S.M. Aarons

Variable Hf-Sr-Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere

Submitted for Publication in:

Chemical Geology

in lieu of thesis in partial fulfillment of the requirements for the degree of

Master of Science in Geology
Department of Earth and Environmental Sciences
The University of Michigan

Accepted by:

Mark Flanner 11-Dec-2012
Name
Date

Sarah M. Aciego 12/11/2012
Name
Date

Rebecca Lange 12/12/2012
Name
Date

Department Chair Signature

I hereby grant the University of Michigan, its heirs and assigns, the non-exclusive right to reproduce and distribute single copies of my thesis, in whole or in part, in any format. I represent and warrant to the University of Michigan that the thesis is an original work, does not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis. I understand that I will not receive royalties for any reproduction of this thesis.

☐ Permission granted.

☐ Permission granted to copy after: _______________________

☐ Permission declined.

Sarah Aarons
Author Signature

Earth and Environmental Sciences
University of Michigan
Variable Hf-Sr-Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere

S.M. Aarons, S.M. Aciego and J.D. Gleason

S. M. Aarons (smaarons@umich.edu), S.M. Aciego, and J.D. Gleason, Department of Earth and Environmental Sciences, University of Michigan, 2534 C.C. Little Building, Ann Arbor, MI 48109, USA.

Abstract

Isotopic characterization of aerosol mineral particles (atmospheric dust) of varying sizes is essential in classifying source areas, and for determining the source of dust deposited over oceans and icesheets. However, the effect of atmospheric transport on radiogenic isotopic compositions is not well constrained, making provenance interpretation difficult. In order to investigate the isotopic variability of 176Hf/177Hf, 87Sr/86Sr and 143Nd/144Nd we analyzed eight airborne dust samples in two size fractions collected along a cross-Atlantic transect through a dust storm originating in the Sahara in late 2002. Past measurements of 176Hf/177Hf, 87Sr/86Sr and 143Nd/144Nd of dust have focused primarily on coarse sized particles (<30 µm), whereas far field deposition is primarily finer particles (<2 µm). Strontium or neodymium isotopic sorting based on distance is not evident in our dataset; however, the combined isotopic ratios of the dust collected suggests a Saharan origin. Hafnium isotopic compositions show an east to west trend towards more radiogenic compositions across the Atlantic, suggesting grain and mineral sorting during dust transport along the ~4000 km transect. Transport models with variable dust particle diameter and wind speed demonstrate that the Hf isotopic compositions can be explained by the loss of the high-density mineral zircon during transport of dust from the source area. Modeling of this “zircon effect” in the Hf isotopic composition of marine, terrestrial and glacial dust deposits can reveal additional information concerning dust transport and sources in the geologic past.

Keywords: Dust, Hf, Sr, Nd, Zircon Effect

1. Introduction

The Sahara desert (Fig. 1) is considered the primary source of aerosol dust in the Northern Hemisphere (Sarnthein et al., 1981; Duce et al., 1991). Saharan dust is transported thousands of kilometers across the Atlantic and has been recognized as a nutrient source with a significant impact on ocean-carbon dynamics (Watson et al., 2000) and the ecosystems of the southeastern United States and the Caribbean (Prospero, 1999; Shinn et al., 2000). Dust particles originating from desert areas and deposited in ice sheets have also been used as tracers of atmospheric circulation and transport patterns (Genthon et al., 1993; Joussaume et al., 1993; Basile et al., 1997). Comparing the composition of dust particles entrained in ice to that of dust particles from known dust sources such as the Sahara desert can effectively trace back the origin of dust from sink to source (Grousset and Biscaye, 2005). Radiogenic isotope tracers allow us to more fully
investigate the impact of a dust source on oceanic and terrestrial biogeochemistry, and provide insight on paleo-atmospheric circulation and paleo-climate (Grousset et al., 1992; Harrison et al., 2001; Jickells et al., 2005). Effective quantification and modeling of the isotopic data assumes that we understand changes in isotope composition occurring as a result of weathering, transport, deposition and dissolution. Previous studies have assumed the isotopic composition of dust particles remains the same between source and sink despite the possibility of fractionation effects during transport (Grousset and Biscaye, 2005). Here, we quantify some specific effects that transport can have on the radiogenic isotopic composition of varying sizes of aerosol dust by investigating a dust storm event originating in the Sahara desert in 2002.

2. Methodology

2.1. Sample processing

Aerosol dust samples were collected on shipboard filters during Atlantic cruise M55 of FS Meteor (Curacao, West Indies to Douala, Cameroon, 12th October-17th November 2002), which intersected a cross-Atlantic dust storm originating in the Sahara desert (Fig. 1). The distance between the first dust collection point and the last collection point is over 4000 km, with samples approximately 500 to 1000 km apart (Fig. 1). The distance for the most westerly sample from the dust source is estimated to be nearly 6000 km. Aerosol samples were collected using a high volume (1 m3 min$^{-1}$) collector which separated the dust into two size fractions, <1 and >1 µm with a maximum particle size of 30 µm. Filters were changed approximately once a day and the average air volume sampled was ~1400 m3 (Baker, 2004). Dust was separated from

Figure 1: Map of Atlantic Ocean with locations of aerosol dust sample collection sites during cruise M55. Collection sites listed are the samples that were measured in this study.
the filters under Class 100 clean lab conditions by ultrasonic bath with Super-Q Millipore water. Following centrifugation, the water was decanted and retained for analysis of the water-soluble portion of the samples. The water-insoluble dust fraction was transferred to pre-cleaned Savillex Teflon vials and digested in aqua regia, dried and re-digested in ultra-pure double distilled Seastar HF/HNO3/HClO4 for >24 hours at 160°C before evaporation. Following evaporation and uptake in Seastar HCl, sample solutions were inspected for any residues. Clear solutions were further processed and chemically separated by ion exchange chromatography using miniaturized ion-exchange columns and Eichrom resins following techniques of Aciego et al. (2009) for Hf, Sr and Nd isotopic analysis. The water-soluble fraction was also recovered, and then chemically separated using the same methodology.

2.2. Mass spectrometry

Strontium isotopic compositions were measured on a Finnigan MAT 262 thermal ionization mass spectrometer and normalized to $^{88}\text{Sr}/^{86}\text{Sr}=8.375209$ to correct for mass bias. The Sr isotopic standard NBS987 (75 ng) has a long term average of $^{87}\text{Sr}/^{86}\text{Sr}=0.710235\pm12$ (2σ SD, n = 88) on the University of Michigan Finnigan MAT 262. The USGS reference material BCR-2 (10 ng) measured at the same time as the samples averaged 0.705002 ± 30 (n = 4), which is in good agreement with the literature value compiled in Aciego et al. (2009) (0.705013). Hafnium isotopic measurements were performed on the University of Michigan Nu Instruments multi-collector inductively coupled mass spectrometer and ratios were normalized to $^{179}\text{Hf}/^{177}\text{Hf} =0.7325$. Samples were bracketed with a standard solution of JMC475 (20 ppb total Hf) which had an average $^{178}\text{Hf}/^{177}\text{Hf}=0.282170\pm22$ (n = 24); $^{178}\text{Hf}/^{177}\text{Hf}$ of the samples were then normalized to the accepted JMC475 value of 0.282160 (Weis et al., 2007). BCR-2 solutions were measured twice for Hf isotopic composition, and the average value ($^{176}\text{Hf}/^{177}\text{Hf}=0.282886; \epsilon_{\text{Hf}}=4.13$), is in close agreement with literature values (Weis et al., 2007). Our reported $^{87}\text{Sr}/^{86}\text{Sr}$ errors represent individual analytical errors, whereas the $^{176}\text{Hf}/^{177}\text{Hf}$ errors are based on our external reproducibility of the standard JMC475. Neodymium isotopic compositions were measured on a Thermo Scientific Triton PLUS thermal ionization mass spectrometer at the University of Michigan and normalized to $^{146}\text{Nd}/^{144}\text{Nd}=0.7219$ using the exponential law and mass 149 was monitored for Sm interference. The Nd isotopic standard JNd-1 (10 ng) was measured at $^{143}\text{Nd}/^{144}\text{Nd}=0.512104\pm140$ (n=2) and JNd-1 (20 ng) was measured at $^{143}\text{Nd}/^{144}\text{Nd}=0.512102\pm12$ (n=10), which is in good agreement with the accepted value of JNd-1 of 0.512115 (Tanaka et al., 2000).

3. Results

The Sr, Hf, and Nd isotopic composition of the M55 cruise dust samples are summarized in Table 1. Valid Sr isotopic measurements were obtained for the majority of the samples; however, Hf and Nd isotopic measurements were difficult to obtain due to the small sample size, and are therefore supplemented with measurements performed by Rickli et al. (2010).

3.1. Sr isotopic composition of dust

The $^{87}\text{Sr}/^{86}\text{Sr}$ isotopic composition of the dust samples lies within the range of 0.709763 to 0.719167. A visible isotopic sorting trend is not evident, with respect to distance from source, is evident with $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (Fig. 2); however the fine-grained samples are more radiogenic than...
the coarse grained samples at a given distance from source. As indicated in Fig. 2, an average shift of >400 ppm in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio between coarse and fine fractions is found, with a coarse and fine silicate portion average $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of 0.71358 and 0.71739 respectively, consistent with a Saharan dust source (Grousset et al., 1992). The fine silicate portion of dust samples proved to be consistently more radiogenic for Sr than the coarse portions for each sampling site. The finer grained samples may contain a higher proportion of high Rb/Sr in the form of weathered particles such as clay and micas, which can explain their more radiogenic values (Stewart et al., 2001). The water-soluble samples were significantly less radiogenic than their silicate counterparts, and were much closer to the known modern $^{87}\text{Sr}/^{86}\text{Sr}$ seawater ratio of 0.70907 (Burke, 1982). A simple mixing analysis reveals that \sim70% of the Sr in the water-soluble fraction is attributable to seasalt and \sim30% from dust.

![Figure 2: Strontium isotopic compositions of dust samples with respect to distance from source. Samples are separated by their size and solubility. Black circles and diamonds are fine and coarse (<1 and >1 µm respectively) silicate fractions and red circles and diamonds are fine and coarse water-soluble fractions of dust. Modern $^{87}\text{Sr}/^{86}\text{Sr}$ seawater ratio is plotted as dark blue line. 2σ errors for $^{87}\text{Sr}/^{86}\text{Sr}$ are smaller than the size of the symbols.](image)

3.2. Nd and Hf isotopic compositions of dust

All Nd and Hf isotope compositions are reported here as ϵ_{Nd} and ϵ_{Hf}, which for Nd is defined as:

$$\epsilon_{\text{Nd}} = \left[\frac{^{143}\text{Nd}/^{144}\text{Nd}}{^{143}\text{Nd}/^{144}\text{Nd}}_{\text{CHUR}} \right] - 1 \times 10^4,$$

where $^{143}\text{Nd}/^{144}\text{Nd}_{\text{CHUR}}$ is the Nd isotopic composition of the Chondritic Uniform Reservoir (CHUR) which is $^{143}\text{Nd}/^{144}\text{Nd}_{\text{CHUR}} = 0.512638$ (Jacobsen and Wasserburg, 1980) and $^{176}\text{Hf}/^{177}\text{Hf} = 0.282769$ (Nowell et al., 1998). The Nd isotopic composition of the dust samples lies within the range of ϵ_{Nd} -12.0 to -14.1, with an average ϵ_{Nd} of -13.2 ± 0.5 (n=8), consistent with a crustal
Saharan source (Grousset et al., 1992). There is no discernible Nd isotopic sorting trend with respect to distance from the source, however the fine fraction of samples 3, 4 and 7 have less radiogenic values than their coarse counterparts. The Nd and Sr isotopic compositions show the expected correlation in ϵ_{Nd} versus $^{87}\text{Sr}/^{86}\text{Sr}$ space, except for one sample which has the most radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ value (0.719167) and also has the most radiogenic ϵ_{Nd} value (-8.6) (Fig. 3). Combined Hf and Nd isotopic compositions of these samples correlate well and plot close to the “zircon free array” and “bulk earth” portion of the “terrestrial array” (Fig. 4a) defined by Bayon et al. (2009). These results are consistent with Rickli et al. (2010), who analyzed coarser fractions nearer to the dust storm (Table 1). The Hf isotopic composition of the dust samples varies from -8.9 to -2.5, revealing significant variations in as a function of distance from the dust source, showing dust to be less radiogenic close to the source and progressively more radiogenic as distance from the source increased (Fig. 4b).

4. Discussion

4.1. Dust Provenance

Continental-derived dust that is transported throughout the atmosphere can be used as a tracer of air circulation and transport patterns (Basile et al., 1996; Grousset and Biscaye, 2005; Revel-Rolland et al., 2006; Delmonte et al., 2010). The radiogenic isotopic compositions of dust have been used in this way as a proxy for paleo-climate and atmospheric circulation on both a regional and global scale (Harrison et al., 2001). Dust deposition has been noted to have a significant impact on ecosystems, for example the deposition of desert dust on semi-arid lands encourages the development of soil (McTainsh, 1984; Tsoar and Pye, 1987; Reheis et al., 1995; Kohfeld and Harrison, 2001). Far travelled dust particles have also been attributed to provide enrichment in limiting nutrients (P, K, Mg, Na, Ca, Fe, Cu, Mn and Mo) in forest, river, lake and marine ecosystems (Reynolds et al., 2001; Okin et al., 2004; McTainsh and Strong, 2007) and are therefore capable of affecting the global carbon cycle. Variations in the provenance of dust reaching a particular location can be a valuable indicator of changes in dust production, sources, and atmospheric transport pathways through time as a function of climate change. Quantifying the effects of physical and chemical weathering, as well as the changes that take place during transport on isotopic composition, is thus important for accurately interpreting dust provenance. In particular, any changes to the dust particles that occur during transport, such as density and size related fallout, can have implications for any studies that have assumed that the composition remains constant with respect to distance from the source.

4.2. Sr water soluble fraction

We find that the large component of Sr (~70%) from seasalt in the water-soluble portion of the samples highlights the importance of effective sample separation between the water insoluble and soluble portions prior to isotopic analysis of dust-derived Sr (Fig. 2). Previous studies utilizing Sr isotopes to trace dust transport have neglected to separately analyze the soluble and non soluble portions of Sr-bearing materials, resulting in measured $^{87}\text{Sr}/^{86}\text{Sr}$ values which are not an accurate representation of nutrient pools or dust sources (Jin et al., 2011). A study performed by Pett-Ridge et al. (2008) measured Sr isotopes as a tracer of weathering processes and dust inputs in a tropical watershed using a simple mass balance model to determine the proportion of radiogenic Sr leached from altered biotite. It was proposed that mineral aerosol dust deposition is a source of radiogenic Sr in the watershed system, and a flux equation was used to describe
the amount of radiogenic Sr input by dust sources (Pett-Ridge et al., 2008). The flux equation fails to take into account the quantity of sea salt contribution to the overall dust flux, which may result in inaccurate calculated Sr concentrations from dust input and characterization of sources of radiogenic Sr. Our results show that the non soluble portion of Saharan dust samples is significantly more radiogenic than the soluble portion (Fig. 2), and measurements performed without proper separation of the soluble from non soluble portion may be more representative of sea salt aerosol input rather than aerosol mineral dust.

4.3. Sr and Nd detrital fraction

Past research has demonstrated that transport sorting of dust has an insignificant effect upon other radiogenic isotope tracers, such as Nd (Goldstein et al., 1984 and Frank, 2002). Our data also show that no significant isotopic variation in Sr occurs with respect to distance from the source; however, there is a significant difference in the isotopic composition between the coarse sized dust particles (>1 μm) and the fine fraction (<1 μm) (Fig. 2) collected at each site, which is consistent with the findings of Biscaye (1971) and Goldstein and Jacobsen (1987). The Sr isotopic differences with respect to size fraction have clear implications for dust transport studies that have primarily focused on only coarse sized particles for analysis. A previous study concerning dust provenance in Greenland ice compared possible source area samples in a <5 μm size fraction whereas the mean particle size of dust entrained within the ice is between ~1.6-2 μm in diameter (Steffensen, 1997). The authors determined Saharan provenance for the dust was not likely based on 87Sr/86Sr and ϵ_{Nd} isotope mixing plots whereas our results show that input from dust originating from the Sahara is a distinct possibility for dust found in Greenland ice (Fig. 3) (Biscaye et al., 1997). The fine fraction (<1 μm) Sr and Nd isotopic compositions are in good agreement with values obtained by Lupker et al., (2010), which supports the conclusion that a significant component of the dust flux to Greenland could originate in the Sahara (Fig. 3).

4.4. Nd and Hf detrital fraction

The Nd and Hf isotopic compositions measured in this study lie within the “bulk earth” and “zircon free” array (Fig. 4a) (Bayon et al., 2009). The Nd and Hf isotopic composition of earth materials can be an indicator of continental weathering (Bayon et al., 2006; Rickli et al., 2009, 2010; van de Flierdt et al., 2007), as the degree of physical weathering is directly related to the amount of unradiogenic Hf from zircons released into sinks such as ice sheets, glaciers and oceans (Piotrowski et al., 2000; van de Flierdt et al., 2002). Here we suggest that the Hf isotopic composition of deposited dust particles can provide insight into the provenance, transport distance and pathways of aerosol mineral dust.

4.5. Zircon Effect in Wind Driven Dust

It has been hypothesized that Hf isotopic composition of atmospheric dust changes due to the variable loss of the high-density mineral zircon (ZrSiO$_4$), as a function of distance from the source area. Hf constitutes between 1-4 weight % of the mineral zircon (Hoskin and Schaltegger, 2003), and is therefore concentrated in a single mineral phase in most silicate materials. Zircon also has a very low Lu/Hf ratio, resulting in very unradiogenic 176Hf/177Hf, due to slow radiogenic ingrowth of 176Hf from decay of 176Lu over time (Patchett et al., 1981). The chemical indestructibility of zircon over geologic time therefore results in a low 176Hf/177Hf ratio being imparted to the more zircon-rich parts of the sedimentary system (Vervoort et al., 1999). Physical weathering, erosion and transport processes of continental material also fractionates
Figure 3: Sr and Nd isotopic arrays of dust samples measured in this study, dust samples within Greenland ice from studies by Biscaye et al. (1997) and Lupker et al. (2010) (dated marine isotope stage 2 and 18th century respectively), with a compilation of potential source areas (PSAs) isotopic compositions obtained from literature (Grousset et al., 1992; Biscaye et al., 1997; Kukla and Cílek, 1996; Bory et al., 2003; Kanayama et al., 2002; Stancin et al., 2006; Chen et al., 2007). Red circles and diamonds are fine and coarse (<1 and >1 µm respectively) silicate fractions and purple squares are dust samples from Greenland ice. PSA samples are separated by color.

coarser, sandy sediments with abundant zircons from clay-sized (zircon-poor) sediments with much higher Lu/Hf (Patchett et al., 1984), resulting in more radiogenic 176Hf/177Hf for fine clays. Additionally, preferential chemical weathering of rare earth element (REE)-bearing minerals can result in high Lu/Hf dissolved phases being more available for adsorption onto clay particles (Patchett et al., 1984).

The global Hf isotope values (seawater array) observed in the ocean have been explained by incongruent continental weathering (Piotrowski et al., 2000; van de Flierdt et al., 2002; van de Flierdt et al., 2004; Bau and Koschnisky, 2006; van de Flierdt et al., 2007; Stichel et al., 2012). In particular, preferential weathering of the non-zircon portions of the upper continental crust has been suggested to be responsible for the observed seawater array observed in Mn-crusts and nodules (Albarede et al., 1998). The concept of incongruent continental weathering can be extended to dust transport studies; more specifically, that the retention and fallout of unradiogenic Hf in zircon particles resistant to weathering will produce a disproportionate amount of variation in the observed Hf isotopic compositions of dust particles advected from a dust storm compared to other isotopic systems.
4.6. Atmospheric Transport Model: Particle Size and Density as limiting factor of “zircon effect”

The effects of physical and chemical weathering at the Earth’s surface on $^{176}\text{Hf}/^{177}\text{Hf}$ ratios are complicated (Vervoort et al., 1999); however, we infer through transport modeling (below) that density sorting of zircon is the main factor behind the observed variability in $^{176}\text{Hf}/^{177}\text{Hf}$ ratios. Initial entrainment of zircon-laden dust particles within dust storms is relatively small as a volume percentage due to its high density; nevertheless, it has been proposed that the high density of zircon entrained within storms of atmospheric dust will result in a systematic depletion of zircon in the dust as a function of time and distance traveled (Rickli et al., 2010). Here we confirm that prior weathering, size sorting, and dissolution occurring before dust entrainment, combined with the effects of mineral density related fallout and size sorting during transport, has a quantifiable effect on the Hf radiogenic isotope composition with distance from the source area of a large Saharan dust storm (Fig. 4b).

In our dataset, samples closer to the dust source possess more negative, less radiogenic ϵ_{Hf} values due to their relative enrichment in zircon. Approximate relative concentrations of zircon-poor vs. zircon-laden silicate dust as a function of distance from the dust storm were calculated using a steady-state general transport model adapted from Jacobson and Holmden (2006).
model assumes that dust is injected into the atmosphere at the coastline of Western Africa, the transport occurs along the northeasterly trade wind direction at a constant velocity, the effect of dispersion is ignored and reaction rates are first order. The dust deposition velocity was calculated using an equation for gravitational settling from Zhang et al. (2001). The zircon dry deposition velocity is approximately double that of the zircon-free silicate dust. The general transport equations for zircon-free versus pure zircon dust are as follows:

\[C_{\text{sil atm}}(x) = C_{\text{sil atm}}(0) \exp\left(-\frac{x}{v(\lambda_{\text{dry sil}} + \lambda_{\text{sil}})}\right) \]
\[C_{\text{zir atm}}(x) = C_{\text{zir atm}}(0) \exp\left(-\frac{x}{v(\lambda_{\text{dry zir}} + \lambda_{\text{zir}})}\right) \]

where \(C_{\text{sil atm}}(0) \) and \(C_{\text{zir atm}}(0) \) are the initial concentrations of zircon-free silicate and pure zircon dust, respectively, in a vertical column of the atmosphere at the eastern coast of the Atlantic Ocean. \(C_{\text{sil atm}}(0) \) and \(C_{\text{zir atm}}(0) \) are calculated using the following equation:

\[C_{\text{atm}} = C_{\text{dust atm}}(0)f_i h_{\text{atm}}, \]

where \(i=\text{sil} \) or \(\text{zir} \), and \(C_{\text{dust atm}}(0) \) is the mean concentration of bulk dust in a vertical column of air at the coastline, \(f_i \) is the mass fraction of particles present in the bulk dust, and \(h_{\text{atm}} \) is the height of dust injection into the atmosphere. The distance along the transport path is represented by \(x \), and \(v \) is the wind velocity. \(\lambda_{\text{dry sil}} \) is the dry deposition rate of silicate dust, \(\lambda_{\text{sil}} \) is the wet deposition rate of silicate dust, \(\lambda_{\text{dry zir}} \) is the dry deposition rate of zircon laden dust, and \(\lambda_{\text{zir}} \) is the wet deposition rate of zircon-laden dust. For a full description of the values used in the general transport model see Table 2.

The “zircon effect” is visible in the samples closer to the dust source possessing lower \(\epsilon_{\text{Hf}} \) values due to their enrichment in zircon-laden particles (Fig. 4b). The measured \(\epsilon_{\text{Hf}} \) values gradually increase (become more radiogenic) as the relative concentration of zircon-laden dust particles decreases with distance due to density related fallout. The rapid decrease in zircon content (in g/m²) with respect to distance from the source is reflected in model results for coarse particles (10 µm) in a column of air, but not for fine particles (1 µm). The coarse particle concentration of both zircon and non-zircon silicate particles decreases exponentially as the storm progresses across the Atlantic, but with the zircon particles falling out of the air column more rapidly than the silicate particles due to the effects of density (Fig. 5). In contrast, the fine fraction dust shows no difference in fallout rate between the zircon and zircon-free dust fractions. We find that the critical parameter governing fine dust fallout as a function from source area is the diameter of the particle rather than the particle density. Rather than being attributed to mineral sorting related to physical and chemical weathering at the source (along with the effects of density upon initial entrainment for transport), we find that the isotopic analysis of Hf reveals the majority of coarse zircon particles were deposited within 3000 km of the dust source, a conclusion supported by the model results presented here. As the fine dust fraction is transported from its source region the effects of density do not produce a discrepancy in proportions of zircon-laden and zircon-poor dust particles. As seen in Fig. 5, 1 µm dust particles do not show a separate fallout rate for zircon and zircon-free fractions.

4.7. Effects of variable wind speed and particle diameter

By varying the particle size in the dust transport model we have determined that particle diameters >1 µm show a fallout rate that is dependent upon density, which results in a visible
difference between the zircon and zircon-free fractions as a function of distance from the source (Fig. 5). We suggest that the critical particle diameter is 5 µm, such that 3000 km from the source with a wind speed of 8 m/s there is a significant difference (~0.1) in the fraction of starting concentration between the zircon and zircon-free fractions. For dust particles >5 µm, the "zircon effect" should be evident in dust inputs to seawater, ice sheets, and glaciers, and we can therefore discern whether the dust source is near or far relative to its deposition site based off its Hf isotopic composition. The maximum windspeed in the Saharan air layer is often 10-17 m s\(^{-1}\) and can be as high as 25 m s\(^{-1}\), which is significantly stronger than the typical trade wind speed (Dunion and Velden, 2004). Our model results show that wind speed variation will have a significant effect upon the transport and deposition of dust particles (Fig. 5). Dust particles >10 µm will gravitationally settle out of the atmosphere in close proximity to their source as a function of the wind speed (Fig. 5). The difference in density between zircon and non-zircon silicate particles is still evident, however the likelihood of these particles reaching ice sheets or glaciers is small. Depending on the proximity of the source area to the ocean, the "zircon effect" may still be evident in the input to seawater as previous studies have demonstrated that close range continental weathering inputs have measurable effects upon the Hf isotopic composition of seawater (Rickli et al., 2009; Rickli et al., 2010). The resistance to weathering and subsequent insolubility of the mineral zircon may result in unradiogenic Hf isotopic compositions of insoluble dust particles suspended in seawater, but have little to no effect on the soluble Hf isotopic composition of seawater.

5. Conclusions

We have shown that sorting of dust particles with respect to their size, density, and susceptibility to weathering can affect the observed isotopic composition at varying distances within a dust storm from its source. Modeling the "zircon effect" related to atmospheric dust transport has the potential to differentiate near from far sources of dust particles. Modeled results show an almost complete absence of coarse zircon particles 5000 km away from the dust source. The Hf isotopic composition of dust particles of a certain size fraction can be extrapolated to represent the relative amount of zircon present in the dust sample as demonstrated in Fig. 4b. The amount of unradiogenic Hf present in the samples has the potential to reveal whether the dust was sourced from an exposed local or a transcontinental source. Understanding the causes and changes in isotopic composition of dust particles with respect to distance from the dust source to sink is essential to accurately reconstruct dust provenance, transport pathways, and the interpretation of effects of dust deposition upon the biogeochemistry of the marine and terrestrial biosphere. We suggest that a more detailed study with more dust samples and dust size fractions be carried out to determine whether there is in fact a significant difference in isotopic composition based upon small variations (on the order of µm) of dust size fraction.

6. Acknowledgments

The samples for this research were kindly provided by A.R. Baker. This research was funded by the University of Michigan Rackham Graduate School and the Turner Award from the Department of Earth and Environmental Sciences. We would also like to thank the Radiogenic Isotope Geochemistry Laboratory at Michigan (J. Blum, director) for access to laboratory and mass spectrometer facilities.
References

Table 1: Strontium, hafnium and neodymium isotopic compositions of dust samples collected during cruise M55.

Sample Date	Source Distance (km)	87Sr/86Sr ± 2σ	10^-6	176Hf/177Hf ± 2σ	143Nd/144Nd ± 2σ	2εHf	2εNd	4FS	10/02 11.0°N, 58.7°W	5570	0.716669 (31)	3FS	10/02 11.0°N, 58.7°W	5570	0.710693 (74)	3CS	10/02 11.0°N, 58.7°W	5570	0.714756 (29)	0.282698 (22)	-2.5 (0.8)	0.511916 (48)	-14.1 (0.9)																
87Sr/86Sr		1.01						3	10/02 10.6°N, 53.7°W	5130	0.710061 (15)	4	10/02 10.6°N, 53.7°W	5130	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.717743 (44)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710583 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)
176Hf/177Hf		1.00						3	10/02 10.6°N, 53.7°W	5130	0.710061 (15)	4	10/02 10.6°N, 53.7°W	5130	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.717743 (44)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)				
143Nd/144Nd		1.00						3	10/02 10.6°N, 53.7°W	5130	0.710061 (15)	4	10/02 10.6°N, 53.7°W	5130	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.717743 (44)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)	7	10/02 10.0°N, 44.8°W	4250	0.710534 (39)				

Notes: Each sample is a replicate of the same sample collected during cruise M55. C denotes fine and coarse grained samples respectively.
Table 2: Parameters for the atmospheric transport model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Distance along transport path</td>
<td>m</td>
</tr>
<tr>
<td>v</td>
<td>Wind velocity</td>
<td>8 m s^{-1}</td>
</tr>
<tr>
<td>h_{atm}</td>
<td>Height of dust injection into the atmosphere</td>
<td>$4 \times 10^3 \text{ m}$</td>
</tr>
<tr>
<td>f_{sil}</td>
<td>Mass fraction of silicate in bulk dust</td>
<td>0.64</td>
</tr>
<tr>
<td>f_{zir}</td>
<td>Mass fraction of zircon in bulk dust</td>
<td>0.0001</td>
</tr>
<tr>
<td>C_{dust}^{atm}</td>
<td>Atmospheric concentration of bulk dust at $x=0$</td>
<td>$4.0 \times 10^{-3} \text{ g m}^{-3}$</td>
</tr>
<tr>
<td>C_{sil}^{atm}</td>
<td>Atmospheric concentration of silicate dust of h_{atm} at $x=0$</td>
<td>10.24 g m^{-2}</td>
</tr>
<tr>
<td>C_{zir}^{atm}</td>
<td>Atmospheric concentration of zircon dust of h_{atm} at $x=0$</td>
<td>$1.6 \times 10^{-3} \text{ g m}^{-2}$</td>
</tr>
<tr>
<td>λ_{dry}^{sil}</td>
<td>Dry deposition rate for silicate dust</td>
<td>$2.3 \times 10^{-8}-2.0 \times 10^{-6} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>λ_{wet}^{sil}</td>
<td>Wet deposition rate for silicate dust</td>
<td>$1.58 \times 10^{-6} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>λ_{dry}^{zir}</td>
<td>Dry deposition rate for zircon dust</td>
<td>$4.33 \times 10^{-8}-3.75 \times 10^{-6} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>λ_{wet}^{zir}</td>
<td>Wet deposition rate for zircon dust</td>
<td>$1.58 \times 10^{-6} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>v_{dry}^{sil}</td>
<td>Dry deposition velocity for silicate dust</td>
<td>$9.21 \times 10^{-5}-8.0 \times 10^{-3} \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>v_{dry}^{zir}</td>
<td>Dry deposition velocity for zircon dust</td>
<td>$1.73 \times 10^{-2}-1.5 \times 10^{-2} \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{sil}^{atm}</td>
<td>Atmospheric concentration of silicate dust over h_{atm} at x</td>
<td>g m$^{-2}$</td>
</tr>
<tr>
<td>C_{zir}^{atm}</td>
<td>Atmospheric concentration of zircon dust over h_{atm} at x</td>
<td>g m$^{-2}$</td>
</tr>
</tbody>
</table>

Figure 5: Atmospheric transport model results for variable dust particle diameters and windspeeds. Non zircon and zircon-laden dust fractions are represented by red dashed line and solid black line respectively. Realistic dust particle diameters vary from 1, 5, 10 and 30 µm, which are represented here. Wind speeds vary between 3, 8 and 12 m s\(^{-1}\), however according to model simulations, seasonal wind speeds may exceed 10 m s\(^{-1}\) (Jones et al., 2003).