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CHAPTER|

Introduction

1.1 Dissertation Objective

The quest for high performance mechanical systems oftee$odynamic structures
to adopt complex geometry. A well studied example inclutesdomplex geometry of
blades inside gas turbine engines. Because the geometne dfldade can have signifi-
cant effects on turbine performance, a number of researdaa@ors have been carried
out to find better geometry to increase performance. As astprence, blade geometries
continue to evolve in complexity. As the geometric comphexif these and other simi-
lar structures grows, the uncertainty in computationatijgteons of vibration responses
also increases. Therefore, it is important to monitor theation characteristics (such as
frequency and amplitude) for safety of the structures, @apig for large and complex air
and space structures.

Vibration monitoring systems are greatly needed to fortesadden failures caused
by damages or fatigue fracture. Such vibration monitorgigsed to diagnose structural
health by analyzing vibrations of the system. However,ations of turbomachinery ro-
tors can be affected by several factors, such as multi-sagetural coupling, aerody-
namic coupling, damping, damage (i.e., cracks), and misgunThe vibration analysis

of bladed disks in a turbomachinery can be carried out e#silys assumed that all of



their sectors are identical because cyclic symmetry canniq@oyed. In reality, how-
ever, there are unavoidable small differences among thetstal properties or geometric
characteristics between individual sectors due to matwiag tolerances, material devi-
ations, and non-uniform operational wear. These smakdifices are commonly referred
to as mistuning. Even though the mistuning level is typicalhall in terms of individ-
ual blade properties, this small mistuning can have a censidde impact on the forced
response. Namely, mistuning can cause a localization o&trdn to a few blades, which
leads to a drastic increase in the response amplitude feethiades. Vibration localiza-
tion can be induced not only by mistuning but also by damageke bladed disk, such
as cracks. Damages can result during operation, from raatsfects, and from fatigue.
It is well known that cracks can induce a nonlinearity duerck-closing effect which is
a displacement-dependent nonlinearity caused by remetipening and closing of crack
surfaces. Since the crack-induced nonlinearity can changgation localization, itis im-
portant to be able to accurately predict the vibration ofaigical systems with piece-wise
linear nonlinearity to detect cracks.

Finite element analysis (FEA) has been used to analyze lthation of structures. If a
structure is small and its geometry is simple, then it can bdeted using low dimensional
finite element (FE) models. For low dimensional models, dudler analysis can be used.
For large and complex structures such as turbine bladed,dskvever, the system is
modeled using high dimensional FE models for accurate aisalyhus, the computational
cost required to analyze full order FE models can often bbipitve. Thus, reduced order
modeling methods have been investigated. However, manyadshave been focused on
obtaining reduced order models (ROMs) for linear system@®MR for linear systems
can be efficiently constructed by using approaches basemhear ltransformations such

as component mode synthesis (CMS). Constructing ROMs &ieBys with nonlinearity



(caused for example by intermittent contact) require cérteéatment and new modeling
methods. For example, mistuned bladed disks can expemamdmear vibrations due to

cracks. To capture the nonlinearity, the physical degréégedom (DOFs) of the nodes
on the crack surfaces are typically chosen as active DOFeiIiROMs so that the motion

of the nodes in the physical three-dimensional space caatlesd. Therefore, the number
of nodes on the crack surfaces significantly affects on treesi the ROMs.

Vibration characteristics such as frequency and amplizate be used to diagnose
damages in dynamic systems. Among the vibration charatitsriused, the vibration
amplitude is especially important because it can directigca the life of the system.
Predicting the vibration amplitude with efficiency requirhe calculation of nonlinear
forced responses. One way to obtain the nonlinear forceubnses is to use ROMs with
direct numerical integration (e.g., by using a variable $Ringe-Kutta method). That
approach incurs a large computational cost despite thetliattthe ROMs are low di-
mensional. Therefore, to obtain the amplitude of vibrat@brihe resonant frequencies,
nonlinear forced responses need to be calculated using effarient numerical methods
such as hybrid frequency/time domain (HFT) methods, whiableys the harmonic bal-
anced method. However, computational cost is still largeeially when the size of the
ROMs is large (e.g., due to a large number of DOFs involvedhértonlinearity). Also,
the method requires a iterative calculations to obtain egged solutions.

The primary purpose of this research is to develop efficiadtaccurate reduce order
modeling methods for nonlinear vibration analysis of dyimastructures with complex
geometries, and use the modeling methods to detect damagesticular, the objectives

of this research can be summarized as follows:

e To develop an efficient vibration analysis method for anialyzhe effect of aerody-

namic coupling with structural models in turbomachinery;



e To develop an efficient method to predict nonlinear forcespomses of mistuned

blade disks with a crack and a novel method to detect cractkteibladed disks;

e To develop a novel technique to approximate the vibratioplaunde at the resonant

frequencies of dynamical systems with piecewise-lineatinearity;

e Todevelop efficient reduced order models to capture thetsftd (nonlinear) Coulomb

friction on the dynamics of combustors.

1.2 Dissertation Background

Vibration monitoring is desirable for robust diagnosisdgmrognosis) of structural
health. Many systems have coupling between structuregliogubetween fluids and
structures, and friction damping. In addition, some otlatdrs can induce nonlinear
vibrations during operation, such as damages (i.e., cyacks

In this dissertation, novel and efficient methods are deezdfor capturing the dy-
namics of the structures subjected to 1) coupling betweentstres, 2) coupling between

fluids and structures, 3) cracks, and 4) friction damping.

1.2.1 Reduced order modeling methods developed for analyrj aerodynamic ef-
fects on structures with complex geometry such as bladed dis

Turbomachinery rotors experience aerodynamic loads tidatce fluid-structural cou-
pling as well as interblade coupling. These couplings cgniicantly change the vibra-
tion response of mistuned bladed disks. Thus, to carry autrate vibration analysis, one
needs to consider aerodynamic effects. A large amount efrel has been performed
for coupling aerodynamic and structural models. Early elasiic models used simple
lumped parameter models for the structure [2-5], which didguantitatively capture the

dynamics of industrial bladed disks. To obtain better guatnte results, structural ROMs



were developed from FE models of the structure, and castilelade modes were used
to compute the aerodynamic forcing. To understand the gaerdic coupling between
blades and the mistuning effects, Pierre and Murthy [6] ymeturbation methods. Later,
an iterative approach to determine the eigenvalues andwagtors of an aeroelastic sys-
tem was proposed by Moyrowet al.[7]. A technique that uses the ROMs of a structural
model developed by Bladét al. [8, 9] combined with inviscid fluid dynamic models in-
vestigated flutter and the forced response of single-stiagied disks [10,11]. An iterative
aeroelastic coupling method that models the aerodynanyiesquasi-three dimensional
potential flow and the structure using component mode misg(CMM) [12] was devel-

oped by Heet al.[13, 14].

1.2.2 Reduced order modeling approach for analyzing dynangs of structures with
nonlinearity and complex geometry

Health monitoring systems for structures with complex getyn(such as turboma-
chinery rotors) may use measured vibration data. For igstavibration localization in
bladed disks can be detected by monitoring vibration anngdis. This vibration localiza-
tion is caused mainly by two reasons: mistuning and damayes @s cracks).

Mistuning refers to small deviations among the structurapprties or geometric char-
acteristics of the blades. Even small mistuning may causaiiation of vibration energy
to a few blades (which can increase vibration amplitudesstrases). Also, mistuning
destroys the cyclic symmetry of bladed disks. A number dalistsihave been conducted to
investigate the effects of mistuning on bladed disks [15-%@me of the early studies used
lumped parameter models [18—26]. In general, the effeatsistuning can be understood
qualitatively by these simple models (in single stage sys}g27-29]. However, these
models are only partially able to accurately predict theation characteristics of bladed

disks [13,14,30-32] especially in multi-stage systemslby efficient modeling of blade



mistuning, Limet al. [12] developed the CMM method to generate ROMs for mistuned
bladed disks. In CMM, the mistuned bladed disk is partitibiveo a tuned bladed disk
component and a virtual blade mistuning component. Theumiisy component is defined
by the differences between the mistuned and the tuned blade and stiffness matrices.
For the case of small stiffness-only blade-to-blade vianiat mistuning becomes simply
an eigenvalue mistuning, and can be defined as the diffetsateeeen the eigenvalues of
the mistuned cantilevered blades and the tuned cantilé\vaele.

Vibration localization can be induced not only by mistuning also by damages to
the bladed disk. Several investigators have tackled vddbcalization due to cracks by
assuming that the cracked blade is an Euler-Bernoulli beaby asing a lumped-mass
beam model [33—-38]. In those studies, the nonlinearity @ary the crack opening and
closing was not considered. However, this piece-wise tinealinearity may change the
dynamic response of the cracked blades significantly [3p—#1ie effects of intermittent
crack opening and closing have been investigated by a fezarelsers using time march-
ing and frequency responses based on a bi-linear oscillepresentation [42]. Those
studies were later extended to a cracked beam model [43hwids validated by com-
paring the predicted lowest natural frequencies of thekeddeam with experimentally
measured values. Effects of multiple closing cracks on anbsare also investigated us-
ing dynamic responses [44]. Although these studies sueckrgdcapturing the effects
of the nonlinearity due to cracks, they were limited becahsesystems considered were
very simple structures.

Recently, Saitet al.[45,46] presented an efficient reduced-order modeling atetbr
mistuned bladed disks with a cracked blade. They used ach@wS method to obtain
ROMSs. To calculate the nonlinear forced responses, they ad¢FT method based on

the harmonic balanced method [47] and fast Fourier transfoA modal analysis of the



full mistuned bladed disk with a cracked blade was emplogeibtain ROMs. Therefore,
the computational costs was significant especially whenymastuning patterns have to
be considered. This is important when investigating reatlétl disks because mistuning
patterns are always present and they are usually random.

Nonlinear forced responses of cracked structures can belatdd by a HFT method
based on the harmonic balanced method [47]. In particlarHFT method of Guillen
and Pierre [48, 49] was extended to obtain a compact size &l R@Q removing linear
DOFs [50] using the Craig-Bampton method [51]. The methallteen applied for an-
alyzing the vibration of systems with intermittent contfg2, 53]. The HFT method has
been numerically validated by comparisons with direct tintegration for both simple
and complex systems. For example, the HFT method has beieateal numerically for

ROMs of a cantilevered cracked beam by comparisons witletdi@e integration [54].

1.2.3 Damage detection in complex structures using vibratn characteristics

The reliability and safety of air and space structures arg waportant. To ensure
safety, real-time and on-board health monitoring system$iaeeded. During normal op-
eration cycle, turbine engines experience high centrlfsfyasses as well as high thermal
stresses. Because of those stresses, damages can be imdbzeted disks. More im-
portantly, these damages can create a crack over time. létiggh of the crack reaches
a critical size, it can eventually lead to the burst of thedbthdisk and failure of the en-
gine. Thus, it is important to have robust on-board healtihitbdng systems. Vibration
data can be used to monitor structural health. Vibratiom dah be measured using tip
timing [55] in an engine during operation. Tip timing is a RooNtacting measurement
method which uses optical probes. It can be used to measralttation displacements

and frequencies of every blade on a rotating bladed disk.



To study vibrations of damaged structures, FEA is often eyegdl. However, the
computational cost required to analyze the vibration dfdutier FE model is frequently
prohibitive. To circumvent this difficulty, a novel reducerter modeling approach is in-
troduced. Sait@t al. [45, 46] presented an reduced order modeling method foumast
bladed disks with a cracked blade using a hybrid CMS methbey Tnvestigated forced
responses of a mistuned bladed disk with a cracked bladg asionlinear cracked blade
model [54]. They showed that cracks may lead to nonlineaatieh and the resonant
peaks associated with the cracked blade are nonlineay f@r.ghe 10" mode family) in
terms of both the amplitude of vibration and the peak fregyenrhey suggested that
localization due to cracks may be distinguishable fromliaation due to mistuning be-
cause localization at the cracked blade was observed to @mcuarious mode families.
However, that observation alone is not sufficient to essaldimetric for differentiating lo-
calization due to mistuning from localization due to a craokl identifying blades which

have cracks.

1.3 Dissertation Outline

The remaining chapters of this dissertation are intenddaketself-contained. There-
fore, some of the materials are repetitive.

Chapter Il introduces efficient reduced order modeling méshto investigate the ef-
fects of aerodynamic coupling with structural multi-staggbomachinery models. The
method consists of first creating efficient structural RONa multi-stage rotors. Cyclic
symmetry and CMM are used to form single-stage ROMs (usihgsingle sector models
and single sector calculations). The approach then comlirese single-stage ROMs by
projecting the motion at the interface between stages amej of harmonic shape func-

tions. Next, complex aerodynamic matrices are iteratizalgulated for each stage using



an inviscid, irrotational and isentropic flow solver basedtbe full potential equation.
The multi-stage complex aerodynamic matrix is then assethiing each of the single-
stage complex aerodynamic matrices. Aeroelastic ROMsmrgtuicted by combining the
multi-stage aerodynamic matrix with the multi-stage sinal ROMs developed. In this
chapter, the effects of a frequency shift due to mistuninthercomplex aerodynamic ma-
trix is also accounted for using liner interpolations beswe&olumns of the aerodynamic
matrix. Additionally, a new classification of complex mudtiage aeroelastic modes is in-
troduced. This classification method first distinguishesdahergy distribution of modes
amongst stages, and then determines the alignment of thelastic multi-stage modes
with single stage modes. Furthermore, the effects of thedgaamics and mistuning on
the multi-stage forced response are explored.

Chapter Ill proposes a novel methodology to detect the poesef a crack and to
predict the nonlinear forced response of mistuned turbdmacy rotors with a cracked
blade and mistuning. The combined effects of the crack arsiuming are captured us-
ing a novel reduced order modeling method. This method rdiffeom previous tech-
niques which need full-order analysis to construct ROMsafaristuned bladed disk with
a cracked blade whenever mistuning patterns change. Rifsgbrid interface method
based on CMS is employed to develop ROMs of the tuned systéimangracked blade.
Constraint modes are added to model the displacements dhe fatermittent contact
between the crack surfaces. The DOFs on the crack surfaeestamed as active DOFs
so that the physical forces due to the contact/interactiothé three-dimensional space)
can be accurately modeled. Next, the presence of mistunitigei tuned system with a
cracked blade is modeled. CMM is used to account for mistupiesent in the uncracked
blades while the cracked blade is considered as a referaiiiten(0 mistuning). By using

CMM, high efficiency is obtained when calculating systemmak modes of a mistuned
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bladed disk for many mistuning patterns, which is one of thpartant contributions of
the proposed modeling method. Next, the resulting (rechacddr) nonlinear equations of
motion are solved by applying an alternating frequencytoomain method. Using these
efficient ROMs in a forced response analysis, it is found thathew modeling approach
provides significant computational cost savings, whileueing good accuracy relative to
full-order finite element analyses. Furthermore, the ¢ffet the cracked blade on the
mistuned system are investigated. A new method is propasedainage detection. For
the first time the proposed approach is able to detect stafigtthe presence of a crack
and to identify which blade of a full bladed disk is cracked phrticular, it is shown that
cracks can be distinguished from mistuning.

Chapter 1V is devoted to the development of an efficient metioopredict vibration
amplitudes at the resonant frequencies of dynamical systeith piecewise-linear non-
linearity. This technique is referred to as the bilinear himge approximation (BAA).
Previously, the amplitudes at the resonant frequencieseckpise-linear systems were
calculated using nonlinear forced responses across fneguanges of interest using full-
order models or (nonlinear) ROMs. The BAA enable accurageliptions of the resonant
amplitudes using only a few linear calculations. BAA cousts a single vibration cycle at
each resonant frequency to approximate the periodic ststady response of the system.
It is postulated that the steady-state response is piesedimear and can be approximated
by analyzing the response over two time intervals duringctvlthe system behaves lin-
early. Overall the dynamics is nonlinear, but the system & distinct linear state during
each of the two time intervals. Thus, the approximated vidanacycle is constructed using
linear analyses. The equation of motion for analyzing theation of each state is pro-
jected along the overlapping space spanned by the lineag staapes active in each of the

states. This overlapping space is where the vibratory gnetgansferred from one state to
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the other when the system switches from one state to the dtheroverlapping space can
be obtained using singular value decomposition. The spaeeaithe energy is transferred
is used together with transition conditions of displacetard velocity compatibility to
construct a single vibration cycle and to compute the angditof the dynamics. Since the
BAA method does not require numerical integration of nogdinmodels, computational
costs are very low, which is one of the important contribngi@f the BAA method. In
this chapter, the BAA method is first applied to a single-D@&tem. Then, a three-DOF
system is introduced to demonstrate a more general apphaat BAA. Finally, the BAA
method is applied to a full bladed disk with a crack. Resubisiparing numerical solu-
tions from full-order nonlinear analysis and results ateai using BAA are presented for
all systems.

Chapter V presents an efficient methodology to capture tmdimear responses of
combustor systems with pre-stress and friction. Insteagsiolg direct numerical integra-
tion with full-order models, one can use the proposed ROMawuestigate the nonlinear
dynamics of systems with Coulomb friction. Combustor syst@xperience wear at the
interface between components due to flow-induced vibratibnparticular, wear has been
observed at the interface between the transition piecelenlaitia seal, and at the interface
between the hula seal and the liner. These interfaces argtnessed, and their vibratory
response has a softening nonlinearity caused by Coulormtinfiicombined with micro-
slip. In addition, the contact between the hula seal andrémsition piece is that between
a convex surface and a concave surface. Hence, geometiioganity of the contact
stiffness in the normal direction is present also. Thesenpimena are hard to capture
by full order finite element approaches because they regjuie marching or harmonic
balancing of very large models. To address this issue, welde\ROMs which are specif-

ically designed to capture Coulomb friction (combined wnitkcro-slip and macro-slip).
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To demonstrate the proposed approach, a simplified hulassplced between two very
rigid plates (which relate to the transition piece and ther). Contact elements are used
to model the interface between the plates and the hula seahsiEnt dynamic analysis
(TDA) in ANSYS is applied to the full-order model. The modslshown to exhibit soft-
ening nonlinearity and micro-slip at all levels of pre-sge To show that ROMs for this
system are possible, we use proper orthogonal decompositishow that the dynamics
is dominated by a low number of spatial coherences. For &tyaof frequency ranges
and pre-stress levels, we show that a single such cohergiggninant. Next, low order
models are proposed and their parameters are identifiedst&ragatic method to identify
these parameters is developed. Particular attention éstpahe amount of calculations
needed for obtaining these parameters. The ROMs are \adidgt comparing their pre-
dictions with results from TDA for the full-order model. I ishown that these ROMs
can accurately predict the nonlinear response of the sysimconsiderable savings in
computational costs.

Finally in Chapter VI, conclusions are addressed and th&ibotions of this disserta-

tion are summarized. ldeas for future work are discussed als



CHAPTER I

Analyzing Mistuned Multi-Stage Turbomachinery Rotors
with Aerodynamic Effects

2.1 Introduction

Turbomachinery modeling and analysis is an active aressefareh. A comprehensive
review of research in this field was conducted by [17]. Thaahimodeling approach for
these systems used simple lumped parameter models thdlyususained one or two
degrees of freedom per sector of a single-stage rotor [123225]. These models were
useful in gaining an understanding of the qualitative proee of bladed disks such as
mistuning. Mistuning is small blade-to-blade differenges bladed disk, which are in-
herent due to manufacturing processes and can be furtheereted from operational
wear. Mistuning is important in bladed disks because it ksd¢he designed cyclic sym-
metry of the system, which can lead to a localization of tHeation energy to a few
sectors of the bladed disk in the operating frequency range.to the innate randomness
of mistuning it must be studied in a statistical manner usivagy different mistuning re-
alizations for a given design. The simple lumped parametatals were well suited for
statistical study due to their low dimensionality; howewralyses of these systems do not
provide accurate quantitative results for realistic iridakbladed disks.

High dimensional finite element models (FEMs) of bladed sliglere developed to

13
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obtain accurate quantitative results for these systemgioAgh running simulations on
some of these FEMs is possible, performing a statisticdlyaisaon a realistic model of
an industrial bladed disk, to understand for example thecetif mistuning on a particular
bladed disk design, would have a prohibitive computati@xglense. To overcome this
high computational cost, reduced order models (ROMs) basetbmponent mode syn-
thesis [51,56] (CMS) were developed. Eventually powerfONR were created that were
of the order of the number of sectors in a bladed disk yet vecyrate over a specified
frequency range. [57] introduced the first of these powdROMSs called the subset of
nominal modes method. The key idea behind this approachktigahsmall mistuning the
tuned system modes make an excellent basis for the mistunddsn Component mode
mistuning [12] (CMM) is another powerful ROM for bladed désknd it uses the blade
component modes in addition to the system normal modes. T$teammg is handled in a
systematic manner using the blade alone frequencies amathiever blade modes.
Although much research has been conducted on single-stadelsnin practical ap-
plications there are multiple stages in a turbomachineigrr{68] showed that important
multi-stage effects occur in certain frequency ranges e/tiex motion of the disk is domi-
nant. Multi-stage lumped parameter models were used byt§c§din a qualitative under-
standing of the dynamics of these systems, but were notlusefuantitatively analyzing
realistic multi-stage systems. [60] developed a novel veagréate ROMs of multi-stage
turbomachinery FEMs by projecting the motion along therfaimes between stages along
a common set of harmonic basis functions and then enforangpatibility. Their method
was combined with CMM [12] to create compact multi-stagédumachinery ROMs with
mistuning. Their method was further developed to show ifgliegbility to mistuning
identification and structural health monitoring [61, 62]. sinilar approach to [60] was

later developed by [63, 64], and used to perform forced nesp@and modal analysis cal-
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culations on multi-stage turbomachinery bladed disks. r&@ias also been recent work
on the effects of coupling flexible rotors and shafts [65-&8cently, a novel way to cre-
ate and analyze robust multi-stage ROMs was introduced usily single sector models
of the stages [1, 39]. These works also demonstrate theteiécracks in multi-stage
models [39] and introduce a new way to classify structurdtirstage modes [1].

A considerable amount of research has also been conducteoupting the aerody-
namics with the structural models. One area of particulgrartance is the instabilities
that can occur due to the aerodynamics [70—74]. Just as isttheture only case, early
aeroelastic models used simple lumped parameter modetbdatructure [2-5], which
did not quantitatively capture the dynamics of industri@lded disks. To obtain better
guantitative results, structural ROMs were developed fieaMs of the structure, and
cantilever blade modes were used in computing the aerodgrfancing. To understand
the aerodynamic coupling between blades and the mistuffieg® [6] used perturbation
methods. Later, an iterative approach to determine theneadges and eigenvectors of
an aeroelastic system was proposed by [7]. A technique #e the ROMs of a struc-
tural model developed by [8,9] combined with inviscid flughémics models investigated
flutter and the forced response of single-stage bladed flifk41]. An iterative aeroelas-
tic coupling method that models the aerodynamics by a aghase dimensional potential
flow and the structure using CMM was developed by [13, 14].

In this work, the aerodynamics are coupled with structaralti-stageturbomachin-
ery models for the first time. The aerodynamic models areldpeed using the method
of [13, 14, 32], while the structural models are created gisie method of [1] and [39],

which only requires single sector models of each stage. Ageveralized characteriza-

tion of the multi-stageaeroelasticmodes is also developed based on a method to char-

acterize structural modes [1]. The methodology for comsitng multi-stage ROMs with
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aerodynamic effects and the classification of teenplexmodes are flexible and work
for any frequency domain aerodynamic models such as lmeémor harmonic balance
methods [75—78]. Also, the novel formulation of the mutage ROMs with aerodynamic
effects accounts for the shift in frequency due to mistunuhgn computing the complex
aerodynamic matrix. Many numerical simulations are penfxt to demonstrate the effec-
tiveness of the methodology for Monte Carlo simulations explore the interactions of

the aerodynamics, the mistuning, and the damping in midgessystems.

2.2 Methodology

In this section, a brief overview of the construction of mgtage ROMs with aerody-
namic effects is given. Also, an approach to handle the shifequency due to mistuning
in aeroelastic systems is discussed. After that, a newifitaé®on scheme for multi-stage

systems with complex modes is introduced.

2.2.1 Multi-Stage Reduced Order Models with Aerodynamic Effects

A general procedure for constructing multi-stage modetsascount for the aerody-
namics in tuned and mistuned systems is presented usingpsgvdeveloped structural
methods [1,12,39,51,60]. The aerodynamic model [13, 1#%B4s separately applied to
each single-stage. The approach developed in this worloftstoucting aeroelastic ROMs
is general and can be applied with alternative techniqueslitaining the complex aero-
dynamic matrix such as those based on linearized or harnhatémce methods [75-78].
Also, a new metric to characterize the combined effects @htiistuning and the aerody-
namics is introduced.

A key advantage of the multi-stage structural ROM is thaait be constructed using
single-sector models of each stage. The single-sector Ingdakes advantage of the

inherent cyclic symmetry of each tuned stage. The first stepe modeling procedure
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is to use CMS [51] to divide each single-stage sector modelantive interface degrees
of freedom (DOFs) and fixed interface normal modes. ThefexterDOFs correspond to
the interstage boundary DOFs that are used later to coltagks together. The normal
modes are then used with CMM to efficiently account for mistgnn each stage [12].
Finally, the active DOFs along the interstage boundary asgpted onto a set of harmonic
basis functions and compatibility is enforced betweenesagdrhe result yields reduced
order masMEOM-m and stiffnesKROM™ matrices for the mistuned multi-stage system.
These structural ROMs can be created quickly and efficidatlgnany mistuning patterns
and levels.

The complex aerodynamic matrix can be computed in a varfesags including new
linearized and harmonic balance methods [75-78]. In thikwihe method developed
by [13,14,32] and [79] is used to compute the complex aeradhya matrix of the system
K*(w). This matrix is calculated in the space of generalizedfedicoordinateq which
represent complex amplitudes of multi-stage modes withastuning. The method has
been validated by comparing its results with that of othesteady codes and experimen-
tal results [80—82] for (single-stage) cascade flows. Thehatkuses the full potential
eqguation in a quasi-three dimensional model of a cascadeetized by a Galerkin for-
mulation [83]. The flow is thus considered inviscid, irravai@al and isentropic. In this
work, the complex aerodynamic matrix is calculated seplrdor each stage using the
same subspace of modes as that used in the structural mdaelmilti-stage complex
aerodynamic matrix is then assembled using each of theesgighe complex aerody-
namic matrices. The result is an aeroelastic system thaitiaerodynamically coupled
between stages (it is structurally coupled); thereforexehs no influence of the upstream
aerodynamics on the downstream stages or vice versa. Natt¢éhih decoupling of the

aerodynamics is due to the choice of aerodynamic solvertosedract the complex aero-
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dynamic matrix and is not a limitation to the approach in gahéAlso, the aerodynamic
effects (on each stage) have multi-stage consequencesseechthe structural coupling
between stages. For example, if a multi-stage mode is egposan increased aerody-
namic damping on stage its amplitude is reduced in stagealso (not just in stage).
This occurs even though the flow solver is not multi-stageusT the aerodynamic effects
have complex multi-stage consequences.

The forced response in the reduced coordinates for the n@dtsystem is given by
[—wQMROM’m + (1 4 j)KROMm K%w)]q = F(w), (2.1)

wherej is the imaginary unity is the structural dampindi(w) is the forcing projected
onto the reduced coordinates, ands the excitation frequency.

For forced response calculations, the frequency of theorespis established by the
forcing frequencyw. Thus, using Eg. (2.1) requires the calculationkst at that fre-
guency. However, for free response calculations, the gaars and eigenfrequencies
are affected by mistuning. Accounting for the frequencyasefence oK is the primary
concern becaudk®(w) is expressed in the space of multi-stage madésoutmistuning.
That is possible because, when mistuning is small, the mestaeroelastic modes can be
represented by a linear combination of multi-stage mod#sont mistuning.

The shape of the vibratory motion of each multi-stage stma¢tmode (without mistun-
ing) is used to compute the corresponding columiKéfw). The dependence &“(w)
on the multi-stage mode shapes (without mistuning) is velgng because these mode
shapes have different interblade phase angles, and thdyaarics is strongly dependent
on these angles. However, the dependend€‘gfv) onw is quite smooth.

For free response calculations, the frequencies of theumast system are calculated

iteratively. First K is computed at the frequencies of the structure-only mesgystem.
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The aeroelastic frequencies are then computed using Bqg.wW&h F(w) = 0. Next, K*

is calculated at those aeroelastic frequencies. The pasespeated until convergence of
the aeroelastic frequencies is obtained. Typically, @nly 3 iterations are needed [32].

This process requires repetitive calculation&dfat various frequencies. Similarly, forced
response predictions require computations at many diftérequencies.

To alleviate the high computational cost of these calooitetj the smooth dependence
of K* onw can be exploited. Complex aerodynamic matriB&4w;) are calculated for
frequenciesu, in increments ofl % to +£5% of the structure-only natural frequencies (i.e.,
s = 1,...,11). These matrices are then used to evall&tév) by interpolations based
onw. Specifically, the columns dK“(w) are estimated by linearly interpolating between
the columns ofK“(w,) matrices based on. For example, consider the case where the
mistuning has increased thie frequencyw of the system byt.2%. This frequency value
is between the values df% (s = 10) and5% (s = 11). The ;" column of the mistuned

complex aerodynamic matriK¢(w) is approximated by linear interpolation,
K (w) = 0.8 % K (wio) + 0.2 % Kf(wn1). (2.2)

This procedure is carried out for each column of the compérdynamic matrix for the

mistuned system.

2.2.2 Generalized Classification of Complex Multi-Stage Mde

In this section, a new generalized classification schemeveldped for multi-stage
systems withcomplexmodes. This scheme generalizes the classification methad-de
oped by [1] that was designed to show the effects of the stige coupling and mistuning
on structure-only models of multi-stage systems. The gdized classification is based

on two principles, namely the energy distribution and thedad@lignment. The strain
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energyEy; in thei'" aeroelastic mode of thg" stage is given by

Eij = real( ‘?.)TK?OM’treal( ?j)’ (23)

v]

K ¥ is the structure only stiffness of thé" stage in the reduced coordinates,

where
and¢y; is the portion of the aeroelastic mode that correspondsag‘thstage. Only the
real part of the aeroelastic mode is used because for thie strargy only the energy from
the physical displacement of the structure is of intereshil&rly, only the motion of the
structure is of concern for the energy in the stages, so tleekstic stiffness matrix is
not included in the strain energy calculation. Note thatsitmese calculations are done in

the reduced order space, they can be done very efficiently.sirhin energy ratio can be

calculated for theé™ mode of stagé of a two stage aeroelastic system as

Ea
ERY = —1— 2.4
and for stage as
Ea
ER, = ——2__| 2.5

The energy ratio¥ R}, and E'RY, indicate the distribution of the strain energy of each
aeroelastic mode in each stage.

The modal alignment criterion for the classification of tleecelastic modes is differ-
ent from the classification of structure only modes due tattditional imaginary compo-
nent of the aeroelastic modes. A similar method to the mastalrance criterion (MAC)
is once again used. The MAC number is a quantitative meaguhe @alignment of two
modes, where the MAC is one if the modes are parallel, and iz¢h@ modes are or-
thogonal. Complex aeroelastic modes can be separatedhaitad¢al and imaginary parts,
thus forming a plane in théV; dimensional space, wherg; is the size of the reduced

order model of thej*" stage. A complex MAC numbeyIAC® can be defined from the



21

real(¢f;)

imag(¢f;)

imag(s¢) L2

real(qb;fj )

Figure 2.1: Schematic of the intersection of two planes itNadimensional space.

alignment of these planes. The plane defined by the compleefo can be defined as
o™ = [real(¢f;) imag(¢g;)]. The alignment of this plane must be compared against the
complex modesy; ;, which are the single-stage aeroelastic modes of thetage, where
k € n; andn; is the set of singlg™ stage modes that are within a particular frequency
range. The plane formed Ippf; can be similarly defined aB;’ = [real(yf;) imag(ef;)].
The frequency range when single-stage aeroelastic modebenvchecked against the
multi-stage mode is given by

| wi — wyj |

e> — (2.6)

T |wi
wherew; is thei*™ multi-stage frequencyyy; is thek™ single-stage frequency of thé&"
stage, and is the tolerance, which in this work was setitds.
To determine the angle between the planes defined by two esxraploelastic modes
in an V; dimensional space one can take a singular value deconpositthe composite

system®; " = [®{:" ;7] to obtain
‘I’Z%j' = [u; up uz uyldiag(oy, o9, o3, 04)VT, (2.7)

where o, are positive numbers called singular valuag,are N; x 1 orthonormal left

singular vectors, an¥ is a4 x 4 matrix which contains the right singular vectors. The
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singular values are ordered from highest to lowest and cahdagyht of as the level of
contribution of the left singular vectors to the range spaic®; ;2. If o4 > 0, then the
two planes do not intersect in thé; dimensional space, andAC{; = 0. If o0, = 0 and
o3 = 0, then the subspace inhabited by the two planes is two dimealsiwhich means
the planes inhabit the same subspace bndC;; = 1. If 0, = 0 andoz > 0, then the
planes intersect but do not overlap, and the line of intéieeds the dominant portion
of the range space, which is given hy. To quantitatively determine the alignment of
these planes one must first find a line on each plane that isgotial tou;. Then, by
finding the alignment of these two vectors using a MAC calioireone also determines
the alignment of the planes. Using the Gram-Schmidt prooasscan identify a vector

o

goZ’j that is orthogonal tm; within the space spanned k’j as

a,0 __

o2 = real(py;) — (ulreal(;)us. (2.8)

Similarly, one can find a vectas;;” that is orthogonal tar, within the space spanned by
o™ as

o3 = real(¢y;) — (ujreal(¢,))us. (2.9)
The physical idea behind this approach is shown in Fig. 2.1h# case where there is an

intersection of the two planes in th¢; dimensional space. The MAC number can then be

computed for these two vectors as

(2.10)

N (s
RN Ty e

The multi-stage complex modes can now be classified usingZ4s2.5 and 2.10.
First, the modes can be classified by the energy distribtiti@®termine whether the en-
ergy is isolated to a single-stage or whether it is split agsbthe stages. Next, the modes
are classified on their alignment with single-stage modesurAmary of the classification

types of multi-stageomplexmodes for a two stage system are given in Tab. 2.1.
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Mode Classification Energy Distribution | Modal Alignment| Symbol
Stage 1 - single-stage mode (S7) ER7 >0.9 MAC{ > 0.9 A
Stage 1 - multi-stage mode (Ms;) ER] >0.9 MAC? < 0.9 A
Stage 2 - single-stage mode (S2) ERza >0.9 MACS > 0.9 (o)
Stage 2 - multi-stage mode (M) ER, >0.9 MACS < 0.9 [ ]
Multi-stage - double single- ERf <0.9AND |[MACS > 0.9 AND O
stage mode (Ms1,s2) ER; <0.9 MACS > 0.9
, ER{ <0.9AND |MACS <0.90R
Multi-stage mode (My,2) a a
ER, <0.9 MACS < 0.9

Table 2.1: Classification of six types of aeroelastic modgaguthe energy distribution
and the modal alignment criterion.

Figure 2.2: Multi-stage turbomachinery rotor.

2.3 Results

The system analyzed in this section is shown in Fig. 2.2. $isdem hag5 blades
in the first stage and3 blades in the second stage. Many multi-stage ROMs with aero-
dynamic effects were created from this system using a yademistuning levels and
patterns by following the procedure highlighted in Sec.2.Zhe aeroelastic ROMs have
592 DOFs, which is aboub.5% of the original FEM size. The structural portion of the
ROMs were developed from single sector models of each statlpe system. The stages
were connected by projecting the motion along the inteesbagindary ont@3 harmonic

basis functions. The construction of the full multi-staggMFshown in Fig. 2.2 was done
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for validation of the structural ROMs, which has been présgin the literature [39]. The
complex aerodynamic matrix was calculated using a flow sdbrenviscid, irrotational,
isentropic flow [13, 14, 32,79, 82]. The validation of thea@imamic code has been pre-
sented in the literature [13, 14, 32, 79]. The reduced fraquevas approximatelg.15
and7.65 near the hub for the frequency range of the first mode familtheffirst and
second stage, respectively. The reduced frequency is lmséte half chord and inlet
velocity near the hub. The upstream far-field Mach number treahub is0.25. These
flow conditions are below the flutter speed.

Many structural ROMs were developed at different mistunawgls and for different
randomly chosen mistuning patterns. A complex aerodynamaicix K* was calculated at
each eigenfrequency of each realization of the system Inygaslinear interpolation based
on theK*(w,) matrices as described in Sec. 2.2.1. The ROMs developedvatidor the
frequency rangé — 20 kHz; however the results in this work are focused on the maTo
range0 — 7 kHz. Since, the flow conditions are below the flutter speeslatialyses focus
on the forced response of the fluid-structural system rdti@r on self-excited vibrations
(flutter). The response corresponds to forcing due to intenas with other stages, the
rotor, or other forces applied to the two stage system. & c¢bintext, the fluid-structure
interaction adds mass, stiffness, and damping effectss,tha fluid-structure interaction
changes the forced response, but it is not the cause of treaxdgs or of any instability
such as flutter.

The first set of multi-stage results are presented in Fig. R@ 2.3(a) is the classifi-
cation of the tuned aeroelastic multi-stage modes usingl#ssification criteria presented
in Tab. 2.1. Thex-axis is the eigenvalue index, while tlyeaxis is the real part of the
multi-stage frequency. For comparison, the classificabibtine tuned multi-stage modes

(without aerodynamic effects) [1] is presented in Fig. B)3{The influence of each stage
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Figure 2.3: Frequencies and classification of the tunedifstage system (a) with aero-
dynamics effects and (b) without aerodynamic effects [hjefgy distribution
for the tuned multi-stage modes (c) with aerodynamics &ffaend (d) without
aerodynamic effects [1].

is indicated by the shape of the symbol in the plots. Thesebsisrare explained in
Tab. 2.1 (i.e., the triangles correspond to stageodes, the circles to staganodes, and
the squares to multi-stage modes). There is an added coitypddren modeling the aero-
dynamic effects which results in more multi-stabye; and Mg, modes occurring in the
multi-stage frequency ranges (n&akHz, 4.5 kHz and6.5 kHz). The energy distribution
for the system with aerodynamics is shown in Fig. 2.3(c) amdHe system without aero-
dynamic effects [1] in Fig. 2.3(d). These plots show thattfe tunedcase the energy
distribution between stages does not change due to theyaenmic effects. However, the
complex multi-stage modes are less likely to align with tlséngle-stage counterparts.

This suggests the need for multi-stage analysis which axdsdor aerodynamic effects
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Figure 2.4: Frequencies and classification of the mistunattitstage system (a) with
aerodynamics effects and (b) without aerodynamic effeldtsProbability of
classification for the mistuned multi-stage modes (c) wighodynamics ef-
fects and (d) without aerodynamic effects [1].

in tuned systems over all frequency ranges, as opposed toatinew frequency ranges
2 — 2.4 kHz and6.5 — 7 kHz where a single-stage analysis would be valid for thedune
multi-stage system without aerodynamics.

Next, the effect of mistuning on the classification of aeasg8t multi-stage modes
were studied usind, 000 different mistuning patterns with a standard deviationhed t
mistuning of5%. The results are presented in Fig. 2.4, where the layoutafZ#(a)
and Fig. 2.4(b) are the same as Fig. 2.3(a). Since many eliffenistuning patterns are
simultaneously being classified, multiple classificatigmbols can be plotted at each
index. Fig. 2.4(a) corresponds to the mistuned systemsaatbdynamic effects, while

Fig. 2.4(b) corresponds to the mistuned systems withootyeamic effects [1]. To gain a
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Figure 2.5: Damping in the (a) tuned and (b) mistuned mudtgs systems for the struc-
ture only [-] , aeroelastic systent]], structure with structural damping [x],
and aeroelastic system with structural dampisig [

clearer idea of the likelihood of a particular mode at a gimelex occuring, the probability
of each classification of the aeroelastic system is showignZ4(c), and the probability
of classification of each mode for the structure only systeps[given in Fig. 2.4(d). Note
that there is not a large difference between Fig. 2.4(a) agpdZ4(b) or Fig. 2.3(a) and
Fig. 2.3(b). The physical reason for this is the fact thaa@edynamic matrix has a much
larger influence on damping than on stiffness. The aerodimstiffness contribution is
very small compared to the structural stiffness. However damping contribution of the
aerodynamic matrix is comparable with the structural dagpiFigures 2.4(a), 2.4(b),
2.3(a) and 2.3(b) are based on the mode shapes of the nag#&-system. Note that, the
flow influences these mode shapes and their damping. Whennimgtis present, it is
clear from Fig. 2.4(c) and Fig. 2.4(d) that the probabilitgtdbution of the mode types
does change considerably due to the aerodynamic effectss, irhboth the structural and
aeroelastic cases, multi-stage analysis is needed due t@tit complex interactions and
possibilities that exist when considering mistuning in tiaslage systems.

The main impact of considering the aerodynamics with thecstre is how the damp-
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ing is affected. To understand how the damping changes hatimclusion of the aerody-
namics, the imaginary part of the multi-stage natural fesguy is investigated for several
cases. The results for the tuned case are summarized in.b{@),2while the results for
the mistuned case are summarized in Fig. 2.5(b). For eaem&tue index four different
values are reported corresponding to four distinct casée fifst case is the structural
system with no added structural damping and this corresptimthe case with the least
damping. The second case is the aeroelastic system withdea atfuctural damping. The
next case is the structural system with structural dampfrigeoform jvKROM™ (where
~ = 0.0005) included. The final case is the aeroelastic system witltgtral damping in-
cluded and that has the most damping. The overall impacech¢noelastic damping will
vary greatly depending on the relative size of the aerdelastd structural damping. In
this work the influence of the aeroelastic damping is vergificant since it is of the same
order as the structural damping. For the mistuned casey#rage value of the imaginary
part of the natural frequencies for tihed00 mistuning patterns are plotted in Fig. 2.5(b).
The standard deviation tends to be very small3(%) so standard deviation bars are not
plotted to avoid making the figure difficult to read. In anahggFig. 2.5(b), one can note
that the aeroelastic damping tends to equalize across raadbds due to the mistuning.
For example the flat region associated with indites 23 correspond to the first mode
family of the second stage. For (higher) indiceis— 28, there is a mix of multi-stage
modes and stage 1 dominated modes. Next is the rest of théafingy of stage 1 domi-
nated modes (from eigenvalue indices 29-51). For the tuasd the aeroelastic damping
is less uniform as is shown in Fig. 2.5(a).

To understand the effects of the aerodynamics on the sy$teoed response simu-
lations were performed. The results are summarized in Rigsand 2.7. A structural

damping ofy = 0.0005 was used for all the forced response calculations. Forces we
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Figure 2.6: Forced response of staygtor the system (a) with aerodynamics effects and
(b) without aerodynamics effects for the tuned system usirgingle-stage
analysis f], mistuned system using a single-stage analysis [X], tsystem
using a multi-stage analysis.[], and mistuned system using a multi-stage
analysis [].

applied at the tips of the blades on each stage with specifigthe order excitations.

The maximum of the response at the excited nodes of each wtgyased as the maxi-

mum response for that stage. First, an engine order zertagra was applied to each

stage aH12 equally spaced frequencies fradrb kHz to 7.0 kHz. The results are sum-
marized for the system with aerodynamic effects in Fig.&.afd without aerodynamic

effects in Fig. 2.6(b) for stagefor four cases. The first case is the tuned response using a

single-stage analysis. The second case is a sample misesmhse using a single-stage

analysis. The third case is the tuned response using a statje analysis. The final case
is a sample mistuned response using a multi-stage analybis.results for stagé are
omitted for this analysis because the response is nedi@iblstagel in this frequency
range. This is because the energy is concentrated in 8tager this frequency range,
which can be seen by inspecting the types of modes in thisiémzy range using Figs. 2.3

and 2.4. The x-axis in each plot is the frequency of excitatichile the y-axis is the max-

imum response for stage A key observation when comparing Fig. 2.6(a) with Fig. B)6(
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Figure 2.7: Forced response of stdga) with aerodynamics effects and (b) without aero-
dynamic effects, and of staggc) with aerodynamics effects and (d) without
aerodynamic effects for the tuned system using a singgesaaalysis ],
mistuned system using a single-stage analysis [x], tunstsyusing a multi-
stage analysis [.], and mistuned system using a multi-stage analys]s [

is that the responses in all cases tend to be approximziélylower for the aeroelastic
system. The peaks at each frequency, however, do not scthe lexact same value. This
is to be expected since the aeroelastic damping is not the aarass all modes (as can be
seen in Fig. 2.5). Fig. 2.6 highlights the need for a muligst analysis to be carried out
irrespective if one is accounting for aerodyanmic effeet®( when exploring a frequency
range that is dominated by motion in a single-stage).

The results of an engine order one excitation applied to staie atl, 024 equally

spaced frequencies frot8 kHz to 3.4 kHz is summarized in Fig. 2.7. The plots are
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Figure 2.8: Force amplification factor versus mistuningleand engine order excitation
for the multi-stage system for stage(a) with aerodynamic effects and (b)
without aerodynamic effects, and stayé) with aerodynamic effects and (d)
without aerodynamic effects.

laid out in the same way as in Fig. 2.6 with the same four casegjlronsidered. Stage
1 and stage results are plotted for this case since this frequency réwagemodes with
energy split between both stages making the response sagttifin both stages. These
results highlight similar observations from the previomxéd response case. Namely, ac-
counting for the aerodynamics introduces additional daigpghiat reduces the response by
approximately20%. However, this level varies at different frequencies. Alsailti-stage
modeling is once again important for accurate aeroelaspaely structural analysis, and

in this particular frequency range multi-stage effectspaemount.
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Figure 2.9: Maximum force response versus mistuning lendlengine order excitation
for the multi-stage system for stage(a) with aerodynamic effects and (b)
without aerodynamic effects, and stay) with aerodynamic effects and (d)
without aerodynamic effects.

To better understand the effects of mistuning on structanal aeroelastic systems,
amplification factor plots for stageand2 were generated. The results are summarized
in Fig. 2.8 and contain thg9*™® percentile response af)0 mistuning patterns for engine
order excitatior) to 11 and mistuning levels frond% to 5% over the frequency range
2.8 — 3.6 kHz. One hundred separate forced response calculatiorspeeiormed at each
unique mistuning level and engine order excitation comtimna To account for a low
response of the tuned system of a stage at a particular eogiaeexcitation of the multi-

stage system, a modified amplification factor is used. Thidification factor for a system
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structural system-f] and the aeroelastic system [] for engine order ex-
citation.

with a given mistuning level and engine order excitationedirted as the maximum re-
sponse of the mistuned systems plus the maximum tuned respanoss all engine order
excitations divided by the tuned response (at the parti@ngine order excitation) plus

the maximum tuned response across all engine order ercitatiThis definition avoids

confusion which appear when the response is very low atqodaiti engine order exci-

tations. The corresponding maximum forced response fostitugtural and aeroelastic
systems are shown in Fig. 2.9. The key physical insight thathe gained from Figs. 2.8
and 2.9 is that multi-stage effects affect the mistunedaesg, and this should be consid-
ered because it can lead to very different amplificationci@ctompared to single-stage
calculations.

An interesting point in both the structural and the aerd®laystems is that for en-
gine order0 excitation in stage the amplification factor is below one. This is due to
multi-stage interactions where the mistuning effects araliined with the interstage cou-
pling effects, and energy is transferred from stage stagel. Also, the response for the
aeroelastic system is lower than the structural system pscéed due to the additional

damping. Moreover, the amplification factor of the aeraatas/stem is lower than that of
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the structural system. This can be explained by the factrtistuning tends to equalize
damping across the modes, as was shown in Fig. 2.5(b), thugsiteg the response of the
mistuned systems. Additionally, when studying stagtgs clear that the topology of both
the response and amplification factor plots are differenttfe structural and aeroelastic
systems. This occurs because of the aeroelastic dampingh wan cause systems with
different mistuning patterns to have a larger response.xptoee this, a forced response
comparison is done at engine order excitattomth a5% standard deviation of mistuning
for the maximum response for both the aeroelastic and stralcdystem. The results are
plotted in Fig. 2.10. Note that a different mistuning pattierads to the maximum response

in the structural system versus the aeroelastic system.

2.4 Conclusions

A new approach to construct multi-stage reduced order rsdéR€DMs) with aerody-
namic effects was presented. The method can efficiently atenmany realizations of
the structural portion of the system for many different mmshg patterns. The method
requires only single sector models of each stage, and usks symmetry analysis, com-
ponent mode mistuning, and a projection of the interstages#s of freedom onto a set of
harmonic basis functions. The aerodynamics are then iadludthe model by computing
the complex aerodynamic matrix for the system. In genersiddin be done with a variety
of techniques. In this work, the complex aerodynamic mesriwere calculated separately
for each tuned stage using an inviscid, irrotational andtisgic flow solver based on the
full potential equation. Only a tuned analysis of the flow éz@ssary because a new ap-
proximation of the complex aerodynamic matrices for mistlisystems was developed.
The approximation accounts for the shift in structural éregcies due to mistuning. The

proposed approach is general and can be used when otherdsetigoemployed to com-
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pute the complex aerodynamic matrix. Also, a new classifinanethod was developed
for categorizing complex multi-stage modes. This clasaiioe method first distinguishes
the energy distribution of the modes amongst stages, amddiéiermines the alignment
of the aeroelastic multi-stage modes with single-stageenodue to the fact that the
aeroelastic modes are complex, they are separated intamdamaginary parts forming
a plane in a higher dimensional subspace, and a new methoesisned for determining
the alignment of these planes in a higher dimensional space.

The modeling procedure was carried out for the tuned casenangt mistuned realiza-
tions of a two stage bladed disk. The interactions of stmattand aerodynamic damping,
mistuning and multi-stage structural coupling were iniggged. Several conclusions can
be drawn from this work. First, the construction of mul@&ge systems with aerodynamic
effects is important for both tuned and mistuned systemshttertstand the dynamic re-
sponse and characteristics of these systems. The aerodgnzan have a large impact on
the damping of the multi-stage system, and mistuning tem@sjtialize the aerodynamic
damping over the mode families. Due to the fact that the agraxhic damping can be
of the same order as the structural damping, it can have #isant impact on lowering
the vibrational response of the system. Thus, classificatamd forced responses of the
system must be explored in a probablistic manner to undefdtse true impact of ran-
dom mistuning on aeroelastic systems. Finally, it was shihahmulti-stage modeling is
critical for analysis of both purely structural and aersgtasystems.

The analysis in this work is for a multi-stage structure vitie loads from the aero-
dynamics computed at a stage level. The methodology pesseain be used the same
way when the unsteady flow field accounts for all aerodynamiltiratage effects. Thus,
accounting for the full multi-stage aerodynamics is a congm of future work. The

results presented take into account certain aspects oétbdynamics (although the aero-
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dynamics is not multi-stage). The results are useful bec#usy are a step forward in
increasing the accuracy of multi-stage structural analyasich typically do not account
for aeroelastic effects at all). Future work in this aredudes developing a method for
efficiently computing multi-stage complex aerodynamicncas that couple the upstream

and downstream stages, and experimental validation ofrthlgsis.



CHAPTER III

Detection of Cracks in Mistuned Bladed Disks using
Reduced Order Models and Vibration Data

3.1 Introduction

The vibration analysis of bladed disks in a turbine enginierrcan be conducted easily
if it is assumed that all of their sectors are identical beeazyclic symmetry can be em-
ployed. In reality, however, there are unavoidable sm#iedinces among the structural
properties or geometric characteristics between indalidectors due to manufacturing
tolerances, material deviations, and non-uniform openali wear. These small differ-
ences are commonly referred to as mistuning. Even thoughistening level is typically
small in terms of individual blade properties, this smalstaning can have a considerable
impact on the forced response. Namely, mistuning can calesmabration of vibration to
a few blades, which leads to a drastic increase in the resgmglitude for those blades.
A number of studies have been conducted to investigate thetebf mistuning on bladed
disks [15-17]. Some of the early studies have been basednopeltl parameter mod-
els [18-26]. In general, the effects of mistuning can be tstded qualitatively by these
simple models (in single stage systems) [27—29]. Howeliegd models are only partially
able to predict accurately the vibration characteristidsladed disks [13, 14, 30-32], es-

pecially in multi-stage systems [1].

37
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Vibration localization can be induced not only by mistunimg also by damages to the
bladed disk, such as cracks. Damages can result duringtmperfaom material defects,
and from fatigue. Several investigators have tackled tidmaocalization due to cracks
by assuming that the cracked blade is an Euler-Bernoullnb&aby using a lumped-mass
beam model [33—-38]. In those studies, the nonlinearity @iy the crack opening and
closing was not considered. However, this piece-wise tibeadavior may change the dy-
namic response of the cracked blades significantly [39-Ré&gently, Saitet al. [45, 46]
presented an efficient reduced-order modeling method fetuméd bladed disks with a
cracked blade. They used a hybrid component mode synth@siSY method to obtain
reduced order models (ROMs). To calculate the nonlineaefbresponses, they used a
hybrid frequency/time domain (HFT) method based on the barabalanced method [47]
and fast Fourier transforms. A modal analysis of the fulltomed bladed disk with a
cracked blade was employed to obtain ROMs. Therefore, thgatational costs are sig-
nificant especially when many mistuning patterns have tansidered. This is important
when investigating real mistuned bladed disks becauseiniigj patterns are usually ran-
dom. For efficient projection of blade mistuning, Lethal.[12] developed the component
mode mistuning (CMM) method to generate ROMs for mistunedi®éd disks. In CMM,
the mistuned bladed disk is partitioned into a tuned bladskldbmponent and a virtual
blade mistuning component. The mistuning component is eeéfby the differences be-
tween the mistuned and the tuned blade mass and stiffnessesator the case of small
stiffness-only blade-to-blade variations, the misturidegomes an eigenvalue mistuning,
and can be defined as the difference between the eigenvdlithesmistuned cantilevered
blades and the tuned cantilevered blade.

In this paper, a novel nonlinear vibration analysis meth@d predicts the forced re-

sponse of mistuned bladed disks with a cracked blade ismexteln addition, the mode
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localizations due to mistuning and cracks are examinedaaméthod to detect the pres-
ence of cracks is presented. In this novel method, the nestbtaded disk with a cracked
blade is partitioned into a tuned bladed disk with a crackaddand blade mistuning on
the uncracked blades. A hybrid CMS is used to generate ROMsneid bladed disks

with a cracked blade. The interface degrees of freedom (POR<he crack surfaces
are retained as active DOFs for evaluation of the nonlineantary conditions, while the

other DOFs are condensed using modal analysis. Also, CMkhEa@yed to project blade

mistuning on the modes of the tuned system with a crackecblddnlinear steady-state
response analyses are performed using a HFT method.

This paper is organized as follows. First, the mathematicatulation of the reduced-
order modeling approach is presented. Then, the formulasi@pplied to the vibration
analysis of a mistuned bladed disk with a cracked blade. €kalts are validated by
comparisons with a previous study by Sagébal. [45]. In addition, the distinct mode
localizations across mode families due to mistuning andksrare discussed. Finally, a

novel method to distinguish cracks in mistuned bladed dsksesented.
3.2 Methodology

In this section, the equations of motion for a mistuned kdadisk with a cracked
blade are presented first. Next, the reduced order modelowegure is explained. Then,
a mode localization parameter is introduced. Finally, g#sdual of the normal modes of

a mistuned bladed disk with a cracked blade is introduced.

3.2.1 Equations of Motion

The mistuned bladed disk with a cracked blade is modelediasarlelastic structure,

and the related governing equation is spatially discrdtlzg the finite element method.
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The discretized form of the governing equation can be writte

Mii(t) + Cu(t) + Ku(t) = b(t) + f(u), (3.1)

wherem is the number of DOFs and € R™ is the vector of nodal displacements of a full
order finite element model of the entire mistuned bladed digk a cracked bladeM,

C, K € R™™ are mass, damping, and stiffness matrides; R™ is the external force
vector, and'(u) € R™ is the nonlinear force vector caused by the intermittentacirat the
crack surfaces. The external force acting on each bladeisreesd to be a traveling wave
excitation with a frequency related using the engine order excitationo the rotational

speed of the bladed disk. The forbgt) acting on bladé is expressed as

b,(t) = Bcos(wt — ¢;), i=1,....,N, (3.2)

wherei is the blade numbery is the number of blades, artlis the forcing amplitude
vector (which is the same for all blades). Vecfdhas a size equal to the number of
forced DOFs on a blade. Thus, vecloft) contains all vectord,(t) and also zeroes
(corresponding to the DOFs which are not forced). The angis the interblade phase

angle, defined ag; = (i — 1)27C//N.
3.2.2 Reduced-Order Modeling

Typically, finite element models (FEMs) of complex struesiisuch as bladed disk
assemblies have many DOFs. In this paper, such an FEM is gathés the starting point
in constructing ROMs for a mistuned bladed disk with a crdckiade. The model is
partitioned into a tuned bladed disk component with a crdékade and a blade mistuning
component. To combine the tuned system and mistuning coempena hybrid CMS
is employed. The tuned system is treated as a free-intedfangonent, whereas the

mistuning component is treated as a fixed-interface comgonEor the tuned system
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component, free-interface normal modes, attachment maaes constraint modes are
employed. Because the tuned system component is a freéatgeomponent, the normal
modes are simply the modes of the tuned bladed disk with &eddnlade. The attachment
modes are obtained by applying a unit force to each interffx0& successively. The
constraint modes are obtained by enforcing a unit displacgiet each interface DOF on
the crack surfaces.

The constraint modes are needed to account for the disptatesne to intermittent
contacts between the crack surfaces. Since cracks aréezkxtan (the blades of) some
sectors, one can assume that the other sectors (which hexacked blades) are not af-
fected by the enforced unit displacements at the interfad&$on the crack surfaces.
Therefore, the partitions in the constraint modes for theracked blades and disk are
assumed to be zero.

Let the vector of nodal displacement$ of the tuned bladed disk with a cracked blade
be partitioned into cracked blade interior DOFs (except BOF the crack surfaces)’,
uncracked blade DOFs;, disk DOFsuj, and crack surface DORsS. To represent
u’, a truncated set of normal mod®s$, a complete set of attachment modi$, and
constraint mode®@“ are employed. In the following, the matric®s, ¥°, and¥“ are
each partitioned into four components: (1) one componemiaas all the cracked blade
interior DOFs (indicated by subscript (2) one component contains all the uncracked
blade DOFs (indicated by subscrif)t (3) one component contains all the disk DOFs
(indicated by subscript), (4) and one component contains all the DOFs on the crack

surfaces (indicated by subscri)t By denoting the coordinates of the truncated set of
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normal modes and attachment modep?andpi respectivelyn® can be represented as

u -
pS
uy ~S S ’
u’ = = [cb o } pS |- (3:3)
S
uC
u L
; o
s |9 & | | a4
A T
0 0

whered. = & — ¥°8°, and¥’ = w5 — WOUS. By using this projection, the reduced

mass and stiffness matrices can be obtained as follows

" Mss® 8" Mse’ 8”7 M

pf = v mse® T vt T msee | (3.5)
vMSe” v MSET WO MSEC
57 k50° 6k 87 KSwC |
R G R A Y A A S (3.6)
K% WK wCKSEC

It should be noted thab” M5®° £ 1 andé’ K53° -+ A® due to the presence of the
projection matrix modeling the crack surfa@,}% into the projection matrix modeling the
motion of the DOFs on the interior of the cracked blétfe

The synthesis of the tuned system and mistuning comporeathieved by satisfying
displacement compatibility at the component interface, i1, = u’, where§ denotes
mistuning. One obtains

®,p; + ¥,p) = pl, (3.7)



43

Py

P

p), = [cpf A } (3.8)

Therefore, the reduced mass and stiffness matrices for isteimmng component can be

written as

T
u5={q>f \pf} M‘;{@f \Iz;?]

(3.9)
&7 MBS @) MWD
MR W MO
T
ﬂ5=[<1>5 \I’S} K‘S[@? ws}
(3.10)

&0 K@ @) KU

UK®S UKW
Now, if small blade mistuning is considered, the attachnmaamie\ils can be ignored be-
cause, when a tuned bladed disk has normal modes closelgdspaa frequency range,
a slightly mistuned bladed disk also features closely sppawedes in the same range.
Moreover, the mistuned normal modes can be expressed usuigsat of the tuned nor-
mal modes. This means that the tuned normal modes outside dfequency range of
interest (or any static modes) can be ignored in modelingsaumed system with small
mistuning [12]. Thus, the reduced mass and stiffness nesto€the tuned system and the

mistuned components can be written as

) & M3 & MSwC
W= , (3.11)

v MS®T  wC MSwC

) 3 K5%" & KSuC
kS = . , (3.12)

VOKS®T  wOKSWC
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5 MBS 0
w=| " , (3.13)
0 0

&0 K@ 0
K = . (3.14)
0 0

Hence, the synthesized mass and stiffness matrices arelgve

&° Mo”5 e 8”7 MoUC
Y = s N , (3.15)
UC MSP vC MISw©

~ ST ~ . qT
&° K% 1 oS K'®S & KU
K" = : (3.16)
v KS®” O KSUC
By using CMM [12], the synthesized mass and stiffness medrare written as follows

S
p
pn = | ¢ (3.17)

S
u,

8" Md® & MsuC
pern = . , (3.18)
VO MSPT WO MSwC

~ ST SA S ~ ST Sup, C
® K°® + KoM ® K-V
K" = : (3.19)
v KS®” O KSEC
wherescy = 00, a; ndiagrer(ASP — AP)a, . 0., is @ matrix containing the modal
participation factors of the cantilevered blade modes tinéo:'" blade portions of modes
@7, )\fff is thert" eigenvalue of the mistuned cantilevered blade (CB) nornwderfor
then' blade A7 is ther'" eigenvalue of a tuned CB normal modsis the blade number,
andR is the number of CB normal modes used.

One of the important advantages of the proposed modelingbaphp is revealed by

Eq. (3.19). When many mistuning patterns have to be coreildemly s\ needs to
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be re-computed (because on’lﬁf depends on the mistuning pattern). Therefore, the
proposed methodology can significantly reduce the comiputatcost needed to obtain

ROMSs of mistuned bladed disks (compared to previous metbgas [45]).

3.2.3 Mode Localization Parameter

To investigate the differences between mode localizatitugsto mistuning and those

due to cracks, a mode localization paramétean be defined as

o
= H - HQ, (3.20)
| @ |,

wheren is the blade numbey, is the mode numbek; is the mode family®” is theit

system mode in the™™ mode family. Thus®}. ; is then'® blade partition of®;.

3.2.4 System Mode Residuals for Mistuned Bladed Disks with @racked Blade

Saitoet al.[45] showed that cracks may lead to nonlinear behavior wbarhbe stud-
ied using nonlinear forced response calculations. Thegsitigated the forced responses
of a mistuned bladed disk with a cracked blade using a naalicracked blade model [54],
and showed that the resonant peaks associated with theedratdde are essentially non-
linear for the10*" mode family (in terms of both the amplitude of vibration ahé peak
frequency). They suggested that localization due to cratkg be distinguishable from
localization due to mistuning because localization at ttaeked blade was observed to
occur for various mode families. However, that observatitmme is not sufficient to es-
tablish a metric for differentiating localization due tostuining from localization due to a
crack.

The key idea proposed here is to show that mode shapes of shenad bladed disk
with a crack cannot be represented as a linear combinatiomoole shapes of the mis-

tuned bladed disk without a crack. A metric is proposed tongjfiathis lack of linear
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dependence. This metric is in essence the relative resathtained when assuming that
a set of coefficients can be used to form a linear combinationaules of the uncracked
bladed disk to represent modes of the system with a crackeSire mistuned modes of
a bladed disk without a crack are a linear combination of timed modes of the same
bladed disk, we investigate two types of residuals: ressdobtained based on normal
modes of a mistuned bladed disk with no cracks, and resididitgsned based on normal
modes of a tuned bladed disk. The practical reason for theséypes of analysis is that
we consider that one does not know the exact mistuning whematiempts to detect a

crack. However, the tuned mode shapes are known, and cartdansrack detection.

Residuals for Mistuned Bladed Disks with a Cracked Blade Reltive to Normal Modes
of Mistuned Bladed Disks with No Cracks

To show that cracks are distinguishable from mistuningdteds for the normal modes
of the mistuned bladed disk with a cracked blade are cakdleglative to the normal
modes of the corresponding mistuned bladed disk with noksrad’he goal is to use
guantities which can be obtained by tip timing [55] in an ergduring operation. Tip
timing is a non-contacting measurement method which usésabgprobes. It can be
used to measure the vibration displacements and frequseeotevery blade on a rotating
bladed disk. For tip timing, few DOFs are selected on eactiehligp. Each of these DOFs
corresponds to one optical probe (mounted in the early)e Nt as few as just one DOF
per blade can be used in the tip DOF partition. Next, one coctst two key vectors:
®¢,; and®y, ,, where®f,, ; is the tip DOF partition of thé'® normal mode in thé:*
mode family of the mistuned bladed disk with a cracked blaxﬂmi(l){fw is the tip DOF
partition of theit" normal mode in thé&'™ mode family of the mistuned bladed disk with

=k =k
no cracks. These components of the normal modes are useddvwt®~,, and®,, as
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follows: ) )
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~k oF
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whereN is the number of blades (which is equal to the number of mau#dseit*™® mode
family).

The residual is defined as®,.,, — &y, ||,. Note that this residual is a scalar number
between zero an?l becaus@_@éM and@i1 are unit vectors. Next, we focus on differentiat-
ing cracks from mistuning using this residual. First, ong/msk the question: is the crack
just as mistuning? That is, can a crack on a mistuned bladddnadth a given mistuning
pattern lead to a vect@éM which has the same shape as the ve@tfqrobtained for a
bladed disk with no cracks, but with some other level of ristg in the cracked blade?
To answer this question, the mistuning in the bladed disk witracked blade is fixed.
Also, for clarity blade 1 is considered to be the cracked élathen, the mistuning pat-
tern of the mistuned bladed disk with no cracks is fixed fob&des except for blade 1.
The mistuning level of blade 1 is varied. Surely, the resliq{\@]éM - 5& |, will change
depending on the mistuning level in blade 1. If there doesrist any mistuning level in

blade 1 at which| EléM - 5& ||, becomes zero or very small (much smaller than 2), then
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one can conclude that a crack is not similar to a change irumirgg level in the cracked

blade.

Residuals for Mistuned Bladed Disks with a Cracked Blade Reltive to Normal Modes
of Tuned Bladed Disks

In general, mistuning levels vary randomly from blade tadelaand are not known in
an operating engine. Thus, one may ask the question: carclaiora bladed disk with a
given mistuning pattern lead to vibrations which are venyikir to those caused by some
other mistuning pattern in the bladed disk with no cracks3hiaw that the normal modes
of a mistuned bladed disk with a cracked blade cannot be septed by normal modes
of a mistuned bladed disk with no cracks, all mistuning Is\&iould be considered. It
is already known that the normal modes of a mistuned bladgd (@ith no cracks) can
be represented by normal modes of a tuned bladed disk. Thereéf the normal modes
of a mistuned bladed disk with a cracked blade cannot be septed by normal modes
of a tuned bladed disk, it follows that the normal modes of stumed bladed disk with a
cracked blade cannot be represented by normal modes of an@dsbladed diskor any
mistuning pattern To show that this is the case, two residuRlg; cyv and Rg v are

introduced as follows:

k k
|| QCM,’L' - (DquéM,i ||2

Reaom,i = ) (3.23)
| ®Enni |,
| @5 — ®haly |l
Rraim,i = M Z T, = (3.24)
| @nrs

wheres is the mode numbe@’éMvi is the tip DOF partition of thé'® normal mode in the
k™ mode family of the mistuned bladed disk with a cracked blddigﬂ is the tip DOF
partition of thei'* normal mode in thé&'™ mode family of the mistuned bladed disk with
no cracks, and)’% is the tip DOF partition of a set of normal modes in #fiemode family

of the tuned bladed disk. Coefficienis,, ; andqy, ; are calculated as the solutions to two
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Figure 3.1: Finite element model of the bladed disk

minimization problems. Specificallyy:,, ; is the solutionx of min,| <I>'§;M7i —dhx I,
andqf; , is the solutiony of min,|| ®y,, — ®%y ||,. Finally, one may note that cracks
are distinguishable from mistuning for cases where thelvesR ., cv IS (Statistically)

larger thanR g u-

3.3 Analysis of a Mistuned Bladed Disk with a Cracked Blade

In this section, the forced response of a mistuned bladddvdit a cracked blade is
investigated using the proposed methodology. It is obsktivat the mode localizations
due to the crack and due to mistuning are distinct across riamiées. Also, it is shown
that the crack is distinguishable from mistuning by thedeals of the normal modes of
the bladed disk with a cracked blade relative to the normadescof the tuned bladed
disk. Furthermore, it is shown that the cracked blade isaietde (statistically). The
model used in this study is that of a bladed disk with 20 bladeshown in Fig. 3.1. The

key geometric characteristics are provided in Tab. 3.1s blisk model has been used in
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Table 3.1: Key geometric characteristics of the bladed disk

Outer diameter 914.99 mm

Blade span 108.43 mm

Blade chord attip  33.67 mm

Blade chord at root 64.82 mm

Blade twist at tip 60

Blade twist at root 30

the past for mistuning and crack calculations [45]. It is adeddhat is academic, but it
is also representative of actual blisk dynamics. A crack©b% chord was considered
on the leading edge of blade 1 at 50% span from the root of thdebl The material
of the bladed disk is Titanium alloy with Young’s modulds= 114 GPa, densityp =
4,420 kg/m?, and Poisson’s ratic = 0.31. The full order model ha81, 878 DOFs.
The damping is modeled as Rayleigh damping (without massexr@intribution),C =
BK, whereg is a scalar (with a constant value in each frequency rangetefast:5 =
8.376576 x 1077 for the 15 mode family,3 = 2.094144 x 10~7 for the2"! mode family,
andj3 = 2.783646 x 1078 for the 10** mode family). For the generation of the ROMs, 12
nodes for both sides of the crack surfaces were kept as &fves, and 20 normal modes
were used to model the remainder of the bladed disk. ThetmregiROMs have 56 DOFs.
The commercial software ANSYS was used to obtain mass afidests matrices, and
mode shapes. These were then imported in Matlab and usedgtenrant the proposed
CMS-based method. The nonlinear forced response was asdulsing an in-house code
based on the HFT method. That code was used in the past, gretfitsmance has been

validated [45, 54].
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Engine order excitation 2 was applied to obtain forced rasps. This choice of engine
order challenges the ROMs more than other engine ordersubedtis likely exciting
modes in veering regions.

Blade mistuning is applied by altering the Young’s modulfishe »** blade by the
following relationship

E, = (1+ 06,)E,, (3.25)

where I, is the nominal Young's modulus; is the standard deviation of the mistuning
pattern, and, is the mistuning im*® blade. The mistuning pattefhhas zero mean and
standard deviation df.

The nonlinear analysis framework is as follows. A ROM is damsed using the
hybrid CMS method and the CMM method for a bladed disk with gtaming pattern
given by Eg. (3.25). The HFT method is then used to obtain tméimear forced response.
Finally, the nonlinear forced response is used to detecptbsence of a crack and the

blade where the crack is located.

3.3.1 \Validation of Forced Responses

The nonlinear forced response was calculated using the H&Rod [45, 54]. The
HFT method has been numerically validated already by coisgas with direct time inte-
gration. That has been done for both simple and more comp#gss. For example, the
HFT method has been validated numerically for ROMs of a tardred cracked beam by
comparisons with direct time integration [54]. The validatof the proposed method to
construct ROMs is performed by comparing the predictionthefproposed ROMs with
other validated numerical results. Those validated resaré presented in a previous
study [54] and they come from 2 sources: full-order cal¢atet; and calculations based

on another type of ROMs. Thus, for the purpose of validatitba,nonlinear forced re-
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sponse obtained based on the proposed method is companatidda previous study [45]
in Fig. 3.2. The nonlinear forced response obtained fronptbposed ROM matches the
results of previous calculations with a 0.034% averager émrthe frequency range of in-
terest. In addition, several values for the penalty coeificand the number of harmonics
have been considered for the HFT method applied to the dustady. The converged
values obtained were the same as in a previous study 45} 1.0 x 10° N/mm and
harmonics 0-9. Increasing the number of harmonics or thalpeoaoefficient further did
not noticeably change the results.

In Fig. 3.3, linear and nonlinear responses based on the@pedpmethod are presented.
It is observed that nonlinearities have an important effiecthat the resonant peaks pre-
dicted by the nonlinear forced response are different fioeones predicted by the linear
forced response, and the presence of a crack causes a shéiftresonant peaks associated
with the cracked blade. This indicates that nonlinearitiessed by the crack are impor-
tant and are mostly localized to the cracked blade. Furtbexnthe results in Figs. 3.2
and 3.3 show that the amplitude at the resonant peaks oftloéttie cracked blade in the

nonlinear forced response is reduced compared to that imtea forced response.

3.3.2 Mode Localization due to Mistuning and Cracks Across Mde Families

The mode localization parametkrwas calculated by using Eq. (3.20) for the follow-
ing cases: 1) a mistuned bladed disk with a cracked bladep#$taned bladed disk with
no cracks, and 3) a bladed disk with a cracked blade and nammsg (which we will refer
to as a tuned bladed disk with a cracked blade). Two diffeldade mistuning patterns
were employed for case 1 and case 2. The mode IocalizatitmnMerL’fvl— was inves-
tigated (for blade 1) across mode families. As can be seel'rgirBF4(a),L’f,i for the 15

mode family in case 1 and case 3 are localized at mode numbdnidh is the cracked
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blade dominant mode, regardless of the mistuning pattehis fode localization (due

to a crack) also appears in the&! mode family, as can be seen in Fig. 3.5. These results
indicate that cracks lead to mode localization across manelies at the cracked blade
for all modes dominated by the cracked blade. In contrasgliations due to mistuning
appear on different blades depending on the mistuningrpatis can be seen in Figs. 3.4

and 3.5

3.3.3 Distinction between Cracks and Mistuning

To be able to detect the presence of cracks in mistuned btidks, and to distinguish
cracks from mistuning, one may use the normal modes of theunad bladed disk with
a cracked blade, and the residuals defined in the previotisse€his approach is based
on linear analyses, so it is valid only when the nonlineaea# of the crack opening and
closing are negligible.

The residual| 52M — 5& ||, was calculated by using a single DOF on each blade tip
for the 1%, 274, and10*® mode families while altering the mistuning levgl of blade 1

in the mistuned bladed disk with no cracks. In Fig. 3.6, thezomtal axis isé; and the
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vertical axis is the residud| EZM - 5& |,. As seen in Fig. 3.6(a), when is 1% and

9, is -2.5%, the residuals for thig* and2”? mode families are close to zero. This result
is also obtained whea is 4%. In Fig. 3.6(b), whed, is -0.5%, the residual for thz"!
mode family is almost zero. These results show that cracksair distinguishable from
mistuning if one only uses th&! and 2" mode families. That is because the residual
| Bey, — Doy |, can be small for these families. In contrast, the residumigHe 10
mode family are not zero for any mistuning levgl in blade 1. Therefore, it can be
concluded that cracks may be detectable using the res]i\dﬁléh - 5];1 |, when using
the 10" mode family.

However, these results are valid only when the mistuningl$esf other blades (2...20)
are known. Thus, these results are just the starting peidtpaust be complemented by an
analysis which considers various mistuning patterns. &hatysis can be done by using
the residual®s,n,cn andRe v in Eq. (3.23) and Eq. (3.24). Matricdg’,, ;, @}, ;, and

®% were constructed fok=1, 2, 10. Distinct from the calculation dpr@léM ~ 3,

90
two DOFs were used on each blade tip. The resulting ve®arscy and Ry, v Were
calculated for the®t, 2", and10** mode families. The matri®”. was obtained for each
mode family. The matrice® . and®3. contained 20 normal modes of the tuned bladed
disk, while @} contained 30 modes. As can be seen in Fig. 3.7, the residtige o
mistuned bladed disk with a cradks,;; o are larger than those of the mistuned bladed
disk with no cracksR;.u (note the scale of0~2 in the vertical axis) even for the0™
mode family wheno = 1%. This result indicates that cracks are distinguish&iolm
mistuning by comparin® . cm and R when the mistuning is small. In contrast,
wheno = 4%, it appears thad, o and Ry, v are of the same ordet ') at certain
modes, as seen in Fig. 3.8. This is becab$aloes not represent well neith@@w nor

k
(I>M,i'
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Figure 3.9: Residual®,;,cn and Ry v for the 10" mode family; the residuals are
sorted in increasing order

Hence, to distinguish cracks from mistuning for larger mmigtg, ®¢,; and @7,
were recalculated for the)** mode family by using 9 DOFs on each blade tip. Also, 78
normal modes of the tuned bladed disk were included fhinstead of just 30. These 78
modes were selected by frequency. The residRals cn and R were recalculated
using Eqg. (3.23) and Eq. (3.24). The results obtained argepted in Fig. 3.9, where the
residuals were sorted in increasing order. These reswts 8fatR,; ¢\ is greater than
Ry M for the selected modes. Especially, it can be notedBhgt oy is clearly distinct
from R fOor modes 17-20. Therefore, one can conclude that crackdistieguishable

from mistuning even for larger mistuning.

3.3.4 Cracked Blade Location

To detect which of the blades is cracked, a third (and lasiplt&@l R, cq c\ IS intro-

duced as follows

k k
| ‘DCM,i,n - (I)qué‘M,i,n ||2

Ricd.oM,in = , (3.26)

I ®ntin I,

where: is the mode number, is the blade number; is the mode family, and)’éMvivn IS

obtained by excluding the partition of thé" blade fromd)'éMvi. The matrix®?, is the tip
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Figure 3.12: Maximum residuaR,.q oy (over all modes in the0*™ mode family) for all
blades; 10 realizations of 1% measurement noise were useanaximum
value obtained foRy,; v over all modes in thé0™ mode family is showed
on the left of blade 1 (and is marked as T on the horizontal axis

DOF partition of a set of the normal modes in thi&¢ mode family of the tuned bladed
disk (as in the previous sections). The coefficient veqtqy, ; , is the solutionz of the
minimization problemmin,|| ®¢y;;,, — ®7z ||,

The residualR¢ cm and R,.q.cm Were calculated using Eqg. (3.23) and Eq. (3.26).
Next, the maximum value dR.;; cn over all modes in the0™ mode family was plotted
in Fig. 3.10 together with the maximum valuesRf.q c\ obtained separately for each
blade (over all the modes in thé'® mode family). One may note that the maximum value
of the residuaR,.q o Obtained for blade 1 is smallest, which indicates that biaaftects
R o More significantly than any other blade. Namely, the difieesbetweelR s, om
andR..q,cm is mainly induced by blade 1. Therefore, it can be inferred btade 1 is the
cracked blade.

To apply the proposed method for detection of a cracked bfadeal bladed disks, it
is required to measure the motion of points on the tip of thelés$ using tip timing. These
measurements are likely corrupted by measurement noigavastigate the effects of the

measurement noise, 1% measurement noise (random noise witiform distribution)
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Figure 3.13: Nonlinear forced response of the mistuneddalatiisk with a cracked blade

was applied tod¢}, ;. Then, Ruucom and R.eqcm Were recalculated using Eqg. (3.23)

and Eq. (3.26). As seen in Fig. 3.11, even in the presence asunement noise, the

maximum value of the residull,.q o\ Obtained for blade 1 is the lowest.

To conduct a statistical study with respect to the measunenmase, 10 different re-

alizations of 1% measurement noise were employed. In Fig, ox plots for the max-

imum residuals oR ¢ cv @ndR,eq o across blades are presented. The box plotted on

the left of blade 1 and marked as T on the horizontal axis iRf@# cv. For bothRy om

and R,.q.cum, the maximum values over all modes in th@" mode family are used in

the statistical calculation. Note that the box in the plarspbetween values af one

standard deviation from the mean. The dashes inside eacimbimates median value.

The dashed lines mark the range from the minimum to the maxivalues. As shown

in Fig. 3.12, blade 1 is notably distinct from all other (usacked) blades. Therefore, it can

be concluded statistically that blade 1 has a crack.
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Figure 3.14: Maximum residualR,.q cm With 1% and 10% measurement noise using
nonlinear forced response data for 10 realizations of nreasent noise: (a)
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3.3.5 Nonlinearity due to Cracks

In the previous sections, normal modes of mistuned bladaddvith a cracked blade
were obtained without considering the nonlinearity duehtdrack opening and closing.
However, the nonlinearity can change the forced responisbkded disks in terms of
both the amplitude of vibration and the peak frequency. &loee, the nonlinearity due to
the crack has to be considered. In Fig. 3.13, the nonlingaeforesponse of a mistuned
bladed disk with a cracked blade was calculated using eruyaher excitation 2 for a mis-
tuning pattern with a standard deviatienof 4%. One resonant frequency (denoted by
superscripty) associated with the maximum amplitude of vibration of thecked blade
was selected. Next, a vect@%M,i was computed for the dynamic response at this fre-
guency. Distinct from the linear analysis in the previoustisens,(b%M,i was obtained
from the computed time history of the nonlinear vibrationstinct from Eq. (3.26), here
the mode shape information was replaced by displacemeorhiation gathered from the

nonlinear (harmonic balance) HFT solution. The displacgnr&@ormation for each se-
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Figure 3.15: Forcing points used for traveling wave exmtat
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Figure 3.16: ResidualR..q cv for modeg for 10 realizations of measurement noise us-

ing nonlinear forced responses computed using differentrfg points: (a)
Forcing applied at point 4, (b) Forcing applied at point 6
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lected DOF on the tip of the blade was collected at steadg gtainlinear resonance)
conditions. One DOF on the tip of one blade is chosen as argfer(e.g., blade 1). Next,
the displacements of a few other selected DOFs on the tipalf Bade are collected at
the instances (in time) when the displacement at the refer&OF is at its maximum
value. These time instances are selected because the snadst likely open when the
displacement of the reference DOF on the tip of the crackadebis the largest.

To reduce the measurement cost, only 6 DOFs were selectealcbrbéade tip. One
of the 6 DOFs on blade 1 was chosen as reference. ResiRuyalsy were calculated
for 1% and 10% measurement noise using Eq. (3.26) for 10 meaeations. As can
be seen in Fig. 3.14, even for 10% measurement ndlsg,cv for the cracked blade is
statistically distinct from other blades.

To investigate the influence of the forcing point, severaltation points were selected
(on each blade) as shown in Fig. 3.15. The forcing considierstill an engine order ex-
citation. In Fig. 3.16, the results for forcing points 4 andiéh an engine order excitation
2 are presented. These results show Baj o\ for the cracked blade is distinct from all
other blades regardless of the forcing point even for 10%soreanent noise. Thus, the
cracked blade can be detected successfully using the prdposthodology even when

the nonlinearity due to the crack is considerable.

3.4 Conclusions

An efficient and novel methodology to investigate the nagdinforced response of
mistuned bladed disks with a cracked blade was develop€itiedet ROMs were con-
structed from hybrid CMS and CMM. The forced response of umist bladed disks with
a cracked blade was obtained by using the proposed modelsamtidear time integra-

tion. The results were compared to those of a previous mddjd It was shown that
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blade mistuning can be projected efficiently to reduce themgdational cost. This is an
advantage which plays an important role when the calculaifeystem normal modes of
a mistuned bladed disk is needed for many mistuning patterns

Furthermore, a novel methodology to detect the presenceraf& in mistuned bladed
disks was presented. By investigating mode localizatiarestd cracks and mistuning, it
was first shown that cracks lead to a mode localization wisdtifferent from localiza-
tions due to mistuning. Then, it was observed that mode shafihe cracked structure are
not a linear combination of tuned system modes. This observavas used for damage
detection. Since mode shapes of the healthy mistuned btisledre a linear combination
of tuned mode shapes, the observation allows for the firg tondifferentiate the effects
of cracks from the effects of mistuning. Based on this resiét proposed method is then
able to detect the presence of damage by using tip timingahdygeven in the presence of
nonlinearities caused by the crack opening and closings iSlaccomplished by using the
residuals defined in Egs. (23) and (24). These residuals eayjathered through experi-
mental measurements and are novel means for damage detddtey prove to be the key
for identifying the presence of damage and even more imptbyiastatistically detecting

the blade where the damage is present even in the presen@asfirement noise.



CHAPTER IV

Bilinear Amplitude Approximation for Piecewise-Linear
Oscillators

4.1 Introduction

Recently, the interest in monitoring the vibration of dyneah systems has been in-
creasing. For example, large and complex air and spacdwstegdnclude vibration mon-
itoring systems to forecast sudden failures. Such vibmationitoring is used to diagnose
structural health by analyzing vibration characterisgzsch as frequency and amplitude).
Among the vibration characteristics used, the vibratiopktode is especially important
because it can directly affect stresses and thus the lifeso$ystem.

Finite element (FE) models are often used to analyze vidoratinaracteristics. For low
dimensional systems, full FE models can be used. For higkmkimnal systems, the com-
putational cost of analyzing full FE models can often be oitlke. To circumvent this
difficulty, many methods for creating reduced-order mo@{SMs) have been developed
for various systems [1, 13, 14,17, 30, 32, 84-91], with th¢onitgt being focused on lin-
ear systems. ROMs for linear systems can be efficiently oactsd by using approaches
based on linear transformations [92, 93] such as componederynthesis (CMS) [51].
However, constructing ROMs for systems with piecewisedinnonlinearity (caused for

example by intermittent contact) require careful treattnérccurate ROMs can be con-

66
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structed for such systems using linear transformationsg9{ or using nonlinear normal
modes [98-100]. Recently, Saito et al. [41] developed agediwrder modeling method
based on bilinear modes (BLMs) for dynamical systems witdc@iwise-linear nonlin-
earity. They observed that the space spanned by the moshdotproper orthogonal
modes (POMSs) of a system is also spanned by a set of linearahanodes for the system
with special boundary conditions at the surface where ttegnmttent contact takes place.
These special modes were referred to as BLMs. Hence, thedowshant POMs are well
approximated by linear combinations of BLMs. The ROMs bamedLMs were shown
to be accurate and have a low dimension. Nonetheless, firegibe vibration amplitude
requires the calculation of the nonlinear forced respon#eesoROMs. One way to obtain
the nonlinear forced responses is direct numerical calomla(e.g., by using a variable
step Runge-Kutta method), which incurs a large computatioost despite the fact that
the ROMs are low dimensional. Therefore, to obtain the anmbdi of vibration at res-
onant frequencies, nonlinear forced responses need tolddatad using more efficient
numerical methods (e.g., hybrid frequency/time domairhoes) [39, 45, 46,54, 101].

In this paper, a novel technique to approximate the vibnagimplitude at the resonant
frequencies of dynamical systems with piecewise-lineanlinearity is proposed. Here,
it is assumed that the forcing applied to the system is haiereomd the response of the
system is periodic. Thus, quasi-periodic or chaotic dymanaire not considered. The
proposed technique is referred to as bilinear amplitudecequpation (BAA). BAA con-
structs approximations for the periodic steady-statearesp of the system at resonant
frequencies. For example, consider that a structure haack evhich opens and closes
during each vibration cycle. BAA uses linear modes (sintteBLMs) from two different
systems: one with an open crack and the other where theralisgsht the crack sur-

faces. By doing so, BAA does not require the numerical irgggn of nonlinear ROMs to
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calculate the vibration amplitude at resonant frequend@@mnsequently, large savings in
computational costs are obtained.

In the following, BAA is introduced. Next, the applicatiohl®BAA to a single-degree-
of-freedom system is demonstrated. After that, a more gérgplication of BAA is
demonstrated for a three-degree-of-freedom example., Tasults comparing numerical
solutions from a nonlinear analysis and results obtain@tyuBAA for a full blisk with a

crack are presented. Finally, conclusions are presented.

4.2 Methodology

In this section, BAA is introduced. Consider an elasticaure which undergoes in-
termittent contact (leading to piecewise-linear nonlittga During each vibration cycle,
the structure has three different states: (1) fully opem,(no contact), (2) fully sliding
(i.e., complete contact), and (3) partially open (i.e.fiphcontact between the contacting
surfaces). The goal of BAA is to find the steady-state amgditof vibration of the system

when excited by harmonic forcing under the following asstioms:
(a) state (3) (partially open) lasts a much shorter timervialehan states (1) and (2),
(b) the motion of the structure is periodic,

(c) during each vibration cycle there is only one time in&rwhen the system is in
state (1) and only one time interval when the system is ireg@¥ thus, one entire

vibration cycle is approximated by states (1) and (2),

(d) the motion in states (1) and (2) lies in the space spanypedié®v dominant modes of
the structure open at the contact surfaces and a few donmmagies of the structure

with sliding at the contact surfaces.
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-\ State (1) t
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Period, T '

Figure 4.1: One steady-state vibration cycle

Assumption () is in fact exactly satisfied when the gap atcthrgacting surfaces is
zero for the structure with zero internal stresses [41, #6 motion of one steady-state
vibration cycle for one of the degrees-of-freedom (DOFsbhefsystem is schematically
shown in Fig. 4.1. The total periddl of the periodic response is broken into the tiif}e
that the system spends in state (1), and the fipthat the system spends in state (2). The
fraction of the entire period’ that the system is in state (2) fs= 7,/T.

Consider a multi-DOF system. The exact equations which gotee motion in state
(1) and in state (2) can be expressed as

M, X, (t) + Cox,(t) + Kox,(t) = F(t),
(4.1)
M, %,(t) + Coxs(t) + Koxs(t) = F(2),
where the subscripi refers to state (1), the subscriptefers to state (2)M, and M,
are the mass matrice€,, andC, are the damping matriceK, andK, are the stiffness
matrices, and" is a periodic external force with frequency The mode shapes which
dominate the motion of the structure in states (1) and (2)gapeiped in matrice%,,

and®,. These matrices can be computed using the open and slidieg amal stiffness
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Figure 4.2: Transformation from physical space to overilaggpace using’,

matrices.

During the vibration cycle, the system transitions fromes{d) to state (2) and vice
versa. At the moment of transition, compatibility conditsoin terms of displacement
and velocity should be satisfied. However, the space spabydde open modes and
the space spanned by the sliding modes are not perfectlyealigue to the difference in
boundary conditions at the contact surfaces. Thus, to aggptypatibility conditions, one
needs to consider the overlapping space between the opee apd the sliding space.
This overlapping space is characterized by a set of bastengegrouped in a matrip.
To obtain®, one can construct a matrix composeddaf and ®, first. Then, using a
singular value decomposition (SVD), the left singular westcorresponding to large (one
or two) singular values are selected. These singular eet@ used as basis vectors for
the overlapping space.

As shown in Fig. 4.2, physical motions (spanned by open addaglmodes respec-

tively) and forces can be transformed to the overlappingesdausing an operator,,
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which is defined a¥", = ®(®"®)~'®T. These transformations are needed because the
motion along the overlapping space is allowed to grow (dsfig@t resonance), while the
rest of the motion is lost at the impact which takes place ¢éaoh the system transitions
from open to sliding and vice versa. This impact can be vieagedn elastic impact in the
space spanned iy and as a plastic impact in the remaining space. The energyebahd
after the impact are distinct because the plastic comparfehe impact leads to energy
loss. The linear and angular momentum of the system are &toal before and after
the impact because of the impulse forces which act at the (fiked) boundaries of the
system. The linear and angular momentum are thus consenfgdnothe overlapping
spaced.

Using modal transformations, = ®,q, andx, = ®,q,, whereq,, andq, are modal

coordinates, Eg. (4.1) can be projected aldngand®, to obtain

®'M,®,4, + ®'C,®,4, + 'K, P,q, = P'F(t),

(4.2)
&M, P.q, + ®IC,P.q, + PIK,P.q, = PIF(1).
If the damping is proportional, then Eq. (4.2) can be reemiths
q.o,i + 2Co,iwo,ic_io,i + wiiQo,i = fo,iv 1= 17 ceey Mo,y
(4.3)

. . 9 . .
s.j + 2Cs jWs jGsj + W5 955 = fsjr T =1,.,ns,

wheren, andn, are the number of modes used to expand the motion in statedl(Pa
respectively(,, and(, ; are the viscous damping ratias,; andw; ; are the undamped
natural frequencies associated with, and®, ;, andf,; andf, ; are modal forces corre-

sponding taF. Using Eq. (4.3), the modal coordinates correspondingeditiear modes
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®,, and®, ; can be expressed as
Goi(t) = e iit(0 ; cos(Weq,it) + 02 Sin(wWoqit))

N (fm/wgl) cos(wt — 0,; + )
VI = (W/wei)?)? + (2001w /wo,i)®

(4.4)
gs,(t) = e_c“”f““”ft(sl,j cos(wsq,;t) + S2.5 sin(wsq ;t))
N (fw/wf,j) cos(wt — b0 ; + «)
VI = (w/ws;)2)? + (2, jw/ws ;)2

whereo, ;, 02, 51, ands,; are scalar coefficientsy,,; andw,,; are the damped fre-

240,1"”0,1"*} )
’

2 _ 2
wy ;—w

quencies corresponding to the natural frequencigsandw; j, 6,; = arctan(
b, = arctan(%). The anglex is the phase difference between the excitation and
the piece-wise linear response. This angle is key to acyreapture the energy loss in
the presence of bilinearity. There &, + 2n,+ 2 unknowns in Eq. (4.4): the phase angle
a, the time fraction variabl¢, and the2n,, + 2n, coefficients ofo, ;, 0o, fori =1, ..., n,,
ands, j, so; for j = 1, ..., n,. Similar to the arguments used in bilinear frequency approx

imation (BFA) [102],7, andT; can be approximated ki, = 2T andT, = 2. Thus, the

fraction f can be approximated by

T, . wo

T, + T, w,+ ws (4.5)

fa

To calculate the remaining unknowns, one can enforce trangionditions related to the
continuity of the physical displacement and velocity at th&ances when the system
transitions from state (1) to state (2) and vice versa. Thpldcement continuity gives
Xs(Ts + ) = %x,(Ts + ),
(4.6)
xs(a) = x,(T,+Ts + ),
wherex, andx, represent the physical displacement of the system in statend (2).

The first relation in Eq. (4.6) corresponds to the case wheresystem moves from the
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sliding state to the open state. Note tkgt= ®.q,, x; = P,q, and®, and P, are
not completely overlapping. For most systems the dimeiaditgnof the spaces which
do not overlap are larger than thg andn,. Hence, the top relation in Eq. (4.6) admits
only the trivial solution, namel,(7s + o) = 0 andx,(7s; + a) = 0. Thus, the first
relation in Eq. (4.6) can be replaced widh(7; + o) = 0 andq,(7s + «) = 0. By using
similar arguments, the second relation in Eq. (4.6) can plced withqs(«) = 0 and
Qo(To + Ty + ) = 0.

Next, transition conditions related to velocity are enéatcSpecifically, the velocity in
the overlapping space remains the same before and aftersitima. Note that the linear
and angular momentum are not the same before and after &itan3hat is because of
the impulsive forces which act at the other (fixed) boundaniethe system. The velocity
in state (1) and (2) can be written as = ®,q, andx, = ®,q,. Thus, the components
of velocity in the overlapping space can be writterfcas: T,x, andﬁis = T, x,. Thus,

%, = T, ®,q, andx, = T,®.q,. The velocity transition conditions become

(I)sqs(Ts + Oé) = ‘I)OQO<TS + Oé),
4.7)

d.qs(a) = P,q,(T,+Ts + ),

where®, = T, ®,, &, = T,®, are open modes projected onto the overlapping space,

and sliding modes projected onto the overlapping spacecésply.
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By combining the displacement and velocity transition dbads, one obtains

qs(Ts +a) = 0,
qo(Ts+a) = 07

QS<a) = 07
(4.8)
QW(T,+Ts+a) = 0,

(I)SQS (Ts + Oé) = (I)OQO(TS + Oé),

(I)SQS<04) = (I)OQO<T0 + 715 + Oé).

These transition conditions have a nonlinear dependendbeonnknowns, therefore a
nonlinear solver can be employed to find the solution. Inwsk, the function “Isgnon-
lin” from Matlab was used to solve for the unknowns by minimgthe residual in the

6 relations in Eq. (4.8). Using Eq. (4.4), one can constgyetandg, ; with the obtained
01,i,02,i, 51,5, S2; anda. Then, physical displacements and x, are calculated using
x, = ®,q, andx, = ®.q,. One steady-state vibration cycle can be constructed tiseng
obtainedx, andx, with time fractionf as shown in Fig. 4.1. Finally, one can calculate
the amplitude of the constructed steady-state vibratiarecywhich is the approximate
amplitude of the steady-state vibration of a system witleg@igse-linear nonlinearity.

The motion which is not along the overlapping space has zematement and ve-
locity after each transition (at the beginning of each oftthe states 1 and 2). In addition,
the motion which is not along the overlapping space does aat hime to grow. Thus,
it has negligible influence on the vibration of the system parad to the motion in the
overlapping space. Hence, the forcing which is not alongtieglapping space has a neg-
ligible effect. Therefore, the forcE in the physical space can be approximated by the
forceF = T,F in the overlapping space as shown in Fig. 4.2. Hence, thénfpin the

overlapping spacE can be used instead Bfwhen calculating the modal forcgs; and
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Figure 4.3: Single-DOF system
fs; in EqQ. (4.3), namely, = ®''F andf, = ®TF.

4.3 Results

In this section, the amplitude of a single-DOF system withez@wise-linear nonlin-
earity is obtained first by solving the exact equations ofiamtsing direct numerical
integration. Then, BAA is employed to calculate an appratied amplitude, and the re-
sults are compared. Next, the response of a three-DOF systeatculated using direct
numerical simulation. BAA is employed, and the results amagared to direct numerical
simulation. Finally, nonlinear forced responses of a biadisk with a crack are calcu-

lated. BAA is employed and the results are compared.

4.3.1 Single-Degree-of-Freedom System

The damped single-DOF system used is shown in Fig. 4.3, whete 2.0 kg, k =
2.0 N/m, ¢ = 0.04 kg/s,k* = 0.4 N/m, ¢* = 0.008 kg/s and the initial gag is zero. The
mass is excited by a harmonic foré&t) of amplitude0.01 N. It is assumed that there is
no friction between the mass and ground.

The exact amplitude of the nonlinear periodic responseas$yistem shown in Fig. 4.3

at the resonant frequency (= 0.1663 Hz) was computed to b@2163 m by direct nu-
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Figure 4.5: Displacement vs. time for a forcing at the resbrfeequency ofw =
0.1663 Hz

merical integration. A plot of the amplitude of the respomeesus excitation frequency
for three different cases is plotted in Fig. 4.4. The threzesaare: the nonlinear system,
the system permanently in state (1), and the system perrtiamestate (2). Note that
state (3) (partially open) does not exist in this system.

The steady-state nonlinear response at the resonant frege = 0.1663 Hz) is
shown in Fig. 4.5. In this figure, it is shown that = 3.14 s and7, = 2.87 s. The
total period7’ was calculated using the excitation frequengyherel = Qw—’r The exact

fraction ratio f. was calculated using. = TT = 0.4773. The motion in states (1) and (2)
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Figure 4.6: (a) Comparison of amplitudes computed using BAAversus time integra-
tion (—) and (b) the residual obtained when solving for th&nown coeffi-
cients in BAA for the single-DOF system

of the system can be distinguished based on the followirgatement conditions

x(t) <0, state (1), 4.9)
x(t) >0, state (2).
Since there exists only one DOF in the system, the exact ieqpgatf motion in state (1)
and state (2) can be directly obtained using Eq. (4.4) becauthis simple case, the modal
coordinatey is the same as the physical coordinateAs explained in the methodology
section, six unknowns need to be obtained to approximatedhknear response, namely
the phase angle, the time fractionf, and the four coefficients;, o5, s1, andss.
The time fractionf can be approximated by using Eq. (4.5). To calculate therothe

unknowns, one can enforce the transition conditions in E®)( For this system, how-

ever, the mode shapds, and®, are not necessary because this is a single-DOF system.
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Figure 4.7: Three-DOF system

Therefore, the transition conditions are expressed as

zs(Ts+a) = 0,

2o(Ts+a) = 0,

(4.10)

Ts(Ts + ) = Zo(Ts + ),

(o) = z,(T, + Ts + ).

Using Eq. (4.5),f can be approximated as 0.4772. Eq. (4.10) is solved usinglzooha-
ogy similar to that described for solving Eq. (4.8). One oiga and the corresponding
four coefficients to minimize the residual. Then, the anupli of the steady-state vibra-
tion can be calculated @218 m (Fig. 4.6). This value has an excellent relative error of

0.79% compared to the exact amplitude(o?2163 m.

4.3.2 Three-Degree-of-Freedom System

The damped three-DOF system used is shown in Fig. 4.7, where 2.0 kg, my =
2.0 kg, andms = 10.0 kg; k&1 = 1.6 N/m, k; = 1.68 N/m, andk; = 8.0 N/m; ¢; =

0.08 kg/s,co = 0.084 kg/s, andc; = 0.4 kg/s. The initial gapy is zero. The massis
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is excited by a harmonic forcg'(¢) of magnitude0.01 N. It is assumed that there is no
friction between the masses and ground.

The resonant frequencies of the system were found by irttegran time the exact
nonlinear equations of motion. A plot of the amplitude of theponse versus excitation
frequency for the three masses is plotted in Fig. 4.8. Thadststate response at the
resonant frequency @ = 0.1047 Hz is shown in Fig. 4.9. Also, Fig. 4.9 shoW§ =
5.25 s andl, = 4.30 s. The total period” is given byT" = %’r The exact time fractiorf,
obtained isf. = TT = 0.450. The amplitude of motion of the masses ar@5337 m for
mq, 0.05255 m for my, and0.02501 m for ms, as shown in Fig. 4.9.

The exact equations of motion for state (1) and state (2) ealebcribed using Eq. (4.1).
Furthermore, it is assumed that the motion in state (1) aaie $2) can be approximated
well by a single overlapping mod®. The modal coordinateg, and ¢, are expressed
using Eq. (4.4).

The time fractionf can be approximated by using Eq. (4.5). To calculate therothe

unknowns, one can enforce the transition conditions statéely. (4.8) withi = 1 and
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Figure 4.11: Bladed disk model

j=1.
Using Eg. (4.5),f was approximated as 0.4999. By enforcing the transitiolitimms
and calculating the residual, one can findnd the corresponding four coefficiemts o,,
s1, ands,. Next, the amplitudes of the steady-state vibration weleutaed a$).05393 m
for mq, 0.05247 m for ms, and0.02509 m for ms as shown in Fig. 4.10. The relative
errors of these results compared to the exact amplitudexaeient, namely.05% (m.),

0.15% (mg), and0.32% (mg)

4.3.3 Full Bladed Disk

The blisk model [101] used in this work is the tuned bladed disown in Fig. 4.11.
The blisk ha20 blades, one of which has a crack. The crack leng#7i5% of the chord
on the leading edge 40% span from the root of the blade. The material of the bladskl di
is a Titanium alloy with Young’'s modulug = 114 GPa, densityp = 4,420 kg/m?,
and Poisson’s ratic = 0.31. The full order model ha81, 878 DOFs. The damping
is modeled as Rayleigh damping (without mass matrix coution), C = 5K, wheres

is a scalar (with a constant value in each frequency rangetefast) corresponding to a
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Mode family

Nonlinear amplitdue (mm)

BAA amplitude (mm)

Error (%)

# of open modes for BAA

# of sliding modes for BAA

151

8.032

7.955

0.959

1

an

1.257

1.323

5.25

TIII

0.1869

0.1931

3.32

1
1
2

1

10|I|

4.834x 10°

4.702x10°

273

1

Table 4.1: Summary of BAA results for the full bladed diskhw#ngine order excitation O

viscous damping ratio value gf= 0.001. The commercial software ANSYS was used to
obtain the mass and stiffness matrices.

BAA utilizes mode shapes of both the open and sliding stattéiseofull bladed disk
to obtain the overlapping spadein which the energy and momentum of the system are
transferred between the open and sliding states. The ljopan and sliding) mode shapes
which dominate the motion in the frequency range of intesiestomputed using the mass
and stiffness matrices of the system. These modes are usednfoute the overlapping
space. Figure 4.12 shows the steady state displacementwhept the excited node for
the cracked blade using open and sliding modes of the fulldalalisk over the frequency
range of interest. The force applied is an engine order Gatian to one node along each
blade with an amplitude of kN over frequency ranges that excite ttig, 2°, 7**, and
10" mode families (one at a time). To select the dominant opershaidg modesp, and
®, used to compute the overlapping spdgeone selects modeB,,,., which result in the
largest amplitude for the excited node (on the cracked blaglevell as all other modes that
respond at the frequencies of the mode®jp,, and near the bilinear resonant frequency
of the system. Recall that the bilinear resonant frequengy can be calculated using
BFA. The overlapping space can then be calculated using an SVD for the selected open
and sliding mode®, and®,. Also, the transition relations in Eq. (4.8) can be enforced

at just a few selected physical locations on each blade.
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Figure 4.12: Steady state displacement amplitudes at tbiéedxnode for the cracked
blade using open and sliding modes of the full bladed disk eitgine order
excitation 0: (a) open modes for th& mode family, (b) sliding modes for the
1%* mode family, (c) open modes for ti&! mode family, (d) sliding modes
for the 2*4 mode family, (e) open modes for tii& mode family, (f) sliding
modes for ther™® mode family, (g) open modes for th®™ mode family,
(h) sliding modes for the0*" mode family
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Figure 4.13: Relative errors of amplitudes predicted uBiAé\ ([J), open modes only,
and sliding modes only) when compared to the nonlinear forced responses
for various engine order excitations: (&) mode family, (b4 mode family,
(c) 7*" mode family, (d)10*" mode family

The vibration amplitude of the full bladed disk system witbgewise-linear nonlinear-
ity was calculated using an in-house code based on a hylkadéncy/time (HFT) domain
solver [39, 45, 46,54, 101]. The results of calculating thalimear responses for thé',
ond 7th “and10*™™ mode families are summarized in Tab. 4.1 for engine ordercation.
Also, the amplitudes predicted by BAA as well as the numbeypzn and sliding modes
used in the BAA analysis are summarized in Tab. 4.1. The mibdgsvere used for BAA
are indicated as the solid lines in Fig. 4.12. The agreenamtden BAA and the nonlinear

calculation is quite good.

BAA was also applied to approximate the nonlinear resonarglizudes of the full
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bladed disk at the other engine order excitations. To sétecbpen and sliding modes
used for computing the overlapping spakethe steady state displacement amplitude at
the excited node for the cracked blade using the open aridglidodes of the full bladed
disk was investigated by generating plots similar to thésevs in Fig. 4.12. To show the
accuracy of BAA, the relative errors of BAA compared to theleear forced responses
are presented in Fig. 4.13 along with the relative errordhefdpen amplitudes and the
sliding amplitudes. For thé** mode family, BAA is more accurate than the open and
sliding amplitudes for most engine order excitations. Alse open amplitudes tend to
be more accurate than the sliding amplitudes. ForRtHenode family, there are regions
where the BAA is best, open is best and sliding is best. Forthenode family, open
amplitudes are most accurate for all engine order excitatand BAA tend to be more
accurate than the sliding amplitudes. For " mode family, BAA is most accurate
for all engine order excitations. The key observation teeay from these results is that
BAA is always the most accurate or between the accuracy afplea and sliding results.
Since in general one will not know whether the open or slidegults are more accurate,
there is a substantial improvement in using BAA if one widloasse a fast linear approach
to estimate the nonlinear resonant amplitudes. Therel8##&, can provide approximated
amplitudes of nonlinear resonant amplitudes with good rayufor the full bladed disk.
Also, the computational time required by BAA is approximat&00 times shorter than

the time needed for the full-order nonlinear calculations.
4.4 Conclusions and Discussion

An efficient and novel methodology to approximate the stestdye amplitude of vi-
bration of a system with piecewise-linear nonlinearity vd@seloped. This method is

referred to as bilinear amplitude approximation (BAA). BA@quires only a few linear
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calculations to compute the mode shapes of the system wheayshem is in its open state
and sliding state. Then, an overlapping space that is spdnnselected mode shapes are
obtained by SVD. Next, a very low-dimensional nonlineastesgjuare problem is solved
to calculate unknowns to construct the approximated p&rig@ration cycle of the sys-
tem, and the BAA amplitude is calculated. BAA does not regiainmerical integration to
calculate the nonlinear amplitude at resonant frequendiesrefore BAA can drastically
reduce the computational costs required in obtaining thdimgar resonant amplitude.
The method divides each cycle of the steady-state nonlinesaonse into two parts. The
first portion of the response corresponds to the open casige(i¢ is a crack that would
mean that the crack is open). The second portion of the regparrresponds to the slid-
ing case (if there is a crack that would mean the crack is djosEhe transition between
each state is assumed to take place quickly. The method tiferces transitional com-
patibility at the contacting surfaces, namely that phylgiesplacement and velocities are
compatible when the system transitions from the open tongjidtates and vice versa.
The BAA method was demonstrated for a single-DOF system ahdea-DOF system.
The results were compared against the exact solutions, @od @greement was found.
The method was also demonstrated on a full bladed disk mattebverack and found to

obtain accurate results compared to a full-order nonliaeatysis.



CHAPTER YV

Nonlinear Reduced-Order Models for the Structural
Dynamics of Combustor Systems with Pre-Stress and
Friction

5.1 Introduction

Life assessment has many benefits in industry. For exaniigl@dsessment for com-
bustors can be utilized to determine periods of maintenambeh in turn leads to cost
savings by avoiding unnecessary maintenance. For comgdudie assessment one must
consider several factors with one of the most critical beuegr. The significance of wear
is addressed using the value for total wear damage [103]. bOstar systems often ex-
perience wear at the interfaces between components duevanitiuced vibration. These
vibrations can lead to sliding motions at the interfacesictvinesult in wear. To extend
the life of combustor systems, there have been many effortsduce vibrations by opti-
mal design and by controlling the dynamics of the system][104ing system dynamic
modeling and experiments, it was verified [104] that the ami@di wear at the interfaces
can be reduced by decreasing the vibrations in the systepratitice, wear has been ob-
served at interfaces between the transition piece and tlaeskal, and between the hula
seal and the liner. These interfaces are pre-stressed Wwa@oinponents are assembled.

It was observed that the resulting vibratory response hastansng nonlinearity. It is
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strongly believed that this nonlinear vibration can sigaifitly affect the wear of the com-
bustor system, therefore it is important to identify the gibgl reason for the nonlinearity.
Possible causes for the nonlinearity include sliding conddath Coulomb friction at the

interfaces, loss of contact (opening and closing of the gépeainterfaces), and buckling
of the hula seal or nonlinearity in the hula seal. From a prglary study, it was found

that sliding contact with Coulomb friction at the interfacguses the nonlinearity.

To model frictional contact in dynamic structures, severaitact models have been
developed [105-109]. These contact models are associdgtedontact parameters such
as contact stiffness (tangential and normal) and the dnictioefficient. Differentiations
in the contact models relate to 1) whether the normal loacigble, and 2) the dimen-
sion of the model (i.e., one dimensional, two dimensionAl)stick-slip condition for a
contact model is determined by comparing the elastic fardangential stiffness and the
friction force. Therefore if the contacting areas at theifaices of dynamic structures are
modeled using multiple contact elements, a scenario cair @dwere the contact elements
do not simultaneously enter the slip condition from thekstiandition since the stick-slip
condition is separately determined for each contact elebyecomparing the elastic force
and the friction force. This scenarios is referred to as oagtip [110-113], which dif-
fers from macro-slip (or gross-slip) where all contact etes simultaneously enter the
slip condition from the stick condition. In detail, the noeslip is defined as: “small rel-
ative tangential displacement in a contacting area at amfatte, when the remainder of
the interface in the contacting area is not relatively disptl tangentially” [114]. This
micro-slip can affect resonant vibrations (amplitudes &eduencies) of dynamic sys-
tems, therefore it is necessary to consider micro-slip atamting areas for accurately
predicting system dynamics.

Finite element (FE) analysis is often employed to study tifseation of structures.
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If a system is small and its geometry is simple, then the aysten be modeled using
a low dimensional FE model. For this low dimensional moddllaorder analysis can
be conducted. However, for large and complex structures agdurbine bladed disks,
the system must be modeled using a high dimensional FE modeicturate analysis.
For these systems, the computational cost required in zinglyull FE models can often
be prohibitive. In order to overcome this difficulty, manyéstigators have developed
reduced-order models (ROMSs) for various systems [1, 1330432, 39, 40, 45, 54, 101].
Structures that contain frictional contacts between adimg bodies can also be modeled
using FE analysis. Frictional contacts can be modeled usintact elements provided in
commercial FE software such as ANSYS. In order to calculsddrced responses of the
structures with frictional contacts, a time marching foe tbll-order FE model including
the contact elements should be employed. However this apprig often prohibitive due
to the considerable computational cost. To reduce the ctatipnal cost, the harmonic
balance method (HBM) can be used to obtain the steady stateear forced response
of structures with frictional contacts [107, 115]. The HBMshbeen utilized to calculate
the steady-state nonlinear forced response of complexaage FE models with frictional
contacts such as turbine bladed disks with a friction darfides], but the computational
cost is still formidable due to the large size of the govegrequations (even when model
reduction is used) and the required iterative calculatialtain the converged solution.
To resolve this issue, efficient ROMs that are specificallyigiged to capture the effects
of Coulomb friction with micro-slip are developed. These @©have relatively small
dimension (i.e., one or two), therefore they drasticalljuee the computational cost re-
quired to obtain the nonlinear forced response of the systigmfrictional contacts.

This paper is organized in the following manner. First, isioown that nonlinear

responses observed in the combustor system are due to tthen@ofriction at the inter-
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faces. An FE model representing a simplified hula seal andityid plates (which relate
to the transition piece and the liner) is created in ANSYShis FE model, contact ele-
ments [106] are used to model the interface between thesatthe hula seal. Transient
dynamic analysis (TDA) in ANSYS is performed with the fullder model to verify the
softening nonlinearity and micro-slip at all levels of mteess. Then, an efficient ROM
to analyze the vibration of the hula seal model is develogedshow that ROMs for this
model are possible, proper orthogonal decomposition (F®D3ed to verify that the dy-
namics of the system is dominated by a low number (i.e., ohg@rof spatial coherences.
For a variety of frequency ranges and pre-stress levetsstiown that a single such coher-
ence is dominant. Next, low order ROMs are proposed and plaeameters are identified
using a systematic method. Then, the ROMs developed amatadi by comparing their
predictions with results from TDA using the full-order madéis shown that these ROMs
can accurately predict the nonlinear response of the systala achieving considerable
saving in computational costs. After developing ROMs formapdified hula seal model,
an extended hula seal model is introduced. This model is osatpof a simplified hula
seal and two long rigid plates where axial directional digiens are similar to a realistic
transient piece and liner. Efficient ROMs are developedh@ model and they are vali-
dated using results of TDA obtained with a full-order FE mlodénally, conclusions are

presented.

5.2 Methodology

In this section, a contact model used for modeling the iaterfoetween the transition
piece and the hula seal, and the interface between the hallarse the liner is presented.
Then, a POD based method to find the spatial coherences isdmilenodels is introduced.

Finally, a procedure to develop ROMSs utilizing the spat@ierences is explained with a
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Figure 5.1: Contact model

systematic way to identify the parameters required to cansthe ROMs.

5.2.1 Contact Model

Contacts between the components (the hula seal and the)datemodeled using the
contact elements [106,116] shown in Fig. 5.1. This cont@chent contains both a normal
stiffnessk,, and a tangential stiffneds. Also, the element models a varying normal load
N which arises from the normal relative motiar. If the element experiences a large
relative motion in the normal direction, (intermittentpseation of the contact surfaces
can occur. The pre-stress or initial gap can be described tise initial distance between
the two contacting bodies. There are three possible sta¢sdntact elements can have,
which are stick, sliding, and separation. The contact fétahanges based on the contact
states. When the contact is in the stick state, sliding matidoes not exist and’ = k;u;.
When it is in the sliding statef’ = /N wherey is friction coefficient andV = k£, u,,.

If it is in the separation statd;’ = 0. The criteria for the transition between states is

determined by the contact forces (i.e., elastic force fingtsses and friction force) [116].
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For example, when the system is in the stick condition, theam forceF' can increase
due to the relative tangential motian If the contact forced' is greater than the maximum

friction force .V, the contact starts to slide.

5.2.2 Proper Orthogonal Decomposition

To investigate spatial coherences of the hula seal modeheprorthogonal decom-
position (POD) is employed [117]. If the dynamics of the mlodedominated by a
low number of spatial coherences, developing efficient ROMgy be possible. POD
requires measured data of the system dynamics such asadispat. If the system dy-
namics is measured &t/ locations and the displacement is samplédimes at each
location, then one can form displacement history arraysel éocation, such that; =
(z;(t1), 2i(ta), ..., 7;(ty)) T fori = 1,..., M. The mean of each displacement arrays is typi-
cally subtracted from each displacement history. PODzat#lithese displacement histories

to form anN x M ensemble matriX,
X = [Xl,Xg,...,XM]. (51)

Next, the correlation matriR = X*X that has a size af/ x M is constructed. Then,
eigenvectors and eigenvaluesi®fare computed. The eigenvectors are called proper or-
thogonal modes (POMs) and the eigenvalues are called pooibergonal values (POVS).
Dominant POMs are determined based on POVs. Namely, POMespanding to rel-
atively large POVs are considered dominant modes. In thikwahysical displacement
data obtained from TDA is used instead of measured displenedata. The procedure to
perform TDA is as follows. First, a pre-stress is applied bggj-statically loading a pre-
displacement on the transition piece plate. Next, a disteith harmonic force is applied
to the transition piece plate with the pre-load associatitd &vpre-displacement. Then,

the time series of steady state responses for all degreeseafdm (DOFs) (irx, y, and
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z direction) of the hula seal model are collected. The meagplatiements are subtracted
from the displacement histories for each DOF, and the atrogl matrixR. is constructed.
Then, eigenvectors and eigenvalues of the m&rare computed and the dominant POMs
are determined based on the POVs. If the number of dominaks$H®Ilow (i.e., one or

two), then the dynamics of the model is dominated by a low remobspatial coherences.

5.2.3 Reduced Order Modeling

For efficient vibration analysis of combustor systems itasassary to develop ROMs.
The procedure to construct ROMs starts from developingiefficROMs for the hula seal
since nonlinear vibrations caused by Coulomb friction ia tinla seal significantly affect
the vibration of the systems. Hence, the focus is placed eeldeing ROMs for the
hula seal first. These ROMs will be validated by comparingr gheedictions with results
obtained from the full-order model (TDA in ANSYS).

The equations of motion for a hula seal FE model can be destitbmatrix form as

Mx(t) + Cx(t) + Kx(t) + Fs(x,x) = F(t), (5.2)

wherem is the total number of DOFs in the modal,€ R™ is a vector of nodal dis-
placementsM, C, K € R™*™ are mass, damping, and stiffness matridés; R™ is

the external force vector, ardd; € R™ is the nonlinear force vector caused by Coulomb
friction. The nonlinear forcd'; is determined based on the state of the contact elements
(i.e., stick, sliding, or separation). If it is assumed ttie# dynamics of the system is
dominated by a low number of spatial coherences, for exampiegle spatial coherence,
Eq. (5.2) can be transformed into Eq. (5.3) using the modaktfiormationk = ®¢ where

® is the dominant POM obtained by POD.

G(t) + cq(t) + kq(t) + fr(g,4) = f (1), (5.3)



94

wheregq is the modal coordinate satisfying= ®¢q. The nonlinear forcef; can be de-

scribed as
fr = g¢sgn(¢), when the contact element is in the sliding state
(5.4)
fr = ki(g—q.), when the contact element is in the stick state,

whereg represents the friction forcé, represents the tangential stiffness in the contact
element and. refers to a position in which the contact element experigestieking. The
elastic force due to the tangential stiffness is computéaube relative displacement of

g andq.. Contact parametels g, andk; can be identified by a systematic method using

static analysis.

Parameter Identification

In this work, the parameters g, andk; representing the stiffness of the hula seal, the
friction force and the tangential stiffness of contact edatare investigated using quasi-
static analysis. The analysis is conducted for the hulalReahodel, which is composed
of a simplified hula seal and two plates. First, pre-dispiaeet (meaning pre-stresg)in
the vertical direction is applied on top of the transitioeq® plate without friction. One
can consider the state of the system after applying theigpgadement as the pre-stressed
equilibrium position of the system. Next, friction is tuchen and additional vertical
displacementy is applied on top of the transition piece plate. Reactiondsrgenerated
due to the additional displacement are collected at comiadés or nodes on top of the
transition piece plate. Finally, the summation of the rieactorcesd P are calculated.
One can repeat this procedure by increasing and decreaginBy doing that, one can
obtain a hysteresis loop. In this loop, there exist fouraagithat describe forward sliding,
backward sliding, and two sticking regions as shown in Fig. 3n the sliding regions,

one can identify the stiffness of the hula séalsing the slope of the region. Alsg,is
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forward sliding: £

sticking: k, sticking: k,

oP

backward sliding: &

dy

Figure 5.2: Sample of hysteresis loop

calculated using two intercept values with th axis in the sliding regions. Parameter
is obtained using the slope in the sticking regions. Aftentifying the contact parameters,

one can construct the ROM.
5.3 Results

In this section, a softening nonlinearity is observed atitivexfaces of the combustor
system and is verified for a simplified hula seal FE model u$iDg in ANSYS. TDA is
applied using the full-order model to obtain steady statpoases of the system. Next, pa-
rameter identification required for constructing ROMs & tula seal model is addressed.
Then, ROMs are developed using these parameters. ROMs latated by comparing
their results with TDA results. After developing ROMs forimglified hula seal model,
another (more realistic) hula seal model is introduceds Tidel has a hula seal and two
long plates which relate to the transition piece and linée Tengths of the two plates are
obtained from the original axial directional dimensionstad transition piece and liner. In
this paper, this model is referred to as the extended hulargsiel. A ROM for analyzing

the vibration of the extended hula seal model is developedjuke parameters identified
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Figure 5.3: Simplified hula seal model

for a simplified hula seal model. The results calculatedgitiiis ROM are compared to

those of TDA for the full-order FE model.

5.3.1 FE Model

The hula seal and the two rigid plates are modeled in ANSYS8gusolid brick ele-
ments (SOLID185) as shown in Fig. 5.3. The full-order modged hi, 256 DOFs. One of
the plates (the upper plate) is placed on top of the hula sehtepresents the transition
piece. The other plate (the lower plate) is placed under tha $eal and represents the
liner. Actual dimensions of a hula seal were used. The uplat¢e pas contact with the
top area of the hula seal. The lower plate is in contact wighithla seal in two regions.
Contact elements CONTA175 were used to model the contaseketthe plates and the
hula seal. The node-to-surface contact option was chosntisd augmented Lagrange
method [118](ANSYS default). The fixed foot of the hula seakvibonded to the lower
plate. The contact between the sliding foot of the hula sedlthe lower plate does not
allow penetration (but it does allow separation). The canletween the hula seal and
upper plate is also set up to not allow penetration but torafleparation. The key con-
trollable parameter for the contact element in terms of (marn allowable) elastic slip
is the tangential stiffness which is determined by 1) maxmallowable sliding distance

(denoted by SLTO in ANSYS), tangential stiffness factorm@lied by FKT in ANSYS),
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Figure 5.4: Softening nonlinearity observed in the hula seadel with pre-displacement
of y, = 32.8% ofh and various forcing amplitudest” = 8 Ibf (), F' =
6 Ibf (A), I = 5 Ibf (o), andF = 2 Ibf (x)

coefficient of friction (denoted by in ANSYS), and normal pressure (denoted by PRES

in ANSYS). It was found that each contact element can start to slide separately since the
normal pressure at each contact element can be different, which changes the maximum
friction force. This explains how micro-slip occurs in contact elements. Actual material
properties of a hula seal were used. The plates are modeled using a large Young’s modulus
(1,000 times larger compared to that of the hula seal) so that they behave almost as rigid
bodies. The upper plate is constrained to move in the vertical direction only. The lower
plate is constrained in all directions. The coefficient of frictiors set to 0.15. The ratio

of the dynamic and static friction coefficient was set to 1.

5.3.2 Softening Nonlinearity

TDA was applied to the full-order FE model of the hula seal and two plates. Pre-stress
can be applied either as a force or as a displacement. For best convergence, displacement
is preferred. Thus, a pre-displacement inghdirection was quasi-statically applied to the
upper plate. After that, a distributed harmonic force was applied with the static load and a

full transient analysis was performed (i.e., inertia effects were considered). This procedure
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was repeated for various pre-stress levels, and various harmonic excitation amplitudes. It
was observed that the sliding foot of the hula seal experiences lift-off due to the pre-load
as shown in Fig. 5.3. The model and simulation conditions are not those of an actual GE
product or process, and were introduced solely for the academic purpose of verifying the
proposed reduced-order formulation. It was also found that the normal force acting on the
sliding foot of the hula seal was only ab@t% of the pre-load. The results obtained from
TDA with various levels of forcing amplitude and pre-load showed a softening nonlinearity
in terms ofy displacement amplitude of the hula seal. The results of TDA with various
levels of forcing amplitude and pre-displacement 32.8% ofh is shown in Fig. 5.4,

wherelh is the vertical size (height) of the hula seal.

5.3.3 \Validation of Reduced Order Models Developed for a Simplified Hula Seal
Model

A method based on POD was used to demonstrate that the dynamics of the full-order
hula seal model is low dimensional. TDA was applied to the full-order model with pre-
displacement, = 32.8% ofh and harmonic force amplitude @f Ibf. Time series of
physical displacements for all DOFs iy, andz directions for the hula seal and in the
y direction for the upper plate were collected from the responses obtained from TDA in
ANSYS for the frequency range of interest. Then, the ma&inf sample displacement
data in steady state were constructed. Here, the means of displacements were subtracted
from the displacement histories for each DOF. Using this m&rj)POVs and POMs in
physical coordinates were computed. It was found that one POV was much larger than
the other POVsI(00 times larger compared to the second largest POV,1a6d)00 times
larger compared to the third largest POV). Therefore, it was concluded that the hula seal
model has a single dominant spatial coherence (of sliding motion), which means it has

a single dominant POM. This POD method was applied for other pre-stress lgyels (
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Figure 5.5: Hysteresis loop of the hula seal model obtainegfe-displacemeny, =
23.2% ofh

23.2% ofh, y, = 25.6% ofh , andy, = 30.4% ofh) and force amplitude levelg(= 3 Ibf
andF' = 8 Ibf). It was found that the model has single dominant spatial coherence also.

If a single dominant POM was used to construct the ROMs, the equation of motion of
the system is described by Eqg. (5.3) and paramétersandk; are required. To obtain the
parameters, a systematic method using a hysteresis loop was utilized. A hysteresis loop is
obtained using static analysis for the hula seal model. A pre-displacemgnt @8.2% of
h in the vertical direction is applied to the top of the transition piece plate using no friction.
Next, friction is turned on and an additional vertical displacemegind applied to the top of
the transition piece plate. Reaction forces generated due to additional displaégraent
measured at contact nodes (or nodes on top of the transition piece plate). The summation
of the reaction forcesP are calculated. This procedure is repeated;amcreases and
decreases. Finally a hysteresis loop which platsversusiy was obtained as shown
in Fig. 5.5. In this figure, there exist four regions that describe forward sliding, backward
sliding, and two sticking states. In the sliding regiohsepresenting the stiffness of the
hula seal was obtained using the slopes of sliding regions. Als@s calculated using
the intercepts with thé P axis in sliding regions. Parametéry is obtained using the

approximated slope in the sticking regions. Similarly, ROM paramédteys andk; for
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Figure 5.6: Validation of ROMsd) developed for a simplified hula seal using TDA re-
sults (J) obtained for pre-displacement: (a) = 23.2% ofh, (b) y, = 25.6%
of h and (c)y, = 30.4% ofh

other pre-displacementg (= 25.6% ofh, andy, = 30.4% ofh) were calculated using
these hysteresis loops. After identifying these parameters, ROMs were developed for the
hula seal model with various levels of pre-displacemgnt(23.2% ofh, y, = 25.6% of
h, andy, = 30.4% ofh). Here, it should be noted that the ROMs change with the level of
pre-stress since the contact parameters vary based on pre-stress.

To validate the ROMs, TDA was applied to the full-order model with a variety of pre-
displacementy, = 23.2% ofh, y, = 25.6% ofh, andy, = 30.4% ofh) and a harmonic
force amplitude oft Ibf. The displacement amplitudes of the transient piece plate in the
y direction are compared. As shown in Fig. 5.6, it is found that the ROM accurately

predicts the results of TDA for various levels of pre-stress. Also, it was observed that the
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(@) (b)

Figure 5.7: Extended hula seal model: (a) overview and (b) close-up

resonant frequency shifts to a higher frequency and the vibration amplitudes decrease as

pre-displacement increases.

5.3.4 Reduced Order Model for a Extended Hula Seal Model

After validating the ROM for the simplified hula seal model, a realistic extended hula
seal model is introduced, which is shown in Fig. 5.7. This extended hula seal model has a
hula seal and two long plates which relate to the transition piece (upper plate) and the liner
(lower plate). The hula seal itself is the same as the one used in the simplified hula seal
model. The full order model h&sl, 237 DOFs. The length of the two plates in the axial
direction was not determined from a real transition piece and liner. The plates are modeled
using a large Young's modulu$,(000 times larger compared to that of the hula seal) so
that they behave like rigid bodies. The coefficient of frictjors set to 0.15. The ratio of
dynamic and static friction coefficients is set to 1. Distributed harmonic forcing is applied
on the bottom surface of the lower plate representing the liner. This harmonic forcing
accounts for the effect of gas pressure in realistic combustor systems. To examine linear
mode shapes and natural frequencies of the extended hula seal model, pre-stressed modal
analysis was performed with a pre-displacement of 23.2% &or boundary conditions,
one end (far from the hula seal) of the transition piece and the liner were fixed and the
other end (close to the hula seal) were set to be free. The calculated natural frequencies in

the frequency range of interest afe= 33.694 Hz, f, = 105.03 Hz, f3 = 201.96 Hz, and
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f4 = 565.11 Hz.

TDA with harmonic forcing amplitude0 Ibf was applied to the full-order model for
a variety of pre-displacementg,(= 23.2% ofh, y, = 25.6% ofh, andy, = 30.4% ofh).
The frequency range of interest was determined to capture the resonant frequency corre-
sponding to target frequengy. The ROM for this extended model utilized the parameters
identified for a simplified hula seal model since the parameters are concerned only with
the hula seal (which is the same for both models) and the contact elements between the
hula seal and the plates. In this ROM, the hula seal is like a nonlinear spring connecting
the transition piece and liner. To develop the ROM, mass and stiffness matrices for the
upper plate (transition piece) and the lower plate (liner) were first obtained using modal
analysis. When obtaining those, the boundary conditions used for performing pre-stressed
modal analysis were used. The calculated natural frequencies in the frequency range of
interest for the transition piece and liner are 100.77 Hz and 31.095 Hz respectively and
corresponding mode shape is used to construct the ROMs.

Using the obtained mass and stiffness matrices, the equations of motion for the transi-
tion piece and liner are described as

M X (t) + CrXop(t) + KpXp(t) —Fy = 0,
M X, (t) + C X () + KX (t) + Fy = F(t), )

where the subscrigf refers to the transition piece, the subsciiptefers to the liner, the
subscriptH refers to the hula seaM, C, K are mass, damping, and stiffness matrices.
The damping is modeled as Rayleigh damping (without mass matrix contributios),
SK, whereg is a scalarF is the external force, anBly is the nonlinear force due to the
hula seal. The equation of motion for the transition piece in Eq. (5.5) can be reduced using

a single mode shap®; computed using the mass and stiffness matrix of the transition
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Figure 5.8: A schematic diagram of a ROM for the extended hedé s

piece. Prior to using the mode shape, it is first normalized using the vertical directional
modal displacement of a selected node that has contact with the hula seal.

Using modal transformatioX = ®7¢r, the equations of motion for the transition
piece can be reduced to a single scalar equation. Similarly, the equation of motion for the
liner is reduced using mode shagpg of the liner which is normalized using the vertical
directional modal displacement of a selected node that has contact with the hula seal. The
reduced equation of motions for the transition piece and liner are

mrir(t) + crgr(t) + krar(t) — fu = 0,
(5.6)

mrqr(t) +cogr(t) + krqo(t) + fu = f(t),
whereqr andq;, are modal coordinate for the transition piece and liner, respectively. The
nonlinear forcefy due to the hula seal can be described using identified parameters for

the hula seal model (i.e%, g, andk;). Using these parameters, Eq. (5.6) when the system
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is in the sliding state is expressed as

myir(t) + ergr(t) + krqr(t) — c(qr — ¢r) — k(gL — qr)

—gsgn(q)

mrGr(t) + coqr(t) + krar(t) + c(qe — gr) + k(qw — qr)

+g sgn(q)

(5.7)
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Eq. (5.6) when the system is in the sticking state is expressed as

mrdr(t) + crgr(t) + krqr(t) — c(gr — ¢r) — k(gL — qr)

—ki((qr —qr) —q.) = 0,
(5.8)
mrGr(t) + crgr(t) + krao(t) + c(qr — gr) + k(qw — qr)

+ki((qL — qr) —q.) = [f(?).

The schematic diagram describing the ROM for the extended hula seal is shown in Fig. 5.8.
The results calculated from the ROM are compared to those of TDA in Fig. 5.9. The
displacement amplitudes of the liner plate in thdirection are compared. It was found

that the resonant frequencies are higher than the natural freqyendjoreover, it was
observed that the resonant frequency shifts to a higher frequency and vibration amplitudes
decrease as pre-displacement increases. It can be noted that the maximum error near the
resonant frequency is 6.66% at a frequencg®Hz wheny, = 23.2% ofh, 6.48% at a
frequency of 35 Hz when, = 25.6% ofh, and 5.21% at a frequency of 38 Hz when

= 30.4% ofh. Based on these results, one can conclude that the ROMs developed for the

extended hula seal model accurately predict the nonlinear forced responses of the system.

5.4 Conclusions

An efficient methodology to predict nonlinear responses of dynamic systems with pre-
stress and frictional contacts was developed. First, it was verified that the softening non-
linearity observed at the interfaces of combustor systems is caused by Coulomb friction
using TDA in ANSYS. To develop ROMs for a simplified hula seal model, spatial co-
herences of the model were discovered using a POD based method and the system was
found to be of a low order. Namely, the system has a single dominant POM. Also, contact

parameters which can be obtained from a hysteresis cycle using static analysis were cal-
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culated. After completing the investigation of the spatial coherence and obtaining contact
parameters, efficient ROMs for a simplified hula seal model were developed and it was
validated using TDA in ANSYS. It was shown that the results of the ROMs matched the
TDA. After developing the ROMs for a simplified hula seal model, a more realistic hula
seal model was introduced. This extended hula seal model has longer plates (which do
not have a similar axial length of a real transition piece and liner) than the simplified hula
seal model. Using the parameters obtained from the simplified hula seal model, ROMs for
the extended model were developed. These ROMs were compared with TDA results, and

showed good agreement.



CHAPTER VI

Conclusions and Future Work

6.1 Contributions

The work described in this dissertation proposes efficieathads to accurately an-
alyze vibrations of nonlinear systems and novel techniqoatetect damages in bladed

disks. The primary contributions of this dissertation esdéalows:

¢ In Chapter Il, a novel method to construct multi-stage reduarder models (ROMSs)
with aerodynamic effects was presented. The method carh&finst time effi-
ciently compute many realizations of the structural porid the system for many
different mistuning patterns. The method requires onlglgisector models of each
stage, and uses cyclic symmetry analysis, component madkesys (CMM), and
a projection of the interstage degrees of freedom onto af$etrmonic basis func-
tions. The aerodynamics are accounted for using the cong@edynamic matrix
for the system, which are calculated separately for eacbdtigtage. Only a tuned
analysis of the flow is necessary due to a new approximatiagheo€omplex aero-
dynamic matrices for mistuned systems, which accountshi@shift in structural
frequencies due to mistuning. It can be noted that the pexpapproach is gen-

eral and can be used when other methods are employed to eotgutomplex

107
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aerodynamic matrix. The interactions of structural and@dgmamic damping, mis-
tuning and multi-stage structural coupling were investda It was shown that the
aerodynamic damping can have a significant impact on logesinincreasing the

vibrational response of the system.

¢ In Chapter Ill, a novel methodology to investigate the nosdir forced response of
mistuned bladed disks with a cracked blade was describefitiet ROMs were
constructed from a hybrid component mode synthesis (CM&aM. The forced
response of mistuned bladed disks with a cracked blade wageld by using the
proposed models and a hybrid frequency/time domain (HFEhate It was shown
that blade mistuning can be projected efficiently to redixeecomputational cost.
This is an advantage which plays an important role when tloaikedion of system
normal modes of a mistuned bladed disk is needed for manyunigj patterns.
Furthermore, a novel methodology to detect the presencecadick in mistuned
bladed disks was presented. By investigating mode locaizmdue to cracks and
mistuning, and observing that mode shapes of the crackedste are not a linear
combination of tuned system modes, the effects of cracke difierentiated from
the effects of mistuning. Based on this result, the propasethod is able for the
first time to detect the presence of damage by using tip tindetg only even in
the presence of nonlinearities caused by cracks. This mnggicshed by using the
residuals introduced which can be gathered through expetah measurements.
They prove to be the key for identifying the presence of daanaigd even more
importantly, statistically detecting the blade where thendge is present even in the

presence of measurement noise.

¢ In Chapter 1V, a new methodology to approximate the steaaesamplitude of vi-
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bration of a system with piecewise-linear nonlinearity \wassented. This method
is referred to as bilinear amplitude approximation (BAAAABrequires only a few
linear calculations to compute the mode shapes of linedesyssand an overlapping
space that is spanned by selected mode shapes. BAA doegjanimersumerical in-
tegration to calculate the nonlinear amplitude at resoff@quencies. Therefore,
BAA can drastically reduce the computational costs reguiosobtain the nonlinear
resonant amplitude. The method divides each cycle of tredgtetate nonlinear
response into an open state and a sliding state. The tanb#itween each state is
assumed to take place quickly. The method then enforcesitiaral compatibility
at the contacting surfaces, namely that physical displac¢@nd velocities along
overlapping space are compatible when the system transifiom the open to slid-
ing states and vice versa. The BAA method was demonstratesinfiple systems
(i.e., a single-degree-of-freedom system and a threecdegfrfreedom system) as
well as a complex system (i.e., a full bladed disk model wittvack). The results

were compared against the nonlinear solutions, and a gaeeémgnt was found.

In Chapter V, an efficient methodology to predict nonlinessponses of dynamic
systems with pre-stress and frictional contacts was dpeeloFor validation, fric-
tional contacts at interfaces (e.g., those found in conadosdtetween the transition
piece and the hula seal, and between the hula seal and thevielee modeled us-
ing contact elements provided in ANSYS. Using transientagyit analysis (TDA)
in ANSYS, it was verified that the softening nonlinearity eb&ed experimentally
at the interface of an actual combustor system is caused bjo@b friction. To
develop nonlinear ROMs, spatial coherences in the dynaafitise system were
investigated using POD. It was found that the system has mamhispatial coher-

ences. This observation means that it is possible to dedigtieduce the size of the
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full-order models. Consequently, computational costrsgwvican be gained when
predicting the response of the system to excitations. Cop@ameters were ob-
tained from a hysteresis cycle using static analysis. Afteestigating the spatial
coherence and obtaining contact parameters, for the fing @&fficient ROMs for
hula seal models were developed. It was shown that the sesUROMs match
those of TDA for the full order system, which indicates tHea hovel ROMs accu-

rately capture the effects of friction (and micro-slip) vese systems with pre-stress.

6.2 Future Research

The following are suggestions for future research basetd®studies presented in this

dissertation.

e Aerodynamic matrices for multi-stage structures

The analysis in Chapter Il is for a multi-stage structurehwilite loads from the aero-
dynamics computed at a stage level. Accounting for the fultirstage aerodynam-
ics can enhance the accuracy of the forced response poedicti herefore, future
work includes developing a method for efficiently computimglti-stage complex
aerodynamic matrices that couple the upstream and downsstages, and experi-

mental validation of the analysis.

e Detection of multiple simultaneous damages

The damage detection method developed for mistuned bladksl @ith a cracked
blade in Chapter Il utilizes vibration data such as measdisplacements. Vibra-
tions of cracked structures can change when there are euttipcks. The effects
of multiple cracks on the vibration characteristics needbé¢oinvestigated. Con-

sequently, the method developed needs to be validated &iunad bladed disks
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with multiple cracked blades. In addition, the vibrationbtdded disks is affected
by aerodynamic effects (stiffness and damping) since blatisks interact with
flows in operating conditions. Therefore, vibration aneyer damage detection
in bladed disks should consider aerodynamic effects. Faurate and efficient vi-
bration analysis of damaged blade disks experiencing grewdic loads, reduced

order modeling method addressed in Chapter Il can be used.

Experimental validation of nonlinear ROMs developed for cgturing the effects

of Coulomb friction in combustor systems

In Chapter V, ROMs for hula seal models were developed uslagtified contact
parameters. To extend this work components with a more @agaometry should
be considered while the hula seal model remains the samer. thtit, experimental

validation is desirable.
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