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The Evolving Role of Antifungal Susceptibility Testing

Gregory A. Eschenauer and Peggy L. Carver

Although increasing numbers of hospital microbiology laboratories are per-
forming antifungal susceptibility testing (AST), its routine use is uncommon.
The utility of AST is founded on the belief that susceptibility (or resistance)
of an agent allows some prediction of clinical outcome. This review provides
an overview of the development of antifungal susceptibility testing method-
ology, including wild-type minimum inhibitory concentration (MIC) distri-
butions, epidemiologic breakpoints, and Interpretive Clinical Breakpoints for
antifungal agents. In addition, we examine the current clinical utility of AST
and the clinical data support utilized in the development of clinical break-
points (CBP) for common pathogens causing invasive fungal infections. In
the treatment of fungal infections, identifying consistent correlations
between MICs — or susceptibility category — and clinical outcomes is an
ongoing challenge, and current data sets are insufficient for many drugs and
pathogens to enable the development, revision, or confirmation of CBPs.
Antifungal susceptibility testing is of current value, but further research in
many areas is needed before MICs are independently used to guide treat-
ment decisions.
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An increasing number of hospital microbiol-
ogy laboratories are performing antifungal sus-
ceptibility testing (AST). Routine use of AST,
however, is uncommon. In 2003, a questionnaire
was sent to the microbiology departments of 386
randomly selected teaching hospitals in the Uni-
ted States inquiring about the use of AST. Of the
171 respondents, AST was reported by 115
(67.2%) of hospitals (predominantly for Candida
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blood stream infections); however, only 27 hos-
pitals reported on-site testing.' Several experts
and consensus groups have recommended rou-
tine fluconazole susceptibility testing of Candida
species isolated from sterile sites.* Increased
interest in AST has been stimulated by an
increased number of available antifungal agents,
the changing epidemiology of fungal infections
(with a greater proportion of non-albicans spe-
cies causing invasive candidiasis), the increased
incidence of resistant pathogens, and the
increased availability of commercial susceptibil-
ity testing systems.” * Arguably, one of the pri-
mary roles of susceptibility testing is to detect
resistance, and thereby determine which agents
will not be efficacious; thus, the utility of AST is
founded on the belief that susceptibility (or
resistance) of an agent allows some prediction of
clinical outcome. Therefore, we chose to
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examine the current clinical utility of AST and
the development of clinical breakpoints (CBPs)
for two common pathogens—Candida species and
Aspergillus—causing invasive fungal infections.

Overview of the Development of Antifungal
Susceptibility Testing Methodology and
Interpretive Clinical Breakpoints for Antifungal
Agents

Since the late 1980s, the Clinical and Labora-
tory Standards Institute (CLSI), known until
2005 as the National Committee on Clinical
Laboratory Standards (NCCLS), has worked
toward the development of standardized in vitro
susceptibility testing methods for fungi, with the
ultimate goal of establishing CBPs for fungal
pathogens. Early efforts focused on the develop-
ment of guidelines for in vitro susceptibility test-
ing methods. These were published in 1997 as
document M27-A for testing fluconazole suscep-
tibility against Candida species, and later, in doc-
uments M38-A2 and M51-A for filamentous
fungi. Although an in-depth discussion of in
vitro methodology is beyond the scope of this
review, the goal of CLSI has been to develop
rapid, reproducible methods that produce con-
cordant results with a variety of techniques such
as broth macro- or microdilution, E-test, and
automated methodologies.> > ©

In the United States, CLSI defined CBPs for
fluconazole, itraconazole, voriconazole, and flu-
cytosine for all Candida species.” No CBPs have
been established for posaconazole or amphoteri-
cin B versus Candida. Outside of the United
States, a variety of national breakpoint commit-
tees, or regulatory authorities, have also defined
minimum inhibitory concentration (MIC) break-
points and methodologies with which to test
Candida isolates. However, given that antifungal
therapy is similar in most countries, it is illogi-
cal to consider the same pathogen “susceptible”
in one country and “resistant” in another. Fur-
ther, this makes it difficult to compare resistance
rates among countries and to monitor the devel-
opment of resistance or of strategies designed to
ameliorate it; thus, in 2003, there was a call for
harmonization of clinical breakpoints between
European countries.” Recently, CLSI proposed
revised species-specific CBPs for fluconazole and
voriconazole to reflect new clinical data and to
harmonize with the CBPs defined by the Euro-
pean Committee on Antimicrobial Susceptibility
Testing (EUCAST).®

Clinical Breakpoints versus Epidemiologic
Cut-Off Values

Although CBPs are based primarily on phar-
macokinetic-pharmacodynamic relationships, they
do take into account other factors, such as dif-
ferences in dosing regimens, toxicology,
resistance mechanisms, intended or approved
indications for use, clinical outcome data, and
wild-type MIC distributions.” '* Clinical break-
points can be used to differentiate strains for
which there is a high likelihood of treatment
success (organisms that are clinically suscepti-
ble) from those for which treatment is more
likely to fail (clinically resistant). A clinically
intermediate or susceptible dose-dependent cate-
gory can be assigned to pathogens for which the
level of antimicrobial agent activity is associated
with uncertain therapeutic effect, implying that
infections due to the isolate may be appropri-
ately treated in body sites where the drugs are
physically concentrated or when a high dosage
of drug can be used.”

Although CBPs are designed to guide therapy,
they do not distinguish between isolates with or
without resistance mechanisms, nor do they
always allow for their early detection. Rather, a
“normal range” or “wild-type distribution” of
MIC values can be compiled for each pathogen.
A wild-type strain is defined by EUCAST as one
in which there is an absence of acquired and
mutational resistance mechanisms to the antimi-
crobial agent in question.” '' In general, the
MIC distribution for a wild-type organism covers
three to five 2-fold dilutions around the modal
MIC.'® ' When comparable methodologies are
utilized, wild-type MIC distributions for a given
pathogen are similar worldwide.'® One advan-
tage of defining normal ranges of MIC values is
that nonwild-type organisms with acquired resis-
tance mechanisms can be identified. These non-
wild-type  organisms have  higher MICs
compared with the upper limit of the wild-type
distribution, which is defined as the epidemio-
logic cut-off value (ECV) MIC. The MIC value
of the ECV generally encompasses at least 95%
of the isolates in the wild-type distribution.'" '* '*
Figure 1 illustrates a typical wild-type distribution,
ECV, and CBPs for an “example” antifungal.
Note that the few isolates with high level
(>512 ug/ml) MICs are above the ECV and
have acquired resistance mechanisms. Because it
is species specific, the ECV will not be altered
by changing circumstances. This is especially
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Figure 1. “Example antifungal” wild-type MIC distribution
MICs versus Candida albicans (n=4054)

% at each MIC

4| ¥¥% inhibied a1 5 16 pgfml
| 5% ishibed 84 5 32 me/mi.
-]

EC\f:'Ed'.lg,'mk.
| /
b

063
0.1250
512 |
1024 1

useful when there is a gap in MICs between the
upper end of the wild-type distribution and the
CBP, when the CBP divides two wild-type popu-
lations, or when resistance has yet to be
described for a pathogen.”

The CLSI and EUCAST may refrain from set-
ting breakpoints if the species is considered a
poor target for the drug or if there is insufficient
evidence that the species is a good target for the
drug. As well, CBPs may change over time, as
circumstances change.® Although organisms with
an MIC that exceeds the ECV show reduced sus-
ceptibility compared with the wild-type popula-
tion, they may respond to clinical treatment if
their MICs lie below the CBPs. At least one
author has suggested limiting the term “resis-
tant” to CBPs and recommends that surveillance
reports include summaries of susceptibility data
for both CBPs (to describe clinical resistance)
and ECVs (to describe pathogens with reduced
susceptibility due to the acquisition of resistance
mechanisms).!’

Clinical Data Support for Current Breakpoints

The process for establishing MIC breakpoints
involves a compromise among clinical, epidemi-
ologic, and methodologic aspects and ideally
provides a correlation between isolates catego-
rized as “susceptible” or “resistant” and clinical
outcome. One study has noted that when suffi-
ciently large data sets can be employed to exam-
ine the correlation between therapeutic outcome
and in vitro susceptibility, dose- (or area under
the concentration curve [AUC]) response curves
can be generated.® Once a response plateau is
achieved, further increases in dose (or AUC)

produce little effect. Another way of illustrating
this plateau effect is the “90-60 rule,” which can
be applied to determine CBPs. Stated briefly,
approximately 90% of infections caused by sus-
ceptible isolates respond to appropriate antimi-
crobial therapy; however, approximately 60% of
infections caused by resistant isolates, or for
which inappropriate antimicrobial agents are uti-
lized for treatment, also respond. This “90-60
rule” appears to hold true regardless of whether
the outcome measurement is clinical response,
microbiologic response, or mortality, and
whether the in vitro prediction tool is MIC, an
inhibition-zone diameter, or the ratio of AUC:
MIC. Failure of an individual clinical trial to
support the “90-60 rule” is often due to a lack
of sufficient drug-resistant isolates in the trial.®
Unfortunately, the compiled data sets for many
MIC-outcome relationships also suffer from
small numbers of comparisons (especially in
regard to drug-resistant isolates). It is important
to note that some infections will not respond by
increasing the dose, whereas others do so
despite the use of “small” doses—or even with-
out therapy. In addition, factors such as variable
pharmacokinetics, drug delivery to the site of
infection, host defenses, and toxin production
all contribute to patient response.

Candida species

Fluconazole

Fluconazole exhibits time-dependent fungi-
static activity against Candida species, and in
vitro and in vivo models demonstrate correla-
tions between fluconazole dosage, the pathogen
fluconazole MIC, and outcomes. In a neutrope-
nic Candida albicans murine model, the pharma-
codynamic parameter associated with efficacy
was an AUC:MIC of approximately 25.'° After
administration of fluconazole doses of 400-
2000 mg/day to healthy adults with normal renal
function, AUC was virtually equivalent to the
daily dosage.'” '® Thus, fluconazole doses of
400 or 800 mg/day, respectively, result in an
AUCMIC of 25 for isolates with MICs of 16
or 32.

Interpretive breakpoints for MIC testing of
fluconazole against Candida species were initially
proposed in 1997 by the NCCLS (now CLSI)
Subcommittee for Antifungal Testing, and later
published as document M27-A. They were based
on the accumulated clinical outcome and microb-
iologic data available at that time.” However,



468

there are now concerns regarding the relative
paucity of data to support these breakpoints.
First, almost 80% of the outcome data were
obtained from patients with mucosal rather than
invasive disease; although there appears to be a
clear relationship between susceptibility category
and outcome in mucosal infections, the relation-
ship for invasive infections is less evident. Sec-
ond, few clinical outcome data were available in
isolates with elevated (> 16 pg/ml) MICs.?
Given the limitations of the original data set,
a significant amount of subsequent research has
been devoted to examining the recently revised
breakpoint recommendations, which consisted
largely of retrospective studies that attempted to
correlate dose:MIC ratios with efficacy.> One
early study categorized outcomes by the (then)
new breakpoints and found that the rates of
clinical cure in patients with invasive candidiasis
treated with 400mg/day fluconazole were 79%
(19 of 24), 66% (four of six), and 0% (0 of 2)
for infections caused by susceptible, susceptible
dose-dependent, and resistant isolates, respec-
tively.'> We reviewed the dose:MIC studies,'®
which explicitly segregated data for patients with
invasive infections and for which correlations
of dose:MIC with outcome were analyzed
(Table 1). Trials that did not include explicit
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dose information or did not analyze fluconazole
outcomes segarately from other agents were not
included.” ** Some studies provided fluconazole
dosages without evaluating the impact of renal
function on the effective dosage administered,
making the assessment of dose:MIC or AUC:
MIC difficult to assess. In addition, the defini-
tion of therapeutic failure differed between stud-
ies and two solely assessed mortality, which may
not be the most ap]l:)ropriate determinant of
treatment success.’” Taken together, the
available data do not present a consistent dose:
MIC relationship and further illustrate the diffi-
culty in obtaining a robust data set of isolates
with elevated MICs.

A 2010 article proposed significantly lower
breakpoint MICs for non-glabrata species for
four of the most commonly encountered Candida
species, based on distribution data demonstrating
a very low prevalence of MICs above these
breakpoints.® The “susceptible” category was
deleted for C. glabrata, and all isolates with
MICs of 32 pg/ml or less were termed “suscepti-
ble dose-dependent” (Table 2).8 92526 How-
ever, the supporting data are again limited; there
appears to be no relationship between C. tropi-
calis MIC and outcome, clinical data in support
of the C. parapsilosis breakpoints are not

Table 1. Studies Evaluating Correlation of Fluconazole Dose:MIC with Outcome in Invasive Candidiasis

Rex”” Clancy®!

Pai’* Rodriguez-Tudela'® Baddley 2008’

N 113 32

Dose:MIC ratio
that correlated

None determined, Dose:MIC > 50

Dose:

77 126 84

Patients whose dose:  Dose:MIC = 11.5

since an inverse

associated with

MIC = 13.3 £ 10.5

with successful  correlation 74% success vs (mean =+ SD) in
outcome (p=0.05) was 8% for dose: survivors vs

found between MIC < 50 7.0 +£ 8.0 in
MIC and (p=0.0003). nonsurvivors
outcome. All (p=0.03).
patients were
administered
dosages
equivalent to
400 mg daily

Definition of Persistence of Persistence of Mortality

failure

No. of isolates
with elevated
MICs

candidemia on
therapy

6 with MICs
> 16

8 with MICs

candidemia
despite 3 days of
therapy, or
breakthrough
candidemia while
receiving
fluconazole for

> 3 days as
empiric therapy

> 16

4 with MICs > 16

MIC > 100 were
associated with 92%

(109/118) success vs

50% (4/8) for those
with dose:

MIC < 100 (no
statistics performed)

Persistence of

candidemia despite
at least 4 days of
fluconazole therapy

4 with MICs > 16

(identified by
CART analysis,
p <0.09)

Mortality

9 with MICs > 16

MIC = minimum inhibitory concentration, CART = Correlation and Regression Trees.
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Table 2. Interpretive Breakpoints

Current Interpretive Clinical Breakpoints (CLSI M27-S3)*°

Susceptible
Fluconazole < 8
Voriconazole <1
Itraconazole < 0.125

Susceptible
Flucytosine < 4
Echinocandins <2

Susceptible-Dose Dependent Resistant
16-32 > 64
2 > 4
0.25-0.5 > 1
Intermediate Resistant

8-16 > 32

provided, and the C. glabrata data set remains
extremely small (74 cases total, of which only 22
have an MIC of 16 pg/ml or more).?

At this time, the relationship between fluco-
nazole breakpoints and clinical outcome has not
been validated by a robust data set that includes
a large number of non-albicans isolates as well
as isolates with elevated MICs. Current (2009)
guidelines from the Infectious Diseases Society
of America for the management of candidiasis
endorse routine susceptibility testing for C. glab-
rata isolates obtained from sterile sites, and
deescalation from echinocandin to fluconazole
only if susceptibility is documented. Testing is
recommended for infections due to other Can-
dida species if the patient is not responding to
therapy or if resistance to fluconazole is
suspected. These recommendations are given
evidence grading consistent with expert opinion
(B-11D).*”

Itraconazole, Ketoconazole, and Flucytosine

Initial CBPs for itraconazole were derived uti-
lizing outcome data from mucosal disease only,

whereas CBPs for ketoconazole have not been
proposed.® However, wild-type MIC distribu-
tions and ECVs for itraconazole and flucytosine
were recently reported for seven species (albi-
cans, tropicalis, parapsilosis, dubliniensis, krusei,
guilliermondii, lusitaniae) of Candida. In the
absence of species-specific CBPs for these older
and less widely utilized antifungal agents, wild-
type MIC distributions and ECVs can be used to
monitor for the emergence of resistance.'*

Voriconazole

Revised CBPs (Table 3) were recently pro-
posed for the five most commonly encountered
Candida species and voriconazole.® A Correla-
tion and Regression Trees analysis of 47 isolates
of C. glabrata was unable to discern an interpre-
tive breakpoint differentiating success and fail-
ures for voriconazole with C. glabrata, and only
nine C. krusei isolates were available for analy-
sis. An MIC of 0.125 pg/ml optimally discrimi-
nated between success and failure for
C. albicans, C. tropicalis, and C. parapsilosis.” *®
With the exception of C. krusei, most Candida

Table 3. Proposed Interpretive Clinical Breakpoints® ° ¢
Susceptible Susceptible-Dose Dependent Resistant
Fluconazole C. albicans, C. tropicalis, and C. parapsilosis
<2 4 > 8
C. glabrata
— < 32 > 64
Susceptible Intermediate Resistant
Voriconazole C. albicans, C. tropicalis and parapsilosis
< 0.125 0.25-0.5 > 1
C. krusei
< 05 1 > 2
Caspofungin C. albicans, C. tropicalis and C. krusei
Micafungin < 0.25 0.5 > 1
Anidulafungin C. parapsilosis
<2 4 > 8
Caspofungin C. glabrata
Anidulafungin < 0.12 0.25 > 0.5
Micafungin < 0.06 0.12 > 0.25
Posaconazole Interpretive criteria have not been established

Amphotericin B

Interpretive criteria have not been established

CLSI = Clinical and Laboratory Standards Institute.
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species exhibit cross-resistance across the azole
class, and voriconazole does not display sub-
stantial activity against fluconazole-resistant
C. glabrata.*® As such, voriconazole has a lim-
ited role in the treatment of candidiasis.

There has been significant interest in thera-
peutic drug monitoring of voriconazole, due to
its unpredictable patient-to-patient pharmacoki-
netics. A recent study correlated voriconazole
trough levels (extrapolated from a PK model)
with clinical outcomes, utilizing data from
several trials of invasive candidiasis and aspergil-
losis. Monte Carlo simulation revealed a rela-
tionship between the calculated trough:MIC
ratio, with near-maximal attainment of success-
ful outcomes with trough:MIC values of 2-5.
Limitations to this trial include the use of mod-
eled trough levels, the fact that separate results
are not presented for molds and yeasts, and that
patients who discontinued voriconazole (who
constituted a significant proportion of failures in
some trials) were included in the analysis as
therapeutic failures.”®

Amphotericin B

Clinical breakpoints have not been established
for amphotericin B and Candida species, as there
are conflicting data regarding the correlation
between amphotericin B MICs and invasive can-
didiasis outcomes. An early study of 26 patients
with hematologic malignancies who developed
candidemia found a significantly higher mortal-
ity rate in patients infected by isolates with
MICs greater than 0.8 pg/ml compared with
MICs of 0.8 pg/ml or less (100% vs 47%,
p=0.04). However, it is possible that the results
were influenced by differences in baseline char-
acteristics between the groups. For example,
more than twice as many patients who died
received allogeneic transplants compared with
those who survived. In addition, the wide range
of MICs reported in this study (0.4— 7.5 pg/ml)
was unusual.’’ In a randomized trial comparing
amphotericin B with fluconazole for the treat-
ment of invasive candidiasis, the distribution of
amphotericin B MICs was too narrow to define a
relationship to outcome.*

Subsequent studies have examined whether
different techniques for determining MICs might
elucidate a clinically meaningful MIC break-
point. One study of 105 patients with candide-
mia found no significant correlation between
MICs (determined by broth macrodilution) and
microbiologic failure, but did find that all five

patients with 48-hour MICs of 1 or greater failed
therapy (vs 28/100 with 48-hour MICs < 1).2?
The authors subsequently explored whether
determination of MIC by E-test might better
discriminate between successes and failures.
Measured at 48 hours, an MIC of 0.38 pg/ml or
more was predictive of failure (56% failure vs
16% for isolates with MICs < 0.38 pg/ml,
p=0.0001).>> Although significant results were
detailed, this trial illustrated the narrow range of
MICs described above, and suggests that repro-
ducibility of such small variations with the
E-test methodology may be challenging. A sub-
sequent study that attempted to correlate a spe-
cific test method (broth microdilution with two
different media or E-test) with therapeutic fail-
ure (defined as death or persistent or recurrent
fever while on therapy) was unable to confirm a
significant relationship.*

In conclusion, insufficient evidence exists to
support a clinically relevant MIC breakpoint for
amphotericin B to Candida. Negative outcomes
may be more common for infections due to iso-
lates with MICs of 1 pg/ml or more, but these
data still require validation; however, wild-type
MIC distributions and ECVs for amphotericin B
were recently reported for seven species (albi-
cans, tropicalis, parapsilosis, dubliniensis, krusei,
guilliermondii, lusitaniae) of Candida. In the
absence of species-specific CBPs, wild-type MIC
distributions and ECVs can be used to monitor
for the emergence of resistance.'*

Echinocandins

The correlation of outcome with echinocandin
MIC is currently a matter of intense scrutiny
and debate. Revised CBPs (Table 3) were
recently proposed for the five most commonly
encountered Candida species and the three avail-
able echinocandins.”® The impetus for this revi-
sion was the result of emerging data suggesting
that previously proposed CBPs for the echino-
candins (with “susceptible” defined as <2 pg/
ml) failed to segregate isolates with FKS “hot
spot” mutations.”” Echinocandins inhibit glucan
synthase, an enzyme that consists of at least two
subunits — Fksp and Rholp. The Fksp subunit
of glucan synthase, which is encoded by fksl,
fks2, and fks3, catalyzes the biosynthesis of
(1,3)-B-p-glucan, an essential component of the
cell wall of many fungi, including Candida. MICs
for isolates with Fkslp or Fks2p mutations,
while elevated above wild-type MICs, may be as
low as 0.12 pg/ml (for caspofungin).®® Recent
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reports have proposed a correlation between
FKS “hot spot” mutations and decreased
response rates in animal models as well as in
clinical failures of echinocandin therapy. Murine
models have confirmed that echinocandin ther-
apy (even at elevated doses) is not consistently
effective against infections due to isolates with
fksl or fks2 “hot spot” mutations.’® > Given
these data, the CBPs have been substantially
lowered to delineate between true wild-type iso-
lates and those isolates that potentially harbor
mutations (Table 2).%°

However, there are several concerns regarding
the CLSI approach to the echinocandin break-
point revisions. First, some institutions report
generally higher caspofungin MICs than those
reported in the CLSI CBP revision rationale doc-
ument. In a study from the University of Pitts-
burgh, all 39 isolates of C. glabrata tested (using
CLSI methodology) displayed caspofungin MICs
above the revised CBP (100% resistance).
Despite this, 74% of patients responded to echi-
nocandin therapy (with 36/39 patients treated
with Caspofungin).40 Second, it may be that iso-
lates that do not harbor FKS mutations but have
MICs above the revised CBPs will now be identi-
fied as “resistant” when echinocandin therapy
may still be successful. In fact, multivariate ana-
lysis revealed FKS mutation, not MIC, to be the
only independent risk factor associated with
echinocandin failure in infections due to C. glab-
rata.*

The available clinical trial data also fail to
support the revised CBPs. In an early study of
the treatment of invasive candidiasis, treatment
response was evaluated by caspofungin MIC.
The MICy, for all 231 isolates was 2 pg/ml (96%
with MICs 0.125-2 pg/ml). The authors found
no correlation between MIC and outcome.™ In
another randomized, double-blind trial compar-
ing amphotericin B with caspofungin in patients
with invasive candidiasis, all infections due to
isolates with caspofungin MICs greater than
2 pg/ml responded to therapy.*?

In conclusion, there are insufficient data from
which to base decisions regarding echinocandin
therapy based strictly on elevated MICs, espe-
cially regarding C. glabrata.

Cryptococcus Species

Although MIC and zone diameter interpretive
breakpoints have not been established for any
antifungal against C. neoformans, one recent
study reported the establishment of wild-type

MIC distributions and ECVs for fluconazole,
posaconazole, and voriconazole when testing
Cryptococcus neoformans by microdilution meth-
ods. This information will be useful in detecting
the emergence of isolates with reduced azole
susceptibility (nonwild-type strains) in C. neofor-
mans. Application of the ECV to MIC testing by
the CLSI microdilution method to 986 global
clinical isolates obtained over a 13-year period,
allowed evaluation of trends in fluconazole sus-
ceptibility. The modal MIC of fluconazole
remained unchanged over the time period; how-
ever, the proportion of nonwild-type isolates
that exceeded the ECV decreased progressively
from 4.2% in 1996-2000 to only 0.5% in 2005—
2008.%

Similarly, another author reported wild-type
MICs and preliminary ECVs for four triazole an-
tifungals (fluconazole, voriconazole, itraconaz-
ole, and posaconazole) in C. gattii.** Although
C. gattii has long been known to cause crypto-
coccal infection in tropical and subtropic areas
of the world, it has recently emerged as a patho-
gen that can cause severe disease in otherwise
healthy individuals in the U.S. Pacific Northwest
and in British Columbia. Although isolates of
C. gattii are less susceptible to triazoles than are
isolates of C. neoformans, it is unclear whether
different drug therapy is needed for infections
caused by the two species. As C. gattii appears
to consist of four molecular types, each of which
has different geometric mean MICs to triazoles,
preliminary ECVs differ for each triazole and
molecular type.** Most recently, ECVs have been
established for amphotericin B and flucytosine
in C. neoformans and C. gattii.*

Fluconazole MICs are predictive of treatment
failure in animal models and in clinical cases of
relapse.”® Limited data suggest that patients
infected with isolates with fluconazole MICs
of 8 or less respond better than those with
isolates having MICs of 16 pg/ml or more.” In
a small, retrospective study of 27 patients
infected with HIV and cryptococcal meningoen-
cephalitis, 76% of culture-positive relapses were
associated with isolates having MICs of 16 pg/ml
or more.*” Although C. neoformans appears more
susceptible in vitro to posaconazole and vorico-
nazole than fluconazole,” few outcome data are
available for these agents.*®

A recent study of 85 patients treated with
amphotericin B deoxycholate (0.7 mg/kg/day)
for 14 days found a significant association
between MIC (determined by CLSI method) and
survival at day 14 (p=0.03) but not at day 28
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(p=0.09). Survival at day 14 was 97% (35/36)
for MICs of 0.25 pg/ml or less, 87% (26/30) for
MIC 0.5 pg/ml, and 67% (12/18) for
MICs of 1 pg/ml or more. However, MIC did
not correlate with quantitative mycologic
response in the cerebrospinal fluid at day 14. In
addition, the authors found that an initial in vi-
tro quantitative response of less than 10 colony-
forming units/ml to 1.5 pg/ml of amphotericin B
(using an inoculum that matched the number of
organisms present in the baseline cerebrospinal
fluid) was associated with survival. They suggest
that since no clear correlation has been found
between MICs and outcome for amphotericin B
and cryptococcal infections (perhaps again due
to the narrow range of MICs obtained), such
novel “susceptibility testing” techniques are
perhaps necessary to derive meaningful infor-
mation.

Current guidelines for the management of
cryptococcal infections recommend susceptibility
testing only for patients in whom primary treat-
ment has failed, patients with relapse, and for
those with recent exposure to antifungals.™®
These recommendations are based on data show-
ing that primary resistance to first-line agents
(such as the data displayed above for fluconazole)
is uncommon,™® the unclear association between
MIC and amphotericin B treatment outcome,*
and that in vitro flucytosine resistance has shown
no antagonism or decreased synergy in in vivo
models.™

Aspergillus and Other Molds

Overall, there are much fewer data assessing
the impact of in vitro resistance on clinical out-
come for mold infections than for infections
caused by Candida species. A multitude of
factors complicate the derivation of such an
association, including the impact of immunosup-
pression intensity on outcome, frequent use of
more than one drug during the course of ther-
apy, unpredictable bioavailability of certain
agents (voriconazole and posaconazole), and the
relative rarity of infection (especially with non-
Aspergillus molds). Compounded by the relative
rarity of in vitro resistance, the above-noted
complications make it exceedingly difficult to
conduct a well-designed trial.’® In general, aside
from Aspergillus, there are virtually no data
assessing the impact of in vitro resistance on
clinical outcome. However, it should be noted
that susceptibility testing is still widely utilized
in the treatment of some of these infections,

especially with regard to Fusarium and Scedospo-
rium. Recent reviews of these pathogens offer
clinical approaches to treatment, which are lar-
gely based on clinical experience and synergy
testing.”’" >> The remainder of this section will
focus on Aspergillus.

Azoles and Amphotericin B

The frequency of azole resistance in clinical
isolates of Aspergillus appears to depend on
geography and patient population, and the defi-
nition of “azole resistance” differs among stud-
ies. A reference laboratory in the Netherlands
reported resistance (defined as MICs of > 2 to
voriconazole, > 16 to itraconazole, and > 0.5
to posaconazole) in 12 of 13 isolates of A. fumig-
atus.”® Conversely, isolates of A. fumigatus asso-
ciated with infections in transplant patients were
collected by a surveillance network from 23 cen-
ters in the United States and reported a resis-
tance rate (defined as MICs > 4 to triazoles) of
less than 1%. The investigators also reported
low levels of resistance to amphotericin B
(MIC > 1) aside from A. terreus.”” In another
study, a worldwide collection of 1312 isolates of
A. fumigatus revealed 98.6% susceptibility to vo-
riconazole (defined as an MIC < 1).>°> A refer-
ence laboratory in the United Kingdom recently
reported that 5% of 400 (unique, nonduplicate)
A. fumigatus clinical isolates were resistant to itr-
aconazole (defined as MIC > 2 mgfL).SO’ 36

Currently, there is no clear correlation
between resistance and clinical outcome for
invasive aspergillosis and azole antifungals. The
previously mentioned analysis of infections in
transplant patients in the United States”" found no
correlation between voriconazole MIC and 6- or
12-week mortality. Survival at 6 weeks was asso-
ciated with increasing MIC to amphotericin B.”*
Although one series reported a high rate of itrac-
onazole clinical failure in patients infected with
resistant isolates,”® °° another documented two
cases of clinical success with voriconazole
monotherapy despite in vitro resistance.’”
Although one study suggested a possible rela-
tionship between MIC and outcome, the data
presented are too limited to draw robust conclu-
sions.*°

Echinocandins

In an A. fumigatus isolate obtained from a
patient failing caspofungin therapy, E-test meth-
odology determined the MIC to be greater
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than 32. In addition, caspofungin therapy
resulted in significantly lower survival in mice
infected with the isolate than therapy with posa-
conazole, to which it was susceptible. The
isolate was found to overexpress the FKS gene
and grow at a more rapid rate compared with a
susceptible isolate.’” Aside from this case, how-
ever, no clear clinical correlation has been found
between caspofungin MICs and outcomes for
infections due to Aspergillus. This is confounded
by the fact that caspofungin is rarely utilized as
monotherapy for the treatment of invasive mold
infections. Although ECVs for caspofungin have
been determined,”® very few clinical isolates
from a transplant database were found to have
minimum effective concentrations at or above
these ECVs.” As such, truly resistant isolates
appear to be very rare, and at this time, no
definitive correlation exists between “susceptibil-
ity” and clinical outcome.

Other Benefits

In addition to the useful information provided
by antifungal susceptibility testing regarding the
treatment of Candida infections, there are other
benefits to testing. For example, routine testing
may enable the creation of an institutional or
unit-specific fungal antibiogram. This might
assist in the development of protocols and
guidelines S(Pecific to the epidemiology of that
institution.®” In addition, testing may decrease
costs by enabling a de-escalation from expensive
agents (e.g., echinocandins) to inexpensive
agents such as fluconazole.> ®'

Conclusion

Identifying consistent correlations between
MICs (or susceptibility category) and clinical
outcomes is an ongoing challenge in treating
fungal infections. Clearly, more robust data sets
are needed to enable the development, revision,
or confirmation of clinical breakpoints. How-
ever, the role of antifungal susceptibility testing
is clearly evolving as seen by recent guidelines
that encouraged its routine (candidiasis) or tar-
geted (cryptococcosis) use. In addition, several
trends suggest an increasingly valuable role for
susceptibility testing, including the following: a
dose:MIC relationship to fluconazole outcomes
in candidiasis (although a specific threshold has
not been defined); a correlation of MICs of
1 pg/ml or more and worse outcomes to ampho-
tericin B in candidiasis; and a relationship

between high fluconazole MICs and failures or
relapses in cryptococcal infections. In addition,
susceptibility testing offers some benefits that
are not immediately applicable to the care of a
specific patient, such as detection of emerging
resistance and bolstering the currently limited
data sets. Susceptibility testing may also assist in
the appropriate stewardship of antifungal agents
as well as development of institution-specific
guidelines and protocols. Finally, the continuing
evolution of commercial testing methods
(including automated systems) makes testing
more feasible at many centers.* As such, antifun-
gal susceptibility testing is of current value, but
further research in many areas is needed before
treatment decisions can be solely predicated on
MICs.
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