d) without aerodynamic effects [1].

in tuned systems over all frequency ranges, as opposed to thenarrow frequency ranges

2 − 2.4 kHz and6.5 − 7 kHz where a single-stage analysis would be valid for the tuned

multi-stage system without aerodynamics.

Next, the effect of mistuning on the classification of aeroelastic multi-stage modes

were studied using1, 000 different mistuning patterns with a standard deviation of the

mistuning of5%. The results are presented in Fig. 2.4, where the layout of Fig. 2.4(a)

and Fig. 2.4(b) are the same as Fig. 2.3(a). Since many different mistuning patterns are

simultaneously being classified, multiple classification symbols can be plotted at each

index. Fig. 2.4(a) corresponds to the mistuned systems withaerodynamic effects, while

Fig. 2.4(b) corresponds to the mistuned systems without aerodynamic effects [1]. To gain a



27

0 10 20 30 40 50 60

−10

−8

−6

−4

−2

0

x 10
−3

Eigenvalue index

R
e

a
l(
ω

) 

(a)

0 10 20 30 40 50 60

−10

−8

−6

−4

−2

0

x 10
−3

Eigenvalue index

R
e

a
l(
ω

) 

(b)

Figure 2.5: Damping in the (a) tuned and (b) mistuned multi-stage systems for the struc-
ture only [−] , aeroelastic system [2], structure with structural damping [x],
and aeroelastic system with structural damping [◦].

clearer idea of the likelihood of a particular mode at a givenindex occuring, the probability

of each classification of the aeroelastic system is shown in Fig. 2.4(c), and the probability

of classification of each mode for the structure only system [1] is given in Fig. 2.4(d). Note

that there is not a large difference between Fig. 2.4(a) and Fig. 2.4(b) or Fig. 2.3(a) and

Fig. 2.3(b). The physical reason for this is the fact that theaerodynamic matrix has a much

larger influence on damping than on stiffness. The aerodynamic stiffness contribution is

very small compared to the structural stiffness. However, the damping contribution of the

aerodynamic matrix is comparable with the structural damping. Figures 2.4(a), 2.4(b),

2.3(a) and 2.3(b) are based on the mode shapes of the multi-stage system. Note that, the

flow influences these mode shapes and their damping. When mistuning is present, it is

clear from Fig. 2.4(c) and Fig. 2.4(d) that the probability distribution of the mode types

does change considerably due to the aerodynamic effects. Thus, in both the structural and

aeroelastic cases, multi-stage analysis is needed due to the very complex interactions and

possibilities that exist when considering mistuning in multi-stage systems.

The main impact of considering the aerodynamics with the structure is how the damp-
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ing is affected. To understand how the damping changes with the inclusion of the aerody-

namics, the imaginary part of the multi-stage natural frequency is investigated for several

cases. The results for the tuned case are summarized in Fig. 2.5(a), while the results for

the mistuned case are summarized in Fig. 2.5(b). For each eigenvalue index four different

values are reported corresponding to four distinct cases. The first case is the structural

system with no added structural damping and this corresponds to the case with the least

damping. The second case is the aeroelastic system with no added structural damping. The

next case is the structural system with structural damping of the formjγKROM,m (where

γ = 0.0005) included. The final case is the aeroelastic system with structural damping in-

cluded and that has the most damping. The overall impact of the aeroelastic damping will

vary greatly depending on the relative size of the aeroelastic and structural damping. In

this work the influence of the aeroelastic damping is very significant since it is of the same

order as the structural damping. For the mistuned case, the average value of the imaginary

part of the natural frequencies for the1, 000 mistuning patterns are plotted in Fig. 2.5(b).

The standard deviation tends to be very small (< 3%) so standard deviation bars are not

plotted to avoid making the figure difficult to read. In analyzing Fig. 2.5(b), one can note

that the aeroelastic damping tends to equalize across mode families due to the mistuning.

For example the flat region associated with indices1 − 23 correspond to the first mode

family of the second stage. For (higher) indices24 − 28, there is a mix of multi-stage

modes and stage 1 dominated modes. Next is the rest of the firstfamily of stage 1 domi-

nated modes (from eigenvalue indices 29-51). For the tuned case the aeroelastic damping

is less uniform as is shown in Fig. 2.5(a).

To understand the effects of the aerodynamics on the system,forced response simu-

lations were performed. The results are summarized in Figs.2.6 and 2.7. A structural

damping ofγ = 0.0005 was used for all the forced response calculations. Forces were



29

6.6 6.7 6.8 6.9

0.05

0.1

0.15

0.2

0.25

Excitation frequency [kHz]

M
a

x.
 r

e
sp

o
n

se
 p

o
in

t 
n

o
rm

 [
m

m
]

(a)

6.6 6.7 6.8 6.9

0.05

0.1

0.15

0.2

0.25

Excitation frequency [kHz]

M
a

x.
 r

e
sp

o
n

se
 p

o
in

t 
n

o
rm

 [
m

m
]

(b)

Figure 2.6: Forced response of stage2 for the system (a) with aerodynamics effects and
(b) without aerodynamics effects for the tuned system usinga single-stage
analysis [−], mistuned system using a single-stage analysis [x], tunedsystem
using a multi-stage analysis [. . . ], and mistuned system using a multi-stage
analysis [2].

applied at the tips of the blades on each stage with specified engine order excitations.

The maximum of the response at the excited nodes of each stagewas used as the maxi-

mum response for that stage. First, an engine order zero excitation was applied to each

stage at512 equally spaced frequencies from6.5 kHz to 7.0 kHz. The results are sum-

marized for the system with aerodynamic effects in Fig. 2.6(a) and without aerodynamic

effects in Fig. 2.6(b) for stage2 for four cases. The first case is the tuned response using a

single-stage analysis. The second case is a sample mistunedresponse using a single-stage

analysis. The third case is the tuned response using a multi-stage analysis. The final case

is a sample mistuned response using a multi-stage analysis.The results for stage1 are

omitted for this analysis because the response is negligible for stage1 in this frequency

range. This is because the energy is concentrated in stage2 over this frequency range,

which can be seen by inspecting the types of modes in this frequency range using Figs. 2.3

and 2.4. The x-axis in each plot is the frequency of excitation, while the y-axis is the max-

imum response for stage2. A key observation when comparing Fig. 2.6(a) with Fig. 2.6(b)
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Figure 2.7: Forced response of stage1 (a) with aerodynamics effects and (b) without aero-
dynamic effects, and of stage2 (c) with aerodynamics effects and (d) without
aerodynamic effects for the tuned system using a single-stage analysis [−],
mistuned system using a single-stage analysis [x], tuned system using a multi-
stage analysis [. . . ], and mistuned system using a multi-stage analysis [2].

is that the responses in all cases tend to be approximately20% lower for the aeroelastic

system. The peaks at each frequency, however, do not scale bythe exact same value. This

is to be expected since the aeroelastic damping is not the same across all modes (as can be

seen in Fig. 2.5). Fig. 2.6 highlights the need for a multi-stage analysis to be carried out

irrespective if one is accounting for aerodyanmic effects (even when exploring a frequency

range that is dominated by motion in a single-stage).

The results of an engine order one excitation applied to eachstage at1, 024 equally

spaced frequencies from2.8 kHz to 3.4 kHz is summarized in Fig. 2.7. The plots are
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Figure 2.8: Force amplification factor versus mistuning level and engine order excitation
for the multi-stage system for stage1 (a) with aerodynamic effects and (b)
without aerodynamic effects, and stage2 (c) with aerodynamic effects and (d)
without aerodynamic effects.

laid out in the same way as in Fig. 2.6 with the same four cases being considered. Stage

1 and stage2 results are plotted for this case since this frequency rangehas modes with

energy split between both stages making the response significant in both stages. These

results highlight similar observations from the previous forced response case. Namely, ac-

counting for the aerodynamics introduces additional damping that reduces the response by

approximately20%. However, this level varies at different frequencies. Also, multi-stage

modeling is once again important for accurate aeroelastic or purely structural analysis, and

in this particular frequency range multi-stage effects areparamount.
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Figure 2.9: Maximum force response versus mistuning level and engine order excitation
for the multi-stage system for stage1 (a) with aerodynamic effects and (b)
without aerodynamic effects, and stage2 (c) with aerodynamic effects and (d)
without aerodynamic effects.

To better understand the effects of mistuning on structuraland aeroelastic systems,

amplification factor plots for stage1 and2 were generated. The results are summarized

in Fig. 2.8 and contain the99th percentile response of100 mistuning patterns for engine

order excitation0 to 11 and mistuning levels from0% to 5% over the frequency range

2.8−3.6 kHz. One hundred separate forced response calculations were performed at each

unique mistuning level and engine order excitation combination. To account for a low

response of the tuned system of a stage at a particular engineorder excitation of the multi-

stage system, a modified amplification factor is used. This amplification factor for a system



33

2.9 3 3.1 3.2 3.3 3.4 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Excitation frequency [kHz]

M
a

x.
 r

e
sp

o
n

se
 p

o
in

t 
n

o
rm

 [
m

m
]

3.1 3.11 3.12

0.2

0.4

0.6

0.8

Figure 2.10: Maximum forced response of stage1 for 100 mistuning realizations of the
structural system [−] and the aeroelastic system [. . . ] for engine order2 ex-
citation.

with a given mistuning level and engine order excitation is defined as the maximum re-

sponse of the mistuned systems plus the maximum tuned response across all engine order

excitations divided by the tuned response (at the particular engine order excitation) plus

the maximum tuned response across all engine order excitations. This definition avoids

confusion which appear when the response is very low at particular engine order exci-

tations. The corresponding maximum forced response for thestructural and aeroelastic

systems are shown in Fig. 2.9. The key physical insight that can be gained from Figs. 2.8

and 2.9 is that multi-stage effects affect the mistuned response, and this should be consid-

ered because it can lead to very different amplification factors compared to single-stage

calculations.

An interesting point in both the structural and the aeroelastic systems is that for en-

gine order0 excitation in stage2 the amplification factor is below one. This is due to

multi-stage interactions where the mistuning effects are combined with the interstage cou-

pling effects, and energy is transferred from stage2 to stage1. Also, the response for the

aeroelastic system is lower than the structural system as expected due to the additional

damping. Moreover, the amplification factor of the aeroelastic system is lower than that of
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the structural system. This can be explained by the fact thatmistuning tends to equalize

damping across the modes, as was shown in Fig. 2.5(b), thus lowering the response of the

mistuned systems. Additionally, when studying stage1 it is clear that the topology of both

the response and amplification factor plots are different for the structural and aeroelastic

systems. This occurs because of the aeroelastic damping, which can cause systems with

different mistuning patterns to have a larger response. To explore this, a forced response

comparison is done at engine order excitation2 with a5% standard deviation of mistuning

for the maximum response for both the aeroelastic and structural system. The results are

plotted in Fig. 2.10. Note that a different mistuning pattern leads to the maximum response

in the structural system versus the aeroelastic system.

2.4 Conclusions

A new approach to construct multi-stage reduced order models (ROMs) with aerody-

namic effects was presented. The method can efficiently compute many realizations of

the structural portion of the system for many different mistuning patterns. The method

requires only single sector models of each stage, and uses cyclic symmetry analysis, com-

ponent mode mistuning, and a projection of the interstage degrees of freedom onto a set of

harmonic basis functions. The aerodynamics are then included in the model by computing

the complex aerodynamic matrix for the system. In general this can be done with a variety

of techniques. In this work, the complex aerodynamic matrices were calculated separately

for each tuned stage using an inviscid, irrotational and isentropic flow solver based on the

full potential equation. Only a tuned analysis of the flow is necessary because a new ap-

proximation of the complex aerodynamic matrices for mistuned systems was developed.

The approximation accounts for the shift in structural frequencies due to mistuning. The

proposed approach is general and can be used when other methods are employed to com-
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pute the complex aerodynamic matrix. Also, a new classification method was developed

for categorizing complex multi-stage modes. This classification method first distinguishes

the energy distribution of the modes amongst stages, and then determines the alignment

of the aeroelastic multi-stage modes with single-stage modes. Due to the fact that the

aeroelastic modes are complex, they are separated into realand imaginary parts forming

a plane in a higher dimensional subspace, and a new method is presented for determining

the alignment of these planes in a higher dimensional space.

The modeling procedure was carried out for the tuned case andmany mistuned realiza-

tions of a two stage bladed disk. The interactions of structural and aerodynamic damping,

mistuning and multi-stage structural coupling were investigated. Several conclusions can

be drawn from this work. First, the construction of multi-stage systems with aerodynamic

effects is important for both tuned and mistuned systems to understand the dynamic re-

sponse and characteristics of these systems. The aerodynamics can have a large impact on

the damping of the multi-stage system, and mistuning tends to equalize the aerodynamic

damping over the mode families. Due to the fact that the aerodynamic damping can be

of the same order as the structural damping, it can have a significant impact on lowering

the vibrational response of the system. Thus, classifications and forced responses of the

system must be explored in a probablistic manner to understand the true impact of ran-

dom mistuning on aeroelastic systems. Finally, it was shownthat multi-stage modeling is

critical for analysis of both purely structural and aeroelastic systems.

The analysis in this work is for a multi-stage structure withthe loads from the aero-

dynamics computed at a stage level. The methodology presented can be used the same

way when the unsteady flow field accounts for all aerodynamic multi-stage effects. Thus,

accounting for the full multi-stage aerodynamics is a component of future work. The

results presented take into account certain aspects of the aerodynamics (although the aero-



36

dynamics is not multi-stage). The results are useful because they are a step forward in

increasing the accuracy of multi-stage structural analyses (which typically do not account

for aeroelastic effects at all). Future work in this area includes developing a method for

efficiently computing multi-stage complex aerodynamic matrices that couple the upstream

and downstream stages, and experimental validation of the analysis.



CHAPTER III

Detection of Cracks in Mistuned Bladed Disks using
Reduced Order Models and Vibration Data

3.1 Introduction

The vibration analysis of bladed disks in a turbine engine rotor can be conducted easily

if it is assumed that all of their sectors are identical because cyclic symmetry can be em-

ployed. In reality, however, there are unavoidable small differences among the structural

properties or geometric characteristics between individual sectors due to manufacturing

tolerances, material deviations, and non-uniform operational wear. These small differ-

ences are commonly referred to as mistuning. Even though themistuning level is typically

small in terms of individual blade properties, this small mistuning can have a considerable

impact on the forced response. Namely, mistuning can cause alocalization of vibration to

a few blades, which leads to a drastic increase in the response amplitude for those blades.

A number of studies have been conducted to investigate the effects of mistuning on bladed

disks [15–17]. Some of the early studies have been based on lumped parameter mod-

els [18–26]. In general, the effects of mistuning can be understood qualitatively by these

simple models (in single stage systems) [27–29]. However, these models are only partially

able to predict accurately the vibration characteristics of bladed disks [13, 14, 30–32], es-

pecially in multi-stage systems [1].

37
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Vibration localization can be induced not only by mistuningbut also by damages to the

bladed disk, such as cracks. Damages can result during operation, from material defects,

and from fatigue. Several investigators have tackled vibration localization due to cracks

by assuming that the cracked blade is an Euler-Bernoulli beam or by using a lumped-mass

beam model [33–38]. In those studies, the nonlinearity caused by the crack opening and

closing was not considered. However, this piece-wise linear behavior may change the dy-

namic response of the cracked blades significantly [39–41].Recently, Saitoet al. [45, 46]

presented an efficient reduced-order modeling method for mistuned bladed disks with a

cracked blade. They used a hybrid component mode synthesis (CMS) method to obtain

reduced order models (ROMs). To calculate the nonlinear forced responses, they used a

hybrid frequency/time domain (HFT) method based on the harmonic balanced method [47]

and fast Fourier transforms. A modal analysis of the full mistuned bladed disk with a

cracked blade was employed to obtain ROMs. Therefore, the computational costs are sig-

nificant especially when many mistuning patterns have to be considered. This is important

when investigating real mistuned bladed disks because mistuning patterns are usually ran-

dom. For efficient projection of blade mistuning, Limet al. [12] developed the component

mode mistuning (CMM) method to generate ROMs for mistuned bladed disks. In CMM,

the mistuned bladed disk is partitioned into a tuned bladed disk component and a virtual

blade mistuning component. The mistuning component is defined by the differences be-

tween the mistuned and the tuned blade mass and stiffness matrices. For the case of small

stiffness-only blade-to-blade variations, the mistuningbecomes an eigenvalue mistuning,

and can be defined as the difference between the eigenvalues of the mistuned cantilevered

blades and the tuned cantilevered blade.

In this paper, a novel nonlinear vibration analysis method that predicts the forced re-

sponse of mistuned bladed disks with a cracked blade is presented. In addition, the mode
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localizations due to mistuning and cracks are examined, anda method to detect the pres-

ence of cracks is presented. In this novel method, the mistuned bladed disk with a cracked

blade is partitioned into a tuned bladed disk with a cracked blade and blade mistuning on

the uncracked blades. A hybrid CMS is used to generate ROMs oftuned bladed disks

with a cracked blade. The interface degrees of freedom (DOFs) on the crack surfaces

are retained as active DOFs for evaluation of the nonlinear boundary conditions, while the

other DOFs are condensed using modal analysis. Also, CMM is employed to project blade

mistuning on the modes of the tuned system with a cracked blade. Nonlinear steady-state

response analyses are performed using a HFT method.

This paper is organized as follows. First, the mathematicalformulation of the reduced-

order modeling approach is presented. Then, the formulation is applied to the vibration

analysis of a mistuned bladed disk with a cracked blade. The results are validated by

comparisons with a previous study by Saitoet al. [45]. In addition, the distinct mode

localizations across mode families due to mistuning and cracks are discussed. Finally, a

novel method to distinguish cracks in mistuned bladed disksis presented.

3.2 Methodology

In this section, the equations of motion for a mistuned bladed disk with a cracked

blade are presented first. Next, the reduced order modeling procedure is explained. Then,

a mode localization parameter is introduced. Finally, the residual of the normal modes of

a mistuned bladed disk with a cracked blade is introduced.

3.2.1 Equations of Motion

The mistuned bladed disk with a cracked blade is modeled as a linear elastic structure,

and the related governing equation is spatially discretized by the finite element method.
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The discretized form of the governing equation can be written as

Mü(t) +Cu̇(t) +Ku(t) = b(t) + f(u), (3.1)

wherem is the number of DOFs andu ∈ R
m is the vector of nodal displacements of a full

order finite element model of the entire mistuned bladed diskwith a cracked blade.M,

C, K ∈ R
m×m are mass, damping, and stiffness matrices,b ∈ R

m is the external force

vector, andf(u) ∈R
m is the nonlinear force vector caused by the intermittent contact at the

crack surfaces. The external force acting on each blade is assumed to be a traveling wave

excitation with a frequencyω related using the engine order excitationC to the rotational

speed of the bladed disk. The forcebi(t) acting on bladei is expressed as

bi(t) = βββ cos(ωt− φi), i = 1, ..., N, (3.2)

wherei is the blade number,N is the number of blades, andβββ is the forcing amplitude

vector (which is the same for all blades). Vectorβββ has a size equal to the number of

forced DOFs on a blade. Thus, vectorb(t) contains all vectorsbi(t) and also zeroes

(corresponding to the DOFs which are not forced). The angleφi is the interblade phase

angle, defined asφi = (i− 1)2πC/N .

3.2.2 Reduced-Order Modeling

Typically, finite element models (FEMs) of complex structures such as bladed disk

assemblies have many DOFs. In this paper, such an FEM is employed as the starting point

in constructing ROMs for a mistuned bladed disk with a cracked blade. The model is

partitioned into a tuned bladed disk component with a cracked blade and a blade mistuning

component. To combine the tuned system and mistuning components, a hybrid CMS

is employed. The tuned system is treated as a free-interfacecomponent, whereas the

mistuning component is treated as a fixed-interface component. For the tuned system
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component, free-interface normal modes, attachment modes, and constraint modes are

employed. Because the tuned system component is a free-interface component, the normal

modes are simply the modes of the tuned bladed disk with a cracked blade. The attachment

modes are obtained by applying a unit force to each interfaceDOF successively. The

constraint modes are obtained by enforcing a unit displacement at each interface DOF on

the crack surfaces.

The constraint modes are needed to account for the displacement due to intermittent

contacts between the crack surfaces. Since cracks are localized on (the blades of) some

sectors, one can assume that the other sectors (which have uncracked blades) are not af-

fected by the enforced unit displacements at the interface DOFs on the crack surfaces.

Therefore, the partitions in the constraint modes for the uncracked blades and disk are

assumed to be zero.

Let the vector of nodal displacementsuS of the tuned bladed disk with a cracked blade

be partitioned into cracked blade interior DOFs (except DOFs on the crack surfaces)uSi ,

uncracked blade DOFsuSb , disk DOFsuSd , and crack surface DOFsuSc . To represent

uS, a truncated set of normal modesΦΦΦS, a complete set of attachment modesΨΨΨS, and

constraint modesΨΨΨC are employed. In the following, the matricesΦΦΦS, ΨΨΨS, andΨΨΨC are

each partitioned into four components: (1) one component contains all the cracked blade

interior DOFs (indicated by subscripti), (2) one component contains all the uncracked

blade DOFs (indicated by subscriptb), (3) one component contains all the disk DOFs

(indicated by subscriptd), (4) and one component contains all the DOFs on the crack

surfaces (indicated by subscriptc). By denoting the coordinates of the truncated set of
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normal modes and attachment modes aspSφ andpSψ respectively,uS can be represented as

uS =





















uSi

uSb

uSd

uSc





















=

[

Φ̂ΦΦ
S

Ψ̂ΨΨ
S

ΨΨΨC

]















pSφ

pSψ

uSc















, (3.3)

Φ̂ΦΦ
S
=





















Φ̂ΦΦ
S

i

ΦΦΦSb

ΦΦΦSd

0


















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, Ψ̂ΨΨ
S
=





















Ψ̂ΨΨ
S

i

ΨΨΨS
b

ΨΨΨS
d

0





















, (3.4)

whereΦ̂ΦΦ
S

i = ΦΦΦSi −ΨΨΨC
i ΦΦΦ

S
c , andΨ̂ΨΨ

S

i = ΨΨΨS
i −ΨΨΨC

i ΨΨΨ
S
c . By using this projection, the reduced

mass and stiffness matrices can be obtained as follows

µµµS =















Φ̂ΦΦ
ST

MSΦ̂ΦΦ
S

Φ̂ΦΦ
ST

MSΨ̂ΨΨ
S

Φ̂ΦΦ
ST

MSΨΨΨC

Ψ̂ΨΨ
ST

MSΦ̂ΦΦ
S

Ψ̂ΨΨ
ST

MSΨ̂ΨΨ
S

Ψ̂ΨΨ
ST

MSΨΨΨC

ΨΨΨCT

MSΦ̂ΦΦ
S

ΨΨΨCT

MSΨ̂ΨΨ
S

ΨΨΨCT

MSΨΨΨC















, (3.5)

κκκS =















Φ̂ΦΦ
ST

KSΦ̂ΦΦ
S

Φ̂ΦΦ
ST

KSΨ̂ΨΨ
S

Φ̂ΦΦ
ST

KSΨΨΨC

Ψ̂ΨΨ
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KSΦ̂ΦΦ
S

Ψ̂ΨΨ
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KSΨ̂ΨΨ
S

Ψ̂ΨΨ
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KSΨΨΨC

ΨΨΨCT

KSΦ̂ΦΦ
S

ΨΨΨCT

KSΨ̂ΨΨ
S

ΨΨΨCT

KSΨΨΨC















. (3.6)

It should be noted that̂ΦΦΦ
ST

MSΦ̂ΦΦ
S
6= I andΦ̂ΦΦ

ST

KSΦ̂ΦΦ
S
6= ΛΛΛS due to the presence of the

projection matrix modeling the crack surfacesΦΦΦSc into the projection matrix modeling the

motion of the DOFs on the interior of the cracked bladeΦ̂ΦΦ
S

i .

The synthesis of the tuned system and mistuning components is achieved by satisfying

displacement compatibility at the component interface, i.e., uSb = uδ, whereδ denotes

mistuning. One obtains

ΦΦΦS
b p

S
φ +ΨΨΨS

b p
S
ψ = pδψ, (3.7)
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pδψ =

[

ΦΦΦS
b ΨΨΨS

b

]







pSφ

pSψ






. (3.8)

Therefore, the reduced mass and stiffness matrices for the mistuning component can be

written as

µµµδ =

[

ΦΦΦS
b ΨΨΨS

b

]T

Mδ

[

ΦΦΦSb ΨΨΨS
b

]

(3.9)

=







ΦΦΦS
T

b MδΦΦΦSb ΦΦΦST

b MδΨΨΨS
b

ΨΨΨST

b MδΦΦΦSb ΨΨΨST

b MδΨΨΨS
b






,

κκκδ =

[

ΦΦΦS
b ΨΨΨS

b

]T

Kδ

[

ΦΦΦS
b ΨΨΨS

b

]

(3.10)

=







ΦΦΦS
T

b KδΦΦΦSb ΦΦΦST

b KδΨΨΨS
b

ΨΨΨST

b KδΦΦΦSb ΨΨΨST

b KδΨΨΨS
b






.

Now, if small blade mistuning is considered, the attachmentmodeΨ̂ΨΨ
S

can be ignored be-

cause, when a tuned bladed disk has normal modes closely spaced in a frequency range,

a slightly mistuned bladed disk also features closely spaced modes in the same range.

Moreover, the mistuned normal modes can be expressed using asubset of the tuned nor-

mal modes. This means that the tuned normal modes outside of the frequency range of

interest (or any static modes) can be ignored in modeling a mistuned system with small

mistuning [12]. Thus, the reduced mass and stiffness matrices of the tuned system and the

mistuned components can be written as

µµµS =







Φ̂ΦΦ
ST

MSΦ̂ΦΦ
S

Φ̂ΦΦ
ST

MSΨΨΨC

ΨΨΨCT

MSΦ̂ΦΦ
S

ΨΨΨCT

MSΨΨΨC






, (3.11)

κκκS =







Φ̂ΦΦ
ST

KSΦ̂ΦΦ
S

Φ̂ΦΦ
ST

KSΨΨΨC

ΨΨΨCT

KSΦ̂ΦΦ
S

ΨΨΨCT

KSΨΨΨC






, (3.12)
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µµµδ =







ΦΦΦST

b MδΦΦΦS
b 0

0 0






, (3.13)

κκκδ =







ΦΦΦS
T

b KδΦΦΦSb 0

0 0






. (3.14)

Hence, the synthesized mass and stiffness matrices are given by

µµµsyn =







Φ̂ΦΦ
ST

MSΦ̂ΦΦ
S
+ΦΦΦST

b MδΦΦΦS
b Φ̂ΦΦ

ST

MSΨΨΨC

ΨΨΨCT

MSΦ̂ΦΦ
S

ΨΨΨCT

MSΨΨΨC






, (3.15)

κκκsyn =







Φ̂ΦΦ
ST

KSΦ̂ΦΦ
S
+ΦΦΦST

b KδΦΦΦSb Φ̂ΦΦ
ST

KSΨΨΨC

ΨΨΨCT

KSΦ̂ΦΦ
S

ΨΨΨCT

KSΨΨΨC






. (3.16)

By using CMM [12], the synthesized mass and stiffness matrices are written as follows

psyn =







pSφ

uSc






, (3.17)

µµµsyn =


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ST
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
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
, (3.18)

κκκsyn =







Φ̂ΦΦ
ST

KSΦ̂ΦΦ
S
+ κκκCMM Φ̂ΦΦ

ST

KSΨΨΨC

ΨΨΨCT

KSΦ̂ΦΦ
S

ΨΨΨCT

KSΨΨΨC






, (3.19)

whereκκκCMM =
∑N

n=2
qT

φ,ndiagr∈R(λ
CB
r,n − λCBr,o )qφ,n, qφ,n is a matrix containing the modal

participation factors of the cantilevered blade modes intothenth blade portions of modes

ΦΦΦS, λCBr,n is therth eigenvalue of the mistuned cantilevered blade (CB) normal mode for

thenth blade,λCB
r,o is therth eigenvalue of a tuned CB normal mode,n is the blade number,

andR is the number of CB normal modes used.

One of the important advantages of the proposed modeling approach is revealed by

Eq. (3.19). When many mistuning patterns have to be considered, onlyκκκCMM needs to
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be re-computed (because onlyλCBr,n depends on the mistuning pattern). Therefore, the

proposed methodology can significantly reduce the computational cost needed to obtain

ROMs of mistuned bladed disks (compared to previous methodologies [45]).

3.2.3 Mode Localization Parameter

To investigate the differences between mode localizationsdue to mistuning and those

due to cracks, a mode localization parameterL can be defined as

Lkn,i =
‖ ΦΦΦk

n,i ‖2
‖ ΦΦΦk

i ‖2
, (3.20)

wheren is the blade number,i is the mode number,k is the mode family,ΦΦΦki is theith

system mode in thekth mode family. Thus,ΦΦΦkn,i is thenth blade partition ofΦΦΦki .

3.2.4 System Mode Residuals for Mistuned Bladed Disks with aCracked Blade

Saitoet al. [45] showed that cracks may lead to nonlinear behavior whichcan be stud-

ied using nonlinear forced response calculations. They investigated the forced responses

of a mistuned bladed disk with a cracked blade using a nonlinear cracked blade model [54],

and showed that the resonant peaks associated with the cracked blade are essentially non-

linear for the10th mode family (in terms of both the amplitude of vibration and the peak

frequency). They suggested that localization due to cracksmay be distinguishable from

localization due to mistuning because localization at the cracked blade was observed to

occur for various mode families. However, that observationalone is not sufficient to es-

tablish a metric for differentiating localization due to mistuning from localization due to a

crack.

The key idea proposed here is to show that mode shapes of the mistuned bladed disk

with a crack cannot be represented as a linear combination ofmode shapes of the mis-

tuned bladed disk without a crack. A metric is proposed to quantify this lack of linear
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dependence. This metric is in essence the relative residualobtained when assuming that

a set of coefficients can be used to form a linear combination of modes of the uncracked

bladed disk to represent modes of the system with a crack. Since the mistuned modes of

a bladed disk without a crack are a linear combination of the tuned modes of the same

bladed disk, we investigate two types of residuals: residuals obtained based on normal

modes of a mistuned bladed disk with no cracks, and residualsobtained based on normal

modes of a tuned bladed disk. The practical reason for these two types of analysis is that

we consider that one does not know the exact mistuning when one attempts to detect a

crack. However, the tuned mode shapes are known, and can be used for crack detection.

Residuals for Mistuned Bladed Disks with a Cracked Blade Relative to Normal Modes
of Mistuned Bladed Disks with No Cracks

To show that cracks are distinguishable from mistuning, residuals for the normal modes

of the mistuned bladed disk with a cracked blade are calculated relative to the normal

modes of the corresponding mistuned bladed disk with no cracks. The goal is to use

quantities which can be obtained by tip timing [55] in an engine during operation. Tip

timing is a non-contacting measurement method which uses optical probes. It can be

used to measure the vibration displacements and frequencies of every blade on a rotating

bladed disk. For tip timing, few DOFs are selected on each blade tip. Each of these DOFs

corresponds to one optical probe (mounted in the early). Note that as few as just one DOF

per blade can be used in the tip DOF partition. Next, one constructs two key vectors:

ΦΦΦkCM,i andΦΦΦkM,i , whereΦΦΦkCM,i is the tip DOF partition of theith normal mode in thekth

mode family of the mistuned bladed disk with a cracked blade,andΦΦΦk
M,i is the tip DOF

partition of theith normal mode in thekth mode family of the mistuned bladed disk with

no cracks. These components of the normal modes are used to constructΦΦΦ
k

CM andΦΦΦ
k

M as
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follows:

ΦΦΦk
CM
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ΦΦΦkM =
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, ΦΦΦ
k

M =
ΦΦΦk

M

‖ ΦΦΦk
M
‖
2

, (3.22)

whereN is the number of blades (which is equal to the number of modes in thekth mode

family).

The residual is defined as‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2
. Note that this residual is a scalar number

between zero and2 becauseΦΦΦ
k

CM
andΦΦΦ

k

M
are unit vectors. Next, we focus on differentiat-

ing cracks from mistuning using this residual. First, one may ask the question: is the crack

just as mistuning? That is, can a crack on a mistuned bladed disk with a given mistuning

pattern lead to a vectorΦΦΦ
k

CM
which has the same shape as the vectorΦΦΦ

k

M
obtained for a

bladed disk with no cracks, but with some other level of mistuning in the cracked blade?

To answer this question, the mistuning in the bladed disk with a cracked blade is fixed.

Also, for clarity blade 1 is considered to be the cracked blade. Then, the mistuning pat-

tern of the mistuned bladed disk with no cracks is fixed for allblades except for blade 1.

The mistuning level of blade 1 is varied. Surely, the residual ‖ ΦΦΦ
k

CM −ΦΦΦ
k

M ‖
2

will change

depending on the mistuning level in blade 1. If there does notexist any mistuning level in

blade 1 at which‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2

becomes zero or very small (much smaller than 2), then
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one can conclude that a crack is not similar to a change in mistuning level in the cracked

blade.

Residuals for Mistuned Bladed Disks with a Cracked Blade Relative to Normal Modes
of Tuned Bladed Disks

In general, mistuning levels vary randomly from blade to blade, and are not known in

an operating engine. Thus, one may ask the question: can a crack in a bladed disk with a

given mistuning pattern lead to vibrations which are very similar to those caused by some

other mistuning pattern in the bladed disk with no cracks? Toshow that the normal modes

of a mistuned bladed disk with a cracked blade cannot be represented by normal modes

of a mistuned bladed disk with no cracks, all mistuning levels should be considered. It

is already known that the normal modes of a mistuned bladed disk (with no cracks) can

be represented by normal modes of a tuned bladed disk. Therefore, if the normal modes

of a mistuned bladed disk with a cracked blade cannot be represented by normal modes

of a tuned bladed disk, it follows that the normal modes of a mistuned bladed disk with a

cracked blade cannot be represented by normal modes of a mistuned bladed diskfor any

mistuning pattern. To show that this is the case, two residualsRfull,CM andRfull,M are

introduced as follows:

Rfull,CM,i =
‖ ΦΦΦk

CM,i −ΦΦΦk
T
qk
CM,i ‖2

‖ ΦΦΦk
CM,i ‖2

, (3.23)

Rfull,M,i =
‖ ΦΦΦk

M,i −ΦΦΦk
Tq

k
M,i ‖2

‖ ΦΦΦk
M,i ‖2

, (3.24)

wherei is the mode number,ΦΦΦk
CM,i is the tip DOF partition of theith normal mode in the

kth mode family of the mistuned bladed disk with a cracked blade,ΦΦΦk
M,i is the tip DOF

partition of theith normal mode in thekth mode family of the mistuned bladed disk with

no cracks, andΦΦΦk
T

is the tip DOF partition of a set of normal modes in thekth mode family

of the tuned bladed disk. Coefficientsqk
CM,i andqk

M,i are calculated as the solutions to two
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Figure 3.1: Finite element model of the bladed disk

minimization problems. Specifically,qk
CM,i is the solutionx of minx‖ ΦΦΦ

k
CM,i −ΦΦΦk

T
x ‖

2
,

andqk
M,i is the solutiony of miny‖ ΦΦΦ

k
M,i −ΦΦΦk

Ty ‖
2
. Finally, one may note that cracks

are distinguishable from mistuning for cases where the residualRfull,CM is (statistically)

larger thanRfull,M.

3.3 Analysis of a Mistuned Bladed Disk with a Cracked Blade

In this section, the forced response of a mistuned bladed disk with a cracked blade is

investigated using the proposed methodology. It is observed that the mode localizations

due to the crack and due to mistuning are distinct across modefamilies. Also, it is shown

that the crack is distinguishable from mistuning by the residuals of the normal modes of

the bladed disk with a cracked blade relative to the normal modes of the tuned bladed

disk. Furthermore, it is shown that the cracked blade is detectable (statistically). The

model used in this study is that of a bladed disk with 20 bladesas shown in Fig. 3.1. The

key geometric characteristics are provided in Tab. 3.1. This blisk model has been used in
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Table 3.1: Key geometric characteristics of the bladed disk

Outer diameter 914.99 mm

Blade span 108.43 mm

Blade chord at tip 33.67 mm

Blade chord at root 64.82 mm

Blade twist at tip 60◦

Blade twist at root 30◦

the past for mistuning and crack calculations [45]. It is a model that is academic, but it

is also representative of actual blisk dynamics. A crack of 37.5% chord was considered

on the leading edge of blade 1 at 50% span from the root of the blade. The material

of the bladed disk is Titanium alloy with Young’s modulusE = 114 GPa, densityρ =

4, 420 kg/m3, and Poisson’s ratioν = 0.31. The full order model has31, 878 DOFs.

The damping is modeled as Rayleigh damping (without mass matrix contribution),C =

βK, whereβ is a scalar (with a constant value in each frequency range of interest:β =

8.376576× 10−7 for the1st mode family,β = 2.094144× 10−7 for the2nd mode family,

andβ = 2.783646× 10−8 for the10th mode family). For the generation of the ROMs, 12

nodes for both sides of the crack surfaces were kept as activeDOFs, and 20 normal modes

were used to model the remainder of the bladed disk. The resulting ROMs have 56 DOFs.

The commercial software ANSYS was used to obtain mass and stiffness matrices, and

mode shapes. These were then imported in Matlab and used to implement the proposed

CMS-based method. The nonlinear forced response was calculated using an in-house code

based on the HFT method. That code was used in the past, and itsperformance has been

validated [45,54].
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Engine order excitation 2 was applied to obtain forced responses. This choice of engine

order challenges the ROMs more than other engine orders because it is likely exciting

modes in veering regions.

Blade mistuning is applied by altering the Young’s modulus of the nth blade by the

following relationship

En = (1 + σδn)E0, (3.25)

whereE0 is the nominal Young’s modulus,σ is the standard deviation of the mistuning

pattern, andδn is the mistuning innth blade. The mistuning patternδ has zero mean and

standard deviation of1.

The nonlinear analysis framework is as follows. A ROM is constructed using the

hybrid CMS method and the CMM method for a bladed disk with a mistuning pattern

given by Eq. (3.25). The HFT method is then used to obtain the nonlinear forced response.

Finally, the nonlinear forced response is used to detect thepresence of a crack and the

blade where the crack is located.

3.3.1 Validation of Forced Responses

The nonlinear forced response was calculated using the HFT method [45, 54]. The

HFT method has been numerically validated already by comparisons with direct time inte-

gration. That has been done for both simple and more complex systems. For example, the

HFT method has been validated numerically for ROMs of a cantilevered cracked beam by

comparisons with direct time integration [54]. The validation of the proposed method to

construct ROMs is performed by comparing the predictions ofthe proposed ROMs with

other validated numerical results. Those validated results are presented in a previous

study [54] and they come from 2 sources: full-order calculations; and calculations based

on another type of ROMs. Thus, for the purpose of validation,the nonlinear forced re-
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Figure 3.2: Comparison of nonlinear forced responses obtained in a previous study (prev)
and those obtained using the proposed method (prop)
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Figure 3.3: Linear and nonlinear forced responses calculated using the proposed method
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sponse obtained based on the proposed method is compared to that of a previous study [45]

in Fig. 3.2. The nonlinear forced response obtained from theproposed ROM matches the

results of previous calculations with a 0.034% average error in the frequency range of in-

terest. In addition, several values for the penalty coefficient and the number of harmonics

have been considered for the HFT method applied to the current study. The converged

values obtained were the same as in a previous study [45]:k∗ = 1.0 × 106 N/mm and

harmonics 0-9. Increasing the number of harmonics or the penalty coefficient further did

not noticeably change the results.

In Fig. 3.3, linear and nonlinear responses based on the proposed method are presented.

It is observed that nonlinearities have an important effect, in that the resonant peaks pre-

dicted by the nonlinear forced response are different from the ones predicted by the linear

forced response, and the presence of a crack causes a shift inthe resonant peaks associated

with the cracked blade. This indicates that nonlinearitiescaused by the crack are impor-

tant and are mostly localized to the cracked blade. Furthermore, the results in Figs. 3.2

and 3.3 show that the amplitude at the resonant peaks of the tip of the cracked blade in the

nonlinear forced response is reduced compared to that in thelinear forced response.

3.3.2 Mode Localization due to Mistuning and Cracks Across Mode Families

The mode localization parameterL was calculated by using Eq. (3.20) for the follow-

ing cases: 1) a mistuned bladed disk with a cracked blade, 2) amistuned bladed disk with

no cracks, and 3) a bladed disk with a cracked blade and no mistuning (which we will refer

to as a tuned bladed disk with a cracked blade). Two differentblade mistuning patterns

were employed for case 1 and case 2. The mode localization parameterLk1,i was inves-

tigated (for blade 1) across mode families. As can be seen in Fig. 3.4(a),Lk
1,i for the1st

mode family in case 1 and case 3 are localized at mode number 1,which is the cracked
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Figure 3.4: Mode localization in the1st mode family for two different mistuning patterns:
(a) 1st mistuning pattern, (b)2nd mistuning pattern
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Figure 3.5: Mode localization in the2nd mode family for two different mistuning patterns:
(a) 1st mistuning pattern, (b)2nd mistuning pattern
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Figure 3.6: Residual‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2

for k=1, 2, 10 for various mistuning levels in blade
1: (a)σ = 1% , (b)σ = 4%

blade dominant mode, regardless of the mistuning pattern. This mode localization (due

to a crack) also appears in the2nd mode family, as can be seen in Fig. 3.5. These results

indicate that cracks lead to mode localization across mode families at the cracked blade

for all modes dominated by the cracked blade. In contrast, localizations due to mistuning

appear on different blades depending on the mistuning pattern, as can be seen in Figs. 3.4

and 3.5

3.3.3 Distinction between Cracks and Mistuning

To be able to detect the presence of cracks in mistuned bladeddisks, and to distinguish

cracks from mistuning, one may use the normal modes of the mistuned bladed disk with

a cracked blade, and the residuals defined in the previous section. This approach is based

on linear analyses, so it is valid only when the nonlinear effects of the crack opening and

closing are negligible.

The residual‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2

was calculated by using a single DOF on each blade tip

for the 1st, 2nd, and10th mode families while altering the mistuning levelδ1 of blade 1

in the mistuned bladed disk with no cracks. In Fig. 3.6, the horizontal axis isδ1 and the
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Figure 3.7: ResidualsRfull,CM andRfull,M whenσ = 1% : (a) ResidualRfull,CM for a mis-
tuned bladed disk with a cracked blade, (b) ResidualRfull,M for a mistuned
bladed disk
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Figure 3.8: ResidualsRfull,CM andRfull,M whenσ = 4% : (a) ResidualRfull,CM for a mis-
tuned bladed disk with a cracked blade, (b) ResidualRfull,M for a mistuned
bladed disk
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vertical axis is the residual‖ ΦΦΦ
k

CM −ΦΦΦ
k

M ‖
2
. As seen in Fig. 3.6(a), whenσ is 1% and

δ1 is -2.5%, the residuals for the1st and2nd mode families are close to zero. This result

is also obtained whenσ is 4%. In Fig. 3.6(b), whenδ1 is -0.5%, the residual for the2nd

mode family is almost zero. These results show that cracks are not distinguishable from

mistuning if one only uses the1st and2nd mode families. That is because the residual

‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2

can be small for these families. In contrast, the residuals for the10th

mode family are not zero for any mistuning levelδ1 in blade 1. Therefore, it can be

concluded that cracks may be detectable using the residual‖ ΦΦΦ
k

CM
−ΦΦΦ

k

M
‖
2

when using

the10th mode family.

However, these results are valid only when the mistuning levels of other blades (2...20)

are known. Thus, these results are just the starting point, and must be complemented by an

analysis which considers various mistuning patterns. Thatanalysis can be done by using

the residualsRfull,CM andRfull,M in Eq. (3.23) and Eq. (3.24). MatricesΦΦΦk
CM,i , ΦΦΦ

k
M,i , and

ΦΦΦkT were constructed fork=1, 2, 10. Distinct from the calculation of‖ ΦΦΦ
k

CM −ΦΦΦ
k

M ‖
2
,

two DOFs were used on each blade tip. The resulting vectorsRfull,CM andRfull,M were

calculated for the1st, 2nd, and10th mode families. The matrixΦΦΦk
T

was obtained for each

mode family. The matricesΦΦΦ1

T andΦΦΦ2

T contained 20 normal modes of the tuned bladed

disk, whileΦΦΦ10

T
contained 30 modes. As can be seen in Fig. 3.7, the residuals of the

mistuned bladed disk with a crackRfull,CM are larger than those of the mistuned bladed

disk with no cracksRfull,M (note the scale of10−3 in the vertical axis) even for the10th

mode family whenσ = 1%. This result indicates that cracks are distinguishablefrom

mistuning by comparingRfull,CM andRfull,M when the mistuning is small. In contrast,

whenσ = 4%, it appears thatRfull,CM andRfull,M are of the same order (10−1) at certain

modes, as seen in Fig. 3.8. This is becauseΦΦΦk
T

does not represent well neitherΦΦΦk
CM,i nor

ΦΦΦk
M,i .
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Figure 3.9: ResidualsRfull,CM and Rfull,M for the 10th mode family; the residuals are
sorted in increasing order

Hence, to distinguish cracks from mistuning for larger mistuning,ΦΦΦ10

CM,i andΦΦΦ10

M,i

were recalculated for the10th mode family by using 9 DOFs on each blade tip. Also, 78

normal modes of the tuned bladed disk were included inΦΦΦ10

T
instead of just 30. These 78

modes were selected by frequency. The residualsRfull,CM andRfull,M were recalculated

using Eq. (3.23) and Eq. (3.24). The results obtained are presented in Fig. 3.9, where the

residuals were sorted in increasing order. These results show thatRfull,CM is greater than

Rfull,M for the selected modes. Especially, it can be noted thatRfull,CM is clearly distinct

fromRfull,M for modes 17-20. Therefore, one can conclude that cracks aredistinguishable

from mistuning even for larger mistuning.

3.3.4 Cracked Blade Location

To detect which of the blades is cracked, a third (and last) residualRred,CM is intro-

duced as follows

Rred,CM,i ,n =
‖ ΦΦΦk

CM,i ,n −ΦΦΦk
T
qk
CM,i ,n ‖

2

‖ ΦΦΦk
CM,i ,n ‖

2

, (3.26)

wherei is the mode number,n is the blade number,k is the mode family, andΦΦΦk
CM,i ,n is

obtained by excluding the partition of thenth blade fromΦΦΦk
CM,i . The matrixΦΦΦkT is the tip
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Figure 3.10: Maximum residualsRfull,CM (over all modes in the10th mode family) and
Rred,CM (for all blades) for the10th mode family
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Figure 3.11: Maximum residualsRfull,CM (over all modes in the10th mode family) and
Rred,CM (for all blades) for the10th mode family with 1% measurement noise
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Figure 3.12: Maximum residualsRred,CM (over all modes in the10th mode family) for all
blades; 10 realizations of 1% measurement noise were used; the maximum
value obtained forRfull,CM over all modes in the10th mode family is showed
on the left of blade 1 (and is marked as T on the horizontal axis)

DOF partition of a set of the normal modes in thekth mode family of the tuned bladed

disk (as in the previous sections). The coefficient vectorqk
CM,i ,n is the solutionz of the

minimization problemminz‖ ΦΦΦ
k
CM,i ,n −ΦΦΦkTz ‖

2
.

The residualRfull,CM andRred,CM were calculated using Eq. (3.23) and Eq. (3.26).

Next, the maximum value ofRfull,CM over all modes in the10th mode family was plotted

in Fig. 3.10 together with the maximum values ofRred,CM obtained separately for each

blade (over all the modes in the10th mode family). One may note that the maximum value

of the residualRred,CM obtained for blade 1 is smallest, which indicates that blade1 affects

Rfull,CM more significantly than any other blade. Namely, the difference betweenRfull,CM

andRred,CM is mainly induced by blade 1. Therefore, it can be inferred that blade 1 is the

cracked blade.

To apply the proposed method for detection of a cracked bladein real bladed disks, it

is required to measure the motion of points on the tip of the blades using tip timing. These

measurements are likely corrupted by measurement noise. Toinvestigate the effects of the

measurement noise, 1% measurement noise (random noise witha uniform distribution)
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Figure 3.13: Nonlinear forced response of the mistuned bladed disk with a cracked blade

was applied toΦΦΦ10

CM,i . Then,Rfull,CM andRred,CM were recalculated using Eq. (3.23)

and Eq. (3.26). As seen in Fig. 3.11, even in the presence of measurement noise, the

maximum value of the residualRred,CM obtained for blade 1 is the lowest.

To conduct a statistical study with respect to the measurement noise, 10 different re-

alizations of 1% measurement noise were employed. In Fig. 3.12, box plots for the max-

imum residuals ofRfull,CM andRred,CM across blades are presented. The box plotted on

the left of blade 1 and marked as T on the horizontal axis is forRfull,CM. For bothRfull,CM

andRred,CM, the maximum values over all modes in the10th mode family are used in

the statistical calculation. Note that the box in the plot spans between values of± one

standard deviation from the mean. The dashes inside each boxindicates median value.

The dashed lines mark the range from the minimum to the maximum values. As shown

in Fig. 3.12, blade 1 is notably distinct from all other (uncracked) blades. Therefore, it can

be concluded statistically that blade 1 has a crack.
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Figure 3.14: Maximum residualsRred,CM with 1% and 10% measurement noise using
nonlinear forced response data for 10 realizations of measurement noise: (a)
1% measurement noise, (b) 10% measurement noise

3.3.5 Nonlinearity due to Cracks

In the previous sections, normal modes of mistuned bladed disks with a cracked blade

were obtained without considering the nonlinearity due to the crack opening and closing.

However, the nonlinearity can change the forced responses of bladed disks in terms of

both the amplitude of vibration and the peak frequency. Therefore, the nonlinearity due to

the crack has to be considered. In Fig. 3.13, the nonlinear forced response of a mistuned

bladed disk with a cracked blade was calculated using engineorder excitation 2 for a mis-

tuning pattern with a standard deviationσ of 4%. One resonant frequency (denoted by

superscriptg) associated with the maximum amplitude of vibration of the cracked blade

was selected. Next, a vectorΦΦΦg

CM,i was computed for the dynamic response at this fre-

quency. Distinct from the linear analysis in the previous sections,ΦΦΦg

CM,i was obtained

from the computed time history of the nonlinear vibration. Distinct from Eq. (3.26), here

the mode shape information was replaced by displacement information gathered from the

nonlinear (harmonic balance) HFT solution. The displacement information for each se-
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Figure 3.15: Forcing points used for traveling wave excitation
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Figure 3.16: ResidualsRred,CM for modeg for 10 realizations of measurement noise us-
ing nonlinear forced responses computed using different forcing points: (a)
Forcing applied at point 4, (b) Forcing applied at point 6
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lected DOF on the tip of the blade was collected at steady state (nonlinear resonance)

conditions. One DOF on the tip of one blade is chosen as a reference (e.g., blade 1). Next,

the displacements of a few other selected DOFs on the tip of each blade are collected at

the instances (in time) when the displacement at the reference DOF is at its maximum

value. These time instances are selected because the crack is most likely open when the

displacement of the reference DOF on the tip of the cracked blade is the largest.

To reduce the measurement cost, only 6 DOFs were selected on each blade tip. One

of the 6 DOFs on blade 1 was chosen as reference. ResidualsRred,CM were calculated

for 1% and 10% measurement noise using Eq. (3.26) for 10 noiserealizations. As can

be seen in Fig. 3.14, even for 10% measurement noise,Rred,CM for the cracked blade is

statistically distinct from other blades.

To investigate the influence of the forcing point, several excitation points were selected

(on each blade) as shown in Fig. 3.15. The forcing consideredis still an engine order ex-

citation. In Fig. 3.16, the results for forcing points 4 and 6with an engine order excitation

2 are presented. These results show thatRred,CM for the cracked blade is distinct from all

other blades regardless of the forcing point even for 10% measurement noise. Thus, the

cracked blade can be detected successfully using the proposed methodology even when

the nonlinearity due to the crack is considerable.

3.4 Conclusions

An efficient and novel methodology to investigate the nonlinear forced response of

mistuned bladed disks with a cracked blade was developed. Efficient ROMs were con-

structed from hybrid CMS and CMM. The forced response of mistuned bladed disks with

a cracked blade was obtained by using the proposed models andnonlinear time integra-

tion. The results were compared to those of a previous method[45]. It was shown that
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blade mistuning can be projected efficiently to reduce the computational cost. This is an

advantage which plays an important role when the calculation of system normal modes of

a mistuned bladed disk is needed for many mistuning patterns.

Furthermore, a novel methodology to detect the presence of acrack in mistuned bladed

disks was presented. By investigating mode localizations due to cracks and mistuning, it

was first shown that cracks lead to a mode localization which is different from localiza-

tions due to mistuning. Then, it was observed that mode shapes of the cracked structure are

not a linear combination of tuned system modes. This observation was used for damage

detection. Since mode shapes of the healthy mistuned bladeddisk are a linear combination

of tuned mode shapes, the observation allows for the first time to differentiate the effects

of cracks from the effects of mistuning. Based on this result, the proposed method is then

able to detect the presence of damage by using tip timing dataonly (even in the presence of

nonlinearities caused by the crack opening and closing). This is accomplished by using the

residuals defined in Eqs. (23) and (24). These residuals can be gathered through experi-

mental measurements and are novel means for damage detection. They prove to be the key

for identifying the presence of damage and even more importantly, statistically detecting

the blade where the damage is present even in the presence of measurement noise.



CHAPTER IV

Bilinear Amplitude Approximation for Piecewise-Linear
Oscillators

4.1 Introduction

Recently, the interest in monitoring the vibration of dynamical systems has been in-

creasing. For example, large and complex air and space structures include vibration mon-

itoring systems to forecast sudden failures. Such vibration monitoring is used to diagnose

structural health by analyzing vibration characteristics(such as frequency and amplitude).

Among the vibration characteristics used, the vibration amplitude is especially important

because it can directly affect stresses and thus the life of the system.

Finite element (FE) models are often used to analyze vibration characteristics. For low

dimensional systems, full FE models can be used. For high dimensional systems, the com-

putational cost of analyzing full FE models can often be prohibitive. To circumvent this

difficulty, many methods for creating reduced-order models(ROMs) have been developed

for various systems [1, 13, 14, 17, 30, 32, 84–91], with the majority being focused on lin-

ear systems. ROMs for linear systems can be efficiently constructed by using approaches

based on linear transformations [92, 93] such as component mode synthesis (CMS) [51].

However, constructing ROMs for systems with piecewise-linear nonlinearity (caused for

example by intermittent contact) require careful treatment. Accurate ROMs can be con-

66
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structed for such systems using linear transformations [94–97], or using nonlinear normal

modes [98–100]. Recently, Saito et al. [41] developed a reduced-order modeling method

based on bilinear modes (BLMs) for dynamical systems with piecewise-linear nonlin-

earity. They observed that the space spanned by the most dominant proper orthogonal

modes (POMs) of a system is also spanned by a set of linear normal modes for the system

with special boundary conditions at the surface where the intermittent contact takes place.

These special modes were referred to as BLMs. Hence, the mostdominant POMs are well

approximated by linear combinations of BLMs. The ROMs basedon BLMs were shown

to be accurate and have a low dimension. Nonetheless, predicting the vibration amplitude

requires the calculation of the nonlinear forced response of the ROMs. One way to obtain

the nonlinear forced responses is direct numerical calculation (e.g., by using a variable

step Runge-Kutta method), which incurs a large computational cost despite the fact that

the ROMs are low dimensional. Therefore, to obtain the amplitude of vibration at res-

onant frequencies, nonlinear forced responses need to be calculated using more efficient

numerical methods (e.g., hybrid frequency/time domain methods) [39,45,46,54,101].

In this paper, a novel technique to approximate the vibration amplitude at the resonant

frequencies of dynamical systems with piecewise-linear nonlinearity is proposed. Here,

it is assumed that the forcing applied to the system is harmonic and the response of the

system is periodic. Thus, quasi-periodic or chaotic dynamics are not considered. The

proposed technique is referred to as bilinear amplitude approximation (BAA). BAA con-

structs approximations for the periodic steady-state response of the system at resonant

frequencies. For example, consider that a structure has a crack which opens and closes

during each vibration cycle. BAA uses linear modes (similarto BLMs) from two different

systems: one with an open crack and the other where there is sliding at the crack sur-

faces. By doing so, BAA does not require the numerical integration of nonlinear ROMs to
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calculate the vibration amplitude at resonant frequencies. Consequently, large savings in

computational costs are obtained.

In the following, BAA is introduced. Next, the application of BAA to a single-degree-

of-freedom system is demonstrated. After that, a more general application of BAA is

demonstrated for a three-degree-of-freedom example. Then, results comparing numerical

solutions from a nonlinear analysis and results obtained using BAA for a full blisk with a

crack are presented. Finally, conclusions are presented.

4.2 Methodology

In this section, BAA is introduced. Consider an elastic structure which undergoes in-

termittent contact (leading to piecewise-linear nonlinearity). During each vibration cycle,

the structure has three different states: (1) fully open (i.e., no contact), (2) fully sliding

(i.e., complete contact), and (3) partially open (i.e., partial contact between the contacting

surfaces). The goal of BAA is to find the steady-state amplitude of vibration of the system

when excited by harmonic forcing under the following assumptions:

(a) state (3) (partially open) lasts a much shorter time interval than states (1) and (2),

(b) the motion of the structure is periodic,

(c) during each vibration cycle there is only one time interval when the system is in

state (1) and only one time interval when the system is in state (2); thus, one entire

vibration cycle is approximated by states (1) and (2),

(d) the motion in states (1) and (2) lies in the space spanned by a few dominant modes of

the structure open at the contact surfaces and a few dominantmodes of the structure

with sliding at the contact surfaces.
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Figure 4.1: One steady-state vibration cycle

Assumption (a) is in fact exactly satisfied when the gap at thecontacting surfaces is

zero for the structure with zero internal stresses [41, 46].The motion of one steady-state

vibration cycle for one of the degrees-of-freedom (DOFs) ofthe system is schematically

shown in Fig. 4.1. The total periodT of the periodic response is broken into the timeTo

that the system spends in state (1), and the timeTs that the system spends in state (2). The

fraction of the entire periodT that the system is in state (2) isf = Ts/T .

Consider a multi-DOF system. The exact equations which govern the motion in state

(1) and in state (2) can be expressed as

Moẍo(t) +Coẋo(t) +Koxo(t) = F(t),
(4.1)

Msẍs(t) +Csẋs(t) +Ksxs(t) = F(t),

where the subscripto refers to state (1), the subscripts refers to state (2),Mo andMs

are the mass matrices,Co andCs are the damping matrices,Ko andKs are the stiffness

matrices, andF is a periodic external force with frequencyω. The mode shapes which

dominate the motion of the structure in states (1) and (2) aregrouped in matricesΦo

andΦs. These matrices can be computed using the open and sliding mass and stiffness
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Figure 4.2: Transformation from physical space to overlapping space usingTv

matrices.

During the vibration cycle, the system transitions from state (1) to state (2) and vice

versa. At the moment of transition, compatibility conditions in terms of displacement

and velocity should be satisfied. However, the space spannedby the open modes and

the space spanned by the sliding modes are not perfectly aligned due to the difference in

boundary conditions at the contact surfaces. Thus, to applycompatibility conditions, one

needs to consider the overlapping space between the open space and the sliding space.

This overlapping space is characterized by a set of basis vectors grouped in a matrixΦ.

To obtainΦ, one can construct a matrix composed ofΦo andΦs first. Then, using a

singular value decomposition (SVD), the left singular vectors corresponding to large (one

or two) singular values are selected. These singular vectors are used as basis vectors for

the overlapping space.

As shown in Fig. 4.2, physical motions (spanned by open and sliding modes respec-

tively) and forces can be transformed to the overlapping spaceΦ using an operatorTv,
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which is defined asTv = Φ(ΦTΦ)−1ΦT. These transformations are needed because the

motion along the overlapping space is allowed to grow (especially at resonance), while the

rest of the motion is lost at the impact which takes place eachtime the system transitions

from open to sliding and vice versa. This impact can be viewedas an elastic impact in the

space spanned byΦ and as a plastic impact in the remaining space. The energy before and

after the impact are distinct because the plastic componentof the impact leads to energy

loss. The linear and angular momentum of the system are also distinct before and after

the impact because of the impulse forces which act at the other (fixed) boundaries of the

system. The linear and angular momentum are thus conserved only in the overlapping

spaceΦ.

Using modal transformationsxo = Φoqo andxs = Φsqs, whereqo andqs are modal

coordinates, Eq. (4.1) can be projected alongΦo andΦs to obtain

ΦT

oMoΦoq̈o +ΦT

oCoΦoq̇o +ΦT

oKoΦoqo = ΦT

oF(t),
(4.2)

ΦT

sMsΦsq̈s +ΦT

sCsΦsq̇s +ΦT

sKsΦsqs = ΦT

s F(t).

If the damping is proportional, then Eq. (4.2) can be rewritten as

q̈o,i + 2ζo,iωo,iq̇o,i + ω2

o,iqo,i = fo,i, i = 1, ..., no,
(4.3)

q̈s,j + 2ζs,jωs,j q̇s,j + ω2

s,jqs,j = fs,j, j = 1, ..., ns,

whereno andns are the number of modes used to expand the motion in state (1) and (2)

respectively,ζo,i andζs,j are the viscous damping ratios,ωo,i andωs,j are the undamped

natural frequencies associated withΦo,i andΦs,j, andfo,i andfs,j are modal forces corre-

sponding toF. Using Eq. (4.3), the modal coordinates corresponding to the linear modes
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Φo,i andΦs,j can be expressed as

qo,i(t) = e−ζo,iωo,it(o1,i cos(ωod,it) + o2,i sin(ωod,it))

+
(fo,i/ω

2
o,i) cos(ωt− θo,i + α)

√

(1− (ω/ωo,i)2)2 + (2ζo,iω/ωo,i)2
,

(4.4)

qs,j(t) = e−ζs,jωs,jt(s1,j cos(ωsd,jt) + s2,j sin(ωsd,jt))

+
(fs,j/ω

2
s,j) cos(ωt− θs,j + α)

√

(1− (ω/ωs,j)2)2 + (2ζs,jω/ωs,j)2
,

whereo1,i, o2,i, s1,j , ands2,j are scalar coefficients,ωod,i andωsd,j are the damped fre-

quencies corresponding to the natural frequenciesωo,i andωs,j, θo,i = arctan(
2ζo,iωo,iω

ω2

o,i
−ω2

),

θs,j = arctan(
2ζs,jωs,jω

ω2

s,j
−ω2

). The angleα is the phase difference between the excitation and

the piece-wise linear response. This angle is key to accurately capture the energy loss in

the presence of bilinearity. There are2no+2ns+2 unknowns in Eq. (4.4): the phase angle

α, the time fraction variablef , and the2no + 2ns coefficients ofo1,i, o2,i for i = 1, ..., no,

ands1,j, s2,j for j = 1, ..., ns. Similar to the arguments used in bilinear frequency approx-

imation (BFA) [102],To andTs can be approximated byTo ∼= 2π
ωo

andTs ∼= 2π
ωs

. Thus, the

fractionf can be approximated by

fa =
Ts

To + Ts
∼=

ωo
ωo + ωs

. (4.5)

To calculate the remaining unknowns, one can enforce transition conditions related to the

continuity of the physical displacement and velocity at theinstances when the system

transitions from state (1) to state (2) and vice versa. The displacement continuity gives

xs(Ts + α) = xo(Ts + α),
(4.6)

xs(α) = xo(To + Ts + α),

wherexo andxs represent the physical displacement of the system in state (1) and (2).

The first relation in Eq. (4.6) corresponds to the case where the system moves from the
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sliding state to the open state. Note thatxo = Φoqo, xs = Φsqs andΦo andΦs are

not completely overlapping. For most systems the dimensionality of the spaces which

do not overlap are larger than theno andns. Hence, the top relation in Eq. (4.6) admits

only the trivial solution, namelyxs(Ts + α) = 0 andxo(Ts + α) = 0. Thus, the first

relation in Eq. (4.6) can be replaced withqs(Ts + α) = 0 andqo(Ts + α) = 0. By using

similar arguments, the second relation in Eq. (4.6) can be replaced withqs(α) = 0 and

qo(To + Ts + α) = 0.

Next, transition conditions related to velocity are enforced. Specifically, the velocity in

the overlapping space remains the same before and after a transition. Note that the linear

and angular momentum are not the same before and after a transition. That is because of

the impulsive forces which act at the other (fixed) boundaries of the system. The velocity

in state (1) and (2) can be written asẋo = Φoq̇o andẋs = Φsq̇s. Thus, the components

of velocity in the overlapping space can be written as˙̃xo = Tvẋo and ˙̃xs = Tvẋs. Thus,

˙̃xo = TvΦoq̇o and ˙̃xs = TvΦsq̇s. The velocity transition conditions become

Φ̃sq̇s(Ts + α) = Φ̃oq̇o(Ts + α),
(4.7)

Φ̃sq̇s(α) = Φ̃oq̇o(To + Ts + α),

whereΦ̃o = TvΦo, Φ̃s = TvΦs are open modes projected onto the overlapping space,

and sliding modes projected onto the overlapping space respectively.
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By combining the displacement and velocity transition conditions, one obtains

qs(Ts + α) = 0,

qo(Ts + α) = 0,

qs(α) = 0,

(4.8)
qo(To + Ts + α) = 0,

Φ̃sq̇s(Ts + α) = Φ̃oq̇o(Ts + α),

Φ̃sq̇s(α) = Φ̃oq̇o(To + Ts + α).

These transition conditions have a nonlinear dependence onthe unknowns, therefore a

nonlinear solver can be employed to find the solution. In thiswork, the function “lsqnon-

lin” from Matlab was used to solve for the unknowns by minimizing the residual in the

6 relations in Eq. (4.8). Using Eq. (4.4), one can constructqo,i andqs,j with the obtained

o1,i, o2,i, s1,j, s2,j andα. Then, physical displacementsxo andxs are calculated using

xo = Φoqo andxs = Φsqs. One steady-state vibration cycle can be constructed usingthe

obtainedxo andxs with time fractionf as shown in Fig. 4.1. Finally, one can calculate

the amplitude of the constructed steady-state vibration cycle, which is the approximate

amplitude of the steady-state vibration of a system with piecewise-linear nonlinearity.

The motion which is not along the overlapping space has zero displacement and ve-

locity after each transition (at the beginning of each of thetwo states 1 and 2). In addition,

the motion which is not along the overlapping space does not have time to grow. Thus,

it has negligible influence on the vibration of the system compared to the motion in the

overlapping space. Hence, the forcing which is not along theoverlapping space has a neg-

ligible effect. Therefore, the forceF in the physical space can be approximated by the

force F̃ = TvF in the overlapping space as shown in Fig. 4.2. Hence, the forcing in the

overlapping spacẽF can be used instead ofF when calculating the modal forcesfo,i and
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Figure 4.3: Single-DOF system

fs,j in Eq. (4.3), namelyfo = ΦT
o F̃ andfs = ΦT

s F̃.

4.3 Results

In this section, the amplitude of a single-DOF system with a piecewise-linear nonlin-

earity is obtained first by solving the exact equations of motion using direct numerical

integration. Then, BAA is employed to calculate an approximated amplitude, and the re-

sults are compared. Next, the response of a three-DOF systemis calculated using direct

numerical simulation. BAA is employed, and the results are compared to direct numerical

simulation. Finally, nonlinear forced responses of a bladed disk with a crack are calcu-

lated. BAA is employed and the results are compared.

4.3.1 Single-Degree-of-Freedom System

The damped single-DOF system used is shown in Fig. 4.3, wherem = 2.0 kg, k =

2.0 N/m, c = 0.04 kg/s,k∗ = 0.4 N/m, c∗ = 0.008 kg/s and the initial gapg is zero. The

mass is excited by a harmonic forceF (t) of amplitude0.01 N. It is assumed that there is

no friction between the mass and ground.

The exact amplitude of the nonlinear periodic response of the system shown in Fig. 4.3

at the resonant frequency (ω = 0.1663 Hz) was computed to be0.2163 m by direct nu-
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Figure 4.4: Amplitude of the nonlinear motion (—), the linear motion if the system was
in state (1) only (– – –), and the linear motion if the system was in state (2)
only (· · ·)
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Figure 4.5: Displacement vs. time for a forcing at the resonant frequency ofω =
0.1663 Hz

merical integration. A plot of the amplitude of the responseversus excitation frequency

for three different cases is plotted in Fig. 4.4. The three cases are: the nonlinear system,

the system permanently in state (1), and the system permanently in state (2). Note that

state (3) (partially open) does not exist in this system.

The steady-state nonlinear response at the resonant frequency (ω = 0.1663 Hz) is

shown in Fig. 4.5. In this figure, it is shown thatTo = 3.14 s andTs = 2.87 s. The

total periodT was calculated using the excitation frequencyω, whereT = 2π
ω

. The exact

fraction ratiofe was calculated usingfe = Ts
T

= 0.4773. The motion in states (1) and (2)
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Figure 4.6: (a) Comparison of amplitudes computed using BAA(×) versus time integra-
tion (—) and (b) the residual obtained when solving for the unknown coeffi-
cients in BAA for the single-DOF system

of the system can be distinguished based on the following displacement conditions

x(t) < 0, state (1),

x(t) ≥ 0, state (2).

(4.9)

Since there exists only one DOF in the system, the exact equations of motion in state (1)

and state (2) can be directly obtained using Eq. (4.4) because, in this simple case, the modal

coordinateq is the same as the physical coordinatex. As explained in the methodology

section, six unknowns need to be obtained to approximate thenonlinear response, namely

the phase angleα, the time fractionf , and the four coefficientso1, o2, s1, ands2.

The time fractionf can be approximated by using Eq. (4.5). To calculate the other

unknowns, one can enforce the transition conditions in Eq. (4.8). For this system, how-

ever, the mode shapesΦo andΦs are not necessary because this is a single-DOF system.
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Figure 4.7: Three-DOF system

Therefore, the transition conditions are expressed as

xs(Ts + α) = 0,

xo(Ts + α) = 0,

xs(α) = 0,

(4.10)
xo(To + Ts + α) = 0,

ẋs(Ts + α) = ẋo(Ts + α),

ẋs(α) = ẋo(To + Ts + α).

Using Eq. (4.5),f can be approximated as 0.4772. Eq. (4.10) is solved using a methodol-

ogy similar to that described for solving Eq. (4.8). One obtainsα and the corresponding

four coefficients to minimize the residual. Then, the amplitude of the steady-state vibra-

tion can be calculated as0.218 m (Fig. 4.6). This value has an excellent relative error of

0.79% compared to the exact amplitude of0.2163 m.

4.3.2 Three-Degree-of-Freedom System

The damped three-DOF system used is shown in Fig. 4.7, wherem1 = 2.0 kg, m2 =

2.0 kg, andm3 = 10.0 kg; k1 = 1.6 N/m, k2 = 1.68 N/m, andk3 = 8.0 N/m; c1 =

0.08 kg/s, c2 = 0.084 kg/s, andc3 = 0.4 kg/s. The initial gapg is zero. The massm3
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Figure 4.8: Amplitudes of the nonlinear motions:m1 (· · ·), m2 (—), andm3 (– – –)
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Figure 4.10: (a) Amplitudes predicted by BAA form1 (�), m2 (◦), andm3 (×) versus the
amplitudes calculated by direct numerical integration form1 (· · ·), m2 (—),
andm3 (– – –), and (b) the residual obtained when solving for the unknown
coefficients in BAA for the three-DOF system

is excited by a harmonic forceF (t) of magnitude0.01 N. It is assumed that there is no

friction between the masses and ground.

The resonant frequencies of the system were found by integrating in time the exact

nonlinear equations of motion. A plot of the amplitude of theresponse versus excitation

frequency for the three masses is plotted in Fig. 4.8. The steady-state response at the

resonant frequency ofω = 0.1047 Hz is shown in Fig. 4.9. Also, Fig. 4.9 showsTo =

5.25 s andTs = 4.30 s. The total periodT is given byT = 2π
ω

. The exact time fractionfe

obtained isfe = Ts
T

= 0.450. The amplitude of motion of the masses are0.05337 m for

m1, 0.05255 m form2, and0.02501 m form3, as shown in Fig. 4.9.

The exact equations of motion for state (1) and state (2) can be described using Eq. (4.1).

Furthermore, it is assumed that the motion in state (1) and state (2) can be approximated

well by a single overlapping modeΦ. The modal coordinatesqo and qs are expressed

using Eq. (4.4).

The time fractionf can be approximated by using Eq. (4.5). To calculate the other

unknowns, one can enforce the transition conditions statedin Eq. (4.8) withi = 1 and
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Figure 4.11: Bladed disk model

j = 1.

Using Eq. (4.5),f was approximated as 0.4999. By enforcing the transition conditions

and calculating the residual, one can findα and the corresponding four coefficientso1, o2,

s1, ands2. Next, the amplitudes of the steady-state vibration were calculated as0.05393 m

for m1, 0.05247 m for m2, and0.02509 m for m3 as shown in Fig. 4.10. The relative

errors of these results compared to the exact amplitudes areexcellent, namely1.05% (m1),

0.15% (m2), and0.32% (m3).

4.3.3 Full Bladed Disk

The blisk model [101] used in this work is the tuned bladed disk shown in Fig. 4.11.

The blisk has20 blades, one of which has a crack. The crack length is37.5% of the chord

on the leading edge at50% span from the root of the blade. The material of the bladed disk

is a Titanium alloy with Young’s modulusE = 114 GPa, densityρ = 4, 420 kg/m3,

and Poisson’s ratioν = 0.31. The full order model has31, 878 DOFs. The damping

is modeled as Rayleigh damping (without mass matrix contribution),C = βK, whereβ

is a scalar (with a constant value in each frequency range of interest) corresponding to a
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Table 4.1: Summary of BAA results for the full bladed disk with engine order excitation 0

viscous damping ratio value ofζ = 0.001. The commercial software ANSYS was used to

obtain the mass and stiffness matrices.

BAA utilizes mode shapes of both the open and sliding states of the full bladed disk

to obtain the overlapping spaceΦ in which the energy and momentum of the system are

transferred between the open and sliding states. The linear(open and sliding) mode shapes

which dominate the motion in the frequency range of interestare computed using the mass

and stiffness matrices of the system. These modes are used tocompute the overlapping

space. Figure 4.12 shows the steady state displacement amplitude at the excited node for

the cracked blade using open and sliding modes of the full bladed disk over the frequency

range of interest. The force applied is an engine order 0 excitation to one node along each

blade with an amplitude of1 kN over frequency ranges that excite the1st, 2nd, 7th, and

10th mode families (one at a time). To select the dominant open andsliding modesΦo and

Φs used to compute the overlapping spaceΦ, one selects modesΦmax which result in the

largest amplitude for the excited node (on the cracked blade) as well as all other modes that

respond at the frequencies of the modes inΦmax and near the bilinear resonant frequency

of the system. Recall that the bilinear resonant frequencyωBFA can be calculated using

BFA. The overlapping spaceΦ can then be calculated using an SVD for the selected open

and sliding modesΦo andΦs. Also, the transition relations in Eq. (4.8) can be enforced

at just a few selected physical locations on each blade.
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Figure 4.12: Steady state displacement amplitudes at the excited node for the cracked
blade using open and sliding modes of the full bladed disk with engine order
excitation 0: (a) open modes for the1st mode family, (b) sliding modes for the
1st mode family, (c) open modes for the2nd mode family, (d) sliding modes
for the2nd mode family, (e) open modes for the7th mode family, (f) sliding
modes for the7th mode family, (g) open modes for the10th mode family,
(h) sliding modes for the10th mode family
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Figure 4.13: Relative errors of amplitudes predicted usingBAA (�), open modes only (◦),
and sliding modes only (△) when compared to the nonlinear forced responses
for various engine order excitations: (a)1st mode family, (b)2nd mode family,
(c) 7th mode family, (d)10th mode family

The vibration amplitude of the full bladed disk system with piecewise-linear nonlinear-

ity was calculated using an in-house code based on a hybrid frequency/time (HFT) domain

solver [39, 45, 46, 54, 101]. The results of calculating the nonlinear responses for the1st,

2nd, 7th, and10th mode families are summarized in Tab. 4.1 for engine order 0 excitation.

Also, the amplitudes predicted by BAA as well as the number ofopen and sliding modes

used in the BAA analysis are summarized in Tab. 4.1. The modesthat were used for BAA

are indicated as the solid lines in Fig. 4.12. The agreement between BAA and the nonlinear

calculation is quite good.

BAA was also applied to approximate the nonlinear resonant amplitudes of the full
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bladed disk at the other engine order excitations. To selectthe open and sliding modes

used for computing the overlapping spaceΦ, the steady state displacement amplitude at

the excited node for the cracked blade using the open and sliding modes of the full bladed

disk was investigated by generating plots similar to those shown in Fig. 4.12. To show the

accuracy of BAA, the relative errors of BAA compared to the nonlinear forced responses

are presented in Fig. 4.13 along with the relative errors of the open amplitudes and the

sliding amplitudes. For the1st mode family, BAA is more accurate than the open and

sliding amplitudes for most engine order excitations. Alsothe open amplitudes tend to

be more accurate than the sliding amplitudes. For the2nd mode family, there are regions

where the BAA is best, open is best and sliding is best. For the7th mode family, open

amplitudes are most accurate for all engine order excitations and BAA tend to be more

accurate than the sliding amplitudes. For the10th mode family, BAA is most accurate

for all engine order excitations. The key observation takenaway from these results is that

BAA is always the most accurate or between the accuracy of theopen and sliding results.

Since in general one will not know whether the open or slidingresults are more accurate,

there is a substantial improvement in using BAA if one wishesto use a fast linear approach

to estimate the nonlinear resonant amplitudes. Therefore,BAA can provide approximated

amplitudes of nonlinear resonant amplitudes with good accuracy for the full bladed disk.

Also, the computational time required by BAA is approximately 100 times shorter than

the time needed for the full-order nonlinear calculations.

4.4 Conclusions and Discussion

An efficient and novel methodology to approximate the steady-state amplitude of vi-

bration of a system with piecewise-linear nonlinearity wasdeveloped. This method is

referred to as bilinear amplitude approximation (BAA). BAArequires only a few linear
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calculations to compute the mode shapes of the system when the system is in its open state

and sliding state. Then, an overlapping space that is spanned by selected mode shapes are

obtained by SVD. Next, a very low-dimensional nonlinear least square problem is solved

to calculate unknowns to construct the approximated periodic vibration cycle of the sys-

tem, and the BAA amplitude is calculated. BAA does not require numerical integration to

calculate the nonlinear amplitude at resonant frequencies. Therefore BAA can drastically

reduce the computational costs required in obtaining the nonlinear resonant amplitude.

The method divides each cycle of the steady-state nonlinearresponse into two parts. The

first portion of the response corresponds to the open case (ifthere is a crack that would

mean that the crack is open). The second portion of the response corresponds to the slid-

ing case (if there is a crack that would mean the crack is closed). The transition between

each state is assumed to take place quickly. The method then enforces transitional com-

patibility at the contacting surfaces, namely that physical displacement and velocities are

compatible when the system transitions from the open to sliding states and vice versa.

The BAA method was demonstrated for a single-DOF system and athree-DOF system.

The results were compared against the exact solutions, and good agreement was found.

The method was also demonstrated on a full bladed disk model with a crack and found to

obtain accurate results compared to a full-order nonlinearanalysis.



CHAPTER V

Nonlinear Reduced-Order Models for the Structural
Dynamics of Combustor Systems with Pre-Stress and

Friction

5.1 Introduction

Life assessment has many benefits in industry. For example, life assessment for com-

bustors can be utilized to determine periods of maintenance, which in turn leads to cost

savings by avoiding unnecessary maintenance. For conducting life assessment one must

consider several factors with one of the most critical beingwear. The significance of wear

is addressed using the value for total wear damage [103]. Combustor systems often ex-

perience wear at the interfaces between components due to flow-induced vibration. These

vibrations can lead to sliding motions at the interfaces, which result in wear. To extend

the life of combustor systems, there have been many efforts to reduce vibrations by opti-

mal design and by controlling the dynamics of the system [104]. Using system dynamic

modeling and experiments, it was verified [104] that the amount of wear at the interfaces

can be reduced by decreasing the vibrations in the system. Inpractice, wear has been ob-

served at interfaces between the transition piece and the hula seal, and between the hula

seal and the liner. These interfaces are pre-stressed when the components are assembled.

It was observed that the resulting vibratory response has a softening nonlinearity. It is

87
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strongly believed that this nonlinear vibration can significantly affect the wear of the com-

bustor system, therefore it is important to identify the physical reason for the nonlinearity.

Possible causes for the nonlinearity include sliding contact with Coulomb friction at the

interfaces, loss of contact (opening and closing of the gap at the interfaces), and buckling

of the hula seal or nonlinearity in the hula seal. From a preliminary study, it was found

that sliding contact with Coulomb friction at the interfaces causes the nonlinearity.

To model frictional contact in dynamic structures, severalcontact models have been

developed [105–109]. These contact models are associated with contact parameters such

as contact stiffness (tangential and normal) and the friction coefficient. Differentiations

in the contact models relate to 1) whether the normal load is variable, and 2) the dimen-

sion of the model (i.e., one dimensional, two dimensional).A stick-slip condition for a

contact model is determined by comparing the elastic force in tangential stiffness and the

friction force. Therefore if the contacting areas at the interfaces of dynamic structures are

modeled using multiple contact elements, a scenario can occur where the contact elements

do not simultaneously enter the slip condition from the stick condition since the stick-slip

condition is separately determined for each contact element by comparing the elastic force

and the friction force. This scenarios is referred to as micro-slip [110–113], which dif-

fers from macro-slip (or gross-slip) where all contact elements simultaneously enter the

slip condition from the stick condition. In detail, the micro-slip is defined as: “small rel-

ative tangential displacement in a contacting area at an interface, when the remainder of

the interface in the contacting area is not relatively displaced tangentially” [114]. This

micro-slip can affect resonant vibrations (amplitudes andfrequencies) of dynamic sys-

tems, therefore it is necessary to consider micro-slip at contacting areas for accurately

predicting system dynamics.

Finite element (FE) analysis is often employed to study the vibration of structures.
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If a system is small and its geometry is simple, then the system can be modeled using

a low dimensional FE model. For this low dimensional model, afull order analysis can

be conducted. However, for large and complex structures such as turbine bladed disks,

the system must be modeled using a high dimensional FE model for accurate analysis.

For these systems, the computational cost required in analyzing full FE models can often

be prohibitive. In order to overcome this difficulty, many investigators have developed

reduced-order models (ROMs) for various systems [1, 13, 14,30, 32, 39, 40, 45, 54, 101].

Structures that contain frictional contacts between contacting bodies can also be modeled

using FE analysis. Frictional contacts can be modeled usingcontact elements provided in

commercial FE software such as ANSYS. In order to calculate the forced responses of the

structures with frictional contacts, a time marching for the full-order FE model including

the contact elements should be employed. However this approach is often prohibitive due

to the considerable computational cost. To reduce the computational cost, the harmonic

balance method (HBM) can be used to obtain the steady state nonlinear forced response

of structures with frictional contacts [107, 115]. The HBM has been utilized to calculate

the steady-state nonlinear forced response of complex and large FE models with frictional

contacts such as turbine bladed disks with a friction damper[116], but the computational

cost is still formidable due to the large size of the governing equations (even when model

reduction is used) and the required iterative calculation to obtain the converged solution.

To resolve this issue, efficient ROMs that are specifically designed to capture the effects

of Coulomb friction with micro-slip are developed. These ROMs have relatively small

dimension (i.e., one or two), therefore they drastically reduce the computational cost re-

quired to obtain the nonlinear forced response of the systemwith frictional contacts.

This paper is organized in the following manner. First, it isshown that nonlinear

responses observed in the combustor system are due to the Coulomb friction at the inter-
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faces. An FE model representing a simplified hula seal and tworigid plates (which relate

to the transition piece and the liner) is created in ANSYS. Inthis FE model, contact ele-

ments [106] are used to model the interface between the plates and the hula seal. Transient

dynamic analysis (TDA) in ANSYS is performed with the full-order model to verify the

softening nonlinearity and micro-slip at all levels of pre-stress. Then, an efficient ROM

to analyze the vibration of the hula seal model is developed.To show that ROMs for this

model are possible, proper orthogonal decomposition (POD)is used to verify that the dy-

namics of the system is dominated by a low number (i.e., one ortwo) of spatial coherences.

For a variety of frequency ranges and pre-stress levels, it is shown that a single such coher-

ence is dominant. Next, low order ROMs are proposed and theirparameters are identified

using a systematic method. Then, the ROMs developed are validated by comparing their

predictions with results from TDA using the full-order model. It is shown that these ROMs

can accurately predict the nonlinear response of the systemwhile achieving considerable

saving in computational costs. After developing ROMs for a simplified hula seal model,

an extended hula seal model is introduced. This model is composed of a simplified hula

seal and two long rigid plates where axial directional dimensions are similar to a realistic

transient piece and liner. Efficient ROMs are developed for this model and they are vali-

dated using results of TDA obtained with a full-order FE model. Finally, conclusions are

presented.

5.2 Methodology

In this section, a contact model used for modeling the interface between the transition

piece and the hula seal, and the interface between the hula seal and the liner is presented.

Then, a POD based method to find the spatial coherences in hulaseal models is introduced.

Finally, a procedure to develop ROMs utilizing the spatial coherences is explained with a
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Figure 5.1: Contact model

systematic way to identify the parameters required to construct the ROMs.

5.2.1 Contact Model

Contacts between the components (the hula seal and the plates) are modeled using the

contact elements [106,116] shown in Fig. 5.1. This contact element contains both a normal

stiffnesskn and a tangential stiffnesskt. Also, the element models a varying normal load

N which arises from the normal relative motionun. If the element experiences a large

relative motion in the normal direction, (intermittent) separation of the contact surfaces

can occur. The pre-stress or initial gap can be described using the initial distance between

the two contacting bodies. There are three possible states that contact elements can have,

which are stick, sliding, and separation. The contact forceF changes based on the contact

states. When the contact is in the stick state, sliding motion v does not exist andF = ktut.

When it is in the sliding state,F = µN whereµ is friction coefficient andN = knun.

If it is in the separation state,F = 0. The criteria for the transition between states is

determined by the contact forces (i.e., elastic force in stiffnesses and friction force) [116].
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For example, when the system is in the stick condition, the contact forceF can increase

due to the relative tangential motionut. If the contact forceF is greater than the maximum

friction forceµN , the contact starts to slide.

5.2.2 Proper Orthogonal Decomposition

To investigate spatial coherences of the hula seal model, proper orthogonal decom-

position (POD) is employed [117]. If the dynamics of the model is dominated by a

low number of spatial coherences, developing efficient ROMsmay be possible. POD

requires measured data of the system dynamics such as displacement. If the system dy-

namics is measured atM locations and the displacement is sampledN times at each

location, then one can form displacement history arrays at each location, such thatxi =

(xi(t1), xi(t2), ..., xi(tN ))
T for i = 1, ...,M . The mean of each displacement arrays is typi-

cally subtracted from each displacement history. POD utilizes these displacement histories

to form anN ×M ensemble matrixX,

X = [x1,x2, ...,xM ]. (5.1)

Next, the correlation matrixR = XTX that has a size ofM × M is constructed. Then,

eigenvectors and eigenvalues ofR are computed. The eigenvectors are called proper or-

thogonal modes (POMs) and the eigenvalues are called properorthogonal values (POVs).

Dominant POMs are determined based on POVs. Namely, POMs corresponding to rel-

atively large POVs are considered dominant modes. In this work, physical displacement

data obtained from TDA is used instead of measured displacement data. The procedure to

perform TDA is as follows. First, a pre-stress is applied by quasi-statically loading a pre-

displacement on the transition piece plate. Next, a distributed harmonic force is applied

to the transition piece plate with the pre-load associated with a pre-displacement. Then,

the time series of steady state responses for all degrees of freedom (DOFs) (inx, y, and
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z direction) of the hula seal model are collected. The mean displacements are subtracted

from the displacement histories for each DOF, and the correlation matrixR is constructed.

Then, eigenvectors and eigenvalues of the matrixR are computed and the dominant POMs

are determined based on the POVs. If the number of dominant POMs is low (i.e., one or

two), then the dynamics of the model is dominated by a low number of spatial coherences.

5.2.3 Reduced Order Modeling

For efficient vibration analysis of combustor systems it is necessary to develop ROMs.

The procedure to construct ROMs starts from developing efficient ROMs for the hula seal

since nonlinear vibrations caused by Coulomb friction in the hula seal significantly affect

the vibration of the systems. Hence, the focus is placed on developing ROMs for the

hula seal first. These ROMs will be validated by comparing their predictions with results

obtained from the full-order model (TDA in ANSYS).

The equations of motion for a hula seal FE model can be described in matrix form as

Mẍ(t) +Cẋ(t) +Kx(t) + Ff (x, ẋ) = F(t), (5.2)

wherem is the total number of DOFs in the model,x ∈ R
m is a vector of nodal dis-

placements,M, C, K ∈ R
m×m are mass, damping, and stiffness matrices,F ∈ R

m is

the external force vector, andFf ∈ R
m is the nonlinear force vector caused by Coulomb

friction. The nonlinear forceFf is determined based on the state of the contact elements

(i.e., stick, sliding, or separation). If it is assumed thatthe dynamics of the system is

dominated by a low number of spatial coherences, for examplea single spatial coherence,

Eq. (5.2) can be transformed into Eq. (5.3) using the modal transformationx = Φq where

Φ is the dominant POM obtained by POD.

q̈(t) + cq̇(t) + kq(t) + ff(q, q̇) = f(t), (5.3)
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whereq is the modal coordinate satisfyingx = Φq. The nonlinear forceff can be de-

scribed as

ff = g sgn(q̇), when the contact element is in the sliding state
(5.4)

ff = kt(q − qc), when the contact element is in the stick state,

whereg represents the friction force,kt represents the tangential stiffness in the contact

element andqc refers to a position in which the contact element experiences sticking. The

elastic force due to the tangential stiffness is computed using the relative displacement of

q andqc. Contact parametersk, g, andkt can be identified by a systematic method using

static analysis.

Parameter Identification

In this work, the parametersk, g, andkt representing the stiffness of the hula seal, the

friction force and the tangential stiffness of contact element are investigated using quasi-

static analysis. The analysis is conducted for the hula sealFE model, which is composed

of a simplified hula seal and two plates. First, pre-displacement (meaning pre-stress)yo in

the vertical direction is applied on top of the transition piece plate without friction. One

can consider the state of the system after applying the pre-displacement as the pre-stressed

equilibrium position of the system. Next, friction is turned on and additional vertical

displacementδy is applied on top of the transition piece plate. Reaction forces generated

due to the additional displacement are collected at contactnodes or nodes on top of the

transition piece plate. Finally, the summation of the reaction forcesδP are calculated.

One can repeat this procedure by increasing and decreasingδy. By doing that, one can

obtain a hysteresis loop. In this loop, there exist four regions that describe forward sliding,

backward sliding, and two sticking regions as shown in Fig. 5.2. In the sliding regions,

one can identify the stiffness of the hula sealk using the slope of the region. Also,g is
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Figure 5.2: Sample of hysteresis loop

calculated using two intercept values with theδP axis in the sliding regions. Parameterkt

is obtained using the slope in the sticking regions. After identifying the contact parameters,

one can construct the ROM.

5.3 Results

In this section, a softening nonlinearity is observed at theinterfaces of the combustor

system and is verified for a simplified hula seal FE model usingTDA in ANSYS. TDA is

applied using the full-order model to obtain steady state responses of the system. Next, pa-

rameter identification required for constructing ROMs of the hula seal model is addressed.

Then, ROMs are developed using these parameters. ROMs are validated by comparing

their results with TDA results. After developing ROMs for a simplified hula seal model,

another (more realistic) hula seal model is introduced. This model has a hula seal and two

long plates which relate to the transition piece and liner. The lengths of the two plates are

obtained from the original axial directional dimensions ofthe transition piece and liner. In

this paper, this model is referred to as the extended hula seal model. A ROM for analyzing

the vibration of the extended hula seal model is developed using the parameters identified
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Lift-off

Figure 5.3: Simplified hula seal model

for a simplified hula seal model. The results calculated using this ROM are compared to

those of TDA for the full-order FE model.

5.3.1 FE Model

The hula seal and the two rigid plates are modeled in ANSYS using solid brick ele-

ments (SOLID185) as shown in Fig. 5.3. The full-order model has14, 256 DOFs. One of

the plates (the upper plate) is placed on top of the hula seal and represents the transition

piece. The other plate (the lower plate) is placed under the hula seal and represents the

liner. Actual dimensions of a hula seal were used. The upper plate has contact with the

top area of the hula seal. The lower plate is in contact with the hula seal in two regions.

Contact elements CONTA175 were used to model the contact between the plates and the

hula seal. The node-to-surface contact option was chosen with the augmented Lagrange

method [118](ANSYS default). The fixed foot of the hula seal was bonded to the lower

plate. The contact between the sliding foot of the hula seal and the lower plate does not

allow penetration (but it does allow separation). The contact between the hula seal and

upper plate is also set up to not allow penetration but to allow separation. The key con-

trollable parameter for the contact element in terms of (maximum allowable) elastic slip

is the tangential stiffness which is determined by 1) maximum allowable sliding distance

(denoted by SLTO in ANSYS), tangential stiffness factor (denoted by FKT in ANSYS),
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Figure 5.4: Softening nonlinearity observed in the hula sealmodel with pre-displacement
of yo = 32.8% ofh and various forcing amplitudes:F = 8 lbf (�), F =
6 lbf (△), F = 5 lbf (◦), andF = 2 lbf (×)

coefficient of friction (denoted byµ in ANSYS), and normal pressure (denoted by PRES

in ANSYS). It was found that each contact element can start to slide separately since the

normal pressure at each contact element can be different, which changes the maximum

friction force. This explains how micro-slip occurs in contact elements. Actual material

properties of a hula seal were used. The plates are modeled using a large Young’s modulus

(1, 000 times larger compared to that of the hula seal) so that they behave almost as rigid

bodies. The upper plate is constrained to move in the vertical direction only. The lower

plate is constrained in all directions. The coefficient of frictionµ is set to 0.15. The ratio

of the dynamic and static friction coefficient was set to 1.

5.3.2 Softening Nonlinearity

TDA was applied to the full-order FE model of the hula seal and two plates. Pre-stress

can be applied either as a force or as a displacement. For best convergence, displacement

is preferred. Thus, a pre-displacement in they direction was quasi-statically applied to the

upper plate. After that, a distributed harmonic force was applied with the static load and a

full transient analysis was performed (i.e., inertia effects were considered). This procedure
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was repeated for various pre-stress levels, and various harmonic excitation amplitudes. It

was observed that the sliding foot of the hula seal experiences lift-off due to the pre-load

as shown in Fig. 5.3. The model and simulation conditions are not those of an actual GE

product or process, and were introduced solely for the academic purpose of verifying the

proposed reduced-order formulation. It was also found that the normal force acting on the

sliding foot of the hula seal was only about20% of the pre-load. The results obtained from

TDA with various levels of forcing amplitude and pre-load showed a softening nonlinearity

in terms ofy displacement amplitude of the hula seal. The results of TDA with various

levels of forcing amplitude and pre-displacementyo = 32.8% ofh is shown in Fig. 5.4,

whereh is the vertical size (height) of the hula seal.

5.3.3 Validation of Reduced Order Models Developed for a Simplified Hula Seal
Model

A method based on POD was used to demonstrate that the dynamics of the full-order

hula seal model is low dimensional. TDA was applied to the full-order model with pre-

displacementyo = 32.8% ofh and harmonic force amplitude of2 lbf. Time series of

physical displacements for all DOFs inx, y, andz directions for the hula seal and in the

y direction for the upper plate were collected from the responses obtained from TDA in

ANSYS for the frequency range of interest. Then, the matrixR of sample displacement

data in steady state were constructed. Here, the means of displacements were subtracted

from the displacement histories for each DOF. Using this matrixR, POVs and POMs in

physical coordinates were computed. It was found that one POV was much larger than

the other POVs (100 times larger compared to the second largest POV, and100, 000 times

larger compared to the third largest POV). Therefore, it was concluded that the hula seal

model has a single dominant spatial coherence (of sliding motion), which means it has

a single dominant POM. This POD method was applied for other pre-stress levels (yo =
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Figure 5.5: Hysteresis loop of the hula seal model obtained for pre-displacementyo =
23.2% ofh

23.2% ofh, yo = 25.6% ofh , andyo = 30.4% ofh) and force amplitude levels (F = 3 lbf

andF = 8 lbf). It was found that the model has single dominant spatial coherence also.

If a single dominant POM was used to construct the ROMs, the equation of motion of

the system is described by Eq. (5.3) and parametersk, g, andkt are required. To obtain the

parameters, a systematic method using a hysteresis loop was utilized. A hysteresis loop is

obtained using static analysis for the hula seal model. A pre-displacement ofyo = 23.2% of

h in the vertical direction is applied to the top of the transition piece plate using no friction.

Next, friction is turned on and an additional vertical displacementδy is applied to the top of

the transition piece plate. Reaction forces generated due to additional displacementδy are

measured at contact nodes (or nodes on top of the transition piece plate). The summation

of the reaction forcesδP are calculated. This procedure is repeated asδy increases and

decreases. Finally a hysteresis loop which plotsδP versusδy was obtained as shown

in Fig. 5.5. In this figure, there exist four regions that describe forward sliding, backward

sliding, and two sticking states. In the sliding regions,k representing the stiffness of the

hula seal was obtained using the slopes of sliding regions. Also,g was calculated using

the intercepts with theδP axis in sliding regions. Parameterkt is obtained using the

approximated slope in the sticking regions. Similarly, ROM parametersk, g, andkt for
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Figure 5.6: Validation of ROMs (◦) developed for a simplified hula seal using TDA re-
sults (�) obtained for pre-displacement: (a)yo = 23.2% ofh, (b) yo = 25.6%
of h and (c)yo = 30.4% ofh

other pre-displacements (yo = 25.6% ofh, andyo = 30.4% ofh) were calculated using

these hysteresis loops. After identifying these parameters, ROMs were developed for the

hula seal model with various levels of pre-displacement (yo = 23.2% ofh, yo = 25.6% of

h, andyo = 30.4% ofh). Here, it should be noted that the ROMs change with the level of

pre-stress since the contact parameters vary based on pre-stress.

To validate the ROMs, TDA was applied to the full-order model with a variety of pre-

displacement (yo = 23.2% ofh, yo = 25.6% ofh, andyo = 30.4% ofh) and a harmonic

force amplitude of4 lbf. The displacement amplitudes of the transient piece plate in the

y direction are compared. As shown in Fig. 5.6, it is found that the ROM accurately

predicts the results of TDA for various levels of pre-stress. Also, it was observed that the
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(a) (b)

Figure 5.7: Extended hula seal model: (a) overview and (b) close-up

resonant frequency shifts to a higher frequency and the vibration amplitudes decrease as

pre-displacement increases.

5.3.4 Reduced Order Model for a Extended Hula Seal Model

After validating the ROM for the simplified hula seal model, a realistic extended hula

seal model is introduced, which is shown in Fig. 5.7. This extended hula seal model has a

hula seal and two long plates which relate to the transition piece (upper plate) and the liner

(lower plate). The hula seal itself is the same as the one used in the simplified hula seal

model. The full order model has51, 237 DOFs. The length of the two plates in the axial

direction was not determined from a real transition piece and liner. The plates are modeled

using a large Young’s modulus (1, 000 times larger compared to that of the hula seal) so

that they behave like rigid bodies. The coefficient of frictionµ is set to 0.15. The ratio of

dynamic and static friction coefficients is set to 1. Distributed harmonic forcing is applied

on the bottom surface of the lower plate representing the liner. This harmonic forcing

accounts for the effect of gas pressure in realistic combustor systems. To examine linear

mode shapes and natural frequencies of the extended hula seal model, pre-stressed modal

analysis was performed with a pre-displacement of 23.2% ofh. For boundary conditions,

one end (far from the hula seal) of the transition piece and the liner were fixed and the

other end (close to the hula seal) were set to be free. The calculated natural frequencies in

the frequency range of interest aref1 = 33.694 Hz, f2 = 105.03 Hz, f3 = 201.96 Hz, and
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f4 = 565.11 Hz.

TDA with harmonic forcing amplitude10 lbf was applied to the full-order model for

a variety of pre-displacements (yo = 23.2% ofh, yo = 25.6% ofh, andyo = 30.4% ofh).

The frequency range of interest was determined to capture the resonant frequency corre-

sponding to target frequencyf1. The ROM for this extended model utilized the parameters

identified for a simplified hula seal model since the parameters are concerned only with

the hula seal (which is the same for both models) and the contact elements between the

hula seal and the plates. In this ROM, the hula seal is like a nonlinear spring connecting

the transition piece and liner. To develop the ROM, mass and stiffness matrices for the

upper plate (transition piece) and the lower plate (liner) were first obtained using modal

analysis. When obtaining those, the boundary conditions used for performing pre-stressed

modal analysis were used. The calculated natural frequencies in the frequency range of

interest for the transition piece and liner are 100.77 Hz and 31.095 Hz respectively and

corresponding mode shape is used to construct the ROMs.

Using the obtained mass and stiffness matrices, the equations of motion for the transi-

tion piece and liner are described as

MT ẌT (t) +CT ẊT (t) +KTXT (t)− FH = 0,
(5.5)

MLẌL(t) +CLẊL(t) +KLXL(t) + FH = F(t),

where the subscriptT refers to the transition piece, the subscriptL refers to the liner, the

subscriptH refers to the hula seal,M, C, K are mass, damping, and stiffness matrices.

The damping is modeled as Rayleigh damping (without mass matrix contribution),C =

βK, whereβ is a scalar.F is the external force, andFH is the nonlinear force due to the

hula seal. The equation of motion for the transition piece in Eq. (5.5) can be reduced using

a single mode shapeΦT computed using the mass and stiffness matrix of the transition
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Figure 5.8: A schematic diagram of a ROM for the extended hula seal

piece. Prior to using the mode shapeΦT , it is first normalized using the vertical directional

modal displacement of a selected node that has contact with the hula seal.

Using modal transformationXT = ΦT qT , the equations of motion for the transition

piece can be reduced to a single scalar equation. Similarly, the equation of motion for the

liner is reduced using mode shapeΦL of the liner which is normalized using the vertical

directional modal displacement of a selected node that has contact with the hula seal. The

reduced equation of motions for the transition piece and liner are

mT q̈T (t) + cT q̇T (t) + kTqT (t)− fH = 0,
(5.6)

mLq̈L(t) + cLq̇L(t) + kLqL(t) + fH = f(t),

whereqT andqL are modal coordinate for the transition piece and liner, respectively. The

nonlinear forcefH due to the hula seal can be described using identified parameters for

the hula seal model (i.e.,k, g, andkt). Using these parameters, Eq. (5.6) when the system
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Figure 5.9: Results of ROMs (◦) for the extended hula seal model compared to those of
TDA (�): (a) pre-displacementyo = 23.2% ofh, (b) pre-displacementyo =
25.6% ofh and (c) pre-displacementyo = 30.4% ofh

is in the sliding state is expressed as

mT q̈T (t) + cT q̇T (t) + kT qT (t)− c(q̇L − q̇T )− k(qL − qT )

−g sgn(q̇) = 0,

(5.7)
mLq̈L(t) + cLq̇L(t) + kLqL(t) + c(q̇L − q̇T ) + k(qL − qT )

+g sgn(q̇) = f(t).
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Eq. (5.6) when the system is in the sticking state is expressed as

mT q̈T (t) + cT q̇T (t) + kT qT (t)− c(q̇L − q̇T )− k(qL − qT )

−kt((qL − qT )− qc) = 0,

(5.8)

mLq̈L(t) + cLq̇L(t) + kLqL(t) + c(q̇L − q̇T ) + k(qL − qT )

+kt((qL − qT )− qc) = f(t).

The schematic diagram describing the ROM for the extended hula seal is shown in Fig. 5.8.

The results calculated from the ROM are compared to those of TDA in Fig. 5.9. The

displacement amplitudes of the liner plate in they direction are compared. It was found

that the resonant frequencies are higher than the natural frequencyf1. Moreover, it was

observed that the resonant frequency shifts to a higher frequency and vibration amplitudes

decrease as pre-displacement increases. It can be noted that the maximum error near the

resonant frequency is 6.66% at a frequency of35 Hz whenyo = 23.2% ofh, 6.48% at a

frequency of 35 Hz whenyo = 25.6% ofh, and 5.21% at a frequency of 38 Hz whenyo

= 30.4% ofh. Based on these results, one can conclude that the ROMs developed for the

extended hula seal model accurately predict the nonlinear forced responses of the system.

5.4 Conclusions

An efficient methodology to predict nonlinear responses of dynamic systems with pre-

stress and frictional contacts was developed. First, it was verified that the softening non-

linearity observed at the interfaces of combustor systems is caused by Coulomb friction

using TDA in ANSYS. To develop ROMs for a simplified hula seal model, spatial co-

herences of the model were discovered using a POD based method and the system was

found to be of a low order. Namely, the system has a single dominant POM. Also, contact

parameters which can be obtained from a hysteresis cycle using static analysis were cal-
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culated. After completing the investigation of the spatial coherence and obtaining contact

parameters, efficient ROMs for a simplified hula seal model were developed and it was

validated using TDA in ANSYS. It was shown that the results of the ROMs matched the

TDA. After developing the ROMs for a simplified hula seal model, a more realistic hula

seal model was introduced. This extended hula seal model has longer plates (which do

not have a similar axial length of a real transition piece and liner) than the simplified hula

seal model. Using the parameters obtained from the simplified hula seal model, ROMs for

the extended model were developed. These ROMs were compared with TDA results, and

showed good agreement.



CHAPTER VI

Conclusions and Future Work

6.1 Contributions

The work described in this dissertation proposes efficient methods to accurately an-

alyze vibrations of nonlinear systems and novel techniquesto detect damages in bladed

disks. The primary contributions of this dissertation are as follows:

• In Chapter II, a novel method to construct multi-stage reduced order models (ROMs)

with aerodynamic effects was presented. The method can for the first time effi-

ciently compute many realizations of the structural portion of the system for many

different mistuning patterns. The method requires only single sector models of each

stage, and uses cyclic symmetry analysis, component mode synthesis (CMM), and

a projection of the interstage degrees of freedom onto a set of harmonic basis func-

tions. The aerodynamics are accounted for using the complexaerodynamic matrix

for the system, which are calculated separately for each tuned stage. Only a tuned

analysis of the flow is necessary due to a new approximation ofthe complex aero-

dynamic matrices for mistuned systems, which accounts for the shift in structural

frequencies due to mistuning. It can be noted that the proposed approach is gen-

eral and can be used when other methods are employed to compute the complex

107
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aerodynamic matrix. The interactions of structural and aerodynamic damping, mis-

tuning and multi-stage structural coupling were investigated. It was shown that the

aerodynamic damping can have a significant impact on lowering or increasing the

vibrational response of the system.

• In Chapter III, a novel methodology to investigate the nonlinear forced response of

mistuned bladed disks with a cracked blade was described. Efficient ROMs were

constructed from a hybrid component mode synthesis (CMS) and CMM. The forced

response of mistuned bladed disks with a cracked blade was obtained by using the

proposed models and a hybrid frequency/time domain (HFT) method. It was shown

that blade mistuning can be projected efficiently to reduce the computational cost.

This is an advantage which plays an important role when the calculation of system

normal modes of a mistuned bladed disk is needed for many mistuning patterns.

Furthermore, a novel methodology to detect the presence of acrack in mistuned

bladed disks was presented. By investigating mode localizations due to cracks and

mistuning, and observing that mode shapes of the cracked structure are not a linear

combination of tuned system modes, the effects of cracks were differentiated from

the effects of mistuning. Based on this result, the proposedmethod is able for the

first time to detect the presence of damage by using tip timingdata only even in

the presence of nonlinearities caused by cracks. This is accomplished by using the

residuals introduced which can be gathered through experimental measurements.

They prove to be the key for identifying the presence of damage and even more

importantly, statistically detecting the blade where the damage is present even in the

presence of measurement noise.

• In Chapter IV, a new methodology to approximate the steady-state amplitude of vi-
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bration of a system with piecewise-linear nonlinearity waspresented. This method

is referred to as bilinear amplitude approximation (BAA). BAA requires only a few

linear calculations to compute the mode shapes of linear systems and an overlapping

space that is spanned by selected mode shapes. BAA does not require numerical in-

tegration to calculate the nonlinear amplitude at resonantfrequencies. Therefore,

BAA can drastically reduce the computational costs required to obtain the nonlinear

resonant amplitude. The method divides each cycle of the steady-state nonlinear

response into an open state and a sliding state. The transition between each state is

assumed to take place quickly. The method then enforces transitional compatibility

at the contacting surfaces, namely that physical displacement and velocities along

overlapping space are compatible when the system transitions from the open to slid-

ing states and vice versa. The BAA method was demonstrated for simple systems

(i.e., a single-degree-of-freedom system and a three-degree-of-freedom system) as

well as a complex system (i.e., a full bladed disk model with acrack). The results

were compared against the nonlinear solutions, and a good agreement was found.

• In Chapter V, an efficient methodology to predict nonlinear responses of dynamic

systems with pre-stress and frictional contacts was developed. For validation, fric-

tional contacts at interfaces (e.g., those found in combustors between the transition

piece and the hula seal, and between the hula seal and the liner) were modeled us-

ing contact elements provided in ANSYS. Using transient dynamic analysis (TDA)

in ANSYS, it was verified that the softening nonlinearity observed experimentally

at the interface of an actual combustor system is caused by Coulomb friction. To

develop nonlinear ROMs, spatial coherences in the dynamicsof the system were

investigated using POD. It was found that the system has dominant spatial coher-

ences. This observation means that it is possible to drastically reduce the size of the
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full-order models. Consequently, computational cost savings can be gained when

predicting the response of the system to excitations. Contact parameters were ob-

tained from a hysteresis cycle using static analysis. Afterinvestigating the spatial

coherence and obtaining contact parameters, for the first time efficient ROMs for

hula seal models were developed. It was shown that the results of ROMs match

those of TDA for the full order system, which indicates that the novel ROMs accu-

rately capture the effects of friction (and micro-slip) in these systems with pre-stress.

6.2 Future Research

The following are suggestions for future research based on the studies presented in this

dissertation.

• Aerodynamic matrices for multi-stage structures

The analysis in Chapter II is for a multi-stage structure with the loads from the aero-

dynamics computed at a stage level. Accounting for the full multi-stage aerodynam-

ics can enhance the accuracy of the forced response predictions. Therefore, future

work includes developing a method for efficiently computingmulti-stage complex

aerodynamic matrices that couple the upstream and downstream stages, and experi-

mental validation of the analysis.

• Detection of multiple simultaneous damages

The damage detection method developed for mistuned bladed disks with a cracked

blade in Chapter III utilizes vibration data such as measured displacements. Vibra-

tions of cracked structures can change when there are multiple cracks. The effects

of multiple cracks on the vibration characteristics need tobe investigated. Con-

sequently, the method developed needs to be validated for mistuned bladed disks
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with multiple cracked blades. In addition, the vibration ofbladed disks is affected

by aerodynamic effects (stiffness and damping) since bladed disks interact with

flows in operating conditions. Therefore, vibration analysis for damage detection

in bladed disks should consider aerodynamic effects. For accurate and efficient vi-

bration analysis of damaged blade disks experiencing aerodynamic loads, reduced

order modeling method addressed in Chapter III can be used.

• Experimental validation of nonlinear ROMs developed for capturing the effects

of Coulomb friction in combustor systems

In Chapter V, ROMs for hula seal models were developed using identified contact

parameters. To extend this work components with a more complex geometry should

be considered while the hula seal model remains the same. After that, experimental

validation is desirable.
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