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Abstract 

The climate change that occurred over the Eocene-Oligocene transition (EOT; ~33.7 Ma) is the 

most significant and dramatic of the Cenozoic, reflecting a change from “hothouse” to 

“icehouse” conditions. Paleoclimate and paleovegetation studies over the last 50 years have put 

together a broad picture of vegetation change in southwestern Montana. Although general 

predictions concerning biome response to climate change are useful, a refined understanding is 

necessary to forecast the effects of future anthropocentric climate change. This study investigates 

five sites in southwestern Montana (North Hough Draw, Little Spring Gulch, Big Stonerpipe, 

Little Pipestone, and Matador Ranch) using geochemical analyses of fossilized soils (paleosols) 

in combination with plant biosilica (phytoliths) to infer the regional response of vegetation 

during the EOT.  In contrast with the marine record of the EOT, whole rock geochemical 

analyses indicate little change in mean annual temperature and precipitation. Phytoliths from the 

five sites are indicative of a forested or woodland landscape with a small component of (likely 

understory) grasses (~22.1%). The most significant vegetation change occurs in regard to the 

percentage of open-habitat grasses at each site, with a clear increase in open habitat grasses 

around 34.5 Ma, followed by a return to a more heavily forested landscape over the EOT. Stable 

carbon isotope data from organic carbon inclusions in paleosols change in tandem with the 

abundance of open-habitat grasses, and indicate that open-habitat grasses became more abundant 

as drier conditions prevailed. These results affirm findings of lower resolution studies of 
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southwestern Montana, suggest a long-term, gradual cooling and drying trend over the EOT, and 

highlight the importance of local geography as a predictor of response to climate change.  
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1. Introduction 

 While we can predict broadly how biomes will respond to climate change, to make the 

most accurate predictions of vegetation response to future climatic change, we need to 

understand localized responses to global changes and how regional climate and topography 

impact biotic change. The climate change that occurred over the Eocene-Oligocene transition 

(EOT; ~33.7 Ma) is the most significant and dramatic of the Cenozoic, reflecting a change from  

“hothouse” to “icehouse” conditions (Miller et al., 1987; Zanazzi et al., 2007).  While the 

consensus view is that global climate became cooler and drier during the EOT, intermontane 

continental basins were less impacted by global EOT climate fluctuations than lower 

paleoelevation or near-coastal sites (Sheldon and Retallack, 2004; Sheldon, 2009), or than 

marine records (e.g., Liu et al., 2009). These broad climate reconstructions, in conjunction with 

paleobotanical studies, can be used to infer paleovegetation. This paper uses geochemical 

analyses of fossilized soils (paleosols) in combination with plant biosilica (phytoliths) to 

investigate the regional response of vegetation in southwestern Montana during the EOT.   

1.1 Global Paleoclimate Record of the EOT  

 Between the late Paleozoic and the EOT, the Earth was virtually ice free (Tripati et al., 

2008). Evidence of ephemeral ice sheets at the poles in the Eocene prior to the EOT suggests that 

Milankovitch cycles were the driver rather than global cooling events (Miller et al., 2005). This 

is supported by evidence for warm ocean surface temperatures at high latitudes (>10-20°C; 
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Miller et al., 2005; e.g., North Atlantic, Liu et al., 2009). After the Early Eocene, global climate 

began cooling and drying slowly, a trend which produced the modern hydrospheric conditions 

characterized by ice caps on both poles (Zachos et al., 2001). However, this trend was not 

uniform, and was punctuated by the accumulation of northern hemisphere ice during the Oi-1 

glaciation and a brief warm and wet interval in the Middle Miocene (Zachos et al., 2001). 

 The marine record of climate change during the EOT based on oxygen isotope (δ
18

O) 

records indicates a rapid and dramatic climate shift (Coxall et al., 2005; Pearson et al., 2009), 

though interpretation of isotopic records is complicated by the fact that δ
18

O responds both to 

changes in temperature, salinity, and ice volume. Independent temperature proxy records from 

biomarkers (alkenone unsaturation and tetraether indices) indicate ~5°C cooling (Liu et al., 

2009), which suggests that perhaps half of the oxygen isotopic signature is due to icesheet 

growth rather than to temperature change. This finding has been corroborated by some 

continental studies of fossil tooth enamel and bone (>8°C cooling; Zanazzi et al., 2007), but 

those results need to be considered carefully given that fossil bone is generally thought to be 

unreliable as a paleoclimate proxy (e.g., Sheldon, 2009) and that independent records based on 

paleosols and paleofloral results from the same locations indicate little climatic change (Terry, 

2001; Sheldon and Retallack, 2004).  

 Alternatively, gradual cooling and drying is supported by marine studies of fish otoliths 

(Ivany et al., 2000) and marine Mg/Ca ratios (Lear et al., 2000), which indicate little cooling 

over the EOT. Freshwater and terrestrial paleoclimate analyses support a more gradual change as 

well. Oxygen isotopes from tooth enamel, gastropod shells, gyrogonites and otoliths from the 

Isle of Wight, UK suggest little change in summer temperature due to the Oi-1 glaciation 

(Grimes et al., 2005). Paleosol studies based on depth to the calcic horizon and degree of 
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chemical weathering in the Ebro Basin, Spain (Sheldon et al., 2012) as well as Oregon, Montana, 

and Nebraska, USA (Sheldon and Retallack, 2004) similarly indicate a long-term, gradual 

cooling/drying.  

 Hypotheses to explain the EOT invoke a myriad of causal mechanisms including 

changing ocean circulation and continent rearrangement (Raymo et al., 1992), atmospheric 

thermal redistribution from mountain uplift (Raymo et al., 1992), and the reduction of 

atmospheric CO2 (Retallack, 2001; Tripati et al., 2008; Pearson et al., 2009). The latter 

explanation is currently viewed as the most likely, although effects of the other processes should 

not be ignored (DeConto et al., 2008). Recent results using a boron isotope pH proxy to estimate 

pCO2
atm  

before, during, and after the EOT support the role of declining CO2 in Antarctic ice 

sheet growth, with a significant dip in pCO2
atm

 prior to the EOT (Pearson et al., 2009). DeConto 

et al. (2008) used oxygen isotopes and the effects of orbital forcing to model pCO2
atm

  thresholds 

for Antarctic glaciation. In line with Pearson et al.’s (2009) finding of a central pCO2
atm

  value of 

760 ppm, DeConto et al.’s (2008) study predicted Antarctic glaciations below ~750 ppm . 

Furthermore, as little evidence exists for continental Northern Hemisphere ice sheets, it appears 

as though Antarctic ice growth alone is sufficient to explain the oxygen isotope excursion 

observed at the boundary (DeConto et al., 2008). 

1.2 Geologic History of Southwestern Montana  

 Modern southwestern Montana is composed of one central basin—the Dillon-Renova 

Basin—surrounded by the Snake River Plain to the south and volcanic highlands on all other 

sides (Fritz et al., 2007). The Dillon-Renova Basin is divided into a series of smaller basins that 

are the result of Basin-and-Range style faulting (Fields et al., 1985). Each of these smaller basins 

contains a thick record of continental Cenozoic sediment (Tabrum et al., 1996) that is divided 
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into two main formations divided by an angular unconformity: the Renova Formation (middle 

Eocene-early Miocene) and the Sixmile Creek Formation (middle Miocene to late Pliocene) 

(Fields et al., 1985; Fritz et al., 2007). Both formations lie unconformably atop late Cretaceous 

sediments. According to Fritz et al. (2007), the Renova Formation formed as a continuous wedge 

of sediment, which was then broken up in the middle Miocene into the grabens, where the 

Sixmile Creek sediments accumulated. There is no clear lithologic boundary between the Renova 

and Sixmile Creek Formations, with the main distinguishing feature being the finer grain size of 

the Renova Formation relative to the Sixmile Creek Formation. In the absence of long, 

continuous sections, local chronology in the Dillon-Renova Basin has relied on the extensive 

faunal record (Fields et al., 1985; Tabrum et al., 1996). 

  

1.3 Fauna: Worldwide and Local Records 

 Beginning in the Middle Eocene, North American fauna underwent a series of culling 

events—extinctions on both land and sea of which the EOT (34.2-33.7 Ma) was prominent 

(Hutchison, 1992). Warm-water gastropods around Mexico peaked in diversity just prior to the 

Middle Eocene (Squires, 2003), but were subsequently replaced by immigrant mid-latitude taxa 

that were escaping the dropping temperatures observed closer to the Oligocene (Prothero, 1994). 

Terrestrial fauna were likewise influenced by cooling and drying climate conditions, albeit less 

dramatically than marine fauna (Hutchison, 1992). Subtropical land snails, reptiles and 

amphibians common at mid-latitudes during the Chadronian were replaced with drought-hardy 

varieties by the Orellan (Evanoff et al., 1992 in Prothero, 1994). In southwestern Montana, local 

fauna over the EOT have been characterized by their provincialism, with 20–40% of known 

mammalian species being endemic to the region (Tabrum et al., 1996). In Europe, this time 
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period is known as the Grande Coupure or “great cutoff” and likewise corresponds to significant 

extinctions and turnover around 33.2 Ma (Hooker et al., 1995; 2009).  

1.4 Flora 

 As the North American climate cooled and dried toward the EOT, the vegetation shifted 

from subtropical, broad-leaved evergreen forests to more open mixed coniferous and broad-

leaved deciduous forest (Wing, 1987; Tiffney et al., 2001). For the majority of the Eocene, North 

America was covered with the former vegetation types with two main exceptions: 1) dry areas of 

the eastern Rocky Mountains may have supported islands of deciduous vegetation and 2) uplands 

in the western Rockies that may have likewise supported cooler-adapted deciduous vegetation 

(Wing, 1987). The development of these uplands played a major role in the development of 

North American floras as it broke up a formerly continuous lowland between the Rocky 

Mountains and the West Coast (Wing, 1987). As with subtropical land snails and marine 

gastropods, tropical and paratropical vegetation in the northern Rocky Mountains and High 

Plains which had formerly existed at high latitudes (60–65
o
N) began to be replaced by cool-

tolerant deciduous communities closer to the EOT (Graham, 1999). 

 In line with the transition to a cooler, drier climate, Late Eocene (Chadronian) 

paleovegetation from Nebraska including woodlands of Robinia, Prunus and Zelkova suggest a 

seasonal climate, while root diameters and tree spacing from the Badlands of South Dakota 

indicate a large drop in precipitation, from 1000 mm yr
-1

 in the late Middle Eocene (38 Ma) to 

between 250–450 mm yr
-1

 during the Late Oligocene (29.5 Ma) (Sheldon and Retallack, 2004). 

Vegetation patterns due to this precipitation change are expected to have transitioned from moist 

forests in the Late Eocene to an open savanna-like ecosystem by the Late Oligocene (Graham, 

1999). Tanai and Wolfe (1977) used plant megafossils to characterize a wide variety of 
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community types from the Paleogene-Neogene in western North America, including flood-plains 

and humid forests, mixed deciduous-coniferous forests, shoreline communities, a high montane 

forest, and a subhumid chaparral. 

 Several Chadronian and Orellan-aged plant megafossil assemblages have been described 

from southwest Montana (Becker, 1960, 1969, 1972, 1973; Wing, 1987; Graham, 1999).  The 

Beaverhead Basin floras (Chadronian; Christensen Ranch, Horse Prairie, and Medicine Lodge 

florules; Becker, 1969) were interpreted as subhumid, mixed coniferous and broad-leaved 

deciduous forests. Fabaceae are the most diverse family, followed by Rosaceae and Rhamnaceae 

(Becker, 1969). Many modern genera are present, including Juniperus, Quercus, Mahonia, Acer, 

and Salix, as well as a less prominent presence of Abies, Picea, Betula, Cassia, Cercocarpus, 

Fraxinus, and Zelkova (Graham, 1999). Also known from this time period are floral elements 

currently found in eastern North America, western North America, and Asia, including Ginkgo, 

Glyptostrobus, Metasequoia, Ailanthus, and Eucommia.  

 In the Upper Ruby River Basin of southwestern Montana, the Mormon Creek, York 

Ranch, and Metzel Ranch floras (Becker, 1960, 1972, 1973) are dated as Orellan (Wing, 1987) 

while the Ruby paper shales (Becker, 1961) are considered to be Whitneyan (Wing, 1987). These 

floras resembled each other and represent temperate to dry-temperate mixed coniferous and 

broad-leaved deciduous forest with shrublands (Wing, 1987). The Mormon Creek flora has been 

characterized as a deciduous lowland with a high proportion of Salix, Populus, Cercidipyllum, 

and Quercus under humid, temperate conditions (Becker, 1960). Prominent taxa of the Metzel 

Ranch flora included members of the Rosaceae and Fabaceae, as well as a lesser presence of 

Juniperus, Gramineae, Crataegus, and Mahonia—a group of taxa indicative of dry conditions 

(Becker, 1972). The Metzel Ranch flora differed from the Beaverhead flora in having few 
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gymnosperms and lacking oaks. In contrast with these deciduous, subhumid plant communities, 

the York Ranch flora appears to have been dominated by floodplain and riparian elements that 

bear strong resemblance with floras from modern northeastern North America, but also included 

elements of western and southwestern North American and Asian floras (Becker, 1973). 

Prominent families included Salicaceae, Rosaceae, Ulmaceae, and Betulaceae. Graham (1999) 

observed that none of the paleovegetation from southwestern Montana showed a distinct climatic 

trend and that all communities from the EOT displayed mixed coniferous and broad-leaved 

deciduous forest and shrubland amid temperate to dry-temperate conditions. MAP (mean annual 

precipitation) estimates using CLAMP put temperature during this interval between 11–12
°
C 

with a seasonal range of 16
°
C (Graham, 1999).  

2. Methods 

2.1 Sample Collection 

 Samples for geochemical analysis or phytolith extraction were analyzed from five dated 

localities in southwestern Montana from the Climbing Arrow Member of the Renova Formation 

in the Sage Creek Basin (Figure 1). Age-dating is based on North American Land Mammal Ages 

(NALMA) for vertebrate sites compiled in Nichols and Hanneman (2001), and on radiometric 

dates compiled in Fritz et al. (2007) and Retallack (2007). Each locality was logged 

stratigraphically excluding Little Pipestone (which was previously logged by Sheldon and 

Hamer, 2010), and in instances of short stratigraphic sections (<10 m), multiple sections were 

logged and correlations between sections were made based on lithology. Lateral samples were 

also taken where clearly continuous lateral beds were present. All samples were collected from 

trenches dug to a depth of 10–20 cm to minimize modern contamination. Paleosols (n=37) were 

identified based on the presence of root traces, burrows, and/or mottled coloring. In the absence 
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of paleosol identifications, samples were taken at each meter level to ensure temporal coverage. 

Paleoclimate and paleoenvironmental interpretations are based on physical characteristics of the 

paleosols (i.e., mottling, pedotype), degree of chemical weathering, and carbon isotopic 

composition of organic matter (i.e., root traces). Pedological, geochemical, and isotope data are 

compiled in Tables 1, 2, and 3-4, respectively.  

2.2 Whole Rock Geochemistry 

 Subsoil horizons (B horizons), characterized by the presence of mottling (Bw) or gleying 

(Bg), accumulate material washed out of the topsoil horizon and contain valuable paleoclimate 

proxy information (Retallack, 2001). Geochemical analyses were performed at ALS Chemex 

(Vancouver, Canada) on Bw or Bg horizons (n=20) to provide inputs for several geochemical 

proxies that estimate mean annual temperature (MAT), mean annual precipitation (MAP), and by 

extension, degree of chemical weathering (CIA-K; Sheldon et al., 2002). Soils that form under 

higher precipitation rates and warmer temperatures are more heavily weathered. A relationship 

between weathering and MAP in modern soils was derived by Sheldon et al. (2002) and is given 

by the equation: 

P = 221e
0.0197(CIA-K)     

                                           (1) 

where CIA-K is the chemical index of alteration without K (to minimize the effects of potassium 

metasomatism; Maynard, 1992). The CIA-K is related to paleoprecipitation per Eq (1), where R
2
 

= 0.72 with a standard error of ± 182 mm yr
-1

 (Sheldon et al., 2002). Cooler climates tend to 

accumulate higher ratios of potash and soda in comparison with alumina in their soils and a 

climofunction has been established for this relationship as well: 

T = -18.5(S) + 17.3              (2) 
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where S is the ratio of Na2O and K2O to Al2O3 (Sheldon et al., 2002), with an R
2
 = 0.37 and a 

standard error of ±4°C.  Results from both have been corroborated by independent 

paleobotanical and paleopedological proxies (see examples in Sheldon and Tabor, 2009), with 

Eq (1) being quantitatively comparable and Eq (2) recording the vector of change appropriately, 

while typically underestimating MAT relative to other proxies. 

2.3 Stable Isotope Preparation 

 Samples for stable organic carbon isotope analysis (n=18) were washed with methanol 

and dried overnight. Carbonate was digested with repeated washes in 7.0% HCl on a hot plate 

(50
°
C), for up to 45 minutes. Samples were then rinsed with DI water at 40

°
C for 20 minutes, up 

to three times. Samples were dried, crushed, and placed into crimped tin capsules for analysis 

using a Costech Elemental Analyzer attached to a Delta V+ isotope ratio mass spectrometer at 

the University of Michigan Stable Isotope Laboratory. Results were calibrated using 

international standards (IAEA600, IAEACH-6) and are given in delta notation relative to the V-

PDB.  Analytical uncertainty was <0.08‰ for δ
13

Corg. Stable isotope data are compiled in Tables 

3 and 4.  

2.4 Phytolith Extraction 

 Phytolith extraction followed the methods of Strömberg (2007). Approximately 100 g of 

sample (n=70) was homogenized, and a 1.0 g subsample was analyzed for phytoliths. 

Subsamples were crushed into sand-sized pieces with a mortar and pestle. Concentrated (37.0%) 

HCl was added to remove carbonate, after which samples were rinsed with deionized (DI) water 

and sieved to remove the coarse (>250 µm) fraction. Organic material was removed with a 

solution of nitric acid (HNO3) and potassium chlorate (KClO3; Schultze’s solution). Samples 

were left in the Schulze’s solution in a hot water bath and stirred every ten minutes for 45–60 
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minutes. Samples were again rinsed with DI water and sieved through a 53 µm sieve to 

deflocculate clay minerals. Samples were rinsed and centrifuged to remove clays. Phytoliths 

were extracted by heavy liquid floatation using zinc bromide (ZnBr2) with a specific gravity of 

2.38 g cm
-3

.  

2.5 Vegetation analysis 

Samples with good to high phytolith yields (>1.0% of silica in five fields of view) of 

moderately to well-preserved phytoliths (qualitatively characterized by degree of brokenness, 

abrasion, etching, etc. of silica) were dried, and subsamples of the residue mounted onto slides 

(two slides per sample: one using Cargille Meltmount®, refractive index = 5.39, and one using 

Cargille Non-Drying Immersion Oil Type A). Slides were analyzed on a petrographic 

microscope (400–1000x) and morphotypes were categorized based on the work of Strömberg 

(2003; Data Repository 1–7). Each morphotype is assigned to a plant functional type category: 

general forest indicators (FI-GEN), conifer/monocot (CONI/MONO), woody dicotyledons 

(DICOT-WO), general dicotyledons (DICOT-GEN) diagnostic palms (PALM-D), 

diagnostic/non-diagnostic pooid grasses (POOID-D/POOID-ND), sedges (SEDGE) or other 

(OTH) following Strömberg (2003; 2004; 2005; Data Repository 1, 2). For vegetation analysis, 

relative percentages of grass silica short cells (GSSCs = BAMB/B  + POOID-D + POOID-ND + 

CHLOR + OTHG; Strömberg, 2004) and forest indicators (FI total = DICOT-WO + DICOT-

GEN + FI-GEN + PALM-D + CONI; Strömberg, 2004) were used.  Non-diagnostic grass 

morphotypes (NDG) and non-diagnostic (OTH) and unclassified phytoliths were excluded from 

final vegetation analysis based on the wide range of plant types they can come from (Strömberg 

2007).  Phytolith morphotypes were counted from random transects across 22 x 40 mm area. To 

minimize error and capture an accurate reflection of morphotype diversity, a minimum of 200 
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total diagnostic morphotypes were counted from each sample (Strömberg, 2009).  Personal 

counting standard deviation based on five recounts of one sample yielded an average deviation of 

3.7%, with a deviation for FIs of 5.8%, and for GSSCs of 2.1%.  Phytolith results were recorded 

as raw counts (Data Repository 3, 4), percent of the total biosilica (Data Repository 5), as 

percent of total phytolith population (Data Repository 6), and as percent of FI and GSSC 

morphotypes for total FI+GSSC (as used for vegetation reconstruction; Data Repository 7). 

Average values of FIs and GSSCs for each locality were also calculated (Table 5). Values 

reported in section 3.4 are as percent of total phytolith population unless otherwise indicated.  

 

3. Results 

3.1 Site Descriptions  

3.1.1 North Hough Draw #1 

The North Hough Draw section (Figure 1; N44
°
45’17.8”, W112

°
34’45.2”; ±4 m) is located 

northeast of Dell, Montana off of Sage Creek Road. Rocks from this site have been dated as 

Mid-Late Chadronian (Nichols and Hanneman, 2001) and were composed of siltstones and 

sandstones with occasional layers of CaCO3 cementation (Figure 2C; Figure 3). Based on its 

close proximity to Little Spring Gulch (Figure 1), and the consistently different geochemistry of 

the two sites (Figure 5) we are inclined to place North Hough Draw closer to Mid-Chadronian, 

and Little Spring Gulch closer to Late-Chadronian. The Con Color and Santo Hoyo pedotypes 

(see section 3.2 for pedotype descriptions) were found here. The measured section was 16.5m 

thick, but an additional 15 m of covered section remained above this and 8–10 m of covered 

section below.  

3.1.2 Little Spring Gulch 
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The Little Spring Gulch site (Figure 1; N 44
°
50’17.3”, W112

°
35’54.9”; ±4 m) is ca. 12 miles to 

the northeast of Dell, Montana. Little Spring Gulch is composed lithologically of alternating 

layers of silty sandstone and fine grained sandstone (Figure 2A; Figure 3) and contains both the 

Con Color and Santo Hoyo pedotypes. Two sections, “A” and “B” (17.5 and 14.5 m, 

respectively) were measured and laterally correlated. Little Spring Gulch A and B are treated as 

one locality, “Little Spring Gulch.” The samples from Little Spring Gulch are dated to the Mid-

Late Chadronian (Nichols and Hanneman, 2001). 

3.1.3 Big Stonerpipe 

 The Big Stonerpipe site is east of the junction between Montana Highway 2 and Montana 

Highway 41 (Figure 1; N45
°
50’35.7”, W112

°
15’20.5”; ±3 m). Big Stonerpipe has been dated to 

the latest Eocene-earliest Oligocene (age assignment from Retallack, 2007). Three sections were 

measured at Big Stonerpipe (13.3 m, 3.8 m and 4.9 m) that were all characterized by the 

presence of reworked ash in at least one (but usually many) layers (Figure 3).  Taenidium 

burrows and zeolites were also common features, as well as evidence of fluvial channels in 

nearby outcrops. The Con Color and Santo Hoyo pedotypes were found here (Figure 2D).  

3.1.4 Little Pipestone 

Little Pipestone is also east of the junction between Montana Highway 2 and Montana Highway 

41 (Figure 1; N45
°
50’33.6”, W112

°
15’40.8”; ±5 m) and is located directly across the road from 

Big Stonerpipe. It is a well-known vertebrate paleontology site (Douglass, 1905) and is dated as 

latest Eocene-earliest Oligocene (age assignment from Retallack (2007) and Sheldon and Hamer 

(2010)). It consists of claystones, siltstones, and sandstones with sedimentary structures 

indicative of fluvial channels (Figure 2E; Figure 3). Pedotypes described by Sheldon and Hamer 
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(2010) include the equivalent of the Con Color and Santo Hoyo pedotypes. See Sheldon and 

Hamer (2010) for full stratigraphic description.  

3.1.5 Matador Ranch  

The Matador Ranch site (Figure 1; N44
°
45’1”, W112

°
33’59.7”; ±4 m) is 8.8 miles to the 

northeast of Dell, Montana. Samples from the Matador Ranch locality are characterized by fine 

silty sandstones at the base coarsening up to fine-medium grained sandstone (Figure 2B; Figure 

3). The Con Color and Anegado Pedotypes were present here, but the Santo Hoyo Pedotype was 

not, in spite of the presence of trace burrows. The described section was 81.9 m and has been 

dated to the middle Orellan age (Tabrum et al., 1996). 

 

3.2. Pedotypes 

3.2.1 Pedotype “Con Color” 

The “Con Color” paleosol crops out in each of the five described sections (Matador Ranch, 

North Hough Draw, Little Spring Gulch, Little Pipestone, and Big Stonerpipe), and is 

comparable to a modern Inceptisol (Table 1; Soil Survey Staff, 2003). It contains both A and Bw 

horizons and is characterized by moderate to weak mottling including light greenish gray (8/1, 

Gley 1), to pale/very pale brown (6/3, 10YR; 8/2, 10YR) and light reddish brown mottles (7/3, 

2.5YR; Munsell Soil Color Chart, 2000). Parent material included sandy or clayey silt and is 

representative of a seasonally flooded/disturbed landscape (i.e., floodplain).  

3.2.2 Pedotype “Anegado” 

The “Anegado” paleosol appears at Matador Ranch and is comparable to a modern Inceptisol 

(Table 1; Soil Survey Staff, 2003).  It contains both A and Bg horizons and is characterized by 
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gleyed, but not mottled horizons. The parent material is silt or sandy silt and represents a more 

continuously waterlogged site.  

3.2.3 Pedotype “Santo Hoyo” 

The “Santo Hoyo” paleosol appears at Little Spring Gulch, North Hough Draw, Big Stonerpipe 

and Little Pipestone. It is comparable to a modern Entisol (Table 1; Soil Survey Staff, 2003) and 

is characterized by very weak or absent soil development with either root traces, burrows, or 

both, but no horizonation.  The parent material ranges from silt with quartz pebbles to 

medium/fine sand and represents an infrequently disturbed and drier landscape.  

3.3. Geochemical Analyses 

3.3.1 Weathering Intensity 

 Changes in the degree of chemical weathering of paleosol Bg horizons are indicated as 

the Chemical Index of Alteration minus potassium (CIA-K). The range of values measured from 

our sections is 56.1–74.2 with a mean of 63.3 (σ = 4.4; Table 2). A more subtle weathering 

relationship is present in the molecular ratio of barium/strontium (BaO/SrO; Vinogradov, 1959), 

which characterizes the degree of leaching experienced by a soil or paleosol. The trend observed 

in the BaO/SrO relationship is broadly similar to that of the CIA-K with some exceptions. 

Namely, the two samples taken from Big Stonerpipe have the highest CIA-K values (indicative 

of strong weathering), but the lowest BaO/SrO ratios (indicative of little leaching; Figure 5). This 

may be explained by the higher quantities of NaO compared to other sample localities, which is 

known to increase the solubility of strontium salts (Vinogradov, 1959).  

3.3.2 Paleoprecipitation and temperature 

 Paleoprecipitation can be estimated based on the lack of pedogenic carbonate formation 

in paleosols following Jenny (1941) as >800 mm yr
-1

. Reconstructed paleoprecipitation values 



16 
 

using Eq (1) ranged from 675–954 mm yr
-1

, with a mean value of 772 mm yr
-1

 (σ = ± 67 mm). 

Temperature estimates made using Eq (2) produced a temperature range of approximately 11–

14
°
C with a mean of 12

°
C (σ = 0.86

°
C) (Table 2). These results are consistent with previous work 

in the region on penecontemporaneous paleosols (Retallack, 2007) as well as macrofossil 

estimates (Graham, 1999). In general, MAP and MAT remain steady throughout the interval, 

with only modest cooling and drying around 32.5 Ma ( 772 mm yr
-1

 to 725 mm yr
-1

 ± 29 mm; 

12.29
°
C to 11.99

°
C  ±  0.53

°
C; Figure 5). 

3.3.3 Stable Isotope Results 

 The range of δ
13

Corg is -20.31 ‰ to -24.90 ‰, with an average of -22.80 ‰ and a 

standard deviation of 1.44 ‰. Mean values for each sites varied slightly. North Hough Draw and 

Matador Ranch (the oldest and youngest sites, respectively), each had average values around -

22.25 ‰ (note, Matador Ranch n =1). Little Spring Gulch, the second oldest site, had the most 

depleted δ
13

Corg average, with -23.84 ‰, and Big Stonerpipe, the second youngest, had the most 

enriched value, at -21.38 ‰. The trend observed is of moderate δ
13

Corg values in the mid-

Chadronian, a drop in δ
13

Corg during the late-Chadronian, then rebound to higher δ
13

Corg during 

the latest-Chadronian, and finally a leveling out to pre-EOT values in the Orellan. See Table 3 

and 4 for individual sample data and summary data on individual sites, respectively.  

 

3.4. Phytoliths 

 Phytolith results are reported here as a percent of total phytolith population per sample, 

unless otherwise indicated. Phytolith results used for vegetation reconstruction are assigned FI 

and GSSC percents out of total FI + GSSC morphotypes only (Data Repository 7), and are 

discussed further in Section 4.3. With the exception of Matador Ranch, all sites yielded well. 
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Only three samples were analyzed for the Little Pipestone locality, but this locality directly 

corresponds to the Big Stonerpipe locality in time and location (lateral separation of ~150 m). 

Two samples from Matador Ranch were evaluated quantitatively, and two more were examined 

only qualitatively due to a low yield.  

 The average across all five localities for total forest indicators (FIs) was 50.2%  (σ = 

8.1%) and the average percent GSSCs was 15.0% (σ = 5.6%) (Table 5). For the most part, 

assemblages from all sites contained approximately the same broad categories of morphotypes, 

with differences in abundance being the main distinguishing characteristic (Data Repository 3, 6 

and 7). All assemblages excluded Sclereid (Scl), Knobby (Kn), and most Blocky (Blo) 

morphotypes, which are typically diagnostic of conifers or general forest indicators (Strömberg, 

2004), as well as most pyramidal (PY) and saddle (SA) morphotypes that are diagnostic of 

bambusoid and chloridoid grasses (Data Repository 3). In total, forty morphotypes were recorded 

for all samples analyzed. The average number of morphotypes per site was ~22, with a range of 

16–28. The most commonly observed morphotype regardless of locality were undiagnostic 

“elongate” morphotypes (Elo-1; Figure 4C).  Common diagnostic FI morphortypes included 

small pink spheres (Cl-4; Figure 4S-U), MD elongates (Elo18; Figure 4D), echinate spheres 

(Clm-2; Figure 4I,J), VI-1 spheres (VI-1; Figure 4K) and anticlinal epidermal cells (Epi-3; 

Figure 4O-P). Less commonly observed FI morphotypes included tracheary elements (Tra-1; 

Figure 4Q), and worm/pupa-like tracheary elements (Tra-2; Figure 4V). The most common 

GSSC morphotypes observed were those likely belonging to pooid grasses (CO-1, A&B; CO-2; 

Figure 4E,F,H; Figure 4G). Less commonly observed GSSC morphotypes included small 

“spiked” rondels (CO-4; Figure 4A) and collapsed saddles (SA-3; Figure 4B). Very few sponge 

spicules or diatoms (Figure 4L,N) – indicators of standing water – were recorded. The only site 



18 
 

with average “aquatic biosilica” assemblages over 1.0% of total biosilica (including all 

phytoliths, diatoms, chrysophytes and sponge spicules) was Matador Ranch, with 1.7%. Two of 

the highest aquatic biosilica yielding samples from Matador Ranch were the two poorest yielding 

for phytoliths and were included only qualitatively in vegetation analysis. Only one other 

sample, also from Matador Ranch, had an aquatic biosilica content higher than 9.5% (Data 

Repository 5).  

 

Eocene localities: North Hough Draw, Little Spring Gulch, Big Stonerpipe, and Little Pipestone 

of the Renova Formation. 

3.4.1 North Hough Draw 

 The North Hough Draw locality (n=6) had the second highest percentage of FIs 

(mean=54.4%) ranging from 38.6–81.7% (Data Repository 6, Table 5). The majority of FIs at 

North Hough Draw came from anticlinal epidermal cells (Epi-3). Other FI morphotypes included 

echinate spheres (Clm-2; palms), small pink spheres (Cl-4), MD elongates (Elo-18), and thick 

trapezoidal rectangles with knobs (Blo-7). Rarely observed morphotypes included tracheary 

elements (Tra-1, Tra-2, and Tra-7), sinuate elongates (Elo-20), faceted regular plates (Blo-3), 

and VI-1 spheres. 

 North Hough Draw was composed of 9.2% GSSCs, with individual samples ranging from 

4.0–17.5% of the total phytolith population. Rondels (CO-1 Type A & B, CO-2) indicative of 

pooid grasses were the most common. Less frequently observed morphotypes also included 

keeled rondels (KR-1), conical rondels with concave bases (COF-5; all indicative of pooid 

grasses), tall rondels with spiked tops (COF-1) or concave plates (COF-6), and Bl-13 (all 
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bambusoid grasses) (Data Repository 3 and 5). As with the other sites, no clear pattern was 

distinguishable with regard to time or lithology.  

3.4.2 Little Spring Gulch 

 The Little Spring Gulch site (n=9) contained a mean FI of 42.5%, with individual 

samples ranging from 16.0–61.5% (Data Repository 6, Table 5). The most common FI 

morphotypes included anticlinal epidermis cells (Epi-3), smooth spheres with concentric 

laminations (VI-1), echinate spheres (Clm-2) typical of palms, small pink spheres (Cl-4), 

tracheary elements (Tra-1, Tra-2), and MD elongates (Elo-18) (Figure 4; Data Repository 3). 

None of these morphotypes were present in all nine samples. The biggest disparity appeared 

among the small pink spheres and the echinate spheres. In four of the nine samples Cl-4 was 

>25.0% of the total FIs, while the other five samples had 0.0–0.1% Cl-4. Likewise, one sample 

contained 35.5% echinate spheres, while four others contained almost 0.0%. 

 The Little Spring Gulch site the second highest percentage of GSSCs (mean=20.3%) with 

a range of 2.0–55.2% of total phytoliths (Table 5; Data Repository 6). Most GSSC morphotypes 

came from 2–3 specific morphotypes. All samples included general truncated rondels (CO-1, A 

& B), suggestive of pooid grasses, and truly conical rondels (CO-2), diagnostic of pooid grasses. 

Other rare morphotypes included Chusquea rondels (CO-3); small, irregular pyramidal bodies 

(PY-2; bambusoid grasses); keeled rondels (KR-1; pooid grasses); and true saddles (SA-1; 

chloridoid grasses). Sedges (Epi-6) were rare, but present, as observed on cursory scans. Overall, 

variation among samples was present for both FIs and GSSCs, but no discernible trend was 

evident among the samples at this site.  

Lateral samples from Little Spring Gulch were also analyzed. Two samples were 

processed, approximately 30 m to the left and right of the main section. The main section sample 
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(LSGB11-11) was composed of 61.5% FIs and 4.0% GSSCs (Data Repository 6). The average of 

the two lateral samples yielded 62.0% FIs (σ = 3.7), and 22.9% GSSCs (σ = 1.4), of which the FI 

average is significantly different by more than two standard deviations (Table 5). The Little 

Spring Gulch lateral samples had the highest percentage of both FI and GSSC morphotypes out 

of any other locality. Common FI morphotypes were the same as those from the main Little 

Spring Gulch section: anticlinal epidermis cells (Epi-3), smooth spheres with concentric 

laminations (VI-1), echinate spheres (Clm-2), small pink spheres (Cl-4), tracheary elements (Tra-

1, Tra-2), and MD elongates (Elo-18). GSSC morphotypes were also largely similar to those 

found in the main section, but with the addition of rare tall rondels with spiked tops (COF-1), 

keeled rondels (KR-1), and saddle morphotypes (SAF-1, SA-1 and SA-5) diagnostic of 

chloridoid grasses (Data Repository 3). The lateral samples likewise showed no trend with 

respect to time or lithology.    

3.4.3 Big Stonerpipe 

 The Big Stonerpipe locality had an average of 40.5% FIs with a range of 14.9–68.6% 

(Data Repository 6, Table 5). Major constituents were small pink spheres (Cl-4), with small 

numbers of tracheary elements (Tra-1, Tra-2), VI-1 spheres and MD elongates (Elo-18) also 

observed. Very rare morphotypes included anticlinal epidermal cells (Epi-3), sinuate elongates 

(Elo-20), and multifaceted S-bodies (Scl-3) (Data Repository 3). 

 GSSCs at Big Stonerpipe comprised 12.7% of the assemblage (range = 3.2–23.2%). The 

Big Stonerpipe locality showed the most diversity among GSSCs, although the vast majority of 

morphotypes were the general conical rondels (CO-1, Type A & B; indicative of pooid grasses) 

(Data Repository 6). Other morphotypes included truly conical rondels and keeled rondels (pooid 

grasses) (CO-2 and KR-1, respectively); collapsed saddles (SA-3), Chusquea rondels (CO-3) and 
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tall rondels with spiked tops (COF-1; bambusoid grasses) and true saddles (SA-1) and saddles 

with one indented side (SA-5; chloridoid grasses). Sedge (Epi-6) morphotypes were also 

exceedingly rare, but observed (Data Repository 3). Variation in abundances of FI and GSSC 

morphotypes existed, but no clear pattern was observed overall.  

3.4.4 Little Pipestone 

 The Little Pipestone locality (n=3) had a high percentage of FIs (mean=52.2%; Table 5). 

Total FIs ranged from 25.0–75.3% among samples (Data Repository 6). Small pink spheres (Cl-

4) comprised, on average, 85.0% of the FIs, but anticlinal epidermal cells (Epi-3), tracheary 

elements (Tra-1, Tra-2), echinate spheres (Clm-2) and VI-1 spheres were also observed 

universally. Other, rarely observed morphotypes included the epidermal plates of sedges (Epi-6), 

MD elongates (Elo-18), and multifaceted S-bodies (Scl-3) (Data Repository 3). 

 Little Pipestone contained the third highest percentage of GSSCs (mean=16.5%), and one 

of the smallest ranges (14.2–22.9%). The biggest constituent of the GSSCs were the generic 

truncated rondels (CO-1, Type A & B; 71.8%), but small “spiked” and keeled rondels (CO-4 and 

KR-1, respectively) were also observed, both of which are also indicative of pooid grasses. The 

Little Pipestone site had the highest percentage of true saddle morphotypes (SA-1), and was the 

only location with “indented” saddles (SA-5), both of which are indicative of chloridoid grasses. 

Other very rarely observed morphotypes included Chusquea rondels (CO-3), tall conical rondels 

with concave plates (COF-6), collapsed saddles (SA-3), and tall rondels with spiked tops (COF-

1; bambusoid grasses) (Data Repository 3 and 5). No clear pattern in vegetation was observed for 

either FI or GSSC morphotypes with regard to time or lithology.  

 

3.4.5 Oligocene localities: Matador Ranch of the Renova Formation 
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 The only Oligocene locality sampled was also by far the poorest yielding site. Of 

approximately 33 samples taken, only six yielded sufficiently well-preserved phytolith 

assemblages to further analyze. Of those six, only two produced over 200 diagnostic 

morphotypes, while two more were evaluated qualitatively. The average percent of FIs in the top 

yielding samples was 49.1% of the total phytolith population, with individual samples ranging 

from 41.0–57.0% (Data Repository 6, Table 5). The most common FI morphotypes were the 

echinate spheres (Clm-2; palms), small pink spheres (Cl-4), and MD elongates (Elo-18), but the 

sites differed in the abundances of each of these. Tracheary elements (Tra-1) and compound 

spheres (Cl-5) were also less commonly observed (Data Repository 3).  

The average percentage of GSSCs was 9.0% (σ = 3.3%) with a range of ~7.0–11.0%. The 

most commonly observed GSSCs included general (CO-1, Type A & B) and truly conical (CO-

2) rondels indicative of pooid grasses. Few rondels with concave/convex bases (COF-5) were 

also observed. The non-plant biosilica percentage for Matador Ranch was the highest of any 

other site (1.7%; Data Repository 4).  

 The second set of samples, which yielded >100 diagnostic morphotypes, are rather 

different than the two higher yielding sites and are here reported as a percentage of total biosilica 

(i.e., total phytolith population + diatoms + chrysophytes + sponge spicules + unknown). These 

two samples “sandwich” the high yielding samples stratigraphically. Most of the diagnostic 

phytoliths in these samples were echinate spheres (Clm-2, palms) and MD elongates (Elo-18). 

Anticlinal epidermal cells (Epi-3), tracheary elements (Tra-1, Tra-2), multifaceted S-bodies (Scl-

2), VI-1 spheres, and a very few small pink spheres (Cl-4) were also observed. Common GSSCs 

included general conical rondels (CO-1 Types A and B), Chusquea-type rondels (CO-3; 

bambusoid grasses) and a small number of true saddles (SA-1; chloridoid grasses). The two 
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lower-yielding samples had the highest percentage of biosilica (sponge spicules and diatoms) of 

any other sample counted in any of the localities (10.2%) (Data Repository 3, 4 and 5). No 

overall trend was apparent, despite variability among the samples. 

     

4. Discussion 

4.1 Comparison with Global EOT Record 

 In contrast to marine studies, which record a dramatic perturbation in δ
18

O, our record of 

continental paleoclimate in southwestern Montana remains relatively steady throughout the EOT 

(Figure 5). The new results are consistent with previous lower resolution records (Sheldon and 

Retallack, 2004; Retallack, 2007) from nearby sites. Steady paleotemperatures and 

paleprecipitation values in Montana may be linked to the sheltered intercontinental local 

geography. For example, Sheldon et al. (2012) used stable carbon isotopes, whole rock 

geochemistry, and depth to the Bk horizon to reconstruct paleoclimate in the Ebro Basin (Spain) 

during the EOT, and also found little or no paleoclimatic change, in spite of a significant 

decrease in chemical weathering and hydrospheric reorganization consistent with major ice sheet 

growth during the onset of the Oi-1 glaciation. The new record is consistent with a growing 

literature that indicates relatively modest continental interior climatic response characterized by 

minor cooling (e.g., Terry, 2001; Sheldon, 2009), and more significant responses in near-coastal 

areas (Sheldon and Retallack, 2004; Sheldon et al., 2009) characterized by cooling of 

comparable magnitude to the marine response (e.g., Liu et al., 2009).  This suggests that climatic 

response is coupled at the regional scale to hydrospheric response to the global drop in pCO2
atm

 

(Sheldon et al., 2012). 

4.2 Stable Carbon Isotopes 
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 The range of carbon isotope values observed (-20.31 to -24.90‰) is characteristic of C3 

vegetation. While many studies have used organic (particularly leaf) carbon data to interpret 

paleoclimate, care must be exercised to include plant functional types (PFT; i.e., deciduous 

angiosperm, evergreen gymnosperm, etc.) and local precipitation estimates in the interpretation 

of this data, as these factors influence δ
13

Corg (Diefendorf et al., 2010). For example, Diefendorf 

et al.’s (2010) study of woody C3 vegetation found that physiological differences cause 

evergreen gymnosperms and deciduous angiosperms to differ consistently in δ
13

Corg values, even 

under similar climate conditions. Our δ
13

Corg observations combined with mean estimates from 

Eq (1) are most comparable to Diefendorf et al.’s (2010) “cool-cold deciduous forest.”   

4.3 Vegetation 

 In total, forty morphotypes were observed among the five sites. The most diverse site was 

Big Stonerpipe (28 observed morphotypes), followed by North Hough Draw (25), Little Spring 

Gulch (22), Little Spring Gulch laterals (22), Little Pipestone (16), and Matador Ranch (13). 

Diversity observed among FI and GSSC morphotypes individually follow this pattern as well. 

The most commonly observed phytolith morphotypes observed among the five sites were those 

indicative of a forested landscape, including small pink spheres (Cl-4) and MD elongates (Elo-

18). The most commonly observed GSSC morphotype were general truncated conical rondels 

(Type A; CO-1). Sedge morphotypes were observed at three sites; Little Spring Gulch (including 

lateral samples), Big Stonerpipe, and Little Pipestone.  

 Vegetation reconstruction is based on percentages of FI and GSSC morphotypes only 

(Data Repository 7) and these values will be used here to discuss paleovegetation in sites 

examined. The overall FI and GSSC means were 78.0% and 22.1%, respectively (Table 5). The 

FI site means for North Hough Draw (84.1%), Little Spring Gulch (68.7%), Big Stonerpipe 
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(73.0%), Little Pipestone (73.1%), and Matador Ranch (84.0%), all remained within one 

standard deviation of the overall average, suggesting a similar amount of closed forest. The 

GSSC site means for Little Spring Gulch (31.3%), Big Stonerpipe (27.0%), and Little Pipestone 

(26.9%) all remained within one standard deviation of the overall mean, but the North Hough 

Draw (15.9%), Little Spring Gulch laterals (15.2%), and Matador Ranch (16.0%) were more than 

one standard deviation lower (Table 5) suggesting these latter sites had fewer grasses. Overall 

vegetation appears to be dominated by forests and woodlands, with palms and open habitat 

grasses playing a comparatively minor role in the ecosystem (Figure 5).  

  Although no locality displayed a strong intra-site trend with regard to time or lithology 

(Figure 5), a clear trend is observed in inter-site comparisons of the relative percentage of open-

habitat grasses (Figure 6). These open-habitat grasses were the most commonly counted GSSC 

morphotypes (CO-1 A and B; CO-2) and likely represent pooid grasses, a C3 grass subfamily that 

today live in open, cool and wet climates compared to the C4 grass families, which are better 

adapted to warmer, more arid conditions (Strömberg, 2005). Assuming correctly inferred locality 

ages, open-habitat grasses were present in low abundances beginning ~35.3 Ma, peaked around 

34.5 Ma, and then declined to pre-peak levels during the Orellan (~33.3 Ma; Figure 5). 

Corroboration of the C3 nature of these grasses is supported by our stable carbon isotope data, 

which falls closely within the carbon signature range for C3 plants (~-22 to -30 ‰; Diefendorf et 

al., 2010). Based on the relatively high percentage of FI morphotypes and palms, coupled with 

the almost exclusive presence of open-habitat pooid grass morphotypes, we interpret vegetation 

structure to have included a patchy network of forest and woodlands. The relatively limited 

percent of grass morphotypes (9.0–22.3 %) indicates they may have played a comparatively 

minor role in ecosystem structure during this time. This is comparable to Diefendorf et al.’s  
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(2010) δ
13

Corg data for woody C3 plants, which predicted a cool-climate deciduous forest biome 

for the δ
13

Corg  range observed.  

 Strömberg’s (2005) study on phytolith records from the Eocene-Miocene of the Great 

Plains showed the presence of open-habitat grasses from the EOT in Colorado, but for Montana 

and Idaho inferred the presence of closed forest habitats with some understory grasses and a low 

frequency of open-habitat grasses. One issue is that the dominant GSSCs in Montana seem to be 

of rondels that are not diagnostic of pooids (an observation confirmed by Miller et al. in press 

and in the current study), so their ecology is difficult to infer (Strömberg, 2005). However, these 

are likely to be open-habitat grasses that were replaced by other pooid lineages by the Miocene 

(Miller et al., in press). This interpretation would be consistent with Sheldon and Hamer (2010) , 

who inferred open habitats in the late Eocene-early Oligocene based on trace fossil assemblages 

in southwestern Montana, and with open-habitat (Stipa) grass macrofossils from the latest 

Eocene (~34 Ma) in Colorado (Manchester, 2001).  

  Macrofossil studies from southwestern Montana over the EOT emphasize the presence 

of mixed coniferous and broad-leaved deciduous forest with shrubland presumably playing a 

more minor ecosystem role. This is to be expected as monocots such as grasses are not as well 

preserved (Herendeen and Crane, 1995; Smith et al., 2010). This is especially true for the EOT, 

when drying conditions and reduced volcanic activity in the Oligocene hampered fossil 

preservation in the northern Rocky Mountains (Graham, 1999).  

 The muted vegetation change observed within site samples is expected based on the 

relatively short time period spanned by each locality (~200 ka–2 Ma years), as well as the 

recorded pedotypes that likewise are quite homogeneous in regard to length of development and 

physical features (color, parent material, etc.; Table 1). Geochemical analyses in conjunction 
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with paleoclimate proxies described above corroborate the unchanging nature of the soils. 

Further, the small variation observed in the δ13
Corg data mirrors the change in open-habitat grass 

abundance (Figure 7). Mid-Chadronian samples show comparably moderate values, followed by 

a Late-Chadronian depletion of 1.62‰ (indicative of drier conditions). Latest-Chadronian 

samples indicate a 2.46‰ enrichment, followed by return to pre-depletion values around -22.00 

‰ (Figure 7; Table 4).  

4.4 Conclusions  

 A broad understanding of biome response to climate change is inadequate to accurately 

predict the effects of future climate change. To make the most accurate predictions of vegetation 

response, we need to understand localized responses to global changes and how regional climate 

and topography impact biotic change. This study examined five sites in southwestern Montana 

over the EOT using whole-rock geochemical analyses of paleosols, stable carbon isotope data 

from organic paleosol inclusions and vegetation reconstruction based on phytoliths.  In contrast 

to marine studies, our record of continental paleoclimate in southwestern Montana remains 

relatively steady throughout the EOT (Figure 5), indicative of a gradual cooling and drying over 

this period. The new record is corroborated by other studies (e.g., Terry, 2001; Sheldon, 2009) 

and suggests that climatic response is coupled at the regional scale to hydrospheric response to 

the global drop in pCO2
atm

 (Sheldon et al., 2012).  Stable carbon isotope observations combined 

with mean annual precipitation estimates are most comparable to Diefendorf et al.’s (2010) 

“cool-cold deciduous forest.” Phytolith studies indicate a patchy network of forest and 

woodlands. The relatively limited percent of grass morphotypes (9.0–22.3 %) indicates they may 

have played a comparatively minor role in ecosystem structure during this time. Though overall 

vegetation change was muted, the proportion of open-habitat pooid grasses did change with time, 
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an observation matched by δ13
Corg, records. Data presented here suggests open-habitat grasses were 

present in low abundances beginning ~35.3 Ma, peaked around 34.5 Ma, and then declined to 

pre-peak levels during the Orellan (~33.3 Ma). 

4.5 Future Work 

 This study aimed to provide a high resolution image of intermontane vegetation during 

the EOT in Montana. While many paleoclimate studies have relied on far fewer samples than 

presented in this study, more data is needed to achieve a more continuous record.  The small 

section size of most sampled localities meant that geochemical and phytolith data provide a 

snapshot covering  ~200 ka–2 Ma years.  Furthermore, clearer understanding of EOT vegetation 

change could be achieved via better age-constrained sample localities.    
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Figure 1. Location of sites in southwest Montana sampled in this study.  

Evidence from phytoliths and paleosols are used to create a broad regional record of local 

vegetation and climate from five biostratigraphically dated sites in southwestern Montana 

across the EOT: (1) Little Pipestone and Big Stonerpipe (latest Chadronian), (2) North 

Hough Draw #1 (middle/late Chadronian), (3) Matador Ranch (Orellan), (4) Little Spring 

Gulch (Chadronian). Site ages based on North American Land Mammal Ages (NALMA). 
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Figure 2. Photographs of the sample localities. 

Black lines represent sampled section lines. (A) Little Spring Gulch (N 44
o
 50’ 19.6”, W 

112
o
 35’ 52.9”). Two sections were sampled to comprise Little Spring Gulch (“A” and “B” 

on photo). Lateral samples were taken from section between A and B, as well as on outcrop 

to right of B. Note BLM fence on ridge crest for scale. (B) Matador Ranch (N 44
o
 45’ 1”, 

W 112
o
 33’ 59.7”). Sections were generally correlated by white/light gray ash marker beds. 

Dark sediment unconformably overlying lighter basal sediment is the Sixmile Creek 

Formation, while lighter sediment is the Renova Formation. (C) North Hough Draw (N 44
o
 

45’ 17.8”, W 112
o
 34’ 45.2”). Sampled section taken between ~15 m covered section on top 

and 8-10 m covered section below. (D) Big Stonerpipe (N 45
o
 50’ 35.7”, W 112

o
 15’ 

20.5”). Inset photo shows rightmost part of locality. (E) Little Pipestone. See Sheldon and 

Hamer (2010) for full site description.  
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Figure 3. Stratigraphic logs, ages, and sampling for Renova Basin study sites. 

Grain size indicated: C=clay, S=silt, F=fine sand, M=medium sand, Co=coarse sand). 
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Figure 4. Microphotographs of selected phytolith morphotypes from Renova Basin study sites. 
Compound variables indicated in parentheses. (A) CO-4: small “spiked” rondel with concave base in 

side view and a top equal in size to the base (OTHG; from XXX). (B) SA-3: collapsed saddle 

(BAMB/B; from Big Stonerpipe). (C) Elo-1: smooth elongates (OTH). This was the dominant 
morphotype at each locality, but is non-diagnostic so was not used in vegetation reconstruction. (D) 

Elo-18: MD elongate (DICOT-WO; from Little Spring Gulch). (E-G) CO-1 generic conical rondels 

(POOID-ND; from Little Spring Gulch). (H) CO-2: truly conical rondel (POOID-D; from Little 
Spring Gulch). (I, J) Clm-2: echinate sphere (PALM; from Matador Ranch (I) and Little Spring 

Gulch (J)). (K) VI-1: laminated sphere (DICOT-GEN; from Big Stonerpipe). (L) Sponge spicule, not 

included in vegetation reconstruction, but used as an indication of proximity to water (Matador 

Ranch). (M) Unknown phytolith, resembling M-3 (concentric silica aggregate), but lacking 
organization around a central point. Excluded from analysis. (Matador Ranch). (N) Unknown 

morphotype. May be abraded aquatic biosilica. (from Little Spring Gulch). (O, P) 3D anticlinal 

epidermal cells (Epi-3). “Puffy puzzle pieces.” Note flat bottom side in (P) (DICOT-GEN; from 
North Hough Draw). (Q) Tra-1: tracheary element (FI-GEN; from Little Spring Gulch). (R) Tri-8: 

spindle-shaped body (GRASS/MONO-ND; from Little Spring Gulch). (S,T,U) Cl-4: small pink 

spheres (FI-GEN; from North Hough Draw (S) and Matador Ranch (T,U)). (V) Tra-2: worm/pupa-
like, infilled helical tracheary element (FI-GEN; from Big Stonerpipe). Scale bars = 10 µm. 
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 Figure 5. Vegetation reconstruction and paleoclimate for Renova Basin EOT sites. 

Inferred paleovegetation shown as pie charts with percent forest indicator (FI; dark) and grass 

(GSSC; light) inferred from phytolith assemblage analysis. See text for explanation of dating. 

Geochemical data (on the right) for all five sites provide proxy estimation of mean annual 

temperature (MAT) and mean annual precipitation (MAP). Both proxies show a slight cooling 

and drying trend during the Orellan (Matador Ranch samples).  
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Table 1. Pedotype description and distribution during Eocene-Oligocene Transition, southwestern Montana. ENT = Entisol, INCEP = Inceptisol, RWA = 

Reworked ash, QP = Quartz pebbles, silt = siltstone, sand = sandstone, (f) = fine, (m) = medium, (m/f) = medium/fine, RT = root traces 

Pedotype Sample # 

Meter 

Level 

Soil 

Order 

Hori

zon 

Munsell 

Color 

Parent 

Material  Depositional Setting       Other Notes 

 

Santo Hoyo LP-11 4.6 ENT A 2.5Y 7/2 silt (QP),RWA distal alluvial fan edges  burrows (Taenidium,) 

Santo Hoyo MR-20 29.3 ENT A 2.5Y 7/4 sandy silt floodplain 5 cm above mottled layer 

Santo Hoyo LP-10 3.1 ENT A 2.5Y 7/2 clayey silt distal alluvial fan edges indurated (Taenidium burrows) 

Santo Hoyo LP-05 10.7 ENT A 2.5Y 6/3 clayey silt distal alluvial fan edges burrows 

Santo Hoyo LSGB-07 8.9 ENT A 10YR 7/2 sand (m/f) floodplain burrows  

Santo Hoyo LSGB-12 14.5 ENT A 10YR 8/1 sand (f) floodplain burrows  

Santo Hoyo NHD-10 16 ENT A 

Gley 1 8/1, 

2.5Y 8/2 sand (f) floodplain Burrows (Taenidium) 

Santo Hoyo LP-02 3.5 ENT A 2.5Y 6/3 silt w/ rare ash   RT 

Santo Hoyo LP-06 10.7 ENT A 2.5Y 7/3 RWA, silt (QP) distal alluvial fan RT 

Santo Hoyo LSGB-04 4.2 ENT A 10YR 7/2 silty sand   distal alluvial fan edges RT 

Santo Hoyo LSGB-05 13.2 ENT A 10YR 7/2 sily sand (QP) distal alluvial fan edges RT 

Santo Hoyo LSGB-11 13.1 ENT A 10YR 6/3 silty sand distal alluvial fan edges RT 

Santo Hoyo NHD-01,02 3.4 ENT A 2.5Y 7/3 sandy (f) silt floodplain RT, rare burrows 

Santo Hoyo LP-07 0.4 ENT A 2.5Y 7/2 sandy silt (QP) floodplain RT 

Anegado NHD-04 6.7 ENT Bg 2.5Y 7/3 silt distal alluvial fan edges 

RT (drab haloed--grn halos in brn 

matrix) 

Anegado MR-12 22.4 INCEP Bg 
5Y 8/4, 

2.5Y 7/4 sandy silt 
floodplain (continuously 

waterlogged) gleyed bottom of a Bg horizon  

Anegado MR-13 22.6 INCEP A/Bg 2.5Y 6/3 Sandy silt Floodplain (CW) Gleyed w/ slickensides 

Anegado 

MR-

04,05,06 6.1 INCEP Bg 2.5Y 6/3 Sandy silt Floodplain (CW) Gleyed w/ slickensides, rhizoliths 

Anegado MR-09 15 INCEP Bg 2.5Y 6/4 silt distal alluvial fan (CW)         green gley 
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Table 1. Pedotype description and distribution during Eocene-Oligocene Transition, southwestern Montana, continued.  

 

 

Pedotype Sample # 

Mete

r 

Level 

Soil 

Order 

Ho

riz

on 

Munsell 

Color 

Parent 

Material  Depositional Setting       Other Notes 

Con Color MR-16 24.3 INCEP Bw 

5Y 8/2, 

10YR 7/2 silt distal alluvial fan edges             MOT (brn w/ rare grn) 

Con Color MR-17 24.4 INCEP Bw 

5Y 8/3, 

2.5Y 7/3 silt distal alluvial fan edges MOT (brn w/ rare grn) 
Con Color MR-28 59.6 INCEP A 2.5Y 6/3 silt distal alluvial fan edges MOT (brn) 

Con Color MR-03 1.9 INCEP A 10YR 6/3 sandy (f) silt  floodplain MOT (brn/grn) 

Con Color MR-23 41.1 INCEP A 10YR 6/3 clayey silt distal alluvial fan edges MOT (brn/grn) 

Con Color NHD-06 6.7 INCEP Bw 2.5Y 7/3 clayey silt distal alluvial fan edges MOT (drab grn) 

Con Color LSG-03 7.7 INCEP Bw 
Gley 1 8/1, 
10YR 8/2 sandy silt floodplain MOT (grn) 

Con Color LSG-05 13.2 INCEP Bw 

Gley 1 8/1, 

10YR 6/3 silt distal alluvial fan edges MOT (grn) 

Con Color NHD-03 4.9 INCEP Bw 2.5Y 7/3 clayey silt distal alluvial fan edges MOT (grn) 

Con Color LP-08 2.5 INCEP Bw 2.5Y 8/2 sandy silt  floodplain MOT (grn)  

Con Color LP-09 0.4 INCEP 
A/
Bw 2.5Y 7/3 clayey silt distal alluvial fan edges MOT (grn) and RT 

Con Color LP-04 8.7 INCEP A 2.5Y 7/3 

silt (QP), 

RWA distal alluvial fan edges MOT (grn),  burrows 

Con Color MR-02 1.7 INCEP Bw 5Y 5/2 fine sandy silt distal alluvial fan edges  MOT (grn/red) (gleyed)  

Con Color MR-15 23.5 INCEP Bw 2.5Y 7/4 sandy silt floodplain MOT (pink w/ grn) 

Con Color LSG-01 1.6 INCEP Bw 2.5YR 6/2 sandy silt floodplain MOT (weak grn) 

Con Color NHD-05 7.1 INCEP Bw 2.5Y 7/3 sandy (f) silt floodplain MOT (weak grn), drab haloed RT 

Con Color LSG-06 15.8 INCEP A 10YR 6/3 silty sand (f) distal alluvial fan edges MOT (weak grn), RT 

Con Color NHD-07,08 11.6 INCEP Bw 2.5Y 7/3 sandy (f) silt floodplain MOT (weak), pedo CO3  

Santo Hoyo LPS-09-01 ~2.3 ENT  2.5Y 7/3 ashy silt floodplain Burrows (Taenidium) 

Santo Hoyo LPS-09-02 ~3.2 ENT  2.5Y 7/3  floodplain Burrows (Taenidium) 

Santo Hoyo LPS-09-03 ~3.9 ENT  2.5Y 7/3 silt floodplain Burrows (Taenidium) 
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Table 2.  Raw geochemical data expressed as a percent of total sample. 

 

Sample # 

Meter 

level Horizon SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 MnO 

 
LP11-08 2.5  Bw 58.2 13.45 4.04 2 1.54 1.43 1.45 0.47 0.02 

LP11-09 .3 A/Bw 54.5 15.55 5.3 1.83 2.08 1.26 1.03 0.74 0.02 

LSG11-03 7.6 Bw 60.3 13.45 4.64 2.57 1.29 1.45 2.37 0.61 0.08 

LSG11-04 8.5  66.8 14.21 5.00 2.9 1.32 1.66 3.01 0.63 0.19 

LSG11-05 13.2 Bw 60 13.35 4.68 2.32 1.35 1.36 2.67 0.58 0.05 

LSG11-06 15.8 A/Bw 61 13.35 5.21 2.42 1.4 1.48 2.84 0.59 0.12 

LSGB11-06 6.3 Bw 60.9 13.45 4.45 2.94 2.03 1.43 2.22 0.51 0.15 

MR11-02 1.7 Bw  59.4 13.6 5.29 2.36 1.64 1.39 1.88 0.57 0.1 

MR11-12 22.4 Bg 61.4 12.05 4.63 3.09 1.55 1.78 1.85 0.54 0.05 

MR11-13 22.7 A 60.7 12.05 4.57 3.26 1.41 2.12 1.92 0.55 0.05 

MR11-15 23.5 Bg  62.2 12.7 4.93 2.93 1.56 1.66 1.98 0.6 0.05 

MR11-16 24.3 Bg 66.8 14.08 5.26 2.9 1.89 2.03 2.40 0.73 0.15 

MR11-17 24.4 Bg 59 13.25 5.41 3.9 1.86 1.6 1.79 0.66 0.05 

MR11-18 25.4 Bg 57.3 13.9 5.39 3.1 2.04 1.74 1.71 0.56 0.06 

MR11-19 25.6 A 57 13.6 5.63 3.02 2.06 1.72 1.57 0.57 0.05 

NDH11-03 5 Bg 61.3 14.76 5.96 2.9 2.20 1.80 1.87 0.71 0.48 

NDH11-04 6.7  58 13.3 5.15 4.07 1.75 1.68 1.97 0.65 0.05 

NDH11-05 7.1 Bg 58.7 13.85 5.04 3.18 1.9 1.69 1.63 0.79 0.03 

NDH11-06 9.6 Bg 57.7 13.45 4.73 3.35 1.98 1.46 1.61 0.71 0.04 

NDH11-07 11.6  61.1 14.31 5.88 2.9 2.34 1.48 1.66 0.76 0.31 
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Table 2.  Raw geochemical data expressed as a percent of total sample. *LOI = Loss on igntition 

 

Sample # 

Meter 

level SrO BaO LOI Total CIA  CIA-K BaO/SrO TiO/Al2O3 

MAP (mm 

yr-1) MAT (oC) 

 

LP11-08 2.5  0.03 0.03 18.7 101.5 64.023 69.192 0.676 0.045 863.718 13.239 

LP11-09 .3 0.04 0.03 19 101.5 70.474 74.225 0.507 0.061 953.737 14.476 

LSG11-03 7.6 0.03 0.06 12.75 99.7 58.293 65.585 1.352 0.058 804.466 11.946 

LSG11-04 8.5 0.04 0.11 5.72 99 55.780 63.971 2.027 0.057 779.304 11.116 

LSG11-05 13.2 0.02 0.06 12.8 99.3 58.823 67.406 2.027 0.055 833.860 11.615 

LSG11-06 15.8 0.02 0.06 10.7 99.3 57.398 66.140 2.027 0.056 813.314 11.213 

LSGB11-06 6.3 0.02 0.06 11.4 100 57.111 63.600 2.027 0.048 773.627 12.180 

MR11-02 1.7 0.02 0.05 12.15 98.6 61.227 67.402 1.689 0.053 833.794 12.752 

MR11-12 22.4 0.03 0.05 12.9 100 53.322 58.506 1.126 0.057 699.756 11.627 

MR11-13 22.7 0.04 0.05 13.6 100.5 51.184 56.139 0.845 0.058 667.876 10.998 

MR11-15 23.5 0.03 0.06 11.1 100 55.456 61.182 1.352 0.060 737.629 11.898 

MR11-16 24.3 0.05 0.08 7.11 101 55.656 62.022 1.126 0.066 749.942 11.374 

MR11-17 24.4 0.03 0.05 12.95 101 53.191 57.677 1.126 0.064 688.421 12.467 

MR11-18 25.4 0.03 0.06 15 101 57.321 62.058 1.352 0.051 750.468 12.608 

MR11-19 25.6 0.03 0.05 15.5 101 57.579 62.043 1.126 0.053 750.256 12.725 

NDH11-03 5 0.04 0.06 10.48 99.9 59.014 64.204 0.901 0.062 782.887 12.606 

NDH11-04 6.7 0.03 0.13 13.5 100.5 51.962 56.684 2.928 0.062 675.084 12.123 

NDH11-05 7.1 0.04 0.05 13.35 100.5 57.288 61.798 0.845 0.073 746.640 12.765 

NDH11-06 9.6 0.04 0.05 15.2 100.5 56.787 61.297 0.845 0.067 739.303 12.977 

NDH11-07 11.6 0.03 0.07 12.76 101 60.083 64.997 1.689 0.068 795.208 13.135 
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Table 3. Stable Carbon Isotope Data, expressed relative to VPDB. 

 

 

Sample # ∂13C, VPDB 

Carbon 

Weight (%) 

   

LP11-02 -22.6428 0.051 

LP11-04 -20.3066 0.055 

LP11-06 -21.2593 0.047 

LP11-07 -21.3673 0.045 

LP11-09 -21.3065 0.064 

LSG11-06 -22.9499 0.031 

LSGB11-04 -23.4142 0.037 

LSGB11-05 -22.7675 0.032 

LSGB11-11 -24.6635 0.043 

LSGB11-L1-01 -24.9004 0.039 

LSGB11-L1-03 -23.0652 0.035 

LSGB11-L1-04 -24.0671 0.036 

LSGB-L1-05 -23.3859 0.039 

LSGB-L2-01 -24.5702 0.039 

LSGB-L2-02 -24.6604 0.051 

MR11-06 -22.3305 0.053 

NHD11-01 -21.7215 0.032 

NHD11-08 -23.6563 0.033 

NHD11-08 -24.0755 0.032 

NHD11-09 -20.904 0.019 

NHD11-09 -20.7573 0.018 
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Table 4. Range, mean, and standard deviation values for organic stable carbon isotope data. Sites 

arranged chronologically younging upward from bottom. *N = 1, no statistics available.  

Site δ
13

Corg Range (‰) δ
13

Corg Mean (‰) δ
13

Corg Std. Dev. (‰) 

    

Matador Ranch* - -22.33 - 

Big Stonerpipe -22.64 to -20.31 -21.38 0.83 

Little Spring Gulch -24.90 to -22.95 -23.84 0.82 

North Hough Draw -24.08 to -20.76 -22.22 1.55 
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Table 5. Mean values and standard deviation for phytolith data. Sites arranged chronologically from 

youngest to oldest. %PP = Percent of phytolith population, %VR = percents used in vegetation 

reconstruction. 

  

Site 
Mean FI 
(%PP) 

Σ FI 

(%PP) 

Mean 

GSSC 
(PP) 

Σ 

GSSC 

(%PP) 

Mean 

FI 

(%VR) 

Σ FI 

(%VR) 

Mean 

GSSC 

(%VR) 

Σ GSSC 

(%VR) 

         

MR 49.1 11.1 9.0 3.3 84.0 11.1 16.0 5.5 

LP 52.2 25.4 16.1 5.9 73.1 25.4 26.9 9.6 

BS 40.5 19.2 12.7 6.5 73.0 19.2 27.0 7.9 

LSG 42.5 15.3 20.2 17.6 68.7 15.3 31.3 15.4 

LSG lat 62.5 2.4 22.3 1.0 84.8 2.4 15.2 5.2 

NHD 54.4 18.9 9.2 5.1 84.1 18.9 15.9 5.5 

All sites 50.2 15.4 14.9 6.6 78.0 15.4 22.1 8.2 
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Data Repository 1. Phytolith morphotype descriptions and corresponding compound variables and vegetation 

categories used (for definitions, see Strömberg, 2003). FI = forest indicator; GSSC = grass silica short cell. FIs and 

GSSCs were used for vegetation reconstruction. 

 

Morphotype Description Compound variable 

Vegetation 

Category 

Epi-3 3D anticlinal epidermis with rounded bumps DICOT-GEN FI 

Epi-6 Epidermal plate of sedges SEDGE Sedge 

EpiF-1 Epidermal amoeba body DICOT-GEN FI 

Tra-1 Hollow and infilled helix FI-GEN FI 

Tra-2 Worm/pupa like infilled helical tracheary element FI-GEN FI 

Tra-7 Podocarpus-type tracheary element CONI FI 

Tra-8 Pitted rod tracheary element (monocot-type) 

GRASS/MONO-

ND Potential grass 

Tri-8 Trichome filling 

GRASS/MONO-

ND Potential grass 

Clm-2a Echinate (spiky) sphere PALM-D FI, Palm 

Cl-4 Small, smooth, pink sphere FI-GEN FI 

Cl-5 Compound sphere FI-GEN FI 

VI-1 VI sphere DICOT-GEN FI 

Elo-1 Smooth elongate OTH Other 

Elo-3 Faceted elongate CONI/MONO Potential grass 

Elo-5 Thin, straight, flat band OTH Other 

Elo-7 Smooth cylindrical elongate OTH Other 

Elo-11 Rod with knobs OTH Other 

Elo-18 MD-elongate DICOT-WO FI 

Elo-20 One sinuate edge elongate CONI FI 

EloF-2 Smooth elongate w/ faceted edge OTH Other 

EloF-3 Smooth elongate w/ faceted edge OTH Other 

Scl-3 Mutifaceted S-body DICOT-WO? FI 

Scl-2B Short Scl-1 FI-GEN FI 

Scl-12 Glass shard body OTH Other 

Blo-3 Faceted rectangular plate CONI FI 

Blo-7 Thick trapezoidal rectangle with knobs DICOT-GEN FI 

Kn-9 Irregular body with branched processes OTH Other 

CO-1 A Generic (truncated) conical rondel  type A POOID-ND GSSC 

CO-1 B Generic (truncated) conical rondel  type B POOID-ND GSSC 

CO-2 Truly conical rondel POOID-D GSSC 

CO-3 Chusquea rondel with “spiked” top BAMB/B GSSC 

CO-4 Small “spiked” rondel OTHG Other GSSC 

CO-5 Crescentic conical rondel CHLOR GSSC 

COF-1B Tall rondel with spiked top BAMB/B GSSC 

COF-5 Conical rondel with concave/vex base POOID-ND GSSC 

COF-6 Tall conical rondel with concave plate BAMB/B GSSC 

KR-1 Regular keeled rondel POOID-ND GSSC 

Py-2 Almost keel-like small irregular pyramid BAMB/B GSSC 
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Data repository 1, continued. 

 

Morphotype Description Compound variable 

Vegetation 

Category 

SAF-1 Long pseudo-saddle CHLOR GSSC 

SA-1 True saddle CHLOR GSSC 

SA-3 Collapsed saddle BAMB/B GSSC 

SA-5 Saddle with one indented side CHLOR GSSC 

Bl-13 Shovel bilobate with rectangular top BAMB/B GSSC 
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Data Repository 2. Definition of compound variables used in phytolith analysis (Strömberg, 2003). 

 

Morphotype 

group 

Plant type group 

(Compound variable) 
Plant type inferred 

Non-GSSC DICOT-WO Woody dicotyledon 

 DICOT-GEN General (woody or herbaceous) dicotyledon 

 FI-GEN 
General forest indicator (dicotyledon; conifer/gymnosperms, 

Marantaceae, fern, to some degree palm, Selaginella) 

 CONI Conifer 

 CONI-MONO Conifer/monocotyledon 

 PALM-D Diagnostic palm; forms exclusive to palms 

 SEDGE Sedge 

 GRASS/MONO-ND 
Grass/monocotyledon; forms abundantly but not exclusively 

produced in grasses and some other monocotyledons 

 GRASS-D 
Diagnostic non-GSSC grass; forms exclusively produced in 

grasses but not used in vegetation analysis 

 OTH Other non-grass plants; nondiagnostic or unknown 

GSSC BAMB/B “Bambusoid”/basal grasses 

 POOID-D Diagnostic pooid; forms that are highly diagnostic of pooids 

 POOID-ND 

 

Nondiagnostic pooid; forms abundantly but not exclusively 

produced in pooid grasses 

 CHLOR 
Diagnostic chloridoid; forms that are highly diagnostic of 

chloridoids 

 OTHG Other GSSC; nondiagnostic or unknown GSSC 
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Data Repository 3. Soil characteristics and biosilica morphotypes for samples from the Middle Chadronian-Orellan, 

Sage Creek Basin, Montana. *p = present but not part of count. Sample numbers are based on locality, with LP=Big 

Stonerpipe, LSG/LSGB=Little Spring Gulch, MR=Matador Ranch, NHD=North Hough Draw, LPS=Little 

Pipestone. 

 

Sample number  

Meter 

level  Soil type  

Soil 

horizon 

 Munsell 

color 

Phytolith 

abundance  

Phytolith 

morphotype 
(compound 

variable) 

            

Epi-3 

(DICOT-
GEN) 

LP11-02 3.5 Entisol  2.5 Y 7/2 high 0 

LP11-03 5.8 Entisol  2.5 Y 7/3 medium 0 

LP11-04 8.7 Inceptisol Bg 2.5 Y 7/3 high 0 

LP11-05 10.7 Entisol Bg 2.5 Y 6/3 medium 0 

LP11-06 0.4 Entisol  2.5 Y 7/3 medium 0 

LP11-08 2.5  Inceptisol Bg 2.5 Y 8/2 medium 3 

LP11-10 3.1 Entisol  2.5 Y 7/2 medium 0 

LSG11-01 1.6 Inceptisol Bg 2.5 YR 6/2 high 5 

LSG11-03 7.7 Inceptisol Bg 

10 YR 8/2, 

Gley 1 8/1 high 0 

LSG11-04 8.5 Entisol  2.5 Y 8/1 medium 0 

LSG11-05 13.2 Inceptisol Bg 

10 YR 6/3, 

Gley 1 8/1 med-high 1 

LSG11-06 15.8 Inceptisol Bg 10 YR 6/3 medium 8 

LSGB11-04 4.2 Entisol  10 YR 7/2 high 2 

LSGB11-07 8.9 Entisol  10 YR 7/2 medium 10 

LSGB11-11 13.1 Entisol  10 YR 6/3 high 7 

LSGB11-12 14.5 Entisol  10 YR 8/1 medium 27 

MR11-07 9.3 Inceptisol  2.5 Y 6/4 very low / 

MR11-16 24.3 Inceptisol Bg 

5 Y 8/2, 10 

YR 7/2 medium p 

MR11-23 41.1 Inceptisol A 10 YR 6/3 med-low / 

MR11-25 43.7 Inceptisol  2.5 Y 6/3 medium 0 

MR11-28 59.6 Inceptisol A 2.5 Y 6/3 med-low 0 

MR11-29 65.3 Inceptisol  2.5 Y 6/3 med-low p 

NHD11-01 3.5 Entisol Bg 2.5 Y 7/3 med-low 201 

NHD11-02 3.3 Entisol Bg 2.5 Y 7/3 high 181 

NHD11-04 6.7 Entisol  2.5 Y 7/3 high 100 

NHD11-05 7.1 Inceptisol Bg 2.5 Y 7/3 medium 87 

NHD11-06 6.7 Inceptisol Bg 2.5 Y 7/3 high 71 

NHD11-07 11.6 Inceptisol  2.5 Y 7/3 medium 28 

LPS-09-01 ~2.3 Entisol  2.5 Y 7/3 high 3 

LPS-09-02 ~3.2 Entisol  2.5 Y 7/3 high 2 

LPS-09-03 ~3.9 Entisol  2.5 Y 7/3 high 4 

LSGB11-L1-02 ~13.7 Entisol  10 YR 6/3 high 9 

LSGB11-L1-06 ~13.7 Entisol  10 YR 6/3 high 9 
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Data Repository 3, continued.  

 

Sample number  Phytolith morphotype (compound variable) 

  

Epi-6 

(SED

GE) 

Tra-1 (FI-

GEN) 

Tra-2 

(FI-

GEN) 

Tra-7 

(CONI) 

Tra-8 

(GRASS-

MONO-

ND) 

Tri-8 

(GRASS/M

ONO-ND) 

LP11-02 0 5 0 0 0 0 

LP11-03 0 2 0 0 0 0 

LP11-04 0 17 1 0 0 0 

LP11-05 0 15 2 0 0 0 

LP11-06 1 10 0 0 0 0 

LP11-08 0 8 0 0 0 0 

LP11-10 0 6 1 0 0 0 

LSG11-01 0 15 0 0 1 0 

LSG11-03 1 4 0 0 7 0 

LSG11-04 0 5 0 0 0 0 

LSG11-05 0 3 0 0 0 0 

LSG11-06 0 6 0 0 0 0 

LSGB11-04 0 2 0 0 0 0 

LSGB11-07 0 1 0 0 0 0 

LSGB11-11 0 9 0 0 0 0 

LSGB11-12 0 6 0 0 0 0 

MR11-07 / p / / p / 

MR11-16 / p p / / / 

MR11-23 / / p / / / 

MR11-25 0 11 0 0 0 0 

MR11-28 0 2 0 0 0 0 

MR11-29 / p p / / / 

NHD11-01 0 0 0 0 0 0 

NHD11-02 0 0 0 0 0 0 

NHD11-04 0 0 0 7 0 0 

NHD11-05 0 7 0 0 0 3 

NHD11-06 0 8 0 1 0 0 

NHD11-07 0 0 0 0 0 0 

LPS-09-01 0 6 0 0 0 0 

LPS-09-2 0 2 0 0 0 0 

LPS-09-03 3 5 0 0 0 0 

LSGB11-L1-02 0 4 0 0 0 0 

LSGB11-L1-06 0 5 0 0 0 0 

 

 
 

 

 



53 
 

 

 
 

 

Data Repository 3, continued.  

 

Sample number  Phytolith morphotype (compound variable) 

  

Clm-2a 

(PALM-
D) 

Cl-4 (FI-
GEN) 

Cl-5 

(FI-
GEN) 

VI-1 

(DICOT-
GEN) 

Elo-1 
(OTH) 

Elo-3 

(CONI/MO
NO) 

LP11-02 0 176 0 1 92 0 

LP11-03 6 155 0 5 55 0 

LP11-04 28 17 0 13 80 0 

LP11-05 17 3 0 4 326 0 

LP11-06 17 80 0 19 312 0 

LP11-08 16 91 0 19 162 0 

LP11-10 14 102 1 7 205 0 

LSG11-01 8 11 0 0 74 0 

LSG11-03 8 1 0 2 66 0 

LSG11-04 1 56 0 0 117 0 

LSG11-05 6 46 0 1 169 0 

LSG11-06 18 47 0 49 173 0 

LSGB11-04 76 0 0 56 68 0 

LSGB11-07 16 81 0 4 80 0 

LSGB11-11 27 15 0 75 95 0 

LSGB11-12 19 49 0 20 42 2 

MR11-07 / / / / p / 

MR11-16 p p / p p / 

MR11-23 p / / / p / 

MR11-25 32 86 1 12 155 0 

MR11-28 8 158 0 0 70 0 

MR11-29 / / / p p / 

NHD11-01 3 0 0 0 39 0 

NHD11-02 7 5 0 0 28 0 

NHD11-04 6 17 0 0 155 0 

NHD11-05 6 32 0 4 150 10 

NHD11-06 4 14 0 0 207 0 

NHD11-07 132 5 0 4 177 2 

LPS-09-01 6 85 0 1 208 0 

LPS-09-2 10 162 0 5 15 0 

LPS-09-03 11 136 0 3 64 0 

LSGB11-L1-02 17 83 0 42 48 0 

LSGB11-L1-06 13 58 3 60 50 7 

 
 

 



54 
 

 

 
 

 

Data Repository 3, continued.  

 

Sample number  Phytolith morphotype (compound variable) 

  
Elo-5 

(OTH) 
Elo-11 
(OTH) 

Elo-17 
(OTH) 

Elo-18 

(DICOT-
WO) 

Elo-20 
(CONI) 

EloF-2 
(OTH) 

LP11-02 0 0 0 15 0 0 

LP11-03 0 0 0 13 0 0 

LP11-04 0 0 0 54 1 0 

LP11-05 0 0 0 35 12 0 

LP11-06 0 0 0 27 0 0 

LP11-08 0 1 0 20 0 0 

LP11-10 0 1 0 8 0 1 

LSG11-01 0 0 0 61 0 0 

LSG11-03 0 0 0 30 0 0 

LSG11-04 0 5 0 39 0 0 

LSG11-05 0 0 0 77 0 0 

LSG11-06 0 0 0 63 0 0 

LSGB11-04 0 0 1 71 0 0 

LSGB11-07 0 0 0 49 0 0 

LSGB11-11 0 0 0 65 0 0 

LSGB11-12 0 1 1 41 0 0 

MR11-07 / / / / / / 

MR11-16 / / / p / / 

MR11-23 / / / / / / 

MR11-25 0 0 0 18 0 0 

MR11-28 0 0 0 12 0 0 

MR11-29 / / / p / / 

NHD11-01 0 0 0 77 0 0 

NHD11-02 1 0 0 0 0 0 

NHD11-04 0 0 0 16 0 0 

NHD11-05 0 18 0 26 0 0 

NHD11-06 0 0 0 47 2 0 

NHD11-07 0 9 0 18 0 0 

LPS-09-01 0 5 0 4 0 0 

LPS-09-2 0 0 0 1 0 0 

LPS-09-03 0 0 0 0 0 0 

LSGB11-L1-02 0 0 0 10 7 0 

LSGB11-L1-06 0 3 0 8 1 0 
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Data Repository 3, continued.  
 

Sample number  Phytolith morphotype (compound variable) 

  

EloF-3 

(OTH) 

Scl-3 
(DICOT-

WO?) 

Scl-2 B 
(FI-

GEN) 

Scl-12 

(OTH) 

Blo-3 

(CONI) 

Blo-7 
(DICOT-

GEN) 

LP11-02 0 0 0 0 0 0 

LP11-03 4 0 0 0 0 0 

LP11-04 0 2 0 0 0 1 

LP11-05 0 0 0 0 0 6 

LP11-06 6 0 0 0 5 0 

LP11-08 1 0 0 0 0 0 

LP11-10 1 0 0 0 0 0 

LSG11-01 0 0 0 0 0 5 

LSG11-03 0 1 0 0 0 0 

LSG11-04 0 0 0 0 0 0 

LSG11-05 0 0 0 0 0 0 

LSG11-06 0 0 0 0 0 0 

LSGB11-04 0 0 0 0 0 0 

LSGB11-07 0 0 0 0 0 0 

LSGB11-11 0 0 0 0 0 0 

LSGB11-12 0 0 0 0 0 0 

MR11-07 / / / / / / 

MR11-16 / p / p / / 

MR11-23 / / / / / / 

MR11-25 5 0 0 17 0 0 

MR11-28 0 0 0 0 0 0 

MR11-29 / / / / / / 

NHD11-01 0 0 0 0 0 4 

NHD11-02 0 0 0 0 2 7 

NHD11-04 0 0 0 0 0 6 

NHD11-05 0 0 0 0 0 0 

NHD11-06 0 0 0 0 0 18 

NHD11-07 0 0 0 0 0 0 

LPS-09-01 0 0 0 0 0 0 

LPS-09-2 0 1 0 0 0 0 

LPS-09-03 0 0 0 0 0 0 

LSGB11-L1-02 0 0 0 0 0 0 

LSGB11-L1-06 0 1 13 0 0 0 
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Data Repository 3, continued.  
 

Sample number  Phytolith morphotype (compound variable) 

  

KN-9 

(OTH) 

CO-1 A 
(POOID-

ND) 

CO-1 B 
(POOID

-ND) 

CO-2 

(POOID-D) 

CO-3 

(BAMB/B) 

CO-4 

(OTHG) 

LP11-02 0 6 0 4 0 0 

LP11-03 0 13 0 6 0 0 

LP11-04 0 58 11 0 0 0 

LP11-05 0 85 6 4 0 3 

LP11-06 0 22 1 13 4 0 

LP11-08 0 39 4 0 0 0 

LP11-10 0 37 8 6 2 0 

LSG11-01 0 78 15 10 0 0 

LSG11-03 0 128 11 10 0 1 

LSG11-04 0 77 25 11 0 4 

LSG11-05 0 41 19 13 0 0 

LSG11-06 0 18 4 2 1 0 

LSGB11-04 0 5 0 1 0 1 

LSGB11-07 0 31 6 4 0 0 

LSGB11-11 0 9 2 0 0 1 

LSGB11-12 0 25 5 6 0 2 

MR11-07 / / / / / / 

MR11-16 / p p / p / 

MR11-23 / / / / / / 

MR11-25 0 28 11 0 0 0 

MR11-28 0 15 2 4 0 0 

MR11-29 / p / / / / 

NHD11-01 1 7 5 0 0 0 

NHD11-02 0 16 0 1 0 0 

NHD11-04 0 44 3 10 0 0 

NHD11-05 0 17 6 2 0 0 

NHD11-06 1 38 6 4 0 0 

NHD11-07 0 8 0 0 0 0 

LPS-09-01 0 68 12 7 0 1 

LPS-09-2 0 19 2 3 0 1 

LPS-09-03 0 17 8 1 0 4 

LSGB11-L1-02 0 12 5 0 0 0 

LSGB11-L1-06 0 10 1 6 0 0 
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Data Repository 3, continued.  

 

Sample number  Phytolith morphotype (compound variable) 

  

CO-5 

(CHL
OR) 

COF-1 
(BAMB/B) 

COF-5 

(POOID
-ND) 

COF-6 
(BAMB/B) 

KR-1 

(POOID-
ND) 

PY-2 
(BAMB/B) 

LP11-02 0 0 0 0 0 0 

LP11-03 0 0 0 0 0 0 

LP11-04 0 0 0 0 0 0 

LP11-05 0 0 0 0 0 0 

LP11-06 0 0 0 0 3 0 

LP11-08 0 1 0 1 3 0 

LP11-10 0 0 0 0 1 0 

LSG11-01 0 0 0 0 0 0 

LSG11-03 0 0 0 0 0 0 

LSG11-04 0 0 0 0 5 0 

LSG11-05 0 0 0 0 0 0 

LSG11-06 0 0 0 0 0 1 

LSGB11-04 0 0 0 0 0 0 

LSGB11-07 0 0 0 0 0 0 

LSGB11-11 0 0 0 0 1 0 

LSGB11-12 0 0 0 0 7 0 

MR11-07 / / / / / / 

MR11-16 / / / / / / 

MR11-23 / / / / / / 

MR11-25 0 0 5 0 0 0 

MR11-28 0 0 0 0 0 0 

MR11-29 / / / / / / 

NHD11-01 0 0 2 0 0 0 

NHD11-02 0 0 1 1 0 0 

NHD11-04 0 0 8 0 0 0 

NHD11-05 0 0 0 0 2 0 

NHD11-06 0 0 1 1 0 0 

NHD11-07 0 1 0 1 5 0 

LPS-09-01 0 0 0 0 7 0 

LPS-09-2 0 0 0 0 1 0 

LPS-09-03 0 0 0 0 3 0 

LSGB11-L1-02 1 2 0 0 6 0 

LSGB11-L1-06 0 1 0 0 8 0 
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Data Repository 3, continued.  

 

Sample number  Phytolith morphotype (compound variable) 

Phytolith 
population 

total 

  

SAF-1 

(CHLO
R) 

SA-1 

(CHL
OR) 

SA-3 
(BAMB/B) 

SA-5 
(CHLOR) 

Bl-13 
(BAMB/B)  

LP11-02 0 0 0 0 0 299 

LP11-03 0 2 0 0 0 261 

LP11-04 0 15 0 2 0 300 

LP11-05 0 7 1 1 0 527 

LP11-06 0 4 0 3 0 527 

LP11-08 0 7 0 0 0 376 

LP11-10 0 9 0 0 0 410 

LSG11-01 0 0 0 0 0 283 

LSG11-03 0 1 0 0 0 271 

LSG11-04 0 0 0 0 0 345 

LSG11-05 0 0 0 0 0 376 

LSG11-06 0 0 0 0 0 390 

LSGB11-04 0 0 0 0 0 283 

LSGB11-07 0 0 0 0 0 282 

LSGB11-11 0 0 0 0 0 306 

LSGB11-12 0 0 0 0 0 253 

MR11-07 / / / / / n/a 

MR11-16 / p / / / n/a 

MR11-23 / / / / / n/a 

MR11-25 0 0 0 0 0 381 

MR11-28 0 0 0 0 0 271 

MR11-29 p / / / / n/a 

NHD11-01 0 0 0 0 0 339 

NHD11-02 0 0 0 0 0 250 

NHD11-04 0 0 0 0 1 373 

NHD11-05 0 0 0 0 0 370 

NHD11-06 0 0 0 0 0 423 

NHD11-07 1 0 0 0 0 391 

LPS-09-01 0 1 0 0 0 414 

LPS-09-2 0 4 0 0 0 228 

LPS-09-03 0 4 0 0 0 263 

LSGB11-L1-02 0 2 0 1 0 249 

LSGB11-L1-06 3 0 0 0 0 260 
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Data Repository 3, continued.  

 

Sample number  diatoms 
sponge 
spicules chrysophyte 

DSC 
total unknown 

Total 
biosilica 

        

LP11-02 0 0 0 0 10 309 

LP11-03 0 0 0 0 3 264 

LP11-04 0 0 0 0 71 371 

LP11-05 0 0 0 0 99 626 

LP11-06 0 1 1 2 16 545 

LP11-08 0 1 2 3 27 406 

LP11-10 0 0 0 0 23 433 

LSG11-01 0 0 0 0 10 293 

LSG11-03 0 1 1 2 16 289 

LSG11-04 1 0 1 2 21 368 

LSG11-05 0 1 0 1 3 380 

LSG11-06 0 2 0 2 14 406 

LSGB11-04 9 6 0 15 60 358 

LSGB11-07 0 1 0 1 18 301 

LSGB11-11 1 2 0 3 15 324 

LSGB11-12 1 0 2 3 100 356 

MR11-07 p / / p / p 

MR11-16 p p / p p p 

MR11-23 / p / p / p 

MR11-25 10 2 0 12 7 400 

MR11-28 1 0 0 1 45 317 

MR11-29 p p / p p p 

NHD11-01 0 0 0 0 10 349 

NHD11-02 0 2 0 2 19 271 

NHD11-04 0 0 0 0 5 378 

NHD11-05 0 0 0 0 6 376 

NHD11-06 0 0 0 0 4 427 

NHD11-07 0 1 0 1 0 392 

LPS-09-01 1 1 0 2 5 421 

LPS-09-2 0 0 1 1 14 243 

LPS-09-03 0 0 0 0 15 278 

LSGB11-L1-02 1 7 0 8 20 277 

LSGB11-L1-06 0 3 1 4 30 294 
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Data Repository 4. Raw phytolith counts grouped by plant category. FI total and GSSC (in bold) were used for 

vegetation reconstruction. *p = present but not part of count. 

 

Sample 

number 

Meter 

level Plant category*   

 

        

  FI Total Palm 
FI-

palm GSSC 

Potential 
Grass Sedge 

OTH 
total 

LP11-02 3.5 197 0 197 10 0 0 102 

LP11-03 5.8 181 6 175 21 0 0 62 

LP11-04 8.7 134 28 106 86 0 0 151 

LP11-05 10.7 94 17 77 107 0 0 428 

LP11-06 0.4 158 17 141 50 0 1 334 

LP11-08 2.5  157 16 141 55 0 0 191 

LP11-10 3.1 139 14 125 63 0 0 231 

LSG11-01 1.6 105 8 97 103 1 0 84 

LSG11-03 7.7 46 8 38 151 7 1 83 

LSG11-04 8.5 101 1 100 122 0 0 147 

LSG11-05 13.2 134 6 128 73 0 0 172 

LSG11-06 15.8 191 18 173 26 0 0 187 

LSGB11-04 4.2 207 76 131 7 0 0 130 

LSGB11-07 8.9 161 16 145 41 0 0 98 

LSGB11-11 13.1 198 27 171 13 0 0 111 

LSGB11-12 14.5 162 19 143 45 2 0 146 

MR11-07 9.3 p / p / p / p 

MR11-16 24.3 p p p p / / p 

MR11-23 41.1 p p p / / / p 

MR11-25 43.7 160 32 128 44 0 0 184 

MR11-28 59.6 180 8 172 21 0 0 115 

MR11-29 65.3 p / p p / / p 

NHD11-01 3.5 285 3 282 14 0 0 50 

NHD11-02 3.3 202 7 195 19 0 0 48 

NHD11-04 6.7 152 6 146 66 0 0 160 

NHD11-05 7.1 162 6 156 27 13 0 174 

NHD11-06 6.7 165 4 161 50 0 0 212 

NHD11-07 11.6 187 132 55 16 2 0 186 

LPS-09-01 ~2.3 105 6 99 96 0 0 219 

LPS-09-02 ~3.2 183 10 173 30 0 0 30 

LPS-09-03 ~3.9 159 11 148 37 0 3 83 

LSGB-L1-02 13.7 172 17 155 28 0 0 68 

LSGB-L1-06 13.7 171 13 158 29 7 0 83 
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Data Repository 5. Percent frequency (of total biosilica) of biosilica morphotypes from the Middle Chadronian-Orellan, Sage Creek Basin, Montana. *p = 

present but not part of count, *Other = unknown morphotypes + nondiagnostic phytoliths 

 

Sample 

number 

Meter 

level Plant category* 

 

      

Dia-

toms 

Sponge 

spicules 

 

Chryso

phyte 

 

DSC 

total 

    

FI 

Total Palm 

FI-

palm  GSSC 

Poten-

tial 

grass Sedge *Other 

    

LP11-02 3.5 63.75 0.00 63.75 3.24 0.00 0.00 33.01 0.00 0.00 0.00 0.00 

LP11-03 5.8 68.56 2.27 66.29 7.95 0.00 0.00 23.48 0.00 0.00 0.00 0.00 

LP11-04 8.7 36.12 7.55 28.57 23.18 0.00 0.00 40.70 0.00 0.00 0.00 0.00 

LP11-05 10.7 14.94 2.70 12.24 17.01 0.00 0.00 68.04 0.00 0.00 0.00 0.00 

LP11-06 0.4 28.99 3.12 25.87 9.17 0.00 0.18 61.28 0.00 0.18 0.18 0.37 

LP11-08 2.5  38.67 3.94 34.73 13.55 0.00 0.00 47.04 0.00 0.25 0.49 0.74 

LP11-10 3.1 32.10 3.23 28.87 14.55 0.00 0.00 53.35 0.00 0.00 0.00 0.00 

LSG11-01 1.6 35.84 2.73 33.11 35.15 0.34 0.00 28.67 0.00 0.00 0.00 0.00 

LSG11-03 7.7 15.86 2.76 13.10 52.07 2.41 0.34 28.62 0.00 0.34 0.34 0.69 

LSG11-04 8.5 27.15 0.27 26.88 32.80 0.00 0.00 39.52 0.27 0.00 0.27 0.54 

LSG11-05 13.2 35.26 1.58 33.68 19.21 0.00 0.00 45.26 0.00 0.26 0.00 0.26 

LSG11-06 15.8 47.04 4.43 42.61 6.40 0.00 0.00 46.06 0.00 0.49 0.00 0.49 

LSGB11-04 4.2 57.66 21.17 36.49 1.95 0.00 0.00 36.21 2.51 1.67 0.00 4.18 

LSGB11-07 8.9 53.49 5.32 48.17 13.62 0.00 0.00 32.56 0.00 0.33 0.00 0.33 

LSGB11-11 13.1 60.92 8.31 52.62 4.00 0.00 0.00 34.15 0.31 0.62 0.00 0.92 

LSGB11-12 14.5 45.25 5.31 39.94 12.57 0.56 0.00 40.78 0.28 0.00 0.56 0.84 

MR11-07 9.3 4.76 0.00 4.76 0.00 0.00 0.00 85.71 9.52 0.00 0.00 9.52 

MR11-16 24.3 46.98 32.97 14.01 3.57 0.00 0.00 41.48 4.40 3.57 0.00 7.97 

MR11-23 41.1 28.81 27.12 1.69 0.00 0.00 0.00 47.46 0.00 23.73 0.00 23.73 

MR11-25 43.7 40.00 8.00 32.00 11.00 0.00 0.00 46.00 2.50 0.50 0.00 3.00 

MR11-28 59.6 56.78 2.52 54.26 6.62 0.00 0.00 36.28 0.32 0.00 0.00 0.32 

MR11-29 65.3 23.66 0.00 23.66 1.44 0.00 0.00 62.55 3.91 8.44 0.00 12.35 

NHD11-01 3.5 74.54 2.58 71.96 7.01 0.00 0.00 17.71 0.00 0.74 0.00 0.74 

NHD11-02 3.3 81.66 0.86 80.80 4.01 0.00 0.00 14.33 0.00 0.00 0.00 0.00 
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Data Repository 5, continued.  

 

Sample 

number 

Meter 

level Plant category*         

Phyto-

lith 

Total  

Dia-

tom 

Sponge 

spicules 

 

Chryso

phyte 

 

DSC 

total 

    

FI 

Total Palm 

FI-

palm  GSSC 

Poten-

tial 

grass Sedge Other   

   

NHD11-05 7.1 38.64 0.94 37.70 11.71 0.00 0.00 11.71 49.65 0.00 0.00 0.00 0.00 

NHD11-06 6.7 43.09 1.60 41.49 7.18 3.46 0.00 10.64 46.28 0.00 0.00 0.00 0.00 

NHD11-07 11.6 47.70 33.67 14.03 4.08 0.51 0.00 4.59 47.45 0.00 0.26 0.00 0.26 

LPS-09-01 ~2.3 24.88 1.42 23.46 22.75 0.00 0.00 22.75 51.90 0.24 0.24 0.00 0.47 

LPS-09-02 ~3.2 75.00 4.10 70.90 12.30 0.00 0.00 12.30 12.30 0.00 0.00 0.41 0.41 

LPS-09-03 ~3.9 56.38 3.90 52.48 13.12 0.00 1.06 14.18 29.43 0.00 0.00 0.00 0.00 

LSGB-L1-02 13.7 62.32 6.16 56.16 10.14 0.00 0.00 10.14 24.64 0.36 2.54 0.00 2.90 

LSGB-L1-06 13.7 59.93 4.23 55.70 9.45 2.28 0.00 11.73 27.04 0.00 0.98 0.33 1.30 
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Data repository 6. Plant category data (as percent of total phytolith population) used to infer vegetation types from 

the Middle Chadronian-Orellan, Sage Creek Basin, Montana. 

 

Sample 

number 

Meter 

level Plant category          

    
FI 

(total) Palm 
FI-

palm GSSC 

Poten-

tial 
grass Sedge 

Total 
grass OTH 

LP11-02 3.5 63.75 0.00 63.75 3.24 0.00 0.00 3.24 33.01 

LP11-03 5.8 68.56 2.27 66.29 7.95 0.00 0.00 7.95 23.48 

LP11-04 8.7 36.12 7.55 28.57 23.18 0.00 0.00 23.18 40.70 

LP11-05 10.7 14.94 2.70 12.24 17.01 0.00 0.00 17.01 68.04 

LP11-06 0.4 29.10 3.13 25.97 9.21 0.00 0.18 9.39 61.51 

LP11-08 2.5 38.96 3.97 34.99 13.65 0.00 0.00 13.65 47.39 

LP11-10 3.1 32.10 3.23 28.87 14.55 0.00 0.00 14.55 53.35 

LSG11-01 1.6 35.84 2.73 33.11 35.15 0.34 0.00 35.49 28.67 

LSG11-03 7.7 15.97 2.78 13.19 52.43 2.43 0.35 55.21 28.82 

LSG11-04 8.5 27.30 0.27 27.03 32.97 0.00 0.00 32.97 39.73 

LSG11-05 13.2 35.36 1.58 33.77 19.26 0.00 0.00 19.26 45.38 

LSG11-06 15.8 47.28 4.46 42.82 6.44 0.00 0.00 6.44 46.29 

LSGB11-04 4.2 60.17 22.09 38.08 2.03 0.00 0.00 2.03 37.79 

LSGB11-07 8.9 53.67 5.33 48.33 13.67 0.00 0.00 13.67 32.67 

LSGB11-11 13.1 61.49 8.39 53.11 4.04 0.00 0.00 4.04 34.47 

LSGB11-12 14.5 45.63 5.35 40.28 12.68 0.56 0.00 13.24 41.13 

MR11-25 43.7 41.24 8.25 32.99 11.34 0.00 0.00 11.34 47.42 

MR11-28 59.6 56.96 2.53 54.43 6.65 0.00 0.00 6.65 36.39 

NHD11-01 3.5 81.66 0.86 80.80 4.01 0.00 0.00 4.01 14.33 

NHD11-02 3.3 75.09 2.60 72.49 7.06 0.00 0.00 7.06 17.84 

NHD11-04 6.7 40.21 1.59 38.62 17.46 0.00 0.00 17.46 42.33 

NHD11-05 7.1 43.09 1.60 41.49 7.18 3.46 0.00 10.64 46.28 

NHD11-06 6.7 38.64 0.94 37.70 11.71 0.00 0.00 11.71 49.65 

NHD11-07 11.6 47.83 33.76 14.07 4.09 0.51 0.00 4.60 47.57 

LPS-09-01 ~2.3 25.00 1.43 23.57 22.86 0.00 0.00 22.86 52.14 

LPS-09-02 ~3.2 75.31 4.12 71.19 12.35 0.00 0.00 12.35 12.35 

LPS-09-03 ~3.9 56.38 3.90 52.48 13.12 0.00 1.06 14.18 29.43 

LSGB-L1-02 13.7 64.18 6.34 57.84 10.45 0.00 0.00 10.45 25.37 

LSGB-L1-06 13.7 60.73 4.29 56.44 9.57 2.31 0.00 11.88 27.39 
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Data repository 7. Plant category data (as percent of total FIs and GSSCs) used to infer vegetation types for the 

Middle Chadronian-Orellan, Sage Creek Basin, Montana. 

Sample number Meter level Plant category, % of FI+GSSC 

FI+GSSC 

count  Phytolith  total 

    FI GSSC   

LP11-02 3.5 95.17 4.83 207 309 

LP11-03 5.8 89.60 10.40 202 264 

LP11-04 8.7 60.91 39.09 220 371 

LP11-05 10.7 46.77 53.23 201 629 

LP11-06 0.4 75.96 24.04 208 545 

LP11-08 2.5 74.06 25.94 212 406 

LP11-10 3.1 68.81 31.19 202 433 

LSG11-01 1.6 50.24 49.76 209 293 

LSG11-03 7.7 22.55 77.45 204 290 

LSG11-04 8.5 45.29 54.71 223 372 

LSG11-05 13.2 64.73 35.27 207 380 

LSG11-06 15.8 88.02 11.98 217 406 

LSGB11-04 4.2 96.73 3.27 214 359 

LSGB11-07 8.9 79.70 20.30 202 301 

LSGB11-11 13.1 93.84 6.16 211 325 

LSGB11-12 14.5 77.51 22.49 209 358 

MR11-25 43.7 78.43 21.57 204 400 

MR11-28 59.6 89.55 10.45 201 317 

NHD11-01 3.5 95.32 4.68 299 349 

NHD11-02 3.3 91.40 8.60 221 271 

NHD11-04 6.7 69.72 30.28 218 378 

NHD11-05 7.1 80.20 19.80 202 376 

NHD11-06 6.7 76.74 23.26 215 427 

NHD11-07 11.6 91.22 8.78 205 392 

LPS-09-01 ~2.3 52.24 47.76 201 422 

LPS-09-02 ~3.2 85.92 14.08 213 244 

LPS-09-03 ~3.9 81.12 18.88 196 282 

LSGB-L1-02 ~13.7 86 14 200 276 

LSGB-L1-06 ~13.7 83.63636 16.36364 220 307 
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