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Abstract 

 
Because of their abundance, C–H bonds are highly attractive starting materials for 

the elaboration of complex molecules. Transition metal catalysis can enable these 

typically inert bonds to undergo functionalization via a metal-catalyzed C–H activation 

step. In particular, ligand-directed PdII/PdIV-catalyzed C–H functionalization reactions 

have emerged as powerful techniques for diverse bond constructions. Nevertheless, these 

methodologies face a number of challenges that limit their applicability. These challenges 

include the common requirement for harsh reaction conditions, the shortage of examples 

of asymmetric functionalization reactions, and the poor transformability of most directing 

groups. This thesis describes the development of new methodologies that aim to address 

these challenges. 

Chapter 2 describes a new photoredox Pd/Ir-catalyzed C–H arylation reaction that 

reroutes the mechanism of Pd-catalyzed C–H arylation with diaryliodonium salts from an 

ionic pathway through a radical-mediated pathway. This radical-mediated transformation 

proceeds at room temperature in a non-acidic solvent, conditions that are considerably 

milder than those required for C–H arylation with diaryliodonium salts via a traditional 

PdII/PdIV mechanism (100 ºC in acetic acid). 

Chapter 3 details the development of a Pd-catalyzed C–H alkylation reaction that 

utilizes convenient potassium alkyltrifluoroborate salts in combination with a 1 e– oxidant 

(MnIII). Several pieces of evidence support an alkyl radical-mediated mechanism for this 

transformation. The alkylation reaction requires only mild temperatures (25–40 ºC), in 

contrast to the significantly higher temperatures (70–110 ºC) needed for previous 

examples of analogous transformations. 

Chapter 4 describes efforts toward understanding the interplay of chiral directing 

groups with Pd in the context of high oxidation state Pd catalysis. In this work, we 
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developed a chiral ligand-directed Pd-catalyzed asymmetric alkene dioxygenation 

reaction. 

Chapter 5 describes the identification of a transformable directing ligand for Pd-

catalyzed C–H functionalization reactions. In situ generated O-acetyl oxime ethers were 

shown to be effective directing groups that are stable under the reaction conditions 

required for Pd-catalyzed C–H oxygenation, but can then be readily manipulated to 

afford ketones, alcohols, amines, and heterocycles. 
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CHAPTER 1 

 
Introduction 

 

1.1  C–H Functionalization 

Most synthetic organic transformations involve conversion of one preexisting 

functional group into another. This functional group interconversion strategy is well 

illustrated by transition metal-catalyzed cross-coupling reactions that join two 

prefunctionalized hydrocarbon fragments. For instance, biaryls can be synthesized by a 

palladium-catalyzed Suzuki-Miyaura coupling of an aryl halide and an aryl boronic acid 

(Scheme 1.1). 

 

Scheme 1.1. Example of a Functional Group Interconversion Strategy 

 
 

Although transformations like these are extremely powerful, they have a number 

of drawbacks. First, as illustrated in Scheme 1.1, functional group interconversion 

reactions necessarily generate stoichiometric waste – the unwanted byproducts of 

preexisting functional groups. Second, it is not always feasible (or desirable) to carry the 

necessary functional groups through several steps of a synthesis, or to regioselectively 

install the ‘prefunctionalization’ into an advanced intermediate. As such, functional group 

interconversion strategies are often non-ideal for the derivatization of complex molecules 

at a late stage. 

An efficient strategy that avoids the requirement for at least one prefunctionalized 

starting material is the direct conversion of C–H bonds into the target C–X bonds. This 
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strategy is not usually feasible using traditional organic reaction methodology because 

unactivated C–H bonds are inert to both homolytic and heterolytic cleavage under most 

conditions. As illustrated by Figure 1.1A, typical C–H bonds have large bond 

dissociation energies (BDE) that range from ~90–115 kcal mol-1. Similarly, unactivated 

C–H bonds have very high pKa values relative to bonds that can be deprotonated by 

moderate bases (Figure 1.1B). 

 

 
Figure 1.1. Homolytic and Heterolytic Bond Strengths of C–H Bonds1 

 

However, a number of transition metals (e.g., Pt, Pd, Ni, Ir, Rh, Ru) have been 

demonstrated to ‘activate’ C–H bonds by converting them into reactive carbon–metal 

species 1 (Scheme 1.2).2 These intermediate organometallic complexes are typically 

unstable and readily participate in subsequent steps to afford products in which a C–H 

bond has been replaced by a new functional group (2). This unique reactivity of transition 

metals, in combination with the ubiquity of C–H bonds in organic molecules, makes 

transition-metal catalyzed C–H functionalization a powerful alternative to traditional 

functional group interconversion strategies.   
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Scheme 1.2. Transition Metal-Catalyzed C–H Activation/Functionalization  

 
 

 

1.2  Controlling the Site Selectivity of C–H Functionalization 

The great abundance of C–H bonds relative to any other functional group makes 

them attractive starting materials for the elaboration of complex molecules. However, this 

same characteristic also presents a major challenge to developing practical methods for 

C–H bond functionalization. To achieve useful yields of a single product, 

functionalization must occur with high site selectivity for one C–H bond over all the 

others within a substrate.   

One approach to targeting just a single C–H bond is to engineer an intramolecular 

C–H functionalization reaction. For instance, molecule 3 in Scheme 1.3 contains 8 

different C–H bonds, but complete selectivity was observed for activation of H1 in the 

presence of a palladium catalyst, affording carbazole product 5.3 This exquisite 

selectivity can be explained by the structure of PdII intermediate 4, formed by oxidative 

addition of Pd0 into the carbon–iodine bond of 3. In intermediate 4, a single C–H bond 

(H1) is geometrically accessible to the Pd center, thereby facilitating selective activation 

of C–H1 over all of the other C–H bonds. While effective, this intramolecular approach to 

controlling site selectivity is inherently limited to a small subset of target molecules and 

is only useful for forming cyclic products. 

 

Scheme 1.3. Intramolecular C–H Functionalization3 
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An alternative approach for controlling site selectivity is to employ substrates (6) 

containing coordinating ligands (L) that can reversibly bind to a metal center and direct 

C–H activation at a proximal site (Scheme 1.4). Directed C–H activation results in a 

metallacycle intermediate 7 that undergoes further functionalization with external 

nucleophiles or oxidants. The overall transformation affords products of a net 

intermolecular C–H functionalization (8), and both the metal and the directing ligand 

undergo no net change. As such, this ligand-directed strategy for C–H functionalization 

exploits the kinetic advantages of intramolecular transformations without being limited to 

the formation of cyclic products. This strategy has proven particularly powerful for C–H 

functionalization reactions catalyzed by palladium. 

 

Scheme 1.4. Ligand-Directed Transition Metal-Catalyzed C–H Functionalization 

 
 

 

1.3  Pd Catalysis for C–H Functionalization 

Palladium provides several advantages over other transition metals for C–H 

functionalization.4 Many of these advantages relate to (1) the +2 oxidation state of the 

metal species that undergoes C–H activation, (2) the square planar geometry of the PdII 

intermediate that is produced upon C–H activation, and (3) the accessibility of a +4 

oxidation state under oxidizing conditions.  

Palladium activates C–H bonds from its +2 oxidation state by an ‘electrophilic’ 

mechanism that results in no net change in oxidation state (Scheme 1.5). In contrast, 

several other metals activate C–H bonds by an oxidative addition pathway (Scheme 1.6), 

requiring that catalysis is initiated by a low-valent metal species (IrI, RhI, and Ru0).2 

Metals in low oxidation states such as these tend to be unstable to oxygen; therefore, care 

must be taken to exclude ambient air from reactions involving these metal species (i.e., 

glovebox or Schlenk techniques are required). However, PdII species are stable to air 

under most conditions, and most Pd-catalyzed C–H functionalization reactions are 

conveniently run on the benchtop. Additionally, PdII is compatible with oxidants that are 
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needed to effect functionalization, unlike most low valent metal species. Finally, although 

low valent metal species – including Pd0 – often undergo facile oxidative addition into 

bonds such as C–halogen, PdII does not usually react with these types of functional 

groups. As such, PdII-catalyzed reactions are often characterized by a broader functional 

group tolerance than transformations catalyzed by other metals. 

 

Scheme 1.5. Electrophilic Mechanism for Ligand-Directed C–H Activation at PdII 

 
 

 

Scheme 1.6. Oxidative Addition Mechanism for C–H Activation at IrI 

 
 

The product of electrophilic C–H activation at PdII is a square planar PdII species 

(9, Scheme 1.5) that is coordinatively unsaturated, allowing for relatively facile further 

functionalization to occur. Other metal species that also undergo C–H activation through 

an electrophilic mechanism (RhIII, IrIII) often result in coordinatively saturated octahedral 

complexes that do not easily participate in subsequent reactions. Thus, the square planar 

geometry of PdII contributes to its relative versatility compared to other metals for the 

construction of diverse C–X bonds. 

In addition to Pd0 and PdII, higher oxidation states of Pd (+3 and +4) can be 

accessed under oxidizing conditions. Because carbon ligands (especially alkyl and aryl) 

are electron-donating toward metal centers, the PdII–carbon species generated upon C–H 

activation is more susceptible to oxidation than simple PdII salt precursors. As such, C–H 

activation can be followed by oxidative interception of the resultant PdII complex to 

afford a high valent PdIV–carbon intermediate 10 (Scheme 1.7). Such species are 

typically unstable, and reductive elimination from high valent Pd is relatively facile and 

can provide for diverse bond constructions that are often not accessible by reductive 
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elimination at PdII (e.g., C–O, C–N, C–Cl). Furthermore, high valent Pd catalysis can be 

used to install C–Br and C–I bonds that are typically unfeasible by reductive elimination 

at PdII because the resultant Pd0 species readily reinserts into C–X. Together, all of these 

attributes make high valent Pd catalysis particularly appealing for C–H functionalization 

reactions. 

 

Scheme 1.7. Ligand-Directed PdII/PdIV-Catalyzed C–H Functionalization 

 
 

 

1.4  Challenges 

Over the past decade, an enormous number of transformations have been reported 

that combine the advantages of a ligand-directed approach (site selectivity) with those of 

high valent Pd catalysis (convenient reaction protocols, access to diverse bond 

constructions). Figure 1.2 presents a sampling of the types of products that can be formed 

by ligand-directed Pd-catalyzed oxidative C–H functionalization, demonstrated by our 

group5 and others.4f 
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While great strides have been made over the past decade, these transformations 

still face a number of key challenges including the following: First, they are frequently 

sluggish and require relatively high temperatures, often in conjunction with strong acids 

or bases, to proceed efficiently (Challenge 1). Second, asymmetric examples of Pd-

catalyzed oxidative C–H functionalization reactions remain relatively rare (Challenge 2). 

Third, removal or transformation of the directing ligand is often desirable to access a 

final target molecule; however, most directing groups commonly used for C–H 

functionalizations are difficult to transform (Challenge 3). The work described in this 

thesis aims to address each of these three challenges. 

Challenge 1. The majority of examples of Pd-catalyzed C–H activation/C–C bond 

forming reactions proceed through either a PdII/PdIV or a PdII/Pd0 mechanistic pathway. 

C–H arylation has been demonstrated using PdII/PdIV catalysis in conjunction with 2 e– 

oxidants such as diaryliodonium salts (Scheme 1.8A).6 Alternatively, several examples of 

C–H arylation and C–H alkylation utilize carbon–[M] reagents (e.g., alkyl–B(OH)2) and 

proceed through a PdII/Pd0 catalytic cycle involving transmetallation. These 

transformations usually require high reaction temperatures (~100 ºC) and/or strongly 

acidic or basic conditions to proceed efficiently. Consequently, these methodologies have 

limited applicability for the derivatization of complex molecules containing sensitive 

functional groups. Mechanistic studies on Pd-catalyzed C–H arylation with 

diaryliodonium oxidants have shown that the rate-limiting step of this transformation is 

oxidation of PdII to PdIV.6b As such, it is likely that a more facile oxidation step would 

enable C–H arylation and alkylation reactions to take place under milder conditions. Our 

group has been interested in developing strategies to accelerate the rate of oxidation, with 

the goal of developing novel transformations that can proceed under less forcing reaction 

conditions. Recently, we initiated investigations into the use of carbon-centered radicals 

as 1 e– oxidants for Pd.7a The high kinetic reactivity of radicals makes this oxidation step 

fast relative to a 2 e– oxidation step using traditional reagents. 

To this end, Chapter 2 describes a new photoredox Pd/Ir-catalyzed C–H arylation 

reaction that reroutes the mechanism of Pd-catalyzed C–H arylation with diaryliodonium 

salts from an ionic pathway through a radical-mediated pathway (Scheme 1.8B).8 

Importantly, this transformation uses reagents that are identical to those used in 
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previously reported thermal C–H arylation reactions – namely, diaryliodonium salts. 

Unlike previous examples, however, this transformation proceeds efficiently at room 

temperature. 

 

Scheme 1.8. Rerouting C–H Arylation with Ph2I+ Through a Radical-Mediated Pathway 

 
 

 Chapter 3 describes the development of a Pd-catalyzed C–H alkylation reaction 

that utilizes convenient potassium alkyltrifluoroborate salts in combination with a 1 e– 

oxidant (Scheme 1.9). This transformation is effective for the installation of methyl and 

1º alkyl groups into aryl substrates containing pyridine and amide directing ligands. 

Though relatively rare, previous examples of Pd-catalyzed C–H alkylation with boronic 

acid derivatives proceed through a PdII/Pd0 catalytic cycle involving transmetallation 

from boron to palladium. In contrast, several pieces of evidence support an alkyl radical-

mediated reaction mechanism for the alkylation reaction described in Chapter 3. Notably, 

this transformation proceeds at mild temperatures (25–40 ºC), unlike the significantly 

higher temperatures (70–110 ºC) required for all previous examples of analogous 

transformations in the literature. 
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Scheme 1.9. Ligand-Directed Pd-Catalyzed C–H Alkylation with Alkyltrifluoroborates 

and MnIII 

 
 

Challenge 2. A large number of examples of Pd-catalyzed transformations exist 

that employ chiral ancillary ligands to construct bonds asymmetrically using Pd0/PdII 

catalysis. However, examples of asymmetric transformations that proceed through high 

valent Pd are extremely rare. Most of the ancillary ligands that are well-studied for 

Pd0/PdII catalysis are not stable to oxidative conditions (e.g., phosphines), an attribute that 

may contribute to the dearth of examples of asymmetric transformations at high 

oxidation-state Pd. One promising approach to asymmetric oxidative C–H 

functionalization reactions is to use substrates containing chiral directing ligands. 

Chapter 4 describes efforts toward understanding the interplay of chiral directing groups 

with Pd in the context of high oxidation state Pd catalysis. For this work, we focused on a 

different type of oxidative transformation – a Pd-catalyzed alkene difunctionalization 

(Scheme 1.10). This asymmetric reaction is directed by a chiral oxime ether auxiliary, 

and the best auxiliary identified provides dioxygenated products with diastereomeric 

ratios up to 90:10.9 

 

Scheme 1.10. Chiral Directing Group Strategy for Pd-Catalyzed Alkene 

Difunctionalization 
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interested in identifying general and efficient directing ligands that can be removed or 

otherwise transformed after they are no longer needed to direct functionalization (Scheme 

1.11). To this end, we have demonstrated the use of in situ generated O-acetyl oxime 

ethers as effective directing groups in Pd-catalyzed C–H oxygenation reactions.10 These 

directing groups are stable under the reaction conditions, but can then be readily 

manipulated to afford ketones, alcohols, amines, and heterocycles. 

 

Scheme 1.11. Transformable Directing Group Strategy for C–H Functionalization 
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CHAPTER 2 

 
Room-Temperature Photoredox Pd/Ir-Catalyzed C–H 

Arylation with Ph2I+ 
 

2.1  Background and Significance 

Substituted biphenyl scaffolds are prevalent in bioactive natural and synthetic 

products (Figure 2.1), including ~4.3% of known therapeutic drugs.1a Inclusion of this 

‘privileged’ substructure in small molecules has been shown to impart binding affinity for 

a wide range of protein targets; furthermore, variation of the substituents on the scaffold 

can afford compounds with high levels of binding specificity.1 Biaryl motifs are also 

common in numerous synthetic polymers, semiconductors, and other valuable materials. 

As such, vast amounts of research over the last century have been dedicated to 

developing methods to construct aryl–aryl bonds.2  

 

 
Figure 2.1. Examples of Biphenyl Motifs in Bioactive Molecules 
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Without question, the most successful Ar–Ar bond-forming methodologies to date 

involve cross-coupling between an aryl organometallic reagent and an aryl halide 

(Scheme 2.1). Despite their well-deserved recognition with the 2010 Nobel Prize, such 

methodologies possess the disadvantage of requiring two prefunctionalized starting 

materials. Such precursors can be difficult or costly to access, particularly at a late stage 

of a lengthy synthesis, and they necessarily result in the formation of stoichiometric 

waste. 

 

Scheme 2.1. Pd- and Ni-Catalyzed Aryl–Aryl Cross-Coupling Reactions 

 
 

An attractive alternative to classic cross-coupling reactions would involve the 

direct arylation of a C–H bond, a transformation that would preclude the need for at least 

one prefunctionalized starting material (Scheme 2.2). A protocol for C–H arylation that is 

highly site-selective, utilizes mild reaction conditions, displays high functional group 

tolerance, and can successfully install diverse aryl groups could be extremely valuable for 

small molecule synthesis, particularly for late stage derivatization of complex molecules.  

 

Scheme 2.2. Biaryl Formation by C–H Arylation  
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products 5 do not share a common late-stage intermediate and their preparation is 

laborious. Instead, the synthesis of a library of compounds with diverse aryl–R1 groups 

could be streamlined by the route presented in Scheme 2.4.  

 

Scheme 2.3. Biaryl Formation at an Early Stage in the Synthesis of 5 

 
 

 

Scheme 2.4. Biaryl Formation at a Late Stage in the Synthesis of 5 via C–H Arylation 
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Scheme 2.5. Common Mechanistic Manifolds for Pd-Catalyzed C–H Arylation Reactions 

 
 

A key challenge associated with developing any practical C–H functionalization 

reaction is the issue of site selectivity (see Chapter 1), and C–H arylation methodology 

has been no exception.  One approach to achieving selectivity is to couple two arenes that 

are within the same molecule. Seminal work by Ames and coworkers in the early 1980s 

demonstrated Pd-catalyzed intramolecular coupling of aryl–H with an aryl halide to 

afford dibenzofurans (Scheme 2.6), carbazoles, and fluorenones.8 Many similar examples 

have since been reported; however, this intramolecular approach to controlling site 

selectivity is inherently limited to a small subset of target molecules and is only useful for 

forming cyclic products. 

 

Scheme 2.6. Intramolecular C–H Arylation to Form Dibenzofurans8 
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group.9 Arylation occurs selectively at the 2ʹ′-position of 2-phenylphenols (Scheme 2.7) 

or the 8-position of 1-naphthol (Scheme 2.8).  

 

Scheme 2.7. Directed C–H Arylation of 2-Phenylphenol9 

 
 

 

Scheme 2.8. Directed C–H Arylation of 1-Naphthol9 
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effective for a variety of directing groups (e.g., pyridines, pyrrolidinones, oxizolidinones,  

and quinolines) and substituted arenes. However, like the majority of Pd-catalyzed 

methodologies for arylation of unactivated C–H bonds, arylation with Ar2I+ oxidants has 

the drawback of requiring high reaction temperatures (>80 ºC). For example, as depicted 

in Scheme 2.9, the phenylation of 7 is extremely sluggish at room temperature. 

 

Scheme 2.9. Directed C–H Phenylation of 7 with Ar2I+ Salts under Thermal/Ionic 

Conditions10 
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Similarly, most examples of Pd-catalyzed ligand-directed C–H arylation with aryl 

iodides13 (Scheme 2.10), aryl chlorides13c (Scheme 2.11), aryl boronic acids14,15 (Scheme 

2.12), and trialkoxyarylsilanes13d (Scheme 2.13) all require elevated temperatures to 

proceed in high yield.  

 

Scheme 2.10. Directed C–H Arylation with Aryl Iodides13a 

 
 

 

Scheme 2.11. Directed C–H Arylation with Aryl Chlorides13c 

 
 

 

Scheme 2.12. Directed C–H Arylation with Arylboronic Acids14a 
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Scheme 2.13. Directed C–H Arylation with Trialkoxyarylsilanes13d 

 
 

In one unusual example, room temperature C–H arylation of phenol esters with 

diaryliodonium salts was reported (Scheme 2.14).16 However, this reaction requires 

TfOH as an additive and has not been demonstrated with any other directing groups. It is 

likely that these acid-catalyzed reaction conditions would be incompatible with more 

common nitrogen-containing directing groups that feature a basic site (e.g., pyridines). 

 

Scheme 2.14. Room-Temperature C–H Arylation of Phenol Esters with Diaryliodonium 

Oxidants11d  

 
 

Some insight into the thermal requirements for C–H arylation with Ar2I+ has been 

provided by recent mechanistic work from our group.17 Kinetic studies of the arylation of 

7 with diaryliodonium reagents revealed that the rate-limiting step of the transformation 

is oxidation of an intermediate palladacycle by Ar2I+ (Scheme 2.15). 
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Scheme 2.15. Thermal C–H Arylation with Ar2I+ is Limited by the Oxidation Step17 

 
 

In light of these studies, we reasoned that the rate of C–H arylation could be 

accelerated by the use of kinetically more reactive oxidants for PdII. Recently, the 

combination of transition metal catalysis with radical chemistry has emerged as a 

powerful strategy for achieving fast, high-yielding transformations under mild 

conditions.18 A striking example of this strategy’s potential in Pd catalysis was reported 

in 2009 by Knochel and coworkers.19 In this example, an alkyl radical-mediated Kumada 

coupling displayed remarkable rate acceleration and functional group tolerance at room 

temperature (Scheme 2.16). This reaction utilizes textbook Kumada coupling reagents (an 

aryl Grignard, an aryl bromide, and a Pd catalyst), but is believed to proceed through a 

mechanistic manifold that is fundamentally different from ‘traditional’ Pd0/PdII catalysis. 

Intermediate alkyl radicals, putatively generated by the reaction of an added alkyl iodide 

with Pd0, are proposed to initiate a PdI/PdIII catalytic cycle that allows for more rapid 

product formation (i.e., 92% vs 8% yield of the biaryl product after 15 min at 0 ºC). 

Consequently, this transformation could be extended to the cross-coupling of diverse 

functionalized arenes, including aryl Grignards with poor stability at room temperature.  
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Scheme 2.16. Radical-Accelerated Kumada Cross-Coupling19 

 
 

Although the thermal Pd-catalyzed arylation with Ar2I+ is believed to proceed via 

an ionic mechanism involving 2e- oxidation of Pd by Ar2I+ (Scheme 2.5 C), we reasoned 

that the rate of this reaction could potentially be enhanced by rerouting it through a 

radical pathway in which Ar2I+ is converted into Ar• in situ. Because Ar• would be a 

more kinetically reactive oxidant than Ar2I+, the slow oxidation step should be 

accelerated relative to the thermal/ionic reaction. Intriguingly, sporadic reports from the 

polymer literature have shown that diaryliodonium salts can serve as precursors to Ar• in 

the presence of visible light and a photoredox catalyst (Scheme 2.17).20 Thus we 

envisioned that the combination of Pd- and photoredox catalysis could provide a means 

for achieving room temperature C–H arylation with diaryliodonium salts. 

 

Scheme 2.17. Generation of Ph• from Ph2I+ by Photoredox Catalysis20
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Precedent for Ar•-mediated Pd-catalyzed C–H arylation was provided by 

literature reports that used aryl acylperoxides or aryldiazonium salts as Ar• precursors. In 

the former case, a high reaction temperature (100 ºC) is needed to generate Ar• from the 

aryl acylperoxide precursor (Scheme 2.18).21 The latter case, a transformation published 

by our group, demonstrated the feasibility of room-temperature Pd-catalyzed C–H 

arylation with Ar• generated from ArN2
+ using photoredox catalysis (Scheme 2.19).22 

 

Scheme 2.18. Ar•-Mediated Pd-Catalyzed C–H Arylation using Aryl Acylperoxides21 

 
 

 

Scheme 2.19. Pd-Catalyzed C–H Arylation with ArN2
+ Using Visible-Light Photoredox 

Catalysis22 

 
 

Encouraged by this precedent, we began our studies with the goal of rerouting the 

mechanism of Pd-catalyzed C–H arylation with Ar2I+ from an ionic pathway (Scheme 

2.20, path a) to an alternative radical-mediated pathway (path b) that would enable the 

use of milder reaction temperatures. 
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Scheme 2.20. Two Different Pathways for Pd-Catalyzed C–H Arylation Using Ph2I+ 

 
 

 

2.2  Reaction Optimization 

We initiated our investigations of Pd-catalyzed C–H phenylation of substrate 9 

with [Ph2I]BF4 in combination with either Ru(bpy)3Cl2 or Ir(ppy)3, the photocatalysts 

precedented20 for use with diarlyiodonium salts (Scheme 2.17). Substrate 9 was selected 

for study because (1) its arylation with Ar2I+ reagents under thermal conditions has been 

previously demonstrated,10,22 (2) unlike aryl pyridines, it has not been shown to be 

undergo competing oxidative homodimerization,23 and (3) it is a convenient 

commercially available crystalline solid. Visible light irradiation was provided by a 26 W 

household fluorescent light bulb, and the reactions were set up on the bench top with no 

precautions to exclude moisture or air. Remarkably, the use of Ru(bpy)3Cl2 resulted in a 

modest yield (18%) of the desired arylated product 10 after 15 h in MeOH at room 

temperature (Table 2.1, entry 1). Evaluation of a number of different PdII salts showed 

that Pd(NO3)2 provided better results, affording 10 in 23% yield. Although Ru(bpy)3Cl2 

and Ir(ppy)3 afforded comparable results, the cationic photocatalyst Ir(ppy)2(dtbbpy)PF6 

(dtbbpy = 4,4ʹ′-di-tert-butyl-2,2ʹ′-bipyridine)24 provided a significant improvement (57% 

yield). Replacing [Ph2I]BF4 with the corresponding triflate salt led to a further 

enhancement in yield (66%). Finally, briefly sparging the mixture with N2 prior to the 

start of the reaction resulted in 94% yield of 10. Notably, [Ph2I]BF4 performed 

comparably to [Ph2I]OTf when O2 was excluded (entry 7) for substrate 9.  
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Table 2.1. Optimization of the Room-Temperature C–H Phenylation of 9 with Ph2I+ a 

 
 

Importantly, both of the metal catalysts, as well as visible light, are critical for 

efficient room temperature C–H phenylation. Without any one of these three components, 

only traces of product 10 were formed (0–2% yield, Table 2.2). 
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6c Pd(NO3)2 Ir(ppy)2(dtbbpy)PF6 94%

X

BF4–

BF4–

BF4–

OTf–
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aGeneral conditions: 9 (1 equiv), Pd II (0.10 equiv), photocatalyst 
(0.05 equiv), [Ph2I]X (2 equiv), MeOH (0.2 M in 9), 26 W lightbulb, 
15 h, rt. bYields determined by GC. cReaction was degassed by 
sparging with N2 for 1 min.

7c Pd(NO3)2 Ir(ppy)2(dtbbpy)PF6 94%BF4–
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Table 2.2. Control Reactions for the Pd/Ir-Catalyzed C–H Phenylation of 9 with Ph2I+ a 

 
 

The yield enhancement observed upon sparging with N2 (Table 2.1, entries 5 vs 6) 

suggests that O2 is detrimental to the desired transformation. This effect could be 

attributed to (i) radical termination by a reaction between Ar• and O2 or (ii) quenching of 

photoexcited Ir3+* by O2. Although we cannot conclusively rule out the first explanation, 

the expected byproduct of a reaction between Ar• and O2, phenol, has not been observed 

by gas chromatography. Instead, rationale (ii) appears to be more likely based on 

literature precedent25 and a subsequent observation that O2 is not detrimental to a related 

C–H arylation reaction that uses Ar• generated through a non-photoredox pathway 

(Chapter 3, section 3.10). 

In contrast to the effect of oxygen, the presence of trace water does not appear to 

influence the course of the reaction. As illustrated in Figure 2.2, reactions set up with wet 

MeOH can be degassed by brief sparging with N2 to afford results that are equally 

satisfactory to those obtained by setting up the reactions in a glovebox using rigorously 

dried and degassed MeOH. 
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Figure 2.2. Comparison of Dry/Degassed, Wet/Degassed, and Wet/Non-Degassed 

MeOH for the Pd/Ir-Catalyzed C–H Arylation of 9 

 

The benchtop sparging method is arguably more convenient than the use of a 

glovebox. Furthermore, for liquid substrates such as arylpyridine 7, we found the 

sparging method to provide better results with improved reproducibility (average yield = 

61 ± 2% over 5 runs) than the glovebox method (average yield = 53 ± 10% over 7 runs) 

(Figure 2.3). This observation can likely be explained by the presence of small amounts 

of O2 dissolved in the liquid substrate brought into the glovebox. In contrast, sparging of 

the entire reaction mixture displaces even this small quantity of O2 from the solution.  

This discrepancy between sparging and glovebox conditions could presumably be 

eliminated by more careful degassing of liquid substrates prior to their use in the 

glovebox. Clearly, however, the simple sparging protocol is sufficient and is likely to be 

more convenient in many cases. 
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Figure 2.3. Comparison of Dry/Degassed and Wet/Degassed MeOH for the Pd/Ir-

Catalyzed C–H Arylation of 7 

 

As described above, exclusion of O2 was found to improve the yield of the 

arylation reaction of both 9 and 7. Nevertheless, for arylpyridine 7, only about 80% of the 

total mass balance could be accounted for by summing the product and remaining starting 

material (Figure 2.3, entries 8–12, white bars). Analysis by GCMS and comparison to 

authentic materials suggests that the remainder of the mass balance can be attributed to 

several undesired side products. Figure 2.4 shows an annotated copy of a typical gas 

chromatogram for the Pd/Ir-catalyzed arylation reaction of 7 with [Ph2I]BF4. As 

indicated, side products resulting from arylation of the pyridine ring (A),26 diarylation 

(B), and homocoupling of 7 (C) 23 are observed. 
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Figure 2.4. Typical Gas Chromatogram of the Pd/Ir-Catalyzed Arylation of 7  

 

As shown in Table 2.1, the use of [Ph2I]OTf or [Ph2I]BF4 provided similar yields 

of pyrrolidinone product 10 under N2-sparging conditions. However, for other substrates 

such as arylpyridine 7, [Ph2I]OTf proved superior to [Ph2I]BF4 (Figure 2.5, 76% vs 56% 

GC yield for OTf– and BF4
–, respectively). A more comprehensive screen of 

diphenyliodonium salts with substrate 7 confirmed that the yield of the transformation 

can be influenced by the oxidant counterion, although none of the other counterions 

screened were found to be superior to OTf– (Figure 2.5). Consequently, [Ph2I]OTf was 

used as the oxidant for the majority of subsequent experiments with other substrates 

(Section 2.3). 
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Figure 2.5. Oxidant Counterion Screen for the Pd/Ir-Catalyzed C–H Arylation of 7 

 

 

2.3  Substrate Scope 

With optimized reaction conditions in hand (Table 2.1), we next investigated the 

substrate scope of the reaction. Gratifyingly, a variety of aromatic substrates underwent 

room temperature C–H phenylation under the Pd/Ir-catalyzed conditions (Table 2.3). In 

addition to pyrrolidinones 9 and 11, other N-aryl amides were effective directing groups 

(entries 3 and 4). C-Aryl amides, such as benzamides 17 and 19, also underwent room 

temperature C–H phenylation, albeit in moderate yields (40% and 54%). The N,N-

disubstituted analog 21 provided phenylated product 22 in poor yield (9%), suggesting 

that C–H arylation is facilitated by the presence at least one N–H bond in this substrate 

class. 2-Arylpyridines 23 and 25 as well as ketoxime and aldoxime ethers 27 and 29 were 

also good substrates. The ability to use oxime ethers as directing groups is particularly 

notable, as these do not undergo C–H arylation with diaryliodonium reagents under the 

previously reported thermal reaction conditions (Scheme 2.21).10,17 
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Table 2.3. Substrate Scope for the Pd/Ir-Catalyzed C–H Phenylation with Ph2I+ a 
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Scheme 2.21. Unsuccessful C–H Arylation of Oxime Ether 27 with Ph2I+ Under Thermal 

Conditions 

 

 

 

2.4  Scope of Diaryliodonium Oxidants 

Diaryliodonium salts containing diverse aryl substituents were evaluated in this 

photocatalytic C–H arylation. As shown in Table 2.4, the highest yields were obtained 

with those bearing relatively electron neutral substituents (e.g., p-Cl, p-Br, p-CH3, o-CH3, 

entries 4–7). Nonetheless, oxidants possessing more strongly electron-donating and 

electron-withdrawing substituents were also effective. For example, C–H arylation with 

p-methoxyphenyl (entry 9) as well as p-, m-, and o-trifluoromethylphenyl (entries 1–3) 

reagents proceeded in moderate to good yields. Remarkably, even the highly sterically 

hindered mesityl group could be transferred, albeit in low yield (11%, entry 8). Notably, 

the analogous thermal reaction of [Mes2I]OTf with 9 did not provide detectable quantities 

of 38 (as determined by GC). 
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Table 2.4. Scope of Ar2I+ Salts for the Pd/Ir-Catalyzed C–H Arylation of 9 a 

 
 

 

2.5  Inhibition by Radical Scavengers and Chemoselectivity Studies 

We propose that the Ir/Pd-catalyzed photocatalytic C–H arylation proceeds via a 

fundamentally different mechanism than the analogous thermal reaction, despite the fact 

that the reactants and products are the same in both processes. A first piece of evidence to 

support this proposal is the reaction outcome in the presence of free radical scavengers 

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and galvinoxyl (Figure 2.6). As shown 

in Table 2.5, the thermal C–H arylation reaction is not inhibited by the addition of 25 mol 

% galvinoxyl or 100 mol % of TEMPO. With both radical scavengers, the reactions 

proceed to complete conversion and afford comparable yields (entries 1–3). In contrast, 

the % conversion and the % yield of the photocatalytic reaction are suppressed in a dose-
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dependent manner by galvinoxyl and TEMPO (entries 4–8). These results are consistent 

with the intermediacy of radicals in the latter but not the former reaction. 

 

 
Figure 2.6. Structures of Radical Scavengers TEMPO and Galvinoxyl 

 

 

Table 2.5. Effect of Radical Scavengers on the Pd/Ir-Catalyzed C–H Arylation of 23  

 
 

The chemoselectivity for arene transfer from unsymmetrical diaryliodonium salts 

of the type [Ar1–I–Ar2]+ was next explored. These reagents are known to display different 

chemoselectivity trends in different classes of reactions.27 For example, in metal-free 

arylations of nucleophiles, preferential transfer of the more electrophilic28 or more 
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sterically hindered28c,29 aryl group is commonly observed. On the other hand, transfer of 

sterically bulky aryl groups tends to be disfavored in metal-catalyzed arylations, and 

there is variation among electronic trends between different metal-catalyzed 

transformations.27a 

 A number of mixed [Ph–I–Ar]BF4 reagents were prepared and the ratios of 

products resulting from phenyl versus aryl transfer were compared under the 

photocatalytic and thermal reaction conditions (Table 2.6). Under both sets of conditions, 

a modest preference was observed for transfer of the more electrophilic aryl group. Thus, 

p- and m-trifluoromethylphenyl are favored for transfer over phenyl under both sets of 

conditions (entries 1–4), while p-OMe is disfavored (entries 15 and 16). Additionally, a 

bulky ortho-disubstituted arene (mesityl) is disfavored for transfer under both the thermal 

and photocatalytic reaction conditions (entries 13 and 14). 
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Table 2.6. Comparison of Chemoselectivity for Pd-Catalyzed C–H Arylation with Mixed 

Diaryliodonium Oxidants for Thermal and Photocatalytic Reaction Conditions 

 
 

Despite these similarities, differences in chemoselectivity for the two sets of 

reaction conditions arise in the case of aryl groups containing a single ortho substituent. 

Under thermal conditions, a less hindered Ph group is transferred preferentially over 

ortho-mono-substituted arenes, even when the latter aryl group is more electrophilic (e.g., 

Table 2.6, entry 5). In contrast, under photocatalytic reaction conditions, aryl groups with 

a single ortho-substituent are transferred more readily than phenyl (entries 6 and 12), 

aThermal conditions A: 9 (1 equiv), [ArR–I–Ph]BF4 (2 equiv), Pd(NO3)2 (0.10 equiv), 
NaHCO3 (1.5 equiv), toluene, 12 h, 100 º C. bPhotocatalytic conditions B: 9 (1 
equiv), [ArR–I–Ph]BF4 (2 equiv), Pd(NO3)2 (0.10 equiv), Ir(ppy)2(dtbbpy)PF6 (0.05 
equiv) MeOH, 26 W lightbulb, 12 h, rt, degassed by sparging with N2.

N

O

Ph

1 equiv 9 N

O

+
Conditions A:   Thermala
Conditions B:   Photocatalyticb

entry R conditions

(10) (ArR product)

yield (10) : (ArR Prod.)

1 p-CF3

I
PhR

R

70% 1 : 1.52

40% 1 : 2.5

3 m-CF3

46% 1 : 1.54

49% 1 : 1.7

5 o-CF3

46% 1 : 3.66

18% 1 : 0.2

7 p-Cl

63% 1 : 1.18

37% 1 : 1.1

BF4–

ArR Product

(31)

(32)

(33)

(34)

9 p-CH3

78% 1 : 0.610

28% 1 : 1.2

11 o-CH3

81% 1 : 1.112

12% 1 : 0.9

13 Mes

65% 1 : 0.114

7% 1 : 0.0

15 p-OMe
61% 1 : 0.316

22% 1 : 0.5

(36)

(37)

(38)

(39)

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A

A
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even when transfer of the analogous para-substituted aryl group is disfavored relative to 

phenyl (e.g., entry 12 compared to entry 10). This trend is particularly pronounced with 

o-CF3 (entry 6). Whereas phenyl is transferred selectively under the thermal reaction 

conditions (10 : 33 = 1 : 0.2), selective transfer of the o-CF3C6H4 group occurs under the 

photocatalytic conditions to afford a 1 : 3.6 ratio of 10 : 33. Interestingly, the 

chemoselectivities observed for both the thermal and photocatalytic conditions are 

attenuated in an intermolecular competition experiment using two symmetrical 

diaryliodonium oxidants in one pot (Scheme 2.22). 

 

Scheme 2.22. Attenuation of Chemoselectivity Differences Between Thermal and 

Photocatalytic Reaction Conditions for Intermolecular Competition 

 
 

Thus, while chemoselectivities are generally modest under both sets of conditions, 

the selectivities under photocatalytic conditions do not always mirror those under the 

thermal reaction conditions, particularly when ortho substituents are present. These 

differences in chemoselectivity provide further support for divergent mechanistic 

pathways between the thermal and the photocatalytic reaction conditions.  

 

2.6  Proposed Reaction Mechanism 

For the described photocatalytic arylation, we preliminarily propose a reaction 

pathway that merges PdII/IV and IrIII/IV catalytic cycles. As shown in Scheme 2.23, ground 

state Ir3+ undergoes photoexcitation by visible light (step i), and the resultant Ir3+* 

complex can reduce Ar2I+ to generate Ar•, ArI, and Ir4+ (step ii).20,30 Ar• could then enter 

the Pd catalytic cycle by oxidizing cyclopalladated complex 40 (step iii). Complex 41 

could then be further oxidized to 42 by Ir4+ (step iv), regenerating Ir3+. Finally, C–C 

N

O

Ph

N

O

+
Conditions A:   Thermal
Conditions B:   Photocatalytic

(10) (33)

N

O
10 mol % Pd(NO3)2

2 equiv [(o-CF3C6H4)2I]BF4
2 equiv [Ph2I]BF4

CF3

B 32% : 55%
A 18% : 14%

(1 : 1.7)
(1 : 0.8)
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bond-forming reductive elimination from 42 would afford product 43 and regenerate Pd2+ 

(step v). Importantly, a number of other pathways are also possible and cannot be 

distinguished based on the current data. For example a PdI/III pathway could also be 

envisioned (Scheme 2.24). 

 

Scheme 2.23. Possible PdII/IV Mechanism for the Pd/Ir-Catalyzed C–H Arylation with 

Ar2I+ 

 
 

 

Scheme 2.24. Alternative PdI/III Mechanism for the Pd/Ir-Catalyzed C–H Arylation with 

Ar2I+ 
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2.7  Comparison of Ph2I+ vs PhN2
+ Reagents 

A related room temperature Pd/Ru catalyzed C–H arylation reaction previously 

reported from our lab was proposed to proceed via a mechanism similar to that shown in 

Scheme 2.21. However, this transformation used a different Ar• precursor (aryl 

diazonium salts), photocatalyst (Ru(bpy)3Cl2), Pd catalyst (Pd(OAc)2) and slightly 

different optimized reaction conditions. Thus, a final set of studies was conducted to 

compare these two processes.  

As illustrated in Table 2.7, the performance of the two systems is often 

comparable (e.g., for substrates 9 and 29). However, for benzamide substrates 17 and 19 

and ketoxime ether 27, the Pd/Ir/Ph2I+ protocol provided better yields of C–H 

phenylation. Conversely, the Pd/Ru/PhN2
+ system performed better for acetanilide 13, 

and it is effective for hydroxyl oxime 45, a substrate class that undergoes decomposition 

under the Pd/Ir/Ph2I+ conditions. Overall, the room-temperature Pd/photocatalyzed C–H 

arylation methods using Ar2I+ and ArN2
+ reagents are often complementary in terms of 

substrate scope.31 
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Table 2.7. Comparison of Pd/Ir-Catalyzed C–H Phenylation with Ph2I+ vs Pd/Ru-

Catalyzed C–H Phenylation with PhN2
+ 

 
 

 

2.8  Conclusions 

In summary, a new photoredox Pd/Ir-catalyzed C–H arylation with 

diaryliodonium reagents has been described. The unusually low reaction temperature, the 

requirement for light and a photocatalyst, the inhibitory effect of radical scavengers, and 

the observed chemoselectivity trends are all consistent with a radical mechanism for this 

transformation. The characteristics of this transformation stand in contrast to the 

substrate productentry
yielda,b
(Ph2I+)

1

6

3

4

5

2

89%N

O

Ph
N

O

NMeO

Ph

NMeO

54%H2N

O

H2N

O

Ph

69%d
H
N

O

H
N

O
Ph

52%N
H

O

N
H

O

Ph

N

O

N

O

Ph

7 H

NMeO

H

Ph

NMeO

substrate productentry

(9) (10) (21) (22)

(13) (14) (27) (28)

(17) (18) (29) (30)

(19) (20)

yielda,c
(PhN2+)

91%

25%

89%

38%

yielda,b
(Ph2I+)

11%

63%

52%

yielda,c
(PhN2+)

8%

68%

23%

8
NHO

Ph

NHO

(45) (46)

<1%e 66%

aGC calibrated yield. bGeneral conditions: substrate (1 equiv), [Ph 2I]OTf (2 equiv), Pd(NO 3)2 (0.10 equiv), 
Ir(ppy)2(dtbbpy)PF6 (0.05 equiv), MeOH (0.2 M in substrate), 26 W lightbulb, 15 h, rt, degassed by sparging with 
N2. cGeneral conditions: substrate (1 equiv), [PhN2]BF4 (4 equiv), Pd(OAc)2 (0.10 equiv), Ru(bpy)3Cl2•6H2O (0.025 
equiv), MeOH (0.1 M in substrate), 26 W lightbulb, rt, 15 h, degassed by sparging with N 2. d[Ph2I]BF4 was the 
oxidant. eProduct 46 was not detected by GC, and only traces of 45 and 3-methylacetophenone were observed.
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analogous thermal reaction that requires a dramatically higher temperature (100 ºC) and 

is believed to proceed via an ‘ionic’ 2e– pathway.  

This example adds to a growing body of work suggesting that re-routing 

traditional metal-catalyzed transformations via radical pathways can offer major 

advantages in terms of reaction rates, substrate scope, and functional group tolerance.18,32 

 

2.9  Experimental Procedures and Characterization Data 

General Procedures 

NMR spectra were obtained on a Varian vnmrs 700 (699.76 MHz for 1H; 175.95 MHz 

for 13C; 658.43 for 19F), Varian vnmrs 500 (500.10 MHz for 1H; 125.75 MHz for 13C, 

470.56 MHz for 19F), Varian Inova 500 (499.90 MHz for 1H; 125.70 MHz for 13C), or a 

Varian MR400 (400.52 MHz for 1H; 100.71 for 13C, 376.87 MHz for 19F) spectrometer. 
1H NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the 

residual solvent peak used as an internal reference.  Multiplicities are reported as follows: 

singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of doublets (ddd), 

doublet of triplets (dt), triplet (t), triplet of doublets (td), triplet of triplets (tt), quartet (q), 

quintet (quin), multiplet (m), and broad resonance (br). IR spectra were obtained on a 

Perkin-Elmer Spectrum BX FT-IR spectrometer. Melting points were determined with a 

Mel-Temp 3.0, a Laboratory Devices Inc, USA instrument, and are uncorrected. HRMS 

data were obtained on a Micromass AutoSpec Ultima Magnetic Sector mass 

spectrometer. Gas chromatography was carried out on a Shimadzu 17A using a Restek 

Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 0.25 mm ID, 0.25 

µm df) column. GC calibrated yields are reported relative to hexadecane as an internal 

standard. 

 

Materials and Methods. Substrates 1133 and 2334 were prepared according to literature 

procedures. Substrate 25 was prepared by a palladium-catalyzed Suzuki coupling 

between 2-methoxyboronic acid and 2-bromopyridine. Oxime ethers 27 and 29 were 

prepared by the reaction of the corresponding ketones with MeONH2•HCl in pyridine.35 

The remaining substrates were obtained from Aldrich (9, 17, and 21), Alfa Aesar (13 and 

15), or Acros (19) and were used as received. [Ph2I]BF4 and [Mes–I–Ph]BF4 were 
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prepared by the reaction of PhI(OAc)2 or MesI(OAc)2 with PhB(OH)2 in the presence of 

BF3•Et2O.36 [Ph2I]OTf and [Mes2I]OTf were prepared by the reaction of iodobenzene or 

iodomesitylene with mCPBA and benzene or mesitylene in the presence of TfOH.37 

Unsymmetrical [Ar–I–Ph]BF4 salts were prepared by the reaction of an aryl iodide with 

m-CPBA and PhB(OH)2 in the presence of BF3•Et2O.38 Symmetrical [Ar2I]BF4 salts were 

prepared by the reaction of an aryl iodide with m-CPBA and the corresponding 

arylboronic acid in the presence of BF3•Et2O.38 Pd(OAc)2, obtained from Pressure 

Chemical, and Pd(NO3)2 and Ru(bpy)3Cl2•6H2O, obtained from Strem, were used as 

received. Ir(ppy)3
39 and Ir(ppy)2(dtbbpy)PF6

40 were prepared according to literature 

procedures. Solvents were obtained from Fisher Chemical and used without further 

purification. Flash chromatography was performed on EM Science silica gel 60 (0.040–

0.063 mm particle size, 230–400 mesh) and thin layer chromatography was performed on 

Merck TLC plates pre-coated with silica gel 60 F254. 

 

Synthesis and Characterization of Products in Table 2.3 

General Procedure. Substrate (1 equiv), [Ph2I]BF4 or [Ph2I]OTf (2 equiv), 

Ir(ppy)2(dtbbpy)PF6 (0.05 equiv), and Pd(NO3)2•2H2O (0.10 equiv) were combined in 

MeOH in a 4 mL scintillation vial. For substrates containing N-acetyl moieties (noted 

below), MgO (1 equiv) was also included and appeared to help prevent substrate and/or 

product degradation. The reaction mixture was cooled in an ice bath (to prevent 

evaporation) and sparged with N2 using a submerged needle for 10 min, and the vial was 

then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with 

two 26 W compact fluorescent light bulbs (one on either side of the vial about 5–8 cm 

away), and the reaction mixture was allowed to stir at room temperature for 15 h. The 

reaction mixture was diluted with EtOAc (50 mL) and washed with 10% aqueous Na2SO3 

(2 x 25 mL) and brine (1 x 25 mL). The combined aqueous layers were extracted with 

EtOAc (3 x 10 mL), and the organic layers were then combined, dried over MgSO4, 

filtered, concentrated, and purified by column chromatography on silica gel. 
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Pyrrolidinone 10. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 

mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 

equiv), Pd(NO3)2•2H2O (13.3 mg, 0.05 mmol, 0.10 equiv), and 

MeOH (2.5 mL). Product 10 was obtained as a pale yellow oil (96.3 mg, 81% yield, Rf = 

0.17 in 20% hexanes/80% Et2O). 1H and 13C NMR data matched those reported in the 

literature.22  

 

Pyrrolidinone 12. The general procedure was followed utilizing 

substrate 11 (47.8 mg, 0.25 mmol, 1.0 equiv), [Ph2I]OTf (215 mg, 

0.50 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (11.4 mg, 0.0125 mmol, 

0.05 equiv), Pd(NO3)2•2H2O (6.7 mg, 0.025 mmol, 0.10 equiv), and 

MeOH (1.8 mL). Product 12 was obtained as a pale yellow solid 

[62.5 mg, 94% yield, Rf = 0.10 in 20% hexanes/80% Et2O, mp = 72.9-74.7 ºC (lit.11 61–

64 ºC)]. 1H and 13C NMR data matched those reported in the literature.22 

 

Acetanilide 14. The general procedure was followed utilizing substrate 

13 (37.3 mg, 0.25 mmol, 1.0 equiv), [Ph2I]BF4 (184 mg, 0.50 mmol, 2 

equiv), Ir(ppy)2(dtbbpy)PF6 (11.4 mg, 0.0125 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (6.7 mg, 0.025 mmol, 0.10 equiv), and MeOH (1.25 

mL), with the addition of MgO (10.1 mg, 0.25 mmol, 1.0 equiv). 

Product 14 was obtained as a pale yellow solid [40.6 mg, 72% yield, Rf = 0.17 in 30% 

hexanes/70% Et2O, mp = 134.5-136.0 ºC (lit. 139-140 ºC)].13a 1H NMR (700 MHz, 

CD3CN): δ 7.64 (br s, 1H); 7.42–7.39 (multiple peaks, 2H); 7.35 (t, J = 7.4 Hz, 1H); 

7.32–7.31 (multiple peaks, 2H); 7.27 (d, J = 4.9 Hz, 2H); 7.17 (t, J = 4.9 Hz, 1H); 2.23 (s, 

3H); 1.85 (s, 3H). 13C{1H} NMR (176 MHz, CD3CN): δ 170.04; 141.30; 140.97; 138.16; 

134.58; 130.52; 129.67; 129.03; 128.72; 128.14; 128.05; 22.76; 18.54. IR (thin film, 

CH2Cl2) 3246, 3026, 2922, 1652, 1522 cm-1. HRMS [M+H]+ Calcd for C15H16NO: 

226.1226; Found: 226.1234. 

 

N

O
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N

O
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HN
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Acetylindoline 16. The general procedure was followed utilizing 

substrate 15 (80.5 mg, 0.50 mmol, 1.0 equiv), [Ph2I]BF4 (368 mg, 1.00 

mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 

equiv), Pd(NO3)2•2H2O (26.6 mg, 0.100 mmol, 0.20 equiv), and 

MeOH (2.5 mL), with the addition of MgO (20.2 mg, 0.50 mmol, 1.0 

equiv). Product 16 was obtained as a pale yellow solid [51.7 mg, 44% yield, Rf = 0.30 in 

20% hexanes/80% Et2O, mp = 116.3-117.8 ºC (lit. 117-119 ºC)].10 1H and 13C NMR data 

matched those reported in the literature.10  

 

Benzamide 18. The general procedure was followed utilizing substrate 

17 (33.8 mg, 0.50 mmol,  1.0 equiv), [Ph2I]BF4 (368 mg, 1.00 mmol, 2 

equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and MeOH (2.5 

mL). Product 18 was obtained as a white solid (39 mg, 40% yield, Rf = 

0.26 in 1:1:1 benzene:CH2Cl2:Et2O, mp = 169.0-173.0 ºC). 1H NMR (700 MHz, CDCl3): 

δ 7.79 (d, J = 7.7 Hz, 1H), 7.50 (td, J = 7.7, 0.7 Hz, 1H), 7.46-7.42 (multiple peaks, 5H), 

7.39 (m, 1H), 7.37 (dd, J = 7.7, 0.7 Hz, 1H), 5.62 (br s, 1H), 5.25 (br s, 1H).  13C{1H} 

NMR (176 MHz, CDCl3): δ 171.21, 140.15, 139.80, 134.30, 130.54, 130.38, 129.08, 

128.77, 128.69, 127.93, 127.62. IR (thin film, CDCl3) 3383, 3178, 1653, 1643 cm-1. 

HRMS [M+H]+ Calcd for C13H12NO: 198.0913; Found: 198.0920. 

 

Benzamide 20. The general procedure was followed utilizing substrate 

19 (67.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 mmol, 2 

equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (13.3 mg, 0.05 mmol, 0.10 equiv), and MeOH (2.5 

mL). Product 20 was obtained as a pale yellow solid (56.7 mg, 54% 

yield, Rf = 0.27 in 20% hexanes/80% Et2O, mp = 164.5-166.8 ºC). 1H NMR (400 MHz, 

CDCl3): δ 7.69 (dd, J = 7.6, 1.6 Hz, 1H), 7.47 (td, J = 7.6, 1.2 Hz, 1H), 7.42-7.35 

(multiple peaks, 7H), 5.19 (br s, 1H), 2.67 (d, J = 4.8 Hz, 3H). 13C{1H} NMR (100 MHz, 

CDCl3): δ 170.24, 140.12, 139.29, 135.68, 130.11, 130.10, 128.82, 128.60, 128.58, 

O

(18)

NH2

N
O

(16)

O

(20)
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127.75, 127.59, 26.64. IR (thin film, CDCl3) 3286, 3060, 2936, 1636, 1540, 1313 cm-1. 

HRMS [M+H]+ Calcd for C14H14NO: 212.1070; Found: 212.1074. 

 

Benzamide 22. The general procedure was followed utilizing substrate 

21 (74.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 mmol, 2 

equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (13.3 mg, 0.05 mmol, 0.10 equiv), and MeOH (2.5 

mL). Product 22 was obtained as a yellow oil (9.8 mg, 9% yield, Rf = 

0.27 in 20% hexanes/80% Et2O). 1H NMR (400 MHz, CDCl3): δ 7.48-7.44 (multiple 

peaks, 3H), 7.42-7.32 (multiple peaks, 6H), 2.85 (s, 3H), 2.39 (s, 3H). 13C{1H} NMR 

(100 MHz, CDCl3): δ 171.33, 139.93, 138.67, 135.74, 129.30, 128.47, 128.36, 127.70, 

127.58, 127.41, 37.94, 24.53. Two aromatic 13C resonances are coincidentally 

overlapping. IR (thin film, CDCl3) 3057, 2924, 1624, 1394 cm-1. HRMS [M+H]+ Calcd 

for C15H16NO: 226.1226; Found: 226.1232. 

 

Pyridine 24. The general procedure was followed utilizing substrate 

23 (84.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 mmol, 2 

equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and MeOH (2.5 

mL). Product 24 was obtained as a clear viscous oil (76.0 mg, 62% 

yield, Rf = 0.09 in 90% hexanes/10% Et2O). 1H and 13C NMR data matched those 

reported in the literature.22 

 

Pyridine 26. The general procedure was followed utilizing substrate 

25 (92.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 mmol, 

2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv), 

Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and MeOH (2.5 

mL). Product 26 was obtained as a pale yellow solid [88.0 mg, 67% 

yield, Rf = 0.11 in 60% hexanes/40% Et2O, mp = 83.5-86.4 ºC (lit. 77.7-85.4 ºC)].22 1H 

and 13C NMR data matched those reported in the literature.22  
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Oxime ether 28. The general procedure was followed utilizing 

substrate 27 (81.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 

mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 

equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and 

MeOH (2.5 mL). Product 28 was obtained as a colorless oil (71.4 mg, 

60% yield, Rf = 0.14 in 98% hexanes/2% Et2O). 1H NMR (700 MHz, CDCl3): δ 7.39–

7.36 (multiple peaks, 4H), 7.32 (m, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.23 (dd, J = 7.0, 0.7 

Hz, 1H), 7.20 (dd, J = 7.7, 0.7 Hz, 1H), 3.92 (s, 3H), 2.37 (s, 3H), 1.69 (s, 3H). 13C{1H} 

NMR (176 MHz, CDCl3): δ 156.52, 141.21, 140.97, 136.19, 136.07, 129.38, 129.34, 

128.13, 127.94, 127.63, 126.92, 61.62, 20.08, 16.56. IR (thin film, neat) 3060, 2936, 

1459, 1041 cm-1. HRMS [M+H]+ Calcd for C16H18NO: 240.1383; Found: 240.1387. 

 

Oxime ether 30. The general procedure was followed utilizing 

substrate 29 (74.6 mg, 0.50 mmol, 1.0 equiv), [Ph2I]OTf (430 mg, 1.00 

mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 

equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and 

MeOH (2.5 mL). Product 30 was obtained as a colorless oil consisting 

of a ~1.5:1 mixture of oxime stereoisomers (64.7 mg, 57% yield, Rf = 0.28 (major) and 

0.14 (minor) in 6:1:0.2 hexanes/benzene/methylene chloride). Major Isomer: 1H NMR 

(700 MHz, C6D6): δ 8.26 (s, 1H); 7.22 (m, 2H), 7.09 (tt, J = 7.4, 1.4 Hz, 2H); 7.06-7.05 

(multiple peaks, 2H); 7.04-7.02 (multiple peaks, 2H); 3.76 (s, 3H), 2.62 (s, 3H). 13C{1H} 

NMR (100 MHz, CDCl3): δ 149.09, 143.18, 140.66, 137.83, 130.33, 129.83, 128.48, 

128.12, 127.84, 127.21, 61.85, 22.46. Two aromatic 13C resonances are coincidentally 

overlapping. IR (thin film, neat) 3059, 2935, 1460, 1048 cm-1. HRMS [M+H]+ Calcd for 

C15H16NO: 226.1226; Found: 226.1227. Minor Isomer: 1H NMR (700 MHz, C6D6): δ 

7.40 (d, J = 7.7 Hz, 2H); 7.24 (s, 1H); 7.19 (t, J = 7.7 Hz, 2H); 7.13-7.10 (multiple peaks, 

2H); 7.08 (t, J = 7.7 Hz, 1H); 6.98 (d, J = 7.7 Hz, 1H); 3.66 (s, 3H); 2.22 (s, 3H). 13C{1H} 

NMR (100 MHz, CDCl3): δ 147.58, 140.70, 140.66, 136.43, 130.19, 128.87, 128.84, 

128.74, 128.05, 127.36, 126.99, 61.79, 20.13. IR (thin film, CDCl3) 3059, 2935, 1460, 

1057 cm-1. HRMS [M+H]+ Calcd for C15H16NO: 226.1226; Found: 226.1228.  
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Synthesis and Characterization of Products in Table 2.4 

General Procedure. Substrate (1 equiv), [Ar2I]BF4 (2 equiv), Ir(ppy)2(dtbbpy)PF6 (0.05 

equiv), and Pd(NO3)2•2H2O (0.10 equiv) were combined in MeOH in a 4 mL scintillation 

vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged 

with N2 using a submerged needle for 10 min, and the vial was then immediately sealed 

with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact 

fluorescent light bulbs (one on either side of the vial about 5–8 cm away), and the 

reaction mixture was allowed to stir at room temperature for 15 h. The reaction mixture 

was diluted with EtOAc (50 mL) and washed with 10% aqueous Na2SO3 (2 x 25 mL) and 

brine (1 x 25 mL). The combined aqueous layers were extracted with EtOAc (3 x 10 mL), 

and the organic layers were then combined, dried over MgSO4, filtered, concentrated, and 

purified by column chromatography on silica gel. 

 

Pyrrolidinone 31. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(p-CF3C6H4)2I]BF4 

(504 mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 

mmol, 0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 

equiv), and MeOH (2.5 mL). Product 31 was obtained as a tan solid 

[106 mg, 69% yield, Rf = 0.17 in 20% hexanes/80% Et2O, mp = 87.6-89.2 ºC (lit. 86.1–

88.0 ºC)].22 1H and 13C NMR data matched those reported in the literature.22  

 

Pyrrolidinone 32. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(m-CF3C6H4)2I]BF4 

(504 mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 

mmol, 0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 

equiv), and MeOH (2.5 mL). Product 32 was obtained as a tan solid 

[86.1 mg, 56% yield, Rf = 0.23 in 20% hexanes/80% Et2O, mp = 79.2-83.5  ºC]. 1H NMR 

(700 MHz, CDCl3): δ 7.64 (br s, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 

7.53 (t, J = 7.7 Hz, 1H), 7.45 (m, 1H), 7.41–7.40 (multiple peaks, 2H), 7.33 (d, J = 7.7 

Hz, 1H), 3.28 (t, J = 7.0 Hz, 2H), 2.40 (t, J = 8.1 Hz, 2H), 1.91 (tt, J = 8.1, 7.0 Hz, 2H). 
13C{1H} NMR (176 MHz, CDCl3): δ 175.42, 139.84, 138.11, 136.29, 131.80, 130.71 (q, 

N
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JC–F = 32 Hz), 130.60, 129.25, 128.96, 128.30, 128.25, 124.99 (q, JC–F = 3.6 Hz), 124.21 

(q, JC–F = 3.8 Hz), 123.97 (q, JC–F = 272 Hz), 50.30, 30.93, 18.83. 19F NMR (376 MHz, 

CDCl3): δ –62.65 (s). IR (thin film, CDCl3) 2918, 1692, 1333, 1117 cm-1. HRMS [M+H]+ 

Calcd for C17H15F3NO: 306.1100; Found: 306.1110. 

 

Pyrrolidinone 33. The general procedure was followed utilizing 

substrate 9 (40.3 mg, 0.25 mmol, 1.0 equiv), [(o-CF3C6H4)2I]BF4 

(252 mg, 0.50 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (11.4 mg, 

0.0125 mmol, 0.05 equiv), Pd(NO3)2•2H2O (6.7 mg, 0.025 mmol, 

0.10 equiv), and MeOH (1.25 mL). Product 33 was obtained as a 

white solid (35.0 mg, 46% yield, Rf = 0.13 in 20% hexanes/80% Et2O, mp = 61.8-63.9 

ºC). 1H NMR (700 MHz, CDCl3): δ 7.76 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 

7.49 (t, J = 7.7 Hz, 1H), 7.46 (td, J = 7.7, 1.4 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.36 (td, 

J = 7.4, 1.4 Hz, 1H), 7.33–7.32 (multiple peaks, 2H), 3.36 (ddd, J = 14.0, 7.7, 5.6 Hz, 

1H), 3.03 (ddd, J = 14.0, 8.4, 5.6 Hz, 1H), 2.40 (ddd, J = 16.4, 9.1, 6.3 Hz, 1H), 2.22 

(ddd, J = 16.4, 9.1, 6.3 Hz, 1H), 1.94 (m, 1H), 1.67 (m, 1H). 13C{1H} NMR (176 MHz, 

CDCl3): δ 175.57, 137.43, 136.99, 136.76, 132.08, 131.25, 131.05 (q, JC–F = 2.1 Hz), 

129.25, 128.28 (q, JC–F = 30 Hz), 128.08, 127.96, 127.17, 126.21 (q, JC–F = 5.3 Hz), 

124.06 (q, JC–F = 274 Hz), 49.90, 30.98, 19.05. 19F NMR (376 MHz, CDCl3): δ –57.09 

(s). IR (thin film, CDCl3) 2920, 1697, 1313, 1111 cm-1. HRMS [M+H]+ Calcd for 

C17H15F3NO: 306.1100; Found: 306.1112. 

 

Pyrrolidinone 34. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(p-ClC6H4)2I]BF4 (437 

mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 

mmol, 0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 

equiv), and MeOH (2.5 mL). Product 34 was obtained as a tan solid 

[104 mg, 77% yield, Rf = 0.13 in 20% hexanes/80% Et2O, mp = 95.6-97.4 ºC (lit. 93.9-

96.0 ºC)].22 1H and 13C NMR data matched those reported in the literature.22  
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Pyrrolidinone 35. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(p-BrC6H4)2I]BF4 (526 

mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 

0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and 

MeOH (2.5 mL). Product 35 was obtained as a pale yellow oil (125 

mg, 79% yield, Rf = 0.13 in 20% hexanes/80% Et2O). 1H NMR (500 MHz, CDCl3): δ 

7.54 (d, J = 8.5 Hz, 2H), 7.44–7.35 (multiple peaks, 3H) 7.33 (d, J = 7.5 Hz, 1H), 7.27 (d, 

J = 8.5 Hz, 2H), 3.27 (t, J = 7.0 Hz, 2H), 2.44 (t, J = 8.0 Hz, 2H), 1.93 (tt, J = 8.0, 7.0 Hz, 

2H). 13C{1H} NMR (126 MHz, CDCl3): δ 175.61, 138.48, 138.01, 136.18, 131.56, 

130.61, 130.00, 128.95, 128.40, 128.18, 121.87, 50.26, 31.09, 18.94. IR (thin film, neat) 

2879, 1680, 1402 cm-1. HRMS [M+H]+ Calcd for C16H15BrNO: 316.0332; Found: 

316.0340. 

 

 Pyrrolidinone 36. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(p-MeC6H4)2I]BF4 (396 

mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 

0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 equiv), and 

MeOH (2.5 mL). Product 36 was obtained as a tan solid (109.8 mg, 

87% yield, Rf = 0.17 in 20% hexanes/80% Et2O, mp = 78.6-80.4 ºC). 1H NMR (700 

MHz, CDCl3): δ 7.40-7.35 (multiple peaks, 3H), 7.31 (d, J = 7.3 Hz, 1H), 7.27 (d, J = 8.0 

Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 3.22 (t, J = 6.9 Hz, 2H), 2.43 (t, J = 8.0 Hz, 2H), 2.39 

(s, 3H), 1.88 (tt, J = 8.0, 6.9 Hz, 2H). 13C{1H} NMR (176 MHz, CDCl3): δ 175.61, 

139.52, 137.28, 136.27, 136.16, 130.86, 129.12, 128.34, 128.30, 128.18, 127.98, 50.06, 

31.20, 21.18, 18.97. IR (thin film, CDCl3) 3026, 2920, 1694, 1487, 1407, 1301 cm-1. 

HRMS [M+H]+ Calcd for C17H18NO: 252.1383; Found: 252.1391. 

 

Pyrrolidinone 37. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(o-MeC6H4)2I]BF4 

(396 mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 

mmol, 0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 
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equiv), and MeOH (2.5 mL). Product 37 was obtained as a pale yellow oil (107 mg, 85% 

yield, Rf = 0.20 in 20% hexanes/80% Et2O). NMR (500 MHz, CDCl3): δ 7.40 (ddd, J = 

7.7, 7.0, 1.4 Hz, 1H), 7.36 (dd, J = 8.4, 1.4 Hz, 1H), 7.34 (td, J = 7.7, 1.4 Hz, 1H), 7.27–

7.24 (multiple peaks, 3H), 7.19 (m, 1H), 7.16 (d, 7.0 Hz, 1H), 3.23 (ddd, J = 9.1, 8.4, 5.6 

Hz, 1H), 3.09 (ddd, J = 9.1, 7.7, 5.6 Hz, 1H) 2.32 (m, 2H), 2.15 (s, 3H), 1.82 (m, 1H), 

1.75 (m, 1H). 13C{1H} NMR (126 MHz, CDCl3): δ 175.10, 138.89, 138.60, 136.96, 

135.88, 131.11, 130.13, 129.39, 128.3, 128.1, 127.72, 127.29, 125.47, 49.94, 31.15, 

19.93, 19.02. IR (thin film, neat) 2952, 1696, 1398 cm-1. HRMS [M+H]+ Calcd for 

C17H18NO: 252.1383; Found: 252.1392. 

 

Pyrrolidinone 38. The general procedure was followed utilizing 

substrate 9 (40.3 mg, 0.25 mmol, 1.0 equiv), [Mes2I]OTf (257 mg, 

0.50 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (11.3 mg, 0.0125 mmol, 

0.05 equiv), Pd(NO3)2•2H2O (6.7 mg, 0.025 mmol, 0.10 equiv), and 

MeOH (1.25 mL). Product 38 was obtained as a white solid (8 mg, 

11% yield, Rf = 0.17 in 96% CH2Cl2/4% Et2O, mp = 121.2-123.8 ºC). 1H NMR (700 

MHz, CDCl3): δ 7.44–7.39 (multiple peaks, 2H), 7.34 (td, J = 7.5, 1.5 Hz, 1H), 7.13 (dd, 

J = 7.5, 1.2 Hz, 1H), 6.92 (s, 2H), 3.12 (t, J = 6.9 Hz, 2H), 2.36 (t, J = 8.0 Hz, 2H), 2.34 

(s, 3H), 1.98 (s, 6H), 1.80 (tt, J = 8.0, 6.9 Hz, 2H). 13C{1H} NMR (176 MHz, CDCl3): δ 

174.82, 137.32, 137.16, 137.01, 136.23, 135.62, 131.27, 128.25, 128.06, 127.97, 127.33, 

49.16, 31.35, 21.06, 20.41, 19.07. IR (thin film, CH2Cl2) 2918, 1699, 1398, 1301 cm-1. 

HRMS [M+H]+ Calcd for C19H22NO: 280.1699; Found: 280.1705. 

 

Pyrrolidinone 39. The general procedure was followed utilizing 

substrate 9 (80.6 mg, 0.50 mmol, 1.0 equiv), [(p-OMeC6H4)2I]BF4 

(428 mg, 1.00 mmol, 2 equiv), Ir(ppy)2(dtbbpy)PF6 (22.8 mg, 0.025 

mmol, 0.05 equiv), Pd(NO3)2•2H2O (13.3 mg, 0.050 mmol, 0.10 

equiv), and MeOH (2.5 mL). Product 39 was obtained as a tan 

viscous oil (54.3 mg, 41% yield, Rf = 0.07 in 20% hexanes/80% Et2O). 1H and 13C NMR 

data matched those reported in the literature.22  
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Experimental Details for Table 2.5 

Ionic/Thermal Procedure for Reactions in Table 2.5 (entries 1–3). Substrate 23 (8.5 

mg, 0.050 mmol, 1 equiv), [Ph2I]BF4 (20.2 mg, 0.055 mmol, 1.1 equiv), Pd(OAc)2 (1.1 

mg, 0.005 mmol, 0.10 equiv), and galvinoxyl (0 or 5.3 mg; 0 or 0.0125 mmol; 0 or 0.25 

equiv) or TEMPO (0 or 7.8 mg; 0 or 0.050 mmol; 0 or 1.0 equiv) were combined in 

AcOH (0.42 mL) in a 4 mL scintillation vial. The reaction was heated to 100 ºC for 15 h, 

then quenched with 10% aqueous Na2SO3 (0.25 mL), diluted with EtOAc (3.5 mL), and 

analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an 

internal standard. The yields reported in Table 2.5 are the averages of three separate 

trials. These conditions are similar to those reported previously for 2-arylpyridine 

substrates;10 however, the catalyst loading was increased to 10% (instead of 5%) to more 

closely resemble the conditions of the photocatalytic/radical trials. 

 

Radical/Photocatalytic Procedure for Reactions in Table 2.5 (entries 4–8). Substrate 

23 (8.5 mg, 0.050 mmol, 1 equiv), [Ph2I]BF4 (36.8 mg, 0.100 mmol, 2 equiv), 

Ir(ppy)2(dtbbpy)PF6 (2.3 mg, 0.0025 mmol, 0.05 equiv), Pd(NO3)2•2H2O (1.3 mg, 0.005 

mmol, 0.10 equiv), and galvinoxyl (0, 2.1, or 5.3 mg; 0, 0.005, or 0.0125 mmol; 0, 0.10, 

or 0.25 equiv) or TEMPO (0, 3.9, or 7.8 mg; 0, 0.025, or 0.050 mmol; 0, 0.50, or 1.0 

equiv) were combined in MeOH (0.25 mL) in a 4 mL scintillation vial. The reaction 

mixture was cooled in an ice bath (to prevent evaporation) and sparged with N2 using a 

submerged needle for 1 min, and the vial was then immediately sealed with a Teflon-

lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light 

bulbs (one on either side of the vial about 5–8 cm away), and the reaction mixture was 

allowed to stir at room temperature for 15 h. Reactions were then quenched with 10% 

aqueous Na2SO3 (0.25 mL), diluted with EtOAc (3.5 mL), and analyzed by GC-FID. GC 

calibrated yields are reported relative to hexadecane as an internal standard. The yields 

reported in Table 2.5 are the averages of three separate trials. 

 

Experimental Details for Table 2.6 and Scheme 2.22 

Radical/Photocatalytic Procedure for Reactions in Table 2.6 (even-numbered 

entries). Substrate 9 (8.1 mg, 0.050 mmol, 1 equiv), [Ar–I–Ph]BF4 (0.100 mmol, 2 
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equiv), Ir(ppy)2(dtbbpy)PF6 (2.3 mg, 0.0025 mmol, 0.05 equiv), and Pd(NO3)2•2H2O (1.3 

mg, 0.005 mmol, 0.10 equiv) were combined in MeOH (0.25 mL) in a 4 mL scintillation 

vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged 

with N2 using a submerged needle for 1 min, and the vial was then immediately sealed 

with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact 

fluorescent light bulbs (one on either side of the vial about 5–8 cm away), and the 

reaction mixture was allowed to stir at room temperature for 15 h. Reactions were then 

quenched with 10% aq. Na2SO3 (0.25 mL), diluted with EtOAc (3.5 mL), and analyzed 

by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal 

standard. 

 

Ionic/Thermal Procedure for Reactions in Table 2.6 (odd-numbered entries). 

Substrate 9 (8.1 mg, 0.050 mmol, 1 equiv), [ArI–Ph]BF4 (0.100 mmol, 2 equiv), 

Pd(OAc)2 (1.1 mg, 0.005 mmol, 0.10 equiv), and NaHCO3 (6.3 mg, 0.075 mmol, 1.5 

equiv) were combined in toluene (0.42 mL). The reaction was heated to 100 ºC for 15 h, 

then quenched with 10% aq. Na2SO3 (0.25 mL), diluted with EtOAc (3.5 mL), and 

analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an 

internal standard. These conditions are similar to the thermal conditions reported 

previously for substrate 1;10 however, the equivalents of oxidant were increased to 2 

(instead of 1.5) and the catalyst loading was increased to 10% (instead of 5%) to more 

closely resemble the conditions of the photocatalytic/radical trials. 

 

Experimental Details for Table 2.7 

PhN2
+ procedure.22 Substrate (0.050 mmol, 1 equiv), Pd(OAc)2 (1.1 mg, 0.005 mmol, 

0.10 equiv), Ru(bpy)3Cl2•6H2O (0.94 mg, 0.00125 mmol, 0.025 equiv), and [PhN2]BF4 

(38.4 mg, 0.200 mmol, 4 equiv) were combined in MeOH (500 µL) in a 4 mL 

scintillation vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) 

and sparged with N2 using a submerged needle for 1 min, and the vial was then 

immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 

26 W compact fluorescent light bulbs (one on either side of the vial about 5–8 cm away), 

and the reaction mixture was allowed to stir at room temperature for 15 h. Reactions were 
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then quenched with 10% aq. Na2SO3 (0.25 mL), diluted with EtOAc (3.5 mL), and 

analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an 

internal standard. 

 

Ph2I+ procedure. GC calibrated yields were obtained from the reactions described above 

for Table 2.3 and are reported relative to hexadecane as an internal standard. 
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CHAPTER 3 

 
Pd-Catalyzed Radical-Mediated C–H Alkylation Using Potassium 

Alkyltrifluoroborates  
 

3.1  Background and Significance 

Carbon–alkyl bonds are indispensible structural elements in organic compounds. 

Nevertheless, mild and general strategies for incorporating alkyl groups into complex 

molecules remain elusive. Diverse C–alkyl coupling reactions can be effected with 

nucleophilic organometallic alkylating agents (e.g., alkyl Grignards and alkyllithiums);1 

however, many of these reagents are too reactive for late stage applications. The use of 

strongly basic nucleophiles is avoided in Suzuki-Miyaura cross-coupling reactions that 

employ alkylboron reagents in conjunction with a palladium catalyst (Scheme 3.1).2 This 

strategy is powerful, yet it carries a number of limitations that include the following: (1) 

the substrate (1) must be prefunctionalized with a halide or pseudohalide, (2) each 

substrate/alkyl combination typically requires extensive optimization with respect to 

additives and ancillary ligands, (3) reagents are usually air-sensitive and often moisture-

sensitive, and (4) stoichiometric base is required. 

 

Scheme 3.1. Suzuki-Miyaura Cross-Coupling with Alkylboron Reagents 

 
 

An alternative Pd-catalyzed C–H activation/alkylation sequence addresses the 

first of these limitations by precluding the requirement for halogenated substrates. This 
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strategy could be particularly appealing for late stage derivatization of complex 

molecules; in such situations it may not be feasible (or desirable) to carry a halogen 

substituent through several steps or to regioselectively introduce a halide into the 

substrate at a late stage. Over the past few years, a limited number of examples of ligand-

directed PdII-catalyzed C–H alkylations have been reported using alkylboron reagents.3–14 

These transformations are believed to proceed through PdII/Pd0 catalytic cycles (Scheme 

3.2) involving (i) C–H activation at PdII, (ii) transmetallation of the alkyl group from 

boron to palladium, (iii) C–C bond-forming reductive elimination, and (iv) reoxidation of 

Pd0 to PdII.  

 

Scheme 3.2. PdII/Pd0-Catalyzed Ligand-Directed C–H Alkylation with Alkyl–BXn 

Reagents 

 
 

Within this mechanistic manifold, ligand-directed C–H methylation using 

methylboronic acid or trimethylboroxine has been demonstrated with pyridines and 

pyrazoles (Scheme 3.3),3 carboxylic acids (Scheme 3.4),4 2-pyridylsulfonyls (Scheme 

3.5), 7 and N-(perfluoroaryl)sulfonamides5 serving as directing groups.  
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Scheme 3.3. Pyridine- and Pyrazole-Directed C–H Methylation with Methylboroxine and 

Cu(OAc)2
3 

 

 

 

Scheme 3.4. Carboxylic Acid-Directed C–H Methylation with Methylboronic Acid and 

Ag2CO3
4 

 

 

 

Scheme 3.5. 2-Pyridylsulfonyl-Directed C–H Methylation with Methylboronic Acid and 

AgOAc7 
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Although the installation of longer-chain alkyls has proven more challenging, 

pyridine- (Scheme 3.6),3 methyl hydroxamic acid- (Scheme 3.7),5 and N-

(perfluoroaryl)amide-containing substrates7,9 (Scheme 3.8) have been functionalized with 

ethyl-, n-butyl-, i-butyl, n-hexyl-, phenethyl-, cyclohexylmethyl-, and cyclopropyl 

boronic acid or trifluoroborate reagents. 

 

Scheme 3.6. Pyridine-Directed C–H Alkylation with Alkylboronic Acids and Ag2O3 

 
 

 

Scheme 3.7. Methyl Hydroxamic Acid-Directed sp3 C–H Alkylation with Alkylboronic 

Acids and Ag2O5 
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Scheme 3.8. N-(Perfluoroaryl)benzamide -Directed C–H Alkylation of Cyclopropanes 

with Alkyltrifluoroborates and Ag2CO3
7 

 
 

A key challenge associated with Pd-catalyzed C–alkyl bond formation is the 

propensity for undesired reaction pathways (Scheme 3.9), such as proto-deboronation 

(path A) or Pd-catalyzed β-hydride elimination (path C), which compete with the desired 

cross-coupling (path B).2,3 To date, the efforts to develop and improve C–H alkylation 

reactions have focused on identifying promoters for each sequential step of the PdII/Pd0 

catalytic cycle shown in Scheme 3.2. This strategy, largely advanced by Yu and 

coworkers,3–6,8,9 aims to increase the rate of the desired transformation relative to the 

rates of undesired mechanistic pathways. 

 

Scheme 3.9. Competing Unproductive Processes in Pd-Catalyzed C–H Alkylation 

Reactions 
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For example, benzoquinone is included in all reported protocols for Pd-catalyzed 

C–H alkylation with alkylboron reagents. This additive is believed to promote reductive 

elimination,3,13,15 and it may also act as a cooxidant.3 Silver salts are usually employed, 

serving as oxidants and purportedly promoting transmetallation.3 Careful optimization 

has led to the identification of ligands that promote the alkylation of certain substrates. 

For instance, 2,2,5,5-tetramethyltetrahydrofuran was used as the reaction solvent for the 

sp3-C–H alkylation of O-methyl hydroxamic acids (Scheme 3.4). It was hypothesized that 

this highly substituted ether serves as a bulky ligand for Pd to slow the rate of undesired 

homocoupling and β-hydride elimination.5  

As exemplified in Schemes 3.3–3.8, efforts to identify promoters have resulted in 

several elegant examples of PdII/Pd0-catalyzed C–H alkylation with alkylboron reagents. 

Nevertheless, current methodologies are characterized by a number of key limitations 

similar to those of traditional Suzuki-Miyaura cross-coupling reactions. Importantly, no 

set of reaction conditions is general for more than one type of directing group (the low-

yielding pyrazole example in Scheme 3.3 is the sole exception shown to proceed under 

the same conditions as another substrate class). Instead, extensive optimization of base, 

oxidants, and solvents has been necessary for each transformation. Furthermore, a 

minimum reaction temperature of 70 ºC has been reported,5,8 and higher temperatures 

(100–120 ºC) are more common. The requirement for elevated temperatures, in addition 

to the need for superstoichiometric base, renders the current methodology impractical for 

substrates with sensitive functional groups. In light of all these limitations, the 

identification of more general and efficient promoters would be necessary to develop 

improved protocols for C–H alkylation via a PdII/Pd0 mechanistic manifold. 

We envisioned a new strategy that would effect the desired transformation 

through an alternative alkyl radical-mediated pathway (Scheme 3.10). In contrast to 

PdII/Pd0-catalysis, the proposed strategy would replace the traditional transmetallation 

step with a 1 e– oxidation of PdII by alkyl• (step ii). Although transmetallation from boron 

can be slow in PdII/Pd0-catalyzed C–C bond-forming reactions, literature precedent 

suggests that the reaction between carbon-centered radicals and palladacycles can be 

extremely fast.16–18 Furthermore, reductive elimination is expected to be more facile from 

a high valent Pd–alkyl intermediate (2 or 3, step iv-A or iii-B) than from a PdII–alkyl 
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species. Finally, β-hydride elimination (an unproductive reaction pathway in this case) is 

much less facile from octahedral high valent Pd–alkyl complexes than from PdII–alkyl 

species.19 

 

Scheme 3.10. Envisioned Alkyl Radical-Mediated Pd-Catalyzed C–H Alkylation 

 
 

To develop the proposed transformation, we sought to identify a suitable system 

for generating alkyl radicals that would be compatible with cyclopalladation. A number 

of radical-mediated Pd-catalyzed C–H arylation16 and acylation17 reactions have been 

reported by our group and others using benzoic acids,16a aryldiazonium salts,16b  

diaryliodonium salts,16c diethylazodicarboxylates,17a and aldehydes17b–d as radical 

precursors. However, none of these reagent classes are practical sources of analogous 

alkyl radicals. For instance, although aryldiazonium and diaryliodonium salts are 

commonplace, the corresponding alkyl reagents are typically too unstable to isolate.20  

Molander and coworkers recently reported the use of potassium 

alkyltrifluoroborates as precursors to alkyl radicals for the alkylation of electron-deficient 

heteroarenes (Scheme 3.11).21,22 This transformation is believed to involve oxidation of 

alkyl–BF3K to alkyl• by a MnIII reagent. The intermediacy of alkyl radicals is supported 

by the observed regioselectivity, which is consistent with a radical aromatic substitution 

mechanism in which alkylation occurs at the more electron-deficient 2- and 4-positions of 

the pyridine ring (trifluoroacetic acid is used as an additive to generate a more 

electrophilic pyridinium species).23 This selectivity stands in contrast to that of 

electrophilic aromatic substitution (e.g., Friedel-Crafts alkylation), in which 

functionalization occurs at the most nucleophilic positions of an aromatic ring.  
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Scheme 3.11. Alkylation of Electron-Deficient Heteroarenes with Alkyl Radicals 

Generated from Alkyltrifluoroborates and Mn(OAc)3
21 

 
 

Inspired by this precedent, we hypothesized that Pd-catalyzed C–H activation 

could be coupled with MnIII-mediated alkyl–BF3K 1 e– oxidation to provide a net C–H 

alkylation (Scheme 3.12). Encouragingly, numerous C–H functionalization reactions 

have been documented in acetic acid,24 the same solvent used by Molander and 

coworkers in conjunction with Mn(OAc)3. This precedent suggests compatibility between 

the conditions required for C–H activation and alkyl–BF3K oxidation. Furthermore, 

alkyltrifluoroborates are attractive reagents for C–H alkylation because (1) they are 

readily prepared from inexpensive commercial starting materials, and (2) they are 

typically air- and moisture-stable crystalline solids that are convenient to handle.25 

 

Scheme 3.12. Ligand-Directed Pd-Catalyzed C–H Alkylation with Alkyltrifluoroborates 

and MnIII 

 
 

Although an attractive strategy, several possible undesired processes could 

impede the development of the proposed Pd-catalyzed ligand-directed C–H alkylation 

reaction. In particular, two potential side reactions are unique to this approach. First, 

although pyridines are highly effective directing groups for diverse C–H 

functionalizations, heterocycles such as these might undergo uncatalyzed Minisci-type 

alkylation (vide supra) in the presence of alkyl radicals. Second, C–OAc bond-forming 
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reductive elimination could occur from high-valent Pd intermediates in competition with 

the desired C–alkyl bond formation. Analogous ligand-directed Pd-catalyzed formation 

of C–H acetoxylated products has been described numerous times under conditions 

involving strong oxidants, especially in the presence of acetic acid.26 As such, reaction 

conditions must be developed under which the rate of C–H alkylation outcompetes the 

rates of these undesired processes. 

  

3.2  Reaction Optimization 

 Our initial experiments were directed toward assessing the feasibility of the 

unprecedented steps of the envisioned catalytic cycle, namely, those that occur after 

cyclopalladation (Scheme 3.10). We thus began by examining the stoichiometric reaction 

of cyclopalladated complex 4 with MeBF3K in the presence of Mn(OAc)3. Excitingly, 

after 6 h at room temperature in AcOH/H2O (1:1), 40% yield of methylated product 5 

was obtained (GC calibrated yield, Scheme 3.13). This result indicates that methyl 

radicals, putatively generated by 1 e– oxidation of MeBF3K, react with palladacycle 4 

under these conditions to effect C–C bond formation. 

 

Scheme 3.13. Reaction of Cyclopalladated Complex 4 With MeBF3K and Mn(OAc)3 

 
 

With this promising stoichiometric result in hand, we next turned to the catalytic 

reaction. We were pleased to find that methylation of substrate 6 occurred under 

analogous conditions in the presence of 10 mol % Pd(OAc)2, albeit in low yield (Table 

3.1, entry 1, 9%). Not surprisingly, the addition of 1 equiv TFA did not substantially 

improve the yield of the transformation (entry 2), as protonation of the pyridine directing 

group is not a productive step in the envisioned catalytic cycle. However, changing the 

oxidant from Mn(OAc)3 to MnF3 doubled the yield of the catalytic reaction to 22% (entry 

3). A further increase in yield was observed when the reaction temperature was raised 
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slightly to 40 ºC (entry 4). Finally, after screening a number of solvents, we found that 

the use of a solvent mixture of trifluoroethanol (TFE)/acetic acid/water (8:1:1) resulted in 

a high yield of 5 (entry 5). 

 

Table 3.1. Optimization of the Pd-Catalyzed C–H Methylation with MeBF3K and MnIII a 

 
 

Interestingly, the methylation reaction does not proceed in trifluoroethanol alone 

(entry 6). Small quantities of both water and AcOH were necessary to achieve optimum 

yields (compare entries 6–8 with entry 5; see section 3.9 for further details). Although the 

best results were obtained at 40 ºC, running the reaction at room temperature was only 

slightly detrimental to the reaction yield (entry 9), and increasing the reaction 

temperature to 50 ºC offered no further advantage (entry 10). Finally, both methylboronic 

acid (entry 11) and trimethylboroxine (entries 12 and 13) performed nearly as well as the 
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corresponding trifluoroborate, although these classes of reagents are not as convenient to 

prepare and handle as trifluoroborate salts.25  

Importantly, no methylation occurs in the absence of Pd, providing support for a 

Pd-catalyzed process (Table 3.2, entry 2). When MnIII is excluded from the reaction, no 

methylated product (5) is detected (entry 3). Finally, in the absence of MeBF3K, 

significant quantities of acetoxylated product 8 are observed (entry 4). 

 

Table 3.2. Control Reactions for the Pd-Catalyzed Radical-Mediated C–H Methylation of 

Substrate 6a,b 

 
 

It is noteworthy that Minisci-type methylation of the pyridine ring (7) was not 

detected under any conditions, even when Pd was excluded from the reaction. This 

observation was encouraging; however, pyridine alkylation with alkyl–BF3K has only 

been demonstrated with alkyl–BF3K reagents that produce 2º, longer-chain 1º, and 

heteroatom-stabilized 1º radicals.21 As such, the absence of pyridine-methylation 

products in this control reaction did not rule out the possibility of competing pyridine 

alkylation with other alkyltrifluoroborates. 

 

 

 



70 

3.3  Methylation Scope 

The optimal conditions were applied to the C–H methylation of other arylpyridine 

derivatives as well as diverse anilide substrates (Table 3.3). Products derived from the C–

H methylation of acetanilide (12, 14, 16, and 18), pyrrolidinone (20), acetylindoline (22), 

and tetrahydroacetylquinoline (24) derivatives were all obtained in good to excellent 

isolated yields at 25–40 ºC. Furthermore, the presence of an aryl iodide functional group 

was well tolerated under these mild reaction conditions (18).  

 

Table 3.3. Substrate Scope for the Pd-Catalyzed Radical Mediated Methylationa 

 

C H L C MeL

10 mol % Pd(OAc)2
2 equiv MeBF3K

4 equiv MnF3
2–26 equiv AcOH

TFE/H2O
25–40 ºC, 3 h

entry substrate product % yieldb

AcHN AcHN

Me

4 72

AcHN

Me
963d

AcHN

N

O

N

O

Me

7 73

N

O

N

O

N

O

N

O

Me

Me

8

9

83

74

N

Me

811c N

N

OMe

Me

702c N

OMe

AcHN AcHN

Me
6 83

I I

AcHN AcHN

Me

5

OMe OMe

53

(6) (5)

(9) (10)

(11) (12)

(13) (14)

(15) (16)

(17) (18)

(19) (20)

(21) (22)

(23) (24)

entry substrate product % yieldb

aConditions: substrate (1 equiv), Pd(OAc)2 (0.10 equiv), MeBF3K (2 equiv), MnF3(4 equiv), AcOH (2 equiv), 
TFE/H2O (9:1, 0.067 M in substrate), 40 ºC, 3 h. bIsolated yield. cReaction solvent was TFE/H2O/AcOH (8:1:1); 
this corresponds to approximately 26 equiv AcOH. dReaction was run at room temperature.
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A limitation to the current methodology is that electron-deficient substrates 

display low reactivity under the optimized conditions. Table 3.4 depicts a number of 

additional substrates that were evaluated for the methylation reaction under conditions 

similar to those optimized for 6. Methylated products were identified by GCMS, and the 

GC yields presented are uncalibrated. Particularly poor reactivity was observed with 

substrates containing electron-withdrawing substituents (entries 6–9). Further studies will 

be needed to explain the poor efficiency of this substrate class; however, electron 

withdrawing substituents are expected to slow the rate of cyclopalladation by making the 

directing group less basic and/or by making the C–H bond less nucleophilic (step i, 

Scheme 3.10).27 Additionally, the PdII center formed by cyclopalladation of more electron 

deficient substrates would have a less negative redox potential, and thus likely undergo 

less facile oxidation by alkyl• (step ii, Scheme 3.10). 

 

Table 3.4. Reactivity of Substituted Arylpyridine Substrates Under the Radical-Mediated 

Methylation Conditions 

 
 

Interestingly, 3ʹ′-methoxy substituted arylpyridine 25 displayed very different 

reactivity than the analogous 2ʹ′-substituted substrate 9 (Scheme 3.14). When 25 was 
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subjected to the reaction conditions, only ~5% of methylated product 26 was observed. 

Instead, the major products were consistent with the structures of 28 and 29 by GCMS 

analysis.  

 

Scheme 3.14. Reactivity of 3ʹ′-Methoxyphenylpyridine 25 Under the Radical-Mediated 

Methylation Conditions 

 
 

 Additional substrates containing diverse directing groups were screened for the 

methylation reaction, but they yielded less than 10% of the corresponding methylated 

products as detected by GC. These substrates are summarized in Figure 3.1. 

 

 
Figure 3.1. Substrates Screened That Provided <10% Yield of Methylated Product by 

GC Under the C–H Methylation Conditions 

 

N

AcO

OMe

N OMe

10 mol % Pd(OAc)2
2 equiv MeBF3K

4 equiv MnF3

TFE/H2O/AcOH (8:1:1)
40 ºC, 3 h

(73% conversion)(25)

(28, ~15%)

H

N OMe

(26, ~5%)
Me

N OMe

(27, ~5%)
Me

Me

Me

N

Me

OMe

(29, ~15%)

OAc



73 

3.4  Alkyl Scope 

A wide variety of other 1º alkyl groups were installed using the corresponding 

alkyltrifluoroborate salts (Table 3.5). Alkylation of both arylpyridine 6 and acetanilide 11 

with ethyl, n-butyl, and n-hexyl groups proceeded efficiently to afford 30, 31, 32, and 40. 

The sterically hindered neopentyl group was introduced in 40% yield (34), and alkyl 

chains bearing phenyl, ester, ketone, and trifluoromethyl substituents were compatible 

with the reaction conditions (33, 35, 36, 37, 39, and 40). 
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Table 3.5. Alkyl Scope of the Radical-Mediated Pd-Catalyzed C–H Alkylationa 

 
 

 

AcHN

nHex

AcHN

EtO2C

AcHN

Ph

nHexBF3K

EtO2C
BF3K

Ph BF3K

72%9e,g

10e,g

11e,g

60%

54%

N

Et

N

nBu

EtBF3K

nBuBF3K

75%

77%

1

2c

entry product yieldbRBF3K

10 mol % Pd(OAc)2
2 equiv RBF3K
4 equiv MnF3

TFE/H2O/AcOH
25–40 ºC

N

R

N

H

N

nHex

N

nHexBF3K 62%

49%

3c

4

Ph

N

N

40%

25%

5c,d

7f

F3C

tBu
BF3K

Ph BF3K

F3C
BF3K

N 46%6e

EtO2C

BF3KEtO

O

N 30%8e
BF3K

O

O

aConditions: substrate (1 equiv), Pd(OAc)2 (0.10 equiv), alkyl–BF3K (2 equiv), MnF3 (4 equiv), TFE/H2O/AcOH 
(8:1:1, 0.067 M in substrate), 40 ºC, 3–6 h. bIsolated yield. c4 equiv alkyl–BF3K and 3 equiv MnF3 were used. 
dSolvent was TFE/AcOH/H2O (4.5:4.5:1). esolvent was TFE/H2O (9:1) with 2 equiv AcOH. fSolvent was TFE/H2O 
(9:1, 0.13 M in substrate) with 1 equiv AcOH. gSubstrate was 11 and reaction was run at 25 ºC.

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

entry product yieldbRBF3K

(6)
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In contrast to the 1º alkyltrifluoroborates shown in Table 3.5, 2º alkyl–BF3K 

reagents did not perform well under the reaction conditions. The use of cyclopropyl–

BF3K yielded no detectable products, and the reaction between arylpyridine 41 and 

cyclohexyltrifluoroborate afforded a mixture of the desired product 42 and the Molander-

type undirected alkylation product 43 (Table 3.6, entry 1). Unlike 43, product 42 was not 

detected in the control reaction without Pd (entry 2), suggesting that 42 is formed by a 

Pd-catalyzed process. A second competing side product is acetoxylated product 44, 

which requires both Pd and Mn, but not CyBF3K, for formation. The observed side 

products provide insight into the mechanism of the current transformation (see section 

3.6), and the results shown in Table 3.6 demonstrate the feasibility of Pd-catalyzed C–H 

alkylation with 2º alkylboron reagents. However, further optimization of the reaction 

conditions will be necessary to achieve high-yielding transformations using 2º 

alkyltrifluoroborates. 

 

Table 3.6. Reaction of Cyclohexyltrifluoroborate with 41 Under the Pd-Catalyzed C–H 

Alkylation Conditions 

 
 

The use of a primary alkyltrifluoroborate containing an α-heteroatom (45) 

resulted in the formation of only Molander-type products (Scheme 3.15). Additionally, 

several alkyltrifluoroborates were screened that did not afford any detectable quantities of 

the desired alkylated product (Figure 3.2). 

N

10 mol % Pd(OAc)2
2 equiv CyBF3K

4 equiv MnF3

TFE/H2O/AcOH (8:1:1)
40 ºC, 6 h

N

(43)(42)(41)

N

(44)

Pd(OAc)2
(equiv) % conversionentry

1 0.10 42 9
2 0 35 0

5
6

3
0

42
% yield

43
% yield

44
% yield

aDetermined by gas chromatographic analysis of the crude reaction mixture using hexadecane as an 
internal standard.

H

N

AcO

+ +

MnF3
(equiv)

4
4

CyBF3K
(equiv)

2
2

3 0.10 18 0
4 0.10 53 0

0
0

0
41

0
4

2
0
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Scheme 3.15. Reaction of BnOCH2BF3K with 6 Under the Pd-Catalyzed C–H Alkylation 

Conditions 

 
 

 

 
Figure 3.2. Alkyltrifluoroborate Reagents that Afforded no Detectable C–H Alkylation 

Products 

  

The observed trends in reactivity of different alkyltrifluoroborates can be 

summarized as follows. Alkylation with MeBF3K tends to afford high yields of 

methylated products (e.g., 81% isolated yield of 5). The use of 1º alkyltrifluoroborates 

results in modest to good yields of alkylated products, although the yields tend to be 

lower than methylation (25–77% isolated yield, Table 3.5). In contrast, use of 

alkyltrifluoroborates that generate 2º or resonance-stabilized alkyl radicals (e.g., 

cyclohexyl, benzyl, benzyloxymethyl) leads to none or very little of the desired products 

(<10% yield). 

 

3.5  Proposed Radical-Mediated Reaction Mechanism 

In contrast to previous reports of PdII/Pd0-catalyzed C–H alkylation with 

alkylboron reagents, the dramatically lower temperatures required for this PdII/MnIII-

mediated transformation are consistent with a fundamentally different operating 

mechanism for this reaction. One possible PdII/PdIII/PdIV mechanism (Scheme 3.16) could 

involve (i) 1 e– oxidation of alkyl–BF3K by MnIII to generate alkyl radical 46, (ii) 1 e– 

oxidation of palladacycle 47 by 46 to afford PdIII–alkyl species 48, (iii) 1 e– oxidation of 

48 by a second equivalent of MnIII to provide PdIV–alkyl species 49, and finally (iv) C–C 

N N

10 mol % Pd(OAc)2
2.5 equiv MnF3

10% H2O in AcOH
40 ºC, 15 h

(38% conversion)

+

4 equiv

BnO

(0.17)
(GC ratio,

product/standard)

BnO BF3K N
BnO

not observed

+

H
(6)

(45)
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bond-forming reductive elimination to generate the alkylated product 50 and a PdII 

species that undergoes cyclometallation with 6 to regenerate 47. A related PdII/PdIII/PdI 

catalytic cycle could also be envisioned. 

 

Scheme 3.16. Proposed PdII/PdIII/PdIV Mechanism for the Alkylation Reaction 

 
 

 Several pieces of evidence support the intermediacy of alkyl radicals in this 

transformation. These points are discussed in sections 3.6–3.8 and include: (1) the 

observation of Molander-type alkylated side products in the reaction of arylpyridine 

substrate 6, (2) the trends in reactivity of different alkyltrifluoroborates, and (3) the lack 

of reactivity seen with traditional 2 e– oxidants. 

 

3.6  Evidence for an Alkyl Radical-Mediated Mechanism: Molander-Type Side 

Products 

As illustrated by Table 3.6 and Scheme 3.15, Molander-type pyridine alkylation 

products are observed when CyBF3K or BnOCH2BF3K salts are employed. Notably, we 

have also observed these Molander-type side products in Pd-free control reactions using 

alkyltrifluoroborates that normally afford higher yields of the desired C–H alkylated 

products in the presence of Pd. For instance, pyridine-alkylated products 51 are observed 

in the Pd-free control reaction with PhCH2CH2BF3K (Table 3.7, entry 2). These results 
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suggest that alkyl radicals are present under reaction conditions that are relevant to our 

catalytic system. 

 

Table 3.7. Observation of Undirected Pyridine-Alkylated Products with Phenethyl–BF3K 

 
 

In contrast, this type of non-directed alkylation is not reported as a side reaction 

under the conditions developed by Yu and coworkers for arylpyridine C–H alkylation.3  

Furthermore, in our hands, these products were not observed even in the absence of Pd 

(Scheme 3.17). The observation of undirected pyridine-alkylated products in our system, 

but not in Yu’s, is consistent with a mechanism involving alkyl radicals in the former 

system, but not in the latter.  

 

Scheme 3.17. Control Reactions for Yu’s PdII/Pd0-Catalyzed C–H Arylation 

 
 

 

 

N
N

cat. Pd(OAc)2
PhCH2CH2BF3K

MnF3

TFE/H2O/AcOH (8:1:1)
40 ºC, 6 h

33
(% yield)b

410.10

entry

1

002

00.103

N

0

11

0

4

4

0

2

2

2

Ph

Ph
(6) (33) (51)

RBF3K
(equiv)

MnF3
(equiv)

Pd
(equiv) % conversiona

61

12

4

51
(% yield)c

+

H

aBased on calibrated GC yield relative to hexadecane as standard. bGC calibrated 
yield relative to hexadecane as standard cGC yield using calibration for 33, relative 
to hexadecane as standard.
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3.7  Evidence for an Alkyl Radical-Mediated Mechanism: Reactivity Trends of 

Alkytrifluoroborates 

A second piece of evidence supporting the proposed radical-mediated mechanism 

is provided by the observed trends in reactivity of different alkyltrifluoroborates. These 

trends are consistent with steps involving alkyl–BF3K acting as a reductant for MnIII (step 

i, Scheme 3.16) and an alkyl radical serving as an oxidant for PdII (step ii, Scheme 3.16) 

Specifically, the yields of C–H alkylated products track with the redox potentials of the 

corresponding RBF3K reagents and R• intermediates (Table 3.8). The majority of the 

alkyltrifluoroborates that were used successfully are expected to provide alkyl radicals 

with redox potentials similar to ethyl• (entry 3).28 

 

Table 3.8. Comparison of Alkylation Yields vs Redox Potentials of Alkyl• 
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As shown in Table 3.8, substituted sp3 carbon-centered radicals are characterized 

by lower redox potentials than that of methyl• (i.e., substituted alkyl• is less easily 

reduced than Me•).28 Alkyl radicals substituted with resonance stabilizing moieties (e.g., 

heteroatoms) have even lower redox potentials (e.g., entries 4, 6, 7, and 9). By extension, 

the corresponding substituted alkyl–BF3K species should have lower redox potentials 

than MeBF3K (i.e., substituted alkyl–BF3K are more easily oxidized than MeBF3K).  

Taking these redox trends into consideration, it is expected that stabilizing 

substituents on the alkyl radical may have the following effects on the reaction pathway: 

(1) the rate of reaction between alkyl• and the intermediate palladacycle could be slowed 

(step ii in Scheme 3.16), allowing competing side reactions of alkyl• to occur; and (2) the 

rate of radical generation (step i in Scheme 3.16) may be accelerated, particularly when 

alkyl is substituted with a stabilizing heteroatom(s). The latter effect could be detrimental 

to the overall yield of the desired transformation because only 10 mol % of palladacycle 

47 can be in solution at any given time to participate in step ii of the catalytic cycle. A 

large excess of alkyl• relative to 47 would likely be consumed by unproductive side 

processes (e.g., those shown in Scheme 3.18).  

 

Scheme 3.18. Examples of Side Reactions of Alkyl• that Could Compete with Step ii of 

the Proposed Catalytic Cycle 
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If alkyl–BF3K (and the resultant alkyl•) is consumed rapidly at the start of the 

reaction by unproductive processes, the observation of products similar to those detected 

in control reactions without alkyl–BF3K would be expected (assuming that an excess of 

MnIII is present). (Such products would also be expected in a converse scenario; namely, 

if alkyl–BF3K is stable toward oxidation by MnIII, allowing MnIII to instead participate in 

undesired side reactions). As shown in Section 3.2, acetoxylated arylpyridine 8 is the 

main product observed upon subjection of 6 to the reaction conditions in the absence of 

an alkyl–BF3K reagent (Table 3.2, entry 4 in Section 3.2). Indeed, this product (8) was 

also detected in significant quantities when cyclopropyl–BF3K was used as the alkylating 

reagent, and none of the desired C–H functionalized product was formed (Scheme 3.19). 

Based on redox potentials, cyclopropyl–BF3K is expected to produce a radical that is a 

poor oxidant (E0 = 0.05 V, Table 3.8), resulting in a slow step ii. As such, cyclopropyl–

BF3K may be quickly consumed early into the reaction without generating any of the 

desired C–H functionalized product. A number of mechanisms for formation of side 

product 8 could be envisioned. Scheme 3.20 illustrates one possible reaction pathway 

involving oxidation of PdII by MnIII (instead of by cyclopropyl•) followed by C–O bond-

forming reductive elimination from a PdIV complex. 

 

Scheme 3.19. Reaction of Cyclopropyl–BF3K with 6 Under the Pd-Catalyzed C–H 

Alkylation Conditions 

 
 

 

Scheme 3.20. Possible Mechanism for Formation of Acetoxylated Product 8 
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In summary, the observed trends in reactivity of the alkyltrifluoroborates are 

consistent with a hypothesis that, as redox potentials of alkyl–BF3K (or alkyl•) become 

less positive, the rate of step (ii) in the proposed reaction mechanism (Scheme 3.16) 

becomes less favorable relative to the rates of unproductive side reactions. Importantly, 

the observed correlation between alkyl radical redox potentials and reaction yields does 

not provide conclusive evidence to support or refute the proposed reaction mechanism. 

Detailed studies will be needed to elucidate the origin of the observed correlation, and to 

investigate the contribution of other factors to the observed trends in reactivity. For 

instance, many of the putative Pd–alkyl intermediates could undergo competing β-

hydride elimination, a process that is not possible from Pd–methyl intermediates. The 

olefin moiety in allyltrifluoroborate may participate in divergent Pd-catalyzed reactions. 

Lastly, factors such as the nucleophicility and the sterics of the alkyl radicals, as well as 

the rates of reductive elimination from a Pd–alkyl species, may contribute to the observed 

trends. 

 

3.8  Evidence for an Alkyl Radical-Mediated Mechanism: Results of Screening 

Alternative Oxidants 

A number of oxidants were screened for the methylation reaction of 6 in the 

optimized solvent system (Table 3.9). Other manganese salts besides MnF3 were 

ineffective, including those in higher and lower oxidation states (entries 3, 5, and 6). 

Importantly, oxidants that have been used for C–H alkylation under a proposed PdII/Pd0 

catalytic cycle3–9 were also ineffective under our conditions (entries 8–11). However, 

potassium persulfate promoted the desired transformation, albeit in poor yield (entries 11 

and 12). This peroxide oxidant has been used previously in conjunction with catalytic 

AgNO3 or FeS to promote aryl• formation from arylboronic acids.29 The ineffectiveness 

of all oxidants screened, except those previously shown to generate carbon-centered 

radicals from organoboron species, is consistent with the hypothesis of a radical-mediated 

reaction mechanism for this transformation.30 
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Table 3.9. Oxidant Screen for the Pd-Catalyzed C–H Alkylation Reaction 

 
 

3.9  Discussion of the Roles of Acetic Acid and Water 

As shown in Section 3.2, both acetic acid and water were found to be necessary 

components of the reaction mixture. It is believed that water improves the solubility of 

the trifluoroborate salt in the reaction solvent. For instance, at least ~50 equiv H2O were 

necessary to achieve high yields of methylated product 20 from 19 after 2 h (Figure 3.3). 

 

 

 

N

Me

N

10 mol % Pd(OAc)2
2 equiv MeBF3K
4 equiv oxidant

TFE/H2O/AcOH (8:1:1)
40 ºC, 6 h

oxidant % conversionb,c % yieldbentry

1 MnF3 100 89
2 Mn(OAc)3 10 0
3 Mn(OAc)2 7 0
4 Mn2O3 0 0
5 MnO2 6 0

9 Ag2CO3 7 0

12 tBuOOH 22 0
13 K2S2O8 100 9

6 KMnO4 21 0

8 benzoquinone 11 0

aConditions: 6 (8.5 mg, 0.050 mmol, 1 equiv), Pd(OAc)2 (1.1 mg, 0.005 mmol, 
0.10 equiv), MeBF 3K (12.2 mg, 0.100 mmol, 2 equiv), oxidant (4 equiv), 
TFE/H2O/AcOH (8:1:1, 0.067 M in 6), 6 h. bBased on calibrated GC yield 
relative to hexadecane as standard. cIn cases with high conversion but low yield 
of methylated product 5, 6 may undergo a high oxidation-state Pd-catalyzed 
homodimerization process, which has been previously publlshed in reference 
31. The product of homodimerization is difficult to observe and quantify by GC 
because it appears as a broad peak in the baseline.

(5)(6)

14 K2S2O8 + 0.2 equiv AgNO3 100 10

7 PhI(O2CCF3)2 38 0

11 Ag2O + 0.5 equiv benzoquinone 4 0
10 Ag2O 11 0

H
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Figure 3.3. Yield of Methylated Product 20 in the Presence of Varying Equivalents of 

Water 

 

Acetic acid (or other carboxylic acid additives) was also necessary for the 

alkylation reactions; however, the optimal equivalents of AcOH varied with different 

substrates. For arylpyridine 6, the highest yields of 5 were obtained when 10–30 equiv 

AcOH were included in the reaction mixture (Figure 3.4). In contrast, the best yields of 

pyrrolidinone product 20 were obtained with just 2 equiv AcOH (Figure 3.5).  
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Figure 3.4. Yield of Methylated Product 5 in the Presence of Varying Equivalents of 

Acetic Acid 

 

 

 
Figure 3.5. Yield of Methylated Product 20 in the Presence of Varying Equivalents of 

Acetic Acid 
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Further studies will be necessary to elucidate the role of acid in this reaction. We 

tentatively hypothesize that it may be involved in cyclopalladation or with modulating the 

activity of MnF3.  

 

3.10  C–H Arylation with Potassium Aryltrifluoroborates 

In collaboration with my colleague Cydney Seigerman, we have found that the 

use of aryltrifluoroborates under conditions similar to the C–H alkylation conditions can 

provide C–H arylated products (Scheme 3.21). Pd-catalyzed C–H arylation reactions 

using arylboronic acid derivatives have been previously reported at both elevated (70–

110 ºC)4–7,9,32 and mild (≤40 ºC)8,33 reaction temperatures through putative PdII/Pd0 

catalytic cycles. We believe that the C–H arylation in the presence of MnIII proceeds 

through a high oxidation-state Pd-catalyzed mechanism; however, insufficient evidence is 

currently available to distinguish between a radical or an ionic reaction mechanism. 

 

Scheme 3.21. Pd-Catalyzed C–H Arylation with Aryltrifluoroborates and Mn(OAc)3 

 
 

3.11  Conclusions and Outlook 

This chapter describes a Pd-catalyzed ligand directed C–H alkylation using 

alkyltrifluoroborate reagents in conjunction with MnF3. This new approach is highly 

complementary to previously reported methodologies for C–H alkylation. Unlike earlier 

examples, this reaction does not require the use of high temperatures or stoichiometric 

bases or silver salts. Alkylation proceeds under remarkably mild temperatures (25–40 ºC) 

with short reaction times (2–6 h). Pyridine- and amide-containing aryl substrates can be 

alkylated with methyl and a variety of 1º alkyl groups in good to excellent yields. 

Furthermore, aryltrifluoroborates can be used under similar reaction conditions to provide 

C–H arylated products.  
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Several pieces of evidence support an alkyl radical-mediated reaction mechanism 

for the alkylation reaction. This evidence includes: (1) the observation of non-directed 

pyridine-alkylation side products in control reactions without Pd, (2) the trends in 

reactivity observed with different alkyltrifluoroborates, and (3) the ineffectiveness of 

traditional 2 e– oxidants for this transformation.  

 

3.12  Experimental Procedures and Characterization Data 

General Procedures 

 NMR spectra were obtained on a Varian vnmrs 700 (699.76 MHz for 1H; 175.95 MHz 

for 13C) or a Varian MR400 (400.52 MHz for 1H; 100.71 for 13C, 376.87 MHz for 19F) 

spectrometer. 1H and 13C NMR chemical shifts are reported in parts per million (ppm) 

relative to TMS, with the residual solvent peak used as an internal reference. 

Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), 

doublet of doublets of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets 

(td), triplet of triplets (tt), quartet (q), quintet (quin), multiplet (m), and broad resonance 

(br). IR spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR spectrometer. 

Melting points were determined with a Mel-Temp 3.0, a Laboratory Devices Inc, USA 

instrument, and are uncorrected. HRMS data were obtained on a Micromass AutoSpec 

Ultima Magnetic Sector mass spectrometer. Gas chromatography was carried out on a 

Shimadzu 17A using a Restek Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl 

polysiloxane; 15 m, 0.25 mm ID, 0.25 µm df) column. GC calibrated yields are reported 

relative to hexadecane as an internal standard. 

 

Materials and Methods. Substrate 6 was prepared by a literature procedure.34 Substrate 

9 was prepared by a palladium-catalyzed Suzuki coupling between 2-methoxyboronic 

acid and 2-bromopyridine. The remaining substrates were obtained from Aldrich (15 and 

19), Acros (11), Alfa Aesar (13), Lancaster Synthesis (21), or TCI America (23). n-

BuBF3K and EtBF3K were obtained from Aldrich, and all other potassium 

trifluoroborates were obtained from Frontier Chemical. MnF3 and Pd(OAc)3 were 

obtained Alfa Aesar and Pressure Chemical, respectively. Trifluoroethanol was obtained 

from TCI America, and all other solvents were from Fisher Chemical. All commercial 
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substrates, reagents, and solvents were used as received without further purification. 

Flash chromatography was performed on EM Science silica gel 60 (0.040–0.063 mm 

particle size, 230–400 mesh) and thin layer chromatography was performed on Merck 

TLC plates pre-coated with silica gel 60 F254. 

 

Synthesis and Characterization of Methylated Products in Table 3.3 

General Procedures  

Method A: To a solution of substrate (1 equiv), Pd(OAc)2 (0.10 equiv), and potassium 

methyltrifluoroborate (2 equiv) in TFE/H2O/AcOH (8:1:1, 0.067 M with respect to 

substrate) in a scintillation vial was added MnF3 (4 equiv). The vial was sealed with a 

Teflon-lined cap, and the mixture was stirred at 40 °C for 2-6 h. The reaction was 

quenched with 10 wt % aqueous Na2SO3 (0.5 times the volume of total solvent), and then 

the reaction mixture was poured into a saturated solution of aqueous NaHCO3 and diluted 

by 10-fold with EtOAc or Et2O. The organic layer was washed twice with aqueous 

NaHCO3, and the combined aqueous layers were extracted three times with EtOAc or 

Et2O. The combined organic layers were washed with brine, dried over MgSO4, and 

concentrated to afford the crude product, which was then purified by column 

chromatography. 

 

Method B: To a solution of substrate (1 equiv), Pd(OAc)2 (0.10 equiv), potassium 

methyltrifluoroborate (2 equiv), and AcOH (2 equiv) in TFE/H2O (9:1, 0.067 M with 

respect to substrate) in a scintillation vial was added MnF3 (4 equiv). The vial was sealed 

with a Teflon-lined cap, and the mixture was stirred at 25 or 40 °C for 2-6 h. The reaction 

was quenched with 10 wt % aqueous Na2SO3 (0.5 times the volume of total solvent), and 

then the reaction mixture was poured into a saturated solution of aqueous NaHCO3 and 

diluted by 10-fold with EtOAc or Et2O. The organic layer was washed twice with 

aqueous NaHCO3, and the combined aqueous layers were extracted three times with 

EtOAc or Et2O. The combined organic layers were washed with brine, dried over 

MgSO4, and concentrated to afford the crude product which was then purifed by column 

chromatography. 
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Aryl Pyridine 5. Method A was followed using substrate 6 (84.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), and MnF3 (224 mg, 2.00 mmol, 

4 equiv) in TFE/H2O/AcOH (8:1:1; 7.5 mL total) at 40 ºC for 3 h. Product 5 was obtained 

as a pale yellow oil (74.1 mg, 81% yield, Rf = 0.22 in 80% hexanes/20% Et2O). 1H NMR 

(700 MHz, CDCl3): δ 8.72 (ddd, J = 4.9, 1.9, 1.2 Hz, 1H), 7.76 (td, J = 7.8, 1.9 Hz, 1H), 

7.26 (ddd, J = 7.8, 4.9, 1.2 Hz, 1H), 7.23 (dt, J = 7.8, 1.2 Hz, 1H), 7.19 (t, J = 7.6 Hz, 

1H), 7.10 (d, J = 7.6 Hz, 2H), 2.04 (s, 6H). 13C{1H} NMR (176 MHz, CDCl3): δ 159.9, 

149.7, 140.5, 136.2, 135.7, 127.8, 127.5, 124.4, 121.6, 20.2. HRMS [M+H]+ Calcd for 

C13H14N: 184.1121; Found: 184.1121. 

 

Aryl Pyridine 10. Method A was followed using substrate 9 (92.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), and MnF3 (224 mg, 2.00 mmol, 

4 equiv) in TFE/H2O/AcOH (8:1:1; 7.5 mL total) at 40 ºC for 3 h. Product 10 was 

obtained as a pale yellow oil (69.3 mg, 70% yield, Rf = 0.20 in 60% hexanes/40% Et2O). 
1H NMR (700 MHz, CDCl3): δ 8.72 (ddd, J = 4.9, 1.9, 1.1 Hz, 1H), 7.73 (td, J = 7.6, 1.9 

Hz, 1H), 7.29 (dt, J = 7.8, 1.1 Hz, 1H), 7.25 (dd, J = 8.2, 7.7 Hz, 1H), 7.24 (ddd, J = 7.5, 

4.9, 1.1 Hz, 1 H), 6.89 (d, J = 7.7 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 3.71 (s, 3H), 2.08 (s, 

3H). 13C{1H} NMR (176 MHz, CDCl3): δ 157.2, 157.0, 149.4, 137.9, 135.8, 129.9, 

128.8, 125.5, 122.6, 121.6, 108.4, 55.7, 19.8. HRMS [M+H]+ Calcd for C13H14NO: 

200.1070; Found: 200.1070. 

 
Acetanilide 12. Method B was followed using substrate 11 (74.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 

mL total) at room temperature for 3 h. Product 12 was obtained as a white solid [78.2 mg, 

96% yield, Rf = 0.27 in 50% hexanes/50% EtOAc, mp = 137.0–138.3 ºC (lit.35 138–141 

ºC)]. 1H NMR (700 MHz, CD3CN, major rotamer): δ 7.77 (br s, 1H), 7.34 (s, 1H), 7.08 

(d, J = 7.8 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 2.27 (s, 3H), 2.17 (s, 3H), 2.07 (s, 3H). 
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13C{1H} NMR (176 MHz, CD3CN, major rotamer): δ 169.5, 137.2, 126.7, 121.1, 129.1, 

126.8, 126.0 23.8, 21.0, 17.6. IR (thin film, CH2Cl2) 3278, 2922, 1657 cm-1. HRMS 

[M+H]+ Calcd for C10H14NO: 164.1070; Found: 164.1070. 

 
Acetanilide 14. Method B was followed using substrate 13 (74.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 

mL total) at 40 ºC for 3 h. Product 14 was obtained as a white solid [58.7 mg, 72% yield, 

Rf = 0.19 in 50% hexanes/50% EtOAc, mp = 166.6–170.2 ºC (lit.36 176–177 ºC)]. 1H 

NMR (700 MHz, CD3CN, major rotamer): δ 7.70 (br s, 1H), 7.08–7.06 (multiple peaks, 

3H), 2.17 (s, 6H), 2.07 (s, 3H). 13C{1H} NMR (176 MHz, CD3CN, major rotamer): δ 

169.4, 136.8, 136.1, 128.7, 127.7, 22.9, 18.4. IR (thin film, CH2Cl2) 3233, 3044, 1648 

cm-1. HRMS [M+H]+ Calcd for C10H14NO: 164.1070; Found: 164.1071. 

 
Acetanilide 16. Method B was followed using substrate 15 (82.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 

mL total) at 40 ºC for 3 h. Product 16 was obtained as a white solid [43.6 mg, 53% yield, 

Rf = 0.16 in 50% hexanes/50% EtOAc, mp = 124.1–124.4 ºC (lit.37 123 ºC)]. 1H NMR 

(700 MHz, CD3CN, major rotamer): δ 7.59 (br s, 1H), 7.14 (dd, J = 8.2, 7.5 Hz, 1H), 6.83 

(d, J = 8.2 Hz, 1H), 6.82 (d, J = 7.5 Hz, 1H), 3.77 (s, 3H), 2.15 (s, 3H), 2.05 (s, 3H). 
13C{1H} NMR (176 MHz, CDCl3): δ 169.5, 155.8, 138.1, 128.1, 126.0, 123.0, 109.7, 

56.3, 23.1, 18.3. IR (thin film, CH2Cl2) 3252, 3004, 2935, 2837, 1660 cm-1. HRMS 

[M+H]+ Calcd for C10H14NO2: 180.1019; Found: 180.1020. 

 

Acetanilide 18. Method B was followed using substrate 17 (137.5 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 

mL total) at 40 ºC for 3 h. Product 18 was obtained as a white solid [119.8 mg, 83% 

HN

O (18)

I
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yield, Rf = 0.25 in 50% hexanes/50% EtOAc, mp = 211.4–213.3 ºC (lit.38 212–214 ºC)]. 
1H NMR (700 MHz, DMSO-d6): δ 9.26 (s, 1H), 7.64 (s, 1H), 7.39 (s, 1H), 2.29 (s, 3H), 

2.12 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR (176 MHz, DMSO-d6): δ 168.2, 139.6, 138.0, 

136.8, 131.2, 126.1, 96.0, 27.0, 23.3, 16.8. IR (thin film, CH2Cl2) 3286, 1654 cm-1. 

HRMS [M+H]+ Calcd for C10H13INO: 290.0036; Found: 290.0038. 

 
Pyrrolidinone 20. Method B was followed using substrate 19 (80.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 mL total) at 40 ºC 

for 2 h. Product 20 was obtained as a pale yellow oil (63.8 mg, 73% yield, Rf = 0.16 in 

50% hexanes/50% EtOAc). 1H NMR (700 MHz, CDCl3): δ 7.27 (m, 1H), 7.23–7.22 

(multiple peaks, 2H), 7.14 (m, 1H), 3.73 (t, J = 7.1 Hz, 2H), 2.58 (t, J = 8.1 Hz, 2H), 2.24 

(s, 3H), 2.23 (m, 2H). 13C{1H} NMR (176 MHz, CDCl3): δ 174.3, 137.4, 135.5, 131.2, 

127.9, 126.8, 126.6, 50.7, 31.2, 19.1, 17.9. IR (thin film, neat) 2956, 1682 cm-1. HRMS 

[M+H]+ Calcd for C11H14NO: 176.1070; Found: 176.1069. 

 
Acetylindoline 22. Method B was followed using substrate 21 (80.6 mg, 

0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 equiv), 

MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 

equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1: 7.5 mL total) at 40 ºC 

for 2 h. Product 22 was obtained as a white solid [72.7 mg, 83% yield, Rf = 0.34 in 50% 

hexanes/50% EtOAc, mp = 86.9–88.1 ºC (lit.39 89–90 ºC)].  1H NMR (700 MHz, 

CD3CN): δ 7.08 (t, J = 4.4 Hz, 1H), 7.00–6.99 (multiple peaks, 2H), 4.04 (t, J = 7.6 Hz, 

2H), 3.00 (t, J = 7.6 Hz, 2H), 2.20 (s, 3H), 2.19 (s, 3H). 13C{1H} NMR (176 MHz, 

CD3CN): δ 169.5, 143.0, 136.1, 130.1, 129.5, 125.7, 122.7, 51.9, 30.5, 24.0, 20.8. IR 

(thin film, CH2Cl2) 2920, 1666 cm-1. HRMS [M+H]+ Calcd for C11H14NO: 176.1070; 

Found: 176.1068. 

 
Tetrahydroquinoline 24. Method B was followed using substrate 23 

(87.6 mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2, (11.2 mg, 0.050 mmol, 0.10 

equiv), MeBF3K (122 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 

N

O

(20)

N

O (22)

N

O (24)
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mmol, 4 equiv), and AcOH (57 µL, 1.00 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 mL 

total) at 40 ºC for 2 h. Product 24 was obtained as a pale yellow oil (70.0 mg, 74% yield, 

Rf = 0.38 in 50% hexanes/50% EtOAc). 1H NMR (700 MHz, C6D6, major rotamer): δ 

6.89 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.93 (ddd, J = 

12.8, 9.2, 5.9 Hz, 1H), 2.51 (ddd, J = 12.8, 8.4, 5.8 Hz, 1H), 2.15 (ddd, J = 14.7, 6.2, 3.3 

Hz, 1H), 2.10 (ddd, J = 14.7, 10.9, 6.7 Hz, 1H), 1.95 (s, 3H), 1.83 (m, 1H), 1.73 (s, 3H), 

1.14 (m, 1H). 13C{1H} NMR (176 MHz, CDCl3, major rotamer): δ 170.9, 139.8, 137.3, 

133.1, 128.9, 126.5, 125.2, 41.4, 26.6, 24.0, 21.3, 17.6. IR (thin film, neat) 2946, 1650 

cm-1. HRMS [M+H]+ Calcd for C12H16NO: 190.1226; Found: 190.1229. 

 
 
Synthesis and Characterization of Alkylated Products in Table 3.5 

General Procedures 

Method A: To a solution of substrate (1 equiv), Pd(OAc)2 (0.10 equiv), and potassium 

alkyltrifluoroborate (2–4 equiv) in TFE/H2O/AcOH (8:1:1 or 4.5:1:4.5, 0.067 M with 

respect to substrate) in a scintillation vial was added MnF3 (3–4 equiv). The vial was 

sealed with a Teflon-lined cap, and the mixture was stirred at 40 °C for 2-6 h. The 

reaction was quenched with 10 wt % aqueous Na2SO3 (0.5 times the volume of total 

solvent), and then the reaction mixture was poured into a saturated solution of aqueous 

NaHCO3 and diluted by 10-fold with EtOAc or Et2O. The organic layer was washed 

twice with aqueous NaHCO3, and the combined aqueous layers were extracted three 

times with EtOAc or Et2O. The combined organic layers were washed with brine, dried 

over MgSO4, and concentrated to afford the crude product, which was then purified by 

column chromatography. 

 

Method B: To a solution of substrate (1 equiv), Pd(OAc)2 (0.10 equiv), potassium 

alkyltrifluoroborate (2 equiv), and AcOH (1 or 2 equiv) in TFE/H2O (9:1, 0.067 or 0.133 

M with respect to substrate) in a scintillation vial was added MnF3 (4 equiv). The vial 

was sealed with a Teflon-lined cap, and the mixture was stirred at 25 or 40 °C for 2-6 h. 

The reaction was quenched with 10 wt % aqueous Na2SO3 (0.5 times the volume of total 

solvent), and then the reaction mixture was poured into a saturated solution of aqueous 
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NaHCO3 and diluted by 10-fold with EtOAc or Et2O. The organic layer was washed 

twice with aqueous NaHCO3, and the combined aqueous layers were extracted three 

times with EtOAc or Et2O. The combined organic layers were washed with brine, dried 

over MgSO4, and concentrated to afford the crude product, which was then purified by 

column chromatography. 

 

Aryl Pyridine 30. Method A was followed using substrate 6 (84.6 

mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.050 mmol, 0.10 

equiv), EtBF3K (136 mg, 1.00 mmol, 2 equiv), and MnF3 (224 mg, 

2.00 mmol, 4 equiv) in TFE/H2O/AcOH (8:1:1; 7.5 mL total) at 40 ºC for 3 h. Product 30 

was obtained as a pale yellow oil (73.8 mg, 75% yield, Rf = 0.26 in 80% hexanes/20% 

Et2O).  1H NMR (700 MHz, CDCl3): δ 8.72 (ddd, J = 5.0, 1.6, 1.0 Hz, 1H), 7.75 (td, J = 

7.6, 1.7 Hz, 1H), 7.27–7.23 (multiple peaks, 3H), 7.14 (d, J = 7.3 Hz, 1H), 7.10 (d, J = 

7.3 Hz, 1H), 2.35 (br m, 2H), 2.02 (s, 3H), 1.03 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (176 

MHz, CDCl3): δ 159.8, 149.6, 141.9, 140.0, 136.1, 135.8, 128.0, 127.4, 125.8, 124.6, 

121.6, 26.5, 20.2, 15.4. HRMS [M+H]+ Calcd for C14H16N: 198.1277; Found: 198.1276. 

 
Aryl Pyridine 31. Method A was followed using substrate 6 (42.3 

mg, 0.25 mmol, 1.0 equiv), Pd(OAc)2 (5.6 mg, 0.025 mmol, 0.10 

equiv), nBuBF3K (164 mg, 1.00 mmol, 4 equiv), and MnF3 (84 mg, 

0.75 mmol, 3 equiv) in TFE/H2O/AcOH (8:1:1; 3.75 mL total) at 40 ºC for 6 h. Product 

31 was obtained as a pale yellow oil (43.2 mg, 77% yield, Rf = 0.30 in 80% hexanes/20% 

Et2O). 1H NMR (700 MHz, CDCl3): δ 8.71 (ddd, J = 4.8, 1.8, 1.2 Hz, 1H), 7.75 (td, J = 

7.7, 1.8 Hz, 1H), 7.26 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 7.24 (dt, J = 7.7, 1.2 Hz, 1H), 7.22 

(t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 2.32 (t, J = 7.9 Hz, 

2H), 2.02 (s, 3H), 1.38 (br m, 2H), 1.16 (sext, J = 7.4 Hz, 2H), 0.74 (t, J = 7.4 Hz, 3H). 
13C{1H} NMR (176 MHz, CDCl3): δ 159.8, 149.5, 140.6, 140.2, 136.0, 135.8, 127.9, 

127.4, 126.6, 124.7, 121.6, 33.3, 33.1, 22.5, 20.3, 13.7. HRMS [M+H]+ Calcd for 

C16H20N: 226.1590; Found: 226.1594. 

 

 

N
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N
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Aryl Pyridine 32. Method A was followed using substrate 6 

(42.3 mg, 0.25 mmol, 1.0 equiv), Pd(OAc)2 (5.6 mg, 0.025 

mmol, 0.10 equiv), n-hexylBF3K (192 mg, 1.00 mmol, 4 equiv), 

and MnF3 (84 mg, 0.75 mmol, 3 equiv) in TFE/H2O/AcOH (8:1:1; 3.75 mL total) at 40 

ºC for 6 h. Product 32 was obtained as a pale yellow oil (39.0 mg, 62% yield, Rf = 0.35 in 

80% hexanes/20% Et2O).  1H NMR (700 MHz, CDCl3): δ 8.71 (ddd, J = 4.7, 1.9, 1.2 Hz, 

1H), 7.75 (td, J = 7.7, 1.9 Hz, 1H), 7.27–7.24 (multiple peaks, 3H), 7.13 (d, J = 7.6 Hz, 

1H), 7.09 (d, J = 7.6 Hz, 1H), 2.31 (t, J = 8.1 Hz, 2H), 2.02 (s, 3H), 1.39 (br m, 2H), 1.18 

(sext, J = 7.3 Hz, 2H), 1.15-1.09 (multiple peaks, 4H), 0.81 (t, J = 7.2 Hz, 3H) 13C{1H} 

NMR (176 MHz, CDCl3): δ 159.8, 149.5, 140.7, 140.2, 136.0, 135.8, 127.9, 127.4, 126.6, 

124.6, 121.6, 33.4, 31.4, 31.0, 29.1, 22.4, 20.3, 14.0. HRMS [M+H]+ Calcd for C18H24N: 

254.1903; Found: 254.1906. 

 

Aryl Pyridine 33. Method A was followed using substrate 6 (84.6 

mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.050 mmol, 0.10 

equiv), potassium phenethyltrifluoroborate (212 mg, 1.00 mmol, 2 

equiv), and MnF3 (224 mg, 2.00 mmol, 4 equiv) in TFE/H2O/AcOH 

(8:1:1; 7.5 mL total) at 40 ºC for 6 h. Product 33 was obtained as a pale yellow oil (67.0 

mg, 49% yield, Rf = 0.23 in 80% hexanes/20% Et2O).  1H NMR (700 MHz, CDCl3): δ 

8.75 (ddd, J = 5.00, 1.6, 1.0 Hz, 1H), 7.75 (td, J = 7.7, 1.6 Hz, 1H), 7.29 (ddd, J = 7.5, 

5.0, 1.0 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.20-7.18 (multiple peaks, 3H), 7.16-7.12 

(multiple peaks, 3H), 6.92 (d, J = 7.7 Hz, 2H), 2.71 (br m, 2H), 2.63 (t, J = 8.5 Hz, 2H), 

2.05 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 159.6, 149.6, 142.1, 140.3, 139.6, 

136.2, 136.0, 128.24, 128.20, 128.0, 127.8, 126.7, 125.7, 124.7, 121.8, 37.8, 36.0, 20.3. 

HRMS [M+H]+ Calcd for C20H20N: 274.1590; Found: 274.1596. 

 

Aryl Pyridine 34. Method A was followed using substrate 6 (42.3 mg, 

0.25 mmol, 1.0 equiv), Pd(OAc)2 (5.6 mg, 0.025 mmol, 0.10 equiv), 

potassium neopentyltrifluoroborate (178 mg, 1.00 mmol, 4 equiv), and 

MnF3 (84 mg, 0.75 mmol, 3 equiv) in TFE/H2O/AcOH (4.5:1:4.5; 3.75 

mL total) at 40 ºC for 6 h. Product 34 was obtained as a pale yellow oil (23.7 mg, 40% 

N
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yield, Rf = 0.32 in 80% hexanes/20% Et2O). 1H NMR (700 MHz, CDCl3): δ 8.71 (ddd, J 

= 4.7, 1.7, 1.2 Hz, 1H), 7.72 (td, J = 7.6, 1.8 Hz, 1H), 7.24-7.23 (multiple peaks, 2H), 

7.20 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 2.46 (s, 2H), 

2.04 (s, 3H), 0.71 (s, 9H). 13C{1H} NMR (176 MHz, CDCl3): δ 160.1, 149.2, 141.2, 

137.5, 136.0, 135.6, 129.2, 127.9, 127.0, 125.9, 121.4, 45.6, 32.4, 29.9, 20.8. HRMS 

[M+H]+ Calcd for C17H22N: 240.1747; Found: 240.1748. 

 

Aryl Pyridine 35. Method B was followed using substrate 6 

(84.6 mg, 0.50 mmol, 1.0 equiv),  Pd(OAc)2 (11.2 mg, 0.050 

mmol, 0.10 equiv), potassium 3-trifluoroboratopropionate ethyl 

ester (208 mg, 1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 

4 equiv), and AcOH (57 µL, 1.00 mmol, 2 equiv) in TFE/H2O (9:1; 7.5 mL total) at 40 ºC 

for 6 h. Product 35 was obtained as a pale yellow oil (62.4 mg, 46% yield, Rf = 0.23 in 

80% hexanes/20% Et2O). 1H NMR (700 MHz, CDCl3): δ 8.72 (ddd, J = 4.9, 1.8, 0.9 Hz, 

1H), 7.77 (td, J = 7.8, 1.8 Hz, 1H), 7.28-7.26 (multiple peaks, 2H), 7.23 (t, J = 7.5 Hz, 

1H), 7.134 (d, J = 7.5 Hz, 1H), 7.131 (d, J = 7.5 Hz, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.67 

(br m, 2H), 2.42 (br m, 2H), 2.02 (s, 3H)1.18 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (176 

MHz, CDCl3): δ 173.0, 159.3, 149.7, 140.3, 138.4, 136.3, 136.1, 128.1, 126.5, 124.6, 

121.9, 60.2, 35.5, 28.7, 20.3, 14.1. Two aromatic 13C resonances are coincidentally 

overlapping. IR (thin film, neat) 2980, 1728 cm-1. HRMS [M+H]+ Calcd for C17H20NO2: 

270.1489; Found: 270.1493. 

 
Aryl Pyridine 36. Method B was followed using substrate 6 (84.6 

mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.050 mmol, 0.10 

equiv), potassium 3,3,3-trifluoropropane-1-trifluoroborate (204 mg, 

1.00 mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 equiv), and 

AcOH (29 µL, 0.50 mmol, 1 equiv) in TFE/H2O (9:1; 3.75 mL total) at 40 ºC for 6 h. 

Product 36 was obtained as a pale yellow oil (33.8 mg, 25% yield, Rf = 0.30 in 80% 

hexanes/20% Et2O). 1H NMR (700 MHz, CDCl3): δ 8.73 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 

7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.30 (ddd, J = 7.7, 5.0, 1.1 Hz, 1H), 7.27-7.25 (multiple 

peaks, 2H), 7.17 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 7.7 Hz, 1H), 2.58 (br m, 2H), 2.22 (br 

N
O

O (35)

N

F3C
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m, 2H), 2.05 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 158.9, 149.8, 140.4, 137.0, 

136.4, 126.3, 128.6, 128.4, 126.6, 126.5 (q, 1JC–F = 277 Hz) 124.5, 122.1, 35.3 (q, 2JC–F = 

28 Hz), 26.2 (q, 3JC–F = 3 Hz), 20.3. 19F NMR (376 MHz, CDCl3): δ –67.20 (t, J = 11.0 

Hz). HRMS [M+H]+ Calcd for C15H15F3N: 266.1151; Found: 266.1157. 

 

Aryl Pyridine 37. Method A was followed using substrate 6 

(84.6 mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.050 

mmol, 0.10 equiv), potassium 5-oxohexyltrifluoroborate (206 

mg, 1.00 mmol, 2 equiv), and MnF3 (224 mg, 2.00 mmol, 4 

equiv) in TFE/H2O/AcOH (8:1:1; 7.5 mL total) at 40 ºC for 6 h. Product 37 was obtained 

as a pale yellow oil (40.2 mg, 30%, Rf = 0.19 in 60% benzene/20% CH2Cl2/20% Et2O). 
1H NMR (700 MHz, CDCl3): δ 8.71 (ddd, J = 4.9, 1.7, 1.1 Hz, 1H), 7.76 (td, J = 7.6, 1.7 

Hz, 1H), 7.27 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 7.23 (dt, J = 7.6, 1.1 Hz, 1H), 7.22 (t, J = 

6.9 Hz, 1H), 7.11-7.09 (multiple peaks, 2H), 2.33 (br t, J = 7.4 Hz, 2H), 2.26 (br m, 2H), 

2.05 (s, 3H), 2.01 (s, 3H), 1.42-1.41 (multiple peaks, 4H) 13C{1H} NMR (176 MHz, 

CDCl3): δ 209.0, 159.7, 149.5, 140.1, 139.9, 136.1, 135.9, 128.0, 127.6, 126.5, 124.7, 

121.7, 43.4, 33.2, 30.5, 29.8, 23.6, 20.3. IR (thin film, neat) 2934, 1711 cm-1. HRMS 

[M+H]+ Calcd for C18H22NO: 268.1696; Found: 268.1701. 

 

Acetanilide 38. Method B was followed using substrate 11 

(37.3 mg, 0.25 mmol, 1.0 equiv), Pd(OAc)2, (5.6 mg, 0.025 

mmol, 0.10 equiv), n-hexylBF3K (96 mg, 0.50 mmol, 2 equiv), 

MnF3 (112 mg, 1.00 mmol, 4 equiv), and AcOH (29 µL, 0.50 

mmol, 2.0 equiv) in TFE/H2O (9:1; 3.75 mL total) at 40 ºC for 3 h. Product 38 was 

obtained as a white solid (42.1 mg, 72% yield, Rf = 0.50 in 50% hexanes/50% EtOAc, 

mp = 113.4–114.7 ºC). 1H NMR (700 MHz, CD3CN, major rotamer): δ 7.73 (br s, 1H), 

7.27 (s, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 2.52 (t, J = 7.7 Hz, 2H), 

2.27 (s, 3H), 2.06 (s, 3H), 1.50 (quin, J = 7.7 Hz, 2H), 1.35-1.29 (multiple peaks, 6H), 

0.89 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (176 MHz, CD3CN, major rotamer): δ 169.8, 

136.7, 126.6, 134.4, 130.3, 127.2, 127.1, 32.4, 31.5, 30.9, 29.8, 23.8, 23.3, 20.9, 14.3 IR 

N
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(thin film, CH2Cl2) 3273, 2925, 1654 cm-1. HRMS [M+H]+ Calcd for C15H24NO: 

234.1852; Found: 234.1857. 

 
Acetanilide 39. Method B was followed using substrate 11 

(37.3 mg, 0.25 mmol, 1.0 equiv), Pd(OAc)2, (5.6 mg, 0.025 

mmol, 0.10 equiv), potassium 3-trifluoroboratopropionate 

ethyl ester (104 mg, 0.50 mmol, 2 equiv), MnF3 (112 mg, 1.00 

mmol, 4 equiv), and AcOH (29 µL, 0.50 mmol, 2.0 equiv) in TFE/H2O (9:1; 3.75 mL 

total) at 40 ºC for 3 h. Product 39 was obtained as a white solid (37.2 mg, 60% yield, Rf = 

0.25 in 50% hexanes/50% EtOAc, mp = 109.5–110.1 ºC). 1H NMR (700 MHz, CD3CN, 

major rotamer): δ 8.10 (br s, 1H), 7.30 (s, 3H), 7.11 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 7.8 

Hz, 1H), 4.07 (q, J = 7.1 Hz, 2H), 2.81 (t, J = 7.7 Hz, 2H), 2.56 (t, J = 7.7 Hz, 2H), 2.27 

(s, 3H), 2.08 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (176 MHz, CD3CN, major 

rotamer): δ 173.3, 168.8, 136.4, 135.8, 131.5, 129.4, 126.4, 126.2, 60.3, 34.5, 25.4, 22.9, 

20.0, 13.5. IR (thin film, CH2Cl2) 3277, 1716, 1654 cm-1. HRMS [M+H]+ Calcd for 

C14H20NO3: 250.1438; Found: 250.1440. 

 
Acetanilide 40. Method B was followed using substrate 11 (74.6 

mg, 0.50 mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.050 mmol, 

0.10 equiv), potassium phenethyltrifluoroborate (212 mg, 1.00 

mmol, 2 equiv), MnF3 (224 mg, 2.00 mmol, 4 equiv), and AcOH 

(57 µL, 0.50 mmol, 2.0 equiv) in TFE/H2O (9:1; 7.5 mL total) at room temperature for 3 

h. Product 40 was obtained as a white solid (68.4 mg, 54% yield, Rf = 0.41 in 50% 

hexanes/50% EtOAc, mp = 144.4–145.9 ºC). 1H NMR (700 MHz, CD3CN, major 

rotamer): δ 7.66 (s, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.24 (s, 1H), 7.21 (d, J = 7.4 Hz, 2H), 

7.19 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 7.7 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 2.83-2.82 

(multiple peaks, 4H), 2.28 (s, 3H), 2.05 (s, 3H). 13C{1H} NMR (176 MHz, CD3CN, 

major rotamer): δ 169.8, 143.0, 137.0, 136.7, 125.6, 133.6, 130.4, 129.9, 129.4, 129.3, 

129.2, 127.4, 126.8, 37.0, 33.7, 23.8, 20.9. IR (thin film, CH2Cl2) 3273, 3024, 2926, 1655 

cm-1. HRMS [M+H]+ Calcd for C17H20NO: 254.1539; Found: 254.1545. 
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CHAPTER 4 

 
Asymmetric Pd-Catalyzed Chiral Ligand-Directed Alkene 

Dioxygenation 
 

4.1  Background and Significance  

Alkene difunctionalization reactions are synthetically valuable transformations 

that introduce two functional groups and up to two new stereocenters into a substrate. 

Dioxygenation is particularly widely studied, and several catalytic and non-catalytic 

strategies for alkene dihydroxylation have emerged including the Woodward 

dihydroxylation (Scheme 4.1, path A),1 the Prévost reaction (path B),2 epoxidation/ring-

opening (path C),3 and metal mediated syn-dihydroxylation reactions (path D).4,5  

 

Scheme 4.1. Strategies for Alkene Dioxygenation 

 
 

Of these strategies, Sharpless’ osmium-catalyzed asymmetric dihydroxylation has 

proven particularly valuable, and has a reputation for being a reliable route to syn vicinal 

diols (Scheme 4.2).4 A related Os-catalyzed aminohydroxylation reaction provides access 

to chiral 1,2-amino alcohols in an analogous fashion (Scheme 4.3).4c,6 
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Scheme 4.2. Sharpless Asymmetric Dihydroxylation4 

 
 

 

Scheme 4.3. Sharpless Osmium-Catalyzed Aminohydroxylation6a 

 
 

Despite the significance of these methodologies, osmium catalysis remains 

limited. Most importantly, the ability to extend this approach toward the installation of 

diverse nucleophiles beyond hydroxyl/hydroxyl and hydroxyl/amine has not been 

demonstrated. Furthermore, control over the regioselectivity of aminohydroxylation (e.g., 

2 vs 3, Scheme 4.3) is challenging and highlights the need for an alternative strategy for 

installing two non-identical nucleophiles across an alkene. Lastly, the toxicity of osmium 

is often cited as a drawback to these transformations. 

A vast amount of literature on palladium catalysis, and particularly the recent 

surge of work involving high-oxidation-state Pd,7 has opened the door to considering this 

versatile metal as a powerful alternative catalyst for alkene difunctionalization 

transformations.8 Whereas OsVIII catalysis involves concerted syn addition of two 

heteroatoms across an alkene (intermediate 1, Scheme 4.2), Pd reacts with olefins by a 

fundamentally different mechanism that forms each new carbon–X bond in a discrete step 
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(Scheme 4.4).8 This feature of palladium catalysis provides an opportunity to control the 

regioselectivity of alkene difunctionalization with non-identical nucleophiles.  

 

Scheme 4.4. General Mechanism of Pd-Catalyzed Alkene Difunctionalization 

 
 

The use of high-oxidation state Pd catalysis for alkene difunctionalization (instead 

of PdII/Pd0 catalysis) is particularly attractive. Although PdII–alkyl species like 4 tend to 

undergo facile β-hydride elimination, analogous PdIV intermediates are often resistant to 

this decomposition pathway. As such, oxidative interception of the PdII–alkyl 

intermediate 4 generated by nucleopalladation (Scheme 4.5, path A) could suppress 

formation of undesired Wacker-type side products (5, path B). Additionally, there is 

significant precedent for a large variety of bond constructions at PdIV, including the 

formation of C–O, C–N, C–C, and C–halogen linkages. For these reasons, a high-

oxidation state Pd-catalyzed mechanistic manifold could provide a powerful approach to 

achieving a diverse scope of alkene difunctionalizations. 

 

Scheme 4.5. Alkene Difunctionalization by High-Oxidation-State Palladium Catalysis 

 
 

Indeed, numerous Pd-catalyzed oxidative alkene difunctionalization reactions 

have been developed in recent years, including dioxygenations,9 aminooxygenations,10 

aminoarylations,11 diaminations,12 aminofluorinations,13 chloroaminations,14 

arylhalogenations,15 and cyclopropanations.16 These transformations often proceed with 

good selectivity for either syn or anti addition of the vicinal groups. However, the 
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stereoselective formation of non-racemic difunctionalized products by high-oxidation-

state Pd-catalysis has remained largely elusive. A single example of asymmetric alkene 

difunctionalization via PdII/PdIV catalysis utilizes chiral SPRIX ligands and produces 

chiral nonracemic cyclopropanes (Scheme 4.6).16d 

 

Scheme 4.6. Asymmetric PdII/PdIV-Catalyzed Oxidative Cyclization of Enynes 

 
 

One attractive approach for achieving asymmetric Pd-catalyzed alkene 

difunctionalization would involve the use of a chiral directing group. Analogous chiral 

directing group-based strategies have been successfully employed by Yu and coworkers 

to achieve asymmetric C–H bond oxidation via high-oxidation-state Pd catalysis (Scheme 

4.7).17,18 In a similar fashion, we envisioned that a chiral directing ligand (L* in substrate 

6, Scheme 4.8) could potentially relay stereochemical information to the stereocenter(s) 

formed upon alkene difunctionalization (product 8) via a chiral palladacycle intermediate 

7. 

 

Scheme 4.7. Pd-Catalyzed Asymmetric C–H Iodination using a Chiral Directing Group 

Strategy17a 
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Scheme 4.8. Chiral Directing Group Strategy for Pd-Catalyzed Asymmetric Alkene 

Difunctionalization 

 
 

In addition to providing stereocontrol, the use of this ligand-directed strategy 

could accelerate the rate of Pd-catalyzed alkene difunctionalization by bringing the Pd 

center proximal to the target olefin. Dong and coworkers have shown that simple 

palladium salts like Pd(OAc)2 and PdCl2(MeCN)2 do not effect any detectable 

dioxygenation of alkene 9 with PhI(OAc)2 at 50 ºC after 16 h (Scheme 4.9).9a Instead, 

both Dong (Scheme 4.9) and Shi9c (Scheme 4.10) found that the use of ancillary BINAP 

or NHC ligands was necessary to achieve any reactivity with Pd(OAc)2, and good yields 

of dioxygenated product 10 were only obtained with cationic Pd triflate salts. In contrast, 

we expected that the increased reactivity of a directing-group-containing substrate (6, 

Scheme 4.8) might enable the use of simple Pd salts for alkene diacetoxylation with 

PhI(OAc)2. As such, we chose to focus our initial studies on alkene dioxygenation with 

PhI(O2CR)2 oxidants, using the work by Dong and Shi as a benchmark for testing the 

effectiveness of the envisioned directing group strategy. 

 

Scheme 4.9. Diacetoxylation of an Undirected Substrate with PhI(OAc)2 using a Cationic 

Pd Triflate Salt vs Pd(OAc)2
9a 
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Scheme 4.10. Diacetoxylation of an Undirected Substrate with PhI(OAc)2 Using a 

Cationic Pd(NHC) Triflate Salt9c 

 
 

For the work described in this chapter, we focused on the use of chiral oxime 

ethers as directing groups for asymmetric alkene dioxygenation (13, Scheme 4.11). These 

directing groups were selected based on several key criteria: (1) oxime ethers are known 

to be effective directing ligands for other Pd-catalyzed reactions,19 (2) the substrates can 

easily be prepared from an allyl alcohol 11 and a chiral ketone 12 (Scheme 4.11, step i), 

(3) the chiral auxiliary could potentially be cleaved off at a later stage (step iii) and (4) 

diverse chiral non-racemic ketones are readily available. 

 

Scheme 4.11. Chiral Oxime Ethers as Directing Groups for Asymmetric Alkene 

Dioxygenation 
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4.2  Reaction Optimization 

Diacetoxylation of substrate 14 using a PdII catalyst and PhI(OAc)2 was found to 

proceed in a variety of solvents at relatively mild temperatures (25–50 ºC), and numerous 

PdII salts were effective catalysts for this transformation (Table 4.1). These observations 

stand in contrast to the work by Dong and Shi, in which cationic Pd complexes and acidic 

solvents were necessary to obtain good yields of the diacetoxylated products (vide supra). 

As such, these results provide evidence in support of the hypothesis that a directing group 

can facilitate Pd-catalyzed alkene difunctionalization. 

 

Table 4.1. Solvent and Catalyst Optimization for Pd-Catalyzed Ligand Directed 

Diacetoxylation of 14 

 
 

In our system, the highest yields of product 15 were obtained in dry aromatic 

solvents like benzene, toluene, and chlorobenzene (Table 4.1, entries 7, 8, and 10). 

Although PdCl2(PhCN)2 and Pd(OAc)2 afforded comparable results with 15 (entries 10 
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and 11) subsequent studies on chiral substrates revealed that the use of PdCl2(PhCN)2 

provided better stereocontrol (see section 4.13 for details).  

Furthermore, we found that PhI(OBz)2 could essentially be used essentially 

interchangeably with PhI(OAc)2 to afford the analogous dibenzoylated products. The 

dibenzoylated products offer the advantage of facile visualization on TLC plates. 

Additionally, we later found that diastereomeric dibenzoylated products are easier to 

differentiate by NMR spectroscopy than their diacetoxylated counterparts. For these 

reasons, much of the work presented in this chapter utilizes PhI(OBz)2 instead of 

PhI(OAc)2. For instance, we examined the Pd-catalyzed dioxygenation of achiral oxime 

ether substrate 16 with PhI(OBz)2. Using PdCl2(MeCN)2 as catalyst, this transformation 

proceeded in 59% isolated yield under mild conditions (8 h at 50 ºC in toluene, Scheme 

4.12). 

 

Scheme 4.12. Dibenzoylation of 16 with PhI(OBz)2 and PdCl2(PhCN)2 

 
 

 

4.3  Control Reactions 

We next sought confirmation that the dioxygenation reaction was proceeding 

through a Pd-catalyzed pathway. Notably, Gade and coworkers have recently 

demonstrated metal-free TfOH-catalyzed alkene diacetoxylation with PhI(OAc)2 

(Scheme 4.13).20,21 Their work provided evidence that the reactions in Schemes 4.99a and 

4.109c using cationic Pd triflate salts, as well as related diacetoxylation reactions using 

Cu(OTf)2,22 may be catalyzed by triflic acid generated in situ rather than by Pd. 
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Scheme 4.13. Metal-Free TfOH-Catalyzed Alkene Diacetoxylation with PhI(OAc)2
20 

 
 

We hypothesized that an analogous acid-catalyzed pathway was not feasible in 

our system because of the presence of a basic nitrogen in the oxime ether substrate. 

However, because the envisioned chiral ligand-directed alkene difunctionalization relies 

on the involvement of a palladium catalyst to achieve absolute stereocontrol, it was 

important to rule out the possibility of a competing acid-catalyzed reaction pathway. 

Evidence for the role of Pd, rather than H+, as the active catalyst is presented in Table 

4.2. Importantly, no dioxygenation was observed in the absence of Pd under our reaction 

conditions, even upon the addition of 5–10 mol % TfOH or BF3•OEt2 (see section 4.13 

for further details). 

 

Table 4.2. Control Reactions for the Dibenzoylation of 16 a,b 

 
 

Finally, support for the role of the oxime ether directing ligand is provided in 

Scheme 4.14. Like 16, substrate 18 contains an olefin that is allylic to an oxygen atom. 
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Unlike 16, however, 18 does not include a good ligand for palladium. As expected, 

substrate 18 was completely unreactive under the optimized conditions. This observation 

indicates that the oxime ether moiety in 16 is necessary to enable alkene 

difunctionalization under our reaction conditions. 

 

Scheme 4.14. No Observed Reactivity in a Substrate Lacking a Directing Group 

 
 

 

4.4  Syn Diastereoselectivity and Reaction Mechanism 

Several mechanistic pathways for the described dioxygenation reaction can be 

imagined (Scheme 4.15) involving either trans (paths A and B) or cis oxypalladation 

(paths C and D), and direct (paths A and C) or SN2-type reductive elimination (paths B 

and D). In an achiral system, these four pathways would lead to two possible products 

resulting from overall syn or anti addition.  

 

Scheme 4.15. Possible Mechanistic Pathways for the Oxime-Directed Dibenzoylation 
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Previous reports have indicated that each of these pathways is possible in the 

context of Pd-catalyzed alkene difunctionalization reactions.8 However, to achieve an 

asymmetric difunctionalization with high stereochemical fidelity, it is important that a 

single reaction pathway is dominant. If two pathways are competing, asymmetric 

induction is likely to be eroded. Thus, in order to assess the feasibility of developing an 

asymmetric transformation, we examined the stereospecificity of dioxygenation of achiral 

cis and trans alkene substrates 19 and 22. In this system, only two dibenzoylated products 

are possible (threo product 20 and erythro product 21). Poor selectivity between 20 and 

21 could suggest the existence of competing reaction pathways. Gratifyingly, under the 

optimal conditions, dioxygenation of both alkenes proceeded with high (~10:1) 

selectivity for the syn addition product (Schemes 4.16 and 4.17).  

 

Scheme 4.16. Syn Selective Dibenzoylation of cis Alkene Substrate 19 

 
 

 

Scheme 4.17. Syn Selective Dibenzoylation of trans Alkene Substrate 22 

 
 

The relative stereochemistry of the two products was determined by deprotection 

of 20 and 21 to the corresponding diols (Scheme 4.18) and spectroscopic comparison to 

an authentic sample of 23 prepared by Os-catalyzed syn dihydroxylation23 of 19 (Scheme 

4.19). 
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Scheme 4.18. Preparation of Erythro Diol 23 By Deprotection of 21 

 
 

 

Scheme 4.19. Preparation of Authentic Erythro Diol 23 by Os-Catalyzed Syn 

Dihydroxylation of 19 

 
 

 

4.5  Use of Chiral Auxiliaries Derived from Commercial Ketones 

With these results in hand, we next examined chiral oxime auxiliaries. A series of 

terminal (allyl) oxime ethers 24–30 were prepared from commercially available chiral 

ketones containing diverse patterns of α-substitution (Table 4.3). The E and Z oxime 

isomers of the same parent ketone provide significantly different steric environments for 

a coordinated Pd center. Therefore, the E and Z diastereomers were separated and studied 

individually when possible (substrates 24, 25, 27, and 28). Importantly, a new 

stereocenter is created upon dioxygenation of these chiral substrates, and the resulting 

products are diastereomers. Thus, control over absolute stereochemistry is reported as a 

diastereomeric ratio (dr, not to be confused with syn/anti relative stereochemistry). 
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Table 4.3. Dibenzoylation with Chiral Auxiliaries Derived from Commerical Ketonesa 
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Oxime stereoisomers 24 and 25 reacted under our standard Pd-catalyzed 

dioxygenation conditions to afforded two spectroscopically different sets of products. 

These results indicate that the oxime ether is configurationally stable under the reaction 

conditions. The stereocenter at the α position of the auxiliary is expected to be in closer 

proximity to the coordinated Pd center in 25 relative to 24. Consistent with this proposal, 

25 reacts to form 32 in modest 63:37 dr, while 24 yields 31 with essentially no selectivity 

(dr = 52:48). These results demonstrate that the steric environment created by the chiral 

oxime auxiliary significantly impacts the stereochemical outcome of the dibenzoylation. 

In keeping with the trend observed with 24 and 25, the dr’s obtained with 

substrates derived from other commercial chiral ketones showed a significant correlation 

with the steric environment at the α-position of the oxime. For example, the 

diastereoselectivity of the reaction of 26 was lower than seen with 25. This may be 

rationalized based on the fact that the 3º-α stereocenter of 26 is tied back into a bicyclic 

scaffold. Improved diastereoselectivity (75:25) was observed in 27, which contains a 4º-α 

stereocenter. However, the overall yield was low, likely due to the highly conjested steric 

environment proximal to the oxime. Consistent with this proposal, the other oxime 

isomer (28) afforded dioxygenated product in lower dr (66:34) but with higher yield. An 

even bulkier 4º-α group (29) resulted in dramatically decreased reactivity, and no 

dioxygenated product was observed. Among the substrates in Table 4.3, the best balance 

between reactivity and selectivity appeared to be found with 30, which features β-

branching adjacent to the 3º-α substituent. 

 

4.6  Use of Auxiliaries Derived from 8-Substituted Menthone 

We next sought to improve on the selectivity seen with 30 by preparing a number 

of 8-substituted menthone derivatives to use as auxiliaries. Excitingly, the addition of a 

third methyl group to the β-position of the ketone (38) provided a substantial 

improvement in stereoselectivity (dr = 86:14 for 43, compared to 74:26 for 37). The 

selectivity remained unchanged with additional mono-substitution at the γ position (39 

and 40). As seen in Table 4.4, however, reaction yields began to decline as the steric bulk 

of the auxiliary increased (compare 45 and 47 to 44). The highest selectivity was seen 
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with 42, which has a 3º carbon at the γ position, albeit with only moderate yield of 

dibenzoylated product 47. 

 

Table 4.4. Dibenzoylation with Chiral Auxiliaries Derived from 8-Substituted Menthonea 
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4.7  E/Z Stereochemical Assignment of Oxime Ether Substrates 

Most of the oxime ether substrates in Tables 3 and 4 were isolated as single 

isomers, presumably with an E configuration. This geometry should be 

thermodynamically favored, as it places the bulkier α group trans to the oxime ether N–O 

bond. However, the oxime ethers prepared from α-thujone (24 and 25) and camphor (27 

and 28) were isolated as two distinct isomers. In each case, the major isomer was 

expected to be the E stereoisomer. This assignment was confirmed spectroscopically by 

comparing the chemical shifts of the α carbons (from 13C NMR spectra) and the α 

methylene or methine protons (from 1H NMR) of the two isomers. Literature precedent 

indicates that the chemical shifts of the α carbons should be further upfield when cis to 

the N–O bond than when trans (resulting from steric compression).24 Conversely, the 

chemical shifts of the α methylene or methine protons should be further downfield when 

cis to the N–O bond than when trans (resulting from shielding by the lone pair on 

nitrogen, Figure 4.1).25  

 

 

Figure 4.1. Relative Chemical Shifts of α Protons and Carbons of E and Z Oximes24,25 

 

Proton and carbon assignments for substrates 24, 25, 27, and 28 were made using 

standard 2D NMR techniques (COSY, HSQC, and HMBC). The relative chemical shifts 

of the α carbons were consistent with the assigned E or Z configurations of these 

substrates (Figure 4.2). Additionally, for both sets of substrates, at least one of the α 

protons followed the expected trend. It is believed that the deviation from the literature 

trend seen with H2a in 24 and 25 is a result of the rigid cyclic conformation of the 
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substrate. It is likely that the geometry of 24 permits only one of H2a or H2b to experience 

a shielding effect by the lone pair on the oxime nitrogen. 

 

 
Figure 4.2. Chemical Shifts of α Carbons and Protons of 24, 25, 27, and 28 

 

4.8  Quantification of Diastereomeric Ratios 

For the products in Tables 4.3 and 4.4, diastereomeric ratios were obtained from 
13C NMR spectra. This method of analysis was chosen because, for the majority of the 

products isolated, 1H NMR peaks corresponding to the minor product were fully or 

partially overlapping with peaks corresponding to the major product, making isomer ratio 

determination by 1H NMR integration impossible in most cases. In contrast, for all of the 

products isolated, a large number of the peaks in the 13C NMR spectra corresponding to 

the minor product were distinguishable from the peaks corresponding to the major 

product. Each minor product peak, when distinguishable, appeared as a smaller peak 

immediately to the left or right of the major product peak, representing the analogous 

carbon in the opposite diastereomer. Thus, diastereomeric ratios were obtained from the 

relative integrations of major product peaks and minor product peaks representing 

analogous carbons.  

Although 13C NMR is not generally used to obtain quantitative integrations, we 

hypothesized that analogous carbon nuclei on two diastereomers would have identical or 

nearly identical relaxation times. If so, 13C NMR integrations could be used 

quantitatively. To test this hypothesis, we acquired 13C NMR spectra of 43 using 

relaxation delays of 10 s and 0.10 s (default). As expected, the ratio of integrations of 

major and minor peaks for analogous carbons did not change with relaxation delay (ratio 
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= 85.5 : 13.5 for both experiments). (The ratio of integrations between peaks representing 

different carbons did change, as is typical.) Thus the 13C NMR spectra used to obtain 

quantitative integrations were acquired with the default relaxation delay (0.10 s), 

allowing satisfactory spectra to be obtained within a reasonable length of time. A 

minimum of two sets of peaks in the 13C NMR spectra (chosen for having the best 

separation) were integrated to confirm that the ratio was consistent. In the few instances 

where it was possible, integrations from 1H NMR spectra were also used to confirm the 

results of 13C integrations. 

Notably, chiral GC and HPLC were initially explored to obtain dr values (the 

diastereomeric products typically did not separate using achiral columns). While these 

methods often allowed observation of two distinct products, reliable integration by GC 

was not possible as a result of broad peak shapes and poor separation. This may be due in 

part to the high molecular weight of the products; typically very long run times (e.g., 90 

min) were necessary to obtain separation. Although chiral HPLC provided better 

separation in some cases, it did not prove general for the majority of the products. 

 

4.9  Identification of Side Products 

In many cases, the yield of the dioxygenation reaction was relatively poor. This 

can be accounted for, in part, by the formation of several side products analogous to those 

isolated from the diacetoxylation reaction of substrate 16 with PhI(OAc)2 (Scheme 4.20). 

Although these side products have not all been fully characterized, 1H NMR analysis 

suggests that they include monoacetoxylated alkene 49, diastereomeric triacetoxylated 

products 50 and 51, and hydroxy/acetoxy products 52 and 53. 
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Scheme 4.20. Side Products Isolated from the Diacetoxylation Reaction of 16 

 
 

Resubjection of 48 to the reaction conditions did not result in the formation of any 

of these side products. This result suggests that side products 49–53 are not derived from 

48.  

 

4.10  Preliminary Results with Additional Directing Groups  

In addition to the chiral ketone auxiliaries presented in Tables 4.3 and 4.4, a 

number of auxiliaries derived from other non-commercial chiral ketones and aldehydes 

were prepared and are described in this section. These auxiliaries did not provide as high 

levels of selectivity as the substrates in Table 4.4, and so full characterization of the 

substrates and products was not pursued. However, studies of these auxiliaries provide 

two important pieces of information about these reactions. First, unlike ketoxime ethers, 

aldoxime ethers appear to be prone to E/Z isomerization under the optimized reaction 

conditions. Second, branching at positions that are remote to the C=N (δ and farther) does 

not appear to have a substantial influence on the stereoselectivity of the dioxygenation 

reaction. 

Subjection of aldoximes 54 and 55 to the reaction conditions with PhI(OAc)2 

resulted in the formation of four distinct diacetoxylated products (analyzed by chiral 

HPLC). This stands in contrast to the typical set of 2 products seen with the ketoxime 

ether substrates in Tables 4.3 and 4.4. The products resulting from diacetoxylation of 54 
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and 55 are expected to be the four diastereomers shown in Schemes 4.21 and 4.22. These 

results suggest that aldoxime substrates are not configurationally stable under the 

dioxygenation conditions. 

 

Scheme 4.21. Diacetoxylation of Aldoxime 54 to Afford Four Diastereomeric Products  

 
 

 

Scheme 4.22. Diacetoxylation of Aldoxime 55 to Afford Four Diastereomeric Products 

 
 

In an effort to systematically vary the sterics of an oxime ether auxiliary, we 

prepared several derivatives of ketoxime ether 56 substituted at the β-oxygen. Table 4.5 

lists the yields and approximate dr’s for the diacetoxylation of these substrates with 

PhI(OAc)2. Based on the consistently low selectivities with these auxiliaries, it appears 

that the sterics at remote positions do not substantially influence the stereoselectivity of 

the transformation. 
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Table 4.5. Diacetoxylation of Derivatives of Oxime Ether 56 

 
 

Early on in our studies, before determining that ketoxime ethers are 

configurationally stable under the dioxygenation conditions, we were interested in 

exploring substrates derived from C2 symmetric ketones. Such substrates would consist 

of a single isomer regardless of any dynamic isomerization. Substrate 57 was prepared by 

Ir-catalyzed asymmetric hydrogenation of dibenzylidenecyclohexanone26 followed by 

conversion to the allyl oxime ether. Diacetoxylation of 57 proceeded in relatively poor 

yield with 71:29 dr, and further optimization of this transformation was not pursued 

(Scheme 4.23).  

 

 



124 

Scheme 4.23. Diacetoxylation of C2-Symmetric Substrate 57 

 
 

4.11 Substituted Alkene Substrates 

The previous sections described dioxygenation of terminal (allyl) or simple 

internal (crotyl) alkenes. In addition to these substrates, more highly substituted alkenes 

were also tested under the dioxygenation conditions. As detailed below, these substrates 

presented significant challenges in terms of reactivity, site-selectivity, and/or 

chemoselectivity; therefore, furthur exploration of the use of such substrates has not yet 

been pursued, and the products of the attempted dioxygenation reactions have not been 

fully characterized. Table 4.6 summarizes this work. 
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Table 4.6. Efforts Toward Dioxygenation of Substituted Alkene Substrates 

 
 

In the case of entry 3, we observed a significant amount of a triacetoxylated 

product. To test whether dibenzoylated product 58 was undergoing a third oxygenation, 

we resubjected 58 to the reaction conditions. However, conversion to 59 was not 

observed from 58, suggesting that 58 is not an intermediate in the reaction pathway that 

forms 59 (Scheme 4.24).  

 

Scheme 4.24. Resubjection of 58 to the Dibenzoylation Conditions 
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4.12  Conclusions and Outlook 

In summary, the results presented in this chapter demonstrate that a chiral 

directing group can facilitate Pd-catalyzed alkene difunctionalization with control over 

the absolute stereoselectivity of the transformation. Preliminary results indicate that this 

directing group strategy also allows for site selective functionalization of proximal 

olefins in the presence of remote alkenes (Scheme 4.25). 

 

Scheme 4.25. Site Selective Functionalization of Diene 60 

 
 

Conceptually, this approach could prove quite powerful if it can be extended to 

the use of diverse nucleophiles. Efforts thus far to apply the developed reaction 

conditions toward the asymmetric dioxygenation of disubstituted alkenes (crotyl oxime 

ethers of achiral ketones) have resulted in erosion of control over relative stereochemistry 

(syn vs anti difunctionalization). Consequently, further optimization will be necessary to 

broaden the scope of this work. 

 

4.13  Experimental Procedures and Characterization Data 

General Procedures and Materials and Methods 

NMR spectra were obtained on a Varian vnmrs 700 (699.76 MHz for 1H; 175.95 MHz 

for 13C), Varian vnmrs 500 (500.10 MHz for 1H; 125.75 MHz for 13C), Varian Inova 500 

(499.90 MHz for 1H; 125.70 MHz for 13C), or a Varian MR400 (400.52 MHz for 1H; 

100.71 for 13C) spectrometer. 1H and 13C NMR chemical shifts are reported in parts per 

million (ppm) relative to TMS, with the residual solvent peak used as an internal 

reference. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of 

doublets (dd), doublet of doublet of doublets (ddd), doublet of doublet of doublet of 

doublets (dddd), triplet (t), quartet (q), quintet (quin), sextet (sext), septet (sept), doublet 
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of triplets (dt), doublet of doublet of triplets (ddt), doublet of triplet of doublets (dtd), 

doublet of quartets (dq), triplet of triplets (tt), quartet of doublets (qd), multiplet (m), and 

broad resonance (br).  IR spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR 

spectrometer. HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic 

Sector mass spectrometer. Gas chromatography was carried out on a Shimadzu 17A 

using a Restek Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 

0.25 mm ID, 0.25 µm df) column. Chiral gas chromatography was carried out on a 

Shimadzu 17A using an Agilent Cyclosil-B [30% hepatkis (2,3-di-O-methyl-6-O-t-butyl 

dimethylsilyl)-β-cyclodextrin in DB-1701; 30 m, 0.25 mm ID, 0.25µm df) column. 

Chiral HPLC was performed on a Varian Prostar 210 HPLC using a Daicel Chiralcel 20 

µm silica (46 x 500 mm) column. 

 

Materials and Methods. Commercial ketones were obtained from Aldrich [4-heptanone, 

(–)-(α)-thujone, (1R)-(+)-nopinone, (–)-menthone, and (1R)-(+)-camphor], Acros [(R)-

(+)-2-(2ʹ′-carbomethoxyethyl)-2-methylcyclohexanone], or Mallinckrodt (cyclohexanone) 

and used as received. (+)-Dihydrocarvone was obtained from Acros as a mixture of 

(2R,5R) and (2R,5S) diasteromers, and the major isomer (2R,5R) was isolated by column 

chromatography (Rf = 0.14 and 0.10 in 96% hexanes/4% diethyl ether for the major and 

minor isomers, respectively) prior to use. (R)-(+)-Pulegone was obtained from Acros and 

was used as received to prepare ketones 62–66. PdCl2(PhCN)2
27 and PhI(OBz)2

28 were 

prepared according to literature procedures. Toluene was purified using an Innovative 

Technology (IT) solvent purification system composed of activated alumina, copper 

catalyst, and molecular sieves. Flash chromatography was performed on EM Science 

silica gel 60 (0.040-0.063 mm particle size, 230-400 mesh) and thin layer 

chromatography was performed on Merck TLC plates pre-coated with silica gel 60 F254.  

 

Synthesis and Characterization of Allyl Oxime Ether Substrates in Schemes 4.12 and 4.25 

and Table 4.3  

General Procedure. Ketone and O-allyl hydroxylamine hydrochloride were combined in 

pyridine in a scintillation vial. The vial was sealed with a Teflon-lined cap, and the 

mixture was heated to 80 °C for 30 min and then stirred at room temperature overnight. 
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The reaction mixture was diluted by 5-fold with EtOAc or Et2O and washed with 20% 

aqueous AcOH (5 x equal volume to the organic layer) to remove pyridine. The organic 

layer was then neutralized with aqueous NaHCO3, washed with brine, dried over MgSO4, 

and concentrated to yield the oxime ether. Where noted, some oxime ethers were 

obtained as mixtures of E and Z stereoisomers. In these cases, the major (E) stereoisomer 

and the minor (Z) stereoisomer were obtained in isomerically pure form following 

column chromatography.  

 

Oxime Ether 16. The general procedure was followed using 

cyclohexanone (1.00 g, 10.2 mmol, 1.0 equiv), O-allyl hydroxylamine 

hydrochloride (1.34 g, 12.2 mmol, 1.2 equiv), and pyridine (4.4 mL). 

Oxime ether 16 was obtained as a colorless oil (1.37 g, 88% yield). 1H 

NMR (700 MHz, CDCl3): δ 5.99 (ddt, J = 17.5, 10.5, 5.6 Hz, 1H), 5.29 (dd, J = 17.5, 1.4 

Hz, 1H), 5.19 (dd, J = 10.5, 1.4 Hz, 1H), 4.52 (d, J = 5.6 Hz, 2H), 2.48 (t, J = 6.0 Hz, 

2H), 2.20 (t, J = 6.3 Hz, 2H), 1.67 (quin, J = 6.0 Hz, 2H), 1.62–1.57 (multiple peaks, 4H). 
13C{1H} NMR (176 MHz, CDCl3): δ 160.6, 134.6, 116.9, 74.0, 32.2, 27.0, 25.8, 25.7, 

25.3. IR (thin film, neat) 2932, 2860, 1449 cm-1. HRMS [M+H]+ Calcd for C9H15NO: 

154.1226; Found: 154.1221. 

 

Oxime Ethers 24 and 25. The general procedure was followed using (–)-(α)-thujone 

(428 mg, 2.81 mmol, 1 equiv), O-allyl hydroxylamine hydrochloride (370 mg, 3.37 

mmol, 1.2 equiv), and pyridine (1.2 mL) affording the products as a colorless oil 

consisting of an ~2 : 1 mixture of E/Z stereoisomers (545 mg, 94% yield). E and Z 

isomers were obtained in isomerically pure form following column chromatography (Rf = 

0.22 and 0.21 for Z and E isomers, respectively, in 2:1:0.1 hexanes/benzene/CH2Cl2). 

HRMS electrospray (m/z): [M+H]+ calcd for C13H22NO (mixture of oxime isomers), 

208.1696; found, 208.1698. 

Major (E) Isomer (25): 1H NMR (700 MHz, CDCl3): δ  5.97 (ddt, J = 

17.3, 10.6, 5.5 Hz, 1H), 5.26 (ddt, J = 17.3, 1.7, 1.7 Hz, 1H), 5.18 (ddt, 

J = 10.6, 1.7, 1.3 Hz, 1H), 4.50 (m, 2H), 2.66 (d, J = 17.9 Hz, 1H), 

2.65 (m, 1H), 2.39 (app dt, J = 17.9, 1.9 Hz, 1H), 1.33 (sept, J = 6.8 
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Hz, 1H), 1.16 (d, J = 7.2 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.91 

(dd, J = 8.0, 3.9 Hz, 1H), 0.53 (ddd, J = 8.0, 5.3, 2.2. Hz, 1H), 0.04 (dd, J = 5.3, 3.9 Hz, 

1H). 13C{1H} NMR (176 MHz, CDCl3): δ 168.3, 134.4, 117.1, 74.4, 40.8, 32.3, 31.5, 

28.9, 26.8, 21.5, 20.0, 19.7, 16.8. IR (thin film, neat): 2958, 1454 cm-1. 

Minor (Z) Isomer (24): 1H NMR (700 MHz, CDCl3): δ 5.94 (ddt, J = 

17.3, 10.6, 5.4 Hz, 1H), 5.24 (ddt, J = 17.3, 1.6. 0.6 Hz, 1H), 5.16 

(ddt, J = 10.6, 1.6, 0.6 Hz, 1H), 4.48 (m, 2H), 3.07 (qd, J = 7.0, 1.7 

Hz, 1H), 2.58 (d, J = 16.5 Hz, 1H), 2.27 (d, J = 16.5 Hz, 1H), 1.36 

(sept, J = 6.8 Hz, 1H), 1.11 (d, J = 7.2 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 

Hz, 3H), 0.906 (dd, J = 8.0, 3.9 Hz, 1H), 0.50 (ddd, J = 8.0, 5.1, 1.7 Hz, 1H), 0.03 (dd, J 

= 4.6, 4.1 Hz, 1H). 13C{1H} NMR (176 MHz, CDCl3): δ 167.7, 134.7, 116.7, 74.2, 37.5, 

32.2, 31.9, 30.2, 26.9, 20.0, 19.8, 17.4, 15.8. IR (thin film, neat): 2957, 1457 cm-1. 

 

Oxime Ether 26. The general procedure was followed using  (1R)-

(+)-nopinone (829 mg, 6.00 mmol, 1 equiv), O-allyl hydroxylamine 

hydrochloride (986 mg, 9.00 mmol, 1.5 equiv), and pyridine (2.6 

mL) affording the product as a colorless oil consisting of an ~8 : 1 

mixture of E/Z stereoisomers (1.09 g, 94% yield). The E isomer (26) was obtained in 

isomerically pure form following column chromatography (Rf = 0.26 in 3:3:0.2 

hexanes/benzene/CH2Cl2). 1H NMR (700 MHz, CDCl3): δ 5.98 (ddt, J = 17.3, 10.6, 5.5 

Hz, 1H), 5.28 (ddt, J = 17.3, 2.7, 1.4 Hz, 1H), 5.18 (ddt, J = 10.5, 2.7, 1.4 Hz, 1H), 4.52 

(ddd, J = 5.5, 1.4, 1.4 Hz, 2H), 2.77 (ddd, J = 19.8, 9.8, 2.6 Hz, 1H), 2.59, (dd, J = 5.6, 

5.6 Hz, 1H), 2.48–2.42 (multiple peaks, 2H), 2.06 (m, 1H), 1.93 (m, 1H), 1.87 (m, 1H), 

1.37 (d, J = 10.6 Hz, 1H), 1.27 (s, 3H), 0.81 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): 

δ 164.8, 134.8, 116.7, 74.1, 48.1, 40.6, 40.5, 27.3, 25.6, 22.2, 22.1, 18.7. IR (thin film, 

neat): 2918, 1458 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C12H20NO, 

194.1539; found, 194.1543. 

 

Oxime Ethers 27 and 28. The general procedure was followed using (1R)-(+)-camphor 

(761 mg, 5.00 mmol, 1 equiv), O-allyl hydroxylamine hydrochloride (822 mg, 7.50 

mmol, 1.5 equiv), and pyridine (2.2 mL) affording the products as a colorless oil 
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consisting of an ~1.7 : 1 mixture of E/Z stereoisomers (888 mg, 86% yield). E and Z 

isomers were obtained in isomerically pure form following column chromatography (Rf = 

0.18 and 0.08 for E and Z isomers, respectively, in 98% hexanes/2% Et2O).  

Major (E) Isomer (27): 1H NMR (700 MHz, CDCl3): δ 5.98 (ddt, 

J = 17.3, 10.6, 5.4 Hz, 1H), 5.26 (ddt, J = 17.3, 1.5, 1.5  Hz, 1H), 

5.16 (ddt, J = 10.6, 1.5, 1.5 Hz, 1H), 4.53 (ddd, J = 5.4, 1.5, 1.5 

Hz, 2H), 2.50 (ddd, J = 17.9, 4.4, 3.3 Hz, 1H), 2.01 (d, J = 17.9 Hz, 1H), 1.87 (dd, J = 

4.4, 4.4 Hz, 1H), 1.82 (m, 1H), 1.69 (m, 1H), 1.44 (m, 1H), 1.22 (m, 1H), 1.00 (s, 3H), 

0.90 (s, 3H), 0.78 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 169.6, 134.8, 116.7, 

74.1, 51.7, 48.1, 43.7, 33.8, 32.8, 27.3, 19.5, 18.5, 11.2. IR (thin film, neat): 2956, 1456 

cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C13H22NO, 208.1696; found, 

208.1697.  

Minor (Z) Isomer (28): 1H NMR (700 MHz, CDCl3): δ 5.96 (ddt, J = 

17.3, 10.6, 5.3 Hz, 1H), 5.27 (d, J = 17.3 Hz, 1H), 5.16 (d, J = 10.6 

Hz, 1H), 4.44 (d, 5.3 Hz, 2H), 2.49 (ddd, J = 16.3, 3.7, 3.7 Hz, 1H), 

1.90 (d, J = 16.3 Hz, 1H), 1.85–1.81 (multiple peaks, 2H), 1.64–1.58 

(multiple peaks, 2H), 1.32 (s, 3H), 1.27 (m, 1H), 0.90 (s, 3H), 0.84 (s, 3H). 13C{1H} 

NMR (176 MHz, CDCl3): δ 166.1, 134.8, 116.3, 74.2, 55.0, 48.7, 43.9, 36.6, 32.8, 27.3, 

20.4, 18.2, 14.2. IR (thin film, neat): 2956, 1453 cm-1. HRMS electrospray (m/z): [M+H]+ 

calcd for C13H22NO, 208.1696; found, 208.1698. 

 

Oxime Ether 29. The general procedure was followed using 

(R)-(+)-2-(2ʹ′-carbomethoxyethyl)-2-methylcyclohexanone 

(500 mg, 2.52 mmol, 1 equiv), O-allyl hydroxylamine 

hydrochloride (414 mg, 3.78 mmol, 1.5 equiv), and pyridine 

(1.1 mL) affording 29 as a colorless oil consisting of a single (E) stereoisomer (529 mg, 

83% yield).  1H NMR (700 MHz, CDCl3): δ 5.98 (ddt, J = 17.3, 10.6, 5.6 Hz, 1H), 5.25 

(d, J = 17.3 Hz, 1H), 5.17 (d, J = 10.6 Hz, 1H), 4.51 (d, J = 5.6 Hz, 2H), 3.65 (s, 3H), 

2.77 (ddd, J = 14.5, 5.4, 5.4 Hz, 1H), 2.34 (ddd, J = 16.4, 11.2, 5.4 Hz, 1H), 2.22–2.15 

(multiple peaks, 2H), 2.07 (ddd, J = 13.8, 11.2, 5.1 Hz, 1H), 1.67–1.57 (multiple peaks, 

5H), 1.46 (m, 2H), 1.06 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 174.7, 163.0, 
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134.7, 116.9, 74.2, 51.5, 39.8, 39.7, 32.9, 29.1, 25.8, 24.0, 21.5, 21.1. IR (thin film, neat): 

2936, 1737, 1436 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C14H24NO3, 

254.1751; found, 254.1753. 

Oxime Ether 30. The general procedure was followed using (–)-

menthone (1.23 g, 8.00 mmol, 1 equiv), O-allyl hydroxylamine 

hydrochloride (1.32 g, 12.00 mmol, 1.5 equiv), and pyridine (3.5 

mL) affording 30 as a colorless oil consisting of a single (E) 

stereoisomer (1.31 g, 78% yield).  1H NMR (400 MHz, CDCl3): δ 5.99 (ddt, J = 17.3, 

10.5, 5.6 Hz, 1H), 5.26 (ddt, J = 17.3, 1.6, 1.6 Hz, 1H), 5.16 (ddt, J = 10.5, 1.3, 1.3 Hz, 

1H), 4.52 (ddd, J = 5.6, 1.6, 1.3 Hz, 2H), 2.84 (ddd, J = 13.3, 4.3, 1.3 Hz, 1H), 2.12 (app 

octet, J = 6.7 Hz, 1H), 1.87–1.73 (multiple peaks, 5H), 1.40 (m, 1H), 1.14 (m, 1H), 0.95 

(d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.7 Hz, 6H). 13C{1H} NMR (100.7 MHz, CDCl3): δ 

161.0, 135.1, 116.6, 74.0, 48.5, 32.1, 32.05, 32.04, 26.6, 26.5, 21.5, 21.0, 19.4. IR (thin 

film, neat): 2955, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C13H24NO, 

210.1852; found, 210.1852. 

 

Oxime Ether 60. The general procedure was followed using 

(2R,5R)-dihydrocarvone (300  mg, 1.97 mmol, 1.0 equiv), O-allyl 

hydroxylamine hydrochloride (324 mg, 2.96 mmol, 1.5 equiv), and 

pyridine (0.85 mL). Oxime ether 60 was obtained as a colorless oil 

consisting of a single (E) stereoisomer (403 mg, 99% yield). 1H NMR (700 MHz, 

CDCl3): δ 6.02 (ddt, J = 17.3, 10.5, 5.6 Hz, 1H), 5.29 (ddt, J = 17.3, 1.7, 1.7 Hz, 1H), 

5.19 (ddt, J = 10.5, 1.7, 1.3 Hz, 1H), 4.75 (app s, 2H), 4.55 (ddd, J = 5.6, 1.7, 1.3 Hz, 

2H), 3.38 (ddd, J = 13.6, 3.9, 2.1 Hz, 1H), 2.20 (m, 1H), 2.08 (app tt, J = 12.1, 3.6 Hz, 

1H), 1.96 (app dq, J = 12.9, 3.6 Hz, 1H), 1.86 (m ,1H), 1.75 (s, 3H), 1.63 (dd, J = 13.4, 

12.7 Hz, 1H), 1.43 (app qd, J = 12.9, 3.6 Hz, 1H), 1.26 (app qd, J = 12.6, 3.4 Hz, 1H), 

1.11 (d, J = 6.6 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 161.9, 148.7, 134.8, 

116.8, 109.2, 74.2, 44.8, 37.3, 35.4, 30.9, 30.0, 20.7, 16.4. IR (thin film, neat) 2968, 

2928, 2857, 1448 cm-1. HRMS [M+H]+ Calcd for C13H22NO: 208.1696; Found: 

208.1685. 
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Synthesis and Characterization of Crotyl Oxime Ether Substrates in Schemes 4.16 and 

4.17 

Oxime Ether 21. Substrate 21 was prepared by the reaction sequence 

depicted in Scheme 4.26 involving (1) conversion of 2-butyn-1-ol to 

the corresponding hydroxylamine via the intermediate propargyloxy 

phthalimide (2) condensation of the hydroxylamine with 

cyclohexanone, and (3) alkyne reduction to the cis alkene with Schwartz’ reagent. The 

final product 21 was isolated as a colorless oil (33% from cyclohexanone, Rf = 0.21 in 

95% hexane/5% Et2O). 1H NMR (700 MHz, CDCl3): δ 5.68 (m, 1H), 5.63 (m, 1H), 4.59 

(d, J = 6.3 Hz, 2H), 2.46 (t, J = 6.3 Hz, 2H), 2.20 (t, J = 6.3 Hz, 2H), 1.69 (d, J = 6.4 Hz, 

3H), 1.67 (m, 2H), 1.61–1.57 (multiple peaks, 4H). 13C{1H} NMR (176 MHz, CDCl3): δ 

160.4, 127.9, 126.3, 68.8, 32.2, 27.0, 25.8, 25.7, 25.2, 13.3. IR (thin film, neat) 2929, 

2858, 1448 cm-1. HRMS [M+H]+ Calcd for C10H18NO: 168.1383; Found: 168.1382. 

 

Scheme 4.26. Synthesis of cis-Crotyl Oxime Ether 21 

 
 

Oxime Ether 22. Substrate 22 was prepared by the reaction sequence 

depicted in Scheme 4.27 involving (1) LAH reduction of 2-butyn-1-

ol, (2) conversion of the trans-crotyl alcohol to the corresponding 

hydroxylamine via the intermediate allyloxy phthalimide, and (3) 

condensation of the hydroxylamine with cyclohexanone. The final product 22 was 

isolated as a colorless oil (42% from cyclohexanone, Rf = 0.21 in 95% hexane/5% Et2O). 
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1H NMR (700 MHz, CDCl3): δ 5.75 (m, 1H), 5.66 (m, 1H), 4.45 (dd, J = 6.2, 1.1 Hz, 

2H), 2.47 (t, J = 6.3 Hz, 2H), 2.20 (t, J = 6.3 Hz, 2H), 1.72 (dd, J = 6.5, 1.1 Hz, 3H), 1.67 

(m, 2H), 1.63–1.58 (multiple peaks, 4H). 13C{1H} NMR (176 MHz, CDCl3): δ 160.2, 

129.6, 127.2, 73.9, 32.2, 27.0, 25.8, 25.7, 25.4, 17.9. IR (thin film, neat) 2929, 2858, 

1449 cm-1. HRMS [M+H]+ Calcd for C10H18NO: 168.1383; Found: 168.1381. 

 

Scheme 4.27. Synthesis of trans-Crotyl Oxime Ether 22 

 
 

 

Synthesis and Characterization of Allyl Oxime Ether Substrates in Table 4.4 

General Procedure. 8-Substituted menthone derivatives 62, 63, 64, and 65 were 

prepared by a literature prep involving the conjugate addition of methyl, ethyl, isobutyl, 

or phenyl Grignard to (R)-(+)-pulegone in the presence of cat. CuBr (Scheme 4.28).29 8-

Isopropyl menthone 66 was prepared by the conjugate addition of iPrLi (2 equiv) to (R)-

(+)-pulegone (1 equiv) in the presence of CuCN (1 equiv) and BF3•Et2O (3 equiv) at –78 

ºC (Scheme 4.29). The resulting 8-substituted menthone derivatives were then refluxed in 

H2O/EtOH with KOH to enhance the ratio of  the desired thermodynamic trans (2S,5R) 

ketone relative to the undesired cis (2R,5R) isomer, and were then purified by column 

chromatography.  

 

 

 

 



134 

Scheme 4.28. Synthesis of 8-Substituted Menthone Derivatives 62, 63, 64, and 65 

 
 

 

Scheme 4.29. Synthesis 8-Isopropyl Menthone 66 

 
 

The enantiomerically pure (2S,5R) ketones 62–66 and O-allyl hydroxylamine 

hydrochloride were combined in pyridine in a scintillation vial. The vial was sealed with 

a Teflon-lined cap, and the mixture was heated to 80 °C for 30 min and then stirred at 

room temperature overnight. The reaction mixture was diluted by 5-fold with EtOAc or 

Et2O and washed with 20% aqueous AcOH (5 x equal volume to the organic layer) to 

remove pyridine. The organic layer was then neutralized with aqueous NaHCO3, washed 

with brine, dried over MgSO4, and concentrated to yield the oxime ether, which was 

further purified by column chromatography to remove residual impurities from the 

ketone synthesis steps. In all cases, the oxime ether products were isolated as a single 

oxime stereoisomer (E). 

 

Oxime Ether 38.  The general procedure was followed using 8-

methylmenthone 62 (500 mg, 2.97 mmol, 1.0 equiv), O-allyl 

hydroxylamine hydrochloride (456 mg, 4.16 mmol, 1.4 equiv), and 

pyridine (1.3 mL). Oxime ether 38 was obtained as a colorless oil 

(545 mg, 82% yield, Rf = 0.47 in 99% hexanes/1% Et2O). 1H NMR (700 MHz, CDCl3): δ 
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6.00 (ddt, J = 17.3, 10.5, 5.6 Hz, 1H), 5.25 (ddt, J = 17.3, 3.2, 1.0 Hz, 1H), 5.16 (ddt, J = 

10.5, 3.2, 1.0 Hz, 1H), 4.52 (ddd, J = 5.6, 1.0, 1.0 Hz, 2H), 3.15 (ddd, J = 12.9, 4.5, 1.7 

Hz, 1H), 1.98 (app dq, J = 12.9, 4.0 Hz, 1H), 1.84 (dd, J = 11.6, 4.3 Hz, 1H), 1.80 (m, 

1H), 1.64 (m, 1H), 1.41 (dd, J = 12.9, 11.3 Hz, 1H), 1.35 (app qd, J = 12.5, 3.6 Hz, 1H), 

1.06 (m, 1H), 1.03 (s, 9H), 0.95 (d, J = 6.5 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): 

δ 160.5, 135.3, 116.7, 74.1, 53.1, 34.6, 34.2, 33.4, 32.8, 28.4, 28.3, 22.2. IR (thin film, 

neat): 2952, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C14H26NO, 

224.2009; found, 224.2006. 

 

Oxime Ether 39. The general procedure was followed using 8-

ethylmenthone 63 (300 mg, 1.65 mmol, 1.0 equiv), O-allyl 

hydroxylamine hydrochloride (270 mg, 2.47 mmol, 1.5 equiv), and 

pyridine (0.72 mL). Oxime ether 39 was obtained as a colorless oil 

(230 mg, 59% yield, Rf = 0.47 in 99% hexanes/1% Et2O). 1H NMR (700 MHz, CDCl3): δ 

6.00 (ddt, J = 17.3, 10.4, 5.6 Hz, 1H), 5.25 (ddt, J = 17.3, 2.1, 1.3 Hz, 1H); 5.16 (ddt, J = 

10.4, 2.1, 1.3 Hz, 1H), 4.51 (ddd, J = 5.6, 1.3, 1.3 Hz, 2H), 3.16 (ddd, J =12.9, 4.6, 1.7 

Hz, 1H), 1.93–1.90 (multiple peaks, 2H), 1.80 (m, 1H), 1.68–1.61 (multiple peaks, 2H), 

1.41 (dd, J = 12.9, 11.3 Hz, 1H), 1.39–1.30 (multiple peaks, 2H), 1.06 (m, 1H), 1.01 (s, 

3H), 0.95 (d, J = 7.0 Hz, 3H), 0.94 (s, 3H), 0.76 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (176 

MHz, CDCl3): δ 160.6, 135.4, 116.6, 74.1, 50.3, 35.2, 34.8, 34.3, 33.5, 33.1, 28.0, 25.4, 

24.5, 22.3, 8.2. IR (thin film, neat): 2954, 2918, 1457 cm-1. HRMS electrospray (m/z): 

[M+H]+ calcd for C15H28NO, 238.2165; found, 238.2163. 

 

Oxime Ether 40. The general procedure was followed using 

8-iso-butylmenthone 64 (175 mg, 0.83 mmol, 1.0 equiv), O-

allyl hydroxylamine hydrochloride (109 mg, 1.00 mmol, 1.2 

equiv), and pyridine (0.36 mL). Oxime ether 40 was obtained 

as a colorless oil (134 mg, 61% yield, Rf = 0.40 in 99% hexanes/1% Et2O). 1H NMR (700 

MHz, CDCl3): δ 6.00 (ddt, J = 17.3, 10.5, 5.6, 1H), 5.25 (ddt, J = 17.3, 3.3, 1.7 Hz, 1H), 

5.16 (ddt, J = 10.5, 3.3, 1.2 Hz, 1H), 4.51 (ddd, J = 5.6, 1.7, 1.2 Hz, 2H), 3.17 (ddd, J = 

12.8, 4.5, 1.2 Hz, 1H), 1.95 (app. dq, J = 12.7, 3.7 Hz, 1H), 1.92 (dd, J = 11.3, 4.0 Hz, 
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1H), 1.80 (m, 1H), 1.66–1.58 (multiple peaks, 3H), 1.37 (dd, J = 12.8, 11.6 Hz, 1H), 1.36 

(m, 1H), 1.24 (dd, J = 13.8, 5.2 Hz, 1H), 1.06 (m, 1H), 1.04 (s, 3H), 0.99 (s, 3H), 0.95 (d, 

J = 6.5 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.6, 1H). 13C{1H} NMR (176 

MHz, CDCl3): δ 160.6, 135.4, 116.7, 74.1, 51.8, 49.1, 35.9, 34.9, 34.5, 33.6, 28.2, 26.6, 

25.6, 25.5, 24.0, 22.3. Two 13C resonances are coincidentally overlapping. IR (thin film, 

neat): 2953, 2926, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C17H32NO, 

266.2478; found, 266.2471. 

 

Oxime Ether 41. The general procedure was followed using 

8-phenylmenthone 65 (515 mg, 2.2 mmol, 1.0 equiv), O-allyl 

hydroxylamine hydrochloride (368 mg, 3.36 mmol, 1.5 equiv), 

and pyridine (1 mL). Oxime ether 41 was obtained as a 

colorless oil (359 mg, 56% yield, Rf = 0.62 in 95% hexanes/5% Et2O). 1H NMR (700 

MHz, CDCl3): δ 7.36 (dd, J = 8.5, 1.1 Hz, 2H), 7.27 (dd, J = 8.5, 7.3 Hz, 2H), 7.25 (tt, J 

= 7.3, 1.1. Hz, 1H), 5.90 (ddt, J = 17.3, 10.5, 5.7 Hz, 1H), 5.22 (ddt, J = 17.3, 3.0, 1.3 Hz, 

1H), 5.14 (ddt, J = 10.5, 3.0, 1.3 Hz, 1H), 4.43 (ddd, J = 5.7, 1.3, 1.3 Hz, 2H), 3.11 (ddd, 

J = 13.3, 4.5, 1.8 Hz, 1H), 2.44 (dd, J =11.8, 4.2 Hz, 1H), 1.70 (m, 1H), 1.65 (app. dq, J = 

13.0, 3.8 Hz, 1H), 1.58 (m, 1H), 1.51 (s, 3H), 1.43 (s, 3H), 1.37 (dd, J = 13.3, 11.4 Hz, 

1H), 1.34 (m, 1H), 0.99 (m, 1H), 0.92 (d, J = 6.5 Hz, 3H). 13C{1H} NMR (176 MHz, 

CDCl3): δ 159.5, 150.6, 135.3, 127.7, 126.0, 125.1, 116.7, 74.1, 53.0, 40.1, 34.6, 34.2, 

33.3, 28.7, 26.5, 25.2, 22.2. IR (thin film, neat): 2950, 2924, 1457 cm-1. HRMS 

electrospray (m/z): [M+H]+ calcd for C19H28NO, 286.2165; found, 286.2172. 

 

Oxime ether 42. The general procedure was followed using 8-

iso-propylmenthone 66 (500 mg, 2.55 mmol, 1.0 equiv), O-allyl 

hydroxylamine hydrochloride (419 mg, 3.82 mmol, 1.5 equiv), 

and pyridine (1.1 mL). Oxime ether 42 was obtained as a 

colorless oil (283 mg, 44% yield, Rf = 0.38 in 99% hexanes/1% Et2O). 1H NMR (700 

MHz, CDCl3): δ 5.99 (ddt, J = 17.3, 10.5, 5.6 Hz, 1H), 5.24 (ddt, J = 17.3, 3.4, 1.7 Hz, 

1H), 5.16 (ddt, J = 10.5, 3.4, 1.2 Hz, 1H), 4.51 (ddd, J = 5.6, 1.7, 1.2 Hz, 2H), 3.18 (ddd, 

J = 12.8, 4.7, 1.7 Hz, 1H), 2.23 (app septet, J = 6.9 Hz, 1H), 2.04 (dd, J = 11.8, 4.0 Hz, 
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1H), 1.94 (app dq, J = 13.0, 3.7 Hz, 1H), 1.81 (m, 1H), 1.66 (m, 1H), 1.40 (dd, J = 12.2, 

11.3 Hz, 1H), 1.36 (dddd, J = 12.6, 12.6, 12.6, 4.1 Hz, 1H), 1.06 (dddd, J = 12.6, 12.6, 

12.6, 3.6 Hz, 1H), 0.97 (s, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.81 (s, 3H), 0.80 (d, J = 6.8 Hz, 

3H), 0.74 (d, J = 6.8 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 160.9, 135.4, 116.6, 

74.1, 50.1, 37.5, 35.0, 34.6, 33.9, 32.4, 28.5, 22.3, 20.4, 20.1, 17.34, 17.30. IR (thin film, 

neat): 2960, 1925, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C16H30NO, 

252.2322; found, 252.2313. 

 

Synthesis and Characterization of Dioxygenated Products in Schemes 4.12 and 4.25 and 

Tables 4.3 and 4.4 

General Procedure. Substrate (1 equiv), PdCl2(PhCN)2 (0.05 equiv), and PhI(OBz)2 (2 

or 3 equiv) were combined in dry toluene in a 4 mL or 20 mL scintillation vial and sealed 

with a Teflon-lined cap. Reactions were stirred at 50 ºC for 8 h, then diluted with EtOAc 

and washed with 10% aqueous Na2SO3 and brine. The combined aqueous layers were 

extracted with EtOAc, and the organic layers were then combined, dried over MgSO4, 

filtered, concentrated, and purified by column chromatography on silica gel to afford the 

products as a mixture of diastereomers (indistinguishable by TLC; all product-containing 

column fractions were combined for final yields and dr determination). The ratio of 

diastereomers was determined by 13C NMR integrations and, when possible, confirmed 

by 1H NMR. In all cases, complete 1H and 13C NMR data are reported for the major 

product isomer. In addition, the distinct resonances associated with the minor isomer are 

reported for both the 1H and 13C NMR spectra (many of the peaks for the minor isomer 

are overlapping with those of the major isomer). 

 

Oxime Ether 17. The general procedure was followed using 

substrate 16 (76.6 mg, 0.50 mmol, 1 equiv), PdCl2(PhCN)2 

(9.6 mg, 0.025 mmol, 0.05 equiv), PhI(OBz)2 (446 mg, 1.00 

mmol, 2 equiv), and dry toluene (4.2 mL). Compound 17 

was isolated in 59% yield as a colorless oil (Rf = 0.14 in 

79% hexanes/20% Et2O/1% Et3N). 1H NMR (700 MHz, 

CDCl3): δ 8.06 (d, J = 7.9 Hz, 2H), 8.03 (d, J = 7.9 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.55 
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(t, J = 7.3 Hz, 1H), 7.44 (dd, J = 7.9, 7.3 Hz, 2H), 7.42 (dd, J = 7.9, 7.3 Hz, 2H), 5.73 

(dtd, J = 6.2, 5.6, 3.6 Hz, 1H), 4.67 (dd, J = 12.0, 3.6 Hz, 1H), 4.58 (dd, J = 12.0, 6.2 Hz, 

1H), 4.38 (d, J = 5.6 Hz, 2H), 2.42 (m, 2H), 2.15 (m, 2H), 1.63 (m, 2H) 1.57–1.55 

(multiple peaks, 4H). 13C{1H} NMR (176 MHz, CDCl3): δ 166.2, 165.8, 161.5, 133.09, 

133.06, 130.0, 129.9, 129.8, 129.7, 128.4, 128.3, 71.3, 70.7, 63.6, 32.0, 26.9, 25.7, 25.6, 

25.3. IR (thin film, neat): 2934, 1722, 1451 cm-1. HRMS electrospray (m/z): [M+H]+ 

calcd for C23H26NO5, 396.1805; found, 396.1808. 

 

Oxime Ether 20. The general procedure was followed using 

substrate 22 (83.6 mg, 0.50 mmol, 1 equiv), PdCl2(PhCN)2 

(9.6 mg, 0.025 mmol, 0.05 equiv), PhI(OBz)2 (446 mg, 1.00 

mmol, 2 equiv), and dry toluene (4.2 mL). Compound 20 was 

isolated in 53% yield as a colorless oil (Rf = 0.15 in 84% 

hexanes/15% Et2O/1% Et3N) with diastereomeric ratio 

threo:erythro ~ 10 : 1 as measured by 13C NMR. Major (Threo) Isomer: 1H NMR (700 

MHz, CDCl3): δ 8.08 (d, J = 7.9 Hz, 2H), 8.05 (d, J = 7.9 Hz, 2H), 7.55 (t, J = 7.2 Hz, 

1H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (dd, J = 7.9, 7.2 Hz, 2H), 7.42 (dd, J = 7.9, 7.2 Hz, 

2H), 5.61 (ddd, J = 6.7, 4.8, 4.6 Hz, 1H), 5.51 (qd, J = 6.6, 4.8 Hz, 1H), 4.35 (dd, J = 

12.0, 4.6 Hz, 1H), 4.32 (dd, J = 12.0, 6.7 Hz, 1H), 2.37 (m, 2H), 2.12 (m, 2H), 1.63–1.52 

(multiple peaks, 6H), 1.44 (d, J = 6.6 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 

165.8, 165.7, 161.4, 132.98. 132.95, 130.1 130.0, 129.7, 129.6, 128.31, 128.30, 73.9, 

71.5, 69.7, 32.0, 26.8, 25.7, 25.5, 25.3, 16.5. IR (thin film, neat, mixture of isomers): 

2936, 1716, 1451 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C24H28NO5, 

410.1962; found, 410.1949. 

 

Oxime Ether 21. The general procedure was followed using 

substrate 19 (83.6 mg, 0.50 mmol, 1 equiv), PdCl2(PhCN)2 

(9.6 mg, 0.025 mmol, 0.05 equiv), PhI(OBz)2 (446 mg, 1.00 

mmol, 2 equiv), and dry toluene (4.2 mL). Compound 21 was 

isolated in 65% yield as a colorless oil (Rf = 0.15 in 84% 

hexanes/15% Et2O/1% Et3N) with diastereomeric ratio 
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threo:erythro ~ 1 : 13 as measured by 13C NMR. Major (Erythro) Isomer: 1H NMR (700 

MHz, CDCl3): δ 8.06 (d, J = 7.9 Hz, 2H), 8.02 (d, J = 7.9 Hz, 2H), 7.56 (t, J = 7.8 Hz, 

1H), 7.55 (t, J = 7.8 Hz, 1H), 7.43 (dd, J = 7.9, 7.8 Hz, 2H), 7.42 (dd, J = 7.9, 7.8 Hz, 

2H), 5.64 (ddd, J = 7.0, 4.1, 4.1 Hz, 1H), 5.50 (qd, J = 6.6, 4.4 Hz, 1H), 4.42 (dd, J = 

11.9, 4.1 Hz, 1H), 4.37 (dd, J = 11.9, 7.0 Hz, 1H), 2.37 (m, 2H), 2.12 (m, 2H), 1.63–1.51 

(multiple peaks, 6H), 1.49 (d, J = 6.6 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 

165.62, 165.55, 163.4, 133.0, 132.9, 130.13, 130.11, 129.7, 129.6, 128.3, 73.8, 71.2, 70.0, 

32.0, 26.8, 25.7, 25.5, 25.3, 15.8. Two 13C resonances are coincidentally overlapping. IR 

(thin film, neat, mixture of isomers): 2937, 1716, 1450 cm-1. HRMS electrospray (m/z): 

[M+H]+ calcd for C24H28NO5, 410.1962; found, 410.1953. 

 

Oxime Ether 31. The general procedure was followed 

using substrate 24 (19.7 mg, 0.095 mmol, 1 equiv), 

PdCl2(PhCN)2 (1.8 mg, 0.0047 mmol, 0.05 equiv), 

PhI(OBz)2 (84.8 mg, 0.19 mmol, 2 equiv), and dry 

toluene (0.79 mL). Compound 31 was isolated in 63% 

yield as a colorless oil (Rf = 0.09 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 52:48 as 

measured by 1H NMR. Major Isomer: 1H NMR (700 MHz, C6D6): δ 8.16 (d, J = 7.9 Hz, 

2H), 8.10 (d, J = 7.9 Hz, 2H), 7.07 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 7.7 Hz, 1H), 7.007 (dd, 

J = 7.9, 7.7 Hz, 2H), 6.97 (dd, J = 7.9, 7.7 Hz, 2H), 5.940 (m, 1H), 4.60 (dd, J = 12.0, 4.0 

Hz, 1H), 4.48 (dd, J = 11.8, 6.5 Hz, 1H), 4.35–4.32 (multiple peaks, 2H), 3.18 (q, J = 7.0 

Hz, 1H), 2.44 (dd, J = 16.6, 1.2 Hz, 1H), 2.23 (d, J = 16.6 Hz, 1H), 1.054 (d, J = 7.0 Hz, 

3H), 1.04 (m, 1H), 0.764 (d, J = 6.9 Hz, 3H), 0.754 (d, J = 6.9 Hz, 3H), 0.604 (m, 1H), 

0.27 (dd, J = 8.3, 4.3, 1.2 Hz, 1H), –0.02 (dd, J = 4.3, 4.3 Hz, 1H). 13C{1H} NMR (176 

MHz, C6D6): δ 167.7, 166.0, 165.81, 132.98, 132.95, 130.8, 130.5, 130.2, 130.0, 128.6, 

128.5, 72.12, 71.4, 63.8, 37.8, 32.37, 31.99, 30.43, 27.28, 19.81, 19.80, 17.5, 16.1. Minor 

Isomer (distinct resonances): 1H NMR (700 MHz, C6D6): δ 8.17 (d, J =7.9 Hz, 2H), 7.012 

(dd, J = 7.9, 7.7 Hz, 2H), 4.57 (dd, J = 12.0, 3.7 Hz, 1H), 4.47 (dd, J = 12.0, 6.4 Hz, 1H), 

3.15 (q, J = 7.0 Hz, 1H), 2.43 (dd, J = 16.6, 1.2 Hz, 1H), 2.29 (d, J = 16.6 Hz, 1H), 1.048 

(d, J = 7.0 Hz, 3H), 1.03 (m, 1H), 0.750 (d, J = 6.9 Hz, 3H), 0.732 (d, J = 6.9 Hz, 3H), 
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0.604 (m, 1H), 0.30 (ddd, J = 8.3, 4.3, 1.2 Hz, 1H), 0.15 (dd, J = 4.3, 4.3 Hz, 1H). 
13C{1H} NMR (176 MHz, C6D6): δ 167.8, 165.75, 72.11, 71.2, 37.7, 32.39, 32.01, 30.38, 

27.26, 20.1, 20.0, 17.6, 16.0. IR (thin film, neat, mixture of isomers): 2959, 1718, 1452 

cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C27H32NO5, 450.2275; found, 

450.2280. 

 

Oxime Ether 32. The general procedure was followed 

using substrate 25 (20.7 mg, 0.10 mmol, 1 equiv), 

PdCl2(PhCN)2 (1.9 mg, 0.0050 mmol, 0.05 equiv), 

PhI(OBz)2 (89.2 mg, 0.200 mmol, 2 equiv), and dry 

toluene (0.83 mL). Compound 32 was isolated in 64% 

yield as a colorless oil (Rf = 0.09 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 63:37 as 

measured by 13C NMR. Major Isomer: 1H NMR (700 MHz, CDCl3): δ 8.06 (d, J = 7.9 

Hz, 2H), 8.02 (d, J = 7.9 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.43 

(dd, J = 7.9, 7.2 Hz, 2H), 7.42 (dd, J = 7.9, 7.2 Hz, 2H), 5.70 (m, 1H), 4.66 (m, 1H), 4.55 

(dd, J = 12.1, 6.1 Hz, 1H), 4.38–4.33 (multiple peaks, 2H), 2.63 (m, 1H), 2.54 (d, J = 

17.8 Hz, 1H), 2.30 (br d, J = 17.8 Hz, 1H), 1.30 (sept, J = 7.0 Hz, 1H), 1.11 (d, J = 7.2 

Hz, 3H), 0.926 (d, J = 7.0 Hz, 3H), 0.88 (m, 1H), 0.85 (d, J = 7.0 Hz, 3H), 0.50 (m, 1H), 

0.06 (app t, J = 4.6 Hz, 1H). 13C{1H} NMR (176 MHz, CDCl3): δ 169.5, 166.2, 165.7, 

133.09, 133.06, 129.94, 129.76, 129.71, 129.67, 128.4, 128.3, 71.7, 70.6, 63.5, 40.70, 

32.19, 31.3, 28.8, 26.6, 21.38, 19.9, 19.6, 16.6. Minor Isomer (distinct resonances): 1H 

NMR (700 MHz, CDCl3): δ 2.59 (d, J = 17.8 Hz, 1H), 2.32 (br d, J = 17.8 Hz, 1H), 1.14 

(d, J = 7.2 Hz, 3H), 0.931 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H), –0.04, (app t, J = 

4.6 Hz, 1H). 13C{1H} NMR (176 MHz, CDCl3): δ 169.3, 165.8, 133.08, 133.07, 129.93, 

129.77, 129.72, 71.6, 70.7, 40.73, 32.17, 31.4, 29.0, 26.8, 21.41, 20.0, 16.8. IR (thin film, 

neat, mixture of isomers): 2958, 1718, 1456 cm-1. HRMS electrospray (m/z): [M+H]+ 

calcd for C27H32NO5 450.2275; found, 450.2280. 
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Oxime Ether 33. The general procedure was followed 

using substrate 27 (96.6 mg, 0.50 mmol, 1 equiv), 

PdCl2(PhCN)2 (9.6 mg, 0.035 mmol, 0.05 equiv), 

PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), and dry toluene 

(4.2 mL). Compound 33 was isolated in 68% yield as a 

colorless oil (Rf = 0.18 in 84% hexanes/15% Et2O/1% 

Et3N) with diastereomeric ratio 59:41 as measured by 13C NMR. Major Isomer: 1H NMR 

(700 MHz, CDCl3): δ 8.06 (d, J = 7.9 Hz, 2H), 8.02 (d, J = 7.9 Hz, 2H), 7.55 (t, J = 7.2 

Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (dd, J = 7.9, 7.2 Hz, 2H), 7.41 (dd, J = 7.9, 7.2 Hz, 

2H), 5.73 (m, 1H), 4.68 (m, 1H), 4.58 (m 1H), 4.38 (app d, J = 6.1 Hz, 2H), 2.70 (m, 1H), 

2.54 (m, 1H), 2.46–2.36 (multiple peaks, 2H), 2.04 (m, 1H), 1.88 (m, 1H), 1.83 (m, 1H), 

1.29 (d, J = 10.5 Hz, 1H), 1.253 (s, 3H), 0.78 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): 

δ 166.2, 165.77, 165.75, 133.1, 133.01, 130.0, 129.74, 129.716, 129.66, 128.34, 128.29, 

71.5, 70.7, 63.6, 47.9, 40.5, 40.40, 27.09, 25.52, 22.06, 21.99, 18.51. Minor Isomer 

(distinct resonances): 1H NMR (700 MHz, CDCl3): δ 1.35 (d, J = 10.5 Hz, 1H), 1.248 (s, 

3H), 0.76 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 165.74, 133.03, 129.75, 129.722, 

128.30, 71.4, 70.8, 63.5, 40.37, 27.14, 25.49, 22.05, 22.01, 18.53. IR (thin film, neat, 

mixture of isomers): 2948, 1718, 1452 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for 

C26H30NO5, 436.2118; found, 436.2126. 

 

Oxime ether 34. The general procedure was followed 

using substrate 27 (104 mg, 0.50 mmol, 1 equiv), 

PdCl2(PhCN)2 (9.6 mg, 0.025 mmol, 0.05 equiv), 

PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), and dry 

toluene (4.2 mL). Compound 34 was isolated in 25% 

yield as a colorless oil (Rf = 0.12 in 84% hexanes/15% 

Et2O/1% Et3N) with diastereomeric ratio 75:25 as measured by 13C NMR. Major Isomer: 
1H NMR (700 MHz, CDCl3): δ 8.07 (d, J = 7.8 Hz, 2H), 8.03 (d, J = 7.8 Hz, 2H), 7.55 (t, 

J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 

5.73 (m, 1H), 4.66 (dd, J = 12.0, 3.5 Hz, 1H), 4.57 (dd, J = 12.0, 6.3 Hz, 1H), 4.42–4.36 

(multiple peaks, 2H), 2.45 (m, 1H), 1.92 (d, J = 18.0 Hz, 1H), 1.83 (m, 1H), 1.79 (m, 
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1H), 1.67 (m, 1H), 1.45 (m, 1H), 1.17 (m, 1H), 0.95 (s, 3H), 0.88 (s, 3H), 0.74 (s, 3H). 
13C{1H} NMR (176 MHz, CDCl3): δ  170.5, 166.2, 165.7, 133.05, 133.02, 130.01, 

129.76, 129.75, 129.66, 128.35, 128.30, 71.3, 70.90, 63.59, 51.83, 48.15, 43.6, 33.75, 

32.72, 27.2, 19.38, 18.4, 11.0. Minor Isomer (distinct resonances): 1H NMR (700 MHz, 

CDCl3): δ 2.43 (m, 1H), 1.96 (d, J = 18.0 Hz, 1H), 1.38 (m, 1H), 0.76 (s, 3H). 13C{1H} 

NMR (176 MHz, CDCl3): δ 170.4, 165.8, 133.01, 130.02, 129.77, 128.29, 71.4, 70.92, 

63.61, 51.81, 48.11, 33.70, 32.69, 19.35, 18.5. IR (thin film, neat, mixture of isomers): 

2956, 1718, 1452 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C27H32NO5, 

450.2275; found, 450.2281. 

 

Oxime Ether 35. The general procedure was followed 

using substrate 28 (104 mg, 0.50 mmol, 1 equiv), 

PdCl2(PhCN)2 (9.6 mg, 0.025 mmol, 0.05 equiv), 

PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), and dry toluene 

(4.2 mL). Compound 35 was isolated in 68% yield as a 

colorless oil (Rf = 0.24 in 84% hexanes/15% Et2O/1% Et3N) with diastereomeric ratio 

66:34 as measured by 13C NMR. Major Isomer: 1H NMR (700 MHz, CDCl3): δ 8.06 (d, J 

= 8.1 Hz, 2H), 8.02 (d, J = 8.1 Hz, 2H), 7.55 (t, J = 8.1 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 

7.43 (t, J = 8.1 Hz, 2H), 7.41 (t, J = 8.1 Hz, 2H), 5.72 (m, 1H), 4.67 (dd, J = 12.3, 3.9 Hz, 

1H), 4.58 (dd, J = 12.3, 6.4 Hz, 1H), 4.32–4.30 (multiple peaks, 2H), 2.45 (m, 1H), 1.85 

(d, J = 16.3 Hz, 1H), 1.81–1.78 (multiple peaks, 2H), 1.61–1.54 (multiple peaks, 2H), 

1.24 (s, 3H), 1.20 (m, 1H), 0.86 (s, 3H), 0.80 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): 

δ 166.8, 166.1, 165.7, 133.04, 133.00, 130.0, 129.8, 129.73, 129.66, 128.34, 128.29, 71.8, 

70.7, 63.6, 55.16, 48.8, 43.8, 36.5, 32.7, 27.3, 20.2, 18.2, 14.0. Minor Isomer (distinct 

resonances): 1H NMR (700 MHz, CDCl3): δ 1.86 (d, J = 16.3 Hz, 1H), 1.26 (s, 3H), 0.85 

(s, 3H), 0.81 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 165.8, 70.8, 55.18, 43.9, 32.6, 

14.1. IR (thin film, neat, mixture of isomers): 2956, 1718, 1452 cm-1. HRMS electrospray 

(m/z): [M+H]+ calcd for C27H32NO5, 450.2275; found, 450.2287. 
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Oxime Ether 37. The general procedure was followed 

using substrate 30 (104.7 mg, 0.50 mmol, 1 equiv), 

PdCl2(PhCN)2 (9.6 mg, 0.025 mmol, 0.05 equiv), 

PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), and dry 

toluene (4.2 mL). Compound 37 was isolated in 75% 

yield as a colorless oil (Rf = 0.18 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 74:26 as measured by 13C NMR. Major Isomer: 
1H NMR (700 MHz, CDCl3): δ 8.06 (d, J = 7.8 Hz, 2H), 8.03 (d, J = 7.8 Hz, 2H), 7.56–

7.53 (multiple peaks, 2H), 7.44–7.40 (multiple peaks, 4H), 5.72 (m, 1H), 4.69 (dd, J = 

11.9, 3.7 Hz, 1H) 4.59 (dd, J = 11.9, 6.2 Hz, 1H), 4.40 (app d, J = 5.9 Hz, 2H), 2.83 (dd, 

J = 12.8, 3.5 Hz, 1H), 2.09 (m, 1H), 1.85–1.82 (multiple peaks, 2H), 1.78 (m, 1H), 1.74–

1.67 (multiple peaks, 2H), 1.36 (m, 1H), 1.11 (m, 1H), 0.91 (d, J = 6.3 Hz, 3H), 0.89 (d, J 

= 7.0 Hz, 6H). 13C{1H} NMR (176 MHz, CDCl3): δ 166.2, 165.78, 162.1, 133.02, 

132.99, 130.1, 129.8, 129.74, 129.66, 128.34, 128.28, 71.2, 71.0, 63.6, 48.59, 32.30, 

32.20, 32.18, 26.7, 26.37, 21.5, 21.1, 19.3. Minor Isomer (distinct resonances): 13C{1H} 

NMR (176 MHz, CDCl3): δ 165.76, 161.2, 71.3, 70.9, 48.61, 32.34, 32.24, 32.16, 26.35, 

19.2. IR (thin film, neat, mixture of isomers): 2956, 1718, 1452 cm-1. HRMS electrospray 

(m/z): [M+H]+ calcd for C27H34NO5, 452.2431; found, 452.2434. 

  

Oxime Ether 43. The general procedure was followed 

using substrate 38 (50 mg, 0.0112 mmol, 1 equiv), 

PdCl2(PhCN)2 (4.3 mg, 0.0112 mmol, 0.05 equiv), 

PhI(OBz)2 (300 mg, 0.672 mmol, 3 equiv), and dry 

toluene (1.9 mL). Compound 43 was isolated in 69% 

yield as a colorless oil (Rf = 0.22 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 86:14 as measured by 13C NMR.  Major Isomer: 
1H NMR (700 MHz, CDCl3): δ 8.06 (dd, J = 8.4, 1.3 Hz, 2H), 8.03 (dd, J = 8.4, 1.3 Hz, 

2H), 7.56–7.53 (multiple peaks, 2H), 7.44–7.41 (multiple peaks, 4H), 5.72 (m, 1H), 4.68 

(dd, J = 12.0, 3.6 Hz, 1H), 4.58 (dd, J = 12.0, 6.1 Hz, 1H), 4.42–4.37 (multiple peaks, 

2H), 3.10 (ddd, J = 12.8, 4.5 1.8 Hz, 1H), 1.98 (m, 1H), 1.84 (dd, J = 11.5, 4.2 Hz, 1H), 

1.78 (m, 1H), 1.61 (m, 1H), 1.38 (dd, J = 12.9, 11.3 Hz, 1H), 1.34 (m, 1H), 1.06 (m, 1H), 
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1.026 (s, 9H), 0.91 (d, J = 6.5 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 166.2, 

165.75, 162.1, 133.02, 132.99, 130.0, 129.8, 129.74, 129.65, 128.33, 128.27, 71.27, 

70.96, 63.6, 53.3, 34.56, 34.38, 33.6, 32.7, 28.5, 28.3, 22.11. Minor Isomer (distinct 

resonances): 1H NMR (700 MHz, CDCl3): δ 1.031 (s, 3H), 0.87 (d, J = 6.6 Hz, 3H).  
13C{1H} NMR (176 MHz, CDCl3): δ 165.74, 129.73, 71.23, 70.86, 53.4, 34.58, 34.36, 

33.5, 22.06. IR (thin film, CH2Cl2, mixture of isomers): 2951, 1719, 1452 cm-1. HRMS 

electrospray (m/z): [M+H]+ calcd for C28H36NO5, 466.2588; found, 466.2591. 

 

Oxime Ether 44. The general procedure was followed 

using substrate 39 (50 mg, 0.211 mmol, 1 equiv), 

PdCl2(PhCN)2 (4.0 mg, 0.0105 mmol, 0.05 equiv), 

PhI(OBz)2 (282 mg, 0.633 mmol, 3 equiv), and dry 

toluene (1.8 mL). Compound 44 was isolated in 70% 

yield as a colorless oil (Rf = 0.23 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 86:14 as measured by 13C NMR.  Major Isomer: 
1H NMR (700 MHz, C6D6): δ 8.16 (d, J =  7.8 Hz, 2H), 8.11 (d, J =  7.8 Hz, 2H), 7.06 (t, 

J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.99 (dd, J = 7.8, 7.6 Hz, 2H), 6.96 (dd, J = 7.8, 

7.6 Hz, 2H), 5.94 (m, 1H), 4.61(dd, J = 12.0, 3.8 Hz, 1H), 4.51 (dd, J = 12.0, 6.5 Hz, 

1H), 4.35 (multiple peaks, 2H), 3.31 (ddd, J = 12.7, 4.2, 1.9 Hz, 1H), 1.87–1.80 (multiple 

peaks, 2H), 1.72 (m, 1H), 1.53–1.49 (multiple peaks, 2H), 1.40 (m, 1H), 1.23 (m, 1H), 

1.19 (s, 3H), 1.18 (m, 1H), 1.04 (s, 3H), 0.86 (t, J = 7.8 Hz, 3H), 0.80–0.73 (multiple 

peaks, 4H). 13C{1H} NMR (176 MHz, CDCl3): δ 166.1, 165.7, 162.1, 133.00, 132.98, 

129.98, 129.8, 129.7, 129.6, 128.31, 128.25, 71.23, 70.93, 63.59, 50.48, 35.06, 34.66, 

34.44, 33.7, 33.1, 28.09, 25.32, 24.5, 22.2, 8.1. Minor Isomer (distinct resonances): 
13C{1H} NMR (176 MHz, CDCl3): δ 71.15, 70.85, 63.56, 50.55, 35.05, 34.69, 34.42, 

33.6, 28.11, 25.35, 22.1. IR (thin film, neat, mixture of isomers): 2956, 2872, 1722, 1452 

cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C29H38NO5, 480.2744; found, 

480.2749. 
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Oxime Ether 45. The general procedure was followed 

using substrate 40 (50 mg, 0.188 mmol, 1 equiv), 

PdCl2(PhCN)2 (3.6 mg, 0.0094 mmol, 0.05 equiv), 

PhI(OBz)2 (252 mg, 0.564 mmol, 3 equiv), and dry 

toluene (1.6 mL). Compound 45 was isolated in 54% 

yield as a colorless oil (Rf = 0.24 in 91% hexanes/8% 

Et2O/1% Et3N) with diastereomeric ratio 86:14 as measured by 13C NMR.  Major Isomer: 
1H NMR (700 MHz, C6D6): δ 8.15 (d, J = 7.9 Hz, 2H), 8.11 (d, J = 7.9 Hz, 2H), 7.07 (t, J 

= 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 7.00 (dd, J = 7.9, 7.4 Hz, 2H), 6.97 (dd, J = 7.9, 

7.4 Hz, 2H), 5.95 (m, 1H), 4.63 (dd, J = 12.0, 3.7 Hz, 1H), 4.52 (dd, J = 12.0, 6.4 Hz, 

1H), 4.39–4.34 (multiple peaks, 2H), 3.33 (ddd, J = 12.6, 4.1, 1.9 Hz, 1H), 1.84 (dd, J = 

12.1, 4.1 Hz, 1H), 1.79–1.73 (multiple peaks, 2H), 1.68 (app sept, J = 6.3 Hz, 1H), 1.54–

1.52 (multiple peaks, 2H), 1.34 (dd, J = 14.4, 5.4 Hz, 1H), 1.24 (m, 1H), 1.21 (s, 3H), 

1.16 (dd, J = 13.1, 11.8 Hz, 1H), 1.10 (s, 3H), 1.02 (d, J = 6.6 Hz, 3H), 1.00 (d, J = 6.6 

Hz, 3H), 0.80 (m, 1H), 0.77 (d, J = 6.4 Hz, 3H). 13C{1H} NMR (176 MHz, C6D6): δ 

166.0, 165.74, 162.13, 133.0, 132.9, 130.8, 130.5, 130.1, 130.0, 128.6, 128.5, 71.9, 71.5, 

63.83, 52.4, 49.6, 36.1, 35.06, 35.01, 34.14, 28.9, 26.8, 26.0, 25.9, 25.8, 24.4, 22.33.  

Minor Isomer (distinct resonances): 1H NMR (700 MHz, C6D6): δ 1.23 (s, 3H), 0.74 (d, J 

= 6.4 Hz, 3H). 13C{1H} NMR (176 MHz, C6D6): δ 165.71, 162.11, 71.7, 71.3, 63.79, 

49.7, 35.10, 34.97, 34.05, 26.9, 22.29. IR (thin film, neat, mixture of isomers): 2952, 

1723, 1452 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C31H42NO5, 508.3057; 

found, 508.3064. 

 

Oxime Ether 46. The general procedure was 

followed using substrate 41 (143 mg, 0.50 mmol, 1 

equiv), PdCl2(PhCN)2 (9.6 mg, 0.025 mmol, 0.05 

equiv), PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), 

and dry toluene (4.2 mL).  Compound 46 was 

isolated in 44% yield as a colorless oil (Rf = 0.16 in 

91% hexanes/8% Et2O/1% Et3N)  with diastereomeric ratio 85:15 as measured by 13C 

NMR.  Major Isomer: 1H NMR (700 MHz, CDCl3): δ 8.06 (d, J = 7.5 Hz, 2H), 8.04 (d, J 
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= 7.5 Hz, 2H), 7.558 (t, J = 7.5 Hz, 1H), 7.556 (t, J = 7.5 Hz, 1H), 7.44 (app t, J = 7.5 Hz, 

4H), 7.36 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 8.0 Hz, 2H), 7.13 (t, J = 8.0 Hz, 1H), 5.49 

(dddd, J = 6.2, 6.0, 5.2, 3.4 Hz, 1H), 4.59 (dd, J = 12.0, 3.4 Hz, 1H), 4.49 (d, J = 12.0, 6.2 

Hz, 1H), 4.29 (dd, J = 12.0, 6.0 Hz, 1H), 4.25 (J = 12.0, 5.2 Hz, 1H), 3.05 (dd, J = 13.4, 

4.5 Hz, 1H), 2.48 (dd, J = 11.8, 3.7 Hz, 1H), 1.76–1.69 (multiple peaks, 2H),  1.55 (m, 

1H), 1.51 (s, 3H), 1.41 (s, 3H), 1.38–1.33 (multiple peaks, 2H), 1.00 (m, 1H), 0.89 (d, J = 

6.5 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 166.2, 165.7, 161.2, 150.5, 133.1, 

133.00, 130.0, 129.8, 129.72, 129.65, 128.4, 128.3, 127.70, 125.8, 125.2, 71.4, 70.83, 

63.6, 52.9, 39.9, 34.6, 34.27, 33.39, 28.67, 26.0, 25.9, 22.1  Minor Isomer (distinct 

resonances): 1H NMR (700 MHz, CDCl3): δ 5.57 (m, 1H), 4.40 (dd, J = 12.0, 6.2 Hz, 

1H), 1.53 (s, 3H), 1.40 (s, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 161.0, 150.6, 

133.03, 127.74, 125.7, 125.1, 70.79, 70.7, 63.4, 53.1, 39.8, 34.7, 34.30, 33.44, 28.75, 

26.6, 25.6.  IR (thin film, CH2Cl2, mixture of isomers): 3062, 2953, 2927, 1718, 1452 cm-

1. HRMS electrospray (m/z): [M+H]+ calcd for C33H38NO5, 528.2744; found, 528.2745. 

 

Oxime Ether 47. The general procedure was 

followed using substrate 42 (50 mg, 0.199 mmol, 1 

equiv), PdCl2(PhCN)2 (3.8 mg, 0.01 mmol, 0.05 

equiv), PhI(OBz)2 (266 mg, 0.597 mmol, 3 equiv), 

and dry toluene (1.6 mL). Compound 47 was isolated 

in 37% yield as a colorless oil (Rf = 0.24 in 91% 

hexanes/8% Et2O/1% Et3N) with diastereomeric ratio 90:10 as measured by 13C NMR.  

Major Isomer: 1H NMR (700 MHz, C6D6): δ 8.15 (dd, J = 8.1, 1.3 Hz, 2H), 8.10 (dd, J = 

8.1, 1.3 Hz, 2H), 7.07 (tt, J = 7.5, 1.3 Hz, 1H), 7.04 (tt, J = 7.5, 1.3 Hz, 1H), 7.00 (dd, J = 

8.1, 7.5 Hz, 2H), 6.97 (dd, J = 8.1, 7.5 Hz, 2H), 5.92 (dddd, J = 6.5, 5.6, 5.6, 3.8 Hz, 1H), 

4.61 (dd, J = 11.8, 3.8 Hz, 1H), 4.50 (dd, J = 11.8, 6.5 Hz, 1H), 4.35 (app d, J = 5.6 Hz, 

2H), 3.32 (ddd, J = 12.6, 4.4, 2.0 Hz, 1H), 2.44 (app sept, J = 7.0 Hz, 1H), 1.96 (dd, J = 

11.9, 3.9 Hz, 1H), 1.75 (app dq, J = 13.1, 4.0 Hz, 1H), 1.58–1.52 (multiple peaks, 2H), 

1.25 (app qd, J = 13.0, 3.6 Hz, 1H), 1.19 (s, 3H), 1.18 (dd, J = 12.3, 11.6 Hz, 1H), 0.89 

(d, J = 7.0 Hz, 3H), 0.85 (s, 3H), 0.84 (d, J = 7.0 Hz, 3H), 0.78 (m, 1H), 0.77 (d, J = 6.4 

Hz, 3H). 13C{1H} NMR (C6D6): δ 166.0, 165.7, 162.4, 133.0, 132.9, 130.8, 130.5, 130.1, 
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130.0, 128.6, 128.5, 71.80, 71.44, 63.84, 50.7, 37.8, 35.17, 35.08, 34.4, 32.9, 29.1, 22.35, 

20.8, 20.7, 17.7, 17.61. Minor Isomer (distinct resonances): 1H NMR (700 MHz, C6D6): δ 

1.21 (s, 3H). 13C{1H} NMR (C6D6): δ 162.3, 71.76, 71.36, 63.82, 50.8, 35.20, 35.03, 

34.3, 22.31, 17.58. IR (thin film, neat, mixture of isomers): 2962, 1722, 1452 cm-1. 

HRMS electrospray (m/z): [M+H]+ calcd for C30H40NO5, 494.2901; found, 494.2903. 

 

Oxime Ether 61. The general procedure was followed 

using substrate 60 (83.6 mg, 0.50 mmol, 1 equiv), 

PdCl2(PhCN)2 (9.6 mg, 0.025 mmol, 0.05 equiv), 

PhI(OBz)2 (446 mg, 1.00 mmol, 2 equiv), and dry toluene 

(4.2 mL). Compound 61 was isolated in 53% yield as a 

colorless oil (Rf = 0.10 in 91% hexanes/8% Et2O/1% Et3N) 

with diastereomeric ratio 55:45 as measured by 13C NMR.  

Major Isomer: 1H NMR (700 MHz, CDCl3): δ 8.06 (d, J = 7.8 Hz, 2H), 8.03 (d, J = 7.8 

Hz, 2H), 7.56–7.54 (multiple peaks, 2H), 7.44–7.41 (multiple peaks, 4H), 5.72 (m, 1H), 

4.71–4.64 (multiple peaks, 3H), 4.59 (dd, J = 11.9, 6.2 Hz, 2H), 3.31 (m, 1H), 2.15, (m 

1H), 2.00 (m, 1H), 1.92 (m, 1H), 1.81 (m, 1H), 1.69 (s, 3H), 1.54 (m, 1H), 1.39 (m, 1H), 

1.18 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H).  13C{1H} NMR (176 MHz, CDCl3): δ 166.18, 

165.8, 162.98, 148.5, 133.1, 130.0, 129.78, 129.76, 129.74, 129.66, 128.4, 128.3, 109.2, 

71.33, 71.0, 63.68, 44.9, 37.3, 35.39, 30.81, 30.13, 20.7, 16.17. Minor Isomer (distinct 

resonances): 1H NMR (700 MHz, CDCl3): δ 5.72 (m, 1H), 4.58 (dd, J = 11.9, 6.2 Hz, 

1H), 1.65 (s, 3H), 1.24 (m, 1H), 1.06 (d, J = 6.5 Hz, 3H). 13C{1H} NMR (176 MHz, 

CDCl3): δ 166.19, 165.7, 163.01, 133.0, 109.1, 71.28, 70.7, 63.67, 44.8, 37.4, 35.42, 

30.83, 30.10, 20.6, 16.18. IR (thin film, neat, mixture of isomers): 2965, 2929, 1721, 

1451 cm-1. [M+H]+ calcd for C27H31NO5, 450.2275; found, 450.2265. 

 

Details for Control Reactions in Table 4.2 and Scheme 4.14, and Additional Studies with 

Added Acid 

Table 4.2, Entry 2. Substrate 16 (7.7 mg, 0.05 mmol, 1 equiv) and PhI(OBz)2 (44.6 mg, 

0.10 mmol, 2 equiv) were combined in toluene-d8 (0.42 mL) in a 4 mL scintillation vial 

and sealed with a Teflon-lined cap. Reaction was stirred at 50 ºC for 8 h, then the reaction 
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mixture was transferred into an NMR tube along with 1,3-dinitrobenzene as an internal 

standard (8.4 mg, 0.05 mmol, 1 equiv). No characteristic peaks corresponding to 

dioxygenated products were observed by 1H NMR, and 99% starting material remained. 

 

Table 4.2, Entries 3 and 4. Substrate 16 (7.7 mg, 0.05 mmol, 1 equiv), PhI(OBz)2 (44.6 

mg, 0.10 mmol, 2 equiv), and 0.42 mL of a 0.00595 M or 0.131 M stock solution of 

TfOH in toluene (0.0025 or 0.055 mmol, 0.05  or 1.10 equiv) were combined in a 4 mL 

scintillation vial and sealed with a Teflon-lined cap. Reactions were stirred at 50 ºC for 8 

h, then 1,3-dinitrobenzene was added as an internal standard (8.4 mg, 0.05 mmol, 1 

equiv). A 0.1 mL aliquot was transferred to an NMR tube and diluted with CDCl3. No 

characteristic peaks corresponding to dibenzoylated products were observed by 1H NMR 

in either case, and 83% and 89% starting material remained in entries 3 and 4, 

respectively.  

 

Scheme 4.14. Allyl propyl ether (5.0 mg, 0.05 mmol, 1 equiv), PdCl2(PhCN)2 (1.0 mg, 

0.0025 mmol, 0.05 equiv), and PhI(OBz)2 (44.6 mg, 0.10 mmol, 2 equiv) were combined 

in toluene-d8 (0.42 mL) in a 4 mL scintillation vial and sealed with a Teflon-lined cap. 

Reaction was stirred at 50 ºC for 8 h, then the reaction mixture was transferred into an 

NMR tube along with 1,3-dinitrobenzene as an internal standard (8.4 mg, 0.05 mmol, 1 

equiv). No characteristic peaks corresponding to dioxygenated products were observed 

by 1H NMR, and 71% starting material remained. 

 

Additional Experiment: Superstoichiometric Acid. We hypothesized that an acid-

catalyzed reaction pathway was not feasible using substoichiometric quantitities of acid 

because of the presence of a basic nitrogen in the oxime ether substrate. Thus, we were 

interested in the outcome of using superstoichiometric acid (> 1 equiv). Entries 3 and 4 in 

Table 4.2 were repeated using 110 or 120 mol% of TfOH or BF3•OEt2, respectively. With 

superstoichiometric TfOH, 20% of the starting material remained at the end of the 

reaction, and numerous small peaks in the 4.5–6.5 ppm region of the 1H NMR spectrum 

(not corresponding to dibenzoylated products) were observed. No products were 

observable by gas chromatographic analysis, and we believe that substantial degradation 
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of the oxime ether substrate (including auxiliary cleavage) occurs under these relatively 

harsh conditions. Similarly, with superstoichiometric BF3•OEt2, only a small amount of 

starting material remained by 1H NMR (20%), although no other peaks were observed in 

the 4.5–6.5 ppm region of the 1H NMR spectrum. 

 

Additional Experiment: Duplicating Published Reaction Conditions. The 

dibenzoylation experiments involving TfOH or BF3•OEt2 in Table 4.2 were designed to 

imitate published reaction conditions for TfOH-20 or BF3•OEt2
21-catalyzed alkene 

diacetoxylation, but using our solvent (toluene) and our dioxygenating reagent 

[PhI(OBz)2]. However, we also duplicated the published acid-catalyzed reaction 

conditions more exactly (using PhI(OAc)2 and the alternative solvent systems), and 

achieved results very similar to those described in Table 4.2. Reactions were analyzed by 

gas chromatography, and the amounts of remaining starting material given below in 

Table 4.7 are GC calibrated yield based on a hexadecane standard. 

 

Table 4.7. Subjection of 16 to TfOH or BF3•OEt2 with PhI(OAc)2 
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Synthesis and Characterization of Authentic Diol 23 (Scheme 4.19) and Comparison to 

23 Derived from 21 (Scheme 4.18) 

Authentic Diol 23. Substrate 19 (46 mg, 0.30 mmol, 1 equiv), AD-

mix-α (420 mg), and CH3SO2NH2 (28.5 mg, 0.300 mmol, 1 equiv) 

were combined in tBuOH (1.5 mL) and H2O (1.5 mL) and stirred at 0 

ºC for 6 h, then at room temperature for 1 h. To the mixture was 

added Na2SO3 (460 mg) and KOH (168 mg), and stirring was continued at room 

temperature for 1 h. Reaction mixture was diluted with EtOAc, washed with brine, dried 

over MgSO4, filtered, concentrated, and purified by column chromatography to afford 23 

in 82% yield as a colorless oil (Rf = 0.19 in 50% hexanes/50% EtOAc). 1H NMR (700 

MHz, CDCl3): δ 4.13–4.12 (multiple peaks, 2H), 3.83 (m, 1H), 3.75 (m, 1H), 2.90 (br s, 

2H), 2.44 (m, 2H), 2.17 (m, 2H), 1.66 (m, 2H), 1.61–1.57 (multiple peaks, 4H), 1.22 (d, J 

= 6.7 Hz, 3H). 13C{1H} NMR (176 MHz, CDCl3): δ 161.6, 75.3, 73.1, 68.4, 32.2, 26.9, 

25.64, 25.62, 25.2, 18.3. IR (thin film, neat): 3378 (br), 2929, 2857, 1449 cm-1. [M+H]+ 

calcd for C10H20NO3, 202.1438; found, 202.1438. 
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Comparison of 1H NMR spectra to assign threo vs erythro relative stereochemistry:  

 

 
 

 
 

 
 

Comparison of 13C NMR spectra to assign threo vs erythro relative stereochemistry: 
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Stereoselectivity for Dibenzoylation of 30 with Different Pd Catalysts 

A number of different PdII salts were screened for the dibenzoylation reaction of chiral 

substrate 30. Table 4.8 summarizes the results. Although some catalysts [Pd(OTf)2 and 

Pd(TFA)2] provided better stereoselectivity than PdCl2(PhCN)2, the yield of the reaction 

was substantially better with PdCl2(PhCN)2. 

 

Table 4.8. Stereoselectivity of Dioxygenation of 30 as a Function of Pd Catalyst 
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CHAPTER 5 

 
A Transformable Directing Group for Pd-Catalyzed C–H 

Oxygenation 
 

5.1  Background and Significance 

The use of a directing group for palladium-catalyzed C–H functionalization is an 

effective strategy for achieving rate acceleration and control over site-selectivity (Chapter 

1).1 However, limitations of this strategy are apparent in situations when a directing 

group moiety is undesired in the final target molecule. In such cases, this substrate-

control strategy for selective C–H functionalization is only advantageous if the directing 

group can be temporarily installed and subsequently removed or transformed. The 

majority of directing groups for Pd-catalyzed C–H functionalization, however, are 

nitrogen-containing heterocycles or other functional groups that are not easily 

manipulated following the C–H functionalization event (e.g., Figure 5.1).1c 

 

 
Figure 5.1. Examples of Substrates With Nitrogen-Containing Directing Groups for Pd-

Catalyzed C–H Functionalization 
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An ideal directing ligand would be sufficiently robust to tolerate C–H 

activation/functionalization conditions, but could subsequently be converted into diverse 

functional groups. Instances of such directing groups in Pd-catalyzed reactions are still 

relatively rare, and at the time the work in this chapter was published2 only a few 

examples were known (Schemes 5.1–5.5). Indirect C–H alkylation of substituted toluenes 

has been shown via a sequence involving (1) N,N-dimethylbenzylamine-directed C–H 

olefination and (2) reduction of both the dimethylbenzylamine and the installed olefin 

(Scheme 5.1).3 Benzyl amines protected by trifluoromethylsulfonyl groups have been 

used to direct C–H fluorination, followed by nucleophilic displacement of the amine 

directing group (Scheme 5.2).4  

 

Scheme 5.1. Indirect ortho-C–H Alkylation of Toluenes via Alkenylation of N,N-

Dimethylbenzylamines3 

 
 

 

Scheme 5.2. Triflamide-Directed C–H Fluorination Followed by Nucleophilic 

Displacement of Directing Group4 

 
 

Oxazolines have been utilized for Pd-catalyzed C–H iodination reactions followed 

by H2SO4-catalyzed hydrolysis to afford carboxylic acids (Scheme 5.3).5 Carboxylic 

acids have also been employed to direct Pd-catalyzed C–H arylations, and have then been 

removed by decarboxylation (Scheme 5.4).6 Amides have proven effective for directing 

Pd-catalyzed C–C and C–halogen bond formation and have been subsequently 

NMe2
NMe2

OBu

OH

5 mol % PdCl2
1 equiv Cu(OAc)2

2 equiv C2H3CO2Bu

TFE/AcOH (4:1)
85 ºC, 48 h

(86%)

OBu

O

10 mol % Pd/C
1 atm H2

MeOH
(81%)

NHTf 10 mol % 
Pd(OTf)2•2H2O

0.5 equiv DMF
DCE

120 ºC, 4 h
(41%)

N
F OTf NHTf

F+
1. NaH, Tf2O

Nu

F

Nu– = N3–, NC–, CH(COOtBu)2–

2. Nu–
H



160 

transformed into nitriles (Scheme 5.5)7a, fluorenones7a, or carboxylic acids7b,c (Scheme 

5.6). In addition to these examples, a number of other transformable directing groups 

have been disclosed since the publication of the work described in this chapter. These 

reports are reviewed in sections 5.7 and 5.8 below. 

 

Scheme 5.3. Oxazoline-Directed C–H Iodination Followed by Directing Group 

Hydrolysis5 

 
 

 

Scheme 5.4. Carboxylic Acid-Directed C–H Arylation Followed by Decarboxylation6 

 
 

 

Scheme 5.5. Amide-Directed  C–H Arylation Followed by Conversion to a Nitrile7a 
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Scheme 5.6. Amide-Directed C–H Arylation Followed by Conversion to a Carboxylic 

Acid7b 

 
 

Ketones would be particularly attractive directing groups because they are 

versatile and widely-used synthetic intermediates.8 However, they are poor ligands for 

PdII, and thus are usually ineffective directing groups for Pd-catalyzed C–H 

functionalization. Ketone-directed C–H arylation reactions catalyzed by Ru have been 

shown, but metals such as these are typically ineffective for converting C–H into C–

heteroatom bonds.9 Two examples of ketone-directed C–H arylation have been 

demonstrated under basic10a or strongly acidic conditions.10b Recently, a ketone-directed 

C–H amidation was reported using an electron-deficient Pd complex in conjunction with 

K2S2O8 or [F+] oxidants (Scheme 5.7).10c This transformation is limited to the 

functionalization of sp2 C–H bonds.  

 

Scheme 5.7. Ketone-Directed C–H Amidation10c 
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ketone-directed C–H activation/C–heteroatom bond forming reaction would enable 

access to compounds with valuable substitution patterns; for example, C–H oxygenation 

directed by a ketone or ketone surrogate could serve as a route to (a) β-hydroxy ketones, 

(b) homoallyl alcohols, (c) 1,3-diols, (d) 1,3-aminoalcohols, (e) 3-oxoaldehydes, (f) β-

amino aldehydes, (g) isoxazolines, and (h) benzisoxazoles (Scheme 5.9). 

 

Scheme 5.8. Ortho-C–H Arylation of Benzaldehydes11 

 
 

 

Scheme 5.9. Ketones as Synthons for Diverse β-Oxygenated Motifs 
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(Scheme 5.10). This strategy would enable the formal β or ortho-C–H functionalization 

of ketones. 

 

Scheme 5.10. Approach to β-C–H Functionalization of Ketones 
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Scheme 5.11. Methyl Oxime Ether-Directed C–H Acetoxylation 

 
 

 

Scheme 5.12. Elimination During Acid-Catalyzed Hydrolysis of β-Acetoxylated Oxime 

Ethers 

 
 

Imines would be a versatile alternative to oxime ethers, as they are readily 

hydrolyzed under mild conditions. Pd-catalyzed imine-directed acetoxylation of an sp2 

C–H bond has been reported;13a however, in our hands imines have proven too labile for 

analogous sp3 C–H functionalizations. For example, the reaction of 5 under standard 

acetoxylation conditions affords the hydrolyzed ketone 6 as the major identifiable 

product (39% yield, Scheme 5.13). 

 

Scheme 5.13. Lability of Alkyl Imines Under C–H Acetoxylation Conditions 
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these advantages, oximes are known to undergo rapid oxidative cleavage in the presence 

of oxidants like PhI(OAc)2 (Scheme 5.14).20  

 

Scheme 5.14. Oxidative Cleavage of Hydroxyl Oximes by PhI(OAc)2
20 

 
 

For example, combining oxime 7 with Pd(OAc)2 and PhI(OAc)2 in AcOH results 
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Scheme 5.15. Oxidative Cleavage of Hydroxyl Oxime 7 Under C–H Acetoxylation 

Conditions. 

 
 

 

Scheme 5.16. Mechanism of Oxidative Cleavage of Hydroxyl Oximes by PhI(OAc)2
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6 (4% by GC) are formed; instead the major product (68% by GC) is the O-acetylated/C–

H acetoxylated compound 10 (Scheme 5.17). This initial result suggested that the in situ 

reaction of 7 with Ac2O affords a stable O-acetyl oxime (9) capable of directing C–H 

acetoxylation. 

 

Scheme 5.17. O-Acetylation and C–H Acetoxylation of Hydroxyl Oximes in the 

Presence of Ac2O 
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Scheme 5.18. O-Acetyl Oxime-Directed Acetoxylation from Hydroxyl Oxime 7 
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occurred selectively at 1º β-sp3 C–H bonds over the analogous 2º sites (entries 1–4). 

Acetoxylation of a 2º C–H group could be achieved in modest yield in the rigid trans-

decalone system (entry 6). The reaction conditions were compatible with a number of 

functional groups including alkyl chlorides (entry 4) and protected amines (entry 3); 

furthermore, remote benzylic C–H bonds were well tolerated under the oxidizing reaction 

conditions (entry 1). The acetoxylated products were typically isolated as mixtures of E/Z 

oxime stereoisomers, which rapidly interconvert under the catalytic reaction conditions. 
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Table 5.1. O-Acetyl Oxime-Directed Acetoxylation of sp3 C–H Bondsa 

 
 

Ph
NHO

Ph
NAcO OAc

NHO NAcO OAc

1c 49%
(70%)d

2c 61%

NHO NAcO OAc
NN

O

O

O

O

NHO NAcO OAc
ClCl

NHO NAcO OAc

NHO
H

H

NAcO
H

H

3c

4c

5c

6

65%

33%

66%

41%

entry substrate product isolated yieldb

(7) (10)

(11) (12)

(13) (14)

(15) (16)

(17) (18)

(19) (20)

R

NHO H

R

NAcO OAc
1. AcOH/Ac2O (1:1)

   rt, 2 h

2. cat. Pd(OAc)2
   PhI(OAc)2

100 ºC

aGeneral conditions: substrate (1 equiv), AcOH/Ac2O (1:1, 0.12 M in substrate), 2 h, rt; then Pd(OAc)2 (0.05 
equiv),  PhI(OAc)2 (1.5–3 equiv), 100 ºC, 12 h. bThe remaining mass balance (as determined by GC of the 
crude reaction mixtures) was generally unreacted O-acetyloxime (analogous to 9 in Scheme 17). cStarting 
material and product consisted of a mixture of oxime E/Z stereoisomers. dGC yield.

OAc
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O-Acetyl ketoximes are also effective directing groups for Pd-catalyzed 

acetoxylation at sp2-C–H sites (Table 5.2). Both electron poor and electron rich aryl rings 

underwent mono-ortho-oxygenation in high yields (entries 1 and 4). Further, aryl 

bromides (entry 2) and silyl-protected phenols (entry 5) were compatible with the 

reaction conditions.  
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Table 5.2. O-Acetyl Oxime-Directed Acetoxylation of sp2 C–H Bondsa 

 

F3C
N OH

F3C
N OAc

OAc

Br
N OH

Br
N OAc

OAc

N OH N OAc

OAc

H3CO
N OH

H3CO
N OAc

OAc

O
N OH

O
N OAc

OAc

N OH N OAc

OAc

Si SiPh
tBu

Ph Ph
tBu

Ph

N OH N OAcOAc

1c

2c

3c

4c

5c

6c

entry substrate product isolated yieldb

61%

86%

72%

77%

79%

80%

55%7

(21) (22)

(23) (24)

(25) (26)

(27) (28)

(29) (30)

(31) (32)

(33) (34)

NHO 1. AcOH/Ac2O (1:1)
   rt, 2 h

2. 5 mol % Pd(OAc)2
   PhI(OAc)2

80 ºC
H

NAcO

OAc

R R

aGeneral conditions: substrate (1 equiv), AcOH/Ac 2O (1:1, 0.12 M in substrate), 2 h, rt; then Pd(OAc) 2 (0.05 
equiv),  PhI(OAc)2 (1–2 equiv), 80 ºC, 4–24 h. bThe remaining mass balance (as determined by GC of the crude 
reaction mixtures) was generally unreacted O-acetyloxime (analogous to 9 in Scheme 17). cProduct consisted of 
a mixture of oxime E/Z stereoisomers.
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One notable limitation of this method is that O-acetyl aldoximes such as 35 were 

susceptible to rapid elimination of AcOH to generate nitriles (36, Scheme 5.19). Similar 

reactivity of O-acetyl aldoximes has been previously reported (Scheme 5.20).21 

 

Scheme 5.19. Nitrile Formation From an O-Acetyl Aldoxime Under C–H Acetoxylation 

Conditions 

 
 

 

Scheme 5.20. Nitrile Formation via Elimination of AcOH from an O-Acetyl Aldoxime21b 

 
 

 

5.4  Deprotection to β- and ortho-Hydroxyketones 

The C–H acetoxylation products in Tables 5.1 and 5.2 were obtained in yields 

comparable to those previously reported with oxime ethers as directing groups.12a,c 

Importantly, however, the O-acetyl oxime directing group is significantly more readily 

deprotected. For example, β-hydroxy ketones can be accessed in high yield via an 

operationally simple two-step procedure involving initial methanolysis of both acetate 

groups (to afford β-hydroxy oximes) followed by removal of the oxime functionality. 

The first step can be accomplished via treatment of starting materials like 10 with K2CO3 

in MeOH to afford 37 in 91% isolated yield (Scheme 5.21). 

 

 

 

 

N

H

OH N
1. AcOH/Ac2O (1:1)

   rt, 2 h

2. 5 mol % Pd(OAc)2
  1.1 equiv PhI(OAc)2

80 ºC, 4 h
(77% GC yield)(35) (36)

H

N O

O
Ph

neat, rt
(slow)

Ph N

HO

O
+
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Scheme 5.21. Methanolysis of Acetate Groups in 10 

 
 

While numerous methods exist for the second step (conversion of an oxime to a 

ketone), many of our substrates are susceptible to competing formation of side products 

(e.g., via alcohol oxidation, isoxazoline formation, or elimination). After extensive 

experimentation, we identified the use of NaHSO3 in EtOH/H2O22 as the most general 

and high yielding method to transform our oximes into β-hydroxy ketones, while 

circumventing undesired side reactions and persistent byproducts. Under these 

conditions, substrate 37 could be converted cleanly to 38 in 80% yield (Scheme 5.22). 

Compound 38 was obtained in pure form after a simple extraction, obviating the need for 

chromatography. 

 

Scheme 5.22. Cleavage of Oxime 37 by NaHSO3 to Afford β-Hydroxy Ketone 38 

 
 

The two deprotection steps could also be combined to provide an operationally 

simple, high yielding, one-pot route from O-acetyl oxime C–H oxidation products to β-

hydroxy ketones. For example, treatment of 10 with K2CO3 in MeOH, followed by 

addition of NaHSO3 and H2O provided 38 in 80% yield after a simple extractive work-up 

(Scheme 5.23). As shown in Table 5.3, this one-pot deprotection could also be achieved 

with other substrates. Under these conditions, elimination products were not observed, 

and isoxazoline formation was limited to ≤5% (for characterization of the isoxazoline 

contaminant see section 5.9). 

 

K2CO3Ph
NAcO OAc

(10)

Ph
NHO OH

(37)

MeOH
(91%)

NaHSO3

EtOH/H2O
(80%)

Ph
NHO OH

(37)

Ph
O OH

(38)
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Scheme 5.23. One Pot Deprotection of β-Acetoxy Acetyl Oxime 10 to β-Hydroxy 

Ketone 38 

 
 

 

Table 5.3. Deprotection of β- and ortho-Acetoxy Acetyl Oximes to β- and ortho-

Hydroxy Ketones 

 
 

 

 

K2CO3

MeOH

NaHSO3

EtOH/H2O
Ph

NAcO OAc

(10)

Ph
NHO OH

(37)

Ph
O OH

(38, 80%)
One Pot From 10not isolated

NAcO O OH
NN

O

O

O

O

NAcO O OH
ClCl

1

2

80%

56%

entry substrate product isolated yieldb

(14) (39)

(16) (40)

OAc

OAc

NAcO
H

H

O H

H

3 83%

(20) (41)

OAc OH

N OAc O

OH

4 89%

(26) (42)
OAc

aConditions in entries 1–3 (one pot): K2CO3 (3 x 0.15 equiv/2.5 h), MeOH, 25 ºC, then 3.5 equiv of NaHSO3, 
H2O, 80 ºC, 3 h. Conditions in entry 4 (two steps): (i) 0.15 equiv of K2CO3, MeOH, 25 ºC, 1 h, then (ii) 3.5 equiv 
of NaHSO3, H2O, EtOH, 90 ºC, 12 h.
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5.5  Diverse Transformations of the O-Acetyl Oxime Directing Group 

An important characteristic of the O-acetyl oxime directing group is that it 

enables access to diverse motifs from a single synthetic intermediate. As exemplified 

with 32 in Scheme 5.24, K2CO3-catalyzed methanolysis of the acetyl groups provided 

oxime 43 in quantitative yield. Product 43 could then be converted to the corresponding 

acetophenone 44, to benzoxazole 45 (via Beckmann rearrangement followed by 

intramolecular condensation), to amino phenol 46 (via reduction), and to diol 47 (via 

oxime hydrolysis followed by reduction). 

 

Scheme 5.24. Diverse Transformations of C–H Functionalization Product 32 

 
 

 

5.6  Other C–H Functionalizations of O-Acetyl Oximes 

Preliminary results indicate that these O-acetyl oximes are also effective directing 

N OAc

OAc
(32)

N OH

OH

(43)

K2CO3
MeOH
(97%)

1. NaHSO3
2. NaBH4

(90%)

OH

OH

(47)

(91%)

(44)

O

OH

NaHSO3

(45)

NH2

OH

(46)

O

N

p-TsOH
ZnCl2, !
(56%)

H2, Pd/C
HCl

(100%)
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groups for other Pd-catalyzed C–H functionalization reactions. For example, as shown in 

Schemes 5.25 and 5.26, the Pd-catalyzed iodination of 48 and chlorination of 50 proceed 

to form aryl halides 49 and 51 in modest to good yields.23 Interestingly, under standard 

Pd-catalyzed C–H arylation conditions with PhI and AgOAc in trifluoroacetic acid 

(TFA),24 50 underwent an in situ Beckmann rearrangement/C–H phenylation to afford 

acetamide 52 (Scheme 5.27). 

 

Scheme 5.25. O-Acetyl Oxime-Directed C–H Iodination 

 
 

 

Scheme 5.26. O-Acetyl Oxime-Directed C–H Chlorination 

 
 

 

Scheme 5.27. Rearrangement of an O-Acetyl Oxime to an Anilide Under C–H Arylation 

Conditions 

 
 

 

 

 

N OAc

H
(48)

5 mol % Pd(OAc)2
2 equiv NIS

AcOH/Ac2O (2.8:1)
110 ºC, 12 h

(46%)

N OAc

I
(49)

Br
N OAc

H

(50)

5 mol % Pd(OAc)2
2 equiv NCS

AcOH/Ac2O (2.7:1)
100 ºC, 22 h

(71%)

Br
N OAc

Cl

(51)

Br
N OAc

H
(50)

5 mol % Pd(OAc)2
2 equiv PhI

1.1 equiv AgOAc

TFA
100 ºC, 6 h

(51%)

Br
H
N

Ph

(52)

O
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5.7  Subsequent Examples of Transformable Directing Groups 

Since the publication of the work described in this chapter,2 a number of other 

transformable directing groups for Pd-catalyzed C–H functionalization have been 

disclosed25, including two examples of transformable aldoxime ethers.26,27 Methyl 

aldoxime ether-directed ortho bromination with subsequent deprotection using 

superstoichiometric TsOH under microwave conditions affords ortho-brominated 

benzaldehydes (Scheme 5.28).26 Acetoxylation of sp3 C–H bonds at the exo position of 

aldoxime ethers has also been shown, and subsequent deprotection of products like 53 

with Zn/AcOH affords 1,2-diols (54, Scheme 5.29).27  

 

Scheme 5.28. Ortho Bromination and Hydrolysis of Methyl Benzaldoxime Ethers26 

 
 

 

Scheme 5.29. Exo-Aldoxime Ether-Directed C–H Acetoxylation Followed by 

Conversion to a Diol27 

 
 

Several other types of transformable directing groups feature a coordinating 

pyridine moiety tethered to a substrate by a cleavable silyl,28 sulfone,29 aminal,30a 

amide,30b or sulfoximine31 linkage. For example, Gevorgyan has demonstrated ortho 

acyloxylation of arenes using the pyridyldiisopropylsilyl (PyDipSi) directing group (55, 

Scheme 5.30).28a This group can act as a ‘traceless’ ligand that can be completely 

removed by AgF to afford  products like 57 from 56. Conversion of a PyDipSi-directed 

H

N OMe

Cl

H

H

N OMe

Cl

Br

H

O
Cl

Br

2 equiv TsOH
10 equiv (CH2O)n

THF/H2O (10:1)
100 ºC, µwave, 15 min

(86%)

10 mol % Pd(OAc)2
2 equiv NBS

10 mol % AgOCOCF3

DCE
120 ºC, 24 h

(37%)

10 mol % Pd(OAc)2
1.3 equiv PhI(OAc)2

AcOH/Ac2O (50:1)
100 ºC, 1 h

(74%)

ON

H

OMe

OMe

AcOON

H

OMe

OMe

H

OHHO

1. Zn, AcOH

2. K2CO3, MeOH
(80%)

(53) (54)
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C–H functionalization product like 56 into an aryl iodide, aryl boronate, catechol, and a 

biaryl has also been demonstrated. Arene acyloxylation with the PyDipSi directing group 

is highly mono-selective; however, double-fold acyloxylation can be achieved with the 

related pyrimidinyldiisopropylsilyl (PyrDipSi) moiety (Scheme 5.31).28b 

 

Scheme 5.30. Pyridyldiisopropylsilyl as a Traceless Directing Group for C–H 

Acyloxylation28a 

 
 

 

Scheme 5.31. Pyrimidinyldiisopropylsilyl as a Traceless Directing Group for Double-

Fold C–H Acyloxylation28b 

 
 

 The lability of silyl linkages has also been exploited for C–H olefination32a,b and 

oxygenation32c of aryl substrates that employ silanol as a transformable directing ligand 

(e.g., 58, Scheme 5.32). When tethered by an oxygen atom, removal of the silanol 

directing group from 59 reveals phenol 60 (Scheme 5.32).32a,c Alternatively, silanols 

linked by a methylene have been deprotected to provide substituted toluenes.32b 

 

 

 

 

 

Br
Si HiPr

iPr N
Si OPiviPr

iPr N OPiv1. nBuLi
   –78 ºC

2. PyDipSiH
   –78 ºC to rt
        (94%)

10 mol % Pd(OAc)2
2 equiv PhI(OPiv)2

1 equiv AgOAc

DCE
80 ºC, 5 h

(93%)

AgF

MeOH
rt

(92%)

(55) (57)(56)

I
Si HiPr

iPr N
N

Si OPiviPr
iPr N

N
OPiv

cat. Rh2(OAc)4
PyrDipSiH

K3PO4

dioxane
100 ºC
(87%)

5 mol % Pd(OAc)2
2.5 equiv PhI(OPiv)2

30 mol % LiOAc

DCE
80 ºC, 16 h
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MeOH/
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Scheme 5.32. Silanol-Directed ortho C–H Olefination of Arenes with Subsequent 

Deprotection to a Phenol32a 

 
 

Finally, a number of other recent examples of transformable directing groups for 

acetoxylation33, arylation34, and olefination35 rely on amide-type linkages that can be 

hydrolyzed to carboxylic acids or amines.  

 

5.8  Conclusions and Outlook  

This chapter describes the use of in situ generated O-acetyl oximes as effective 

directing groups in Pd-catalyzed C–H functionalization reactions. These directing groups 

are stable under the catalytic reaction conditions but can then be readily manipulated to 

afford ketones, alcohols, amines, and heterocycles. At present, this work represents the 

only instance of a ketone-derived transformable directing group for Pd-catalyzed C–H 

functionalization. Over the past 5 years, the search for effective, convenient, and versatile 

transformable directing groups has gained momentum. Nevertheless, numerous 

challenges remain to be addressed. 

Table 5.4 summarizes the current state-of-the-art for transformable directing 

groups for Pd-catalyzed C–H functionalization. Clearly, a broad range of substrate 

classes can serve as synthons for C–H functionalized products. These synthons include 

phenols (entry 1), thiophenols (entry 2), aryl halides (entries 3 and 4), anilines (entry 5), 

benzaldehydes (entries 6 and 7), benzoic acids (entries 8–11), phenyl ketones (entry 12), 

O

H

Si tBu
OH

tBuOH

1. tBu2Si(H)Cl
      imidazole
       THF, rt
2.  DCM, NBS

3.    NaOH
    DMF, H2O
        (86%)

10 mol % Pd(OAc)2
20 mol % ligand

2 equiv C2H3CO2Bu

1 equiv Li2CO3
4 equiv AgOAc

DCE, 100 ºC, 16 h
(78%)

O Si tBu
OH

tBu

CO2nBu

O Si tBu
OH

tBu

CO2nBu

TBAF/THF

rt, 2 h
(84%)

OH

CO2nBu

COOH

HN

O-(–)-Menthyl

O

ligand

(58)

(59)

(59)

(60)
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benzylamines (entries 13 and 14),  benzyl chlorides (entry 15), 3-aryl carboxylic acids 

(entry 16), aliphatic alcohols (entry 17), aliphatic amines (entry 18), alkyl ketones (entry 

19), and alkyl carboxylic acids (entries 20–22). Although much progress has been made 

over the past few years, most of the groups represented in Table 5.4 have limited 

generality, and have only been developed for a single type of C–H functionalization 

reaction. Furthermore, deprotection usually requires relatively high temperatures and/or 

the use of strong acids or bases. Silyl-tethered directing groups (entries 1 and 14) can be 

removed under relatively mild conditions (room temperature with a fluoride source, 

Schemes 5.30–5.32), but the use of these ligands has not been demonstrated for sp3-C–H 

functionalization. 
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Table 5.4. Transformable Directing Groups for Pd-Catalyzed C–H Functionalization 
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Moreover, a major drawback to the directing group strategy is the requirement for 

stoichiometric quantities of a directing ligand. Instead, the ability to use a directing ligand 

catalytically would be more atom economical and would eliminate the need for separate 

deprotection steps. Examples of catalytic directing groups exist for transformations 

mediated by other metals. For instance, rhodium-catalyzed ortho arylation of phenols can 

be achieved using only 15 mol % of an arylphosphinite ligand, which binds to the 

substrate (and to Rh) reversibly in situ (Scheme 5.33).36 

 

Scheme 5.33. Rh-Catalyzed ortho Arylation of Phenols Using a Catalytic Directing 

Group36 

 

 

It is expected that maturation of the field of ligand-directed Pd-catalyzed C–H 

functionalization will result in the development of directing groups that are general for 

diverse transformations and can be used catalytically.  

 

5.9  Experimental Procedures and Characterization Data 

General Procedures 

NMR spectra were obtained on a Varian Inova 500 (499.90 MHz for 1H; 125.70 MHz for 
13C), a Varian Inova 400 (399.96 MHz for 1H; 100.57 MHz for 13C), or a Varian MR400 

(399.54 or 400.52 MHz for 1H; 100.71 MHz for 13C; 376.88 MHz for 19F) spectrometer.  
1H and 13C NMR chemical shifts are reported in parts per million (ppm) relative to TMS, 

with the residual solvent peak used as an internal reference.  Multiplicities are reported as 

follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of doublets 

OH

5 mol % [RhCl(PPh3)3]
15 mol % PR2(OAr)
1.7 equiv Cs2CO3

tBu
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reflux, 18 h

(84%)

OH
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+
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(ddd), doublet of doublets of doublets of doublets (dddd), triplet (t), quartet (q), quintet 

(quin), sextet (sext), doublet of triplets (dt), triplet of doublets (td), quartet of triplets (qt), 

multiplet (m), and broad resonance (br). IR spectra were obtained on a Perkin-Elmer 

Spectrum BX FT-IR spectrometer. Melting points were determined with a Mel-Temp 3.0, 

a Laboratory Devices Inc, USA instrument, and are uncorrected. HRMS data were 

obtained on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer. Gas 

chromatography was carried out on a Shimadzu 17A using a Restek Rtx®-5 (Crossbond 

5% diphenyl – 95% dimethyl polysiloxane; 15 m, 0.25 mm ID, 0.25 µm df) column. 

 

Materials and Methods. All commercial reagents and solvents were used as received 

without further purification. Pd(OAc)2 and PhI(OAc)2 were obtained from Pressure 

Chemical and TCI America, respectively.  Ac2O was obtained from EMD Chemicals, and 

all other solvents were obtained from Fisher Chemical. Flash chromatography was 

performed on EM Science silica gel 60 (0.040-0.063 mm particle size, 230-400 mesh) 

and thin layer chromatography was performed on Merck TLC plates pre-coated with 

silica gel 60 F254. Ketone 6 and the ketone used to prepare oxime substrate 15 were 

prepared by the sequential oxidation of a commercial alcohol to an aldehyde, treatment 

with sec-butyl Grignard, and oxidation of the resulting alcohol to the ketone (below). The 

parent ketone of oxime 13 was prepared by further treatment of the alkyl chloride parent 

ketone of 15 with potassium phthalimide. 

 

Scheme 5.34. Synthetic Route to Ketone 6 and Related Ketones 

 

R OH
R H
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 Synthesis and Characterization of Compounds in Schemes 5.11–5.13 

Oxime Ether 1.  Ketone 6 (500 mg, 2.45 mmol, 1 equiv) was 

combined with NH2OMe•HCl (256 mg, 2.94 mmol, 1.2 equiv) 

in pyridine (1.06 mL) in a 20 mL scintillation vial. The vial was 

sealed with a Teflon-lined cap and heated to 80 °C for 15 min. 

The reaction mixture was then diluted with EtOAc (5 mL) and washed with 20% aqueous 

AcOH (5 x 5 mL) to remove pyridine. The organic layer was then neutralized with 

aqueous NaHCO3, washed with brine, dried over MgSO4, and concentrated to yield 

methyl oxime 1 as a colorless oil consisting of ~1.6:1 ratio of major and minor E/Z 

isomers (556 mg, 97% yield). Major Isomer: 1H NMR (400 MHz, CDCl3): δ 7.29 (m, 

2H), 7.21–7.19 (multiple peaks, 3H), 3.813 (s, 3H), 2.66 (m, 2H), 2.30–2.14 (multiple 

peaks, 3H), 1.92–1.79 (multiple peaks, 2H), 1.50 (m, 1H), 1.36 (m, 1H), 1.05 (d, J = 6.8 

Hz, 3H), 0.872 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (CDCl3): δ 164.13, 141.94, 128.35, 

128.27, 125.80, 61.01, 40.71, 36.37, 27.92, 27.06, 26.43, 17.88, 11.92. Minor Isomer 

(distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.809 (s, 3H), 3.08 (m, 1H), 1.02 

(d, J = 7.2 Hz, 3H), 0.867 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (CDCl3): δ 163.63, 142.22, 

128.43, 125.72, 61.03, 35.77, 34.17, 29.97, 28.53, 26.54, 16.74, 12.15. IR (thin film, 

mixture of E/Z isomers): 2962, 2935, 1454 cm-1. HRMS electrospray (m/z): [M+H]+ 

calcd for C15H24NO (mixed isomers),  234.1858; found, 234.1866. 

 

β-Acetoxy Oxime Ether 2. Methyl oxime 1 (14.6 mg, 

0.050 mmol, 1 equiv) was combined with Pd(OAc)2 (0.6 

mg, 0.0025 mmol, 0.05 equiv) and PhI(OAc)2 (32.2 mg, 

0.100 mmol, 2 equiv) in AcOH/Ac2O (1:1, 416 µL) in a 4 

mL scintillation vial. The vial was sealed with a Teflon-lined cap and heated to 100 °C 

for 12 h to afford 2 as a pale yellow oil (64% calibrated GC yield). 1H NMR (400 MHz, 

CDCl3): δ 7.28 (m, 2H), 7.21–7.17 (multiple peaks, 3H), 4.11 (m, 2H), 3.81 (s, 3H), 2.64 

(t, J = 7.6 Hz, 2H), 2.48 (quin, J = 7.2 Hz, 1H), 2.31–2.15 (multiple peaks, 2H), 2.02 (s, 

3H), 1.81 (m, 2H), 1.52 (m, 2H), 0.89 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (CDCl3): δ 

170.92, 159.89, 141.77, 128.32, 128.30, 125.85, 65.18, 61.30, 45.01, 36.16, 27.40, 27.32, 

NMeO

NMeO

OAc
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22.34, 20.90, 11.31. IR (thin film): 2963, 2936, 1740 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC17H25NO3, 314.1732; found, 314.1731. 

 

Elimination Products 3 and 4. β-Acetoxylated oxime ether 2 

(12.7 mg, 0.0436 mmol, 1 equiv) was dissolved in 0.5 M 

HCl/CH2Cl2 (436 µL) in a 4 mL scintillation vial. The vial was 

sealed with a Teflon-lined cap and heated to 70 °C for 3 h. 

Reaction solvent was removed by rotary evaporator and crude residue was analyzed by 
1H NMR.  Elimination was identifed by the presence of two sets of olefin peaks (see 

NMR spectrum in Supporting Information of reference 2). Integration of these peaks 

relative to an internal standard (PhNO2) indicates a total of 41% yield of elimination 

products . 

 

Butyl Imine 5.  Ketone 6 (250 mg, 1.22 mmol, 1 equiv) was 

combined with n-butylamine (2.42 mL, 24.48 mmol, 20 equiv), 

p-TsOH monohydrate (4.6 mg, 0.0244 mmol, 0.02 equiv), and 4 

Å molecular sieves (2 g) in toluene (1.9 mL) in a 20 mL 

scintillation vial. The vial was sealed with a Teflon-lined cap and heated to 110 °C for 16 

h.  Solid NaHCO3 was added (30 mg); reaction was then diluted with hexanes, filtered 

through celite, and concentrated to afford imine 5 as a yellow oil consisting of ~3:1 ratio 

of major to minor E/Z isomers (300 mg, 95% yield). Major Isomer: 1H NMR (400 MHz, 

CDCl3): δ 7.31–7.17 (multiple peaks, 5H), 3.25 (t, J = 7.2 Hz, 2H), 2.64 (t, J = 7.6 Hz, 

2H), 2.26–2.15 (multiple peaks, 3H), 1.75 (m, 2H), 1.60–1.55 (multiple peaks, 2H), 1.44–

1.24 (multiple peaks, 4H), 1.02 (d, J = 6.8 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H), 0.84 (t, J = 

7.4 Hz, 3H). 13C{1H} NMR (CDCl3): δ 175.71, 141.55, 128.37, 128.34, 125.98, 50.44, 

45.56, 36.29, 33.33, 29.45, 28.41, 27.48, 20.66, 18.22, 14.02, 12.08. Minor Isomer 

(distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.34 (t, J = 7.2 Hz, 2H), 2.79 (m, 

1H), 1.89 (m, 2H), 0.98 (d, J = 7.0 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H). 13C{1H} NMR 

(CDCl3): δ 175.29, 142.64, 128.46, 128.18, 125.57, 49.65, 36.44, 35.95, 33.48, 33.04, 

29.03, 27.09, 20.70, 17.43, 12.27. IR (thin film, mixture of E/Z isomers): 2959, 2930, 

Ph
X

X = NOMe or O

N
nBu
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2872, 1711, 1657 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C18H30N (mixture of 

E/Z isomers), 260.2378; found, 260.2380. 

 

Ketone 6. Ketone 6 was synthesized as described in the 

Materials and Methods section. Additionally, 6 was formed as 

the major product from the reaction depicted in Scheme 5.13. 

From reaction of imine 5: Imine 5 (10 mg, 0.0385 mmol, 1 

equiv) was combined with Pd(OAc)2 (0.4 mg, 0.0019 mmol, 0.05 equiv) and PhI(OAc)2 

(24.8 mg, 0.077 mmol, 2 equiv) in AcOH/Ac2O (1:1, 320 µL) in a 4 mL scintillation vial. 

The vial was sealed with a Teflon-lined cap and heated to 100 °C for 1 h to afford ketone 

6 as the major product observable by GC (39% calibrated GC yield). 1H NMR (400 MHz, 

CDCl3): δ 7.28 (m, 2H), 7.21–7.17 (multiple peaks, 3H), 2.62 (t, J = 7.4 Hz, 2H), 2.46–

2.38 (multiple peaks, 3H), 1.91 (quin, J = 7.4 Hz, 2H), 1.66 (sept, J = 7.4 Hz, 1H), 1.36 

(sept, J = 7.4 Hz, 1H), 1.04 (d, J = 7.0 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). 13C{1H} NMR 

(CDCl3): δ 214.59, 141.72, 128.43, 128.33, 125.87, 47.85, 40.31, 35.14, 25.90, 25.08, 

15.90, 11.69. IR (thin film, mixture of E/Z isomers): 2964, 2933, 2876, 1707 cm-1. 

HRMS electrospray (m/z): [M+Na]+ calcd for C14H20O (mixture of E/Z isomers), 

227.1412; found, 227.1411. 

O
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Synthesis and Characterization of Oxime Substrates 

General Procedure: Ketone (1 equiv) and NH2OH•HCl (1.35 equiv) were combined in 

pyridine (0.385 mL/mmol ketone) in a scintillation vial. The vial was sealed with a 

Teflon-lined cap, and the mixture was heated to 80 °C for 15 min or until the starting 

material had disappeared (as determined by TLC) after which time an aqueous layer was 

observable in the reaction mixture. The reaction mixture was diluted by 5-fold with 

EtOAc or Et2O and washed with 20% aqueous AcOH (5 x equal volume to the organic 

layer) to remove pyridine. The organic layer was then neutralized with aqueous NaHCO3, 

washed with brine, dried over MgSO4, and concentrated to yield the oxime. Where noted, 

the oximes were obtained as mixtures of E and Z stereoisomers. In these cases, the ratio is 

reported based on 1H NMR integration. In all cases, complete 1H and 13C NMR data are 

reported for the major isomer. In addition, all of the distinct resonances associated with 

the minor isomer are reported for both the 1H and 13C NMR spectra (many of the peaks 

for the minor isomer are coincidentally overlapping with those of the major isomer). 

 

Oxime 7. The general procedure was followed utilizing 

ketone 6 (4.68 g, 22.9 mmol). The product was obtained as a 

pale yellow oil consisting of a ~3.3:1 mixture of major and 

minor oxime stereoisomers (4.99 g, 99% yield). Major 

Isomer: 1H NMR (400 MHz, CDCl3): δ 8.05 (br s, 1H), 7.28 (m, 2H), 7.21–7.18 (multiple 

peaks, 3H), 2.68 (t, J = 7.6 Hz, 2H), 2.37–2.21 (multiple peaks, 3H), 1.88 (m, 2H), 1.52 

(m, 1H), 1.37 (m, 1H), 1.06 (d, J = 7.2 Hz, 3H), 0.87 (t, J = 7.6 Hz, 3H).  13C{1H} NMR 

(CDCl3): δ 164.43, 141.90, 128.35, 128.26, 125.78, 40.55, 36.33, 27.51, 26.96, 26.46, 

17.61, 11.81. Minor Isomer (distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.21 

(sextet, J = 7.2 Hz, 1H), 2.18 (m, 2H), 1.04 (d, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (CDCl3): δ 163.95, 141.91, 128.41, 125.74, 35.55, 33.36, 29.67, 27.56, 

26.40, 16.51, 12.13. IR (thin film, mixture of E/Z isomers): 3251, 2962, 2931, 2874, 1453 

cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C14H22NO (mixture of E/Z isomers), 

220.1701; found, 220.1698. 

 

NHO
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Oxime 11. The general procedure was followed utilizing 3-methyl-2-

pentanone (2.00 g, 20.0 mmol). The product was obtained as a colorless 

oil consisting of an ~8:1 mixture of major and minor oxime stereoisomers 

(1.90 g, 83% yield). Major Isomer: 1H NMR (400 MHz, CDCl3): δ 8.20 

(br s, 1H), 2.28 (sext, J = 7.2 Hz, 1H), 1.81 (s, 3H), 1.52 (m, 1H), 1.40 (m, 1H), 1.07 (d, J 

= 7.2 Hz, 3H), 0.86 (t, J = 7.6 Hz, 3H).  13C{1H} NMR (CDCl3): δ 161.97, 41.20, 26.80, 

17.49, 11.76, 10.36. Minor Isomer (distinct resonances): 1H NMR (400 MHz, CDCl3): δ 

3.30 (m, 1H), 1.78 (s, 3H), 1.03 (d, J = 6.8 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). 13C{1H} 

NMR (CDCl3): δ 32.53, 26.46, 16.60, 15.32, 11.93. IR (thin film, mixture of E/Z 

isomers): 3230, 2963, 2932, 2876, 1460 cm-1. HRMS electron impact (m/z): [M]+ calcd 

for C6H13NO (mixture of E/Z isomers), 115.0997; found, 115.1001. 

 

Oxime 13. The general procedure was followed 

utilizing 2-(9-methyl-8-oxoundecyl)isoindoline-1,3-

dione (4.00 g, 12.1 mmol). The product was 

obtained as a pale yellow solid consisting of a ~3.4:1 

mixture of major and minor oxime stereoisomers (3.68 g, 88% yield, mp = 39–43 °C).  

Major Isomer: 1H NMR (400 MHz, CDCl3): δ 8.90 (br s, 1H), 7.76 (dd, J = 5.6, 3.2 Hz, 

2H), 7.68 (dd, J = 5.6, 3.2 Hz, 2H), 3.65 (t, J = 7.6 Hz, 2H), 2.28–2.18 (multiple peaks, 

3H), 1.65 (m, 2H), 1.57–1.45 (multiple peaks, 3H), 1.33 (br s, 7H), 1.04 (d, J = 7.2 Hz, 

3H), 0.85 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (CDCl3): δ 168.41, 164.76, 133.77, 132.10, 

123.09, 40.48, 37.96, 29.98, 28.80, 28.48, 26.98, 26.68, 26.59, 25.82, 17.60, 11.77. Minor 

Isomer (distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.18 (sext, J = 7.2 Hz, 1H), 

2.09 (m, 2H), 1.02 (d, J = 7.2, 3H), 0.86 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (CDCl3): δ 

164.19, 33.27, 29.30, 28.85, 28.45, 26.59, 26.40, 26.02, 16.53, 12.10. IR (KBr, mixture of 

E/Z isomers): 3252, 2931, 2858, 1768, 1716, 1394 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC20H28N2O3 (mixture of E/Z isomers), 367.1998; found, 367.2007. 
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Oxime 15. The general procedure was followed utilizing 

11-chloro-3-methylundecan-4-one (2.11 g, 9.64 mmol). 

The product was obtained as a colorless oil consisting of a 

~6:1 mixture of major and minor oxime stereoisomers 

(612 mg, 27% yield). Major Isomer: 1H NMR (400 MHz, CDCl3): δ 3.53 (t, J = 6.8 Hz, 

2H), 2.29–2.22 (multiple peaks, 3H), 1.77 (quin, J = 6.8 Hz, 2H), 1.62–1.50 (multiple 

peaks, 3H), 1.48–1.31 (multiple peaks, 7H), 1.07 (d, J = 6.8 Hz, 3H), 0.88 (J = 7.6 Hz, 

3H). Exchangeable proton (OH) was not observed. 13C{1H} NMR (CDCl3): δ 165.12, 

45.10, 40.55, 32.57, 29.99, 28.54, 27.03, 26.74, 26.57, 25.86, 17.67, 11.83. Minor Isomer 

(distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.21 (sext, J = 7.2 Hz, 1H), 2.13 

(m, 2H), 1.05 (d, J = 7.2 Hz, 3H), 0.89 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (CDCl3): δ 

33.36, 30.05, 29.35, 28.65, 26.77, 26.47, 26.12, 12.15.  IR (thin film, mixture of E/Z 

isomers): 3250, 2961, 2931, 2858, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd 

for C12H25ClNO (mixture of E/Z isomers), 234.1625; found, 234.1624.  

 

Oxime 17. The general procedure was followed utilizing 2-

methylcyclohexanone (1.35 g, 12.0 mmol). The product was obtained as 

a pale yellow oil consisting of a ~5:1 mixture of major and minor oxime 

stereoisomers (1.37 g, 90% yield).  Major Isomer: 1H NMR (500 MHz, 

CDCl3): δ 8.82 (br s, 1H), 3.09 (m, 1H), 2.31 (m, 1H), 1.94–1.84 (multiple peaks, 2H), 

1.78 (m, 2H), 1.48 (m, 2H), 1.31 (m, 1H), 1.12 (d, J = 7.0 Hz, 3H). 13C{1H} NMR 

(CDCl3): δ 163.49, 37.16, 35.57, 26.02, 24.67, 23.82, 16.82. Minor Isomer (distinct 

resonances): 1H NMR (500 MHz, CDCl3): δ 9.12 (br s, 1H), 3.58 (m, 1H), 2.22 (m, 2H). 
13C{1H} NMR (CDCl3): δ 31.57, 28.27, 26.63, 20.33, 16.21. IR (thin film, mixture of E/Z 

isomers): 3270, 2963, 2927, 2856, 1444 cm-1. HRMS electron impact (m/z): [M]+ calcd 

for C7H13NO (mixture of E/Z isomers), 127.0997; found, 127.1001. 

 

Oxime 19. The general procedure was followed utilizing trans-1-

decalone (4.58 g, 30.1 mmol). The product was obtained as a white 

fluffy solid consisting of a single oxime isomer (4.77 g, 95% yield, mp 

Cl
NHO

N
OH

N OH
H
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= 157–158 °C). 1H NMR (500 MHz, CDCl3): δ 3.42 (dddd, J = 13.8, 4.4, 2.7, 2.0 Hz, 

1H), 1.94 (m, 1H), 1.88 (m, 1H), 1.82–1.74 (multiple peaks, 2H), 1.72–1.67 (multiple 

peaks, 3H), 1.61 (td, J = 13.8, 5.0 Hz, 1H), 1.43 (qt, J = 13.0, 4.0 Hz, 1H), 1.35–1.16 

(multiple peaks, 5H), 1.08 (m, 1H). Exchangeable proton (OH) was not observed. 
13C{1H} NMR (CDCl3): δ 162.22, 47.63, 44.20, 34.26, 33.59, 26.63, 25.95, 25.90, 25.33, 

24.77. IR (KBr): 3226, 2161, 2923, 2847, 1439 cm-1. HRMS electrospray (m/z): [M]+ 

calcd for C10H17NO, 167.1310; found, 167.1310. 

 

Oxime 21. The general procedure was followed utilizing 3'-

(trifluoromethyl)acetophenone (759 mg, 4.03 mmol). The product 

was obtained as a white solid consisting of a single oxime isomer 

(789 mg, 96% yield, mp = 58–60 °C). 1H NMR (500 MHz, CDCl3): 

δ 9.41 (s, 1H), 7.89 (s, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 

8.0 Hz, 1H), 2.33 (s, 3H).  13C{1H} NMR (CDCl3): δ 155.09, 137.27, 130.99 (q, J = 32.7 

Hz), 129.24 (q, J = 1.1 Hz), 129.02, 125.83 (q, J = 3.8 Hz), 123.94 (q, J = 272.5 Hz), 

122.95 (q, J = 3.8 Hz), 12.22. 19F NMR (CDCl3): δ –62.8. IR (KBr): 3256, 3086, 2924, 

1465 cm-1.  HRMS electrospray (m/z): [M+H]+ calcd for C9H8F3NO, 204.0636; found, 

204.0636. 

 

Oxime 23.  The general procedure was followed utilizing 3'-

bromoacetophenone (2.99 g, 15.0 mmol). The product was obtained 

as a white solid consisting of a single oxime isomer (3.17 g, 99% 

yield, mp = 92–93 °C). 1H NMR (500 MHz, CDCl3): δ 8.69 (s, 1H), 

7.77 (t, J = 1.7 Hz, 1H), 7.56 (m, 1H), 7.51 (ddd, J = 7.8, 1.7, 1.0 Hz, 1H), 7.257 (t, J = 

7.8 Hz, 1H), 2.28 (s, 3H). 13C{1H} NMR (CDCl3): δ 154.98, 138.42, 132.19, 130.00, 

129.16, 124.61, 122.68, 12.27. IR (KBr): 3239, 2912, 1418 cm-1.  HRMS electron impact 

(m/z): [M]+ calcd for C8H8BrNO 212.9789; found, 212.9790. 

 

Oxime 25. The general procedure was followed utilizing 3'-

methylacetophenone (2.01 g, 15.0 mmol). The product was obtained 

F3C
N OH

Br
N OH

Me
N OH
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as a white solid consisting of a single oxime isomer (1.71 g, 76% yield, mp = 51–52 °C). 
1H NMR (500 MHz, CDCl3): δ 8.09 (s, 1H), 7.45 (br s, 1H), 7.42 (br d, J = 8 Hz, 1H), 

7.27 (t, J =8 Hz, 1H), 7.19 (br d, J = 8 Hz, 1H), 2.38 (s, 3H), 2.28 (s, 3H). 13C{1H} NMR 

(CDCl3): δ 156.15, 138.12, 136.44, 130.00, 128.39, 126.70, 123.21, 21.44, 12.44. IR 

(KBr): 3215, 2041, 2920, 1490, 1456 cm-1. HRMS electron impact (m/z): [M]+ calcd for 

C9H11NO, 149.0841; found, 149.0837. 

 

Oxime 27. The general procedure was followed utilizing 3'-

methoxyacetophenone (2.25 g, 15.0 mmol). The product was 

obtained as a colorless oil consisting of a single oxime isomer 

(2.26 g, 91% yield). 1H NMR (500 MHz, DMSO): δ 11.21 (s, 1H), 

7.30 (t, J = 8.1 Hz, 1H), 7.21 (m, 1H), 7.18 (m, 1H), 6.94 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 

3.77 (s, 3H), 2.14 (s, 3H). 13C{1H} NMR (CDCl3): δ 159.62, 156.02, 137.90, 129.48, 

118.61, 115.09, 111.31, 55.29, 12.26. IR (thin film): 3228, 2938, 2836, 1578, 1427 cm-1. 

HRMS electron impact (m/z): [M]+ calcd for C9H11NO2, 165.0790; found, 165.0790. 

 

Oxime 29. The general procedure was followed utilizing 

TBDPS-protected 3'-hydroxyacetophenone (4.39 g, 11.7 mmol). 

The product was obtained as a white solid consisting of a single 

oxime isomer (4.30 g, 94% yield, mp = 89–93 °C). 1H NMR 

(400 MHz, CDCl3): δ 8.55 (br s, 1H), 7.75–7.72 (multiple peaks, 4H), 7.46–7.36 

(multiple peaks, 6H), 7.16 (dt, J = 8.0, 1.2 Hz, 1H), 7.08–7.04 (multiple peaks, 2H), 6.72 

(ddd, J = 8.0, 2.4, 1.2 Hz, 1H), 2.09 (s, 3H), 1.13 (s, 9H). 13C{1H} NMR (CDCl3): δ 

155.77, 155.65, 137.70, 135.51, 132.76, 129.94, 129.18, 127.80, 120.44, 118.69, 117.68, 

26.53, 19.47, 12.02. IR (KBr): 3214, 3070, 2934, 2859, 1580, 1427 cm-1. HRMS 

electrospray (m/z): [M+Na]+ calcd for C24H27NO2Si,  412.1709; found, 412.1699. 

 

Oxime 31. The general procedure was followed utilizing 4'-tert-

butylacetophenone (3.00 g, 17.0 mmol). The product was 

obtained as a white solid consisting of a single oxime isomer 

(3.20 g, 98% yield, mp = 100–101 °C). 1H NMR (500 MHz, CDCl3): δ 7.81 (s, 1H), 7.57 

MeO
N OH
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(d, J = 6.8 Hz, 2H), 7.40 (d, J = 6.8 Hz, 2H), 2.28 (s, 3H), 1.33 (s, 9H). 13C{1H} NMR 

(CDCl3): δ 155.83, 152.43, 133.66, 125.75, 125.44, 34.67, 31.20, 12.18. IR (KBr): 3243, 

2965, 1457 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C12H18NO, 192.1388; 

found, 192.1381. 

 

Oxime 33. The general procedure was followed utilizing α-tetralone 

(2.00 g, 13.7 mmol). The product was obtained as a red-brown solid 

consisting of a single oxime isomer (1.99 g, 90% yield, mp = 95–96 

°C). 1H NMR (400 MHz, CDCl3): δ 8.06 (br s, 1H), 7.89 (dd, J = 7.4, 

1.2 Hz, 1H), 7.27 (ddd, J = 7.4, 7.4, 1.2 Hz, 1H), 7.23–7.14 (multiple peaks, 2H), 2.82 (t, 

J = 6.7 Hz, 2H), 2.77 (t, J =5.3 Hz, 2H), 1.88 (m, 2H). 13C{1H} NMR (CDCl3): δ 155.38, 

139.81, 130.40, 129.21, 128.66, 126.47, 124.02, 29.78, 23.84, 21.27. IR (KBr): 3194, 

3063, 2935, 1486, 1450 cm-1. HRMS electron impact (m/z): [M]+ calcd for C10H11NO, 

161.0841; found, 161.0835. 

 

Oxime 35. The general procedure was followed utilizing m-

tolualdehyde (1.80 g, 15.0 mmol). The product was obtained as a 

pale yellow solid consisting of a single oxime isomer (1.88 g, 93% 

yield, mp = 51–53 °C). 1H NMR (500 MHz, CDCl3): δ 8.13 (s, 

1H), 8.08 (s, 1H), 7.41 (br s, 1H), 7.38 (br d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 

7.21 (br d, J = 7.6 Hz, 1H), 2.38 (s, 3H). 13C{1H} NMR (CDCl3): δ 150.47, 138.49, 

131.76, 130.90, 128.66, 127.53, 124.30, 21.28. IR (KBr): 3167, 3087, 2986, 2872, 2777, 

1492, 1477 cm-1. HRMS electron impact (m/z): [M]+ calcd for CHNO, 135.0684; found, 

135.0679. 

N OH
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Synthesis and Characterization of Acetoxylated Products 

General Procedure: The oxime substrate was dissolved in 1:1 AcOH/Ac2O in a loosely 

capped 20 mL scintillation vial or a larger pressure vessel. This solution was stirred at 

room temperature for 2 h. Pd(OAc)2 and PhI(OAc)2 were added, and the reaction vessel 

was sealed with a Teflon-lined cap or a Teflon bushing. The reaction was then heated at 

80 or 100 °C for 12 h (unless otherwise noted). The resulting mixture was filtered 

through glass wool, diluted with EtOAc (2 x volume of reaction solvent), and washed 

several times with equal volumes of saturated NaHCO3 until the aqueous solution was no 

longer acidic. The organic layer was then washed with brine, dried over MgSO4, and 

concentrated to give the crude product, which was purified by chromatography on silica 

gel. Where noted, the oximes were obtained as mixtures of E and Z stereoisomers. In 

these cases, the ratio is reported based on 1H NMR integration. In all cases, complete 1H 

and 13C NMR data are reported for the major isomer. In addition, all of the distinct 

resonances associated with the minor isomer are shown for both the 1H and 13C NMR 

spectra (many of the peaks for the minor isomer are coincident with those of the major 

isomer). All other characterization (HRMS, IR, melting point) was carried out on a 

mixture of the oxime E/Z isomers.  

 

Acetoxylated Product 10.  The general procedure was 

followed utilizing substrate 7 (2.00 g, 9.12 mmol, 1 

equiv), Pd(OAc)2 (102 mg, 0.456 mmol, 0.05 equiv), 

PhI(OAc)2 (6.06 g, 18.2 mmol, 2 equiv), AcOH (38 mL), 

and Ac2O (38 mL), with heating at 100 °C. Product 10 was obtained as a pale yellow oil 

consisting of a ~3:1 mixture of major and minor oxime stereoisomers (1.44 g, 49% yield, 

Rf = 0.20  in 80% hexanes/20% EtOAc).  Major Isomer: 1H NMR (500 MHz, CDCl3): δ 

7.30 (m, 2H), 7.22–7.17 (multiple peaks, 3H), 4.21 (dd, J = 11.2, 5.6 Hz, 1H), 4.12 (dd, J 

= 11.2, 8.3 Hz, 1H), 2.70–2.66 (multiple peaks, 3H), 2.32 (t, J = 8.3 Hz, 2H), 2.09 (s, 

3H), 2.01 (s, 3H), 1.88–1.82 (multiple peaks, 2H), 1.62–1.53 (multiple peaks, 2H), 0.92 

(t, J = 7.3 Hz, 3H). 13C{1H} NMR (CDCl3): δ 170.70, 168.88, 168.64, 140.94, 128.40, 

128.30, 126.09, 64.39, 45.51, 35.85, 27.84, 27.43, 22.15, 20.77, 19.60, 11.39. Minor 

Isomer (distinct resonances): 1H NMR (500 MHz, CDCl3): δ 3.32 (m, 1H), 2.17 (s, 3H), 

NAcO

OAc
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1.99 (s, 3H). 13C{1H} NMR (CDCl3): δ 128.36, 125.88, 64.04, 41.43, 35.40, 31.25, 

27.58, 21.77, 19.68, 11.89. IR (thin film, mixture of E/Z isomers): 2966, 1740 cm-1. 

HRMS electrospray (m/z): [M+Na]+ calcd for NaC18H25NO4 (mixture of E/Z isomers), 

342.1681; found, 342.1674. 

 

Acetoxylated Product 12. The general procedure was followed 

utilizing substrate 11 (1.90 g, 16.5 mmol, 1 equiv), Pd(OAc)2 (185 

mg, 0.825 mmol, 0.05 equiv), PhI(OAc)2 (7.97 g, 24.75 mmol, 1.5 

equiv), AcOH (60 mL), and Ac2O (60 mL), with heating at 100 °C. 

Product 12 was obtained as a pale yellow oil consisting of an ~11:1 mixture of major and 

minor oxime stereoisomers (2.17 g, 61% yield, Rf = 0.28 in 70% hexanes/30% EtOAc).  

Major Isomer: 1H NMR (500 MHz, CDCl3): δ 4.22–4.06 (multiple peaks, 2H), 2.76 

(dddd, J = 7.9, 7.9, 6.2, 6.2 Hz, 1H), 2.17 (s, 3H), 2.03 (s, 3H), 1.92 (s, 3H), 1.64–1.47 

(multiple peaks, 2H), 0.92 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (CDCl3): δ 170.79, 168.68, 

166.00, 64.14, 45.97, 21.73, 20.80, 19.68, 12.39, 11.33. Minor Isomer (distinct 

resonances): 1H NMR (500 MHz, CDCl3): δ 3.54 (m, 1H), 2.15 (s, 3H), 2.03 (s, 3H), 1.98 

(s, 3H). 13C{1H} NMR (CDCl3): δ 63.94, 40.17, 21.51, 19.57, 16.31, 11.58. IR (thin film, 

mixture of E/Z isomers): 2967, 2938, 2880, 1739, 1366 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC10H17NO4 (mixture of E/Z isomers), 238.1055; found, 238.1059.  

 

Acetoxylated Product 14. The general 

procedure was followed utilizing substrate 13 

(325 mg, 0.944 mmol, 1 equiv), Pd(OAc)2 (10.6 

mg, 0.047 mmol, 0.05 equiv), PhI(OAc)2 (608 

mg, 1.89 mmol, 2 equiv), AcOH (3.9 mL), and Ac2O (3.9 mL), with heating at 100 °C. 

Product 14 was obtained as an orange oil consisting of a ~3.6:1 mixture of major and 

minor oxime stereoisomers (272 mg, 65% yield, Rf = 0.29 in 65% hexanes/35% EtOAc). 

Major Isomer: 1H NMR (400 MHz, CDCl3): δ 7.79 (dd, J = 5.6, 3.2 Hz, 2H), 7.67 (dd, J 

= 5.6, 3.2 Hz, 2H), 4.17 (dd, J = 11.2, 6.0 Hz, 1H), 4.17 (dd, J = 11.2, 8.0 Hz, 1H), 3.63 

(t, J = 7.2 Hz, 2H), 2.64 (dddd, J = 7.6, 7.6, 6.4, 6.4 Hz, 1H), 2.31–2.18 (multiple peaks, 

2H), 2.12 (s, 3H), 1.98 (s, 3H), 1.67–1.42 (multiple peaks, 6H), 1.31 (br s, 6H), 0.883 (t, 
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J = 7.6 Hz, 3H). 13C{1H} NMR (CDCl3): δ 170.62, 168.98, 168.70, 168.27, 133.77, 

131.97, 123.00, 64.38, 45.39, 37.73, 29.62, 28.53, 28.41, 28.34, 26.47, 25.78, 22.16, 

20.71, 19.66, 11.32. Minor Isomer (distinct resonances): 1H NMR (400 MHz, CDCl3): δ 

3.31 (dddd, J = 8.8, 8.8, 6.2, 6.2 Hz, 1H), 2.15 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR 

(CDCl3): δ 170.56, 168.48, 168.32, 133.72, 64.02, 41.42, 37.78, 31.84, 29.22, 28.73, 

26.57, 25.88, 21.75, 20.69, 19.62. IR (thin film, mixture of E/Z isomers): 2934, 2860, 

1766, 1742, 1708 cm-1. HRMS electrospray (m/z): [M+Na]+ calcd for NaC24H32N2O6 

(mixture of E/Z isomers), 467.2158; found, 467.2163. 

 

Acetoxylated Product 16.  The general procedure was 

followed utilizing substrate 15 (500 mg, 1.80 mmol, 1 

equiv), Pd(OAc)2 (20.2 mg, 0.090 mmol, 0.05 equiv), 

PhI(OAc)2 (1.16 g, 3.60 mmol, 2 equiv), AcOH (7.5 

mL), and Ac2O (7.5 mL), with heating at 100 °C. Product 16 was obtained as a pale 

yellow oil consisting of a ~3:1 mixture of major and minor oxime stereoisomers (330 mg, 

48% yield, Rf = 0.27  in 77% hexanes/23% EtOAc). Major Isomer: 1H NMR (500 MHz, 

CDCl3): δ 4.22 (dd, J = 11.2, 5.9 Hz, 1H), 4.17 (dd, J = 11.2, 8.1 Hz, 1H), 3.53 (t, J = 6.8 

Hz, 2H), 2.69 (m, 1H), 2.35–2.26 (multiple peaks, 2H), 2.18 (s, 3H), 2.03 (s, 3H), 1.80–

1.73 (multiple peaks, 2H), 1.65–1.57 (multiple peaks, 2H), 1.55–1.48 (multiple peaks, 

2H), 1.47–1.40 (multiple peaks, 2H), 1.40–1.32 (multiple peaks, 4H), 0.94 (t, J = 7.3 Hz, 

3H). 13C{1H} NMR (CDCl3): δ 170.78, 168.98, 168.93, 64.53, 45.55, 45.00, 32.46, 

29.75, 28.57, 28.41, 26.64, 25.88, 22.34, 20.86, 19.81, 11.45. Minor Isomer (distinct 

resonances): 1H NMR (500 MHz, CDCl3): δ 3.32 (dddd, J = 8.8, 6.1 Hz, 1H), 2.16 (s, 

3H), 2.03 (s, 3H). 13C{1H} NMR (CDCl3): δ 64.17, 49.98, 45.06, 41.56, 31.93, 29.31, 

26.71, 25.98, 21.91, 20.83, 19.74, 11.98. IR (thin film, mixture of E/Z isomers): 2934, 

2859, 1741 cm-1. HRMS electrospray (m/z): [M+Na]+ calcd for NaC16H28ClNO4 (mixture 

of E/Z isomers), 356.1605; found, 356.1610. 

 

Acetoxylated Product 18. The general procedure was followed 

utilizing substrate 17 (150 mg, 1.18 mmol, 1 equiv), Pd(OAc)2 (13.2 
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mg, 0.059 mmol, 0.05 equiv), PhI(OAc)2 (570 mg, 1.77 mmol, 1.5 equiv), AcOH (4.9 

mL), and Ac2O (4.9 mL), with heating at 100 °C. Product 18 was obtained as a pale 

orange oil consisting of a ~4:1 mixture of major and minor oxime stereoisomers (177 mg, 

66% yield, Rf = 0.21 (major) and 0.29 (minor) in 72% hexanes/28% EtOAc). Major 

Isomer: 1H NMR (500 MHz, CDCl3): δ 4.49 (dd, J = 11.0, 6.6 Hz, 1H), 4.13 (dd, J = 

11.0, 7.3 Hz, 1H), 2.79–2.72 (multiple peaks, 2H), 2.34 (ddd, J = 13.9, 9.0, 4.6 Hz, 1H), 

2.16 (s, 3H), 2.05 (s, 3H), 1.98 (m, 1H), 1.74–1.53 (multiple peaks, 5H). 13C{1H} NMR 

(CDCl3): δ 170.93, 169.27, 167.57, 63.92, 41.40, 29.89, 25.92, 25.63, 23.19, 20.87, 

19.77. Minor Isomer (distinct resonances): 1H NMR (500 MHz, CDCl3): δ 4.26–4.18 

(multiple peaks, 2H), 3.76 (br m, 1H), 2.59 (br d, J = 15.0 Hz, 1H), 2.14 (s, 3H). 13C{1H} 

NMR (CDCl3): δ 170.72, 168.61, 167.83, 63.05, 34.25, 27.05, 26.34, 20.79, 20.69, 19.56. 

IR (thin film, mixture of E/Z isomers): 2939, 2863, 1762, 1736 cm-1. HRMS electrospray 

(m/z): [M+Na]+ calcd for NaC11H17NO4 (mixture of E/Z isomers), 250.1055; found, 

250.1044. 

 

Acetoxylated Product 20. The general procedure was followed 

utilizing substrate 19 (1.32 g, 7.87 mmol, 1 equiv), Pd(OAc)2 (88.3 

mg, 0.394 mmol, 0.05 equiv), PhI(OAc)2 (7.60 g, 23.6 mmol, 3 equiv), 

AcOH (33 mL), and Ac2O (33 mL), with heating at 100 °C. Product 

20 was obtained as a pale orange waxy solid consisting of a single oxime isomer (922 

mg, 44% yield, Rf = 0.25 in 77% hexanes/23% EtOAc, mp = 69–74 °C).  1H NMR (400 

MHz, CDCl3): δ 5.14 (ddd, J = 10.9, 10.9, 4.7 Hz, 1H), 3.32 (br d, J = 13.1 Hz, 1H), 2.14 

(s, 3H), 2.02 (s, 3H), 1.96–1.65 (multiple peaks, 6H), 1.52–1.22 (multiple peaks, 6H), 

1.10 (m, 1H). 13C{1H} NMR (CDCl3): δ 170.45, 166.25, 69.92, 52.20, 43.66, 33.08, 

33.00, 31.53, 27.41, 25.87, 23.02, 21.20, 19.98. Two 13C resonances are coincidentally 

overlapping. IR (KBr): 2939, 2863, 1760, 1742, 1637, 1448 cm-1. HRMS electrospray 

(m/z): [M+Na]+ calcd for NaC14H21NO4, 290.1368; found, 290.1379. 
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Acetoxylated Product 22. The general procedure was followed 

utilizing substrate 21 (250 mg, 1.23 mmol, 1 equiv), Pd(OAc)2 

(27.6 mg, 0.123 mmol, 0.10 equiv), PhI(OAc)2 (792 mg, 2.46 

mmol, 2 equiv), AcOH (5.1 mL), and Ac2O (5.1 mL), with 

heating at 80 °C for 24 h. Product 22 was obtained as a pale yellow oil consisting of a 

~16:1 mixture of major and minor oxime stereoisomers (227 mg, 61% yield, Rf = 0.21 in 

80% hexanes/20% EtOAc). The minor isomer was assigned as a stereoisomer (not a 

regioisomer) by analogy to compounds 26 and 28 as well as based on the previously 

reported analogous reactions of oxime ether12b and 2-phenylpyridine-based substrates13b. 

Major Isomer: 1H NMR (400 MHz, CDCl3): δ 7.73 (d, J = 2.0 Hz, 1H), 7.69 (dd, J = 8.4, 

2.0 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H), 2.24 (s, 3H). 13C{1H} 

NMR (CDCl3): δ 168.72, 168.02, 160.63, 150.63 (q, J = 1.1 Hz), 129.45, 128.45 (q, J = 

33.4 Hz), 127.81 (q, J = 3.5 Hz), 126.95 (q, J = 3.5 Hz), 124.05, 123.39 (q, J = 272.4 

Hz), 21.01, 19.57, 16.57. 19F NMR (CDCl3): δ –62.41. Minor Isomer (distinct 

resonances): 1H NMR (400 MHz, CDCl3): δ 2.39 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR 

(CDCl3): δ 128.62, 126.36, 21.85, 19.36. IR (thin film, mixture of E/Z isomers): 3075, 

2940, 1766 cm-1. HRMS electrospray (m/z): [M+Na]+ calcd for NaC13H12F3NO4 (mixture 

of E/Z isomers), 326.0616; found, 326.0614.  

 

Acetoxylated Product 24. The general procedure was followed 

utilizing substrate 23 (1.50 g, 7.01 mmol, 1 equiv), Pd(OAc)2 (78.7 

mg, 0.351 mmol, 0.05 equiv), PhI(OAc)2 (2.48 g, 7.71 mmol, 1.1 

equiv), AcOH (29 mL), and Ac2O (29 mL), with heating at 80 °C. 

Product 24 was obtained as a pale yellow oil consisting of a ~12:1 mixture of major and 

minor oxime stereoisomers (1.89 g, 86% yield, Rf = 0.29 in 77% hexanes/23% EtOAc). 

The minor isomer was assigned as a stereoisomer (not a regioisomer) by analogy to 

compounds 26 and 28 (in the current paper) as well as based on the previously reported 

analogous reactions of oxime ether12b and 2-phenylpyridine-based substrates13b. Major 

Isomer: 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 2.8 Hz, 1H), 7.54 (dd, J = 8.6, 2.8 

Hz, 1H), 7.04 (d, J = 8.6 Hz, 1H), 2.30 (app. s, 6H), 2.24 (s, 3H). 13C{1H} NMR 

(CDCl3): δ 168.90, 168.06, 160.49, 147.13, 133.68, 132.31, 130.41, 124.96, 119.00, 
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20.97, 19.57, 16.48. Minor Isomer (distinct resonances): 2.31 (s, 3H), 2.22 (s, 3H), 1.98 

(s, 3H). IR (thin film, mixture of E/Z isomers): 2932, 1762 cm-1. HRMS electrospray 

(m/z): [M+Na]+ calcd for NaC12H12BrNO4 (mixture of E/Z isomers), 335.9847; found, 

335.9847.  

 

Acetoxylated Product 26. The general procedure was followed 

utilizing substrate 25 (800 mg, 5.36 mmol, 1 equiv), Pd(OAc)2 

(60.2 mg, 0.268 mmol, 0.05 equiv), PhI(OAc)2 (1.90 g, 5.90 

mmol, 1.1 equiv), AcOH (22 mL), and Ac2O (22 mL), with 

heating at 80 °C.  Product 26 was obtained as a pale orange waxy solid consisting of an 

~8:1 mixture of major and minor oxime stereoisomers (962 mg, 72% yield, Rf = 0.24 in 

77% hexanes/23% EtOAc, mp = 57–65 °C). The minor isomer was assigned as a 

stereoisomer (not a regioisomer) on the basis of the fact that hydrolysis led to a single 

ketone product 42. Major Isomer: 1H NMR (500 MHz, CDCl3): δ 7.27 (s, 1H), 7.22 (d, J 

= 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 2.36 (s, 3H), 2.30 (s, 3H), 2.29 (s, 3H), 2.23 (s, 

3H). 13C{1H} NMR (CDCl3): δ 169.53, 168.45, 161.89, 145.88, 135.87, 131.48, 130.01, 

128.23, 122.96, 21.08, 20.79, 19.71, 16.67. Minor Isomer (distinct resonances): 2.38 (s, 

3H), 2.22 (s, 3H), 1.99 (s, 3H). IR (KBr, mixture of E/Z isomers): 2942 1758 cm-1. 

HRMS electrospray (m/z): [M+Na]+ calcd for NaC13H15NO4 (mixture of E/Z isomers), 

272.0899; found, 272.0892. 

  

Acetoxylated Product 28. The general procedure was followed 

utilizing substrate 27 (1.50 g, 9.08 mmol, 1 equiv), Pd(OAc)2 

(102 mg, 0.454 mmol, 0.05 equiv), PhI(OAc)2 (3.22 g, 9.99 

mmol, 1.1 equiv), AcOH (38 mL), and Ac2O (38 mL), with 

heating at 80 °C for 4 h. Product 28 was obtained as an orange oil consisting of a ~20:1 

mixture of major and minor oxime stereoisomers (1.78 g, 74% yield, Rf = 0.23 in 70% 

hexanes/30% EtOAc). The minor isomer was assigned as a stereoisomer (not a 

regioisomer) on the basis of the fact that hydrolysis led to a single ketone product. Major 

Isomer: 1H NMR (400 MHz, CDCl3): δ 7.04 (d, J = 8.8 Hz, 1H), 6.97–6.92 (multiple 

peaks, 2H), 3.80 (s, 3H), 2.30 (s, 3H), 2.28 (s, 3H), 2.23 (s, 3H). 13C{1H} NMR (CDCl3): 
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δ 169.70, 168.36, 161.58, 157.12, 141.50, 129.27, 124.07, 115.97, 114.59, 55.70, 20.98, 

19.66, 16.58. Minor Isomer (distinct resonances): 1H NMR (400 MHz, CDCl3): δ 3.83 (s, 

3H), 2.31 (s, 3H), 2.20 (s, 3H), 1.97 (s, 3 3H). IR (thin film, mixture of E/Z isomers): 

2938, 1760 cm-1. HRMS electrospray (m/z): [M+Na]+ calcd for NaC13H15NO5 (mixture of 

E/Z isomers), 288.0848; found, 288.0851.  

 

Acetoxylated Product 30.  The general procedure was 

followed utilizing substrate 29 (200 mg, 0.513 mmol, 1 equiv), 

Pd(OAc)2 (5.8 mg, 0.026 mmol, 0.05 equiv), PhI(OAc)2 (182 

mg, 0.564 mmol, 1.1 equiv), AcOH (2.1 mL), and Ac2O (2.1 

mL), with heating at 80 °C for 10 h. Product 30 was obtained as pale yellow viscous oil 

consisting of a ~19:1 mixture of major and minor oxime stereoisomers (198 mg, 79% 

yield, Rf = 0.25 in 80% hexanes/20% EtOAc). The minor isomer was assigned as a 

stereoisomer (not a regioisomer) by analogy to compounds 26 and 28 (in the current 

paper). Major Isomer: 1H NMR (400 MHz, CDCl3): δ 7.70–7.68 (multiple peaks, 4H), 

7.45–7.35 (multiple peaks, 6H), 6.82–6.80 (multiple peaks, 2H), 6.72 (dd, J = 8.8, 2.8 

Hz, 1H), 2.23 (s, 3H), 2.18 (s, 3H), 2.07 (s, 3H), 1.10 (s, 9H). 13C{1H} NMR (CDCl3): δ 

169.74, 168.40, 161.18, 153.15, 141.55, 135.46, 132.26, 130.09, 128,94, 127.90, 123.78, 

121.49, 120.21, 26.41, 21.00, 19.66, 19.39, 16.24. Minor Isomer (distinct resonances): 1H 

NMR (400 MHz, CDCl3): δ 2.15 (s, 3H), 2.04 (s, 3H), 1.92 (s, 3H), 1.11 (s, 9H). IR (thin 

film, mixture of E/Z isomers): 3074, 2933, 2859, 1765 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC28H31NO5Si (mixture of E/Z isomers), 512.1869; found, 512.1865.  

 

Acetoxylated Product 32.  The general procedure was followed 

utilizing substrate 31 (1.91 g, 10.0 mmol, 1 equiv), Pd(OAc)2 

(112 mg, 0.500 mmol, 0.05 equiv), PhI(OAc)2 (3.22 g, 10.0 

mmol, 1 equiv), AcOH (42 mL), and Ac2O (42 mL), with heating at 80 °C.  Product 32 

was obtained as a pale orange solid consisting of an ~11:1 mixture of major and minor 

oxime stereoisomers (2.32 g, 80% yield, Rf = 0.29 in 77% hexanes/23% EtOAc, mp = 

43–51 °C).  Major Isomer: 1H NMR (500 MHz, CDCl3): δ 7.41 (d, J = 8.1 Hz, 1H), 7.29 

(dd, J = 8.1, 2.0 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 2.312 (s, 3H), 2.310 (s, 3H), 2.23 (s, 
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3H), 1.31 (s, 9H). 13C{1H} NMR (CDCl3): δ 169.56, 168.46, 161.50, 154.96, 147.87, 

129.12, 125.55, 123.14, 120.35, 34.84, 31.01, 21.14, 19.71, 16.37. Minor Isomer (distinct 

resonances): 1H NMR (500 MHz, CDCl3): δ 2.30 (s, 3H), 2.22 (s, 3H), 2.01 (s, 3H), 1.34 

(s, 9H).  IR (KBr, mixture of E/Z isomers): 2961, 1772 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC16H21NO4 (mixture of E/Z isomers), 314.1368; found, 314.1362. 

 

Acetoxylated Product 34.  The general procedure was followed 

utilizing substrate 33 (1.5 g, 9.30 mmol, 1 equiv), Pd(OAc)2 (104 mg, 

0.465 mmol, 0.05 equiv), PhI(OAc)2 (3.30 g, 10.2 mmol, 1.1 equiv), 

AcOH (39 mL), and Ac2O (39 mL), with heating at 80 °C.  Product 

34 was obtained as a tan powder consisting of a single oxime isomer (1.34 g, 55% yield, 

Rf = 0.26 in 77% hexanes/23% EtOAc, mp = 127–128 °C). 1H NMR (400 MHz, CDCl3): 

δ 7.33 (t, J = 7.8 Hz, 1H), 7.10 (dd, J = 7.8, 1.2 Hz, 1H), 6.96 (dd, J = 8.2, 1.2 Hz, 1H), 

2.88 (t, J = 6.4 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H), 2.19 (s, 3H), 1.84 (m, 2H). 
13C{1H} NMR (CDCl3): δ 170.58, 167.58, 160.15, 148.92, 143.67, 130.84, 126.48, 

122.39, 122.15, 30.31, 26.15, 21.37, 20.78, 19.65. IR (KBr): 2942, 1764 cm-1. HRMS 

electrospray (m/z): [M+Na]+ calcd for NaC14H15NO4, 284.0899; found, 284.0898. 

 

Benzonitrile Product 36. The general procedure was followed 

utilizing substrate 35 (30 mg, 0.222 mmol, 1 equiv), Pd(OAc)2 (2.5 

mg, 0.011 mmol, 0.05 equiv), PhI(OAc)2 (78.7 mg 0.244 mmol, 1.1 

equiv), AcOH (920 µL), and Ac2O (920 µL), with heating at 80 °C for 4 h. The calibrated 

GC yield (77%) was obtained by comparing to an authentic sample of commercially 

available 36. 
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Synthesis and Characterization of β- and ortho-Hydroxy Ketones 

General Procedure For One Pot Deprotection: To a solution of the O-acetyl oxime in 

MeOH (0.46 mL/mmol oxime) in a loosely capped scintillation vial at room temperature 

was added finely ground K2CO3 (0.15 equiv every 2 h over the course of 6 h, 0.45 equiv 

total). NaHSO3 (3.5 equiv) and H2O (equal amount as MeOH) were then added, and the 

vial was sealed with a Teflon-lined cap and heated at 80 °C for 3 h.22 The reaction 

mixture was concentrated by rotary evaporation to remove methanol. The remaining 

primarily aqueous reaction mixture was diluted with CHCl3 (4 x volume of reaction 

solvent) and rinsed briefly with 1 M HCl (2 x volume of reaction solvent). The layers 

were separated, and the aqueous layer was extracted several times with CHCl3. The 

combined organic extracts were neutralized with aqueous NaHCO3, washed once with 

brine, dried over MgSO4, filtered through a plug of silica, and concentrated to afford the 

β-hydroxyketone.   

 

β-Hydroxy Oxime 37. To a solution of acetyl oxime 10 

(170 mg, 0.532 mmol, 1 equiv) in MeOH (1.16 mL) in a 

loosely capped scintillation vial at room temperature was 

added finely ground K2CO3 (11 mg, 0.0798 mmol, 0.15 

equiv). After stirring at room temperature for 12 h, the MeOH was removed by rotary 

evaporation, and the crude product was purified by column chromatography to yield the 

unprotected β-hydroxy oxime 37 as pale yellow solid consisting of a 4:1 mixture of major 

and minor oxime isomers (113.4 mg, 91% yield, Rf = 0.27 and 0.19 in 60% hexanes/40% 

EtOAc, mp = 68–74 °C). Major Isomer: 1H NMR (400 MHz, CDCl3): δ 7.95 (br s, 1H), 

7.28 (m, 2H), 7.20–7.17 (multiple peaks, 3H), 3.70 (m, 2H), 2.67 (t, J = 7.8 Hz, 2H), 2.48 

(m, 1H), 2.31–2.19 (multiple peaks, 2H), 1.87 (m, 2H), 1.53 (quint, J = 7.4 Hz, 2H), 0.91 

(t, J = 7.4 Hz, 3H). One exchangeable proton (OH) is not observed. 13C{1H} NMR 

(CDCl3): δ 163.56, 141.71, 128.36, 128.33, 125.89, 62.76, 47.74, 36.16, 27.30, 27.26, 

22.13, 11.77. Minor Isomer: 1H NMR (400 MHz, CDCl3): δ 7.28 (m, 2H), 7.20–7.16 

(multiple peaks, 3H), 3.74 (dd, J = 10.8, 5.6 Hz, 1H), 3.67 (dd, J = 10.8, 8.4 Hz, 1H), 

3.27 (dddd, J = 8.4, 8.4, 6.2, 6.2 Hz, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.22 (td, J = 7.4, 4.1 

NHO
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Hz, 2H), 1.90 (m, 2H), 1.52 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). Both exchangeable protons 

(OH) are not observed. 13C{1H} NMR (CDCl3): δ 161.82, 141.87, 128.42, 128.32, 

125.82, 63.72, 43.29, 35.47, 30.97, 27.54, 21.02, 12.22. IR (KBr, mixture of E/Z 

isomers): 3203, 2963, 2923, 1496, 1453 cm-1. HRMS electrospray (m/z): [M+Na]+ calcd 

for NaC14H21NO2 (mixture of E/Z isomers), 258.1470; found, 258.1471. 

 

β-Hydroxy Ketone 38.  From Hydroxyl Oxime: Oxime 

37 (150 mg, 0.637 mmol, 1 equiv) was combined with 

NaHSO3 (232.2 mg, 2.231 mmol, 3.5 equiv) in EtOH/H2O 

(1:1, 1.28 mL) in a scintillation vial.  The vial was sealed 

with a Teflon-lined cap and heated to 80 °C for 3 h. The resulting solution was 

concentrated by rotary evaporation to remove ethanol. The remaining primarily aqueous 

reaction mixture was diluted with CHCl3 (8 mL), and rinsed briefly with 1 M HCl (5 

mL). The layers were separated, and the aqueous layer was extracted several times with 

CHCl3. The combined organic extracts were neutralized with aqueous NaHCO3, washed 

once with brine, dried over MgSO4, filtered through Celite, and concentrated to afford 38 

as a colorless oil (113 mg, 80% yield). From acetyl oxime: The one pot deprotection 

procedure was followed utilizing 10 (50 mg, 0.156 mmol), to yield 38 as a colorless oil 

(28 mg, 80% yield) contaminated with ~3% of the corresponding isoxazoline. 1H NMR 

(400 MHz, CDCl3): δ 7.28 (m, 2H), 7.21–7.17 (multiple peaks, 3H), 3.78 (m, 1H), 3.69 

(m, 1H), 2.65–2.57 (multiple peaks, 3H), 2.51 (td, J = 7.0, 2.0, 2H), 2.03 (br t, J = 5.9 Hz, 

1H), 1.93 (quin, J = 7.4 Hz, 2H), 1.69–1.46 (multiple peaks, 2H), 0.91 (t, J = 7.4 Hz, 3H). 
13C{1H} NMR (CDCl3): δ 214.70, 141.55, 128.43, 128.37, 125.94, 62.44, 55.00, 41.98, 

35.03, 24.78, 21.28, 11.78. IR (thin film): 3423, 2926 cm-1. HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC14H20O2, 243.1361; found, 243.1360. 

 

Isoxazoline 61. To confirm the identity of the contaminant in 

the one-pot deprotection of 10, isoxazoline 61 was isolated as 

a colorless oil (Rf = 0.47 in 80% hexanes/20% EtOAc) and 

characterized as follows: 1H NMR (400 MHz, CDCl3): δ 7.28 

(m, 2H), 7.21–7.18 (multiple peaks, 3H), 4.33 (dd, J = 10.0, 8.0 Hz, 1H), 3.98 (dd, J = 

O

OH

N O

(61)
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8.0, 8.0 Hz, 1H), 3.10 (m, 1H), 2.74–2.63 (multiple peaks, 2H), 2.42 (m, 1H), 2.22 (ddd, 

J = 14.8, 8.8, 6.0 Hz, 1H), 2.00–1.88 (multiple peaks, 2H), 1.65 (m, 1H), 1.40 (m, 1H), 

0.91 (t, J = 8.0 Hz, 3H). 13C{1H} NMR (CDCl3): δ 161.21, 141.46, 128.45, 128.38, 

125.96, 72.70, 51.26, 35.32, 27.66, 25.56, 23.34, 11.43. IR (thin film): 2962, 2932, 2864 

cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C14H20NO, 218.1545; found, 

218.1546. 

 

β-Hydroxy Ketone 39. The one pot deprotection 

procedure was followed utilizing 14 (50 mg, 

0.112 mmol), to yield 39 as a colorless oil (31 

mg, 79% yield) contaminated with ~5% of the 

corresponding isoxazoline. 1H NMR (500 MHz, CDCl3): δ 7.82 (dd, J = 5.5, 3.0 Hz, 2H), 

7.69 (dd, J = 5.5, 3.0 Hz, 2H), 3.76 (br t, J = 7.5 Hz, 1H), 3.69–3.60 (multiple peaks, 3H), 

2.61 (m, 1H), 2.46 (t, J = 7.5 Hz, 2H), 2.16 (m, 1H), 1.66–1.46 (multiple peaks, 6H), 

1.32–1.23 (multiple peaks, 6H), 0.90 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (CDCl3): δ 

215.06, 168.46, 133.84, 132.14, 123.14, 62.44, 54.93, 42.76, 37.92, 28.96, 28.85, 28.45, 

26.58, 23.21, 21.30, 11.81. IR (thin film): 3472, 2932, 2858, 1770, 1702 cm-1 HRMS 

electrospray (m/z): [M+Na]+ calcd for NaC20H27NO4, 368.1838; found, 368.1826. 

 

β-Hydroxy Ketone 40. The one pot deprotection 

procedure was followed utilizing 16 (50 mg, 0.159 

mmol), to yield 40 as a colorless oil (21 mg, 56% yield) 

contaminated with ~5% of the corresponding 

isoxazoline. 1H NMR (400 MHz, CDCl3): δ 3.80 (dd, J = 10.8, 7.6 Hz, 1H), 3.70 (dd, J = 

11.2, 4.0 Hz, 1H), 3.52 (t, J = 6.8 Hz, 2H), 2.63 (dddd, J = 7.2, 7.2, 7.2, 4.0 Hz, 1H), 2.49 

(td, J = 7.2, 1.2 Hz, 2H), 2.30–2.20 (br s, 1H), 1.76 (quin, J = 6.8 Hz, 2H), 1.69–1.49 

(multiple peaks, 4H), 1.42 (m, 2H), 1.36–1.26 (multiple peaks, 4H), 0.92 (t, J = 7.3 Hz, 

3H). 13C{1H} NMR (CDCl3): δ 215.05, 62.45, 54.94, 45.07, 42.78, 32.51, 29.00, 28.67, 

26.66, 23.21, 21.31, 11.82. IR (thin film): 3412, 2932, 2857, 1703 cm-1 HRMS 

electrospray (m/z): [M+Na]+ calcd for NaC12H23O2Cl, 257.1284; found, 257.1278. 
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β-Hydroxy Ketone 41. The one pot deprotection procedure was 

followed utilizing 20 (300 mg, 1.122 mmol), to yield 41 as a white solid 

(157 mg, 83% yield, mp = 43–44 °C). 1H NMR (400 MHz, CDCl3): δ 

3.81 (m, 1H), 3.61 (d, J = 2.0, 1H), 2.42–2.27 (multiple peaks, 2H), 2.06 

(m, 1H), 1.98 (m, 2H), 1.84–1.61 (multiple peaks, 4H), 1.46 (m, 2H), 1.29 (m, 2H), 1.18 

(m, 1H). 13C{1H} NMR (CDCl3): δ 214.82, 69.15, 61.79, 42.82, 41.90, 33.50, 32.68, 

32.04, 26.09, 23.35. IR (KBr): 3446, 2927, 2862, 1701 cm-1.  HRMS electrospray (m/z): 

[M+Na]+ calcd for NaC10H16O2 191.1048; found, 191.1045. 

 

ortho-Hydroxy Oxime 62. To a solution of acetyl oxime 26 (100 

mg, 0.402 mmol, 1 equiv) in MeOH (870 µL) in a loosely capped 

scintillation vial was added finely ground K2CO3 (8.3 mg, 0.060 

mmol, 0.15 equiv). After stirring at room temperature for 0.5 h, the 

MeOH was removed by rotary evaporation, and the crude reaction mixture was diluted 

with CH2Cl2 (4 mL) and neutralized with dilute aqueous AcOH. The organic layer was 

concentrated to afford 62 as a white solid (62 mg, 93% yield, mp = 136–138 °C). 1H 

NMR (400 MHz, CDCl3): δ 10.91 (s, 1H), 7.22 (s, 1H), 7.14 (br s, 1H), 7.07 (dd, J = 8.4, 

2.0 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 2.35 (s, 3H), 2.30 (s, 3H). 13C{1H} NMR (CDCl3): 

δ 159.68, 155.32, 131.53, 128.10, 127.86, 118.06, 117.05, 20.64, 10.78. IR (KBr): 3335, 

2918, 2861, 1636, 1504 cm-1. HRMS electrospray (m/z): [M]+ calcd for C9H11NO2 

165.0790; found, 165.0790. 

 

ortho-Hydroxy Ketone 42. Oxime 62 (50 mg, 0.303 mmol, 1 equiv) 

was combined with NaHSO3 (110.3 mg, 1.06 mmol, 3.5 equiv) in 

EtOH/H2O (1:1, 380 µL) in a scintillation vial. The vial was sealed 

with a Teflon-lined cap and heated to 90 °C for 12 h. The reaction 

mixture was concentrated by rotary evaporation to remove ethanol. The remaining 

primarily aqueous reaction mixture was diluted with CHCl3 (1.5 mL) and rinsed briefly 

with 1 M HCl (~1 mL).  The layers were separated and the aqueous layer was extracted 

several times with CHCl3.  The combined organic extracts were neutralized with aqueous 

NaHCO3, washed once with brine, dried over MgSO4, and concentrated to afford 42 as a 

OH

H

OH
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white solid (42 mg, 91% yield). The spectroscopic data for 42 matched those reported in 

the literature.37 

 

ortho-Hydroxy Oxime 43. To a solution of acetyl oxime 32 

(400 mg, 1.373 mmol, 1 equiv) in MeOH (3 mL) in a loosely 

capped scintillation vial was added finely ground K2CO3 (29 mg, 

0.206 mmol, 0.15 equiv). After stirring at room temperature for 1 h, the MeOH was 

removed by rotary evaporation. The crude product was purified by column 

chromatography to afford 43 as a pale yellow solid (276 mg, 97% yield, Rf = 0.8 in 65% 

hexanes/35% EtOAc, mp = 82–92 °C). 1H NMR (500 MHz, CDCl3): δ 7.37 (d, J = 8.3 

Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.3, 2.0 Hz, 1H), 2.35 (s, 3H), 1.31 (s, 

9H). Extremely broad OH peaks were visible in the baseline. 13C{1H} NMR (CDCl3): δ 

159.43, 157.22, 154.80, 127.29, 116.51, 115.77, 114.31, 34.71, 31.03, 10.74. IR (KBr): 

3380, 2956, 2869, 1563 cm-1. HRMS electron impact (m/z): [M]+ calcd for C12H17NO2, 
207.1259; found, 207.1255.  

 

ortho-Hydroxy Ketone 14. Oxime 43 (50 mg, 0.241 mmol, 1 

equiv) was combined with NaHSO3 (87.8 mg, 0.844 mmol, 3.5 

equiv) in EtOH/H2O (1:1, 300 µL) in a scintillation vial. The vial 

was sealed with a Teflon-lined cap and heated to 90 °C for 13 h. The reaction mixture 

was concentrated by rotary evaporation to remove ethanol. The remaining primarily 

aqueous reaction mixture was diluted with Et2O (1.5 mL) and rinsed briefly with 1 M 

HCl (~1 mL).  The layers were separated and the aqueous layer was extracted several 

times with Et2O. The combined organic extracts were neutralized with aqueous NaHCO3, 

washed once with brine, dried over MgSO4, and filtered through a plug of silica to afford 

44 as a colorless oil (42 mg, 91% yield). 1H NMR (400 MHz, CDCl3): δ 12.25 (s, 1H), 

7.66 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.2, 2.0, 1H), 2.60 (s, 

3H), 1.31 (s, 9H). 13C{1H} NMR (CDCl3): δ 203.79, 162.31, 161.05, 130.37, 117.40, 

116.62, 115.02, 35.31, 30.76, 26.46. IR (thin film): 3249, 2964, 1639 cm-1.  HRMS 

electrospray (m/z): [M+Na]+ calcd for NaC12H16O2, 193.1229; found, 193.1221. 

N OH
tBu

OH
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 Synthesis and Characterization of Remaining Compounds in Schemes 5.24–5.27 

Benzoxazole 45. Oxime 43 (41 mg, 0.198 mmol, 1 equiv), p-

TsOH monohydrate (3.8 mg, 0.0198 mmol, 0.1 equiv), and ZnCl2 

(31.1 mg, 0.228 mmol, 1.15 equiv) were dissolved in MeCN (1 

mL), and the resulting solution was heated to 90 °C for 5 h.38 The reaction mixture was 

concentrated by rotary evaporation, and the crude product was taken up in Et2O, washed 

with aqueous NaHCO3 and brine, dried over MgSO4, and concentrated to afford 45 as a 

colorless oil (23 mg, 56% yield, Rf = 0.38 in 80% hexanes/20% EtOAc). 1H NMR (400 

MHz, CDCl3): δ 7.55 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 1.7 Hz, 1H), 7.35 (dd, J = 8.4, 1.7 

Hz, 1H), 2.61 (s, 3H), 1.37 (s, 9H). 13C{1H} NMR (CDCl3): δ 163.52, 151.20, 148.43, 

139.08, 121.63, 118.43, 106.90, 35.01, 31.68, 14.49. IR (thin film): 3224, 3062, 2959, 

1614 cm-1.  HRMS electrospray (m/z): [M+H]+ calcd for C12H15NO 190.1232; found, 

190.1226. 

 

Amine 46. Oxime 43 (60 mg, 0.289 mmol, 1 equiv) was combined 

with 2 drops of conc. HCl and 10 wt % Pd/C (31 mg, 0.0289 mmol 

Pd, 0.1 equiv) in MeOH (1.5 mL). A H2 balloon was attached to 

the reaction vessel, and the reaction was stirred at 25 °C for 12 h.39  Solid NaHCO3 (30 

mg, 0.360 mmol, 1.2 equiv) was added, and the reaction mixture was then filtered 

through glass wool and concentrated. The crude product was taken up in CH2Cl2, filtered 

through Celite, and concentrated to yield 46 as a tan crystalline solid (56 mg, 100% yield, 

mp = 123–128 °C). 1H NMR (500 MHz, CD3OD): δ 7.18 (d, J = 7.8 Hz, 1H), 6.95–6.93 

(multiple peaks, 2H), 4.56 (q, J = 7.0 Hz, 1H), 1.63 (d, J = 7.0 Hz, 3H), 1.29 (s, 9H). 

Exchangeable protons (OH and NH2) are not observed. 13C{1H} NMR (CD3OD): δ 

156.04, 155.06, 128.09, 122.22, 118.01, 113.80, 48.70, 35.44, 31.62, 18.92. IR (KBr): 

3229, 3034, 2964 cm-1. HRMS electrospray (m/z): [M+H]+ calcd for C12H20NO 

194.1545; found, 194.1544. 

 

Alcohol 47.  Ketone 44 (42.7 mg, 0.222 mmol, 1 equiv) and 

NaBH4 (12.6 mg, 0.333 mmol, 1.5 equiv) were stirred in MeOH 

tBu N

O

NH2
tBu

OH

OH
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(340 µL) at 25 °C for 3.5 h.40  The reaction mixture was concentrated by rotary 

evaporation, and the crude residue was taken up in Et2O (2.5 mL) and washed with 2 M 

HCl (400 µL).  The aqueous layer was extracted with Et2O (5 x 500 µL). The combined 

organic layers were washed with water (2 x 500 µL), dried over MgSO4, and 

concentrated to afford 47 as a pale yellow wax (38.6 mg, 90% yield). 1H NMR (500 

MHz, CD3OD): δ 7.17 (d, J = 8.0 Hz, 1H), 6.85 (dd, J = 8.0, 2 Hz, 1H), 6.80 (d, J = 2 Hz, 

1H), 5.09 (q, J = 6.5 Hz, 1H), 1.42 (d, J = 6.5 Hz, 3H), 1.27 (s, 9H). Exchangeable 

protons (OH) are not observed. 13C{1H} NMR (CD3OD): δ 155.04, 152.35, 129.85, 

126.49, 117.43, 113.47, 67.03, 35.16, 31.78, 24.11. IR (KBr): 3417, 2965, 2904, 2868 

cm-1.  HRMS electron impact (m/z): [M]+ calcd for C12H18O2, 194.1307; found, 

194.1311. 

 

Acetyl Oxime 48. Oxime 25 (500 mg, 3.35 mmol) was stirred at 

room temperature in AcOH/Ac2O (1:1, 7.2 mL) for 3 h. The 

reaction mixture was diluted with EtOAc (50 mL) and quenched 

with aqueous NaHCO3. The organic layer was washed with brine 

(10 mL), dried over MgSO4, and concentrated to yield 48 as a white crystalline solid (635 

mg, 99% yield, mp 41–43 °C). 1H NMR (400 MHz, CDCl3): δ 7.58 (m, 1H), 7.51 (m, 

1H), 7.31–7.24 (multiple peaks, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.27 (s, 3H). 13C{1H} 

NMR (CDCl3): δ 168.85, 162.57, 128.19, 134.69, 131.25, 128.34, 127.42, 124.08, 21.27, 

19.74, 14.38. HRMS electrospray (m/z): [M+Na]+ calcd for NaC11H13NO2 214.0844; 

found, 214.0844. 

 

Acetyl Oxime 50. Oxime 23 (1.00 g, 4.67 mmol) was stirred at 

room temperature in AcOH/Ac2O (1:1, 10 mL) for 3 h. The reaction 

mixture was diluted with EtOAc (65 mL) and quenched with 

aqueous NaHCO3. The organic layer was washed with brine (1 x 25 

mL), dried over MgSO4, and concentrated to yield 50 as a white crystalline solid (1.18 g, 

99% yield, mp 31–34 °C). 1H NMR (500 MHz, CDCl3): δ 7.89 (t, J = 2 Hz, 1H), 7.67 

(ddd, J = 7.8, 2, 1.0 Hz, 1H), 7.57 (ddd, J = 7.8, 2, 1.0 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 

2.36 (s, 3H), 2.27 (s, 3H). 13C{1H} NMR (CDCl3): δ 168.59, 161.09, 136.79, 133.46, 

Me
N OAc

Br
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130.03, 129.87, 125.54, 122.69, 19.72, 14.29. IR (KBr): 3068, 1769 cm-1. HRMS 

electrospray (m/z): [M+Na]+ calcd for NaC10H10BrNO2, 277.9793; found, 277.9784. 

 

Iodinated Product 49.  Acetyl oxime 48 (100 mg, 0.523 mmol, 1 

equiv), N-iodosuccinimide (235 mg, 1.046 mmol, 2 equiv), 

Pd(OAc)2 (5.9 mg, 0.0261 mmol, 5 mol %), AcOH (8 mL), and 

Ac2O (2.8 mL) were combined in a 20 mL scintillation vial, and the 

vial was sealed with a Teflon-lined cap. The reaction was heated to 110 °C for 12 h. The 

resulting mixture was filtered through glass wool and concentrated to give the crude 

product, which was purified by chromatography on silica gel to yield iodinated product 

49 as a pale yellow oil consisting of a single oxime isomer (77 mg, 46% yield, Rf = 0.19 

in 90% hexanes/10% EtOAc). 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 8.0 Hz, 1H), 

7.10 (d, J = 1.8 Hz, 1H), 6.91 (m, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 2.26 (s, 3H). 13C{1H} 

NMR (CDCl3): δ 168.70, 166.37, 140.87, 139.28, 138.40, 131.60, 130.42, 90.72, 20.78, 

19.79, 18.41. IR (thin film): 2923, 1762 cm-1.  HRMS electrospray (m/z): [M+Na]+ calcd 

for NaC11H12INO2, 339.9811; found, 339.9800. 

 

Chlorinated Product 51. Acetyl oxime 50 (105 mg, 0.410 mmol, 1 

equiv), N-chlorosuccinimide (104 mg, 0.820 mmol, 2 equiv), 

Pd(OAc)2 (4.6 mg, 0.0205 mmol, 5 mol %), AcOH (8.0 mL), and 

Ac2O (3.0 mL) were combined in a 20 mL scintillation vial, and the 

vial was sealed with a Teflon-lined cap. The reaction was heated to 100 °C for 22 h. The 

resulting mixture was filtered through glass wool, diluted with EtOAc (30 mL), and 

washed several times with saturated NaHCO3, until the aqueous solution was no longer 

acidic.  The organic layer was then washed with brine, dried over MgSO4, and 

concentrated to give the crude material, which was purified by chromatography on silica 

gel to yield chlorinated product 51 as a pale yellow solid consisting of an ~3:1 mixture of 

major:minor oxime E/Z isomers (85 mg, 71% yield, Rf = 0.36, 0.30 in 84% 

hexanes/16%EtOAc, mp of major isomer = 80–83 °C). The minor isomer was assigned as 

a stereoisomer (not a regioisomer) by analysis of the splitting pattern in the aromatic 

region of the 1H NMR spectrum. Major Isomer: 1H NMR (500 MHz, CDCl3): δ 7.53 (d, J 
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= 2.4 Hz, 1H), 7.47 (dd, J = 8.5, 2.4 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 2.36 (s, 3H), 2.26 

(s, 3H). 13C{1H} NMR (CDCl3): δ 168.24, 162.70, 136.80, 133.66, 133.04, 131.49, 

131.36, 120.59, 19.61, 17.65.  Minor Isomer: 1H NMR (500 MHz, CDCl3): δ 7.46 (dd, J 

= 8.6, 2.4 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.25 (d, J = 2.4 Hz, 1H), 2.33 (s, 3H), 2.00 

(s, 3H).  13C{1H} NMR (CDCl3): δ 168.05, 160.39, 136.00, 133.152, 131.12, 129.95, 

129.42, 120.44, 21.37, 19.36. IR (thin film, major isomer): 2936, 1783, 1768 cm-1.  

HRMS electrospray (m/z): [M+Na]+ calcd for NaC10H9ClNO2 (major isomer) 311.9403; 

found, 311.9397. 

 

Rearranged Acetanilide 55.  Acetyl oxime 50 (200 mg, 0.754 

mmol, 1 equiv), AgOAc (138 mg, 0.829 mmol, 1.1 equiv), 

Pd(OAc)2 (8.5 mg, 0.038 mmol, 0.05 equiv), iodobenzene (227 µL, 

2.037 mmol, 2.7 equiv), and trifluoroacetic acid (750 µL) were 

combined in a 4 mL scintillation vial, and the vial was sealed with a Teflon-lined cap.24  

The reaction was heated to 100 °C for 6 h, then concentrated. The resulting crude 

reaction mixture was purified by column chromatography to yield 55 as a pale yellow 

solid (111.7 mg, 51% yield, Rf = 0.29 in 70% hexanes/30% EtOAc, mp = 111–114 °C). 

Compound 55 was also prepared from N-(3-bromophenyl)acetamide using the same 

arylating conditions to confirm the identity of 55. 24 1H NMR (500 MHz, CDCl3): δ 8.55 

(br s, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.44 (m, 1H), 7.35–7.29 (multiple peaks, 3H), 7.10 

(m, 2H), 2.02 (s, 3H). 13C{1H} NMR (CDCl3): δ 168.10, 137.08, 135.86, 131.15, 130.58, 

129.29, 129.06, 128.36, 127.21, 124.00, 122.09, 24.62. IR (KBr): 3262, 3027, 2796, 1658 

cm-1.  HRMS electrospray (m/z): [M+Na]+ calcd for NaC14H12BrNO, 312.0000; found, 

311.9990.  
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