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ABSTRACT 

Understanding localized patterns and community compositions of vegetation in an 

environment is critical to the reconstruction of climatic and ecological conditions across all 

spatiotemporal scales. One of the most accurate and useful ways to characterize vegetation, and 

therefore to describe the climatic and ecological conditions of a location, is through the plant 

fossil record. Phytoliths (plant silica microfossils) are often preserved in the absence of other 

paleobotanical data and are becoming more widely used for deep-time vegetation 

reconstructions. Significant work has been done to standardize the analytical methodology of 

phytolith extraction, statistical analysis, and interpretation, but more detailed investigations are 

needed to understand how well a given phytolith assemblage represents the aboveground plant 

biomass for a given ecosystem.  

We present results from paired soil phytolith assemblages and local vegetation 

assemblages across the central United States, from temperate forest, grassland, and 

rangeland/scrubland ecosystems. Phytolith assemblages from soil A-horizons were compared to 

percent cover of species and plant biomass estimates obtained via field observations and aerial 

estimates of tree cover to analyze differences in the relative abundance of forest or woody 

vegetation versus grasses. Soil phytolith assemblages from all sites average a 32% bias toward 

the grass morphotypes as compared to actual aboveground biomass observations, and 

comparisons to percent cover yielded broadly comparable bias figures. Percent bias estimates do 

not show significant correlations to most environmental factors (temperature, precipitation, local 

elevation), however, an extremely strong correlation (p< 0.001) was observed with soil order 

type. As a result, we suggest further research into the development of correction factors between 

phytolith sample assemblages and their inferred past counterpart ecosystems based on estimates 

derived from modern analyses of each major soil order type. Such corrections are essential to the 
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continued use of phytoliths as a proxy for past vegetation and ecological reconstructions 

throughout the Phanerozoic record. 

   

KEYWORDS: phytolith, taphonomy, soil, vegetation 
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1. INTRODUCTION 

Climate change and its future impacts have been a major focus of recent scientific 

investigation. Using records of past episodes of climatic change and their resulting impacts on 

biological systems provides an important analogue for predicting current and future change and 

for describing the links between climate and ecology. To this end, it is crucial that we develop 

methods of tracking vegetation histories and of quantifying ecological change as a function of 

climate.  

Traditionally, records explaining the relationship between vegetation and climate have 

been assembled using pollen cores (e.g., Adams et al., 1990; Jackson and Williams, 2004; Hatte 

et al., 2008; Jaramillo et al., 2010; Liu et al., 2010), and much work has been done to standardize 

palynological methods and their implications with regard to reconstructing periods of climate 

change (e.g., Erdtman, 1943; Davis, 1968; Moore et al., 1991; Blois et al., 2011). However, due 

to a dearth of suitable sites (typically lakes) for the deposition and preservation of pollen in 

central North America and other continental interiors, palynological studies have remained 

fragmentary for records older than the Quaternary.  Consequently, descriptions of vegetation 

history have poor or uneven spatial and temporal resolution for most continental interiors. While 

the availability of lacustrine cores is limited, soil records in many temperate continental interiors 

are both spatially and temporally more robust, allowing for the detailed description of past and 

present vegetation through the use of phytolith assemblages.   

1.1  Phytoliths 

Phytoliths are silica or bio-opal microfossils that form in the interstices or lacunae of 

plant cells as a result of plants’ inability to assimilate into their tissue the silica in the monosilicic 

acid (H4SiO4) that they uptake from groundwater solutions (Piperno, 1988; Piperno, 2006).  
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Many plants deposit a hydrous (opalline) form of silica either in between dermal cells or as a 

coating on tracheary or structural elements, which provides support, rigidity, and structural 

defense mechanisms for the plant (Jacobs et al., 1999; Piperno, 2006). Plant taxa, having 

disparate internal structures and in some cases exhibiting preferential modes of silica deposition, 

can have specific morphotypes for these deposits, meaning that phytoliths can be used to identify 

different plant types at various taxonomic levels (e.g., Piperno, 2006). Phytoliths have been 

identified from many vascular plant groups, including most angiosperm clades, conifers, and 

ferns (Piperno, 2006), and have been described for some groups as far back as the Devonian in 

both sediments and coprolites (e.g., Carter, 1999). Significant work has been done on the 

extraction methodology and on applications of phytoliths to climatic and ecological questions 

(e.g., Rovner, 1971; Piperno, 1988; Piperno and Pearsall, 1993; Strömberg, 2002, 2004). Due to 

the climatic dependence of plants, phytolith assemblages have been used as a proxy for 

understanding climate characteristics and local climate impacts on vegetation (e.g., Thomasson, 

1990; Fredlund and Tieszen, 1997; Barboni et al., 1999). Phytoliths have also been applied as a 

method of tracking the evolution of metabolic pathways and species divergences, as many plant 

groups conserve basic phytolith morphologies through time (Smith, 1996; Smith and White, 

2004).  

Methodology studies of modern phytoliths have addressed many of the taphonomic 

concerns about the representativeness of assemblages. Works by Piperno (1988, 2006) and 

Piperno and Pearsall (1993) have shown that phytoliths are easily incorporated into soils upon 

plant death and can provide an accurate in situ record of specific vegetation types and climatic 

conditions even for small scale variation across a catena.  Additionally, the fact that phytoliths 

for nearly all studied plant species are of similar size (2–250 µm) and weathering-resistant 
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composition (SiO2·nH2O) minimizes potential preservation biases seen in other terrestrial 

records such as macrofossils and palynomorphs (Baker, 1959).  The occurrence of phytoliths in 

most vascular plant taxa and throughout the lifecycle of an individual means that in many cases, 

preservation potential or the probability of representation in the phytolith record is extremely 

high.  Other taphonomic issues have been raised under certain circumstances: 1) limited fluvial 

and aeolian sorting of phytoliths based on shape and specific gravity has been demonstrated in 

high-energy systems like river channels or dune fields (Lawlor, 1995); and 2) slight 

representational skewing from transport and selective destruction is evident in situations of 

intense herbivory (Fredlund and Tieszen, 1994). In most cases however, these issues can be 

discounted as factors influencing assemblage composition due to their limited applicability.  

Further complications in terms of quantitative reconstructions come from multiplicity and 

redundancy within phytolith morphotypes (Rovner, 1971); however, exhaustive modern 

reference collections have begun to address these factors (e.g., Strömberg, 2003; Piperno, 2006; 

Pearsall, 2011; Pereira, 2011). 

 1.2  Problems with the record 

Despite significant work on extraction methods and taphonomic biases, little has been 

done to evaluate the accuracy of relative species representation in the soil phytolith record (Table 

1), especially in temperate ecosystems.  However, it has been noted that some North American 

temperate zones produce phytolith assemblages that are less reliable for ecosystem inferences 

than similar records from the tropics (Strömberg, 2004). Differences in biomass production rates 

and silica uptake among plant types impact their proclivity to produce phytoliths, resulting in 

potential biases towards some taxa and against others (Piperno, 1988). For example, grasses 

produce prolific diagnostic phytoliths, while hardwood trees produce very few diagnostic 
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phytoliths (Piperno, 2006) in total assemblages from soil samples; as a result, we might expect 

an over-representation of grass groups. Additionally, some work suggests that certain 

depositional environments, including some soil types, may be unsuitable for phytolith 

preservation due to oxidization or clay-adhesion (Fredlund and Tieszen, 1997).   

These factors are problematic for the interpretation of environmental conditions based on 

relative percentages of phytolith assemblages from paleosols (e.g., Strömberg, 2002, 2004, 2005; 

Strömberg et al., 2007), as it is unclear whether these assemblages are accurate representations of 

their original ecosystems. Paleovegetation reconstructions using phytoliths preserved in 

paleosols are done by counting phytolith morphotypes and classifying them under plant-type 

categories (e.g., forest or woody plant, grasses, aquatic plants) based on analysis of a broad, non-

region-specific modern reference collections and published work (Strömberg, 2003, 2005, 2007; 

Zucol, 2010; Smith, unpublished data), since for fossil assemblages we do not know a priori 

what species were present. While many studies of modern phytoliths (e.g., Carnelli et al., 2001; 

Tsartsidou et al., 2007) have compared assemblages with phytolith extractions from local 

standing vegetation, the assumption that a soil phytolith assemblage is representative of standing 

vegetation biomass has not been verified. Recent studies by Carnelli et al. (2001), Lu and Liu 

(2003), and Blinnikov (2005) have suggested that any quantitative paleoenvironmental 

reconstruction using phytoliths must begin with analyzing modern phytolith distribution and 

representation in local plants and soils, but to date none have been completed for central North 

America or other temperate continental interiors. The aim of this study is to test how accurately 

standard methods of paleovegetation inference from phytolith assemblages reflect vegetation 

types (woody or forest plants versus grasses) by applying it to modern localities with known 

vegetation composition. We utilized traditional phytolith extraction and analysis and 
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aboveground biomass estimate techniques to quantify production, preservation, and 

environmental biases in modern soil phytolith assemblages and to suggest calibrations for 

ecosystem-specific correction factors.  These calibration results were then used in a case study to 

reinterpret fossil phytolith assemblage data from a continental-interior site in South America.  

2. METHODS 

2.1  Sites 

Locations in this study include both forest (Alfisol and Spodosol soil types) and 

grass/rangeland (Mollisol and Inceptisol soil types) ecosystems, which are the primary ecotypes 

of the central United States (FIG. 1; Table 2). Sites within these ecotypes represent a range of 

geographic (FIG. 1) and climatic (Table 2) conditions, in an effort to constrain the impacts of 

these variables on assemblage composition and bias.  Each site was chosen based on known soil 

series types as described by the Natural Resources Conservation Service Soil Survey (2011), and 

in each case was from a protected area or research preserve representing primary ecosystems 

with no history of significant human alteration, in an attempt to exclude potential complications 

from phytolith assemblage inheritance (e.g., Fredlund and Tieszen, 1994).  Forest sites (n= 11) 

were characterized by soil type, classified as either Alfisols of Spodosols, and by aboveground 

biomass estimates of >50% woody dicotyledonous species. Such sites included Oak Savannah, 

Northern Hardwood, Laurentian Coniferous, Coastal Plain Deciduous, Southern Oak-Hickory, 

and Eastern Broadleaf forests (Bailey, 1995).   Grass/rangeland sites (n= 7) were also 

characterized by soil type, classified as either Mollisols or Inceptisols, and by aboveground 

biomass estimates of <50% woody dicotyledonous species (primarily monocot/grass species). 

Such sites included both Prairie Parkland and Great Plains ecosystem provinces (Bailey, 1995).  
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Individual sites were identified based on the Intensive Plot model (Barnett and Stohlgren, 

2003), with a larger central sampling plot (2m x 5m) and four smaller sampling plots (1m x 1m) 

located randomly within the overall site (10m X 20m).  Soil cores and vegetation samples were 

taken from within each of the sampling plots, and were characterized qualitatively across the rest 

of the site.  

2.2  Vegetation 

For the sampled sites, total biomass was derived from diameter at breast height 

measurements (DBH) of all tree diameters >10 cm, and all other species were measured within 

sampling plots to full standing height (Zak et al., 1989). Biomass was estimated as a function of 

percent ground cover and basal area (e.g., Röttgermann et al., 2000; Barnett and Stohlgren, 2003; 

Suchar and Crookston, 2010) with an assumed standard error of ± 5%. In addition to ground-

based estimates of total biomass, we compiled aerial estimates of percent cover (e.g., Roy and 

Ravan, 1996; Barboni et al., 2007) for each site. Mean tree-cover data were derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) visible bands and Normalized 

Difference Vegetation Index (NDVI), which provide estimates for the proportion of tree cover 

for any given 500 × 500 m sample of Earth's surface (Hansen et al., 2005). MODIS percent tree 

cover corresponds to the amount of skylight obstructed by tree canopies ≥5 m in height, and 

values are averaged over one year to avoid cloud interference and phenological variation in tree 

cover (Hansen et al., 2003; 2005). 

To test best-fit methods for vegetation interpretations we compared soil phytolith 

assemblage counts to both ground-based biomass estimates (e.g., Zak et al., 1989) and aerial 

percent-cover estimates (e.g., Hansen et al., 2003, 2005).  These methods of estimating 

vegetation composition utilize fundamentally different metrics for describing vegetation 
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characteristics, as biomass is a mass per unit area, while cover is a ratio of area measurements. 

Ultimately, most modern studies employ some combination of the two, whereas many 

paleovegetation reconstructions simply use inferred cover estimates to determine whether a site’s 

vegetation was open or closed, or how much of the ground surface was shaded (e.g., Strömberg, 

2005).  We chose to compare the two methods here by converting both to a percentage of the 

total vegetation (% biomass and % cover). 

2.3  Soil phytoliths 

Strömberg (2004) proposed a synthetic analytical approach for Cenozoic phytolith 

assemblages, involving the study of phytoliths from all size fractions (2–250 µm), the 

comparison of morphotype relative frequencies over time including non-diagnostic and 

ecologically significant (e.g., aquatic) forms, and the broader generalization of correlations 

between assemblage composition and vegetation structure (forest vs. grassland indicators, 

instead of specific analogues).  This broad approach was refined based on a compilation of many 

different studies and comparison to a large modern reference collection (this study; Strömberg, 

2003, 2004, 2005; Smith, unpublished data) in an attempt to standardize methodology across all 

time scales. The extraction methodology used here was slightly modified from Strömberg et al. 

(2007) for the study of modern soil types.   

Sampling involved systematic coring of soil A-horizons without litter layers at multiple 

locations within sampling plots at each site with a 125 cm
3
 push core from the upper 5–10 cm.  

These samples were homogenized, and small subsamples (<5 g) of unsieved sediment were 

processed with 10% hydrochloric acid to remove carbonates, and wet oxidized in 70% nitric acid 

(HNO3) and potassium chlorate (KClO3) to remove organic material.  Coarse material was 

removed with a 250 µm mesh sieve, and samples were deflocculated by sieving through a 53 µm 
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mesh sieve.  Fractions were then recombined before being gravimetrically separated via heavy 

liquid (ZnBr2) flotation at a density of 2.38 g cm
-3

.  The resulting float material was washed in 

ethanol and dried before being mounted on slides in immersion oil to examine shapes under 

rotation.  Morphotypes were then counted in linear, cross-slide transects and photographed with 

a Leica petrographic microscope (400–1000X) on slides prepared with Cargille Meltmount 

1.539. Over 200 diagnostic individuals were counted per slide and all morphotypes were 

identified under the classification system of Strömberg (2003, 2005), except for Ho-1 (hollow, 

thick-walled spherical morphotype found in woody plants; FIG. 2) that is recognized based upon 

the work of Bozarth (1992), and are detailed in Supplementary Data.  Calculation of total Forest 

Indicator (FI) and Grassland Indicator (GI) morphotypes followed the descriptions of Strömberg 

(2003), where FI total is the sum of dicotyledons, general forest indicators, conifers, non-grass 

plants, palms, and Zingiberales, and GI is the sum of all grass silica short cells (GSSCs) and 

diagnostic grass phytoliths (GRASS-D).  While some previous authors have excluded GRASS-D 

morphotypes because of the possibility that their abundance is tied to moisture availability (e.g., 

Bremond et al., 2002; Strömberg, 2003), we find only a very weak relationship between moisture 

availability and GRASS-D abundance in our dataset (FIG. S1), and therefore include them here 

as an important component of the total phytolith assemblage. 

In an effort to consider possible sources of experimental design bias, we evaluated results 

related to laboratory techniques, statistical treatments, and interpretation methodologies. 

Phytolith counting yield was included in our independent variable list as a method for analyzing 

potential biases stemming from current extraction techniques (e.g., Piperno and Pearsall, 1993; 

Strömberg, 2002).  Accepted counting error for assemblages is given at 7.7% for all phytolith 

groups (e.g., Strömberg, 2002), but this value is based on the standard deviation of multiple 
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count experiments with morphotype classifications that are more complicated than our FI/GI 

distinction. For the purposes of describing and comparing ecosystem types in the most 

statistically appropriate manner for paleovegetation reconstructions, we can minimize 

assemblage counting error by collapsing these morphotype groups into FI and GI functional 

groups and performing a repeated measures analysis, which provides a specific error value for 

any individual recounted samples and results in a much smaller counting error function of ~1% 

for this suite of samples.  Such recounts, when performed on selected assemblages, can 

significantly decrease experimental error from counting.   

2.4  Statistical analyses 

Statistical analyses were performed on phytolith assemblage counts based on ecosystem 

type categories established in the modern reference collections of Strömberg (2003, 2004, 2005). 

The relative populations of these phytolith assemblage categories were compared to 

aboveground biomass estimates for equivalent vegetation categories, and any significant 

differences (> 1σ) were considered examples of representational bias.  Other work (e.g., 

Alexandre et al., 1997; Strömberg, 2002) has used the strict d:p (dicotyledon : grass phytolith) 

metric as an analytical tool for comparing forest and grassland indicators. Here we avoided this 

method due to the fact that it was developed specifically for modern tropical forest 

environments, and has been shown to be uncharacteristic of temperate ecosystems in the present 

and many ecosystems in the past (Strömberg, 2004), which is problematic for the intended 

applications of this study.  

For individual sites where representational bias was evident, we performed linear 

regressions and analysis of variance (ANOVA) tests in the Statistical Package for Social 

Scientists (SPSS; IBM Corporation, 2011) comparing observed bias and a suite of environmental 
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variables (Table 2), including: soil order type, soil texture, sample count yield, site elevation, 

mean annual temperature (MAT), mean annual precipitation (MAP), and effective energy and 

mass transfer (EEMT; Rasmussen and Tabor, 2007).  Where bias had strong correlation with this 

suite of environmental variables, correction factors for phytolith assemblages were devised based 

on the mean bias values for each category. In addition to analyzing the relationship between bias 

magnitude and potential causal variables, we used repeated measures analysis in SPSS (IBM 

Corporation, 2011) to estimate a standard error between assemblage categories for recounting 

individual sample yields.  This is intended to assign a numerical counting error for assemblages 

at individual sites.  

3. RESULTS 

3.1  Aboveground Vegetation  

A total of 35 plant genera were found across all study sites, and each genus was 

categorized as either a “Forest Indicator” or “Grassland Indicator” based on ecotype affinity.  

This total included 17 genera of Forest Indicators (FI), and 18 genera of Grassland Indicators 

(GI), with an average of 4 FI and 3 GI groups observed per individual site.  Aboveground 

vegetation biomass estimates from ground plots for all sites ranged from 0% to 96% FI biomass, 

averaging 50.8% (σ = 40.5%) of the total aboveground vegetation biomass (Table S1). For aerial 

estimates of vegetation type, tree cover estimates from MODIS data were considered percent FI 

for individual sites. Estimates of FI cover ranged from 0 to 100%, averaging 49.8% (σ = 44.6%) 

of vegetation present (Table S1).  
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3.2 Phytolith assemblages 

Soil bio-silica assemblages included 21 diagnostic phytolith morphotypes (FIG. 2) and 6 

non-diagnostic phytolith morphotypes, as well as other non-phytolith groups (including diatoms 

and unidentifiable silica bodies; Table S2). Diagnostic morphotypes were categorized as either 

“Grassland Indicator”, which combined the GRASS, PACCAD, POOID, and CHLOR compound 

variables of Strömberg (2003, 2005; Table S2), or “Forest Indicator”, which combined the 

CONI, FI-GEN, and DICOT compound variables of Strömberg (2003, 2005; Table S2). Non-

diagnostic and Other groups were excluded from assemblage analyses.  This is a subset of the 

total compound variables used by Strömberg (2003, 2005), reflecting only those morphotypes 

found in our current study sites. The overall assemblage from all sites included 8 Forest Indicator 

(FI) morphotypes and 13 Grassland Indicator (GI) morphotypes, with an average of 4 FI and 8 

GI morphotypes observed at each individual site.  Sites studied had from 1.1% to 71.2% FI 

morphotypes, averaging 15.2% (σ = 16.2%) of the diagnostic phytolith assemblage (Table S2). 

3.3 Representational bias 

Based on the comparison of aboveground vegetation and phytolith assemblages for 

individual sites, it is clear that representational bias exists in the phytolith record (FIG. 3). 

Representational bias is defined as the difference between %FI biomass and %FI morphotypes 

for an individual site.  Bias estimates for the sites ranged from 0% to 72%, with an average of 

32.2% bias (σ = 32.3%) between observed biomass and phytolith estimates (FIGS. 3 and 4; 

Table S2).  

Bias estimates were regressed against the environmental variables of site elevation, mean 

annual temperature (MAT), mean annual precipitation (MAP), and the combined metric effective 

energy and mass transfer (EEMT), and were analyzed for variance (ANOVA) for the categorical 
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variables of soil order type, soil texture, experimental yield.  These regressions resulted in non-

significant linear relationships between all climatic factors (FIG. 5).  Soil order type was the only 

categorical variable found to have statistically significant mean differences in ANOVA tests (p < 

0.001), indicating an important correlation between bias values and soil order type (FIG. 5C). 

Soil texture showed near-significant variance (p = 0.105), but all other variables failed this 

significance test.   

3.4 Multiple counts 

Recounted samples (n = 9) from each soil order type displayed broadly similar results in 

terms of morphotype group distinctions and specific morphotype counts within groups (Table 

S2). Repeated measures analysis found all recount samples to be statistically indistinguishable 

for ecosystem type categories (FI and GI; Table S2).  Therefore, using standard extraction 

practices and counting methods in paleovegetation analyses, we can assign an overall counting 

error of 1.1% (0.5–2.1%) for these phytolith analyses based on 1σ values.   

4. DISCUSSION  

4.1     Phytolith record bias 

 While significant work has been done to establish common extraction, statistical 

treatment, and environmental interpretation methods (e.g., Strömberg, 2002, 2004, 2005), many 

recent studies have highlighted problems with suspected bias between actual aboveground 

vegetation and soil phytolith samples (Table 1). In light of our results, we suggest major 

revisions to certain aspects of this process, particularly in the realm of how past environments are 

inferred and compared using phytolith abundance data.  This study has many implications for the 



18 
 

treatment of future phytolith data, both in terms of methodology and error reporting and in terms 

of the interpretation of phytolith assemblage data.  

4.1.1    Method testing  

 We tested both phytolith and vegetation estimation methods, and found both common 

techniques to be robust. Based on the lack of correlation between discernible bias values and 

phytolith yield (FIG. 5A), we concluded that common extraction procedures (e.g., Strömberg et 

al., 2007) are appropriate for this system and are not responsible for introducing systematic bias 

into phytolith assemblages.  Additionally, the generally predictable 1:1 linear relationship 

between ground-based biomass estimates and aerial percent cover estimates (Table S1; e.g., 

Muukkonen et al., 2006) allows us in most cases to use these two metrics interchangeably, 

making either of them applicable to the types of paleovegetation studies with which we are 

concerned.  While the percent biomass and percent cover values are broadly similar in our 

analysis (Table S1), there is an apparent skewing toward slightly higher percent cover values 

relative to percent biomass values, probably resulting from the documented inability of aerial 

methods to resolve the presence of understory vegetation (Hansen et al., 2005). For this reason, 

we have focused our interpretations on bias comparisons based on estimated percent biomass 

values.   

4.1.2 Soil order type 

 Possibly our most important result is the strong correlation between phytolith assemblage 

bias and soil order type (FIG. 5C). This was the only significant correlation found between our 

described factors (p < 0.001), and the correlation explains nearly all of the variability in bias 

values. The only other analyzed factor that appeared to explain any of the variability was soil 

texture, which happens to be intricately linked with soil order due to the processes of soil 
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development (Brady and Weil, 1996; Retallack, 2001), and likely covaries with any assignment 

of a soil order variable.  

 The correlation to soil order not only provides an important linkage between observed 

assemblage bias (Table 1; this study) and a defined environmental factor, it provides a potential 

treatment (in the form of a correction factor) for phytolith assemblage data for cases in which the 

soil order type is well described.  Our data cluster into three distinct groups (FIGS. 4 and 5), 

where average Alfisol/Spodosol bias (excluding one site, discussed below) is 62.1% (σ = 5%), 

average Inceptisol bias is 6% (σ = 1%), and average Mollisol bias is 1.3% (σ =1.2%).   Alfisol 

and Spodosol groups were combined due to their functional similarities among modern soils and 

because they are collapsed into a single order for most paleosol analyses (e.g., Mack et al., 1993) 

since the geological record of Spodosols is much more limited than for Alfisols. A single site 

was excluded from the Alfisol/Spodosol type average due to its status as an outlier (>7σ), which 

was likely the result of gathering soil cores in areas of high-density Acer saplings, known to be 

significant phytolith producers (Bozarth, 1992). Excepting this site, all of the soil order 

groupings have bias averages that are well-defined by small standard deviations, allowing us to 

propose the use of these average values as correction factors for each of these major soil orders. 

While these correction factors do not allow us to disentangle the relative contributions of 

production and taphonomic biases, they do allow us to correct for the combined influence of 

such bias on environmental interpretations.     

  These biases have significant implications for interpreting past environments, as most 

work on describing environmental change using phytoliths (e.g., Strömberg, 2005; Zucol et al., 

2010) relies on the extraction of phytolith assemblages from these soil order types, and most 

paleoecological reconstructions using paleosols come from these three soil orders (Retallack, 
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2001). By assigning correction factors for each of these soil orders, we can compensate for 

observed differences between aboveground biomass (which determines whether vegetation is 

classified as “forest” or “grassland”) and the resulting phytolith assemblage, standardizing the 

way paleoenvironmental interpretations are made in a similar manner as other fields such as 

palynology (e.g., Baker, 1959).  The use of correction factors is crucial for the application of 

phytoliths as a paleoenvironmental indicator, and the direct interpretation of phytolith 

assemblages should be reconsidered in light of our results. Experiments designed to develop 

interpretational correction factors should also be repeated for the range of other soil orders 

(Ultisols, Oxisols, Vertisols, etc.) that can be accommodated by paleoenvironmental 

reconstructions.  

4.1.3 Other factors 

 Many other environmental and climatic factors (e.g., MAP, MAT, EEMT, elevation) 

have been suggested as potential sources of bias by previous work (Table 1). Based on our 

results, all of these factors appear to be non-significant, as none show correlations or linear 

relationships with bias variability in any of our sites (FIG. 5).  These factors are also all tightly 

linked, as MAT and MAP (as well as EEMT) are strongly influenced both by each other and by 

elevation, and suggested relationships or observations of similarity between these factors and 

phytolith bias from some locations (e.g., Barboni et al., 2007; Iriarte and Paz, 2009), may 

actually be due to differences in soil order. Soil order may be the best estimate of total bias in the 

phytolith record, as it is a function of many factors (climate, environmental conditions, time, 

vegetation/ecosystem type; Retallack, 2001), and likely aggregates both production and 

taphonomic influences. While elevation is statistically insignificant for our current regressions, it 
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is worth noting that our dataset includes very few intermediate (500–1500m) elevation sites; 

thus, further sampling may reveal elevation as a potentially useful indicator for bias estimates.     

4.2 Case study: Zucol et al.(2010) 

 A recent study by Zucol et al. (2010) is an excellent example of commonly used practices 

in the use of phytoliths as an indicator of environment type and method for tracking the evolution 

of grasslands.  The work examines a stratigraphic section in southern Argentina (Gran Barranca) 

from the Eocene that has been described as mixed pyroclastics and paleosols with significant 

depositional hiatuses and periods of pedogenesis (Bellosi, 2010).  Phytoliths were extracted from 

paleosols in this section via methods of Zucol et al. (2010), which have been compared favorably 

with other standard methods (Strömberg, 2011).  The described phytolith assemblage has 33 

morphotypes divided into grass and non-grass (palms, herbaceous monocots, dicots, and others) 

groups. These groups are then plotted as percent abundances through time, without quantitative 

error estimates, and interpreted directly as relative vegetation abundances in the 

paleoenvironment (FIG. 6).  Zucol et al. (2010) concluded that these abundances indicate the 

early (Eocene) presence of significant grassland ecosystems (>50% grass-type vegetation) in 

southern Argentina, including a measurable C4 grass component.  This interpretation is a novel 

result, as vegetation inferred from other Paleogene locations throughout the globe has indicated 

that the evolution and spread of grasslands occurred significantly later (e.g., Jacobs et al., 1999; 

Strömberg, 2005; Edwards et al., 2010), and that C4 grasses were not a major component of such 

ecosystems until the Miocene (~8–0 Ma ago; Latorre et al., 1997; Jacobs et al., 1999; Fox and 

Koch, 2004; Strömberg, 2011; Strömberg and McInerney, 2011).   

 The work by Zucol et al. (2010) is a common example of the way phytoliths are 

employed in paleoenvironmental reconstructions, which is why we find it necessary to examine 
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some of the assumptions made by this model in light of our findings about sources of bias in 

such analyses.  Zucol et al.’s (2010) use of standard phytolith extraction and age correlation 

(sampling from known dated levels within a constrained outcrop) are appropriate, though the 

lack of any reported quantification of counting or experimental error is problematic, as it is 

unclear that any sample recounts were undertaken. While errors between recounts are likely 

minimal (~1% in our error analysis), error reporting in phytolith counting is generally lacking 

and should be improved community-wide (Blinnikov, 2005).  

 Phytolith assemblages are an important tool for reconstructions like that of Zucol et al. 

(2010), but as with all proxy data, they require the use of other types of data for context. In this 

case, sedimentological descriptions or pedotype classifications for the sampled horizons, or 

stable isotope stratigraphy could greatly improve any interpreted changes and provide stronger 

ties between data and interpretations on the whole.  While pedotypes (soil orders) are not defined 

for this work, or for the stratigraphic descriptions of Bellosi (2010), descriptions of paleosols 

containing thick clay and carbonate horizons (Bellosi, 2010) as well as defined phytolith 

zonation within paleosols (Zucol et al., 2010) suggest that the site contains paleosols fitting a 

modern description of Inceptisol and Alfisol.  Lack of mollic features or any observed organic 

carbon preservation, as well as the age of the section, make a Mollisol classification unlikely, 

calling into question the group’s interpretation that this environment supported significant 

(>50%) grassland vegetation.     

 In the context of our current study, the lack of supporting environmental data, and the 

likelihood that soil order types for the phytolith levels reported in Zucol et al. (2010) are 

analogous to modern Inceptisols and Alfisols suggests that the direct interpretation of phytolith 

assemblage data was erroneous.  When we correct the raw assemblage data from this site using 
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the factors defined by mean bias values for each pedotype, the new results have minimal 

grassland indicators (FIG. 6).  Additionally, the inclusion of a C4 component to the grass 

assemblage should be reviewed, as the taxon (Panicoideae) assigned to the “C4” component 

contains both C3 and C4 groups (Strömberg, 2011).  Revising the paleoenvironmental 

interpretation of the Gran Barranca site to instead include the limited presence of grassland 

indicators fits more closely with other interpretations of the region (Barreda and Palazzesi, 2010; 

Bellosi, 2010) and the general pattern of worldwide grassland evolution (e.g., Strömberg, 2005, 

2011; Strömberg et al., 2007; Strömberg and McInerney, 2011), which are consistent with 

grasses being sparse and the Eocene of South America being a generally forested landscape.  

Therefore, applying this correction is an important step forward in reconciling the floral records 

of such an important locality. This reinterpretation greatly alters the significance of the 

publication, as its central conclusion, that grasslands, and specifically C4 grasslands, arose early 

in the Eocene in South America, is unsubstantiated.  It is important to note however that while 

the application of our correction factors alters the possibility of major grassland ecosystems at 

this time, it is clear from the data of Zucol et al. (2010) that grasses existed as a component of the 

vegetation in South America during the Eocene, which agrees with many other recent 

publications (e.g., Edwards et al., 2010).         

4.3  Further work  

As suggested above, much work remains to be done in terms of quantifying bias for all 

common soil order types and developing appropriate correction factors for use in all future 

paleoenvironmental reconstructions from phytoliths.  In addition, there is room for significant 

work focused on parsing out differences in production versus preservation biases via plant-

specific phytolith analysis, and in examining potential time-averaging of phytolith signals within 
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soils via high-resolution depth profile analysis. Further analysis of a broader range of sampling 

sites should also be undertaken in an effort to determine whether environmental or climatic 

factors could explain any remaining variability in bias estimates.  

In addition to this body of work, past paleoenvironmental interpretations based on 

phytolith records (as with case study above) should be reconsidered in an effort to shed light on 

the origins of grassland ecosystems and their role in the evolving landscape of the Cenozoic.  

Such work is essential to the use of phytoliths as a proxy for biome classifications, and may have 

significant implications for fields like geoarchaeology as well, providing a potential tool for 

tracking land use change either on human timescales for high-resolution modern studies, or on 

ecological timescales in deeper time. 

5. CONCLUSIONS 

The primary goal of this work was to highlight the extreme representational bias present in 

modern phytolith assemblages in an attempt to dissuade other workers from directly interpreting 

paleo-assemblages for the purpose of paleoenvironmental reconstructions.  Based on our 

calculated correction factors (~62% for Alfisol/Spodosols, ~6% for Inceptisols, and a negligible 

correction for Mollisols) for soil order types, it is crucial that future work in this field include 

characterizations of paleopedology, including accurate paleosol taxonomy and placement of 

paleosol and phytolith data into both temporal (i.e., vertical stratigraphic) and spatial (i.e., 

horizontal facies variation) context. Not only should future work contain such factors, past work 

should be reevaluated to ensure accuracy with respect to how well phytolith assemblages reflect 

original plant biomass and ecosystem type.  These steps are essential to the continued use of 

phytoliths as a proxy for past vegetation and as a basis for ecological reconstructions throughout 

the Phanerozoic. 
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FIGURE CAPTIONS 

Figure 1. Generalized extent of studied soil orders of the United States (modified from NRCS).  

Black dots indicate field sites (n = 18). 

 

Figure 2.  Common phytolith morphotypes from modern soil samples:  A. bilobate (Bi-6), B. 

square plate (Blo-1), C. saddle (Sa-1), D. smooth (Elo-1 and Elo-7) and spiny (Epi-11) elongate, 

E. conical (Co-2) and keeled (Kr-4) rondel, F. trichome (Tri-4), G. crenate(Ce-4), H. knobbed 

block (Blo-6) and tracheary body (Tra-1), and I. palisade mesophyll (Ho-1 and M-1).  All images 

taken at 1000x magnification, and black bar is 10 μm long in each image. See Table S1 for 

morphotype/compound affiliations.  

 

Figure 3. Percent of total assemblage for each phytolith compound variable and corresponding 

plant category from example sites MO-A, an Alfisol, and 95.1-C, a Mollisol.  White bars indicate 

the percent of the total aboveground vegetation that falls into the associated plant/compound 

category, while black bars indicate the percent of the total soil phytolith assemblage for the same 

category (described in Table S1). 

 

Figure 4. Mean % Forest Indicator phytoliths and % Forest Indicator biomass for assemblages of 

the studied Soil Orders.  Space between data points represents average bias for that Soil Order.  

Horizontal black lines indicate average counting error for phytolith and biomass estimates. 

 

Figure 5. Environmental variable vs. bias regressions: A. Physical and experimental variables 

including phytolith yield, elevation, and soil texture, B. Climatic variables including mean 

annual precipitation (MAP), mean annual temperature (MAT), and effective energy and mass 



32 
 

transfer (EEMT), and C. Soil Order type, the only significant variable explaining variance in bias 

estimates. Ellipses indicate distinct bias clusters with standard error (2σ) limits plotted from 

cluster mean. 

 

Figure 6.  Interpreted percent grass in Gran Barranca vegetation during the Eocene shown in 

black (Zucol et al., 2010), and reinterpretation using proposed correction factors from this work 

in gray.  Left column includes ages and phytozones described in Zucol et al. (2010), and 

horizontal lines indicate sample horizons (paleosols). Vertical dashed line represents the 

accepted cutoff for savannah or grassland ecosystems (Anderson, 1999). 

 

Table 1. Previous studies involving bias in phytolith records. 

Table 2. Site localities and associated environmental and climatic data. 
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Supplementary data:  

 

 

Figure S1. Moisture availability vs. abundance of morphotypes within GRASS-D compound 

group.  Best fit logarithmic trendline indicates a very weak relationship between these variables 

(R² = 0.22). 

 

Table S1. Vegetation estimates from % cover and % biomass, with associated bias estimates. 

 

Table S2. Phytolith morphotype classifications with associated compound groups and total 

sample counts. 
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Figure 1.  
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Figure 2.  
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Figure 3. 
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Figure 4.  
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Figure 5. 
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Figure 6. 
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Figure S1. 
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