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Abstract 

 

 Niemann-Pick Type C disease (NPC) is a childhood-onset neurodegenerative disorder 

characterized by the accumulation of unesterified cholesterol and glycosphingolipids in late 

endosomes and lysosomes. Ninety-five percent of cases of NPC are caused by loss-of-function 

mutations in the ubiquitously expressed NPC1 gene, which encodes a multi-pass transmembrane 

protein essential for mobilizing cholesterol from the endolysosomal system. How disruption of 

NPC1 function leads to progressive neurodegeneration remains unknown and effective treatment 

is lacking. 

 I used a conditional knockout mouse model of NPC to define the timing and cell type 

underlying neurodegeneration due to Npc1 deficiency. Global deletion of Npc1 in adult mice 

leads to progressive weight loss, impaired motor function and early death in a time course similar 

to that resulting from germline deletion. Additionally, the disease can be recapitulated when 

Npc1 is deleted specifically in neurons. In contrast, Npc1 deficiency in mature astrocytes does 

not produce any detectable defects. These findings demonstrate that neurons, but not astrocytes, 

play a critical role in the pathogenesis of NPC. 

 I also explored the contribution of exogenously derived cholesterol to the formation of 

CNS myelin, a specialized extension of the oligodendrocyte plasma membrane that serves as an 

electrical insulator to ensure proper nerve conduction. By using the conditional knockout mouse 

model of NPC, I unexpectedly found that Npc1 deficiency in neurons alone leads to an arrest of 
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oligodendrocyte maturation and to subsequent failure of myelin synthesis in selective brain 

regions. This defect is associated with decreased activation of Fyn kinase, an integrator of axon-

glial signals that normally promotes myelination. In parallel, I showed that loss of Npc1 

specifically in oligodendrocytes results in delayed myelination at early postnatal days. These 

mice, when aged, also exhibit progressive motor deficits accompanied by late stage 

demyelination and secondary Purkinje neuron loss. These data demonstrate that lipid uptake by 

neurons and oligodendrocytes through an Npc1-dependent pathway is required for both the 

formation and maintenance of CNS myelin. 

 In addition, I explored a potential treatment strategy that targets mutant NPC1 protein 

containing missense mutations. I identified ryanodine receptor (RyR) antagonists as effective 

disease-modifying compounds in patient fibroblasts harboring the NPC1 I1061T mutation. My 

data demonstrate that by increasing ER calcium levels, RyR antagonists increase the steady-state 

levels of the NPC1 I1061T protein, promote its trafficking to the late endosomes and lysosomes, 

and rescue the cholesterol storage and sphingolipid trafficking defects. Similar rescue is achieved 

by over-expressing calnexin, a calcium-dependent ER chaperone. My work highlights the utility 

of proteostasis regulators to remodel the protein-folding environment in the ER to recover 

function in the setting of disease-causing missense alleles. In summary, the findings presented 

here provide new insights into the pathogenic mechanisms underlying NPC and suggest a 

possible approach for therapeutic intervention. 
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Chapter 1  

 

Introduction 

 

1.1 Niemann-Pick Type C (NPC) disease 

1.1.1 NPC pathology 

 Lysosomal storage diseases are a group of ~50 rare genetic disorders that result in 

lysosomal dysfunction (Gieselmann, 1995). Most of these diseases are caused by deficiencies of 

either a lysosomal hydrolase or an integral lysosomal membrane protein. In both cases, 

lysosomal dysfunction leads to the aberrant accumulation of lipids, proteins or other 

macromolecules in lysosomes (Winchester et al., 2000). Among this group  is Niemann-Pick 

type C disease (NPC), an autosomal recessive neurodegenerative disorder characterized by the 

accumulation of unesterified cholesterol and glycosphingolipids in late endosomes and 

lysosomes (LE/LYs) (Vanier, 2010).  

 Among NPC patients, disease onset and phenotype severity vary greatly (Fink et al., 1989; 

Vanier et al., 1991; Vanier et al., 1988), with no clear genotype-phenotype correlation (Runz et 

al., 2008). The classic form of NPC presents in early childhood, but  disease can also present in 

both the perinatal period and adults (Vanier and Millat, 2003). Although visceral involvement 

such as hepatosplenomegaly is frequent in NPC, all patients eventually develop progressive and 

fatal neurological symptoms, including cerebellar ataxia, cataplexy, dystonia, dysarthria, 
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dysphagia, dementia and vertical supranuclear gaze palsy (Wraith et al., 2009). Patients with 

adult onset NPC also suffer from psychiatric disturbances (Imrie et al., 2002; Shulman et al., 

1995). The average lifespan of NPC patients is between 10 to 25 years, with the adult patients 

often surviving until their late 30's or 40's (Vanier, 2010). 

 

1.1.2 NPC1 and NPC2 

 NPC can be caused by mutations in either the NPC1 (Carstea et al., 1997) or NPC2 

(Naureckiene et al., 2000) genes, both of which encode cholesterol-binding proteins that are 

essential for mobilizing LDL-derived cholesterol from LE/LYs. NPC1 encodes a large 

glycoprotein that is localized to the limiting membranes of LE/LYs (Davies and Ioannou, 2000; 

Garver et al., 2000; Higgins et al., 1999; Neufeld et al., 1999). It contains 13 transmembrane 

domains, 3 large luminal domains and a cytoplasmic tail (Davies and Ioannou, 2000) (Figure 

1.1). The sequences of five transmembrane helices in NPC1 resemble the steroid sensing domain 

of several other membrane proteins (Carstea et al., 1997), including HMG-CoA reductase, the 

rate-limiting enzyme in cholesterol sythesis (Chin et al., 1984), SREBP cleavage-activating 

protein (SCAP), which transports SREBP from the ER to the Golgi under low sterol conditions 

(Hua et al., 1996), and Patched, a negative regulator in the Sonic Hedgehog signaling pathway 

(Johnson et al., 1996). The precise function of the steroid sensing domain in NPC1 remains 

unknown. Crystal structure of the amino-terminal domain (luminal domain 1) of NPC1 revealed 

the role of this domain as binding cholesterol, with the 3β-hydroxyl end buried within NPC1 and 

the isooctyl side chain exposed (Kwon et al., 2009).  
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Figure 1.1 The structure of the NPC1 protein. (Adapted from Vanier and Millat, 2003) 
 

 

   

 NPC2 is a small soluble glycoprotein that resides in the lumen of LE/LYs (Blom et al., 

2003; Naureckiene et al., 2000; Zhang et al., 2003). It can also be secreted from the cell 

(Kirchhoff et al., 1996; Mutka et al., 2004). NPC2 binds cholesterol with much higher affinity 

than NPC1, but in an opposite orientation (Friedland et al., 2003; Infante et al., 2008a; Ko et al., 

2003; Liou et al., 2006; Okamura et al., 1999; Xu et al., 2007). As such, NPC2 binds cholesterol 

via the isooctyl side chain, leaving the 3β-hydroxyl end exposed, thereby enabling transfer 

between NPC1 and NPC2 (Infante et al., 2008b; Kwon et al., 2009). 

 That loss-of-function mutations in either NPC1 or NPC2 yield identical cellular defects 

suggests that the two proteins function in a coordinated manner (Vanier et al., 1996). Consistent 

with this notion, deletion of both genes in mice causes a similar phenotype to the deletion of 

either gene alone (Sleat et al., 2004). Additionally, biochemical evidence suggests that NPC2 
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binds to the luminal domain 2 of NPC1 and can mediate the transfer of cholesterol both to and 

from NPC1. The binding of NPC2 to NPC1 is optimal at pH 5.5, and requires the presence of 

cholesterol on NPC2 (Deffieu and Pfeffer, 2011). This supports the idea that the transfer of 

cholesterol is directed from NPC2 to the amino-terminal domain of NPC1 in LE/LYs (Kwon et 

al., 2009). 

 Based on these structural and biochemical studies, a cellular model has been proposed for 

how NPC1 and NPC2 facilitate the egress of LDL-derived cholesterol from LE/LYs (Figure 1.2). 

Exogenously-derived cholesterol, present mainly as the form of cholesterol esters within 

lipoprotein particles, enters cells through receptor-mediated endocytosis. After arriving in 

LE/LYs, cholesterol esters are hydrolyzed to unesterified cholesterol by lysosomal acidic lipase. 

Unesterified cholesterol is first transferred to NPC2, with the 3β-hydroxyl end exposed. 

Cholesterol-loaded NPC2 then binds to the luminal domain 2 of NPC1, and delivers cholesterol 

to NPC1's amino-terminal domain in a "hydrophobic handoff", with the 3β-hydroxyl end 

interacting with NPC1 and the isooctyl side chain inserted into the outer lysosomal membrane. 

From there, cholesterol is released from NPC1 and exits LE/LYs, a process that is less well 

characterized and may involve the participation of oxysterol-binding protein-related protein 5 

(ORP5) (Du et al., 2011). After exit from LE/LYs, cholesterol is redistributed to other organelles 

including the ER, Golgi and plasma membrane (Maxfield and van Meer, 2010). 
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Figure 1.2 The "handoff" model of NPC1 and NPC2 in cholesterol efflux from LE/LYs. 
(Adapted from Kwon et al., 2009) 

 

 In NPC1 or NPC2 deficient cells, the intracellular trafficking of LDL-derived cholesterol 

is dramatically altered. Although the endocytosis of LDL cholesterol and subsequent lysosomal 

hydrolysis of cholesterol esters are normal in these mutant cells (Pentchev et al., 1985), the 

egress of unesterified cholesterol from LE/LYs is greatly impaired (Liscum et al., 1989; Sokol et 

al., 1988). In addition, glycosphingolipids, sphingosine and other lipids also accumulate in the 

same compartments (Rodriguez-Lafrasse et al., 1994; Vanier, 1999). The impaired egress of 

cholesterol and other lipids from LE/LYs causes a two-fold problem: the excessive storage of 

these lipids within LE/LYs interferes with the activities of lysosomal hydrolases (Elrick et al., 

2012), and causes a paucity of these lipids in other organelles. It has been shown that the 

movement of unesterified cholesterol to the endoplasmic reticulum (ER) in NPC1 deficient cells 

is reduced, resulting in perturbed cholesterol homeostasis in the ER including diminished 

cholesterol esterification (Pentchev et al., 1985) and enhanced cholesterol synthesis (Liscum et 
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al., 1989; Liu et al., 2009). The cholesterol content in the plasma membrane of NPC1 deficient 

cells is also reduced (Hawes et al., 2010; Liscum et al., 1989; Sokol et al., 1988; Wojtanik and 

Liscum, 2003), which may alter the fluidity and function of the plasma membrane. 

 

1.1.3 Genetics 

 The estimated prevalence of NPC is 1 in 150,000 individuals (Vanier and Millat, 2003). 

Approximately 95% cases of NPC are caused by loss-of-function mutations in the NPC1 gene 

and the remaining 5% are caused by mutations in the NPC2 gene (Park et al., 2003). 

 There are ~250 disease-causing mutations identified in the NPC1 gene that include 

missense, nonsense, deletion, insertion and frameshift mutations (Niemann-Pick type C disease 

gene variation database, http://npc.fzk.de/). They are scattered throughout most of the NPC1 

functional domains, with more than 1/3 concentrated in luminal domain 3 (Greer et al., 1999; 

Millat et al., 2001). The disease is most commonly caused by missense mutations, with several 

frequent ones identified (Figure 1.1). The most prevalent mutation, I1061T, is found in ~20% of 

patients of Western European ancestry, and in 15% of patients from the US (Millat et al., 1999). 

Other frequent mutations include P1007A, the second most prevalent one in Europe (Greer et al., 

1999; Millat et al., 2005; Millat et al., 2001), and G992W, typical of patients from Nova Scotia 

(Greer et al., 1998).   

 How missense mutations in NPC1 lead to a loss of functional protein has been studied in 

detail for the I1061T mutation (Gelsthorpe et al., 2008). Metabolic labeling and biochemical 

experiments suggested that NPC1 I1061T is synthesized but fails to advance in the secretory 

pathway. Instead of being targeted to LE/LYs, it gets quickly degraded by proteasomes, probably 

due to misfolding and subsequent recognition by ER protein quality control machinery. If NPC1 
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I1061T is overexpressed, a fraction of the mutant protein is able to escape ER protein quality 

control and traffic to LE/LYs. Once localized to LE/LYs, NPC1 1061T functions normally and 

the cholesterol storage phenotype is suppressed. These data suggest that NPC1 I1061T, although 

misfolded, is functional if gets to LE/LYs, and a small amount of functional NPC1 protein is 

sufficient to overcome the cholesterol storage defect. This raises the possibility that strategies to 

promote protein folding and trafficking might enable functional recovery of NPC1 I1061T. In 

Chapter 4, I will explore this possibility by modulating the ER proteostasis network in patient 

fibroblasts with the I1061T mutation. 

 

1.1.4 Models for NPC 

 Several cellular models have been used to understand the pathogenesis of NPC, including 

skin fibroblasts derived from NPC patients with various mutations in NPC1 or NPC2, and 

Chinese hamster ovary (CHO) cells harboring deletion mutations in NPC1 (Cruz et al., 2000; 

Pentchev et al., 1985). Mutant cells in both models display cholesterol storage in LE/LYs that 

can be detected by filipin, a fluorescent dye that specifically recognizes unesterified cholesterol 

(Bornig and Geyer, 1974). In addition, U18666A, a cell-permeable, amphiphilic amino-steroid, 

has also been widely used to quickly induce a cholesterol storage phenotype that mimics 

NPC1/NPC2 deficiency (Liscum and Faust, 1989), although the exact mechanism underlying 

this effect is not clear.  

 In addition to the above cellular models, animal models are another valuable source for 

probing NPC neurodegeneration. Since NPC1 is a highly conserved protein in eukaryotes 

(Higaki et al., 2004), a wide range of model organisms have been developed to study its function, 

including yeast (Malathi et al., 2004), nematode (Li et al., 2004; Sym et al., 2000), drosophila 
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(Fluegel et al., 2006; Huang et al., 2005; Phillips et al., 2008), zebrafish (Louwette et al., 2012; 

Schwend et al., 2011), feline (Lowenthal et al., 1990), canine (Kuwamura et al., 1993) and 

murine models. Due to the faithful recapitulation of the human disease, mouse models of NPC 

are the most commonly used in animal studies. 

 Five mouse models of NPC have been reported to date. Three of these carry spontaneous 

mutations in the mouse Npc1 gene, including C57BLKS/J-Npc1
spm/J (Miyawaki et al., 1982; 

Yamamoto et al., 1994), BALB/c-Npc1
nih (Morris et al., 1982), and C57BL/6J-Npc1

nmf164/J 

(Maue et al., 2012). Both Npc1
spm

 and Npc1
nih mice have null mutations in Npc1 with very 

similar phenotypes. Npc1
nih mice, the better characterized line, have an insertional mutation in 

exon 9 of Npc1, resulting in premature truncation of the protein (Loftus et al., 1997). They 

develop progressive degenerative symptoms starting around 4-5 weeks, including weight loss 

and motor dysfunction, followed by early death around 10-12 weeks (Morris et al., 1982). In the 

liver and spleen, foamy macrophages are abundant in these mutant mice, reminiscent of the 

histopathological changes seen in human patients (Morris et al., 1982). In the CNS, aberrant 

accumulation of cholesterol (Xie et al., 2000) and other lipids (Zervas et al., 2001a) leads to 

swollen axons (Zervas et al., 2001a), neuron loss (German et al., 2001; Yamada et al., 2001), 

gliosis (Baudry et al., 2003; German et al., 2002; Pressey et al., 2012) and myelin defects 

(Takikita et al., 2004; Weintraub et al., 1987; Weintraub et al., 1985), with selective Purkinje 

neuron loss as a prominent feature of the cerebellar pathology(Sarna et al., 2003). Npc1
nmf164 

mice carry a missense mutation (D1005G) in Npc1 and develop a milder, yet progressive 

phenotype that may resemble the late-onset form of the human disease (Maue et al., 2012).  

 In addition to spontaneous-occurring mutants, two genetically engineered mouse models 

have been developed. This includes one in which the cholesterol binding function of NPC1 is 
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abolished by substitutions of 2 amino acids to alanine in the amino-terminal domain of NPC1 

(Xie et al., 2011). This mouse model reproduced the phenotype of Npc1
nih mice, confirming in 

vivo that the cholesterol binding site in NPC1 is crucial for cholesterol export from LE/LYs. 

 Mice with a conditional null allele of Npc1 have been recently developed in our 

laboratory to accommodate the need for studying the effects of gene deletion in a temporal and 

spatial specific manner (Elrick et al., 2010). In this mouse model, exon 9 of Npc1 is flanked by 

loxP sites (Npc1
flox), and Cre recombinase-mediated deletion of exon 9 generates a frameshit 

mutation, resulting in premature truncation of the protein. It has been shown that deletion of 

Npc1
flox in the germline recapitulates all the features of Npc1

nih mice. In Chapters 2 and 3, I will 

use this mouse model to establish the timing and cell type that underlie neurodegeneration due to 

Npc1 deficiency. 

 

1.1.5 Therapeutic efforts 

 Since the discovery of the genes underlying NPC, much effort has been devoted to 

develop therapeutic approaches for treatment of this disease. Due to limited blood brain barrier 

permeability, strategies used to treat other lysosomal storage diseases with only visceral 

involvement, such as enzyme replacement therapy (Beck, 2007), are not suitable for NPC, in 

which the primary defect occurs in the CNS. Similarly, bone marrow transplantation (Hsu et al., 

1999) does not improve the neurological manifestations of NPC, although visceral symptoms 

regress.  

 Other strategies for treating lysosomal storage diseases include substrate reduction 

therapy. Initial attempts at applying this strategy to NPC focused on correcting the cholesterol 

accumulation defect. This includes the application of cholesterol lowering agents such as 
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lovastatin, nicotinic acid and pravastatin in both NPC patients (Patterson et al., 1993) and an 

NPC mouse model (Erickson et al., 2000). Although these studies showed reduced cholesterol 

levels in the liver and other peripheral organs, neurological symptoms were not significantly 

affected. These disappointing results are likely attributable to several causes:1) all the 

compounds inhibit the synthesis of cholesterol, while the defect in NPC lies in the uptake of 

exogenous cholesterol through the endocytic pathway; and 2) some of the cholesterol lowering 

agents have very limited blood brain barrier permeability and therefore do not gain access to 

directly target the primary defect in the CNS. Similarly, dietary cholesterol restriction in a feline 

model of NPC yielded no beneficial outcome (Somers et al., 2001), due to the fact that 

cholesterol in the CNS is solely made in situ (discussed in Chapter 1.2).   

 Following the observation that glycosphingolipids also accumulate in NPC cells, 

sphingolipid lowering agents were tested as a substrate reduction therapy strategy. This led to the 

identification of miglustat (Zavesca) as the first specific drug approved for treating NPC. 

Miglustat, originally used to treat type I Gaucher's disease (Cox, 2005; Lachmann, 2003), 

reportedly acts as both an inhibitor of glucosylceramide synthase, the enzyme catalyzing the first 

step of glycosphingolipid synthesis (Platt et al., 1994), and a chemical chaperone (Abian et al., 

2011). Miglustat treatment of NPC mice and cats led to decreased glycosphingolipid 

accumulation, delayed neurological symptoms and mild lifespan extension (Zervas et al., 2001b). 

Several clinical trials have suggested that miglustat stabilizes the disease course in NPC patients, 

with the late onset patients showing greater benefits (Chien et al., 2007; Di Rocco et al., 2012; 

Galanaud et al., 2009; Lachmann et al., 2004; Paciorkowski et al., 2008; Patterson et al., 2010; 

Patterson et al., 2007; Pineda et al., 2010; Pineda et al., 2009; Santos et al., 2008). 
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 Additional efforts to develop drug therapy include the identification of hydroxypropyl-β-

cyclodextrin, a sugar compound able to rescue the cholesterol storage defect in both cellular and 

animal models (Abi-Mosleh et al., 2009; Davidson et al., 2009; Griffin et al., 2004; Liu et al., 

2008; Liu et al., 2009; Ramirez et al., 2010). While the precise mechanism underlying this effect 

is still under investigation, it is proposed that cyclodextrin enters LE/LYs through endocytosis 

and facilitates the efflux of cholesterol without the need of NPC1 or NPC2 (Abi-Mosleh et al., 

2009; Rosenbaum et al., 2010). However, relative inability of cyclodextrin to cross the blood 

brain barrier limits its broad clinical application (Aqul et al., 2011; Camargo et al., 2001). Other 

compounds identified include HDAC inhibitors (Kim et al., 2007; Munkacsi et al., 2011; Pipalia 

et al., 2011) and δ-tocopherol (Xu et al., 2012), both of which are able to rescue the cholesterol 

storage defect in NPC patient fibroblasts though mechanisms that are not well understood. 

Testing of these small molecules in a disease-relevant cell type or an animal model is needed to 

further assess their beneficial effects. At the current time, no effect disease-modifying treatment 

has been developed for NPC patients. In Chapter 4, I will explore the possibility of using 

proteostasis regulators to modulate the disease phenotype in NPC patient fibroblasts.  

 

1.2 Cholesterol metabolism in the brain 

 A comprehensive knowledge of cholesterol metabolism in the brain is important for 

understanding NPC pathogenesis. Cholesterol is highly enriched in the brain, with an average 

concentration of 15-20 mg/g fresh tissue, compared to that of the whole animal body in which 

the concentration equals ~2.2 mg/g (Dietschy and Wilson, 1968). Within the cholesterol pool in 

the adult brain, 70%-80% of the sterol is present as the form of unesterified cholesterol in 
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compact myelin, with the remaining in the membranes of various cellular organelles (Dietschy, 

2009).  

 Since no evidence so far supports the uptake of plasma lipoprotein cholesterol across the 

blood brain barrier into the CNS, it is generally accepted that the cholesterol required for brain 

development and function comes entirely from de novo synthesis within the CNS (Dietschy and 

Turley, 2004). Similarly, excess cholesterol in the brain has to be first converted to 24-

hydroxycholesterol before it crosses blood brain barrier and gets delivered to the liver for bile 

excretion. This conversion only takes place in some types of neurons, including pyramidal 

neurons and Purkinje neurons, with little in glia (Lund et al., 1999; Lund et al., 2003). 

 Neurons and glia are both able to synthesize cholesterol by themselves. In the mouse 

brain, the highest rate of cholesterol synthesis is found during the first 4 weeks after birth, and is 

occurring mostly in oligodendrocytes during myelin production. The rate of cholesterol synthesis 

decreases significantly in mature animals, after myelination has completed, and primarily reflects 

the synthesis of cholesterol in astrocytes and neurons (Dietschy and Turley, 2004).  

 In addition to synthesizing their own cholesterol, neurons and glia are able to take up 

extracellular lipoprotein cholesterol produced and released by neighboring CNS cells. Astrocytes 

are thought to be the major cell type responsible for ApoE-associated cholesterol secretion 

(Gong et al., 2002). They supply neurons, especially the distal part of axons, with a source of 

cholesterol for the formation and maintenance of synapse (Vance et al., 2005). In addition to 

neurons, oligodendrocytes have also been suggested to utilize exogenous cholesterol during the 

peak of myelin formation (Saher et al., 2005). Since NPC1 is an essential for the endocytosis of 

lipoprotein cholesterol, it would be of great interest to see how Npc1 deficiency in individual 
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CNS cell types affects brain function. In chapters 2 and 3, I will investigate the contributions of 

neurons, astrocytes and oligodendrocytes to the pathogenesis of NPC. 

 

1.3 Cell autonomous and non-cell autonomous neurodegeneration 

 It has been of widespread interest to define what cell type is responsible for 

neurodegeneration in diseases where the mutated gene is ubiquitously expressed. The most 

detailed studies come from models of amyotrophic lateral sclerosis (ALS), a neurodegenerative 

disorder with premature death of brain and spinal cord motor neurons. Approximately 2% of 

familial ALS cases are caused by gain-of-functions mutations in the ubiquitous SOD1 gene 

(Rosen et al., 1993). Attempts to reproduce the neuropathology by over-expression of mutant 

SOD1 in only motor neurons or astrocytes failed, suggesting that the disease cannot be explained 

solely by defects within a single cell type; rather, these results suggested the  possibility that 

neuron death is a result of an interplay between multiple cell types. Indeed, studies of a 

transgenic mouse model with a floxed allele of mutant SOD1 gene showed that deletion of 

mutant SOD1 in motoneurons delayed the disease onset, while the same action in astrocytes or 

microglia slowed disease progression, revealing a complex pathogenic process with 

contributions from both neurons and glia.  

 Another example comes from studies of synucleinopathies, a group of neurodegenerative 

diseases characterized by aberrant accumulation of fibrillary α-synuclein inclusions in the CNS, 

including Parkinson's disease (PD) and multiple system atrophy. In a PD transgenic mouse 

model, over-expression of human wild type α-synuclein in neurons under the promoter for 

platelet-derived growth factor β (PDGF-β) resulted in inclusion body formation within neurons, 

selective loss of dopaminergic terminals and motor impairment, demonstrating the leading role 
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of neurons in the pathogenesis of PD (Masliah et al., 2000). On the other hand, in a transgenic 

mouse model mimicking multiple system atrophy, over-expression of the same human wild type 

α-synuclein specifically in oligodendrocytes under the promoter of 2', 3' -cyclic nucleotide 3' -

phosphodiesterase (CNP) leaded to accumulation of α-synuclein inclusions in oligodendrocytes, 

degeneration of both glia and neurons, and progressive motor deficits (Yazawa et al., 2005). This 

suggests that defects solely arising from glia are sufficient to cause neurodegeneration, at least in 

synucleinopathy. 

 Prior efforts to establish the extent of neuronal cell autonomous degeneration in NPC 

have yielded contradictory findings. Two studies demonstrated cell autonomous death of 

Purkinje cells in NPC mice. This includes the analysis of a chimeric mouse model in which 

mutant Purkinje cells were surrounded by wild-type neurons and glia (Ko et al., 2005), and 

studies in a conditional mouse model with Npc1 deletion specifically in Purkinje cells (Elrick et 

al., 2010). In contrast, attempts to address the role of glia in disease pathogenesis yielded 

contradictory findings. Two studies reintroduced Npc1 back into Npc1
-/- mice using various 

promoters. In one study, presumed neuronal or astrocytic-specific expression of Npc1 in Npc1
-/- 

mice delayed disease onset and extended lifespan, with expression in both cell types nearly 

completely correcting the phenotype (Borbon et al., 2012; Zhang et al., 2008). However, the 

specificity of transgene expression in this study was not well controlled, and work from another 

laboratory showed that mutant mice could only be rescued by expression of Npc1 in neurons 

(Lopez et al., 2011). Other studies favoring a role of astrocytes in NPC pathology came from a 

Drosophila model of NPC where expression of dnpc1a in glia provided limited rescue of 

lethality (Phillips et al., 2008), and a neuron-glia co-culture experiment in which neurons showed 

decreased growth of neurites when cultured with Npc1 deficient astrocytes (Chen et al., 2007). 
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Apparently, new approaches are needed to solve the discrepancy regarding the roles of glia in 

NPC pathogenesis. This will be the aim of Chapters 2 and 3 of this dissertation. 

 

1.4 Myelin and oligodendrocyte development 

1.4.1 Myelin composition 

 Myelin is a specialized structure generated by the spiral extension of the plasma 

membranes of oligodendrocytes in the CNS and of Schwann cells in the PNS. The ensheathment 

of axons by myelin is a unique feature of the vertebrate nervous system to ensure high-speed 

nerve conduction with fidelity of signaling along long distances. As an electrical insulator of 

axons, myelin is a poorly hydrated structure with high lipid content. Compared to other tissues 

with 70% water by weight, myelin contains only 40% water. Myelin has also a high lipid-to-

protein ratio, with 70% lipids and 30% proteins by dry weight; these numbers are generally 

reversed in other cellular membranes (Baumann and Pham-Dinh, 2001). A recent study suggests 

the lipid-rich property of the myelin sheath is possibly achieved by employing myelin basic 

protein (MBP), one of the most abundant myelin proteins, as a physical barrier to prevent the 

diffusion of membrane proteins with large cytosolic domains into compact myelin (Aggarwal et 

al., 2011). 

 Of all the lipids found in myelin sheath, unesterified cholesterol is a major component. 

The molar ratio of cholesterol:phospholipids:glycolipids ranges from 4:4:2 to 4:3:2.  Cholesterol 

esters are not present in myelin. Because of the lipid-rich property of myelin, cholesterol in 

myelin accounts for ~70% of the total cholesterol pool in the brain (Baumann and Pham-Dinh, 

2001).  
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 Cholesterol for myelin synthesis was originally thought to be entirely supplied by 

endogenous synthesis within oligodendrocytes. Consistent with this idea, the highest rate of 

cholesterol synthesis in the mouse brain occurs during the first 4 weeks after birth, a period when 

myelination is taking place within the CNS (Dietschy and Turley, 2004). The role of endogenous 

cholesterol in myelination has been studied in two mouse models. In one, deletion of the 

squalene sythase, the first enzyme dedicated to sterol biosyntheis, in oligodendrocytes led to 

perturbed myelination in early postnatal days, demonstrating that cholesterol availability is a rate 

limiting step in myelination (Saher et al., 2005). However, these mice lacking cholesterol 

synthesis in oligodendrocytes were able to partially recover as adults, assembling myelin with 

only slightly reduced cholesterol content. This raised the possibility that oligodendrocytes are 

also able to use exogenous cholesterol for myelin production. In another mouse model, the gene 

encoding sterol regulatory element-binding protein cleavage activation protein was mutated in 

Schwann cells, leading to a disruption of cholesterol and fatty acid synthesis (Verheijen et al., 

2009). Delayed but not complete absence of myelination in the PNS was observed. Similarly, 

this suggests that an alternative source of cholesterol exists in the PNS for myelin synthesis. 

However, whether exogenous uptake of cholesterol by myelinating glia is a physiological 

process under normal conditions or just a compensatory strategy when the endogenous source of 

cholesterol is lacking, is not clear.  

1.4.2 Regulation of oligodendrocyte development and myelination 

 Much effort has also been devoted to study myelination, a process involving 

oligodendrocyte proliferation, differentiation and maturation in the CNS, with the hope that this 

would inform our knowledge of dysmyelinating/demyelinating disorders. Myelination starts with 

oligodendrocyte precursor cells (OPCs) generated from the subventricular zone. OPCs, which 
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express lineage specific markers PDGFR-α and NG2 proteoglycan, migrate extensively 

throughout the CNS before settling along the fiber tracts of future white matter. During the 

differentiation stage, OPCs stop proliferating and transform into postmitotic oligodendrocytes. 

Oligodendrocytes no longer express OPC markers; instead, they upregulate myelin related genes, 

among which 2', 3' -cyclic nucleotide 3' -phosphodiesterase (CNP) is the earliest myelin specific 

protein to be synthesized by oligodendrocytes. During the maturation period, oligodendrocytes 

compete for axons. They either win by ensheathing axons with myelin, or lose and go into 

apoptosis (Barres and Raff, 1999).    

 It is now known that myelination is a highly dynamic process requiring a tight 

coordination between axons and oligodendrocytes. Within oligodendrocytes, myelination is 

controlled by both transcriptional and posttranscriptional mechanisms. A number of transcription 

factors have been identified for their importance in oligodendrocyte development, including 

Olig2 which is required for OPC specification (Ligon et al., 2006), Olig1 for oligodendrocyte 

differentiation (Lu et al., 2002), MRF (Myelin gene Regulatory Factor) for oligodendrocyte 

maturation and myelin maintenance (Emery et al., 2009; Koenning et al., 2012) and ZFP191 for 

final stages of oligodendrocyte development (Howng et al., 2010). Oligodendrocytes also 

employ miRNAs as a posttranscriptional mechanism to repress expression of genes that maintain 

OPCs at the undifferentiated stage, thereby promoting oligodendrocyte differentiation. Several 

miRNAs in this category have been identified using a conditional Dicer knockout mouse model 

(Dugas et al., 2010; Shin et al., 2009; Zhao et al., 2010). Epigenetic remodeling of chromatins 

through histone deacetylases (HDACs) is another way oligodendrocytes inhibit the expression of 

differentiation blockers (Shen et al., 2005; Ye et al., 2009). 
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 Given the importance of myelination for proper functioning of axons, it is not surprising 

to see that axons also participate in the regulation of this process. A number of inhibitory cues 

expressed by axons have been identified that inhibit oligodendrocyte differentiation, probably to 

ensure the proper temporal and spatial arrangement of oligodendrocytes. This includes 

extracellular ligands PSA-NCAM (Charles et al., 2000), Jagged1 (Wang et al., 1998) and Lingo1 

(Lee et al., 2007), as well as the secreted molecule Wnt (Fancy et al., 2009; Tawk et al., 2011). 

Myelination is also regulated by neuronal activity (Barres and Raff, 1993; Demerens et al., 1996). 

In a recent neuron-glia co-culture study, action potentials were shown to stimulate myelination 

through increased formation of cholesterol-rich membrane domains between axons and 

oligodendrocytes and subsequent up-regulation of MBP synthesis (Wake et al., 2011). This 

effect of axonal electrical activity was further shown to be mediated by oligodendroglial Fyn 

kinase, one of the Src family members that is thought to integrate signals from axons for 

myelination (Kramer-Albers and White, 2011) (Figure 1.3) (also see discussions in Chapter 5.2) . 

Figure 1.3 Axon-glial signalings in regulating myelination. (Adapted from Kramer-Albers 
and White, 2011) 
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1.4.3 NPC mice as a model to study myelination 

 Since NPC1 is an essential protein for lipoprotein cholesterol uptake through endocytosis, 

mice with mutations in Npc1 are a powerful tool to dissect the role of exogenous cholesterol for 

myelination. Several studies have suggested Npc1
nih mice exhibit a dysmyelination phenotype 

(Takikita et al., 2004; Weintraub et al., 1987; Weintraub et al., 1985). Along with this line, MRI 

studies also suggested a defect in the white matter of NPC patients (Trouard et al., 2005; 

Walterfang et al., 2010). However, the fact that Npc1 is absent in both neurons and 

oligodendrocytes in Npc1
nih mice makes it difficult to interpret these results, as it is unclear 

whether dysmyelination in NPC mice is attributable to its axonal pathology or a primary defect 

in oligodendrocytes. To address this question, in chapter 3 I will use the conditional knockout 

mouse model of Npc1 to dissect the contribution of individual cell types in NPC dysmyelination. 

 

1.5 Proteostasis 

 Protein homeostasis, or proteostasis, is the process that cells use to regulate the 

physiological functions of proteins in order to adapt to intrinsic and environmental challenges. 

Proteostasis is maintained by a complex network involving multiple signaling pathways that 

control protein synthesis, folding, trafficking, aggregation/disaggregation and degradation. Some 

of the regulatory pathways participating in the proteostasis network include the heat shock 

response, the unfolded protein response and the ubiquitin-proteasome system. Loss of function 

diseases are often a result of perturbed proteostasis, in which missense mutations lead to protein 

instability, mistrafficking and degradation. Therefore, strategies to restore the proteostasis 

network have been a focus for many conformational diseases, including several lysosomal 

storage diseases with mutated enzymes (Powers et al., 2009). 



20 
 

 The best example of work adapting proteostasis in lysosomal storage diseases  is in 

Gaucher's disease, which is most often caused by loss-of-function mutations in the lysosomal 

hydrolase glucocerebrosidase. As a result, glucosylceramide, the enzyme’s substrate, 

accumulates in the lysosomes and leads to visceral pathology including hepatosplenomegaly. In 

Type II and III Gaucher’s Disease, the central nervous system is also severely affected. Enzyme 

replacement therapy is being used to treat Type I Gaucher’s Disease; however, due to the 

inability of the recombinant enzyme to cross the blood brain barrier, other therapeutic 

approaches are needed for Type II and III Gaucher’s Disease patients with neurological 

symptoms (Sawkar et al., 2006a). 

 Several clinically important mutations, including N370S, the most prevalent mutation for 

Type I Gaucher’s Disease, and L444P, the most common one causing CNS involvement, impede 

proper folding of glucocerebrosidase in the ER and target the enzyme for ER associated 

degradation (ERAD) (Grabowski and Horowitz, 1997). Both mutations, however, do not affect 

the enzymatic activity of glucocerebrosidase in lysosomes (Sawkar et al., 2006b). Based on these 

observations, several strategies have been developed to enhance ER proteostasis in Gaucher’s 

Disease. In one study, proteostasis was targeted by increasing Ca2+ store in the ER lumen to 

enhance the folding capacity of ER chaperones whose activities are Ca2+ dependent (Mu et al., 

2008a; Ong et al., 2010; Wang et al., 2011). This was achieved by application of several L-type 

calcium channel blockers and ryanodine receptor antagonists. In another study, the unfolded 

protein response was activated to enhance the ER folding capacity for glucocerebrosidase by 

application of celastrol or MG-132 (Mu et al., 2008b). In both studies, proteostasis regulators 

promoted the folding and trafficking of mutant glucocerebrosidase  to enable its functional 

recovery in patient fibroblasts.  In addition, a synergistic effect was achieved by co-application 
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of a proteostasis regulator (celastrol or MG-132), which increases the ER concentration of 

correctly folded glucocerebrosidase , and a chemical chaperone (NN-DNJ), which binds to and 

stabilizes the correctly folded glucocerebrosidase in the ER (Mu et al., 2008b). The compounds 

used to restore glucocerebrosidase proteostasis have also been successfully applied to patient 

fibroblasts derived from other lysosomal storage diseases, including α-mannosidosis, 

mucopolysaccharidosis type IIIA and Tay-Sachs disease, all of which involve misfolding of a 

lysosomal hydrolase (Mu et al., 2008a; Mu et al., 2008b). 

 While the strategies described above have been successfully applied to lysosomal storage 

diseases with enzyme deficiencies, they have not been tested in those with mutations in integral 

lysosomal membrane proteins, whose folding and stability are generally more difficult to achieve. 

In Chapter 4, I will test this idea using NPC patient fibroblasts harboring the NPC1 I1061T 

mutation. 

 

1.6 Research objectives 

 Despite the growing understanding of NPC pathology and efforts to develop therapeutic 

interventions, the link between NPC1/NPC2 deficiencies and neurodegeneration remains elusive 

and effective, disease modifying therapies are not yet available. The work presented in this 

dissertation takes two approaches to address these challenges. The first objective is to define the 

timing and cell type critical for NPC neuropathology. In Chapter 2, I show that mice with global 

Npc1 deletion in adults recapitulates the pathology of those with germline deletion. The disease 

can also be reproduced when Npc1 is deleted in only neurons, while deletion in astrocytes does 

not lead to any CNS pathology. This work demonstrates that neurons, but not astrocytes, are the 

critical cell type for NPC neurodegeneration. As an extension of these data, Chapter 3 explores 
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the contribution of different CNS cell types to dysmyelination, a specific aspect of NPC 

neuropathology. I show that Npc1 deficiency in oligodendrocytes leads to forebrain 

dysmyelination in early postnatal days, followed by global demyelination and secondary 

Purkinje neuron loss in adult stages, demonstrating the critical role of exogenous cholesterol 

uptake in both myelin formation and maintenance. Unexpectedly, Npc1 deficiency in only 

neurons also disrupts myelination. This effect is mediated by Fyn kinase-dependent mechanisms. 

Taken together, these data establish that Npc1 is required by both neurons and oligodendrocytes 

for CNS myelin formation and maintenance. The second objective of my thesis is to identify 

therapeutic strategies that might benefit NPC patients. In Chapter 4, I seek to modulate the 

cellular proteostasis machinery to achieve functional recovery in patient fibroblasts harboring an 

NPC1 I1061T mutation. This work shows that targeting ER proteostasis network using 

ryanodine receptor antagonists promotes the folding and trafficking of NPC1 I1061T protein, 

and rescues the cholesterol storage and sphingolipid mistrafficking defects in patient fibroblasts. 

In conclusion, adapting NPC1 proteostasis might be a successful strategy in NPC disease. 
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Chapter 2  

 

Temporal and cell-specific deletion establishes that neuronal Npc1 

deficiency is sufficient to mediate neurodegeneration1 

 

2.1 Abstract 

 Niemann-Pick type C disease (NPC) is an autosomal recessive lysosomal storage 

disorder caused by mutations in the NPC1 or NPC2 genes. Loss of function mutations in either 

gene disrupt intracellular lipid trafficking and lead to a clinically heterogeneous phenotype that 

invariably includes neurological dysfunction and early death. The mechanism by which impaired 

lipid transport leads to neurodegeneration is poorly understood. Here we used mice with a 

conditional null allele to establish the timing and cell type that underlie neurodegeneration due to 

Npc1 deficiency. We show that global deletion of Npc1 in adult mice leads to progressive weight 

loss, impaired motor function, and early death in a time course similar to that resulting from 

germline deletion. These phenotypes are associated with the occurrence of characteristic 

neuropathology including patterned Purkinje cell loss, axonal spheroids and reactive gliosis, 

demonstrating that there is not a significant developmental component to NPC 

                                                           
1 This chapter was published as: 
Yu T, Shakkottai VG, Chung C, Lieberman AP. Temporal and cell-specific deletion establishes that neuronal Npc1 
deficiency is sufficient to mediate neurodegeneration. Hum Mol Genet. 2011 Nov 15;20(22):4440-51. 
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neurodegeneration. Furthermore, we show that these same changes occur when Npc1 is 

specifically deleted only in neurons, establishing that neuronal deficiency is sufficient to mediate 

CNS disease. In contrast, astrocyte-specific deletion does not impact behavioral phenotypes, 

CNS histopathology or synaptic function. We conclude that defects arising in neurons, but not in 

astrocytes, are the determining factor in the development of NPC neuropathology. 

 

2.2 Introduction 

Niemann-Pick type C disease (NPC) is a childhood-onset neurodegenerative disorder 

characterized biochemically by the accumulation of unesterified cholesterol and 

glycosphingolipids in late endosomes and lysosomes (Vanier, 2010). Loss of function mutations 

in the NPC1 gene, which encodes a multipass transmembrane protein that is essential for 

mobilizing cholesterol from the endolysosomal system, disrupt intracellular lipid trafficking in 

~95% of NPC patients (Carstea et al., 1997; Kwon et al., 2009; Park et al., 2003). The resulting 

disease exhibits progressive neuropathology in which intracellular lipid accumulation, 

abnormally swollen axons, neuron loss and demyelination underlie the occurrence of cognitive 

impairment, ataxia, seizures and early death (Higgins et al., 1992). Although disease-causing 

mutations were identified over a decade ago, it remains unknown how disruption of intracellular 

lipid transport leads to the severe, progressive neurological impairment characteristic of NPC.  

Insights into the pathogenesis of central nervous system (CNS) disease have been gleaned 

from studies of NPC mouse models. Recent pre-clinical therapeutic trials in mice with an 

insertional mutation that abolishes Npc1 gene function highlight cyclodextrin as a promising 

therapeutic candidate. Cyclodextrin circumvents the requirement for Npc1 to clear stored lipids 

from diseased cells (Abi-Mosleh et al., 2009), and several studies have shown that a single 
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injection at postnatal day 7 markedly prolongs the lifespan of mutant mice (Davidson et al., 2009; 

Griffin et al., 2004; Liu et al., 2009). In contrast, injections at later ages are less effective 

(Davidson et al., 2009; Griffin et al., 2004; Liu et al., 2009). Although cyclodextrin’s therapeutic 

mechanism remains incompletely understood, this time-sensitive beneficial effect raised the 

possibility of a critical developmental window for disease. 

Much effort has also focused on defining the cell types responsible for CNS degeneration, 

with the expectation that this is an important first step toward identifying pathogenic 

mechanisms. Following the demonstration that transgenic expression of Npc1 predominantly in 

the CNS diminishes disease severity in Npc1 null mice (Loftus et al., 2002), several models 

systems were used to explore the contributions of neurons and glia. Transgenic rescue 

experiments in NPC mouse and Drosophila models (Phillips et al., 2008; Zhang et al., 2008), and 

co-culture experiments with neurons and glia (Chen et al., 2007), raised the possibility that 

astrocytes contribute to neurodegeneration. However, conditional deletion of Npc1 only in 

cerebellar Purkinje cells and an analysis of chimeric mice demonstrate that Npc1 deficiency 

triggers cell autonomous Purkinje cell loss (Elrick et al., 2010; Ko et al., 2005). Furthermore, 

recent studies show that transgenic expression of Npc1 in neurons, but not astrocytes, delays 

CNS disease, indicating that Npc1 expression by neurons is necessary for nervous system 

function (Lopez et al., 2011). Whether neuronal or glial deficiency of Npc1 is sufficient to cause 

NPC neuropathology has not been addressed previously. 

To determine the extent to which Npc1 deficiency during CNS development is necessary 

for NPC neuropathology, and to help define the cell type critical for disease pathogenesis, we 

used mice containing a conditional null allele of the Npc1 gene. By employing various Cre lines, 

we achieved deletion of the Npc1 gene in a spatial and temporal specific manner. Our findings 
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demonstrate that deletion of Npc1 in the adult is sufficient to cause disease, and show that 

neurons, but not astrocytes, are the critical cell type for NPC neurodegeneration. 

 

2.3 Results 

2.3.1 Adult deletion of Npc1 recapitulates NPC neuropathology 

We first sought to determine the extent to which Npc1 deficiency during CNS 

development is necessary for NPC neuropathology. To answer this question, we utilized mice 

with a floxed allele of the Npc1 gene (Npc1
flox), in which exon 9 is flanked by loxP sites. We 

have shown previously that Cre-mediated deletion of exon 9 yields a null allele that is 

functionally indistinguishable from the spontaneous null mutant found in the widely used npc
nih

 

(Npc1
-/-

) model (Elrick et al., 2010).  These mice were bred with transgenic animals expressing a 

tamoxifen regulated Cre recombinase under the control of the CMV promoter (Cre-ER
TM) 

(Hayashi and McMahon, 2002). Our breeding strategy generated littermates expressing Cre 

recombinase that were compound heterozygotes of the conditional Npc1 allele. To induce Cre-

mediated deletion of experimental (Npc1
flox/-

, Cre-ER
TM+) and control (Npc1

flox/+
, Cre-ER

TM+) 

mice, both groups were injected with tamoxifen at 6 weeks, an age at which mice are sexually 

mature and have a fully developed CNS. Following injections, we verified diminished Npc1 

expression in the brain by western blot (Figure 2.1A). Similar to mice with germline deletion 

(Npc1 
∆/-), mice with adult deletion (Npc1

flox/-
, Cre-ER

TM+) expressed no detectable Npc1 protein 

in all brain regions examined. Additionally, control mice (Npc1
flox/+

, Cre-ER
TM+) expressed 

reduced protein levels after tamoxifen treatment. Our data indicate that this strategy successfully 

triggered widespread recombination throughout the brain. 
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The phenotypic consequences of Npc1 deletion in adults were weight loss, impaired 

motor function and early death. Following tamoxifen injections at 6 weeks, Npc1
flox/-

, Cre-ER
TM + 

males and females, but not Npc1
flox/+

, Cre-ER
TM + controls, started to lose weight around 16 

weeks (Figure 2.1B, C). By 12 weeks, Npc1
flox/-

, Cre-ER
TM+ mice exhibited impaired balance 

beam performance, indicating a motor deficit, which progressed with age (Figure 2.1D). The 

average lifespan of Npc1
flox/-

, Cre-ER
TM+ mice was 109 days post-tamoxifen injections, and 

comparison of the survival curves of Npc1
flox/-

, Cre-ER
TM+ mice (adult deletion) with that of 

Npc1 
∆/- mice (germline deletion) revealed slightly longer survival (Figure 2.1E), a finding that 

may reflect differences in the extent of gene deletion between these groups.  

Figure 2.1 Phenotype of mice following Npc1 deletion at 6 weeks. 
(A) Western blots of Npc1 protein in mouse brain lysates from three different regions. (B, C, D) 
Weight curves for male (B) and female (C) mice, and age-dependent performance on balance 
beam (D). Data are mean +/- SD. * p<0.05, ** p<0.01. (E) Kaplan-Meyer survival curves for 
mice following Npc1 deletion at 6 weeks (Npc1flox/-, Cre-ERTM +) and for littermate controls (Npc 
flox/+, Cre-ERTM +). For reference, the previously reported survival of mice with germline deletion 
(Npc1Δ/-) is shown (Elrick et al., 2010).  
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Based on prior analyses of the neuropathology of mice in which Npc1 deletion occurred in the 

germline, we next determined whether similar changes occurred following adult deletion. 

Calbindin staining of sagittal midline cerebellar sections revealed progressive anterior-to-

posterior Purkinje cell loss in tamoxifen treated Npc1
flox/-

, Cre-ER
TM+ mice (Figure 2.2A). This 

patterned Purkinje cell loss has been documented previously in Npc1
-/- and Npc1 

∆/- mice (Elrick 

et al., 2010; Sarna et al., 2003). Quantification of Purkinje cell density demonstrated that the rate 

of neuron loss fits well into a model incorporating a plateau followed by exponential decay 

(Figure 2.2B). The occurrence of an initial plateau was confirmed by comparing Npc1
flox/-

, Cre-

ER
TM+ mice at 8 weeks with Npc1

flox/+
, Cre-ER

TM+ controls at 21 weeks, indicating that there was 

no Purkinje cell loss 2 weeks after tamoxifen injections (Figure 2.2C). Quantification of 

Purkinje cell density by lobule revealed selective vulnerability of Purkinje cell subpopulations, 

with cells in anterior lobules degenerating early and those in posterior lobules exhibiting 

resistance to the toxicity of Npc1 deficiency (Figure 2.2D). This survival of Purkinje cells in 

posterior lobules occurred despite the accumulation of unesterified cholesterol (Figure 2.2E). 

All of these findings are similar to those documented in Purkinje cell specific Npc1 null mice 

(Npc1
flox/-

, Pcp2-Cre
+), further supporting the notion that Purkinje cell loss is independent of 

events during development (Elrick et al., 2010). In addition to cerebellar pathology, widespread 

axonal spheroids, secondary demyelination, microgliosis and astrocytosis were also present in 

Npc1
flox/-

, Cre-ER
TM+ mice (Figure 2.2F). We conclude that deletion of Npc1 in the adult CNS is 

sufficient to cause disease and that there is not a significant developmental component to NPC 

neuropathology. 

 

 



29 
 

Figure 2.2 Npc1 deletion in adult mice recapitulates Niemann-Pick C neuropathology. 
(A) Calbindin immunofluorescence shows progressive anterior-to-posterior Purkinje cell loss in 
the cerebellar midline of Npc1flox/-, Cre-ERTM+ mice following tamoxifen treatment at 6 weeks. 
Cerebellar lobules are labeled by Roman numerals. (B) Quantification of Purkinje cell density in 
the cerebellar midline over time (mean +/- SD). Slope of the decay phase indicates a half-life of 
34 days for Purkinje cells. (C) Comparison of Purkinje cell density in 8-week-old mutant mice 
(Npc1flox/-, Cre-ERTM+) and 21-week-old littermate controls (Npc flox/+, Cre-ERTM +), indicating no 
Purkinje cell loss 2 weeks after tamoxifen treatment. Data are mean +/- SD. p>0.05. (D) 
Quantification of Purkinje cell density in midline cerebellar lobules over time. Data are mean +/- 
SD. (E) Calbindin and filipin co-staining reveals accumulation of unesterified cholesterol in 
cerebellar lobule X of 18-week-old Npc1flox/-, Cre-ERTM + mice (right column), but not in littermate 
controls (left column). (F) Neurofilament (NF) and luxol fast blue (LFB) stains highlight swollen 
axons in the cortex (NF) and demyelination in the corpus callosum (LFB) of Npc flox/-, Cre-ERTM + 

mice (bottom row) compared to littermate controls (top row) at 22 weeks. Immunofluorescence 
demonstrates microgliosis (Iba1) and astocytosis (GFAP) in the cerebellum of Npc flox/-, Cre-
ERTM + mice at 18 weeks (bottom row). 
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2.3.2 Astrocyte-specific deletion of Npc1 does not lead to CNS 

pathology 

We next sought to establish the contribution of distinct CNS cell populations to NPC 

neuropathology, and began by deleting Npc1 only in astrocytes. To achieve astrocyte-specific 

deletion, we used mice expressing a tamoxifen regulated Cre recombinase under the control of 

the human GFAP promoter (GFAP-CreER
T2+) (Casper et al., 2007). To avoid confounding 

effects due to GFAP expression by neuronal precursors during development (Casper and 

McCarthy, 2006), Cre activation was induced by tamoxifen injections at 6 weeks. We confirmed 

gene deletion by staining brain sections with filipin, a fluorescent dye that marks accumulations 

of unesterified cholesterol (Bornig and Geyer, 1974). By performing GFAP and filipin co-

staining, we confirmed that Npc1
flox/-

, GFAP-CreER
T2+ mice, but not Npc1

flox/+
, GFAP-CreER

T2+ 

controls, contained widespread filipin-positive astrocytes throughout the brain (Figure 2.3A-C). 
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Figure 2.3 Astrocyte-specific deletion of Npc1 at 6 weeks leads to the accumulation of 
unesterified cholesterol in astrocytes.  
(A, B, C) Filipin and GFAP co-staining identifies the accumulation of unesterified cholesterol in 
astrocytes of Npc1 flox/-, GFAP-CreERT2 + mice (bottom rows in A and B) but not in littermate 
controls (top rows in A and B) after tamoxifen treatment. Shown are representative images of 
the hippocampus (A), cortex (B) and cerebellum (C). For comparison in panel C, co-staining 
following Purkinje cell specific deletion (Npc1flox/-, Pcp2-Cre+ mice) is shown in the right column.  
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Despite the occurrence of efficient recombination, phenotype analysis did not reveal any 

differences between astrocyte-specific null mice (Npc1
flox/-

, GFAP-CreER
T2+) and their littermate 

controls (Npc1
flox/+

, GFAP-CreER
T2+). Astrocyte-specific null mutants gained weight normally 

(Figure 2.4A, B), showed unimpaired motor performance (Figure 2.4C) and exhibited normal 

survival (Figure 2.4D). Similarly, histological examination did not uncover abnormalities in the 

astrocyte-specific null mutants. Compared to controls, there was no Purkinje cell loss in the 

cerebellar midline, even at 48 weeks (Figure 2.5A, B), nor was there formation of axonal 

spheroids or evidence of demyelination (Figure 2.5C). Additionally, we did not detect activated 

astrocytes or microglia (Figure 2.5C, Figure 2.6A), despite Npc1 deletion in astrocytes, 

supporting the notion that glial reaction occurred secondary to neuron loss. Similarly, while 

deletion of Npc1 in primary astrocytes in vitro led to the accumulation of free cholesterol, it did 

not diminish cell survival (Figure 2.7).  

Figure 2.4 Astrocyte-specific deletion of Npc1 at 6 weeks does not impair weight, motor 
function or survival. 
(A, B) Weight curves for male (A) and female (B) mice. Data are mean +/- SD. (C) Age 
dependent performance on balance beam. Data are mean +/- SD. (D) Percent survival at 44 
weeks. 
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Figure 2.5 Neuropathology and electrophysiology of Purkinje cells following astrocyte-
specific Npc1 deletion. 
(A) Calbindin staining shows no Purkinje cell loss in 48-week-old Npc1 flox/-, GFAP-CreERT2 + 

mice (right) or littermate controls (left) after tamoxifen treatment at 6 weeks. (B) Quantification of 
Purkinje cell density in midline cerebellar lobules (mean +/- SD). (C) Neurofilament and luxol 
fast blue stains reveal no swollen axons (NF) in the brainstem or demyelination (LFB) in the 
corpus callosum of 48-week-old Npc1 flox/-, GFAP-CreERT2 + mice (bottom row) compared with 
littermate controls (top row). Iba1 and GFAP immunofluorescence identify no gliosis in the 
cerebellum of these mice. (D, E, F) (D) Representative traces of parallel fiber-mediated 
excitatory postsynaptic currents (PF-EPSCs) to increasing stimulus intensity in a Purkinje cell 
(PC) from Npc1 flox/+, GFAP-CreERT2 + mice (left) and Npc1 flox/-, GFAP-CreERT2 + mice (right). (E) 
Quantification of decay time constants of PF-EPSCs with an amplitude of ~ 300 pA from Npc1 

flox/+, GFAP-CreERT2 + mice (n=5 PCs) and Npc1 flox/-, GFAP-CreERT2 + mice (n=6 PCs). Data are 
mean +/- SEM, p>0.05. (F) Mean decay time constants measured at different EPSC amplitudes, 
normalized to that of the smallest EPSC for each group.  (G, H) (G) Representative traces of 
PF-EPSCs to pairs of stimuli separated by 50ms from Npc1 flox/+, GFAP-CreERT2 + mice (left) and 
Npc1 flox/-, GFAP-CreERT2 + mice (right). (H) Quantification of the paired-pulse facilitation ratio, 
expressed as the ratio of the amplitude of the second response to the first one (n= 5 PCs from 
Npc1 flox/+, GFAP-CreERT2 + mice and n=8 PCs from Npc1 flox/-, GFAP-CreERT2 + mice). Data are 
mean +/- SEM, p>0.05. The experiments in Figure 2.5D-H were performed by Vikram 
Shakkottai. 
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Figure 2.6 Reactive gliosis in neuron-specific Npc1 null mice, but not astrocyte-specific 
null mutants. 
(A) Western blots of Iba1, GFAP and GAPDH from cerebellar homogenates of Npc1 flox/-, GFAP-
CreERT2 + and control mice at 48 wks. (B) Western blots of Iba1, GFAP and GAPDH from 
brainstem homogenates Npc1flox/-, Syn1-Cre + and control mice at 16 wks. 

 

Figure 2.7 Deletion of Npc1 in astrocytes in vitro leads to free cholesterol accumulation, 
but does not impair survival. 
(A) Western blots for Npc1, Cre and GFAP from primary astrocyte cultures after 4-day treatment 
of 5 uM 4-hydroxytamoxifen (4-OHT) to induce Cre-mediated deletion of Npc1.  
(B) Filipin and GFAP co-staining shows accumulation of unesterified cholesterol in astrocytes 
after Npc1 deletion (bottom row), but not in the control group (top row). 
(C) Survival of astrocytes over time after Npc1 deletion, as measured by XTT assay. The 
absorbance readings of Npc1 deficient astrocytes are normalized to the mean value of the 
control group for each time point and are expressed as survival ratio (n=8 wells for each group). 
Data are mean +/- SD. p>0.05. 
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We considered the possibility that Npc1 deletion in astrocytes impaired neuron function 

without triggering morphological hallmarks of neuron loss. To test this possibility, we focused 

on cerebellar glial cells in mice aged less than 4 weeks. To accomplish this, we generated 

another cohort of Npc1
flox/-

, GFAP-CreER
T2+ mice and Npc1

flox/+
, GFAP-CreER

T2+ controls 

which were injected with tamoxifen at postnatal days 12 and 14. As with mice receiving 

tamoxifen at 6 weeks, these astrocyte specific null mice showed no deficits in weight, motor 

function or survival (Figure 2.8).  

 
 
 
 
Figure 2.8 Astrocyte-specific deletion of Npc1 at P12 & P14 does not impair weight, 
motor function or survival.  
(A, B) Weight curves for male (A) and female (B) mice. Data are mean +/- SD. (C)  Age 
dependent performance on balance beam. Data are mean +/- SD. 

 

 

The synapses of cerebellar parallel fibers onto Purkinje cells are strongly wrapped by 

Bergmann glia, specialized astrocytes in the cerebellum that express a high density of glutamate 

transporters (Lehre and Danbolt, 1998). We determined whether the absence of Npc1 triggered 

glial dysfunction that altered the handling of glutamate at the parallel fiber-Purkinje neuron 

synapse in cerebellar slices. We assessed glutamatergic synaptic responses using whole-cell 
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patch-clamp recordings from Purkinje neurons in the presence of 50 µM picrotoxin to block 

inhibitory post-synaptic currents. In response to stimulation of parallel fibers in the molecular 

layer, we elicited excitatory postsynaptic currents (EPSCs) that increased in amplitude with 

increasing stimulus strength. Similar responses (Figure 2.5D) and decay time constants (Figure 

2.5E) were detected in Npc1
flox/-

, GFAP-CreER
T2+ and Npc1

flox/+
, GFAP-CreER

T2 mice. Since 

inhibiting glial glutamate transporters slows the decay of parallel fiber EPSCs when many 

nearby parallel fibers are simultaneously activated (Marcaggi et al., 2003), we also determined 

whether the EPSC decay time constant increased with increasing stimulus strength. However, we 

detected no significant slowing of EPSC decay with increasing stimulation of parallel fibers 

(Figure 2.5F). As Bergmann glia may influence presynaptic transmitter release (Bordey and 

Sontheimer, 2003), we determined whether paired-pulse facilitation was altered in the astrocyte-

specific null mutants; no difference was detected (Figure 2.5G, H). These electrophysiologic 

studies suggest that loss of Npc1 in Bergmann glia was not associated with functional alterations 

in synaptic transmission. Taken together, our analyses indicate that Npc1 deficiency in astrocytes 

is not a prime contributor to the NPC disease phenotype. 

 

2.3.3 Deletion of Npc1 in neurons is sufficient to cause 

neurodegeneration 

The fact that mice were not affected by deletion of Npc1 in astrocytes led us to test 

whether neurodegeneration in NPC is heavily dependent upon toxicity within neurons. To 

accomplish neuron-specific Npc1 deletion, we used transgenic mice expressing Cre recombinase 

under the control of the Synapsin1 promoter (Syn1-Cre) (Zhu et al., 2001). In these mice, Cre is 

abundantly and specifically expressed in neurons during late embryonic development in a wide 

range of brain regions, but is minimally expressed in cerebellar Purkinje cells.  
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 Filipin and NeuN co-staining verified that Npc1
flox/-

, Syn1-Cre
+ mice, but not Npc1

flox/+
, 

Syn1-Cre
+ controls, developed filipin-positive neurons in multiple brain regions including the 

cortex (Figure 2.9A) and brainstem (Figure 2.9B). Histological examination of liver sections 

from Npc1
flox/-

, Syn1-Cre
+ mice did not reveal an accumulation of foamy macrophages (Figure 

2.9C), consistent with reports that Cre expression is not leaky in visceral organs. Neuron-specific 

deletion of Npc1 reproduced the phenotypic features observed following global gene deletion. 

Npc1
flox/-

, Syn1-Cre
+ mice, but not littermate controls, developed progressive weight loss (Figure 

2.10A, B), motor deficits in both balance beam (Figure 2.10C) and rotarod (Figure 2.10D) tests, 

and early death, with an average lifespan of 105 days (Figure 2.10E).  
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Figure 2.9 Neuron-specific deletion of Npc1 leads to accumulation of unesterified 
cholesterol in neurons. 
(A, B) Filipin and NeuN co-staining identifies the accumulation of unesterified cholesterol in 
neurons of Npc1flox/-, Syn1-Cre+ mice (bottom rows) but not in littermate controls (top rows). 
Shown are representative images of cortex (A) and brainstem (B). 
(C) H&E stain shows foamy macrophages in the liver following germline deletion of Npc1 (Npc1/-) 
but not after neuron-specific deletion (Npc1flox/-, Syn1-Cre+). 
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Figure 2.10 Neuron-specific deletion of Npc1 impairs weight, motor performance and 
survival. 
(A, B) Weight curves for male (A) and female (B) mice. Data are mean +/- SD. * p<0.05, ** 
p<0.01. (C, D) Neuron-specific Npc1 deletion impairs performance on balance beam (C) and 
rotarod (D). Data are mean +/- SD. * p<0.05, ** p<0.01. (E) Kaplan-Meyer survival curves for 
mice following neuron-specific deletion of Npc1 (Npc1flox/-, Syn1-Cre +) or littermate controls 
(Npc1flox/+, Syn1-Cre +). For reference, the previously reported survival of mice with germline 
deletion (Npc1Δ/-) is shown (Elrick et al., 2010). 
 

 

  

 

 The development of motor impairment occurred in the absence of Purkinje cell 

degeneration. Histological examination of sagittal midline cerebellar sections revealed no 

Purkinje cell loss in end stage Npc1
flox/-

, Syn1-Cre
+ mice at 16 weeks (Figure 2.11A, B). This 

finding is consistent with the fact that the Syn1-Cre transgene is poorly expressed by Purkinje 

cells (Zhu et al., 2001). The occurrence of motor deficits in these animals indicates that 

pathology elsewhere in the nervous system is sufficient to cause this phenotype. In support of 
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this conclusion, Npc1
flox/-

, Syn1-Cre
+ mice, but not Npc1

flox/+
, Syn1-Cre

+ controls, showed severe 

axonal pathology with frequent axonal spheroids in the brainstem, loss of myelinated fibers in 

the corpus callosum, and activated microglia and astrocytes in many brain regions (Figure 2.11C, 

Figure 2.6B). We conclude that deletion of Npc1 in neurons is sufficient to recapitulate the 

neuropathological features of NPC mice.  

 

 
Figure 2.11 Neuropathology following neuron-specific deletion of Npc1. 
(A) Calbindin staining shows no Purkinje cell loss in 16-week-old Npc1flox/-, Syn1-Cre + mice (right) 
compared to littermate controls (left). (B) Quantification of Purkinje cell density in midline 
cerebellar lobules. Data are mean +/- SD. (C) Neurofilament (NF) and luxol fast blue (LFB) stains 
highlight swollen axons in the brainstem (NF) and loss of myelinated axons in the corpus 
callosum (LFB) of 16-week-old Npc1flox/-, Syn1-Cre + mice (bottom row) but not littermate controls 
(top row). Immunofluorescence demonstrates microgliosis (Iba1) in the brainstem and 
astrocytosis (GFAP) in the cortex in Npc1flox/-, Syn1-Cre + mice (bottom row) at 16 weeks. 
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2.4 Discussion 

Here we used Npc1 conditional null mutant mice to achieve global deletion of the Npc1 

gene in adults as well as restricted deletion in specific CNS cell types including astrocytes and 

neurons. Our findings demonstrate that deletion of Npc1 in adults is sufficient to recapitulate the 

disease phenotypes of weight loss, motor deficits and early death. Pathological changes in the 

CNS of mice following adult deletion were similar to those triggered by germline deficiency and 

included patterned Purkinje cell loss, axonal pathology and glial activation. Our findings indicate 

that an impairment of developmental events is not necessary for the occurrence of CNS 

pathology. Furthermore, our data establish that deletion of Npc1 in neurons, but not in astrocytes, 

is sufficient to cause neurodegeneration. The observation that neuronal loss of Npc1 is the 

primary cause of neuropathology in mice identifies neurons as the critical target cell for future 

therapeutic interventions.  

There has been significant interest in the potential role of astrocytes in the development 

of NPC neuropathology since the initial observation that these cells robustly express the NPC1 

protein (German et al., 2002; Hu et al., 2000; Patel et al., 1999). Astrocytes are an abundant glial 

cell in the CNS with diverse functions in synaptic transmission (Haydon, 2001), 

neuroinflammation (Farina et al., 2007) and lipid homeostasis (Vance et al., 2005). Astrocytic 

processes are closely associated with synapses, and these cells both promote synaptogenesis by 

secreting factors such as lipoproteins (Mauch et al., 2001) and thrombospondins (Christopherson 

et al., 2005) and facilitate synaptic function by contributing to the clearance of extracellular 

neurotransmitters (Danbolt, 2001). Astrocytes are also capable of releasing a variety of cytokines, 

and these inflammatory mediators have been implicated in the development of CNS disease 

(Allaman et al., 2011). While Npc1 deficiency in astrocytes in vitro results in the sequestration of 
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cholesterol in late endosomes and lysosomes, it does not impair the secretion of sterols, including 

cholesterol (Karten et al., 2005; Mutka et al., 2004). Nonetheless, given the importance of 

astrocytes in maintaining brain homeostasis, they have been implicated in NPC 

neurodegeneration. This notion was supported by prior studies of transgenic mice in which 

GFAP-promoter driven expression of an Npc1 transgene extended lifespan of Npc1
-/-

 mice 

(Zhang et al., 2008). However, a recent analysis of mice expressing a tagged Npc1 transgene 

whose expression was clearly restricted to astrocytes showed no phenotypic rescue (Lopez et al., 

2011). Here we determined the extent to which deletion of Npc1 only in astrocytes contributes to 

CNS disease. Our data show that astrocyte specific null mutants (Npc1
flox/-

, GFAP-CreER
 T2+) 

display no phenotypic abnormalities, histopathological changes or evidence of synaptic 

dysfunction. These unexpected findings demonstrate that Npc1 deficiency in astrocytes is not 

sufficient to mediate disease. Furthermore, the observation that astrocyte specific null mutants 

show no glial activation is consistent with prior work suggesting that gliosis is the consequence, 

but not the cause of neuronal dysfunction and death.  

In marked contrast, neuronal restricted deletion of Npc1 recapitulates many of the 

phenotypic and pathological features exhibited by mice with global, germline deficiency. The 

occurrence of motor impairment in Npc1
flox/-

, Syn1-Cre
+ mice was particularly interesting since 

this occurred in the setting of only limited Cre expression by cerebellar Purkinje cells (Zhu et al., 

2001). As such, Npc1
flox/-

, Syn1-Cre
+ mice displayed balance beam and rotarod deficits without 

concurrent Purkinje cell loss. Complementing these findings is our prior analysis of Purkinje cell 

specific null mutants that demonstrates motor impairment without other features of the NPC 

phenotype (Elrick et al., 2010). We conclude that although Purkinje cell loss is sufficient to 

mediate motor dysfunction, it is not required for it, and pathology elsewhere in the brain likely 
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accounts for this disease manifestation in mice expressing the Syn1-Cre transgene. The 

brainstem, thalamus, cortex and subcortical white matter are abnormal in these mutants, and 

several of these sites may contribute to the observed phenotype. 

The data reported here extend our understanding of disease mechanisms underlying the 

development of NPC neuropathology. We conclude that neuron dysfunction and loss are the 

consequence of cell autonomous processes, a notion originally suggested by an analysis of Npc1 

deficient Purkinje cells (Elrick et al., 2010; Ko et al., 2005) and supported by neuron restricted 

transgenic rescue experiments (Lopez et al., 2011). We find no evidence that astrocytes are 

primary contributors to disease pathology, despite the existence of multiple potential 

mechanisms that made them attractive candidates. Finally, our data support the emerging concept 

that glial reaction and neuroinflammation occur secondary to neuronal injury. Whether the 

inflammatory mediators they produce contribute to the pathogenic cascade remains to be defined. 

Taken together, our analysis establishes a critical role for neuronal deficiency of Npc1 in the 

development of CNS disease, and compels us to search for therapeutic targets that mediate cell 

autonomous neurodegeneration.  

 

2.5 Materials and Methods 

2.5.1 Mice 

 Npc1
flox/flox and Npc1

∆/- mice were generated as previously described (Elrick et al., 2010). 

Tamoxifen-inducible CMV-Cre mice (Cre-ER
TM+) (#004682) (Hayashi and McMahon, 2002), 

Pcp2-Cre mice (#004146) (Barski et al., 2000) and Sny1-Cre mice (#003966) (Zhu et al., 2001) 

were from the Jackson Laboratories . Tamoxifen-inducible GFAP-Cre mice (GFAP-CreER
T2+) 
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(Casper et al., 2007) were from the Mutant Mouse Regional Resource Center (#016992-MU/H). 

All mouse strains were backcrossed to C57BL6/J for >10 generations, except Syn1-Cre mice 

which were backcrossed 7 generations.  Animal use and procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals. 

2.5.2 Tamoxifen induction  

 Tamoxifen (Sigma) was dissolved in corn oil (Sigma) at 20 mg/ml and stored at -20 C in 

the dark. The stock solution was warmed to 37 C before injection. Adult mice were injected 

intraperitoneally with 3 mg (for Cre-ER
TM+ mice) or 5 mg (for GFAP-CreER

T2+ mice) tamoxifen 

per 40 g body weight for 5 consecutive days at 6 weeks. Pups were injected intraperitoneally 

with 5 mg tamoxifen per 40 g body weight at postnatal days 12 and 14. 

2.5.3 Phenotype analysis 

 Motor function was measured using the balance beam and rotarod tests as described 

previously (Elrick et al., 2010). 

2.5.4 Western blot 

 Brain lysates were homogenized in RIPA buffer (Thermo Scientific) containing complete 

protease inhibitor cocktail (Roche) and phosphatase inhibitor (Thermo scientific) using a motor 

homogenizer (TH115, OMNI International). Samples were resolved by 7% SDS-PAGE and 

transferred to nitrocellulose membranes (BioRad) on a semidry transfer apparatus. 

Immunoreactivity was detected by Immobilon chemilluminescent substrate (Thermo Scientific). 

Antibodies used were rabbit anti-NPC1 (1:2000, Abcam), mouse anti-Cre (1:1000, Millipore), 

rabbit anti-GFAP (1:5000, Dako), rabbit anti-Iba1 (1:2000, Wako), and rabbit anti-GAPDH 

(1:5000, Santa Cruz). 
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2.5.5 Histology 

 Mice were perfused with 0.9% normal saline followed by 4% paraformaldehyde. Brains 

and livers were removed and post-fixed in 4% paraformaldehyde overnight. Brains were bisected, 

with the right hemisphere processed for paraffin embedding and the left hemisphere processed 

for frozen sections. Prior to freezing, brain tissue was cryoprotected in 30% sucrose for 48 hr at 4 

C. Brains were frozen in isopentane chilled by dry ice and embedded in OCT (Tissue-Tek). 

Frozen sections were prepared at 14 µm in a cryostat and used for immunofluorescence staining 

for calbindin (1:1000, Sigma), GFAP (1:1000, Dako) and NeuN (1:500, Millipore). Sections 

were subsequently stained with filipin by incubating tissue sections for 90 min in PBS with 10% 

fetal bovine serum plus 25 μg/ml filipin (Sigma). For visualization of staining, secondary 

antibodies conjugated to Alexa Fluor 594 or Alexa Fluor 488 (Molecular Probes) were used and 

images were captured on a Zeiss Axioplan 2 imaging system. Paraffin-embedded sections were 

prepared at 5 μm and used for staining with H&E staining or Luxol fast blue, neurofilament 

(1:300, Covance) immunohistochemistry, and Iba1 (1:1000, Wako) and GFAP (1:1000, Dako) 

immunofluorescence. Quantification of Purkinje cell loss was performed on H&E stained 

sections. Counts were normalized to the length of the Purkinje layer, as measured by NIH 

ImageJ software, and reported as Purkinje cell density. 

2.5.6 Primary astrocyte culture 

 Cerebral hemispheres of 1-day-old mouse pups were dissected for the primary astrocyte 

culture described previously (Kaech and Banker, 2006). Tail DNA samples from pups were used 

for genotyping. After reaching confluence, cells were trypsinized and plated into 6-well plates 

for western blot, 12-well plates with coverslips for immunostaining, and 96-well plates for XTT 

assay. Cells were subsequently treated with 5uM 4-Hydroxytamoxifen (4-OHT, Sigma) after 
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reaching 80% confluence, for 4 consecutive days to induce Cre-mediated gene deletion. On the 

following day (designated as 1 day post-deletion), cells were harvested for western blot or 

immunostaining.  XTT assay was performed at different time points as indicated. 

2.5.7 XTT assay 

  XTT assay was carried out using Cell Proliferation Kit II (XTT, Roche) according to 

manufacturer’s instructions with slight modifications. Briefly, 20 uL XTT labeling mixture was 

added to each 96-well containing 100 uL medium. Cells were then incubated at 37 C for 1 hour, 

and the absorbance was measured at 490 nm with the reference at 650 nm.  

2.5.8 Electrophysiology 

 Whole-cell recordings were obtained from Purkinje neurons in 300 μm parasagittal 

cerebellar slices prepared from 25 to 30 day old mice. Vibratome sections were cut in ice-cold 

solution containing (in mM): 87 NaCl, 2.5 KCl, 25 NaHCO3, 1 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 

75 sucrose and 10 glucose, bubbled with 5% CO2/95% O2. Slices were incubated at 33 C in 

artificial CSF (ACSF), containing in mM: 125 NaCl, 3.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 

CaCl2, 1 MgCl2, and 10 glucose, bubbled with 5% CO2/95% O2. Purkinje neurons were 

visualized with infrared differential interference contrast (IR-DIC) optics on a Nikon upright 

microscope. Borosilicate glass patch pipettes (with resistances of 2–5 MΩ) were filled with 

internal recording solution containing (in mM): 130 Cs Methanesulfonate, 5 CsCl, 4 NaCl, 2 

MgCl2, 5 EGTA, 4 Mg ATP, 0.3 Tris-GTP, 10 Na Phosphocreatine, 5 QX-314, and 10 HEPES, 

pH 7.3. Whole-cell recordings were made in ACSF containing 50 µM Picrotoxin, 1–5 h after 

slice preparation using an Axopatch 200B amplifier, Digidata 1400 interface and pClamp-10 

software (Molecular Devices, Union City, CA, USA). Series resistance was compensated 50-

70%. Cells were rejected if series resistance was greater than 15 mΩ.  Excitatory post-synaptic 
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currents (EPSCs) were recorded in voltage-clamp mode at a holding potential of − 70 mV. 

EPSCs from were evoked by applying square wave current pulses via a tungsten bipolar 

electrode to the molecular layer ~100 μm from the Purkinje neuron of interest. Analog current 

traces were digitized at 100 kHz. EPSC decay time constants were obtained by fitting the current 

decay between 10% and 80% of the peak current amplitude to a single exponential as previously 

described (Takahashi et al., 1995). 

2.5.9 Statistics 

 Statistical significance was assessed by unpaired Student’s t test (for comparison of two 

means) or ANOVA (for comparison of more than two mean). The Newman-Keuls post hoc test 

was performed to carry out pairwise comparisons of group means if ANOVA rejected the null 

hypothesis. Statistics were performed using the software package Prism 5 (GraphPad Software). 

P values less than 0.05 were considered significant. 
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Chapter 3  

 

Npc1 acting in neurons and glia is essential for the formation and 

maintenance of CNS myelin 

 

3.1 Abstract  

 Cholesterol availability is rate-limiting for myelination, and prior studies have established 

the importance of cholesterol synthesis by oligodendrocytes for normal CNS myelination. 

However, the contribution of cholesterol uptake through the endocytic pathway has not been 

fully explored. To address this question, we used mice with a conditional null allele of the Npc1 

gene, which encodes a transmembrane protein critical for mobilizing cholesterol from the 

endolysosomal system. Loss of function mutations in the human NPC1 gene cause Niemann-

Pick type C disease, a childhood-onset neurodegenerative disorder in which intracellular lipid 

accumulation, abnormally swollen axons and neuron loss underlie the occurrence of early death. 

Both NPC patients and Npc1 null mice exhibit myelin defects indicative of dysmyelination, 

although the mechanisms underlying this defect are incompletely understood. Here we use 

temporal and cell type specific gene deletion in order to define effects on CNS myelination. Our 

results unexpectedly show that deletion of Npc1 in neurons alone leads to an arrest of 

oligodendrocyte maturation and to subsequent failure of myelin formation. This defect is 
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associated with decreased activation of Fyn kinase, an integrator of axon-glial signals that 

normally promotes myelination. Furthermore, we show that deletion of Npc1 in oligodendrocytes 

results in delayed myelination at early postnatal days. Aged, oligodendocyte-specific null 

mutants also develop late stage demyelination, followed by secondary Purkinje neuron loss. 

These data demonstrate that lipid uptake by neurons and oligodendrocytes through an Npc1-

dependent pathway is required for both the formation and maintenance of CNS myelin. 

 

3.2 Introduction 

 Ensheathment of axons by myelin is an evolutionary feature of the vertebrate nervous 

system that is accomplished by the extended and specialized plasma membranes of 

oligodendrocytes in the CNS and Schwann cells in the PNS. Myelin contains at least 70% lipids 

by dry weight (Baumann and Pham-Dinh, 2001), and this high ratio of lipid to protein ensures 

the insulating properties of myelin to maximize the efficiency of nerve conduction. Among all 

the lipid species found in the myelin sheath, unesterified cholesterol is a major component 

(Baumann and Pham-Dinh, 2001). In the mouse CNS, cholesterol in compact myelin represents 

~78% of the total lipid pool (Dietschy and Turley, 2004), and the availability of cholesterol is the 

rate-limiting step for myelination (Saher et al., 2005). Since the CNS is shielded by the blood 

brain barrier, cholesterol required for myelination comes entirely from local synthesis (Dietschy 

and Turley, 2004). Both neurons and glia obtain the cholesterol they need either through 

endogenous synthesis or by uptake of lipoprotein particles produced and released within the CNS. 

That endogenously synthesized cholesterol is critical for CNS myelination in mice is 

demonstrated by deletion in oligodendrocytes of squalene synthase, the first dedicated enzyme of 

sterol synthesis (Saher et al., 2005). These mutant mice exhibit delayed myelination, suggesting 
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that exogenously supplied cholesterol also contributes to CNS myelin formation. However, 

whether cholesterol from exogenous sources is required for myelin synthesis, or just a 

compensatory source when endogenous synthesis is lacking in myelinating glia, has not been 

explored.  

 An essential component of the pathway through which cholesterol in lipoprotein particles 

is mobilized from the endolysosomal system is the Npc1 protein (Carstea et al., 1997; Loftus et 

al., 1997). This multipass transmembrane protein resides in late endosomes and lysosomes 

(Davies and Ioannou, 2000; Garver et al., 2000; Higgins et al., 1999; Neufeld et al., 1999), and 

functions cooperatively with the Npc2 protein to facilitate cholesterol efflux (Deffieu and Pfeffer, 

2011; Kwon et al., 2009). Loss of functional Npc1 disrupts intracellular lipid trafficking, and 

leads to the sequestration of unesterified cholesterol and glycosphingolipids in late endosomes 

and lysosomes (Karten et al., 2009). Mutations in the human NPC1 gene cause Niemann-Pick 

type C disease (NPC), a fatal childhood-onset neurodegenerative disorder (Vanier, 2010). Mice 

with a null mutation in the Npc1 gene (Npc1
-/-) recapitulate the human disease, and exhibit 

progressive CNS neuropathology in which intracellular lipid accumulation, abnormally swollen 

axons, neuron loss and gliosis underlie the occurrence of ataxia and early death (German et al., 

2002; Loftus et al., 1997). Notably, both NPC patients and Npc1
-/- mice exhibit myelin defects 

indicative of dysmyelination, particularly in the forebrain (Takikita et al., 2004; Trouard et al., 

2005; Walterfang et al., 2010; Weintraub et al., 1987; Weintraub et al., 1985). However, the 

complex pathology resulting from Npc1 deficiency in both neurons and oligodendrocytes has 

limited the utility of these global null mutants to provide a detailed understanding of the 

contribution of exogenous cholesterol to CNS myelination.   
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 Here we use mice with a conditional null allele of the Npc1 gene to achieve temporal and 

cell type specific deletion in order to define effects on CNS myelin. We show that deletion of 

Npc1 restricted to neurons unexpectedly recapitulates the dysmyelination phenotype of global 

null mutants. This effect is mediated by a block in maturation of oligodendrocyte lineage cells 

that is associated with decreased activation of Fyn kinase, an integrator of axon-glial signals that 

normally promote myelination. Furthermore, we show that deletion of Npc1 in oligodendrocytes 

triggers a similar, though less severe impairment of CNS myelination, as well as late-onset 

demyelination and secondary neurodegeneration. Our analyses suggest that exogenous 

cholesterol entering cells through an Npc1-dependent pathway is necessary for both the 

formation and maintenance of CNS myelin. 

 

3.3 Results 

3.3.1 Global Npc1 deficiency leads to CNS dysmyelination, followed 

by demyelination. 

 To confirm the requirement of Npc1 for proper myelination in mice during early 

postnatal stages, we utilized mice with a floxed Npc1 allele (Npc1
flox) (Elrick et al., 2010). Cre-

mediated deletion yields a null allele that is functionally indistinguishable from the spontaneous 

null mutation found in Npc1
nih mice (Npc1

-/-) (Elrick et al., 2010; Loftus et al., 1997). To 

generate mice with Npc1 deletion in the germline, Npc1
flox/flox mice were bred with transgenic 

mice expressing Cre recombinase under the control of the EIIa promoter (Lakso et al., 1996). 

Mice mosaic for the conditionally deleted allele were bred with mice carrying the Npc1
- allele to 

generate compound heterozygotes of the conditionally deleted and null Npc1 alleles (Npc1
/-). 

We also generated mice with Npc1 deletion in adults by using a tamoxifen-regulated Cre 
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recombinase under the control of the cytomegalovirus (CMV) promoter (Cre-ER
TM+) (Hayashi 

and McMahon, 2002). Cre-mediated deletion of Npc1 in adults was induced by tamoxifen 

injections at 6 weeks, an age at which myelination is complete. Mice with adult deletion 

(Npc1
flox/-

, Cre-ER
TM+) have been shown to recapitulate most features of NPC neuropathology, 

and reach end-stage by ~22 weeks (Yu et al., 2011). To determine the effect of the timing of 

Npc1 deletion upon myelination, we compared 7-week-old mice with germline deletion (Npc1
/-), 

22-week-old mice with adult deletion (Npc1
flox/-

, Cre-ER
TM+) and 7-week-old controls (WT). 

MBP staining of sagittal midline brain sections revealed a dramatic reduction of myelin in 

Npc1
/- mice, particularly in the forebrain (Figure 3.1A). This pattern is similar to the myelin 

defects previously reported in Npc1 
-/- mice (German et al., 2002; Takikita et al., 2004; 

Weintraub et al., 1985). In contrast, Npc1
flox/-

, Cre-ER
TM+ mice exhibited a staining pattern 

morphologically similar to that in controls (Figure 3.1A). The difference in MBP staining 

patterns between Npc1
/- mice and Npc1

flox/-
, Cre-ER

TM+ mice suggests that Npc1 is required in 

early postnatal stages for proper myelin formation. Further analysis of myelin-specific proteins 

demonstrated a decrease in MBP and CNP protein levels in Npc1
flox/-

, Cre-ER
TM+ mice compared 

to littermate controls (Figure 3.1B). We conclude that myelin was properly formed in Npc1
flox/-

, 

Cre-ER
TM+ mice during postnatal development, but that these mice underwent demyelination at 

later stages, after Npc1 deletion at 6 weeks. Late stage demyelination in Npc1
flox/-

, Cre-ER
TM+ 

mice could be secondary to axonal loss, as evidenced by decreased neurofilament levels in these 

mice (Figure 3.1B). Taken together, our analysis suggests that lack of myelin in NPC mice is 

caused by dysmyelination at early postnatal days, followed by demyelination at end stage. 
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Figure 3.1 The effect of timing of Npc1 deletion on CNS myelination. 
(A) MBP immunofluorescence in brain midline sagittal sections of 7-week-old WT (top), 7-week-
old Npc1/- (middle), and 22-week-old Npc1flox/-, Cre-ERTM + mice following tamoxifen injections 
at 6 weeks (bottom). Bar, 1mm. (B) Western blots of CNP, MBP, MAG and NF-200 expression 
levels from cerebral cortex homogenates of 22-week-old Npc1flox/-, Cre-ERTM + mice and their 
littermate controls following tamoxifen injections at 6 weeks. GAPDH controls for loading. 
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3.3.2  Neuronal deletion of Npc1 leads to blockade of oligodendrocyte 

maturation and dysmyelination. 

 We next sought to dissect the contribution of different CNS cell types to NPC 

dysmyelination. We started by deleting Npc1 specifically in neurons, using transgenic mice 

expressing Cre recombinase under the control of the Synapsin1 promoter (Syn1-Cre) (Zhu et al., 

2001). We confirmed gene deletion by staining brain sections with filipin, a fluorescent dye that 

specifically marks accumulation of unesterified cholesterol (Bornig and Geyer, 1974). NeuN and 

filipin co-staining verified that Npc1
flox/-

, Syn1-Cre
+ mice, but not Npc1

flox/+
, Syn1-Cre

+ controls 

(Yu et al., 2011), developed widespread filipin-positive neurons throughout the brain, including 

brainstem and cortex (Figure 3.2A). To further verify neuron-specific gene deletion, Syn1-Cre
+ 

mice were crossed to a Rosa reporter line that has been widely used to demonstrate gene deletion 

in both neurons and oligodendrocytes (Soriano, 1999). LacZ staining revealed widespread 

positive cells in many brain regions including the cortex, with minimal staining in the corpus 

callosum, where neuronal cell bodies are lacking (Figure 3.2B). Co-staining with NeuN or Olig2 

showed that these LacZ positive cells were neurons, and not oligodendrocyte lineage cells 

(Figure 3.2C), further supporting the notion that we achieved neuron-specific deletion by using 

Syn1-Cre
+ mice.  
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Figure 3.2 Neuron-specific gene deletion in Syn1-Cre mice. 
(A) Filipin and NeuN co-staining identifies the accumulation of unesterified cholesterol in 
neurons of 7-week-old Npc1flox/-, Syn1-Cre+ mice. Shown are representative images of 
brainstem (top) and cortex (bottom). Bar, 100 µm. (B, C) Syn1-Cre+ mice were crossed to Rosa 
reporter mice and LacZ staining was performed as a readout for Cre-mediated recombination. 
(B) LacZ positive cells are abundant in the cortex but are lacking in the corpus callosum 
(highlighted by black dots; CC). Bars, 25 µm. (C) Co-staining with NeuN or Olig2 identifies LacZ 
positive cells as neurons, but not oligodendrocyte lineage cells. Shown are representative 
images of brainstem (top) and cortex (bottom). Bar, 200 µm. 
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 The effect of Npc1 deficiency in neurons upon myelination was first evaluated by MBP 

immunofluorescence at 3 different ages. At postnatal day 16 (P16), myelination was actively 

occurring in the forebrain of Npc1
flox/+

, Syn1-Cre
+ controls, with abundant MBP-positive 

myelinating oligodendrocytes populating the cortex (Figure 3.3B). In contrast, Npc1
flox/-

, Syn1-

Cre
+ mutants exhibited a severe paucity of myelin in the same region, with most of the MBP 

positive cells exhibiting the morphology of pre-myelinating oligodendrocytes (Figure 3.3B). At 

7 weeks, myelination was completed in Npc1
flox/+

, Syn1-Cre
+ controls, but was greatly attenuated 

in the cortex of Npc1
flox/-

, Syn1-Cre
+ mutants. No recovery of myelination was observed in 

mutants aged to 16 weeks (Figure 3.3B), which is end stage for these mice (Yu et al., 2011). 

Although MBP staining was markedly decreased in the cortex of Npc1
flox/-

, Syn1-Cre
+ mutants, 

other brain regions exhibited a normal staining pattern, reminiscent of the selective defects in 

myelination observed after global germline deletion (Figure 3.1A). Regional-specific 

dysmyelination was further supported by western blots showing decreased levels of myelin-

specific proteins including CNP, MBP and MAG in cortex, but not brainstem of Npc1
flox/-

, Syn1-

Cre
+ mutants (Figure 3.3C). Electron microscopy confirmed that the density of myelinated 

nerve fibers in the corpus callosum was greatly reduced in Npc1
flox/-

, Syn1-Cre
+ mutants at 3 

weeks (Figure 3.3E). Notably, neurofilament protein levels in the cortex were similar between 

Npc1
flox/+

, Syn1-Cre
+ controls and Npc1

flox/-
, Syn1-Cre

+ mutants at P16 (Figure 3.3C), and 

neurofilament immnunofluorescence staining showed no significant axonal pathology (Figure 

3.3D). These data indicate that dysmyelination in the forebrain of Npc1
flox/-

, Syn1-Cre
+ mutants 

was not secondary to axonal loss. 
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Figure 3.3 Forebrain dysmyelination in mice following neuron-specific deletion of Npc1. 
(A) Schematic of midline sagittal section of the mouse brain, with the area shown in panel B 
highlighted by the black rectangle. Illustration is from www.gensat.org. (B) MBP 
immunofluorescence in forebrain sagittal sections of Npc1flox/-, Syn1-Cre+ and control mice at 
P16, and at 7 & 16 weeks. Bar, 500 µm. (C) Western blots of myelin-specific proteins and NF-
200 from brainstem and cerebral cortex homogenates of P16 Npc1flox/-, Syn1-Cre+ mice and 
controls. GAPDH controls for loading. (D) MBP and NF co-staining of P16 Npc1flox/-, Syn1-Cre+ 
and littermate control mice. Ctx, cortex; CC, corpus callosum; Hp, hippocampus. Bar, 200 µm. 
(E) Electron microscopy of the corpus callosum of P16 Npc1flox/-, Syn1-Cre and control mice. 
Bar, 500 nm. 
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  To characterize the mechanism underlying dysmyelination in Npc1
flox/-

, Syn1-Cre
+ 

mutants, we assessed oligodendrocyte lineage cells at different stages of differentiation. At P16, 

Npc1
flox/-

, Syn1-Cre
+ mutants showed a significantly reduced number of CC1-positive mature 

oligodendrocytes in the forebrain (Figure 3.4A, C) but a normal density of NG2-positive 

oligodendrocyte precursor cells (OPCs) (Figure 3.4A, B). As previously reported for global null 

Npc1 mutants (Takikita et al., 2004), this deficit of mature oligodendrocytes was not associated 

with evidence of increased apoptosis (data not shown). The paucity of mature oligodendrocytes 

was associated with a reduced number of cells in the corpus callosum expressing Sip1, a 

signaling protein implicated oligodendrocyte differentiation (Figure 3.4D) (Weng et al., 2012). 

These data indicated that Npc1 deficiency in neurons triggered a block of oligodendrocyte 

maturation, and prompted us to determine whether signals known to regulate oligodendrocyte 

maturation and myelination were perturbed in Npc1
flox/-

, Syn1-Cre
+ mutants. We first examined 

proteins that mediate signaling between axons and oligodendrocyte lineage cells including PSA-

NCAM (Charles et al., 2000), Lingo1 (Lee et al., 2007) and Jagged1 (Wang et al., 1998), and 

found no differences between Npc1
flox/-

, Syn1-Cre
+ mutants and controls at P16 (Figure 3.5A). 

Similarly, we found no evidence of astrocyte activation in Npc1 mutants (Figure 3.5B, C). In 

contrast, activity of the non-receptor tyrosine kinase Fyn (Umemori et al., 1994) was reduced in 

the cortex of Npc1
flox/-

, Syn1-Cre
+ mutants, as evidenced by decreased levels of the active form 

(phosphorylated at tyrosine 420) and concurrently increased levels of the inactive form 

(phosphorylated at tyrosine 531) (Figure 3.4E).  As oligodendroglial Fyn is an integrator of 

axonal signals that promote myelination (Kramer-Albers and White, 2011), the decreased 

activity of Fyn in Npc1
flox/-

, Syn1-Cre
+ mutants suggests that Npc1 deficiency in axons leads to a 
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disruption of axon-glial signaling that is crucial for oligodendrocyte differentiation and 

myelination. 

 

Figure 3.4 Neuron-specific deletion of Npc1 leads to blockade of oligodendrocyte 
maturation. 
(A) NG2 and CC1 co-staining in the corpus callosum of a P16 Npc1flox/-, Syn1-Cre+ and control 
mice. Bar, 200 µm. (B) Western blot of NG2 expression levels from cerebral cortex 
homogenates of P16 Npc1flox/-, Syn1-Cre+ mice and controls. GAPDH controls for loading. (C) 
Quantification of CC1+ cell number in the corpus callosum of P16 Npc1flox/-, Syn1-Cre+ mice and 
controls. Data are mean +/- SD. *** P<0.001. (D) Sip1 and CC1 co-staining in the corpus 
callosum of a P16 Npc1flox/-, Syn1-Cre+ and control mice. Ctx, cortex; CC, corpus callosum; Hp, 
hippocampus. Bar, 100 µm. (E) Cerebral cortex homogenates of P16 control (lane 1) and 
Npc1flox/-, Syn1-Cre+ mice (lane 2) were subject to immunoprecipitation with an anti-Fyn 
antibody. The resulting lysates were probed for total Fyn, and for Fyn phosphorylated at tyrosine 
420 (active form) or tyrosine 531 (inactive form). 
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Figure 3.5 No evidence for changes in several axon-glial signaling pathways or induction 
of reactive gliosis following neuron-specific Npc1 deletion. 
(A) Western blots of PSA-NCAM, Lingo1, and Jagged1 from brainstem and cerebral cortex 
homogenates of P16 Npc1flox/-, Syn1-Cre+ mice and controls. GAPDH controls for loading. (B, C) 
GFAP immunofluorescence (B) and western blots (C) show no evidence for reactive gliosis in 
the brainstem and cortex of P16 Npc1flox/-, Syn1-Cre+ mutants and controls. Hsp90 controls for 
loading. Bar, 200 µm. 
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3.3.3 Oligodendrocyte deletion of Npc1 results in a similar, but milder 

dysmyelination phenotype during postnatal development. 

 Next, we tested if Npc1 deficiency in oligodendrocyte lineage cells contributes to the 

pathogenesis of dysmyelination in NPC mice. To accomplish this, we used transgenic mice 

expressing Cre recombinase under the control of the CNP promoter (CNP 
Cre/+) (Lappe-Siefke et 

al., 2003). In these mice, Cre is abundantly and specifically expressed in postmitotic 

oligodendrocytes. Co-staining for Cre and Olig2 verified that Cre was specifically expressed in a 

subset of Olig2+ oligodendrocyte lineage cells in various brain regions including brainstem and 

cortex (Figure 3.6B). Filipin staining revealed minimal accumulation of unesterified cholesterol 

in Npc1
flox/-

, CNP
Cre/+ mutants (Figure 3.6A), a finding both consistent with a previous report 

showing no detectable cholesterol accumulation in oligodendrocytes of Npc1
-/- mice (Liao et al., 

2009) and indicative of the cellular specificity of this Cre line. 
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Figure 3.6 Oligodendrocyte-specific gene deletion by CNPCre/+. 
 
(A) Filipin and NeuN co-staining shows lack of accumulation of unesterified cholesterol in 
neurons of 7-week-old Npc1flox/-, CNPCre/+ mice, with detection of only rare filipin-positive cortical 
neurons.  Shown are representative images of brainstem (top) and cortex (bottom). Bar, 100 µm. 
(B) Cre and Olig2 co-staining identifies expression of Cre in a subset of oligodendrocyte lineage 
cells in a P16 Npc1flox/+, CNPCre/+ mouse. Shown are representative images of brainstem (top) 
and cortex (bottom). Bar, 100 µm. (C) Western blots demonstrate expression of Cre in both 
brainstem and cortex in Npc1flox/-, CNPCre/+ mice and their littermate controls at P16.  Hsp90 
controls for loading. 
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 Deletion of Npc1 in oligodendrocytes resulted in a dysmyelination phenotype that was 

initially similar to that caused by Npc1 deletion in neurons. At P16, Npc1
flox/-

, CNP
Cre/+ mutants 

expressed markedly reduced levels of myelin-specific proteins including MBP, CNP and MAG 

in the cortex (Figure 3.7A, B). This dysmyelination phenotype partially recovered by 7 weeks 

(Figure 3.7A), a finding that indicates oligodendrocyte deletion delayed myelination and 

contrasts with the block produced by neuronal deletion. Myelination in the brainstem of Npc1
flox/-

, 

CNP
Cre/+ mutants was minimally affected (Figure 3.7B) despite robust Cre expression in this 

region (Figure 3.6B, C). Electron microscopy confirmed diminished density of myelinated nerve 

fibers in the corpus callosum of Npc1
flox/-

, CNP
Cre/+ mutants at 3 weeks (Figure 3.7D). Similar to 

neuron-specific mutants, dysmyelination in Npc1
flox/-

, CNP
Cre/+ mutants occurred without 

significant axonal pathology (Figure 3.7B, C). The requirement of Npc1 in oligodendrocytes for 

proper myelination was further confirmed by using an independent line in which Cre was highly 

expressed in OPCs (Olig2Cre/+ mice, Figure 3.8) (Schuller et al., 2008). Similar to Npc1
flox/-

, 

Syn1-Cre
+ mutants, Npc1

flox/-
, CNP

Cre/+ mutants at P16 showed reduced density of mature 

oligodendrocytes (Figure 3.9A, C), with normal numbers of OPCs in the forebrain (Figure 3.9A, 

B), indicating arrest of oligodendrocyte maturation. 
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Figure 3.7 Forebrain dysmyelination in mice with oligodendrocyte-specific deletion of 
Npc1. 
(A) MBP immunofluorescence in forebrain sagittal sections of Npc1flox/-, CNPCre/+ mice and 
controls at P16 and 7 weeks. Bar, 500 µm. (B) Western blots of myelin-specific proteins and 
NF-200 from brainstem and cerebral cortex homogenates of P16 Npc1flox/-, CNPCre/+ mice and 
controls. GAPDH controls for loading. (C) MBP and NF co-staining in the corpus callosum of 
P16 Npc1flox/-, CNPCre/+ and control mice. Ctx, cortex; CC, corpus callosum; Hp, hippocampus. 
Bar, 200 µm. (D) Electron microscopy of the corpus callosum of a P16 Npc1flox/-, CNPCre/+ and 
control mice. Bar, 50 nm. 
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Figure 3.8 Deletion of Npc1 in OPC by Olig2Cre/+ results in a similar dysmyelination 
phenotype 
(A) MBP immunofluorescence in forebrain sagittal sections of Npc1flox/-, Olig2Cre/ + and control 
mice at P16. Bar, 1 mm. (B) Western blots of myelin-specific proteins from cerebral cortex 
homogenates of P16 Npc1flox/-, Olig2Cre/ + mice and controls. GAPDH controls for loading. 

 

Figure 3.9 Oligodendrocyte-specific deletion of Npc1 leads to blockade of 
oligodendrocyte maturation. 
(A) NG2 and CC1 co-staining in the corpus callosum of P16 Npc1flox/-, CNPCre/+ and control mice. 
Ctx, cortex; CC, corpus callosum; Hp, hippocampus. Bar, 200 µm. (B) Western blot of NG2 
expression levels from cerebral cortex homogenates of P16 Npc1flox/-, CNPCre/+ mice and 
controls. GAPDH controls for loading. (C) Quantification of CC1+ cell number in the corpus 
callosum of P16 Npc1flox/-, CNPCre/+ mice and controls. Data are mean +/- SD. * P<0.05. 
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3.3.4 Mice with Npc1 deletion in oligodendrocytes develop 

demyelination in late stages. 

 As the Npc1
flox/-

, CNP
Cre/+ mutants aged, they developed progressive motor deficits 

(Figure 3.10C), although weight was not affected (Figure 3.10A, B). This led us to examine 

myelin levels in 23-week-old Npc1
flox/-

, CNP
Cre/+ mutants. We found decreased levels of myelin 

proteins not only in cortex, but also in brainstem and cerebellum (Figure 3.11A), where 

myelination in early postnatal days was nearly normal (Figure 3.7B). This indicated that 

widespread demyelination was taking place in aged Npc1
flox/-

, CNP
Cre/+ mutants.  We found this 

was associated with only mild changes in the pattern of MBP staining (Figure 3.11B). 

Interestingly, the total number of oligodendrocytes in the cerebellar white matter was unchanged 

in aged mutants (Figure 3.11C, D), suggesting that loss of Npc1 did not affect the survival of 

oligodendrocytes in adult mice. This demyelination was associated with secondary neuron loss in 

the cerebellum. We detected Purkinje cell loss in anterior lobules of 23-week-old but not 7-

week-old Npc1
flox/-

, CNP
Cre/+ mutants, as demonstrated by calbindin staining of sagittal midline 

sections (Figure 3.11E, G) and by loss of calbindin staining on western blot (Figure 3.11F). We 

conclude that Npc1 acts in oligodendrocytes both to promote normal myelination and to ensure 

the maintenance of myelin in the adult CNS. 

Figure 3.10 Phenotype of mice following oligodendrocyte-specific deletion of Npc1. 
(A, B) Weight curves for male (A) and female (B) mice. Data are mean +/- SD. (C) Age-
dependent performance on balance beam. Data are mean +/- SD. * p<0.05, *** p<0.001. 

 



69 
 

Figure 3.11 Wide-spread demyelination and Purkinje cell degeneration in aged mice with 
oligodendrocyte-specific deletion of Npc1.  
(A) Western blots of myelin-specific proteins from brainstem, cerebral cortex and cerebellar 
homogenates of 23-week-old Npc1flox/-, CNPCre/+ mice and controls. GAPDH controls for loading.  
(B) MBP immunofluorescence in cerebellar lobules III-VI of Npc1flox/-, CNPCre/+ and control mice 
at 7 & 23 weeks. Bar, 500 µm. (C, D) (C) Olig2 immunofluorescence in the cerebellar white 
matter of Npc1flox/-, CNPCre/+ mice and controls at 23 weeks. Schematic is shown on the left. 
Quantification of Olig2+ cell number is shown in (D). Data are mean +/- SD. n.s., not significant. 
Bar, 200 µm. (E) Calbindin immunofluorescence in the cerebellum of Npc1flox/-, CNPCre/+ mice 
and controls at 7 & 23 weeks. Roman numerals indicate cerebellar lobules. Bar, 500 µm. (F) 
Western blots of calbindin from cerebellar homogenates of Npc1flox/-, CNPCre/+ mice and controls 
at 7 & 23 weeks. GAPDH controls for loading. (G) Quantification of Purkinje cell density in 
midline cerebellar lobules at 23 weeks. Data are mean +/- SD. * p<0.05, ** p<0.01, *** p<0.001, 
n.s., not significant. 
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3.4 Discussion 

 Here we used Npc1 conditional null mice to establish the critical role of Npc1 in both 

neurons and oligodendrocytes for proper CNS myelination. Our findings demonstrate that 

deletion of Npc1 in neurons alone is sufficient to recapitulate the dysmyelination phenotype that 

occurs following global germline deletion. These mice display a severe phenotype, particularly 

in the forebrain, characterized by a lack of mature oligodendrocytes but a normal density of 

OPCs, indicating that Npc1 deficiency in neurons triggers an arrest of oligodendrocyte 

maturation. Our data also demonstrate that deletion of Npc1 in oligodendrocytes leads to similar 

but milder forebrain dysmyelination that largely recovers by 7 weeks, consistent with a delay 

rather than a block in myelination. Furthermore, we demonstrate that these oligodendrocyte-

specific mutants develop ataxia as they age, and that this is associated with widespread 

demyelination and Purkinje cell loss in anterior cerebellar lobules, establishing the occurrence of 

secondary neurodegeneration. Our results highlight the importance of Npc1 in both neurons and 

oligodendrocytes for the formation and maintenance of CNS myelin.  

 Oligodendrocyte differentiation and myelination is a highly dynamic process controlled 

by both intrinsic factors and extrinsic mechanisms (Emery, 2010). Recent studies of axon-glial 

communication have identified a series of axonal signals important for regulating myelination. 

Oligodendroglial Fyn, a Src family kinase, has been suggested to play a central role in 

integrating diverse axonal signals to initiate myelination (Kramer-Albers and White, 2011). 

Downstream signaling from activated Fyn kinase promotes oligodendrocyte survival, alters 

cytoskeleton polarity and increases the expression of myelin genes. Our analysis of neuron-

specific Npc1 mutants reveals decreased Fyn activity, and a regionally-restricted dysmyelination 

phenotype similar to that of Fyn knockout mice (Sperber et al., 2001). We suggest that Npc1 
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deficiency in neurons disrupts an axon-glial signal vital for promoting myelination. The axonal 

ligand responsible for oligodendroglial Fyn activation remains elusive. The requirement of Npc1 

for Fyn activation raises the possibility that a lipid species, such as cholesterol or a sphingolipid, 

may contribute to this signal. Additionally, recent neuron-glial co-culture studies demonstrate the 

role of action potentials in stimulating myelination through Fyn-dependent mechanisms (Wake et 

al., 2011). It is therefore also possible that defective Fyn activation results from decreased 

electrical activity of axons in Npc1
flox/-

, Syn1-Cre
+ mutants. Animal studies of cholesterol 

metabolism in myelinating glia have highlighted the importance of cell-autonomous production 

of cholesterol for myelin formation. Mice lacking oligodendroglial squalene synthase, an enzyme 

required for cholesterol synthesis, exhibit perturbed CNS myelination in early postnatal days 

(Saher et al., 2005). Similarly, deletion of SCAP (SREBP-cleavage-activating protein) in 

Schwann cells, a protein that complexes with SREBP to regulate the expression of genes 

promoting cholesterol synthesis and lipoprotein uptake, leads to PNS hypomyelination 

(Verheijen et al., 2009). It is notable that both mouse models partially recover at later stages, 

suggesting that myelinating glia have the capacity to overcome the lack of endogenous 

cholesterol production, probably through increased uptake. Here we present in vivo evidence 

indicating an important contribution of exogenous cholesterol to myelin synthesis. Our findings 

show that deletion of Npc1 in oligodendrocytes, which eliminates their utilization of cholesterol 

from the endocytosis of LDL or similar lipoprotein particles, leads to perturbed myelin formation 

in the CNS. Although Npc1 deficiency also impairs intracellular trafficking of sphingolipids, the 

blockade of exogenous cholesterol utilization and the essential role that cholesterol plays in 

myelination leads us to conclude that the effects observed here are due to a disruption in the 

availability of exogenous cholesterol. As shown for other cell types (Karten et al., 2009), we 
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speculate that the synthesis of endogenous cholesterol is up-regulated in Npc1 deficient 

oligodendrocytes. However, this compensatory up-regulation is insufficient to overcome the lack 

of exogenous cholesterol, especially during the peak phase of myelination. This suggests that 

extracellularly-derived cholesterol is indispensible for normal CNS myelination.  

 Although Npc1
flox/-

, CNP
Cre/+ mutants form myelin in the brainstem and cerebellum 

during postnatal development, they undergo wide-spread demyelination as adults. Biochemical 

studies have shown that in the adult CNS, myelin production and cholesterol turnover decrease 

to very low levels (Dietschy and Turley, 2004). It is therefore unlikely that demyelination in 

these adult mutants results from impaired access to exogenous cholesterol as a consequence of 

Npc1 deficiency. Rather, we speculate that late-stage demyelination stems from the unstable 

nature of the myelin sheath produced by mutant oligodendrocytes. Studies of cellular models of 

NPC have shown that cholesterol content is decreased in the plasma membrane of mutant cells 

(Hawes et al., 2010; Wojtanik and Liscum, 2003). This change may impact myelin by disrupting 

membrane fluidity, altering lipid rafts or modulating the function of membrane proteins, and 

thereby increasing vulnerability of aged mutants. Further analysis of the biochemical 

composition of the myelin sheath generated by Npc1-deficient oligodendrocytes will help define 

the mechanism mediating late-onset demyelination.  

 In summary, the data reported here extend our understanding of the role of cholesterol 

metabolism in myelination, and demonstrate that exogenous cholesterol is needed by both 

neurons and oligodendrocytes for the formation and maintenance of CNS myelin. A 

characteristic feature of Npc1 deficient mice, both global nulls and cell-specific knockouts, is the 

regionally severe dysmyelination that occurs during early postnatal stages. Fate-mapping studies 

have established that OPCs originate from heterogeneous regions of the subventricular zone, 
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under the influence of different signaling pathways (Richardson et al., 2006). We speculate that 

these regional differences in oligodendrocyte lineage cells lead to distinct responses to axonal 

signals or to the need for exogenously-derived cholesterol for proper myelination, contributing to 

severe dysmyelination particularly in the forebrain of Npc1 mutants. While the precise 

mechanism underlying this regional selectivity remains to be defined, our data establish a critical 

role for Npc1 in both myelin formation and maintenance. Our findings have important 

implications for understanding the pathogenesis of NPC disease and may also inform our 

knowledge of other dysmyelinating/demyelinating disorders. 

 

3.5 Materials and Methods 

3.5.1 Mice 

 Npc1
flox/flox and Npc1

∆/- mice were generated as previously described (Elrick et al., 2010). 

Other mice used include tamoxifen-inducible CMV-Cre (Cre-ER
TM+) (#004682, Jackson 

Laboratories), Sny1-Cre (#003966, Jackson Laboratories), CNP
Cre/+ mice (Lappe-Siefke et al., 

2003), Olig2
Cre/+ mice (Schuller et al., 2008) and Rosa reporter mice (#003474, Jackson 

Laboratories). All mouse strains were maintained on the C57BL6/J background, except Olig2 

Cre/+ mice which were maintained on the 129/C3H mixed background. Animal use and 

procedures were approved by the University of Michigan Committee on the Use and Care of 

Animals. 
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3.5.2 Tamoxifen induction 

 Tamoxifen (Sigma) was dissolved in corn oil (Sigma) at 20 mg/ml and stored at -20 C in 

the dark. The stock solution was warmed to 37 C before injection. 6-week-old mice were 

injected intraperitoneally with 3 mg tamoxifen per 40 g body weight for 5 consecutive days. 

3.5.3 Phenotype analysis 

 Motor function was measured using the balance beam test as described previously (Elrick 

et al., 2010). 

3.5.4 Western blot 

 Brain lysates were homogenized in RIPA buffer (Thermo Scientific) containing 

Complete protease inhibitor cocktail (Roche) and phosphatase inhibitors (Thermo scientific) 

using a motor homogenizer (TH115, OMNI International). Samples were resolved by 4-20% 

Tris-glycine gradient gel and transferred to nitrocellulose membranes (BioRad) on a semidry 

transfer apparatus. Immunoreactivity was detected by Immobilon chemilluminescent substrate 

(Thermo Scientific). Antibodies used were rat anti-MBP (1:2000, Abcam), mouse anti-CNP 

(1:2000, Millipore), mouse anti-MAG (1:5000, Millipore), mouse anti-Neurofilament 200 

(1:5000, Millipore), rabbit anti-NG2 (1:1000, Millipore), rabbit anti-GAPDH (1:5000, Santa 

Cruz), mouse anti-Cre (1:1000, Millipore), rabbit anti-GFAP (1:5000, Dako), mouse anti-PSA-

NCAM (1:1000, Millipore), goat anti-Jagged1(1:1000, Santa Cruz) and rabbit anti-Lingo1 

(1:1000, Abcam). 

3.5.5 Immunoprecipitation 

 200 µg brain lysates were immunoprecipitated with 10 µg anti-Fyn antibody (FYN3, 

Santa Cruz) overnight at 4C, followed by incubation with 20 µl Protein A beads (Santa Cruz) for 
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1h at 4C. The immunoprecipitates were then washed 4 times with protein lysis buffer before 

being boiled with 2X sample buffer at 100C for 5min. For the subsequent western blot analysis, 

anti-Fyn (FYN3, Santa Cruz), Src pY418 and pY529 antibodies (Life technologies) were used to 

detect total Fyn and phosphorylation of Fyn at Y420 and Y531, respectively. 

 

3.5.6 Histology 

 Mice were perfused with 0.9% normal saline followed by 4% paraformaldehyde. Brains 

were removed and post-fixed in 4% paraformaldehyde overnight. Brains were bisected, with the 

right hemisphere processed for paraffin embedding and the left hemisphere processed for frozen 

sections. Prior to freezing, brain tissue was cryoprotected in 30% sucrose for 48 hr at 4C. Brains 

were frozen in isopentane chilled by dry ice and embedded in OCT (Tissue-Tek). Frozen 

sections were prepared at 14 µm in a cryostat and used for LacZ staining and subsequent eosin 

counter staining or immunohistochemical staining for Olig2 (1:500, Millipore) and NeuN (1:500, 

Millipore). For filipin staining, frozen sections were first used for immunofluorescence staining 

for NeuN or Olig2, followed by incubation for 90 min in PBS with 10% fetal bovine serum plus 

25 μg/ml filipin (Sigma).  Paraffin-embedded sections were prepared at 5 μm and used for 

staining with H&E staining or MBP (1:100, Abcam), SMI-31P (1:200, Covance), NG2 (1:100, 

Millipore), CC1 (1:200, Calbiochem), Calbindin (1:1000, Sigma), Sip1 (1:100, Santa Cruz) and 

GFAP (1:1000, Dako) immunofluorescence. For visualization of staining, secondary antibodies 

conjugated to Alexa Fluor 594 or Alexa Fluor 488 (Molecular Probes) were used and images 

were captured on a Zeiss Axioplan 2 imaging system. For NG2 and CC1 co-staining and Olig2 

staining, images were captured on an Olympus FluoView 500 Confocal Microscope system. 

Quantification of CC1+ or Olig2+ cells was performed using NIH ImageJ software.  
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Quantification of Purkinje cell loss was performed on H&E stained sections. Counts were 

normalized to the length of the Purkinje layer, as measured by NIH ImageJ software, and 

reported as Purkinje cell density. 

3.5.7 Electron microscopy 

 Mice were perfused with 0.9% normal saline followed by 3% paraformaldehyde and 2.5% 

glutaraldehyde in 0.1 M Sorensen's buffer. The corpus callosum was removed and post-fixed in 

perfusion solution overnight, followed by fixation in 1% osmium tetroxide solution for 1h at 

room temperature. After dehydration, tissues were embedded in epoxy resin. For transmission 

electron microscopy, ultrathin sections were cut, and images were captured on a Philips CM-100 

imaging system at 10,500X magnification. 

3.5.8 Statistics 

 Statistical significance was assessed by unpaired Student’s t test. Statistics were 

performed using the software package Prism 5 (GraphPad Software). P values less than 0.05 

were considered significant. 
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Chapter 4  

 

Ryanodine receptor antagonists adapt NPC1 proteostasis to 

ameliorate lipid storage in Niemann-Pick type C disease fibroblasts2 

4.1 Abstract  

 Niemann-Pick type C disease is a lysosomal storage disorder most often caused by loss-

of-function mutations in the NPC1 gene. The encoded multipass transmembrane protein is 

required for cholesterol efflux from late endosomes and lysosomes. Numerous missense 

mutations in the NPC1 gene cause disease, including the prevalent I1061T mutation that leads to 

protein misfolding and degradation. Here, we sought to modulate the cellular proteostasis 

machinery to achieve functional recovery in primary patient fibroblasts. We demonstrate that 

targeting endoplasmic reticulum (ER) calcium levels using ryanodine receptor (RyR) antagonists 

increased steady state levels of the NPC1 I1061T protein. These compounds also promoted 

trafficking of mutant NPC1 to late endosomes and lysosomes, and rescued the aberrant storage 

of cholesterol and sphingolipids that is characteristic of disease. Similar rescue was obtained 

using three distinct RyR antagonists in cells with missense alleles, but not with null alleles, or by 

over-expressing calnexin, a calcium-dependent ER chaperone. Our work highlights the utility of 

                                                           
2
 This chapter was published as: 

Yu T, Chung C, Shen D, Xu H, Lieberman AP. Ryanodine receptor antagonists adapt NPC1 proteostasis to 
ameliorate lipid storage in Niemann-Pick type C disease fibroblasts. Hum Mol Genet. 2012 Jul 15;21(14):3205-14 
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proteostasis regulators to remodel the protein-folding environment in the ER to recover function 

in the setting of disease-causing missense alleles.  

 

4.2 Introduction 

Niemann-Pick type C disease is an autosomal recessive neurodegenerative disorder for 

which there is no effective treatment(Vanier, 2010). Mutations in either of two genes, NPC1 

(Carstea et al., 1997) or NPC2 (Naureckiene et al., 2000), disrupt efflux of cholesterol from late 

endosomes and lysosomes, and trigger a clinically heterogeneous phenotype that invariably 

includes severe neurological dysfunction and early death (Higgins et al., 1992). Most cases of 

Niemann-Pick C are caused by mutations in NPC1, a widely expressed gene encoding a 

multipass transmembrane glycoprotein localized to late endosome and lysosomes (Davies and 

Ioannou, 2000; Garver et al., 2000; Higgins et al., 1999; Neufeld et al., 1999). Genetic studies in 

mice have established that loss of Npc1 in neurons is necessary and sufficient to mediate CNS 

disease (Elrick et al., 2010; Ko et al., 2005; Lopez et al., 2011; Yu et al., 2011). Despite our 

growing understanding of disease pathogenesis, strategies to treat the severe, progressive 

neurodegeneration that is characteristic of this disorder have remained elusive. 

The approach to treating Niemann-Pick C patients is complicated by the genetics of the 

disease. Over 240 sequence variants in the NPC1 gene have been identified, with reported 

nucleotide changes occurring in all 25 exons and 14 introns. Disease-causing mutations are 

scattered throughout the gene, rather than clustering in a single functional domain such as the 

sterol-sensing region (Vanier and Millat, 2003). Furthermore, despite heterogeneity in clinical 

presentation, genotype-phenotype correlations have yielded limited information (Runz et al., 
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2008), and the functions of most regions of the protein remain poorly understood. Despite these 

challenges, it has become clear that disease is most commonly caused by missense mutations that 

lead to non-conservative amino acid substitutions (Vanier and Millat, 2003). The mechanism by 

which a missense mutation leads to loss of functional NPC1 has been studied in detail for one 

particular mutant, I1061T, which is found in ~20% of patients of Western European ancestry 

(Millat et al., 1999). This mutation leads to misfolding of the NPC1 protein in the endoplasmic 

reticulum (ER) and to its subsequent degradation by the proteasome (Gelsthorpe et al., 2008). 

That mutant NPC1 is synthesized but fails to fold properly raises the possibility that remodeling 

of the protein-folding environment in the ER may enable the protein to attain its proper 

conformation. This approach was first pioneered in studies of Gaucher disease, another 

lysosomal storage disorder where missense mutations lead to the loss of functional enzyme, 

glucocerebrosidase (Mu et al., 2008a; Ong et al., 2010; Wang et al., 2011). While misfolded 

NPC1 I1061T is subject to ER associated degradation, if the mutant protein is over-expressed in 

vitro, some of it transits to late endolysomes/lysosomes and is functional (Gelsthorpe et al., 

2008). This suggests that strategies to promote proper folding and trafficking may enable 

functional recovery of the I1061T mutant.  

 Here, we present evidence that ryanodine receptor (RyR) antagonists are potent 

modulators of mutant NPC1 folding and trafficking. We use these small molecules to elevate ER 

calcium stores and target the proteostasis network, and show that this increases steady-state 

levels of NPC1 I1061T protein, promotes its trafficking to late endosomes and lysosomes, and 

ameliorates both the cholesterol storage and sphingolipid trafficking defects in patient fibroblasts. 

Our findings indicate that proteostasis regulators can be effective therapeutic reagents for 

Niemann-Pick type C disease caused by missense mutations. 
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4.3 Results  

4.3.1 The ryanodine receptor antagonist DHBP increases steady-state 

levels of NPC1 I1061T. 

To confirm that NPC1 missense mutations lead to degradation of the mutant, misfolded 

protein, primary fibroblasts from patients were treated with MG132, an inhibitor of protein 

degradation through the proteasome, and NPC1 protein levels were determined by western blot 

(Figure 4.1A). Four patient-derived fibroblast lines were examined, three of which carried at 

least one copy of the I1061T allele. In each case, basal NPC1 protein levels were lower than in 

controls and were increased after treatment with MG132. These data are consistent with prior 

reports that NPC1 missense mutants, including I1061T, are rapidly degraded by the proteasome 

(Gelsthorpe et al., 2008).  

To test the hypothesis that elevating ER calcium stores will remodel the protein-folding 

environment so that it is more favorable to mutant NPC1, we examined the effects of several 

well-characterized RyR antagonists. As this receptor is a channel that mediates calcium efflux 

from the ER lumen, RyR antagonists are known to increase ER calcium concentration (Ong et al., 

2010). We initially tested these small molecules on patient fibroblasts carrying one or two copies 

of the I1061T allele since this mutant encodes a functionally active protein (Gelsthorpe et al., 

2008). We identified the RyR antagonist DHBP (1,1’-diheptyl-4,4’-bipyridium) as a potent 

inducer of NPC1 protein, increasing its steady-state level in a dose-dependent manner (Figure 

4.1B). This occurred without altering NPC1 mRNA levels (Figure 4.1C), suggesting that DHBP 

enhanced NPC1 protein stability, an interpretation supported by cycloheximide chase studies 

(Figure 4.1D).  



82 
 

Figure 4.1 NPC1 I1061T is degraded by the proteasome, and the RyR antagonist DHBP 
increases its steady-state level. 
(A) Primary human fibroblasts with different NPC1 mutations were treated with 10 µM MG132 or 
vehicle (DMSO) for 24h, and cell lysates were examined by western blot for the expression of 
NPC1 (top). GAPDH controls for loading (bottom). (B) NPC1 I1061T homozygous fibroblasts 
were treated with increasing concentrations of DHBP or vehicle for 7 days, and cell lysates were 
analyzed by western blot for the expression of NPC1 (top). GAPDH controls for loading (bottom). 
(C, D) NPC1 I1061T homozygous or control fibroblasts were treated with 5 µM DHBP or vehicle 
for 5 days. (C) NPC1 mRNA levels were determined by quantitative real time RT-PCR (mean +/- 
SD). n.s. = not significant. (D) Cells were treated with 30 µg/ml cycloheximide (CHX) for times 
indicated and lysates analyzed by western blot for NPC1 expression. 
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4.3.2 DHBP promotes intracellular trafficking of NPC1 I1061T. 

 Next we sought to determine whether the increase of NPC1 protein levels mediated by 

DHBP treatment was accompanied by trafficking of mutant NPC1 to its normal intracellular 

location in late endosomes and lysosomes. We first employed a biochemical approach to analyze 

NPC1 trafficking by treating cell lysates with endoglycosidase H (Endo H) or Peptide: N-

Glycosidase F (PNGase F). Endo H removes high mannose type N-linked glycans from proteins 

in the ER, but cannot cleave them after the oligosaccharide chain is further modified in the 

medial Golgi. Therefore, resistance to Endo H digestion indicates that the glycoprotein has 

trafficked beyond the ER in the secretory pathway. PNGase F is a glycoamidase that removes all 

types of N-linked glycans and enables visualization of the unmodified protein. In control 

fibroblasts, wild type (WT) NPC1 was present as an Endo H-resistant, slow migrating species 

(Figure 4.2A), indicating that the protein was properly folded and efficiently transported out of 

ER. In contrast, NPC1 I1061T was present as an Endo H-sensitive, more rapidly migrating 

species (Figure 4.2A), consistent with the notion that the mutant protein was retained in the ER 

prior to its degradation. However, after DHBP treatment, NPC1 I1061T showed a detectable 

increase in the Endo H-resistant band (Figure 4.2A, B), suggesting that a small portion of the 

mutant protein folded correctly and fluxed through the Golgi.  

 To gain support for this interpretation, we visualized NPC1 protein by 

immunofluorescence and assessed its co-localization by confocal microscopy with LAMP1, a 

marker of late endosomes and lysosomes. In control fibroblasts, WT NPC1 protein was present 

in cytoplasmic puncta that co-localized with LAMP1 (Figure 4.2C, top), while in mutant 

fibroblasts, NPC1 I1061T showed a weak and diffuse staining pattern that did not show LAMP1 

co-localization (Figure 4.2C, middle). However, DHBP treatment increased the staining 
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intensity of the mutant protein, and resulted in focal co-localization with LAMP1(Figure 4.2C, 

bottom). The degree of co-localization between NPC1 I1061T and LAMP1 was quantified by 

calculating the Pearson correlation coefficient (Rp); this was significantly increased 

(0.287±0.059 vs. 0.392±0.110, P< 0.05) following DHBP treatment. We considered the 

possibility that this effect might be due to diminished degradation of the Endo H resistant species 

in lysosomes after DHBP treatment. However, we found that the Endo H resistant species was 

relatively insensitive to the lysosomal inhibitor chloroquine (Figure 4.3), consistent with prior 

studies demonstrating that NPC1 I1061T is not significantly degraded in the lysosome 

(Gelsthorpe et al., 2008). We conclude that DHBP promotes intracellular trafficking of a fraction 

of the mutant NPC1 protein to late endosomes and lysosomes. 
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Figure 4.2 DHBP promotes intracellular trafficking of NPC1 I1061T. 
(A) NPC1 I1061T homozygous and control (WT) fibroblasts were treated with 5 µM DHBP or 
vehicle for 7 days. Lysates were digested with Endo H or PNGase F for detection of the post-ER 
glycoform of NPC1 protein (Endo H resistant).  
(B) Quantification of Endo H sensitive and Endo H resistant forms of NPC1 protein levels, as 
described in (A). 
(C) Confocal microscopy shows localization of NPC1 (red) and LAMP1 (green) in NPC1 I1061T 
homozygous fibroblasts and controls treated with 5 µM DHBP or vehicle for 5 days. Inserts 
show higher magnification of the boxed regions. 
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Figure 4.3 Effect of chloroquine on NPC1 I1061T. 
NPC1 I1061T homozygous fibroblasts were treated with 5 µM DHBP or vehicle for 7 days. 10 
µM chloroquine (Chl) was added on day 6 for 24 hours, and then protein lysates were harvested 
for Endo H or PNGase F digestion. 
 

 

 

4.3.3 DHBP ameliorates lipid storage in NPC1 I1061T fibroblasts. 

 To determine the extent to which elevated NPC1 protein levels and enhanced localization 

to late endosomes and lysosomes were associated with functional recovery, we used quantitative 

filipin microscopy to evaluate accumulation of unesterified cholesterol, a biochemical hallmark 

of NPC1 deficient cells. Treatment with DHBP for 5 days significantly decreased filipin staining 

in fibroblasts homozygous for the NPC1 I1061T allele in a dose-dependent manner (Figure 4.4A, 

B), demonstrating that treatment diminished lipid storage over the same concentration range that 

it increased steady-state NPC1 protein levels. Similar results were obtained using an independent 

line of patient fibroblasts that was a compound heterozygote for the P237S and I1061T alleles 

(Figure 4.4C). Kinetic analysis established that 5 days treatment was required for DHBP to exert 

its beneficial effect (Figure 4.4D), likely reflecting time required for protein transit through the 

secretory pathway and then clearance of accumulated lipids. We confirmed these observations 
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using an independent assay to measure total free cholesterol in whole cell lysates. Compared to 

controls, NPC1 I1061T homozygotes showed elevated free cholesterol that was corrected to near 

WT levels following treatment with DHBP (Figure 4.4E).  

Figure 4.4 DHBP ameliorates cholesterol storage in NPC1 I1061T fibroblasts. 
(A, B) NPC1 I1061T homozygous fibroblasts were treated with increasing concentrations of 
DHBP for 5 days and then stained for unesterified cholesterol using filipin. Representative 
images are shown in (A). Quantification of filipin intensity is shown in (B), and is reported in 
comparison to controls. Data are mean +/- SD. *** P<0.001. (C) NPC1 P237S/I1061T fibroblasts 
were treated with increasing concentrations of DHBP for 5 days, stained with filipin and 
quantified (mean +/- SD). *** P<0.001.  (D) Quantification of filipin staining of NPC1 I1061T 
homozygous fibroblasts treated with 5 µM DHBP or vehicle for the indicated times (mean +/- 
SD). * P<0.05. (E) NPC1 I1061T homozygous and control fibroblasts were treated with DHBP or 
vehicle for 5 days. Total free cholesterol was measured by Amplex Red (mean +/- SD). *** 
P<0.001. 
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 In addition to the storage of unesterified cholesterol, NPC1 deficient cells also display 

aberrant sphingolipid trafficking. In control fibroblasts, BODIPY-lactosylceramide (BODIPY-

LacCer), a synthetic, fluorescent sphingolipid analog, is targeted to the Golgi after endocytosis, 

but accumulates in endosomes and lysosomes of NPC1 deficient cells (Chen et al., 1999; Sun et 

al., 2001). We evaluated the intracellular trafficking of BODIPY-LacCer in cells homozygous 

for the NPC1 I1061T allele, and found that treatment with DHBP for 5 days corrected its 

transport to the Golgi (Figure 4.5A, top). Similarly, Alexa fluor 594-labeled cholera toxin 

subunit B (Alexa 594-CtxB), which binds to endogenous monosialotetrahexosylganglioside 

(GM1) at the cell surface, is transported to the Golgi after internalization in control fibroblasts, 

but accumulates in endosomes of NPC1 mutant cells (Choudhury et al., 2002; Sugimoto et al., 

2001). Treatment with DHBP also corrected this GM1 trafficking defect (Figure 4.5A, bottom, 

B). Taken together, these data demonstrate that DHBP rescues both the cholesterol and 

sphingolipid storage phenotypes in mutant NPC1 fibroblasts. 
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Figure 4.5 DHBP corrects sphingolipid trafficking in NPC1 I1061T fibroblasts. 
(A) NPC1 I1061T homozygous fibroblasts and controls were treated with 5 µM DHBP or vehicle 
for 7 days, then pulse-labeled with BODIPY-LacCer (upper panel) or Alexa 594-CtxB (lower 
panel) to assess intracellular sphingolipid trafficking. (B) NPC1 I1061T homozygous fibroblasts 
and controls were treated with 5 µM DHBP or vehicle for 7 days. Cells were pulse-labeled with 
Alexa 594-CtxB, followed by immunofluorescence staining with the Golgi marker GM130. 
Confocal microscopy was used to assess co-localization. 
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 Not all compounds that target calcium levels ameliorated lipid trafficking defects in 

NPC1 deficient cells. In addition to RyR antagonists, L-type voltage-gated calcium channel 

blockers modulate ER calcium stores by reducing calcium-induced calcium release. As these 

small molecules modulate proteostasis of mutant glucocerebrosidase in fibroblasts (Mu et al., 

2008a; Ong et al., 2010), we tested their ability to restore mutant NPC1 function. Treatment with 

diltiazem or verapamil, two L-type calcium channel blockers, resulted in a dose-dependent 

increase in the steady-state level of NPC1 protein in fibroblasts homozygous for the NPC1 

I1061T allele (Figure 4.6A). However, this was not associated with an increase in the Endo H 

resistant species (Figure 4.6B), and was unexpectedly accompanied by an exacerbation of the 

cholesterol storage phenotype (Figure 4.6C, D). This may reflect inhibitory effects of these 

compounds on intracellular lipid metabolism, such as cholesterol esterification (Dushkin and 

Schwartz, 1995), on off-target effects on other ion channels, or other, less well-characterized 

actions. These observations focused our efforts on defining the mechanism by which RyR 

antagonists exerted therapeutic effects.  
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Figure 4.6 L-type calcium channel blockers exacerbate cholesterol storage in NPC1 
I1061T fibroblasts. 
(A) Cells were treated with increasing concentrations of diltiazem or verapamil for 7 days, and 
lysates were examined by western blot for expression of NPC1 (top) and GAPDH (bottom). (B) 
NPC1 I1061T homozygous fibroblasts were treated with 50 µM verapamil for 7 days. Lysates 
were digested with Endo H or PNGase F for detection of the post-ER glycoform of NPC1 protein 
(Endo H resistant). (C, D) Fibroblasts were treated with increasing concentrations of verapamil 
for 7 days and then stained with filipin. Representative images are shown in (C). Quantification 
of filipin intensity is shown in (D), and for comparison, filipin intensity of WT fibroblasts is 
included (mean +/- SD). * P<0.05, *** P<0.001.  
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4.3.4 Ryanodine receptor antagonists act through NPC1 protein-

dependent mechanisms. 

 To test our working model that DHBP targets RyRs to enhance mutant NPC1 proteostasis, 

we examined the effects of additional RyR antagonists on cholesterol storage in fibroblasts 

homozygous for the NPC1 I1061T allele. Similar to DHBP, both ruthenium red and dantrolene 

reduced the intensity of filipin staining (Figure 4.7A, B).  In contrast, DHBP was ineffective at 

altering filipin staining of patient fibroblasts carrying two null alleles (NPC1 1628delC) of the 

NPC1 gene (Figure 4.7C), confirming that NPC1 protein was necessary for its beneficial effects. 

We also considered the possibility that DHBP exerted its therapeutic effects by targeting other 

calcium channels, such as those localized to lysosomes that have been implicated in regulating 

exocytosis (Dong et al., 2009). However, we found that DHBP did not trigger release of 

lysosomal calcium through the TRPML1 channel (Figure 4.7D). To further test the notion that 

these small molecules facilitated calcium-dependent ER proteostasis, we transiently over-

expressed calnexin (Figure 4.8A), a calcium-dependent ER chaperone. We found that calnexin 

over-expression was sufficient to promote the appearance of Endo H resistant NPC1 species 

(Figure 4.8B) and significantly reduce filipin staining of NPC1 mutant fibroblasts (Figure 4.8C, 

D). Taken together, our data demonstrate that genetic or pharmacological manipulation of the 

protein-folding environment within ER modulates the stability, trafficking and function of 

mutant NPC1 to yield a functional recovery. 
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Figure 4.7 Ryanodine receptor antagonists reduce cholesterol storage in NPC1 missense 
mutant fibroblasts.  
(A, B) NPC1 I1061T homozygous fibroblasts were treated with ruthenium red, dantrolene or 
vehicle for 5 days, stained with filipin and quantified (mean +/- SD). * P<0.05, *** P<0.001. (C) 
Quantification of filipin intensity in NPC1 null fibroblasts (1628delC) treated with DHBP or 
vehicle for 5 days (mean +/- SD). P>0.05. (D) CHO cells were transfected with a genetically-
encoded Ca2+ indicator (GCaMP3) fused to the N-terminus of TRPML1 (Shen et al., 2012). 
TRPML1 mediated lysosomal Ca2+ release, as measured by GCaMP3 fluorescence, was 
examined after sequential application of 50 µM DHBP (in 0 Ca2+ Tyrode with <10nM Ca2+), 200 
µM Glycyl-L-phenylalanine 2-naphthylamide (GPN, in 0 Ca2+ Tyrode with <10nM Ca2+), a 
cathepsin C substrate that induces lysosomal rupture (Berg et al., 1994), and 1 µM ionomycin 
(in tyrode with 2mM Ca2+). Shown are data from 5 representative cells, with each cell tracing in 
a different color. The experiment in Figure 4.7D was performed by Dongbiao Shen. 
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Figure 4.8 Calnexin over-expression promotes mutant NPC1 proteostasis. 
(A) NPC1 mutant fibroblasts were transiently transfected with 3XFlag-calnexin for 2 days and 
cell lysates were analyzed by western blot for the expression of Flag (upper) and calnexin 
(middle). GAPDH (bottom) controls for loading. (B) NPC1 P237S/I1061T fibroblasts were 
transfected to express 3XFlag-calnexin. Lysates were harvested 6 days later, then digested with 
Endo H or PNGase F for detection of the post-ER glycoform of NPC1 protein (Endo H resistant). 
(C, D) NPC1 P237S/I1061T fibroblasts were stained with filipin 6 days after 3XFlag-calnexin 
transfection. Representative images are shown in (C). Quantification of filipin intensity is shown 
in (D), and is reported in comparison to controls. Data are mean +/- SD. *** P<0.001. 
 
 

 

 

4.4 Discussion 

Our findings demonstrate that RyR antagonists ameliorate lipid storage in patient 

fibroblasts expressing NPC1 I1061T by modifying mutant NPC1 proteostasis. By diminishing 

activity of this calcium efflux channel, the mutant protein is stabilized, its transit through the 

secretory pathway to late endosomes and lysosomes is promoted, and the storage of unesterified 



95 
 

cholesterol and sphingolipids is alleviated. Similar effects were observed by transiently over-

expressing calnexin. Our data are consistent with the model that DHBP and other RyR 

antagonists inhibit the spontaneous activity of RyRs to increase ER luminal calcium 

concentration, which in turn increases the activity of calcium-dependent chaperones such as 

calnexin. Although RyR antagonists may have yet uncharacterized off-target partners in the cell, 

and, likewise, calnexin over-expression may invoke effects independent of its activity as an ER 

chaperone, the combination of these two approaches provides strong, complementary evidence 

for the idea that modulating the ER protein folding environment enhances proteostasis of mutant 

NPC1. Other calcium-dependent chaperones are also present in the ER lumen, including BiP and 

calreticulin, and their roles in NPC1 proteostasis remains to be defined. Although treatment with 

DHBP or over-expression of calnexin promoted intracellular trafficking of only a small fraction 

of the mutant protein, they triggered a significant decrease in cholesterol storage, indicating that 

relatively low levels of recovered protein have marked functional effects  

Treatment of the severe, progressive neurological impairment that is characteristic of 

Niemann-Pick C disease remains elusive. Miglustat, the only approved treatment for this 

disorder, may stabilize the progression of neurological symptoms in some Niemann-Pick C 

patients, but is less effective for others (Patterson et al., 2007; Pineda et al., 2010; Wraith and 

Imrie, 2009). Compelling data demonstrate that cyclodextrin, a compound that circumvents 

NPC1/NPC2 to clear lipid storage from NPC lysosomes (Abi-Mosleh et al., 2009; Rosenbaum et 

al., 2010), delays neurodegeneration in Npc1 deficient mice (Aqul et al., 2011; Davidson et al., 

2009; Griffin et al., 2004; Liu et al., 2009). However, its limited ability to cross the blood brain 

barrier poses therapeutic challenges and suggests that complementary approaches will be 

beneficial. Recent studies identified HDAC inhibitors as small molecules that alleviate lipid 
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storage in patient fibroblasts (Munkacsi et al., 2011; Pipalia et al., 2011). Our findings add RyR 

antagonists to this list of compounds with the potential to provide therapeutic benefit to some 

patients with Niemann-Pick C disease. We note that one of the RyR antagonists tested and 

proven effective here, dantrolene, is used clinically. Determining the extent to which this 

compound, or others, alters NPC1 proteostasis in more complex disease models is an important 

future objective.  

Our data extend observations from Gaucher disease fibroblasts (Mu et al., 2008a; Ong et 

al., 2010; Wang et al., 2011) highlighting the utility of proteostasis regulators in patients with 

disease-causing missense mutations.  Here we have demonstrated that this strategy is also 

applicable to a multipass transmembrane protein that traffics through the secretory pathway. As 

other NPC1 missense mutations also lead to protein misfolding and degradation, we suggest that 

this strategy may be applicable to the subset of disease-causing mutations where function is 

retained. These findings suggest that small molecules that remodel the protein-folding 

environment in the ER may be therapeutically beneficial for some Niemann-Pick C patients, and 

potentially, for patients with other disorders caused by missense mutations.  

 

4.5 Materials and Methods 

4.5.1 Reagents 

 DHBP (180858), dantrolene (D9175), diltiazem (D2521), verapamil (V4629), filipin 

(F9765) and cycloheximide (C4859) were from Sigma. Chloroquine (193919) and ruthenium red 

(156565) were from MP Biomedical. Ruthenium red and dantrolene were diluted in DMSO and 

other channel blockers were diluted in water. BODIPY FL C5-lactosylceramide complexed to 
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BSA (BODIPY-LacCer) and cholera toxin subunit B, Alexa Fluor 594 conjugate (Alexa 594-

CtxB) were from Invitrogen. The calnexin-3XFlag expression plasmid was from GeneCopoeia. 

4.5.2 Cell culture and transfection 

 Human dermal fibroblast lines GM08399 (healthy control) and GM18453 (NPC1 

I1061T/I1061T), GM03123 (NPC1 P237S/I1061T), GM17926 (NPC1 Y509S/I1061T), 

GM17912 (NPC1 P1007A/T1036M) were from Coriell Cell Repositories. Human dermal 

fibroblasts homozygous for the NPC11628delC allele (NIH 98.016) (Frolov et al., 2003) were a 

gift from Dr. Daniel Ory. Cells were maintained in Modified Eagle’s Medium (MEM, Gibco), 

supplemented with 15% FBS (Atlanta Biologicals), 10 μg/ml penicillin, 10 μg/ml streptomycin 

and 2 mM glutamine (Gibco). Control (RA25) CHO cells were a gift from Dr. T.Y. Chang, and 

were maintained in DMEM/F12 (Gibco) supplemented with 10% FBS. Cells were transfected 

with 3 µg plasmid by electroporation using a Nucleofector II (Lonza) per manufacturer’s 

instructions. 

4.5.3 Quantitative filipin staining 

 Cells were grown on glass chamber slides and stained with filipin as described (Pacheco 

et al., 2007). Images were captured on a Zeiss Axioplan 2 imaging system equipped with a Zeiss 

AxioCam HRc camera, with a 10x Zeiss EC Plan-NEOFLUAR objective, using AxioVision 4.8 

software. Quantitative analysis of filipin images from >5 fields of cells/experiment was 

performed using NIH ImageJ software, following the “LSO compartment ratio assay” method 

(Pipalia et al., 2006). Data reported are from one of three similar experiments. 
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4.5.4 Amplex Red cholesterol assay 

 Total free cholesterol levels were determined using the Amplex Red cholesterol assay kit 

(Invitrogen) per manufacturer’s instructions. Results were normalized to protein concentration 

determined by protein assay (Bio-rad). 

4.5.5 Sphingolipid trafficking 

 BODIPY-LacCer labeling was performed as described (Sun et al., 2001). Briefly, cells 

were washed 3 times with MEM and then incubated with 5 µM BODIPY LacCer/BSA in MEM 

containing 1% FBS for 45 min at 37º C. Cells were then washed 3 times with MEM containing 1% 

FBS and incubated for another 60 min at 37º C. Next, cells were washed 3 times with DMEM 

without glucose, and then were back-exchanged at 4º C for 6X10 min with DMEM without 

glucose containing 5% defatted BSA. Alexa 594 CtxB labeling was carried out similarly, except 

Alexa 594 CtxB (1:1000) was used in the pulse labeling step and the cells were chased for 2 h at 

37º C. In some experiments, after Alexa 594 CtxB labeling, cells were fixed with 4% 

paraformaldehyde and incubated with rabbit anti-GM130 antibody (Abcam, 1:200) to visualize 

the Golgi apparatus. Confocal microscopy was performed using an Olympus FluoView 500 

Confocal Microscope system, with a 60X WPSF water immersion objective, using Olympus 

FluoView software. 

4.5.6 Immunofluorescence  

 Cells grown on coverslips were washed with PBS and fixed with methanol for 30 min. 

Cells were subsequently washed with PBS and incubated with blocking buffer containing 5% 

donkey serum, 1% BSA and 0.2% Triton X for 1 h, followed by incubation with primary 

antibodies in buffer containing 1.25% donkey serum, 0.25% BSA and 0.05% Triton X at 4º C 

overnight. Antibodies used were rabbit anti-NPC1 (Abcam, 1:500) and mouse anti-LAMP1 
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H4A3 (Developmental Studies Hybridoma Bank, 1:50). Next, cells were washed with PBS 

containing 0.05% Triton X, incubated with Alexa fluor-conjugated secondary antibodies 

(Invitrogen), then washed with PBS containing 0.05% Triton X. Coverslips were mounted using 

Vectashield mounting medium with DAPI (Vector Laboratories). Confocal microscopy was 

performed using a Zeiss LSM 510-META Laser Scanning Confocal Microscopy system, with a 

63x Zeiss C-Apochromat water immersion objective, NA of 1.2, using Zeiss LSM 510-META 

software. For analysis of NPC1 and LAMP1 co-localization, the Pearson correlation coefficient 

was calculated using NIH ImageJ. 

4.5.7 N-linked glycan removal assays and western blot analysis 

 Cells were harvested, washed with PBS and lysed in RIPA buffer containing cOmplete 

Protease Inhibitor Cocktail (Roche) and phosphatase inhibitor (Thermo Scientific). For cleavage 

of N-linked glycans, non-denatured protein samples were treated with PNGase F (NEB) or Endo 

H (NEB) at 37º C for 3 hours in the supplied buffers. For western blot, non-boiled samples were 

electrophoresed through a 7.5% SDS-polyacrylamide gel or 4%-20% Tris-glycine gradient gel 

(Invitrogen) and transferred to nitrocellulose membranes (BioRad) on a semidry transfer 

apparatus. Immunoreactivity was detected by TMA-6 (Lumigen) or ECL (Thermo Scientific). 

Antibodies used were rabbit anti-NPC1 (Abcam) and rabbit anti-GAPDH (Santa Cruz). 

4.5.8 Gene expression analysis 

 Total RNA was isolated from cells using TRIzol (Invitrogen) per the manufacturer’s 

protocol. cDNA was synthesized using the High Capacity cDNA Archive Kit (Applied 

Biosystems). Quantitative real time RT-PCR was performed on 5 ng cDNA per reaction, in 

duplicate. Primers and probes for NPC1 (Hs00264835-m1) and 18S rRNA were purchased from 

Applied Biosystems. Threshold cycle (Ct) values were determined on an ABI Prism 7900HT 
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Sequence Detection System. Relative expression values were calculated by the standard curve 

method and normalized to 18S rRNA. 

4.5.9 GCaMP3 Ca2+ imaging 

 18-24 h after transfection with GCaMP3-ML1 (Shen et al., 2012), CHO cells were 

trypsinized and plated onto glass coverslips. The fluorescence intensity at 470 nm was monitored 

using the EasyRatioPro system. Ionomycin (1mM) in tyrode was added at the conclusion of all 

experiments to induce a maximal response for comparison. 

4.5.10 Statistics 

 Statistical significance was assessed by unpaired Student’s t test (for comparison of two 

means) or ANOVA (for comparison of more than two mean). The Newman-Keuls post hoc test 

was performed to carry out pairwise comparisons of group means if ANOVA rejected the null 

hypothesis. Statistics were performed using the software package Prism 5 (GraphPad Software). 

P values less than 0.05 were considered significant. 
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Chapter 5  

 

Conclusion 

 

 In this dissertation, I have described multiple approaches to explore the pathogenesis and 

therapeutic strategies for Niemann-Pick type C disease. First, I demonstrated that Npc1 

deficiency in adults is sufficient to cause disease, and that neurons, but not astrocytes, play a 

leading role in pathogenesis. Next, I investigated the roles of neurons and oligodendrocytes in 

NPC dysmyelination. This study showed that Npc1 deficiency in either cell type is sufficient to 

block oligodendrocyte maturation and myelin formation, with the most severe impairment in the 

forebrain. In addition, I showed that Npc1 deficiency in oligodendrocytes also leads to 

demyelination and secondary Purkinje neuron degeneration in adults. Finally, I tested small 

molecules in patient fibroblasts with the NPC1 I1061T mutation. My work showed that 

ryanodine recepter antagonists are effective in modulating NPC1 proteostasis and ameliorating 

the lipid storage defect by promoting the mutant protein's folding in the ER and trafficking to 

LE/LYs. In the remaining part of this chapter, I will discuss some of the unanswered questions 

and propose future directions. 
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5.1 Temporal and spatial effects of Npc1 deficiency 

 In Chapter 2, I utilized a conditional knockout mouse model of NPC to study the effect of 

timing of Npc1 deficiency on neurodegeneration (Yu et al., 2011). Prior studies showed that a 

single injection of cyclodextrin at postnatal day 7 (P7) significantly extended the lifespan of 

Npc1
-/- mice, while injections at later stages were much less effective (Davidson et al., 2009; 

Griffin et al., 2004; Liu et al., 2009), raising the possibility that a developmental window exists 

for the need of NPC1. By inducing tamoxifen-regulated Cre deletion of Npc1 globally at 6 weeks, 

my work showed that Npc1 deficiency in adults reproduced most of the neurodegenerative 

phenotypes seen in mice with germline deletion, but with a slightly extended lifespan. This 

suggests that Npc1 is needed in adult brain for normal function, but does not exclude the 

possibility that Npc1 also participates in the developmental events. Indeed, in Chapter 3, I 

showed that Npc1 is required for CNS myelination, a developmental event that takes place in the 

first several postnatal weeks. Although the time-sensitive effect of cyclodextrin was later 

attributed to the limited accessibility of cyclodextrin to the brain as blood brain barrier forms, my 

results indicate that it could also result partially from improvement of myelination. Collectively, 

my work in Chapters 2 and 3 suggest that Npc1 is crucial both for the developmental and 

continuous functions of the brain. Therefore, for NPC patients, therapies need to be given as 

early as possible, and continuously throughout life. 

 Another issue in the field had been whether neurodegeneration in NPC is a neuronal cell 

autonomous process, as prior studies yielded conflicting results. My work with a neuron specific 

Cre (Sny1-Cre) and an astrocyte specific Cre (GFAP-CreERTM2) (Yu et al., 2011) demonstrated 

that Npc1 deficiency within neurons is sufficient to cause disease. In contrast, gene deletion 

restricted to astrocytes did not produce any detectable defects, arguing against a significant 
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contribution of mature astrocytes to neurodegeneration. These findings supported prior work 

from our laboratory which showed that Npc1 deficiency in Purkinje neurons is sufficient to cause 

degeneration (Elrick et al., 2010). My work with an oligodendrocyte specific Cre (CNP-Cre) 

extended this finding by showing that a similar pattern of Purkinje neuron loss can also be 

triggered following demyelination, demonstrating a non-cell autonomous contribution to 

neurodegeneration. Taken together, these data suggest that Npc1 deficiency in neurons is 

sufficient to cause  neuron loss, but that effects in myelinating glia also contribute to NPC 

neuropathology.   

Progressive motor dysfunction, as exhibited by tremor, ataxia and hindlimb paralysis, is a 

prominent phenotypic feature of NPC mice, and was originally attributed primarily to Purkinje 

neuron dysfunction. However, Npc1 deficiency restricted to Purkinje neurons only results in a 

mild impairment in motor function (Elrick et al., 2010), indicating that pathology elsewhere also 

contributes to this complex phenotype. Indeed, my work with Syn1-Cre and CNP-Cre mice 

demonstrated that dysfunction of other neurons, as well as oligodendrocytes, is sufficient to 

impair motor coordination. Therefore, motor dysfunction in NPC mice is a complex process 

involving pathology in both neurons of different brain regions and oligodendrocytes. 

 While the data presented in my thesis and studies from other laboratories have clarified 

the role of Npc1 deficiency in neurons and glia, little work has focused on the role of microglia, 

the resident macrophages in the CNS (Gehrmann et al., 1995). Microglia continually survey the 

brain using their branched processes, and are activated when the healthy environment is 

disturbed by invading pathogens or by cell damage. After proliferation and migration to the site 

of damage, microglia respond by phagocytosing cell debris and foreign materials, and by 

releasing pro-inflammatory cytokines to induce an inflammatory response. This process often 
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ends with the secretion of anti-inflammatory cytokines and growth factors by microglia to 

promote repair and regeneration of the damaged tissue. Microglial activation is a common 

phenomena in neurodegenerative disorders. However, the inflammatory response generated by 

microglia, if not controlled tightly, can be detrimental to the tissue and worsen the disease 

(Dheen et al., 2007). Therefore, the outcome of microglia activation in neurodegenerative 

diseases remains controversial, and is probably context dependent. For example, in a mouse 

model of Sanhoff disease, a lysosomal storage disorder caused by β-hexosaminidases deficiency, 

monocytes from the periphery were shown to cross the blood brain barrier to expand the pool of 

activated microglia in the CNS. Prevention of monocyte infiltration ameliorated the neurological 

symptoms and prolonged lifespan (Wu and Proia, 2004). This suggests that in Sanhoff disease, 

monocyte infiltration and microglial activation accelerates neurodegeneration. On the other hand, 

in a mouse model of type II Gaucher's disease, glucocerebrosidase deficiency in all CNS cell 

types except microglia resulted in a more profound activation of microglia and a more slowly 

progressive disease course compared to global null mutants (Enquist et al., 2007). This suggests 

that restoration of microglial function in Gaucher's disease might be beneficial for the clinical 

outcome.  

  In Npc1
-/- mice, the initial observation was that microglial activation preceded 

neurodegeneration and was detected as early as 2 weeks (Baudry et al., 2003). This raised the 

possibility that Npc1 deficient microglia might play a role in initiating the disease by triggering a 

detrimental inflammatory response or by releasing reactive oxygen species. However, my work 

and work by others demonstrated that Npc1 deficiency in neurons alone is sufficient to cause 

microgliosis (Yu et al., 2011), and that neuroinflammation in the cerebellum can be suppressed 

by neuronal specific rescue of Npc1 deficiency in Purkinje cells (Lopez et al., 2012a). These data 
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suggest that microglial activation is more likely a consequence than a cause of neuronal 

dysfunction, and therefore is unlikely to be the initiating factor in the NPC pathology.  Moreover, 

attempts to inhibit macrophage infiltration (Lopez et al., 2012a) or to suppress 

neuroinflammation by inactivating genes encoding immune response factors (Lopez et al., 2012b) 

have failed to prevent neuronal loss or extend the lifespan in Npc1
-/- mice. Furthermore, these 

manipulations have worsened the liver pathology of mutant mice. These observations suggest 

that microglia and macrophages do not significantly contribute to the progression of NPC disease, 

and might be beneficial for preventing further tissue damage. Consistent with these findings, 

neuron-microglia co-culture studies showed that the survival of cerebellar granule neurons is not 

affected by microglia, regardless of the Npc1 genotype in either cell type (Peake et al., 2011). 

Taken together, these studies imply that microgliosis is a secondary factor in the pathogenesis of 

NPC, and therefore additional work using the conditional knockout model of NPC to study 

microglia is unlikely to yield new insights into disease mechanisms.  

 

5.2 NPC1 and myelination 

 In Chapter 3, I presented multiple findings revealing the essential roles of both axonal 

and oligodendroglial Npc1 in myelination. First, by re-examining brain tissue from Syn-1-Cre 

mice at a much earlier age, P16, I unexpectedly showed that Npc1 deficiency in neurons is 

sufficient to disrupt myelination in a regional specific manner. In parallel, my work with CNP-

Cre mice showed that a similar pattern of dysmyelination is triggered by Npc1 deficiency in 

oligodendrocytes. Furthermore, aged mice lacking oligodendrocytic Npc1 developed 
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demyelination and secondary Purkinje neuron loss that underlie the progressive motor 

incoordination in these mice.  

 This work leaves behind many unanswered questions. For example, how does Npc1 

dysfunction in neurons block oligodendrocyte maturation and myelination? By showing that 

Npc1 deficient axons are well preserved in dysmyelinated regions, my work excluded the 

possibility that the defect in myelin formation is caused by the lack or loss of axons in the same 

region. Furthermore, my data showed that Syn1-Cre mutants have decreased levels of activated 

Fyn kinase, a Src family member that acts in oligodendrocytes as an integrator of axonal signals 

for promoting myelination. Based on these findings, we favor a model in which Npc1 deficiency 

in axons leads to perturbed myelination through disruption of Fyn-dependent axon-

oligodendroglial communication. The immediate next question is what is the link between loss of 

Npc1 in neurons and disrupted Fyn activity in oligodendrocytes? At least two upstream signaling 

pathways have been shown to link axonal signals to Fyn activation. The first is the laminin- 

2/α6β1 integrin complex, in which interaction with laminin-2 at the surface of axons activates 

α6β1 integrin in oligodendrocytes to regulate Fyn activity through dephosphorylation of its 

inhibitory site Y531 (Colognato et al., 2002; Colognato et al., 2004; Laursen et al., 2009). 

Notably, mice with a deficiency in the laminin α2 chain, a component of laminin-2, exhibit 

regional dysmyelination similar to that of the Syn1-Cre mutants (Chun et al., 2003). The second 

signaling pathway is the L1/contactin complex. Similar to the laminin-2/α6β1 integrin complex, 

interaction of L1 on the surface of axons and contactin on oligodendrocytes triggers the 

phosphorylation of Fyn at its activating site Y420 (Laursen et al., 2009). These two complexes 

are shown to work synergistically to maximize the effect of Fyn activation (Laursen et al., 2009). 

It is possible that in Syn1-Cre mutants, sequestration of cholesterol in LE/LYs leads to decreased 
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cholesterol content in the plasma membrane. This change in the cholesterol level may alter the 

surface properties of axons (e.g. reduced levels of laminin-2 or contactin), resulting in the 

subsequent failure of stimulating oligodendrocyte differentiation. It is also possible that Npc1 

deficiency in neurons leads to decreased electrical activities, which have been shown to be 

another axonal signal for Fyn activation and myelination (Wake et al., 2011). Further work is 

needed to test these possibilities. In addition to upstream events, there are three well-

characterized downstream pathways controlled by Fyn activation: a Rho-GTPase-dependent 

pathway to regulate actin cytoskeleton dynamics and oligodendrocyte morphological 

differentiation, recruitment of microtubule cytoskeleton (tau, α-tubulin, etc.) to establish cell 

polarity and facilitate cargo transport, and regulation of mRNA transport and local translation of 

myelin proteins such as MBP (Kramer-Albers and White, 2011). A recent remyelination study 

showed that pharmacological manipulation of the Fyn-Rho pathway is sufficient to overcome the 

inhibitory effect of myelin on oligodendrocyte differentiation in vitro (Baer et al., 2009). This 

suggests that studies to identify the downstream pathway affected by Fyn inactivation in NPC 

mice might shed light on future therapies targeting dysmyelination in human patients.  

 Another unsolved question is how Npc1 deficiency in oligodendrocytes leads to 

demyelination in adult mice. In the brainstem and cerebellum, myelin is formed in CNP-Cre 

mutants in early postnatal days, but is later lost in aged mice. By showing that the numbers of 

Olig2+ cells are the same in the cerebellum between 23-week-old CNP-Cre mutants and controls, 

my work excluded the possibility that the late-onset demyelination is caused by loss of 

oligodendrocytes. Given the fact that myelin turnover is very slow in the adult brain (Dietschy, 

2009), it is less likely that demyelination reflects a defect in myelin synthesis. We favor the 

possibility that the myelin sheath produced by Npc1 deficient oligodendrocytes is defective and 
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unstable, leading to increased degradation. To test this idea, biochemical experiments are needed 

to compare the chemical composition of the myelin sheath between CNP-Cre mutants and 

controls. For example, probing the lipid and protein profile in purified myelin would establish 

the extent to which the cholesterol to protein ratio is altered in CNP-Cre mutants. Examination of 

the mRNA levels of myelin proteins might also be helpful to differentiate "reduced myelin 

synthesis" versus "increased myelin breakdown".  

 

5.3 Proteostasis regulation and therapeutic strategies 

 In Chapter 4, I identified ryanodine receptor (RyR) antagonists as disease-modifying 

compounds in patient fibroblasts carrying the I1061T mutation (Yu et al., 2012). My work 

showed that by increasing the ER luminal Ca2+ concentration, RyR antagonists enhance ER 

proteostasis to promote the folding and trafficking of NPC1 I1061T, thereby restoring its normal 

function and ameliorating the lipid storage defects. A limitation of my work is that the study was 

carried out in patient fibroblasts, results of which may not reflect changes of the brain pathology. 

Based on my work in Chapters 2 and 3 demonstrating that neurons are the most critical cell type 

for NPC, further work is needed to test the effects of RyR antagonists in a neuronal cell model of 

NPC. This neuronal model needs to carry missense mutations of NPC1, since the beneficial 

effect of RyR antagonists requires the presence of the NPC1 protein. The newly developed 

induced pluripotent stem cell (iPS) technology serves as a powerful tool to generate neurons 

from patient fibroblasts (Ito et al., 2012). This system could prove helpful in providing an in 

vitro model to test RyR antagonists and other compounds in the disease-relevant cell type. The 

next step would be to move from cellular models to an animal model of NPC. Again, since RyR 
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antagonists only rescue defects caused by missense mutations of NPC1, mouse models with null 

mutations, such as the Npc1
nih mice and the conditional knockout model, are not appropriate for 

this purpose. A new mouse model of NPC expressing Npc1 I1061T  is being developed in Dr. 

Daniel Ory's laboratory and will be a useful in vivo model to test RyR antagonists. 

 My work described the beneficial effects of RyR antagonists on the most prevalent 

missense mutation, NPC1 I1061T. However, this mutation only accounts for ~20% of all the 

NPC patients (Millat et al., 1999), and it would be very informative to test how other missense 

mutations respond to RyR antagonists. Based on my findings of NPC1 I1061T, the prediction is 

that only those mutants that are misfolded but retain function if trafficked to LE/LYs may benefit 

from RyR antagonists. A comprehensive understanding of the biochemical behavior of 

individual NPC1 mutants would be of great value for directing personalized therapies for NPC 

patients in the future.  

 In addition to RyR antagonists, I also showed that over-expression of calnexin, a Ca2+ 

regulated ER chaperone involved in protein folding, is sufficient to suppress the cholesterol 

storage defect in patient fibroblasts with the NPC1 I1061T mutation (Yu et al., 2012). This 

suggests that manipulation of ER chaperones might serve as an alternative strategy to promote 

ER proteostasis in NPC. An in-depth investigation of the roles of different ER chaperones in 

promoting NPC1 I1061T folding is ongoing in our laboratory. Similarly, knowledge of the 

protein machinery involved in ER associated degradation of misfolded NPC1 protein might 

provide a clue for future drug discovery. For example, targeting the E3 ligase responsible for 

ubiquitinating misfolded NPC1 protein might prevent its degradation and provide more 

substrates for ER chaperones, and this strategy might work synergistically with RyR antagonists 

to provide a beneficial effect. 



110 
 

 Inducing the unfolded protein response (UPR) is another potential strategy to modify ER 

proteostasis. The UPR is a series of signaling cascades that cells use to adapt to various ER 

stresses, including the accumulation of misfolded proteins. The three ER stress sensors IRE1, 

PERK and ATF6, are BiP-bound receptors for monitoring the protein folding environment in the 

ER lumen. Once unfolded proteins accumulate in the ER and preferentially sequester BiP, these 

sensors are released, leading to the activation of a cascade of downstream events. The outcomes 

of these pathways are attenuation of protein translation, transcriptional up-regulation of protein 

folding- and degradation-related genes, and activation of apoptosis if prolonged stress is detected 

(Wang and Kaufman, 2012). Manipulation of the UPR has been successfully applied to 

Gaucher's disease and other lysosomal storage disorders (Mu et al., 2008b). However, caution 

should be taken to keep UPR activation tightly controlled in order to avoid activation of 

apoptosis. Currently genetic strategies to manipulate the IRE and ATF6 arms of the UPR, which 

generally promote protein folding and cell survival, are being tested in NPC patient fibroblasts in 

our laboratory.  

 

5.4 Concluding remarks 

 Niemann-Pick Type C is a rare genetic disorder that is  largely neglected by the 

pharmaceutical industry. However, for each family who has one or more children suffering from 

NPC, the significance of this disorder cannot be overstated. The development of effective 

therapies for NPC will not be achieved without advances in the understanding of the disease 

pathogenesis. In this thesis, I have helped define the timing and cell type important for the NPC 

neuropathology. Furthermore, I have identified a new disease modifying strategy that might be 
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therapeutically beneficial to some NPC patients. It is my sincere hope that these studies will shed 

light on future NPC drug development to eventually cure this devastating disease. 
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