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Diabesity has become a popular term to describe the specific form of diabetes that develops late in life and is
associated with obesity. While there is a correlation between diabetes and obesity, the association is not universally
predictive. Defining the metabolic characteristics of obesity that lead to diabetes, and how obese individuals who
develop diabetes different from those who do not, are important goals. The use of large-scale omics analyses (e.g.,
metabolomic, proteomic, transcriptomic, and lipidomic) of diabetes and obesity may help to identify new targets to
treat these conditions. This report discusses how various types of omics data can be integrated to shed light on the
changes in metabolism that occur in obesity and diabetes.
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Introduction

Diabetes is an increasing concern not only for West-
ern countries, where diet and lifestyle promote ex-
panding waistlines and insulin resistance, but also
for developing countries in which the effects of
changing diet on the health of their populations
are already visible. In the U.S., diabetes affects ap-
proximately 11% of the population over age 20, and
there are an additional 79 million adults with pre-
diabetes, a condition that often precedes diabetes in
which glucose levels are higher than normal.1

Diabetics suffer an impairment of the body’s abil-
ity to switch between glucose and fat as energy
sources. Normally, when a person has not eaten
recently (a fasting state), the muscles preferentially
oxidize fat over glucose to ensure a supply of glucose

for the brain. After a person eats, however, there is
excess glucose in the system, and the muscles switch
their primary energy source and begin oxidizing
glucose and storing fats. Even early in the evolution
of diabetes (i.e., in the pre-diabetic state referred
to as metabolic syndrome), individuals are unable
to make this fuel switch, a physiological maladap-
tation termed metabolic inflexibility.2, 3 Muscles that
use too much glucose in the fasted state contribute to
fasting hyperlipidemia, and muscles that continue
to oxidize fats in the fed state, instead of switching to
glucose utilization, contribute to post-prandial hy-
perglycemia. Muscle metabolic inflexibility, along
with the failure of insulin to suppress fat breakdown
and post-prandial hepatic glucose production in the
pre-diabetic and diabetic states (insulin resistance),
results in high blood lipid and glucose levels.

doi: 10.1111/nyas.12116
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As diabetes and its associated comorbidities—
such as cardiovascular disease, kidney disease, and
neurological disorders—rise in epidemic propor-
tions, it is now more important than ever to develop
new tools to understand the complex metabolic
mechanisms and pathways involved in this disease
and to find new therapeutic targets. In April 2012,
leaders in this field met at the New York Academy
of Sciences to discuss how various types of omics
data (metabolomic, proteomic, transcriptomic, and
lipidomic) can be integrated to reveal a more com-
plete picture of these mechanisms.

The primary focus of the conference “Appli-
cation of Combined ‘omics Platforms to Ac-
celerate Biomedical Discovery in Diabesity” was
obesity-induced diabetes—diabesity, which covers a
constellation of signs, including obesity, insulin re-
sistance, metabolic syndrome, and diabetes.4, 5 Not
all obese people have diabetes and not all people with
diabetes are obese, but there is definitely a connec-
tion between the two conditions. One of the main
questions throughout the conference was how to
use omics data to create a phenotypic profile of dis-
ease state progression in order to understand why
some individuals develop diabetes and its associated
complications, while others do not.

New tools and frameworks for gathering
and visualizing omics data

As an alternative to shotgun accumulation of large
omic data sets, phenotypic data gathering can be
done in a step-wise progression for hypothesis
driven research. Irwin Kurland (Albert Einstein Col-
lege of Medicine) presented a tiered framework
in which commonly used measures of metabolism
(e.g., phenotyping tests such as calorimetry and
body composition analysis) and a novel deuter-
ated glucose tolerance test (termed the hepatic
recycling deuterated glucose tolerance test, or
HR-dGTT) that assesses peripheral versus hepatic
glucose disposal,6, 7 are performed first to help deter-
mine which specific omics experiments to do next in
animal models (Fig. 1). The results of each of these
tests can inform subsequent experiments to gen-
erate a hypothesis-driven, multi-omic investigative
framework.

If the measurements of fuel utilization by indi-
rect calorimetry (Fig.1, panel I) indicate a change in
carbohydrate or fat utilization, for example, plasma
and muscle metabolomic and lipidomic profiling

may be indicated. Or, if measurements of body com-
position reveals changes in body fat (Fig. 1, panel
II), one could follow up by measuring lipogenesis
using deuterated water8 or lipolysis using [2-13C]-
glycerol.8–10 Changes in lipogenesis and/or lipolysis
then provide enough evidence to follow up with
lipidomic analyses, such as acyl carnitine or acyl
CoA profiling,8 to monitor which lipids are be-
ing produced and/or broken down. The hepatic
recycling glucose (deuterated) tolerance test (HR-
dGTT, Fig. 1, panel III) assesses peripheral glu-
cose disposal, as well as the recycling of glucose
through the liver (a function of hepatic glucose up-
take), based on plasma measurements that assess
the decay in relative enrichment of administered
[2-2H1]-glucose, versus [6,6-2H2]-glucose. Notably,
while both [2-2H1]-glucose and [6,6-2H2]-glucose
are taken up by the liver (via a process catalyzed by
glucokinase); only [6,6-2H2]-glucose exits the liver
unchanged after traveling through the glucose/
glucose-6-P futile cycle (via a process catalyzed
by glucose-6-phosphatase). However, there is sub-
stantial loss of [2-2H1]-glucose before exiting by
exchange of the deuterium at the 2-position with
water protons during the rapid equilibration of
glucose-6-P with fructose-6-P, which does not af-
fect hydrogens at carbon 6.6 Peripheral glucose dis-
posal is estimated from the [6,6-2H2]-glucose area
under the curve (AUC) during the HR-dGTT, and
insulin AUC can also be obtained for an estimate
of whole body insulin resistance. If changes in hep-
atic versus peripheral glucose disposal are observed
by the HR-dGTT, additional stable isotope tests can
be performed to monitor hepatic glucose produc-
tion (HGP), lipolysis and glucose/glycerol recycling
(by assessing glycerol production and HGP from
glycerol), and glucose/lactate (Cori) re-cycling (by
assessing lactate production and HGP from lactate)
(Fig. 1). The results of these tests can coordinate
tissue-specific metabolomic and lipidomic profiling
efforts. Decisions can then be made to perform re-
lated global omic profiling, such as tissue-specific
acetylome determination, thus leading to inte-
grated omic information that may underlie diabetes
development.

This sequential phenotyping paradigm has been
applied to several mouse models,6–17 including a
model of increased insulin sensitivity, the Pten+/−

mouse6 and a fatty acid amide hydrolase (FAAH)-
knockout mouse, a novel model of the pre-diabetic
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Figure 1. Framework for integrating fluxomic, metabolomic and lipidomic profiling. Our approach is to use fluxomics as
a primary tool for metabolic phenotyping, and to layer additional omic information, such as metabolomics, lipidomics, and
proteomics (acetylome determination), in a hypothesis-driven manner, and vice versa, to use fluxomics to elucidate the importance
of other omic findings. (I) Discovery framework resulting from observing changes in fuel utilization with indirect calorimetry. (II)
Discovery framework resulting from observing changes in body composition. (III) Discovery framework resulting from observing
changes in flux measured via the hepatic recycling glucose (deuterated) tolerance test (HR-dGTT). The HR-dGTT yields information
about peripheral and hepatic glucose disposal that can localize tissue specific metabolic/lipidomic screening. Changes in hepatic
versus peripheral glucose disposal are assessed from the time course of percent differences in plasma [2-2H1]-glucose vs. [6,6-2H2]-
glucose enrichments (1-ratio([2-2H1]/ [6,6-2H2])-glucose).6 The correlation with the hepatic global acetylome can be assessed in a
hypothesis-driven framework, along with other fluxomic methodologies for assessing lipolysis (adipose), hepatic-adipose/glucose-
glycerol recycling (HGP from [2-13C]-glycerol), lipogenesis, and Cori cycling (HGP from [U-13C]-lactate). The stable isotope tests
shown are closed loop tests that are performed at the basal glucose and insulin levels (glycerol production and HGP), or dynamic
tests incorporating the HR-dGTT and insulin responses. Closed loop tests do not require experimental groups to have identical,
fixed values in glucose and insulin that are needed for open loop tests like the euglycemic hyperinsulinemic (EU) clamp.7 Tissue
assessments in this framework assume an animal model. HGP, hepatic glucose production; D2O, deuterated water. Image courtesy
of Irwin J. Kurland.

state,8 which has reduced hydrolysis of endo-
cannabinoids such as anadamide, and a type 2
diabetic mouse model, the MKR mouse.10 Pten
normally inhibits insulin signaling by deactivating
the product of insulin-stimulated phosphatidyli-
nositide 3-kinases. Because insulin signaling stimu-
lates hepatic glucose uptake, one might expect that
the Pten+/− mouse would show increased hepatic
glucose uptake. However, the HR-dGTT revealed
dramatically decreased hepatic glucose uptake in
the Pten+/− mouse, which correlated with decreased
basal glucokinase expression, whereas HGP was the
same as in the wild-type mouse. To explain these

counterintuitive results, Kurland and collaborators
hypothesized that, to ensure that enough glucose
is supplied to the brain, hepatic glucose uptake is
dramatically suppressed in the fasted state, leaving
hepatic gluconeogenesis unaffected, so that hepatic
glucose production occurs as normal. Glucokinase
expression in the fasted to re-fed transition was
markedly induced in Pten+/− mouse livers,6 indi-
cating increased insulin sensitivity, suggesting basal
HGP regulation is under the control of factors be-
sides insulin signaling, such as neural control.

The second model Kurland presented was the
FAAH−/− mouse.8 FAAH−/− mice mimic several
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metabolic aspects of pre-diabetes, including obe-
sity impaired fuel utilization, hyperinsulinemia, and
insulin resistance in liver, skeletal muscle, and
adipose tissue. The HR-dGTT indicated that the
FAAH−/−mice had higher fasting insulin levels and
higher blood glucose and insulin levels during the
GTT even though glucose uptake in the periph-
ery was the same as wild-type mice.8 The hyper-
glycemia was due, in part, to a non-suppressibility
of HGP, indicated by the difference between the total
plasma glucose (labeled and unlabeled) level during
the HR-dGTT (higher for FAAH−/−) and the [6,6-
2H2]-glucose level (unchanged versus wild type)
during the HR-dGTT, as well as non-suppressibility
of HGP (demonstrated with U13C glucose) during
fasting. In accord with the stepwise phenotyping
procedure described in Figure 1 (panels II and III),
this led to examining the breakdown of lipids in
adipose tissue (lipolysis), and HGP from glycerol as
lipolysis of adipose triglycerides creates glycerol and
fatty acids. Notably, administering [2-13C]-glycerol
to mice and monitoring its dilution can provide in-
formation on how actively adipose tissue is breaking
down lipids, and [2-13C]-glycerol can be followed
to the production of 13C-glucose to assess HGP
from the hepatic triose-P pool (Fig. 1). In FAAH−/−

mice, nonsuppressed and increased basal glycerol
production and a corresponding increase in the use
of glycerol for glucose production in the liver were
observed. Metabolite profiling was then indicated
(Fig. 1) and showed decreased triose-P metabolites
in the fasted state of FAAH−/− mice that support
the re-direction of triose-P intermediates to the in-
creased HGP from glycerol seen. FAAH−/− mice
also showed changes in TCA cycle metabolites that
affect the malate–aspartate shuttle, one of the main
conduits for transferring energy from glycolysis into
the mitochondria. In particular, fasted citrate levels
were decreased and fed citrate levels increased, indi-
cating perturbations in acetyl CoA levels that were
subsequently confirmed by direct measurements
of acetyl carnitine and acetyl CoA measurements.
This lead to the assessment of the fasted/fed hep-
atic acetylome following the framework shown in
Figure 1.

Acetyl CoA sits on the crossroad of glucose, fatty
acid, amino acid, and cholesterol metabolism, and
so acetyl CoA has been proposed to be part of
metabolic sensor and feedback mechanisms that
regulate fuel utilization in the fasted and re-fed

states (reviewed in Yang et al.15). The acetylome
consists of proteins whose activities are regulated
by acetylation, and this process relies on acetyl
CoA as an acetyl donor. Changes in acetylation
for mitochondrial malate dehydrogenase (MDH2),
which was hypoacetylated in fasted FAAH−/− liv-
ers, and hyperacetylated in fed FAAH−/− livers,
supports the metabolite profiling, indicating an
impairment in the malate/aspartate shuttle. While
dihydroxyacetone-P (DHAP) and glycerol-3-P lev-
els were decreased in the fasted state of the FAAH−/−

mice, they were preserved in the fed state, consistent
with a compensating contribution from a decrease
in fed aldolase B acetylation in FAAH−/− mice.
These studies show how, by beginning with simple
whole body measurements, such as calorimetry and
measurements of body composition, one can even-
tually work towards understanding mechanisms at
the molecular level.

Tools for evaluating omics data

The complement to gathering omic data by applying
the hypothesis-driven framework of Kurland and
his collaborators (Fig. 1) is to gather and use omics
data in an untargeted approach to try to generate
novel hypotheses and to identify new targets that
inform subsequent experiments. A challenge is that
untargeted omics data collections can be difficult to
analyze due to the sheer size of the datasets.

Charles Burant (University of Michigan Medi-
cal School) discussed two programs developed to
visualize and analyze several types of omics data.
The hope is that, by using these tools, researchers
can generate hypotheses about the metabolic net-
works that respond to particular types of interven-
tion, which can then be tested for their therapeutic
value.

The first tool, Metscape 2,18 is a plugin for the
program Cytoscape, a common platform for vi-
sualizing complex networks. Currently, Metscape 2
can incorporate gene expression and metabolomics
data across different time points or different exper-
imental conditions. Based on input data, Metscape
2 creates interaction maps that allow researchers
to visualize the changes in gene expression and in
metabolite levels in an attempt to link these changes
to disease states. The second tool that Burant dis-
cussed was CoolMap (developed by colleagues G.
Su and M. Fan), which enables researchers to visu-
alize large, two-dimensional data and to interpret
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correlations between datasets. CoolMap can man-
age datasets of 8000 × 8000 data points and shows
the Pearson’s correlation coefficient in a heat map-
like format.

As an example, Burant showed two CoolMap
plots of various clinical parameters before and after
weight loss. By visualizing the changes in these pa-
rameters, researchers can focus on the relationships
that differ between the two states and can gener-
ate hypotheses that can be tested in further exper-
iments. The usefulness of CoolMap will manifest
in its ability to identify known unknowns, which
are, according to Burant, unidentified, reproducible
features in mass spectrometry data generated from
untargeted high-throughput metabolomic studies
(Fig. 2). To demonstrate this point, Burant used a
CoolMap to show the correlation between various
metabolites (fatty acids, amino acids, acetyl CoA,
etc.) from a group of 25 people after the subjects
had lost an average of 22.5% of their body weight.
CoolMap can cluster the metabolites to reveal
groups of metabolites that are highly related. By ex-
porting a group of highly-related metabolites into
Metscape 2, Burant showed that these metabo-
lites were all part of a common pathway. Once
a particular pathway is suspected of being im-
portant, researchers can hypothesize what other
metabolites they should be able to see in their
data and can go back to their original mass spec-
trometry data and identify some of their known
unknowns.

While Burant and colleagues have already made
Metscape 2 available to researchers (with CoolMap
soon to be released), they are also constantly im-
proving the platforms. Future versions of Metscape
2 should be able to integrate proteomic, phospho-
proteomic, and acetylomic data to understand the
relationship between genes, proteins, and metabo-
lites in various states. Burant and co-workers are
working to integrate CoolMap with Metscape 2 and
with other omics programs to provide a suite of
tools that integrate various types of directed (tar-
geted) metabolomics, in which specific metabolites
of interest are identified and quantified against sta-
ble isotope standards, as well as undirected (un-
targeted) metabolomics, in which researchers are
not looking for specific metabolites but are in-
stead performing an unbiased survey of which
metabolites are sensitive to changes in various
conditions.

Branched chain amino acids

One of the goals of omics techniques, as described
by Christopher Newgard (Duke University Medical
Center), is to create metabolic signatures of human
diseases that can be used as prognostic factors, to
monitor disease progression, guide therapeutic in-
terventions, and for hypothesis generation that can
be tested in animal models. Newgard’s talk included
a comparison between targeted metabolic profiling
of obese individuals with pre-diabetes and insulin
resistance (a body mass index (BMI) of ∼36) to that
of lean individuals (a BMI of ∼22).19 While previous
studies have also looked at metabolic differences be-
tween obese and lean individuals, they have primar-
ily focused on one or a small number of metabolites
based on the particular hypothesis of each study.
In contrast, Newgard’s study gathered omic data to
generate hypotheses using targeted metabolomics
to measure over one hundred analytes.

After grouping the analytes of interest by princi-
pal component analysis (PCA), Newgard focused on
one group—containing branch-chain amino acids
(BCAAs-valine, leucine and isoleucine), glutamate
and glutamine, 3- and 5-carbon acyl carnitines (C3-
AC, C5-AC), and aromatic amino acids phenylala-
nine and tyrosine—that together explain most of
the variance in the data. Most of these compounds
are linked not just by PCA analysis but metabolically
via BCAA metabolism. For example, isoleucine and
leucine produce C5-AC in mitochondria from 2-
methylbutyryl CoA and isovaleryl CoA, respectively.
Glutamate is linked to the BCAAs via transamina-
tion in the cytoplasm. BCAAs go through a simi-
lar set of reactions during catabolism, which gener-
ate glutamate during a transamination first step in
the cytoplasm; and C3-AC is generated from pro-
prionyl CoA produced from valine and isoleucine
metabolism. The aromatic amino acids phenylala-
nine and tyrosine may compete with the BCAAs for
the same transporters to enter cells.

Other studies have shown an association between
BCAA levels and insulin resistance; however, the
advantage of Newgard’s study is that because it
was done by using an unbiased metabolomic anal-
ysis, the researchers were able to show that the
whole pathway related to BCAA metabolism is ele-
vated, and that the BCAA profile was the one most
strongly associated with insulin resistance: interest-
ingly, more so than the lipid-related signatures.

Ann. N.Y. Acad. Sci. 1287 (2013) 1–16 C© 2013 New York Academy of Sciences. 5
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Figure 2. Schematic of Coolmap workflow to identify metabolic pathways. Automatic clustering of metabolite levels can identify
metabolic pathways generated by known compounds contained in the clusters. ‘Known Unknown’ features with masses matching
other metabolites in the identified pathway can aid in the identification of unknown metabolites. Image courtesy of Charles Burant.

Newgard demonstrated that the BCAA/insulin
resistance signature replicates in other cohorts with
insulin resistance, for example, the Studies of a Tar-
geted Risk Reduction Intervention through Defined
Exercise (STRRIDE) trial20 and an Asian/Indian
cohort.21 Also, the BCAA cluster of metabolite as-
sociations in interventions to treat diabetes, such
as gastric bypass surgery and weight loss, predicts
who will have an improvement in insulin sensitivity
more effectively than the amount of weight actu-
ally lost.22 The decrease in BCAA levels corresponds
to the efficacy of the interventions, and gastric by-

pass was associated with a greater decrease in BCAA
than was matched weight-loss intervention.23 Im-
portantly, BCAAs were shown to play a causative
role in insulin resistance. Rats fed a high-fat diet
supplemented with BCAAs spontaneously ate less
food and weighed mildly less than rats fed a normal
high-fat diet, but rats on both diets were equally
insulin-resistant.19

Newgard proposed a mechanism for the role of
BCAAs in insulin resistance (Fig. 3) that centers
on the role of inter-organ flux of BCAAs. Gas-
tric bypass patients can have low expression of

6 Ann. N.Y. Acad. Sci. 1287 (2013) 1–16 C© 2013 New York Academy of Sciences.
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Figure 3. Schematic of a working model of potential crosstalk between lipids and branched chain amino acids (BCAA) in
the development of obesity-related insulin resistance. Anaplerosis refers to repletion or filling up of TCA cycle intermediates
via entry points other than acetyl CoA. TG, triglyceride; IMTG, intramyocellular triglyceride; IR, insulin receptor; BCATm,
mitochondrial branched-chain aminotransferase; BCKDH, branched chain keto acid dehydrogenase; PDH, pyruvate dehydrogenase.
Image courtesy of Christopher Newgard.

BCAA-metabolizing enzymes in adipose tissue,
which increases after gastric bypass surgery and
may explain the decrease in plasma BCAAs seen
after gastric bypass surgery. In the setting of nu-
trient and caloric excess, which often occurs in a
Western diet, the normal catabolism of BCAAs in
adipose tissue is overwhelmed, and BCAAs exit into
the bloodstream. These BCAAs find their way to
muscle where they generate CoA species, such as
succinyl CoA and proprionyl CoA, which enter the
TCA cycle and impair the ability of mitochondria to
completely oxidize fat. In the presence of these ex-
cess nutrients, the fuel-switching ability of the cell
is impaired and glucose becomes almost superflu-
ous as a fuel source, which could lead to the high
blood glucose levels observed in pre-diabetes and a
disturbance in metabolic fuel selection in diabetes
even in the absence of impaired insulin signaling.
The source of the BCAAs may also be related to the
microbiome.

Barbara Kahn (Beth Israel Deaconess Medical
Center and Harvard Medical School) followed up

on the investigation of impaired BCAA metabolism
in adipose tissue using a branched-chain amino-
transferase (BCAT)-knockout mouse as a model.
Knocking out BCAT impairs the ability to metab-
olize BCAAs and results in high serum BCAA lev-
els. This state mimics characteristics of obesity, in
which enzymes involved in BCAA metabolism are
often downregulated, leading to high levels of cir-
culating BCAAs. Replacing the adipose tissue in the
BCAT-knockout mice with normal adipose tissue
decreased the circulating levels of BCAAs, demon-
strating that adipose tissue does indeed play a major
role in regulating the levels of BCAAs.24

Teasing the link between diabetes and
obesity with mouse models

In addition to the work on BCAAs, Newgard pre-
sented data on using mouse models in an attempt
to understand the link between obesity and dia-
betes. Starting with two common laboratory strains
of mice, C57BL/6 and BTBR, Newgard, in collab-
oration with Alan Attie (University of Wisconsin),

Ann. N.Y. Acad. Sci. 1287 (2013) 1–16 C© 2013 New York Academy of Sciences. 7
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introduced the ob gene into these mice to create two
distinct strains of genetically-induced obese mice.
While both strains are insulin resistant, only one
progresses to diabetes. Breeding these strains to-
gether and performing genomic and metabolomic
profiling revealed gene–transcript–metabolite and
gene–metabolite–transcript networks. Specifically,
glutamate/glutamine (Glx) was significantly cor-
related to argininosuccinate synthetase 1 (Ass1),
arginase 1 (Arg1), phosphoenolpyruvate carboxyk-
inase 1 (Pck1), isovaleryl coenzyme A dehydroge-
nase (Ivd), and alanine:glyoxylate aminotransferase
(Agxt) mRNAs.25 This is consistent with network
models showing that quantitative trait loci (QTL)
regulate Glx, which then regulates gene expres-
sion, or, conversely, QTL regulate mRNA abun-
dance of the four transcripts, which then regulate
Glx. These studies have the potential to uncover
metabolic networks involved in the pathogenesis of
diabetes.25

Using omics to profile mechanisms for
cardiovascular disease

Sixty percent of diabetics die from cardiovascular
disease (CVD), and there is a four-fold increase in
morbidity and mortality from atherosclerosis in the
T2DM versus non DM population.26 Both New-
gard and Domenico Accili (Columbia University)
provided insight into the link between CVD and
diabetes.

Why do some people with coronary artery dis-
ease experience cardiovascular events while oth-
ers do not? To begin to address this question,
Newgard turned to targeted metabolomic profil-
ing. Elevated levels of short-chain dicarboxylacyl-
carnitines, ketone-related metabolites, and short
-chain acylcarnitines were predictive of a compos-
ite endpoint of myocardial infarction (MI), repeat
revascularization, or death at any point after coro-
nary artery bypass grafting (CABG).27 A previous
study had also shown that short-chain dicarboxyla-
cylcarnitines were independently associated with a
greater risk of death and incidence of MI for those
undergoing cardiac catheterization.28

Dicarboxyl acyl carnitines seem to be pre-
dictive of subsequent CV events, and therefore
Newgard and colleagues are now undertaking a
two-pronged approach to further characterize the
association of these metabolites with cardiovascular
events. Using a human genetic approach, Newgard is

performing metabolomic and genomic profiling of
patients in Duke University’s CATHGEN bioreposi-
tory, which contains DNA and serum samples from
people undergoing cardiac catheterization. To date,
Newgard has profiled approximately 3500 individ-
uals, 70% of whom have coronary artery disease
and 30% of whom have diabetes. The genomic and
metabolomic profiles of these patients have im-
plicated genes involved in endoplasmic reticulum
stress and in the unfolded protein response path-
way. These genes are believed to play a role in mod-
ulating the concentrations of the small chain acyl
carnitines.

Coordinate regulation of cholesterol, bile
acid, and lipid homeostasis via FoxO–FXR
interactions

The crucible of interaction between diabetes and
lipoprotein metabolism may be the liver, and the Ac-
cili laboratory has dissected biochemical pathways
in liver that are regulated by nutrient and insulin
signaling, dependent on the action of FoxO tran-
scription factors. FoxO was previously thought of
as a modulator of hepatic glucose production solely,
and Accili presented new evidence linking dysregu-
lation of FoxO action, which can stem from hepatic
insulin resistance, to dysregulation of bile acid syn-
thesis, leading to dysregulation of cholesterol syn-
thesis and absorption and triglyceride synthesis, all
of which can affect lipoproteins associated with an
increased risk for cardiovascular disease. Bile acids
are synthesized from cholesterol and have feedback
effects that increase lipid and cholesterol absorp-
tion, lower plasma glucose, and decrease TG syn-
thesis and levels. Bile acids act through their own
subclass of orphan nuclear receptors FXRs, and the
G protein–coupled bile acid receptor, TGR5. Bile
acids are synthesized from cholesterol through both
classical and alternative pathways. In the alterna-
tive pathway, the side chain oxidation of cholesterol
precedes the steroid ring modifications, first yield-
ing 24-, 25-, and 27-hydroxycholesterol metabolites,
opposite to the process in the classical pathway. The
alternative and classical pathway bile acids share the
primary bile acid chenodeoxycholic acid, with 12�
hydroxylation of chenodeoxycholic acid via CYP8B1
to cholic acid. Modifications of bile acids can affect
their properties and their ability to activate these
receptors. In mice lacking liver FoxO1 (L-FoxO1),
12-hydroxylated bile acids are reduced, while
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non-12-hydroxylated bile acids are increased. This
is due to a sharp reduction in the expression of
Cyp8b1, the gene encoding the 12-hydroxylase, in
L-FoxO1 mice. The increase in hydrophilic (non-12-
hydroxylated) over hydrophobic (12-hydroxylated)
bile acids was shown to downregulate FXR, resulting
in an increase in TG synthesis. The increase in hy-
drophilicity of the bile acid pool also contributed to
an increase in cholesterol synthesis in L-FoxO1 mice,
presumably a response to its contribution to low
cholesterol absorption. This metabolomics analysis
led to pursuing a testable hypothesis, would admin-
istration of a FXR agonist reverse the hypertriglyc-
eridemia of L-FoxO1 mice?

L-FoxO1 and double mutant L-FoxO1:LDLR−/−

mice were used to test the role of FXR. Both
mouse models were shown to have increased liver
weight and TG content, and hypertriglyceridemia.
When FXR ligand (GW4064 or cholic acid) is given
to L-FoxO1 and to L-FoxO1:LDLR−/− mice on a
cholesterol-rich western diet for 8 to 10 weeks, FXR
activation with cholic acid or GW4064 prevents liver
TG accumulation in both mice strains, providing
mechanistic evidence of the involvement of FXR.29

In summary, insulin, via FoxO, regulates the
balance between 12-hydroxylated and non-12-
hydroxylated bile acids. When non-12-hydroxylated
bile acids are predominant in mice there is decreased
FXR activation increased cholesterol, TG, and FFA
synthesis and increased SREBP2 activation (Fig. 4).
Based on these findings, Accili speculated that dys-
lipidemia in diabetes could be treated by targeting
components of the bile acid synthetic pathway or by
providing missing bile acids.

Using omics to unravel the link between
diabetes and the central nervous system

Both Accili and Gabriele Ronnett (Johns Hop-
kins University School of Medicine) discussed how
metabolism in the brain affects food intake, energy
utilization, and insulin sensitivity. The hormones
insulin and leptin activate signaling pathways in the
brain that decrease food intake and increase energy
expenditure. However, under conditions of insulin
resistance, these pathways are dysregulated. Study-
ing how the brain regulates appetite and energy
utilization identified candidate drug-susceptible
targets that may be able to modify these processes
during the course of diabetes.

Figure 4. Outline of a working hypothesis for liver signaling
pathways that affect diabetic dyslipidemia and hyperglycemia,
linking bile acid, cholesterol, glucose, and insulin signaling to
glucose, cholesterol, fatty acid, and triglyceride synthesis. FFA,
free fatty acids; Srebp, Sterol regulatory element-binding pro-
tein; ChREBP, Carbohydrate-responsive element-binding pro-
tein; Lxr, Liver X receptor; Fxr, farnesoid X receptor; FoxO,
Forkhead box O transcription factor; HGP, hepatic glucose pro-
duction; DNL, de novo lipogenesis; TG, triglyceride; VLDL, very
low density lipoprotein; CM, chylomicron. Image courtesy of
Domenico Accili.

The role of FoxO1 in regulating appetite
control in the brain

In the brain there are two competing popula-
tions of neurons, those that make proopiome-
lanocortin (POMC) and those that make neuropep-
tide Y/Agouti-related peptide (NPY/AgRP), that
compete for regulation of energy expenditure, food
intake, and satiety. By activation of the catabolic
POMC neurons, insulin and leptin decrease food
intake and increase energy expenditure and physi-
cal activity. Such catabolic POMC neuron activity
occurs concurrently with inhibition of the anabolic
AgRP neurons, which, when activated, function to
increase food intake and decrease energy expendi-
ture and physical activity. Attempts to identify drugs
that can modulate POMC and AgRP neurons have
been fraught with difficulty. Genetic knockouts ex-
amining the role of these two subpopulations have
been generally uninformative; for example, knock-
out of the insulin or leptin receptor in POMC or
AgRP neurons has no apparent effect on food in-
take. FoxO1 is a shared mediator of both pathways
and its inhibition is required to induce satiety. Fast-
ing promotes FoxO1 nuclear localization in AgRP
neurons, and whereas FoxO1 is excluded from the
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nucleus in the fed state. Accordingly, FoxO1 ablation
in AgRP neurons of mice results in reduced food in-
take, leanness, improved glucose homeostasis, and
increased sensitivity to insulin and leptin (Fig. 5).
Peripherally, there is browning of white adipocytes
in AgRP FoxO1 KO mice and evidence of increased
mitochondrial size/mass (EM), along with increased
expression of the mitochondrial uncoupling factor
UCP1 in AgRP FoxO1 KO adipocytes. Importantly,
knocking out FoxO1 from AgRP neurons increases
the rate of glucose disposal and decreases HGP.

Integrated omic studies have been performed to
identify the FoxO1 target in AgRP neurons. Sig-
naling activation studies show pSTAT3 (a surro-
gate marker of leptin activation) is decreased and
pAkt is increased in AgRP FoxO1 KO neurons. Im-
munohistochemistry showed pS6 signaling is in-
creased in AgRP FoxO1 KO neurons projecting from
the arcuate nucleus, signaling a state of abundant
nutrients.30

Transcriptomic and electrical excitability studies
indicate that AgRP FoxO1 KO neurons are less ex-
cited/more inhibited. Patch clamping shows FoxO1
KO AgRP neurons are constitutively inhibited. Ex-
pression profiling of flow-sorted FoxO1-deficient
AgRP neurons identified an increase in GABA re-
ceptor (inhibitory) expression and a decrease in glu-
tamate receptor (excitatory) expression, as well as
the G protein–coupled receptor Gpr17 as a FoxO1
target whose expression is regulated by nutritional
status (Fig. 5). Intracerebroventricular injection of
Gpr17 agonists induces food intake, whereas the
Gpr17 antagonist cangrelor curtails it. These effects
are absent in AgRP-FoxO1 knockouts, suggesting
that pharmacological modulation of this pathway,
perhaps with brain-permeable Gpr17 agents, has
therapeutic potential to treat obesity.30

The role of fatty acid metabolism in the
regulation of energy balance

The brain is a highly metabolic organ capable of
fatty acid oxidation and storage, and the focus of
Ronnett’s group is the investigation of the hypothe-
sis that pharmacological alteration of fatty acid flux
can alter food intake. Ronnett’s lab has focused on
three metabolic enzyme candidates, key for the ac-
cumulation of long chain fatty acids, as targets for
obesity intervention (Fig. 6). Fatty acid synthase
(FAS) is a lipogenic enzyme that generates satu-
rated long-chain fatty acids such as palmitate, which

Figure 5. Model for regulation of food intake and hepatic
glucose activity by FoxO1 and Gpr17. The G protein–coupled
receptor Gpr17 is a FoxO1 target whose expression is regulated
by nutritional status, and may play a role in mediating food in-
take. InsR, insulin receptor; lepR, leptin receptor; HGP, hepatic
glucose production; NPY/AGRP, neuropeptide Y/Agouti-related
peptide. Image courtesy of Domenico Accili.

has 16 carbons. Carnitine palmitoyl-transferase-1
(CPT-1 isoforms) is requisite for the entry of long-
chain fatty acids into mitochondria for oxidation.
Glycerol-3-phosphate acyltransferases (GPATs) cat-
alyze the first and rate-limiting step for fatty acids
to phospholipid and triglyceride syntheses. In gen-
eral, increased fatty acid oxidation is characteristic
of the fasted state, and Ronnett hypothesized that
either FAS or GPAT inhibition, or CPT-1 stimula-
tion in the central nervous system, would decrease
food intake and body weight. Ronnett tested this
hypothesis using three small molecules: C75, an in-
hibitor of FAS and activator of CPT-1; FSG67, an
inhibitor of GPAT; and C89b, an activator of CPT-
1; and confirmed that these molecules reduce food
intake, increase energy expenditure, and enhance
fatty acid oxidation to decrease adiposity and body
weight.31–34

Central administration of these compounds al-
ters neuronal activity in select hypothalamic nuclei
that control food intake and energy expenditure.
In these hypothalamic nuclei, compound treatment
leads to altered gene expression and production of
neuropeptides germane to energy balance, consis-
tent with homeostatic responses to CNS perception
of physiologically positive energy balance.

Recent work has shown that obeseogenic diets
high in saturated fatty acids, known to cause pe-
ripheral inflammation and exacerbate diabesity, also
induce CNS inflammation, ER stress, and oxidative
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Figure 6. The role of fatty acid synthase (FAS), glycerol-3-phosphate acyltransferase (GPAT), and carnitine palmitoyl transferase
1 (CPT-1) in brain fatty acid metabolism. C75, an inhibitor of FAS and activator of CPT-1, FSG67, an inhibitor of GPAT, and C89b,
an activator of CPT-1, all reduce food intake, increase energy expenditure, and enhance fatty acid oxidation to decrease adiposity
and body weight. Image courtesy of Gabriele Ronnett.

stress, and that this may contribute to the develop-
ment of metabolic syndrome.

Both C75 and FSG67 induced weight loss in
obese mice. Examining the genetic effects of these
compounds revealed that the synthesis of enzymes
involved in fatty acid storage was downregulated,
whereas the synthesis of enzymes involved in fat
disposition was upregulated. FSG67 is currently in
preclinical safety tests. C89b, the CPT-1 stimulator,
also decreased food intake and induced weight loss,
consistent with the role of CPT-1 in promoting lipid
oxidation. The effects seen with C89b in mice, how-
ever, were more dramatic and longer-lasting than
those seen with C75 or with FSG67.

To investigate the mechanisms of these
compounds’ effects, researchers are conducting
metabolomic studies in neurons in vitro. So far,
they have seen that C75 and FSG67 increase reac-
tive oxygen species while reducing the secretion of
inflammatory cytokines. Based on these data, Ron-
nett speculated that C75 and FSG67 are not just
altering fatty acid metabolism in the neurons but
may also have long-term effects on inflammation in
the brain. To understand what other pathways are af-
fected by alteration of fatty acid flux and to elucidate
what metabolic changes are affecting the observed
changes in inflammatory signals, Ronnett is under-
taking a full metabolomic profile in primary hy-

pothalamic and cortical neurons treated with palmi-
tate, C75, and FSG67. Initial results indicate that
primary hypothalamic neurons show different re-
sponses to these agents. Under normal nutrient con-
ditions, hypothalamic neurons did not have a sig-
nificant fatty acid profile response to C75; however,
in the setting of nutrient (palmitate) excess, C75
did have a significant effect and caused a decrease
di- and triglycerides in primary hypothalamic neu-
rons. FAS inhibition did increase TCA metabolite
levels, which suggests a pathway for modification
of ATP levels other than manipulation of fatty acid
oxidation, which may be part of an AMPK related
mechanism of action for these agents.35

Targeted versus global untargeted
metabolomics profiling as a tool for
metabolic phenotyping

An industry panel—Steven Fischer (Agilent Tech-
nologies), Suma Ramagiri (AB SCIEX), John Ryals
(Metabolon), Mark Sanders (Thermo Fisher Scien-
tific), John Shockcor (Waters Corporation), and Joe
Shambaugh (Genedata)—was asked to discuss the
benefits, drawbacks, and areas of future develop-
ment for targeted versus global untargeted profiling
as tools for metabolic phenotyping.

In general, mastering the tools of chromato-
graphic separation methods takes precedence
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over metabolite identification. Normal phase
and reversed phase chromatography have syner-
gism for global small molecule separation and
identification.36 Supercriticial fluid chromatogra-
phy, for example, may provide a new modality
for future global lipid analysis.37 Derivatization can
aid targeted LC/MS/MS analysis, as used in amino
acid38, 39 and acyl carnitine analysis.40, 41

A targeted quantitative approach, using GC/MS
and LC/MS/MS, is the best first approach for
any metabolomics/lipidomics problem. This should
be followed with a global profiling paradigm,
first aimed at getting the best possible exact MS
data, in particular with retention time locked
databases, subsequently re-run to obtain MS/MS
to aid database searching. The principal challenges
in global profiling are the creative use of algo-
rithms for the separation of peaks from noise, opti-
mal data mining paradigms and databases, and for
biofluids determining the source for the metabolites
identified42–47 (Fig. 7).

Metabolite biomarkers include those synthe-
sized in vivo and those derived from exogenous
sources, including the microbiome. The consen-
sus was that humans are capable of synthesizing
roughly 2500 compounds. As reviewed in Dunn
et al.,48 2,000–7,000 metabolic features can be de-
tected in a serum or plasma sample. A single
metabolite can be detected as different ion types:
for example, as protonated and deprotonated ions,
adduct ions, isotopomers, fragment ions, dimers,
and trimers. Therefore, a large number of metabolic
features identified correspond to a smaller num-
ber of actual metabolites.49 Humans may contain
more molecules than they are able to directly syn-
thesize, due to microbiome metabolism, drugs, or
dietary supplements. Differences in the amount of
compounds in human plasma found at different fa-
cilities stem, in part, from whether pooled human
samples were used versus individual test subjects,
as well as some differences due to the particular MS
platform used. Pooled plasma samples have as many
as 2000 compounds (Fischer, private communica-
tion), while individual subjects have at least 500–600
compounds.50

The dataset derived from untargeted mass spec-
trum analysis may be very noisy, with noise
in unit mass and/or accurate mass instruments
being ∼80% of the total data collected.51 Opti-
mal peak identification/separation of sample peaks

from chemical noise, and clustering of their GC/MS
and LC/MS data before library search for metabo-
lite identification, is facilitated by software packages
such as Mass Profiler Professional, Thermo Scien-
tific Sieve,52 Genedata Expressionist for Mass Spec,53

Transomics, and XC/MS45 (see Fig. 7).
The current data mining paradigm involves ex-

tracting data using a naive feature extractor and
performing compound identification on the recon-
structed spectra. Untargeted mass spectrum analy-
sis is facilitated by assembly of a database composed
of a large number of library standards. Each stan-
dard entry can have a number of features, such as
a retention time index, MS spectra, and MS/MS
fragmentation spectra, obtained at different col-
lision energies. Retention time libraries can be
machine- and column-specific, as different ma-
chines have different sensitivities, and some prob-
lems requiring nano-UPLC will necessarily have a
different retention time library than standard UPLC.
As mentioned, due to the redundancy of the ion
spectra, each library entry may have ∼ 10 or more
features, as each molecular standard can be asso-
ciated with 5–10 ion features.48, 51, 54 The current
Agilent-METLIN database and MS/MS library con-
tains ∼ 45,000 compounds, with ∼ 9000 com-
pounds having MS/MS spectra.44 METLIN data has
been acquired using a collision cell shared by triple
quadrapole and qTOF machines. MS/MS spectra
are collected in both positive- and negative-ion
mode and at 10, 20, and 40 eV collision ener-
gies. Those spectra that have at least one ion with
∼ 1000 counts of signal are retained for entry into
the MS/MS library. The spectra are edited to only
include ion signals coming from the standard, and
the reported mass is corrected to its theoretical
mass.44 GC/MS metabolite identifications are facil-
itated by well-defined MS conditions and libraries,
as reviewed Kind and Fiehn,55 and METLIN, Mass
Frontier, and m/z Clouda are establishing databases
that together cover a wide variety of MS platforms.

The loose fit of MSn spectra with the METLIN
database suggests that MS and MSn spectra gener-
ated on LTQ-Orbitrap machines are best identified
by Mass Frontier.55 The larger the database, the bet-
ter it works, and the m/z Cloud community-based
effort aims to establish a comprehensive library of

ahttp://www.mzcloud.org/

12 Ann. N.Y. Acad. Sci. 1287 (2013) 1–16 C© 2013 New York Academy of Sciences.

http://www.mzcloud.net/


Kurland et al. Integrative omics platforms in diabesity

Figure 7. Overview of metabolomic data generation and data analysis. The flowchart used for metabolite extraction, data
mining, and metabolite identification is detailed. This illustrates sample preparation, mass spectrometric analysis, peak
extraction/identification and compound quantification, and statistical data analysis for biomarker identification and mapping
of biomarkers to metabolic pathways. Samples, in general, can be divided into separate groups for gas chromatography/ mass
spectrometry (GC/MS) and liquid chromatography/MS (LC/MS). LC/MS is further divided to examine both positively and neg-
atively charged ions, first done with full scan for exact mass, and after with LC/MS/MS for identification with databases such as
METLIN, SimLipid, LipidView, Lipid Search or Mass Frontier, or in the case of GC/MS, Fiehn and NIST libraries. Data preprocessing
covers the software programs that process complex raw data to clean data. Data preprocessing programs (for example, Genedata
Expressionist for Mass Spec, Transomics, XC/MS, Sieve, Metabolon Metabolyzer) are used to separate peaks from noise, and then
database searching can be accomplished. Genedata Expressionist for Mass Spec, Transomics, and XC/MS are mass spectrometer
platform–independent. A variety of techniques can be used for statistical analysis, including principal component analysis (PCA),
partial least squares discriminant analysis (PLS-DA), analysis of variance (ANOVA), Random Forrest, self-organizing maps (SOM),
and platform-independent software such as SIMCA-P, Transomics and Genedata and Expressionist for Mass Spec can be used for
such analyses. An overview of such statistical methods can be found in Madsen et al.57 Image courtesy of Joe Shambaugh.

high quality spectral trees to improve the structural
elucidation of unknowns by identifying compounds
even when they are not present in the library, us-
ing spectral tree searches. For example, individual
MSn spectra can be searched against the m/z Cloud
library to retrieve structural or substructural hits.
The challenge is reassembly, which can be expert-
motivated and have input from correlations with
other metabolites to assemble the puzzle.55

Lipidomic database searches benefit from the
LipidMaps initiative.56 which has resulted in dedi-

cated commercially available in silico lipid databases
such as LipidView (Ab Sciex), SimLipid (Biosoft),
or Lipid Search (MKI), enabling one to uniquely
identify over 20,000 lipid species using characteris-
tic lipid fragments.50

The use of pathways as a means to interpret
metabolomics data acquired using non-targeted
data acquisition strategies opens up a different ap-
proach to data mining. By using pathways for bio-
logical interpretation, the researcher has defined the
metabolites in the pathway(s) as a target compound
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list. The identified target list then can be used for
statistical analysis57 (Fig. 7) rather than just analyz-
ing features. This compound list can be used as the
template for further mining the pathway(s) using
targeted identification and data extraction.

Future developmental work could center on
matching possible metabolites at successive nodes,
integrating searching with pathway databases for
both GC and LC. For GC, this would involve the-
oretical calculations of derivatization effects.58 As
compounds are actually identified, a database can
be created that records this information for future
use in compound identification. Another possibility
is to use genome-wide association studies (GWAS)59

data to see if there is an association to the molecule
of interest. At times, associating a particular allele to
specific metabolite biomarkers may suggest a known
gene or a gene of a known class.

An unknown compound can be identified,
tracked, and quantitated with relative or semi-
quantification even though its true identity is not
known. If such a molecule becomes an important
biomarker, there are several approaches that can be
used to either suggest an identity or get clues as
to the identity. Biochemicals are typically not inde-
pendent variables; they change in groups that are re-
lated biosynthetically or functionally, and statistical
correlative methods can be of use to postulate rela-
tionships. Important biomarkers identified in this
manner can have their mass accurately determined,
atomic composition calculated, and identification
made more complete by using MSn analysis. Such
approaches can give scientists better ideas about the
identity of the metabolite, its molecular composi-
tion, and the pathways involved in its metabolism.

Conclusion

Metabolomics, lipidomics and fluxomics technolo-
gies are still in their relative infancy for gen-
eral biomarker discovery, and can be integrated
with other omics (proteomic, transcriptomic and
genomic) to reveal a more complete picture of
diabesity disease mechanisms. Complementary ap-
proaches to multi-omic metabolic pathway analysis
may involve a tiered hypothesis-driven framework,
to determine whether another omic may be indi-
cated. Additionally, emerging visualization tools for
shotgun omic data evaluations allow the genera-
tion of hypotheses about the metabolic networks
that respond to particular types of intervention.

Fluxomics and both targeted and global untargeted
metabolomics profiling can be used, in conjunc-
tion with mouse dietary and genetic models, and
human clinical studies, to unravel the link(s) be-
tween diabetes and obesity, and to profile metabolic
mechanisms in and between the CNS and periphery
(liver, fat, muscle) that may affect plasma metabolic
biomarkers. In general, metabolomics, lipidomics
and fluxomics hold the promise not only for di-
agnostic evaluation in routine clinical use to pre-
dict disease progression and outcomes, but also,
by nature of their pathophysiological relevance, for
identification of target pathways that may relate to
molecular mechanisms. Identified pathways then
can be the focus of drug development for future
use in therapeutics for personalized medicine.
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