
Online Appendix

Pricing Policy in a Supply Chain: Negotiation or Posted Pricing

In the appendix, we present the proofs under the assumption that the valuation distribution

satisfies Assumption (A). We should note that when the valuation distribution is uniform, all of our

results can be reproduced with much shorter proofs by taking advantage of closed form expressions

that the uniform distribution enables.

In Section A of this appendix, we first prove Propositions 1 through 7 assuming that the supply

chain capacity is sufficiently large: Q ≥ a. The proofs for the case with tight capacity (Q < a)

are more involved since the sales volume can be bounded by the supply chain capacity at lower

wholesale prices. Section B of this appendix extends the results established in Section A to the

case with tight capacity case. The remaining results (Propositions 8–10) are also proved in Section

B.

Note that, if the supply chain capacity exceeds the size of consumer population a, any additional

capacity beyond a plays no role. For ease of exposition, we describe the case with Q ≥ a by

omitting Q and adding a superscript u to represent the unlimited capacity case. For instance,

define Πu
RP

(p, w) and Πu
MP

(w, p) to be the retailer’s and the manufacturer’s profits under posted

pricing when Q ≥ a, respectively:

Πu
RP

(p, w) := ΠRP(p, w,Q), and Πu
MP

(w, p) := ΠMP(w, p,Q) for Q ≥ a. (A-1)

Then, pu(w) and wu
P

(defined in Section 2.1) are given by:

pu(w) = arg max
p

Πu
RP

(p, w) = arg max
p

ΠRP(p, w,Q) for Q ≥ a and

wu
P

= arg max
w

Πu
MP

(w, pu(w)) = arg max
w

ΠMP(w, p∗(w,Q), Q) for Q ≥ a.

Assumption (A) guarantees that Πu
RP

(p, w) and Πu
MP

(w, pu(w)) are well behaved. In particular, as

shown in Lemma A.1, Πu
RP

(p, w) is unimodal in p and Πu
MP

(w, pu(w)) is unimodal in w.

Likewise, define Πu
RN

(qmin, w) and Πu
MN

(w, qmin) to be the retailer’s and manufacturer’s profits

under negotiation when Q ≥ a, respectively:

Πu
RN

(qmin, w) := ΠRN(qmin, w,Q), and Πu
MN

(w, qmin) := ΠMN(w, qmin, Q) for Q ≥ a. (A-2)

Then, qumin(w) and wu
N

(defined in Section 2.2) satisfy

qumin(w) = arg max
qmin

Πu
RN

(qmin, w) = arg max
qmin

ΠRN(qmin, w,Q) for Q ≥ a and

wu
N

= arg max
w

Πu
MN

(w, qumin(w)) = arg max
w

ΠMN(w, q∗min(w,Q), Q) for Q ≥ a.

1



Again, Assumption (A) guarantees that Πu
RN

(qmin, w) and Πu
MN

(w, qumin(w)) are well behaved. In

particular, as shown in Lemma A.2, Πu
RN

(qmin, w) is unimodal in qmin and Πu
MN

(w, qumin(w)) is

unimodal in w.

A. Proofs of Propositions 1-7 with sufficient supply chain capac-
ity: Q ≥ a

In this appendix, we present the proofs of Propositions 1–7 assuming that the supply chain capacity

is sufficiently large. The proofs utilize technical lemmas (A.1 – A.4), which are stated and proved

at the end of Appendix A.

Proofs of Propositions 1 and 2

The proof follows from the definition of wu
P

and wu
N

. Notice that if Q ≥ a, ΠMP(w, p∗(w,Q), Q) =

Πu
MP

(w, pu(w)), which is maximized at wu
P
. A similar argument proves Proposition 2.

Proof of Proposition 3

Notice from equation (11) that the retailer’s profit is a function of the total cost of negotiation,

cT = cr + cb. Therefore, as long as cT remains the same, the retailer’s optimal cut-off valuation,

q∗min, remains unchanged, and the result follows from equations (11) and (12).

Proof of Proposition 4

Define ∆u
R
(w) to be the difference in the retailer’s profits under posted pricing and negotiation

for a given wholesale price w:

∆u
R
(w) = Πu

RP
(pu(w), w)−Πu

RN
(qumin(w), w) (A-3)

The proof utilizes Lemma A.3, which shows that ∆u
R
(w) changes sign at most once, which is proved

in parts (a) and (b) of Lemma A.3. Notice that, when part (a) of Lemma A.3 holds, ∆u
R
(w) > 0

for all w ≥ c and the retailer prefers posted pricing for any w ≥ c. When part(b)-(i) of Lemma A.3

holds, ∆u
R
(w) < 0 for all w ≥ c and the retailer prefers negotiation for any w ≥ c. The result holds

trivially for these two cases. Now suppose that ∆u
R
(w) changes sign at some w > c. Then, from

part (b)-(ii) of Lemma A.3, there must exist a threshold wholesale price ŵu
R

such that ∆u
R
(ŵu

R
) = 0,

∆u
R
(w) < 0 for w < ŵu

R
(the retailer prefers negotiation), and ∆u

R
(w) > 0 for w > ŵu

R
(the retailer

prefers posted pricing).

Proof of Proposition 5
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Recall that ∆u
R
(w) = Πu

RP
(pu(w), w) − Πu

RN
(qumin(w), w). Also, recall that the definition of ŵu

R

implies that ∆u
R
(w) < 0 for w < ŵu

R
and ∆u

R
(w) > 0 for w > ŵu

R
. In other words, ∆u

R
(w) changes

sign at w = ŵu
R
.

Define ∆u
M

(w) to be the difference in the manufacturer’s profit under posted pricing and nego-

tiation for a given wholesale price w:

∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)). (A-4)

Then, from Lemma A.3(c), there must exist a ŵu
M
≥ ŵu

R
such that ∆u

M
(w) ≤ 0 for w ≤ ŵu

M

and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

. That is, Πu
MN

(w, qumin(w)) ≥ Πu
MP

(w, pu(w)) for w ≤ ŵu
M

and

Πu
MN

(w, qumin(w)) ≤ Πu
MP

(w, pu(w)) for w ≥ ŵu
M

. Thus, the result directly follows from ŵu
M
≥ ŵu

R
.

Proof of Proposition 6

First, when the retailer chooses negotiation at all wholesale prices w ≥ c, it follows from

Proposition 2 that the optimal wholesale price is simply wu
N

. Likewise, when the retailer chooses

posted pricing at all wholesale prices w ≥ c, then, from Proposition 1, the optimal wholesale price

is simply wu
P
.

We now focus on the case where there exists ŵu
R

such that the retailer chooses negotiation when

w ≤ ŵu
R

and posted pricing when w > ŵu
R
. For the purposes of this proof, temporarily define

GN := max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) and wo
N

= arg max
c≤w≤ŵuR

Πu
MN

(w, qumin(w))

GP := sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w)) and wo
P

= arg sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w))

With these definitions, observe that the manufacturer’s problem of choosing the wholesale price,

given by (20), reduces to picking the wholesale price wo
N

if GN ≥ GP or the wholesale price wo
P

if

GN < GP. Consider two cases: (1) GN ≥ GP and (2) GN < GP.

(1) GN ≥ GP

Since Πu
MN

(w, qumin(w)) is unimodal in w, the manufacturer’s optimal wholesale price is wo
N

=

min{ŵu
R
, wu

N
} and negotiation is the supply chain’s pricing policy toward consumers. The case

with wo
N

= wu
N

corresponds to part (a) of the proposition (ordinary negotiation) and the case with

wo
N

= ŵu
R

corresponds to part (b) of the proposition (reconciliatory negotiation).

(2) GN < GP

We will first prove that, if GN < GP, wu
P
> ŵu

R
. The proof is by contradiction. Suppose GN <

GP, but wu
P
≤ ŵu

R
. Since Πu

MP
(w, pu(w)) is unimodal in w, wo

P
must be ŵu

R
, and hence, GP =

Πu
MP

(ŵu
R
, pu(ŵu

R
)). However, Proposition 5 implies that

GP = Πu
MP

(ŵu
R
, pu(ŵu

R
)) ≤ Πu

MN
(ŵu

R
, qumin(ŵu

R
)) ≤ GN,
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which is a contradiction to the assumption that GN < GP.

Now that we have shown wu
P
> ŵu

R
, it follows from the fact that wu

P
maximizes Πu

MP
(w, pu(w))

that wo
P

= wu
P
. At the wholesale price wu

P
≥ ŵu

R
, the retailer chooses posted pricing. This corre-

sponds to part (c) of the proposition.

Proof of Proposition 7

Existence of cT: We first prove that if posted pricing is the equilibrium at a given cT, then

posted pricing remains to be the equilibrium at higher cT. If this result holds, once the equilibrium

falls in the posted pricing regime, it will never switch back to negotiation as cT increases. We will

then conclude that there exists a unique cT such that the equilibrium pricing policy is negotiation

for cT ∈ [0, cT) and posted pricing for cT ≥ cT.

Suppose posted pricing is an equilibrium at a given cT = co
T
. It must be that the equilibrium

wholesale price is wu
P

(from Proposition 6). We will divide the proof into two cases, depending on

whether a threshold wholesale price ŵu
R

exists at co
T
. The two cases are: (1) there does not exist

ŵu
R
> c and the retailer chooses posted pricing for any w ≥ c, and (2) there exists ŵu

R
> c,.

(1) ŵu
R
> c does not exist

In this case, at co
T
, the retailer is choosing posted pricing for any w ≥ c, that is, Πu

RP
(pu(w), w) ≥

Πu
RN

(qumin(w), w) for w ≥ c. We observe that the retailer’s profit under negotiation, Πu
RN

(qumin(w), w)

decreases in cT while the retailer’s profit under posted pricing Πu
RP

(pu(w), w), is unaffected by cT.

Hence, at cT > co
T
, we continue to have Πu

RP
(pu(w), w) ≥ Πu

RN
(qumin(w), w) for w ≥ c, and the retailer

will choose posted pricing no matter what the wholesale price is.

(2) ŵu
R
> c

For the purposes of this proof, we temporarily make the dependence on cT explicit. For this,

temporarily define, for a given cT:

GN(cT) = max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) and wo
N

(cT) = arg max
c≤w≤ŵuR

Πu
MN

(w, qumin(w))

GP(cT) = sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w)) and wo
P
(cT) = arg sup

w>ŵuR,w≥c
Πu

MP
(w, pu(w))

Since posted pricing is the equilibrium pricing policy at co
T
, it must be that GN(co

T
) < GP(co

T
).

Suppose we increase cT to co
T

+ δ for some δ > 0.

Observe from Lemma A.4(b) that ŵu
R

decreases in cT, and this implies the feasible region of the

optimization problem that determines GN contracts when cT increases. Hence, GN(co
T

+δ) ≤ GN(co
T
)

(formally proved in Lemma A.4(e)). On the other hand, the feasible region of the optimization

problem that determinesGP becomes larger when cT increases. As a result, wu
P
, which maximizes the

function Πu
MP

(w, pu(w)), remains feasible at co
T
+δ. Thus, we conclude that wo

P
(co

T
+δ) = wo

P
(co

T
) = wu

P
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and GP(co
T

+ δ) = GP(co
T
). Consequently,

GN(co
T

+ δ) ≤ GN(co
T
) < GP(co

T
) = GP(co

T
+ δ),

and the manufacturer will choose to induce posted pricing at co
T

+ δ.

Combining cases (1) and (2), we conclude that if posted pricing is the equilibrium at a given

cT, then it remains to be the equilibrium at higher cT. Hence, there exists a unique cT such the

equilibrium is negotiation for cT ∈ [0, cT) and posted pricing for cT ≥ cT.

Existence of cT: It remains to show that cT exists and separates the regions where the

equilibrium wholesale price is wu
N

versus ŵu
R
. Focus now on the region cT ∈ [0, cT). For any cT in

this region, we know from Proposition 6 that the equilibrium wholesale price must be either ŵu
R

or

wu
N

. Consider two cases:

(1) There does not exist cT ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

In this case, it must be that the equilibrium wholesale price is wu
N

for any cT ∈ [0, cT), in which case

we have cT = cT.

(2) There exists c̃T ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

at c̃T

From Lemma A.4(d), for any cT ∈ [c̃T, cT), the manufacturer would choose ŵu
R
. Hence, there exists

cT, given by the lowest such c̃T, and the equilibrium wholesale price is ŵu
R

for any cT ∈ [cT, cT).

Technical Lemmas used in Appendix A

Lemma A.1. [Profit functions under posted pricing]

(a) The retailer’s profit, Πu
RP

(p, w), is strictly unimodal in the posted price, p.

(b) Let pu(w) denote the optimal posted price, that is, the maximizer of Πu
RP

(p, w). Then, pu(w) is

convex and strictly increasing in the wholesale price, w.

(c) Given that the retailer responds to the wholesale price w with the posted price pu(w), the man-

ufacturer’s profit, Πu
MP

(w, pu(w)), is strictly unimodal in w.

Lemma A.2. [Profit functions under negotiation]

(a) The retailer’s profit, Πu
RN

(qmin, w), is strictly unimodal in the retailer’s cut-off valuation, qmin.

(b) Let qumin(w) denote the optimal cut-off valuation, that is, the maximizer of Πu
RN

(qmin, w). Then

qumin(w) is convex and strictly increasing in w.

(c) Given that the retailer responds to the wholesale price w with the cut-off valuation qumin(w), the

manufacturer’s profit, Πu
MN

(w, qumin(w)), is strictly unimodal in w.
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Proofs of Lemmas A.1 and A.2

We present the proof of Lemma A.2 in detail and omit the proof of Lemma A.1 since the proof

of Lemma A.1 follows a similar (but algebraically simpler) sequence of arguments.

Proof of (a): We prove that Πu
RN

(qmin, w) = a
∫∞
qmin

[(1 − β)x + βqmin − w − cr − cb]f(x)dx is

unimodal in qmin by showing: (i) ∂ΠuRN(qmin,w)
∂qmin

∣∣∣
qmin=w+cr+cb

≥ 0, (ii) ∂2ΠuRN(qmin,w)
∂q2

min
< 0 whenever

∂ΠuRN(qmin,w)
∂qmin

= 0, and (iii) Πu
RN

(qmin, w)→ 0 as qmin →∞.

The first and second partial derivatives of Πu
RN

(qmin, w) with respect to qmin are

∂Πu
RN

(qmin, w)

∂qmin
= a(−qmin + w + cr + cb)f(qmin) + aβF (qmin) and (A-5)

∂2Πu
RN

(qmin, w)

∂q2
min

= −a(1 + β)f(qmin) + a(−qmin + w + cr + cb)f
′(qmin). (A-6)

Claim (i) follows from (A-5) while claim (iii) follows from F (qmin) → 0 as qmin → ∞. To show

claim (ii), note from (A-5) and (A-6)

∂2Πu
RN

(qmin, w)

∂q2
min

∣∣∣∣ ∂Πu
RN

(qmin,w)

∂qmin
=0

= −a(1 + β)f2(qmin) + βf ′(qmin)F (qmin)

f(qmin)
. (A-7)

Since F is IFR, f ′(·)F (·) + f2(·) ≥ 0. Hence claim (ii) follows from (A-7), concluding the proof of

unimodality of Πu
RN

(qmin, w) in qmin.

Proof of (b): From part (a), qumin(w) satisfies (−qumin(w)+w+cr+cb)f(qumin(w))+βF (qumin(w)) = 0.

Implicit differentiation of this equality with respect to w yields

[
(1 + β)f(qumin(w))− (−qumin(w) + w + cr + cb) f

′(qumin(w))
]dqumin(w)

dw
− f(qumin(w)) = 0. (A-8)

Substituting −qumin(w) + w + cr + cb =
−βF (qumin(w))
f(qumin(w)) from (A-5) in (A-8), we obtain

dqumin(w)

dw
=

f2(qumin(w))

(1 + β)f2(qumin(w)) + βf ′(qumin(w))F (qumin(w))
, (A-9)

Since F is IFR, we have f ′(·)F (·) + f2(·) ≥ 0, which implies
dqumin(w)

dw > 0. Thus, qumin(w) strictly

increases in w.

To prove qumin(w) is convex in w, we show
d2qumin(w)

dw2 ≥ 0. Taking the second derivative of (A-9)

with respect to w, we obtain

d2qumin(w)

dw2
=

βf(qumin(w))
dqumin(w)

dw

[(1 + β)f2(qumin(w)) + βf ′(qumin(w))F (qumin(w))]2

×
{
f ′(qumin(w))

(
2f ′(qumin(w))F (qumin(w)) + f2(qumin(w))

)
− f ′′(qumin(w))f(qumin(w))F (qumin(w))

}
.
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Since the term in the braces is positive under Assumption (A), we have
d2qumin(w)

dw2 ≥ 0.

Proof of (c): We prove the unimodality of Πu
MN

(w, qumin(w)) = a(w − c)F (qumin(w)) in w by

showing: (i)
dΠuMN(w,qumin(w))

dw

∣∣∣
w=c
≥ 0, (ii)

d2ΠuMN(w,qumin(w))

dw2 < 0 whenever
dΠuMN(w,qumin(w))

dw = 0, and

(iii) Πu
MN

(w, qumin(w))→ 0 as w →∞.

The first and second partial derivatives of Πu
MN

(w, qumin(w)) with respect to w are

dΠu
MN

(w, qumin(w))

dw
= aF (qumin(w))− a(w − c)f(qumin(w))

dqumin(w)

dw
and (A-10)

d2Πu
MN

(w, qumin(w))

dw2
= −2af(qumin(w))

dqumin(w)

dw

−a(w − c)

[
f(qumin(w))

d2qumin(w)

dw2
+ f ′(qumin(w))

(
dqumin(w)

dw

)2
]
.(A-11)

Claim (i) follows from (A-10) while claim (iii) follows from F (qumin(w))→ 0 as w, and hence qumin(w)

approaches to infinity. To show claim (ii), note from (A-10) and (A-11)

d2Πu
MN

(w, qumin(w))

dw2

∣∣∣∣ dΠu
MN

(w,qu
min

(w))

dw
=0

= −2af(qumin(w))
dqumin(w)

dw

−a F (qumin(w))

f(qumin(w))
dqumin(w)

dw

[
f(qumin(w))

d2qumin(w)

dw2
+ f ′(qumin(w))

(
dqumin(w)

dw

)2
]

= −adq
u
min(w)

dw

[
f(qumin(w)) +

f ′(qumin(w))F (qumin(w))

f(qumin(w))

]
−af(qumin(w))

dqumin(w)

dw
− aF (qumin(w))

dqumin(w)
dw

d2qumin(w)

dw2
. (A-12)

Since F is IFR, we have f ′(·)F (·) + f2(·) ≥ 0, and the term in brackets is positive. Since qumin(w)

strictly increases in w and
d2qumin(w)

dw2 ≥ 0 from part (b), all three terms are negative with the sec-

ond term being strictly negative. Thus, claim (ii) follows, concluding the proof of unimodality of

Πu
MN

(w, qumin(w)) in w.

Lemma A.3. Given the wholesale price w, let ∆u
R
(w) be the difference between the retailer’s optimal

profits under posted pricing and negotiation, that is, ∆u
R
(w) = Πu

RP
(pu(w), w)−Πu

RN
(qumin(w), w), and

∆u
M

(w) be the difference between the manufacturer’s profits under posted pricing and negotiation,

that is, ∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)). Then:

(a) If ∆u
R
(c) ≥ 0, then ∆u

R
(w) > 0 for all w > c.

(b) If ∆u
R
(c) < 0, then either:
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(i) ∆u
R
(w) < 0 for all w > c and ∆u

R
(w) is strictly increasing in w, or

(ii) ∆u
R
(w) is strictly unimodal and changes sign once. If ∆u

R
(w) changes sign, it crosses zero at

a unique ŵu
R
> c such that ∆u

R
(ŵu

R
) = 0, ∆u

R
(w) < 0 for w < ŵu

R
, and ∆u

R
(w) > 0 for w > ŵu

R
.

(c) If ∆u
R
(w) changes sign at w = ŵu

R
, there must exist a unique ŵu

M
≥ ŵu

R
such that ∆u

M
(w) ≤ 0

for w ≤ ŵu
M

, and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

.

(d) Πu
RP

(pu(w), w) and Πu
RN

(qumin(w), w) are convex decreasing in w.

Proof of Lemma A.3

Proofs of (a) and (b): We prove the result by showing (1) ∆u
R
(w) → 0 as w → ∞, and (ii)

d2∆u
R(w)

dw2 < 0 whenever d∆u
R(w)
dw = 0. Claim (2) implies that if a stationary point exists, it must be

a maximum. Claim (2) thus implies that there exists at most one maximizer. (Otherwise, there

must be a minimizer between two local maxima, which contradicts the claim that all stationary

points are local maxima.) If claims (1) and (2) hold, the behavior of the function ∆u
R
(w) must

follow either part (a) or part (b) of this lemma, which is depicted in Figure 7. Any other behavior

would contradict (1) and/or (2), therefore cannot exist.

)(wu
R∆

wc

c

c

(a) (b) - (i)

c

(b) - (ii)

)(wu
R∆ )(wu

R∆ )(wu
R∆

w

w

w

Figure 7: The figure illustrates the possibilities discussed in parts (a) and (b) of Lemma A.3.

We now prove claims (1) and (2) hold. From the facts that pu(w) → ∞ and qumin(w) → ∞ as

w →∞, it can be shown that Πu
RP

(pu(w), w) and Πu
RN

(qumin(w), w) both approach zero as w →∞.

Hence, as w →∞, ∆u
R
(w) approaches zero, which proves (1).

To show (2), recall that pu(w) is a solution to ∂ΠuRP(p,w)
∂p = 0 and qumin(w) is a solution to

∂ΠuRN(qmin,w)
∂qmin

= 0, respectively. Applying the envelope theorem, we have

dΠu
RP

(pu(w), w)

dw
=
∂Πu

RP
(p, w)

∂w

∣∣∣∣
p=pu(w)

= −aF (pu(w)), and (A-13)

dΠu
RN

(qumin(w), w)

dw
=
∂Πu

RN
(qmin, w)

∂w

∣∣∣∣
qmin=qumin(w)

= −aF (qumin(w)) (A-14)
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Therefore:

d∆u
R
(w)

dw
= −aF (pu(w)) + aF (qumin(w)). (A-15)

Let w̃ be a wholesale price such that d∆u
R(w̃)
dw = 0. Thus, at w̃, we have F (pu(w̃)) = F (qumin(w̃)) and,

hence, pu(w̃) = qumin(w̃). Using the expression for
dqumin(w̃)

dw given by equation (A-9) and obtaining a

similar expression for dpu(w̃)
dw , we can write:

dqumin(w̃)

dw
=

f2(qumin(w̃))

(1 + β)f2(qumin(w̃)) + βf ′(qumin(w̃))F (qumin(w̃))

>
f2(pu(w̃))

2f2(pu(w̃)) + f ′(pu(w̃))F (pu(w̃))
=
dpu(w̃)

dw
, (A-16)

where the inequality follows from the facts that pu(w̃) = qumin(w̃), F is IFR, and 0 < β < 1.

Now, we can use (A-15) to write:

d2∆u
R
(w)

dw2

∣∣∣∣
w=w̃

=
d

dw

[
−aF (pu(w)) + aF (qumin(w))

]∣∣∣∣
w=w̃

= a

(
f(pu(w̃))

dpu(w̃)

dw
− f(qumin(w̃))

dqumin(w̃)

dw

)
< 0,

where the inequality is from pu(w̃) = qumin(w̃) and (A-16). Hence, (2) is proven, which concludes

the proof of part (a) and (b).

Proof of (c): Our first goal is to prove that if ∆u
R
(w) changes sign, then ∆u

M
(w) changes sign

exactly once by crossing zero from below. First, note that

∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)) = a(w − c)F (pu(w))− a(w − c)F (qumin(w)).

Hence, from (A-15), it follows that ∆u
M

(w) = −(w− c)d∆u
R(w)
dw . Therefore, it suffices to show that if

∆u
R
(w) changes sign, then d∆u

R(w)
dw also changes sign exactly once from positive to negative. Suppose

now ∆u
R
(w) changes sign. From the discussion in parts (a) and (b), we know that we must be in

case (b)(ii): ∆u
R
(w) crosses zero from below and is strictly unimodal with a peak at w = w̃ such

that d∆u
R(w̃)
dw = 0. Hence, d∆u

R(w)
dw is positive for w ≤ w̃ and negative for w ≥ w̃. It now follows that

∆u
M

(w) changes sign exactly once, and the point where it changes sign, ŵu
M

, is given by w̃ such that
d∆u

R(w̃)
dw = 0. Furthermore, observe from Figure 7 that, in case (b)(ii), the point at which ∆u

R
(w)

changes sign, ŵu
R
, must come before ŵu

M
= w̃.

Proof of (d): It immediately follows from (A-13) and (A-14) that both Πu
RP

(pu(w), w) and

Πu
RN

(qumin(w), w) are decreasing in w. Furthermore, from (A-13) and (A-14), we obtain:

d2Πu
RP

(pu(w), w)

dw2
= af(pu(w))

dpu(w)

dw
, and

d2Πu
RN

(qumin(w), w)

dw2
= af(qumin(w))

dqumin(w)

dw

9



Since both pu(w) and qumin(w) increase in w (by Lemma A.1 and A.2, respectively), both Πu
RP

(pu(w), w)

and Πu
RN

(qumin(w), w) are convex in w.

Lemma A.4. Let ∆u
R
(w) be the difference between the retailer’s profits under posted pricing and

negotiation, that is, ∆u
R
(w) = Πu

RP
(pu(w), w) − Πu

RN
(qumin(w), w). Suppose there exists a ŵu

R
such

that ∆u
R
(ŵu

R
) = 0, ∆u

R
(w) < 0 for w < ŵu

R
, and ∆u

R
(w) > 0 for w > ŵu

R
. Consider the following

optimization problem:

max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) (A-17)

Let wo
N

(cT) denote the optimal solution to (A-17) and GN(cT) be the optimal value of the objective

function for a given cT. Then:

(a) wo
N

(cT) = min{ŵu
R
, wu

N
}.

(b) ŵu
R

decreases in cT. Furthermore, dŵuR(cT)
dcT

< −1.

(c) wu
N

decreases in cT. Furthermore, −1 ≤ dwuN(cT)
dcT

≤ 0.

(d) If wo
N

(cT) = ŵu
R

for some cT = co
T

, then wo
N

(cT) = ŵu
R

for cT > co
T

.

(e) GN(cT) decreases in cT.

Proof of Lemma A.4

Proof of (a): Recall that wu
N

is the unconstrained maximizer of Πu
MN

(w, qumin(w)). Since w must

be chosen in [c, ŵu
R
] and Πu

MN
(w, qumin(w)) is unimodal in w (by Lemma A.2), the optimal solution

to (A-17) is the minimum of wu
N

and ŵu
R
.

Proof of (b): To express explicit dependence, we write qumin(w), ŵu
R
, and Πu

RN
(qmin, w) as qumin(w, cT),

ŵu
R
(cT), and Πu

RN
(qmin, w, cT), respectively. Recall that, by definition of ŵu

R
(cT):

Πu
RN

(qumin(ŵu
R
(cT), cT), ŵu

R
(cT), cT)−Πu

RP
(pu(ŵu

R
(cT)), ŵu

R
(cT)) = 0. (A-18)

Implicit differentiation of (A-18) with respect to cT yields:

0 =
dΠu

RN
(qumin(ŵu

R
(cT), cT), ŵu

R
(cT), cT)

dcT
− dΠu

RP
(pu(ŵu

R
(cT)), ŵu

R
(cT))

dcT

=
dqumin(ŵuR(cT),cT)

dcT

∂ΠuRN(qmin,w,cT)
∂qmin

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

+dŵuR(cT)
dcT

∂ΠuRN(qmin,w,cT)
∂w

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

+ ∂ΠuRN(qmin,w,cT)
∂cT

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

−dpu(ŵuR(cT),cT)
dcT

∂ΠuRP(p,w)
∂p

∣∣∣
p=pu(ŵuR(cT)),w=ŵuR(cT)

− dŵuR(cT)
dcT

∂ΠuRP(p,w)
∂w

∣∣∣
p=pu(ŵuR(cT)),w=ŵuR(cT)

(A-19)
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Note that the first and fourth terms of (A-19) are zero since qumin and pu satisfy the first-order

conditions of Πu
RN

(qmin, w, cT) and Πu
RP

(p, w), respectively. Also, recall that

Πu
RN

(qmin, w, cT) = a

∫ ∞
qmin

[(1− β)x+ βqmin − w − cT] f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Taking the partial derivatives of these profit functions, we obtain:

∂Πu
RN

(qmin, w, cT)

∂w
= −aF (qmin),

∂Πu
RN

(qmin, w, cT)

∂cT
= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the above partial derivatives in (A-19) and rearranging the terms, we obtain:

dŵu
R
(cT)

dcT

[
F (qumin(ŵu

R
(cT), cT))− F (pu(ŵu

R
(cT)))

]
+ F (qumin(ŵu

R
(cT), cT)) = 0.

Hence:

dŵu
R
(cT)

dcT
= − F (qumin(ŵu

R
(cT), cT))

F (qumin(ŵu
R
(cT), cT))− F (pu(ŵu

R
(cT)))

.

To show that dŵuR(cT)
dcT

< −1, it suffices to show that F (qumin(ŵu
R
(cT), cT)) > F (pu(ŵu

R
(cT))). Since

∆u
R
(w) is crossing from negative to positive at w = ŵu

R
(cT) (by Lemma A.3(b)(ii), it follows that

∆u
R
(w) must be strictly increasing in w at w = ŵu

R
(cT). (See b(ii) of Figure 7.) Using this fact, we

obtain from (A-15) that F (qumin(ŵu
R
(cT), cT)) > F (pu(ŵu

R
(cT))), which concludes the proof of (b).

Proof of (c): In preparation for the proof, we will first derive a few useful expressions. First,

substituting the expression for
dqumin(w)

dw , given by (A-9), into the manufacturer’s first-order condition,

(A-10), and recalling that wu
N

is the solution to the manufacturer’s first-order condition, we get the

following identity:

F (qumin(wu
N

))

f(qumin(wu
N

))
− (wu

N
− c) f2(qumin(wu

N
))

(1 + β)f2(qumin(wu
N

)) + βf ′(qumin(wu
N

))F (qumin(wu
N

))
= 0. (A-20)

Let φ(x) := f2(x)

(1+β)f2(x)+βf ′(x)F (x)
. As an aside, note that

dφ(x)

dx
=
βf(x)[f ′(x)(2f ′(x)F (x) + f2(x))− f ′′(x)f(x)F (x)]

[(1 + β)f2(x) + βf ′(x)F (x)]2
. (A-21)

We observe from (A-21) that φ(x) increases in x (since the numerator is non-negative by Assumption

A). Using our definition of φ(x), we can rewrite (A-20) as

F (qumin(wu
N

))

f(qumin(wu
N

))
− (wu

N
− c)φ(qumin(wu

N
)) = 0. (A-22)
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Here, to make explicit the dependence on cT, we write wu
N

(cT) instead of wu
N

. In addition, for

notational convenience, we write qumin(cT) to denote qumin(wu
N

(cT)). With these notational changes,

(A-22) can be written as:

F (qumin(cT))

f(qumin(cT))
− (wu

N
(cT)− c)φ(qumin(cT)) = 0. (A-23)

Now we are ready to prove the result. We first show that
dqumin(cT)

dcT
× dwuN(cT)

dcT
≤ 0, that is, when cT

increases, qumin(cT) and wu
N

(cT) cannot both strictly increase or strictly decrease. We prove this by

contradiction.

Suppose both qumin(cT) and wu
N

(cT) strictly increase in cT. Then,
F (qumin(cT))
f(qumin(cT)) decreases in cT (be-

cause F is IFR) and φ(qumin(cT)) increases in cT (because φ(x) is increasing in x, as observed earlier).

Hence, the left-hand side of (A-23) must be strictly decreasing in cT, which is a contradiction since

(A-23) must hold as an identity at any given cT.

Next, suppose that both qumin(cT) and wu
N

(cT) strictly decrease in cT. Then
F (qumin(cT))
f(qumin(cT)) increases

in cT (because F is IFR) and φ(qumin(cT)) decreases in cT. Hence, the left-hand side of (A-23) must

be strictly increasing in cT, which again yields a contradiction. It is now proved that
dqumin(cT)

dcT
×

dwuN(cT)
dcT

≤ 0.

Next, we show that −1 ≤ dwuN(cT)
dcT

≤ 0. Implicit differentiation of the retailer’s first-order

condition, given by (A-5), with respect to cT yields

dwu
N

(cT)

dcT
=

[
1 +

β
(
f ′(qumin(cT))F (qumin(cT)) + f2(qumin(cT))

)
f2(qumin(cT))

]
dqumin(cT)

dcT
− 1, (A-24)

If
dqumin(cT)

dcT
< 0, then it follows from (A-24) that dwuN(cT)

dcT
< 0. (To see why, note that the term

in the brackets is positive, because F is IFR.) However, we would then obtain a contradiction to
dqumin(cT)

dcT
× dwuN(cT)

dcT
≤ 0. Thus, it must be that

dqumin(cT)
dcT

≥ 0, and it follows that dwuN(cT)
dcT

≤ 0.

Furthermore, since
dqumin(cT)

dcT
≥ 0, we observe from (A-24) that dwuN(cT)

dcT
≥ −1. This concludes the

proof of part (c).

Proof of (d): From part (a), we have wo
N

(cT) = min{ŵu
R
, wu

N
}. Hence, if wo

N
(co

T
) = ŵu

R
, it must

be that ŵu
R
≤ wu

N
at co

T
. From parts (b) and (c), we know that dŵuR(cT)

dcT
< dwuN(cT)

dcT
. Hence, if cT in-

creases, ŵu
R

continues to be less than or equal to wu
N

, and wo
N

(cT) = ŵu
R

continues to hold for cT > co
T
.

Proof of (e): We will show that for co
T
< c′

T
, GN(co

T
) ≥ GN(c′

T
). In this proof, we will write

qumin(w, cT), ŵu
R
(cT) and Πu

MN
(w, qmin, cT) instead of, respectively, qumin(w), ŵu

R
and Πu

MN
(w, qmin),

to make the dependence on cT explicit. It is not difficult to check that Πu
MN

(w, qumin(w, cT), cT) is

12



decreasing in cT. Hence:

GN(c′
T
) = Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), c′

T
), c′

T
) ≤ Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), co

T
), co

T
). (A-25)

Furthermore, note that when cT = co
T
, w = wo

N
(c′

T
) is a feasible solution for the optimization problem

in (A-17). To see why, note that ŵu
R
(cT) decreases in cT. Hence, ŵu

R
(co

T
) ≥ ŵu

R
(c′

T
). It then follows

that wo
N

(c′
T
), which is feasible for the problem in (A-17) when cT = c′

T
, is also feasible when cT = co

T
.

Therefore:

GN(co
T
) = Πu

MN
(wo

N
(co

T
), qumin(wo

N
(co

T
), co

T
), co

T
) ≥ Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), co

T
), co

T
). (A-26)

Combining (A-25) and (A-26), we obtain GN(co
T
) ≥ GN(c′

T
).
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B. Proofs for the Capacitated Supply Chain

In this appendix, we prove the results for the case where the sales volume could be bounded by

the supply chain capacity Q. We utilize Lemmas B.1 through B.3, stated and proved at the end of

Appendix B.

Proofs of Propositions 1 and 2

Notice from the manufacturer’s profit function under posted pricing given by (6) that w∗
P
(Q), the

maximizer of ΠMP(w, p∗(w,Q), Q), cannot be strictly less than wP(Q) (since ΠMP(w, p∗(w,Q), Q)

is linearly increasing in w for w ∈ [c, wP(Q)]). Now, for w ≥ wP(Q), the supply chain capacity

does not play a role: ΠMP(w, p∗(w,Q), Q) is equal to Πu
MP

(w, pu(w)), which itself is unimodal by

Lemma A.1 and peaks at wu
P
. Therefore, w∗

P
(Q) is wu

P
or wP(Q), whichever is larger. The same line

of arguments proves Proposition 2 as well.

Proof of Proposition 3

The proof is identical to the case with sufficient capacity, thus omitted.

Proof of Proposition 4

Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q) to be the difference between

the retailer’s optimal profits under the two pricing policies at a given wholesale price, w. Parts (a)

and (b) of Lemma B.1 together prove that either (1) ∆R(w,Q) ≥ 0 for all w ≥ c (in which case

the retailer prefers posted pricing for all w ≥ c), or (2) ∆R(w,Q) < 0 for all w ≥ c (in which case

the retailer prefers negotiation for all w ≥ c), or (3) if ∆R(w,Q) crosses zero for some w, it does

so only once and from below (in which case there exists a wholesale price below which the retailer

prefers negotiation and above which the retailer prefers posted pricing).

Proof of Proposition 5

As in the proof of Proposition 4, define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

to be the difference between the retailer’s optimal profits under the two pricing policies at a given

wholesale price, w. In addition, define ∆M(w,Q) = ΠMP(w, p∗(w,Q), Q) − ΠMN(w, q∗min(w,Q), Q)

to be the difference between the manufacturer’s optimal profits under the two pricing policies at

a given wholesale price, w. Lemma B.1(e) shows that if there exists a threshold wholesale price

ŵR(Q) > c, there must exist a ŵM(Q) ≥ ŵR(Q) such that ∆M(w,Q) ≤ 0 for w ≤ ŵM(Q) and

∆M(w,Q) ≥ 0 for w ≥ ŵM(Q). Hence, in the range of wholesale prices where the retailer prefers
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negotiation (i.e., w ≤ ŵR(Q)), we have ∆M(w,Q) ≤ 0; the manufacturer also prefers negotiation.

Proof of Proposition 6

The proof is almost identical to that for the case with sufficient supply chain capacity (proved

in Section A of this appendix), once we replace qumin(w), pu(w), wu
N

and wu
P

in the earlier proof with

q∗min(w,Q) = max{qumin(w), p̄(Q)}, p∗(w,Q) = max{pu(w), p̄(Q)}, w∗
N

(Q) = max{wN(Q), wu
N
} and

w∗
P
(Q) = max{wP(Q), wu

P
} here. Thus, we omit the proof.

Proof of Proposition 7

Again, the proof is almost identical to that for the case with supply chain capacity (proved in

Section A of this appendix), once we replace qumin(w), pu(w), wu
N

and wu
P

in the earlier proof with

q∗min(w,Q), p∗(w,Q), w∗
N

(Q) and w∗
P
(Q) here. The proof utilizes Lemma B.2 which is a counterpart

for Lemma A.4 used in the case with sufficient supply chain capacity.

Proof of Proposition 8

The proof proceeds in two parts, the first part showing the existence of Q and the second part

showing the existence of Q.

Part 1: The existence of Q

We first show that if negotiation is the equilibrium pricing policy at a given Q (be it ordinary or

reconciliatory negotiation) then the equilibrium pricing policy is still negotiation for a larger Q.

Hence, the smallest Q at which the supply chain settles in negotiation yields Q. This includes a

special case where posted pricing is the equilibrium for all Q <∞, in which case we set Q =∞.

Suppose that the supply chain uses negotiation as a pricing policy toward consumers at Qo.

From Proposition 6, the equilibrium wholesale price (which is the solution to problem (20)) must

be min{ŵR(Q), w∗
N

(Q)}. There are two cases to consider: Either ŵR(Q) = ∞ in which case the

retailer prefers to use negotiation for all w ≥ c, or there exists a finite ŵR(Q) ≥ c such that the

retailer prefers to use negotiation for w ∈ [c, ŵR(Q)) and posted pricing when w > ŵR(Q). We

consider these two cases separately.

Case (1): ŵR(Q) =∞ at capacity Qo: In this case the retailer prefers negotiation for all w ≥ c

when the supply chain capacity is Qo. In other words,

∆R(w,Qo) = ΠRP(p∗(w,Qo), w,Qo)−ΠRN(q∗min(w,Qo), w,Qo) ≤ 0 for all w ≥ c.

We now show that the retailer continues to prefer negotiation for all w ≥ c at any Q > Qo

(i.e., ∆R(w,Q) ≤ 0 for all w ≥ c), which then implies that negotiation is used at Q > Qo.

15



The proof is by contradiction. Pick a Q′ > Qo and suppose that there exists a w′ ≥ c such

that ∆R(w′, Q′) > 0. Notice, from Proposition 4, that if the retailer prefers posted pricing

at some wholesale price w′, it continues to prefer posted pricing at a higher wholesale price.

Also, notice that the sales quantities under both pricing policies decrease and converge to

zero as w increases. Hence, there must exist a w′′ ≥ w′ at which ∆R(w′′, Q′) > 0, and the

sales volumes under both policies are strictly less than Qo. Notice also that at this wholesale

price w′′, reducing capacity from Q′ to Qo will not change the retailer’s profits since the sales

quantities do not exceed Qo. Therefore, ∆R(w′′, Q′) = ∆R(w′′, Qo) > 0. This contradicts the

fact that ∆R(w,Qo) ≤ 0 for all w ≥ c. Hence, there does not exist w′ at which ∆R(w′, Q′) > 0.

In other words, for any Q′ > Qo, ∆R(w,Q) ≤ 0 for all w ≥ c, concluding the proof of Case

(1).

Case (2): ŵR(Q) <∞ at capacity Qo: For the sake of exposition, we temporarily define the

following functions, which correspond to the optimal solutions to the sub-problems in problem

(20).

GN(Q) = max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) and wo
N

(Q) = arg max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q)

GP(Q) = sup
w>ŵR(Q),w≥c

ΠMP(w, p∗(w,Q), Q) and wo
P
(Q) = arg sup

w>ŵR(Q),w≥c
ΠMP(w, p∗(w,Q), Q)

Since negotiation is the equilibrium at Qo, it must be that GN(Qo) ≥ GP(Qo) and ŵR(Q) ≥ c.

We now show that, for any Q′ > Qo, GN(Q′) ≥ GP(Q′), which implies that the equilibrium

remains to be negotiation at capacity Q′. We next state and prove a claim that will help us

complete the proof:

• Claim: GP(Qo) ≥ GP(Q′).

Consider two cases, depending on whether there exists a wP(Qo) ≥ c (i.e., whether there

exists a feasible wholesale price at which posted pricing is constrained by the capacity

Qo).

(2.a) There does not exist a wP(Qo) ≥ c (i.e., there does not exist a feasible wholesale

price at which posted pricing is constrained by the capacity Qo). In this case, at

the higher capacity Q′, there does not exist a wP(Q′) ≥ c either. Therefore, both

ΠMP(w, p∗(w,Qo), Qo) and ΠMP(w, p∗(w,Q′), Q′) are equal to the profit in the uncapaci-

tated supply chain, Πu
MP

(w, pu(w)), which does not depend on the supply chain capacity.

It follows that, for both Q = Qo and Q = Q′:

GP(Q) = sup
w>ŵR(Q),w≥c

Πu
MP

(w, pu(w)).
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Hence, GP(Qo) differs from GP(Q′) only because ŵR(Qo) differs from ŵR(Q′). Now,

according to Lemma B.3(b), ŵR(Q) is increasing in Q. Therefore, ŵR(Q′) ≥ ŵR(Qo),

which allows us to conclude that GP(Qo) ≥ GP(Q′).

(2.b) There exists a wP(Qo) ≥ c (i.e., there exists a feasible wholesale price at which

posted pricing is constrained by the capacity Qo). Then, ŵR(Qo) > wP(Qo) by Lemma

B.1(d). Therefore, for any w > ŵR(Qo), we have ΠMP(w, p∗(w,Qo), Qo) = Πu
MP

(w, pu(w)).

Recall that wP(Q) decreases in Q, and then disappears when Q becomes sufficiently

large. On the other hand, ŵR(Q) increases in Q from Lemma B.3(b). Thus, at any

Q′ > Qo, either there does not exist wP(Q′) ≥ c or ŵR(Q′) > wP(Q′). Therefore,

ΠMP(w, p∗(w,Q′), Q′) = Πu
MP

(w, pu(w)) for any w > ŵR(Q′). Consequently, we observe

once again that GP(Qo) differs from GP(Q′) only because ŵR(Qo) differs from ŵR(Q′),

and the result follows as in the previous case.

Based on the above claim and the fact that GN(Q) increases in Q (by Lemma B.3(d)), we

obtain:

GN(Q′) ≥ GN(Qo) ≥ GP(Qo) ≥ GP(Q′).

We thus proved that GN(Q′) ≥ GP(Q′) for any Q′ > Qo, which concludes Part 1.

Part 2: The existence of Q

It suffices to show that if the ordinary negotiation is the equilibrium at some capacity level

Qo ≥ Q (i.e., the equilibrium wholesale price is w∗
N

(Qo)), then the ordinary negotiation remains to

be the equilibrium at all Q > Qo with the equilibrium wholesale price, w∗
N

(Q). This result directly

follows from Lemma B.3(c).

Proof of Proposition 9

The proof follows as a direct corollary of Propositions 7 and 8.

Proof of Proposition 10

We first prove part (a) of the proposition. For ease of exposition, we suppress the dependence

on the supply chain capacity Q throughout this proof. Suppose that the manufacturer chooses

posted pricing in the manufacturer leadership model. Then, from equation (21), it must be the

case that

ΠMP(w∗
P
, p∗(w∗

P
)) > ΠMN(w∗

N
, q∗min(w∗

N
)). (B-1)

We show that the wholesale w∗
P

induces posted pricing even with a discretionary retailer. Once we

show that w∗
P

induces posted pricing even with a discretionary retailer, we will have concluded the
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proof, because a manufacturer facing the discretionary retailer would set its wholesale price equal

to w∗
P

and obtain the same profits as in the manufacturer leadership model.

In preparation for the rest of the proof, define ∆M(w) = ΠMP(w, p∗(w)) − ΠMN(w, q∗min(w)).

Since w∗
N

is a maximizer of ΠMN(w, q∗min(w)), we have

ΠMP(w∗
P
, p∗(w∗

P
)) > ΠMN(w∗

N
, q∗min(w∗

N
)) ≥ ΠMN(w∗

P
, q∗min(w∗

P
)).

In other words, ∆M(w∗
P
) > 0.

We divide the proof into three cases depending on the behavior of ∆R(w) = ΠRP(p∗(w), w) −

ΠRN(q∗min(w), w), which crosses zero at most once and from below.

If ∆R(w) ≥ 0 for all w ≥ c, the retailer already prefers posted pricing no matter what wholesale

price. Hence, the equilibrium of the discretionary retailer model is posted pricing with the wholesale

price w∗
P
.

Now consider the case that there exists a ŵR > c such that ∆R(w) ≤ 0 for all w ≤ ŵR and

∆R(w) > 0 for all w ≥ ŵR. From the part (e) of Lemma B.1, there must exist a wholesale price ŵM

such that ŵM ≥ ŵR, ∆M(w) ≤ 0 for w ≤ ŵM and ∆M(w) ≥ 0 for w ≥ ŵM. Given that ∆M(w∗
P
) > 0,

we have w∗
P
≥ ŵM. Therefore, w∗

P
≥ ŵR as well. Thus, the wholesale price w∗

P
will induce the

retailer to use posted pricing.

Finally, consider the case that ∆R(w) ≤ 0 for all w ≥ c. Observe, however, this case cannot

occur, because ∆M(w∗
P
) > 0 as shown above: If ∆R(w) were less than or equal to 0 for all w ≥ c,

then we should have ∆M(w) ≤ 0 for all w ≥ c by Lemma B.1(f).

As for part (b), it is not difficult to find examples. For instance, in the numerical example

presented in Figure 1, if cT = 1.5, the equilibrium is ordinary negotiation in the manufacturer

leadership model, but reconciliatory negotiation in the discretionary retailer model. However, at

cT = 1.62, the equilibrium is ordinary negotiation in the manufacturer leadership model, but posted

pricing in the discretionary retailer model.

Technical Lemmas used in Appendix B

Lemma B.1. For a given wholesale price w and capacity Q, let ∆R(w,Q) be the difference be-

tween the retailer’s optimal profits under posted pricing and negotiation, that is, ∆R(w,Q) =

ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q). Likewise, let ∆M(w,Q) be the difference between

the manufacturer’s optimal profits under posted pricing and negotiation, that is, ∆M(w,Q) =

ΠMP(w, p∗(w,Q), Q)−ΠMN(w, q∗min(w,Q), Q). Then:
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(a) If ∆R(c,Q) ≥ 0, then ∆R(w,Q) ≥ 0 for all w > c.

(b) If ∆R(c,Q) < 0, then either:

(i) ∆R(w,Q) < 0 for all w > c, or

(ii) There exists a ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) ≤ 0 for w < ŵR(Q), and

∆R(w,Q) ≥ 0 for w ≥ ŵR(Q). In other words, ∆R(w,Q) crosses zero only once at ŵR(Q) > c.

(c) For a given Q, suppose that there exists wP(Q) ≥ c but there does not exist wN(Q) ≥ c. Then,

∆R(w,Q) ≥ 0 for all w ≥ c.

(d) For a given Q, suppose that there exist wP(Q) ≥ c and ŵR(Q) > c. Then, wN(Q) > wP(Q) and

ŵR(Q) > wP(Q).

(e) Suppose that ∆R(w,Q) crosses zero from below at ŵR(Q) > c. Then, there must exist a wholesale

price ŵM(Q) such that ŵM(Q) ≥ ŵR(Q), ∆M(w,Q) ≤ 0 for w ≤ ŵM(Q) and ∆M(w,Q) ≥ 0 for

w ≥ ŵM(Q).

(f) Suppose that ∆R(w,Q) ≤ 0 for all w ≥ c. Then, ∆M(w,Q) ≤ 0 for w ≥ c.

Proof of Lemma B.1

Notice that under the posted pricing policy, the supply chain capacity Q will not play a role

if w ≥ wP(Q): ΠRP(p∗(w,Q), w,Q) = Πu
RP

(pu(w), w). Likewise, under the negotiation, the supply

chain capacity Q will not play a role if w ≥ wN(Q): ΠRN(q∗min(w,Q), w,Q) = Πu
RN

(qumin(w), w).

Hence, equations (5) and (14) can be written as

ΠRP(p∗(w,Q), w,Q) =

{
ΠRP(p̄(Q), w,Q) for w ≤ wP(Q)
Πu

RP
(pu(w), w) for w > wP(Q)

and

ΠRN(q∗min(w,Q), w,Q) =

{
ΠRN(p̄(Q), w,Q) for w ≤ wN(Q)
Πu

RN
(qumin(w), w) for w > wN(Q)

These relationships between the retailer’s profits in the capacitated and uncapacitated cases, de-

scribed by the above equalities, will be used in the rest of the proof.

Proofs of (a) and (b): We consider four cases depending on whether there exist wN(Q) ≥ c

and/or wP(Q) ≥ c, that is, whether there exists a feasible wholesale price (i.e. greater than or

equal to c) at which the quantity sold under negotiation and/or posted pricing is bounded by

capacity. These four cases are: (1) neither wN(Q) nor wP(Q) exists, (2) both wN(Q) and wP(Q)

exist, (3) only wP(Q) exists, and (4) only wN(Q) exists.

Case (1) neither wN(Q) nor wP(Q) exists: The retailer and manufacturer’s profits are never

bounded by capacity. The problem then collapses to the uncapacitated one. Thus, the

results follow from Lemma A.3(a) and A.3(b).
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Case (2) both wN(Q) and wP(Q) exist: We will divide the proof of case (2) into three mutually

exclusive subcases: 
(2.a) wP(Q) ≥ wN(Q)
(2.b) wP(Q) < wN(Q) and ∆R(wP(Q), Q) ≥ 0
(2.c) wP(Q) < wN(Q) and ∆R(wP(Q), Q) < 0.

As we will prove next, in subcases (2.a) and (2.b), part (a) of this lemma holds. In subcase

(2.c), part (b) of this lemma holds.

(2.a) wP(Q) ≥ wN(Q)

Since wP(Q) ≥ wN(Q) ≥ c, applying equations (5) and (14), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=


ΠRP(p̄(Q), w,Q)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wN(Q)],
ΠRP(p̄(Q), w,Q)−Πu

RN
(qumin(w), w) for w ∈ [wN(Q), wP(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wP(Q).
(B-2)

From the definitions of wN(Q), wP(Q) and p̄(Q), it can be shown that ∆R(w,Q) is continuous

and differentiable in w. To help with the proof, we substitute from (5) and (14) into (B-2),

and take the derivative to obtain

d∆R(w,Q)

dw
=


0 for w ∈ [c, wN(Q)],

−Q+ aF (qumin(w)) for w ∈ [wN(Q), wP(Q)],

−aF (pu(w)) + aF (qumin(w)) for w ≥ wP(Q).

(B-3)

First, we show that ∆R(w,Q) ≥ 0 for any w ∈ [c, wP(Q)]. We prove this by contradiction.

Suppose there exists some wo ≤ wP(Q) such that ∆R(wo, Q) < 0. Notice that aF (qumin(w)) ≤

Q for w ∈ [wN(Q), wP(Q)] (since qumin(w) ≥ qumin(wN(Q)) = p̄(Q) for w ≥ wN(Q)). Thus,
d∆R(w,Q)

dw ≤ 0 for w ∈ [c, wP(Q)], and it must be that ∆R(wP(Q), Q) < 0. Also notice from

(B-2) that, for w ≥ wP(Q), capacity is no longer binding and the retailer’s profits under both

pricing policies are given by the profits in the uncapacitated problem: ∆R(w,Q) = ∆u
R
(w) for

w ≥ wP(Q). Combining the facts above, we must have

∆u
R
(wP(Q)) = ∆R(wP(Q), Q) < 0 and

d∆u
R
(w)

dw

∣∣∣∣
w=wP(Q)

=
d∆R(w,Q)

dw

∣∣∣∣
w=wP(Q)

≤ 0.

However, this contradicts Lemma A.3 since the function ∆u
R
(w) cannot be decreasing at a

w where ∆u
R
(w) is strictly negative. (See Figure 7 for the possible behaviors of ∆u

R
(w).)

Therefore, ∆R(w,Q) ≥ 0 for any w ∈ [c, wP(Q)].

Second, we show that ∆R(w,Q) ≥ 0 for w > wP(Q). Recall that for w ≥ wP(Q), ∆R(w,Q) =

∆u
R
(w) and we have shown above that ∆u

R
(wP(Q)) ≥ 0. Lemma A.3(a) and (b) together imply
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that once ∆u
R
(w) is positive for some w, ∆u

R
(w) remains positive for any larger w. Therefore,

∆R(w,Q) = ∆u
R
(w) ≥ 0 for w > wP(Q).

Combining the two intervals — w ∈ [c, wP(Q)] and w > wP(Q), we conclude that ∆R(w,Q) ≥

0 for w ≥ c.

(2.b) wP(Q) < wN(Q) and ∆R(wP(Q), Q) ≥ 0

Since wP(Q) < wN(Q), applying equations (5) and (14), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=


ΠRP(p̄(Q), w,Q)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wP(Q)],
Πu

RP
(pu(w), w)−ΠRN(p̄(Q), w,Q) for w ∈ [wP(Q), wN(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wN(Q).
(B-4)

From the definitions of wN(Q), wP(Q) and p̄(Q), it can be shown that ∆R(w,Q) is differen-

tiable in w. To help with the proof, we substitute from (5) and (14) into (B-4), and take the

derivative to obtain

d∆R(w,Q)

dw
=


0 for w ∈ [c, wP(Q)],

−aF (pu(w)) +Q for w ∈ [wP(Q), wN(Q)],

−aF (pu(w)) + aF (qumin(w)) for w ≥ wN(Q).

(B-5)

First, observe from (B-5) that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)]. Hence, given our assumption

that ∆R(wP, Q) ≥ 0, it follows that ∆R(w,Q) ≥ 0 for w ∈ [c, wP(Q)].

Second, notice that aF (pu(w)) ≤ Q for w ∈ [wP(Q), wN(Q)] (since pu(w) ≥ pu(wP(Q)) = p̄(Q)

for w ≥ wP(Q)). Therefore, we observe from (B-5) that d∆R(w,Q)
dw ≥ 0 for w ∈ [wP(Q), wN(Q)].

Since ∆R(wP, Q) ≥ 0 by assumption, it follows that ∆R(w,Q) ≥ 0 for all w ∈ [wP(Q), wN(Q)].

It remains to show that ∆R(w,Q) ≥ 0 for w > wN(Q). Notice from (B-4) that for w ≥ wN(Q),

∆R(w,Q) = ∆u
R
(w). We have shown above that ∆u

R
(wN(Q)) ≥ 0. Lemma A.3(a) and (b)

together imply that once ∆u
R
(w) is positive for some w, ∆u

R
(w) remains positive for any larger

w. Therefore, ∆R(w,Q) = ∆u
R
(w) ≥ 0 for w > wN(Q).

Combining the three intervals — w ∈ [c, wP(Q)], w ∈ (wP(Q), wN(Q)] and w > wN(Q), we

conclude that ∆R(w,Q) ≥ 0 for w ≥ c.

(2.c) wP(Q) < wN(Q) and ∆R(wP(Q), Q) < 0

Since wP(Q) < wN(Q), ∆R(w,Q) and d∆R(w,Q)
dw are given by (B-4) and (B-5), respectively. Ob-

serve that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)]. Hence, given our assumption that ∆R(wP(Q), Q) <

0, it must be that ∆R(w,Q) < 0 for w ∈ [c, wP(Q)].

Next, we consider the behavior of ∆R(w,Q) for w > wP(Q) by examining two subcases: (2.c.i)

∆R(wN(Q), Q) ≥ 0, and (2.c.ii) ∆R(wN(Q), Q) < 0.
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(2.c.i) : ∆R(wN(Q), Q) ≥ 0.

For w ∈ (wP(Q), wN(Q)], observe from (B-5) that d∆R(w,Q)
dw > 0 (since pu(w) > pu(wP(Q)) =

p̄(Q) for w > wP(Q)). Since ∆R(wP(Q), Q) < 0 and ∆R(wN(Q), Q) ≥ 0, it must be that

∆R(w,Q) crosses zero only once for some w ∈ (wP(Q), wN(Q)].

As for w ≥ wN(Q), observe from (B-4) that ∆R(w,Q) = ∆u
R
(w) when w ≥ wN(Q). By

Lemma A.3(a) and (b) together, once ∆u
R
(w) crosses zero at some w, it stays strictly

positive for larger w. Therefore, ∆R(w,Q) = ∆u
R
(w) > 0 for w > wN(Q)

Combining the three intervals — w ∈ [c, wP(Q)], w ∈ (wP(Q), wN(Q)] and w > wN(Q),

we conclude that ∆R crosses zero only once from below and stays strictly positive after-

ward (corresponding to part (b)(ii) of the lemma).

(2.c.ii) : ∆R(wN(Q), Q) < 0.

Recall that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)] and d∆R(w,Q)

dw ≥ 0 for w ∈ [wP(Q), wN(Q)]

from (B-5). Therefore, given the assumption that ∆R(wN(Q), Q) < 0, it must be that

∆R(w,Q) < 0 for w ∈ [c, wN(Q)].

For w > wN(Q), recall that ∆R(w,Q) = ∆u
R
(w). Since ∆R(wN(Q), Q) = ∆u

R
(wN(Q)) < 0,

the behavior of ∆R(w,Q) = ∆u
R
(w) for w > wN(Q) must be the same as the behavior

described in Lemma A.3(b).

Case (3) only wP(Q) exists: Consider now the case where wP(Q) ≥ c exists, but wN(Q) ≥ c does

not exist. The quantity sold under negotiation is not bounded by capacity for any w ≥ c.

Hence, ΠRN(q∗min(w,Q), w,Q) = Πu
RN

(qumin(w), w) for all w ≥ c. Given this fact and applying

equation (5), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=

{
ΠRP(p̄(Q), w,Q)−Πu

RN
(qumin(w), w) for w ∈ [c, wP(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wP(Q).
(B-6)

Notice that (B-6) is a special case of (B-2). Therefore, case (3) collapses to case (2.a), and

∆R(w,Q) ≥ 0 for all w ≥ c.

Case (4) only wN(Q) exists: Consider now the case where wN(Q) ≥ c exists, but wP(Q) ≥ c

does not exist. The quantity sold under posted pricing is not bounded by capacity for any

w ≥ c. Hence, ΠRP(p∗(w,Q), w,Q) = Πu
RP

(pu(w), w) for all w ≥ c. Given this fact and

applying equation (5), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=

{
Πu

RP
(pu(w), w)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wN(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wN(Q).
(B-7)
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Depending on whether ∆R(wN(Q), Q) ≥ 0 or ∆R(wN(Q), Q) < 0, the result is the same as in

case (2.c.i) or (2.c.ii), respectively.

Proof of (c): If wP(Q) ≥ c exists, but wN(Q) ≥ c doesn’t, we must be in Case (3) discussed in

the proof of parts (a) and (b). Then, the result that ∆R(w,Q) ≥ 0 for all w ≥ c follows immediately.

Proof of (d): Since wP(Q) ≥ c exists, Cases (1) and (4) are ruled out. Furthermore, since

ŵR(Q) > c exists, Cases (2.a), (2.b), (3) are ruled out as ∆R(w,Q) ≥ 0 for all w ≥ c in these

cases, which does not permit the existence of ŵR(Q) > c. Hence, we must be in case (2.c): both

wP(Q) ≥ c and wN(Q) ≥ c exist, wP(Q) < wN(Q), and ∆R(wP(Q), Q) < 0. In the proof of case

(2.c), we have shown that ∆R(w,Q) < 0 for w ∈ [c, wP(Q)]. Hence, the wholesale price at which

∆R(w,Q) = 0, i.e., ŵR(Q), must be strictly greater than wP(Q).

Proof of (e): For ease of exposition, we prove the results when there exist market-clearing whole-

sale prices, wP(Q) ≥ c and wN(Q) ≥ c for a given Q. Notice that if neither wP(Q) ≥ c nor wN(Q) ≥ c

exists, then, under any pricing policy, there would be no feasible wholesale price (w ≥ c) that makes

the sales volume bounded by the supply chain capacity. Thus, the problem reverts to the case with

sufficient capacity, for which the result has already been established in Section A of this appendix.

If only one of wP(Q) ≥ c or wN(Q) ≥ c exists, then there would be no feasible wholesale price that

makes the sales volume bounded by the supply chain capacity under one of the pricing policies,

and the result would follow as a special case of the proof we provide here.

First, note from Lemma B.1(d) that the existence of ŵR(Q) > c implies that wN(Q) > wP(Q)

and ŵR(Q) > wP(Q). Since wN(Q) > wP(Q), using the expressions for the manufacturer’s profit

functions, given by (6) and (15), we have

∆M(w,Q) = ΠMP(w, p∗(w,Q), (Q))−ΠMN(w, q∗min(w,Q), Q)

=


0 for w ∈ [c, wP(Q)],

a(w − c)F (pu(w))− (w − c)Q ≤ 0 for w ∈ [wP(Q), wN(Q)],

a(w − c)F (pu(w))− a(w − c)F (qumin(w)) for w ≥ wN(Q).

(B-8)

Notice from above that ∆M(w,Q) ≤ 0 for w ≤ wN(Q). We next analyze the behavior of

∆M(w,Q) for w > wN(Q). Observe that, if w ≥ wN(Q), then the sales quantity will not be bounded

by the supply chain capacity Q under either pricing policy. Since capacity Q does not play any role

under either pricing policy when w ≥ wN(Q), ∆M(w,Q) is equal to ∆u
M

(w) and ∆R(w,Q) is equal

to ∆u
R
(w) for w ≥ wN(Q).

From (B-8), ∆M(w,Q) = a(w− c)
(
F (pu(w))− F (qumin(w))

)
for w ≥ wN(Q). Also, from (A-15),
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d∆R(w,Q)
dw = d∆u

R(w)
dw = −aF (pu(w)) + aF (qumin(w)) for w ≥ wN(Q). Then, we have

∆M(w,Q) = ∆u
M

(w) = −(w − c)d∆R(w,Q)

dw
= −(w − c)d∆u

R
(w)

dw
for w ≥ wN(Q) (B-9)

Since ∆M(wN(Q), Q) ≤ 0, d∆R(w,Q)
dw ≥ 0 at w = wN(Q). This observation will be used later in the

proof.

To show that ŵM(Q) exists and that ŵM(Q) ≥ ŵR(Q), we separately examine two cases: (1)

ŵR(Q) ≤ wN(Q) and (2) ŵR(Q) > wN(Q). Note that, by the definition of ŵR(Q), ŵR(Q) ≤ wN(Q)

is equivalent to ∆R(wN(Q), Q) ≥ 0, and ŵR(Q) > wN(Q) is equivalent to ∆R(wN(Q), Q) < 0.

(1) ŵR(Q) ≤ wN(Q) (equivalently, ∆R(wN(Q), Q) ≥ 0)

∆R(w,Q) ≥ 0 at w = wN(Q) by the assumption of this case. Furthermore, as we showed above,

∆R(w,Q) is locally increasing in w at w = wN(Q). Given that ∆R(w,Q) = ∆u
R
(w) for w ≥ wN(Q),

we can now apply Lemma A.3(b) to conclude that the function ∆R(w,Q) is unimodal in w for

w ≥ wN(Q) and peaks at some wo ≥ wN(Q). This implies that d∆R(w,Q)
dw changes sign from positive

to negative at wo ≥ wN(Q), which in turn implies that ∆M(w,Q) changes sign from negative to

positive precisely at this wo ≥ wN(Q) (see (B-9)). Hence, ŵM(Q) = wo ≥ wN(Q) ≥ ŵR(Q).

(2) ŵR(Q) > wN(Q) (equivalently, ∆R(wN(Q), Q) < 0)

Now, applying Lemma A.3(c), there must exist a ŵu
M
≥ ŵR(Q) ≥ wN(Q) such that ∆u

M
(w) ≤ 0

for w ≤ ŵu
M

, and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

. Now, recalling that ∆M(w,Q) = ∆u
M

(w) for w ≥ wN(Q),

the value of ŵu
M

yields ŵM(Q) in this case.

Proof of (f): The proof follows a similar argument to that of part (e).

Lemma B.2. Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q). Suppose there

exists a unique ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) < 0 for w < ŵR(Q), and

∆R(w,Q) > 0 for w > ŵR(Q). Consider the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B-10)

Let wo
N

(Q, cT) denote the optimal solution to (B-10) and GN(Q, cT) be the optimal value of the

objective function for a given capacity, Q, and a given cost of negotiation, cT. Then,

(a) wo
N

(Q, cT) = min{ŵR(Q), w∗
N

(Q)}.

(b) wN(Q) decreases in cT. Furthermore, dwN(Q)
dcT

= −1.

(c) ŵR(Q) decreases in cT. Furthermore, dŵR(Q)
dcT

< −1.

(d) If wo
N

(Q, cT) = ŵR(Q) for some cT = co
T

, then wo
N

(Q, cT) = ŵR(Q) for cT > co
T

.

(e) GN(Q, cT) decreases in cT.
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Proof of Lemma B.2

The proof of Lemma B.2 is similar to that of Lemma A.4 and mostly algebraic, therefore

omitted.

Lemma B.3.

(a) Suppose there exists a wN(Q) > c at a given Q. Then, dwN(Q)
dQ ≤ 0.

(b) Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q). Suppose there exists a unique

ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) < 0 for w < ŵR(Q), and ∆R(w,Q) > 0 for

w > ŵR(Q). Then, dŵR(Q)
dQ ≥ 0.

Consider now the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B-11)

Let wo
N

(Q) denote the optimal solution to (B-11) and GN(Q) be the optimal value of the objective

function for a given Q. Then,

(c) Suppose, for some Q = Qo, wo
N

(Qo) = w∗
N

(Qo). Then, wo
N

(Q) = w∗
N

(Q) for Q > Qo.

(d) GN(Q) increases in Q.

Proof of Lemma B.3

Proof of (a): For a given capacity Q, the market-clearing wholesale price under negotiation,

wN(Q), is defined so that qumin(wN(Q)) = p̄(Q) (see (13)). Hence, qumin(wN(Q)) = p̄(Q) will satisfy

the first-order condition of the retailer’s profit function under negotiation, Πu
RN

(qmin, w) at w =

wN(Q). Using the expression for ∂ΠuRN(qmin,w)
∂qmin

from (A-5) and the fact that qumin(w) satisfies the

first-order condition for Πu
RN

(qmin, w):

∂Πu
RN

(qmin, w)

∂qmin

∣∣∣∣
qmin=qumin(w)

= a(−qumin(w) + w + cT)f(qumin(w)) + aβF (qumin(w)) = 0.

Substituting w = wN(Q) and qumin(wN(Q)) = p̄(Q) in the above equation, we obtain the following

identity:

(
−p̄(Q) + wN(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) = 0, or, − βF (p̄(Q))

f(p̄(Q))
+ p̄(Q) = wN(Q) + cT. (B-12)

When Q increases, p̄(Q) decreases (since aF (p̄(Q)) = Q) and, thus, β F (p̄(Q))
f(p̄(Q)) increases due to F

being IFR. Therefore, the left-hand side of the above identity decreases in Q. Hence, wN(Q) must

decrease in Q.

Proof of (b): We consider four cases depending on whether there exist wN(Q) ≥ c and/or wP(Q) ≥

c, that is whether there exists a feasible wholesale price (i.e. greater than or equal to c) at which
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the quantity sold under negotiation and/or posted pricing is bounded by capacity. Four cases are:

(1) both wN(Q) and wP(Q) exist, (2) only wN(Q) exists, (3) only wP(Q) exists, and (4) neither of

them exists.

(1) both wP(Q) and wN(Q) exist

Note from Lemma B.1(d) that wP(Q) < min{ŵR(Q), wN(Q)}. We will prove that dŵR(Q)
dQ ≥ 0 in

the following two subcases: (1.a) wP(Q) < ŵR(Q) < wN(Q), and (1.b) wP(Q) < wN(Q) ≤ ŵR(Q).

Consider the first subcase (1.a). By definition, ŵR(Q) satisfies ∆R(ŵR(Q), Q) = 0. Observe

from the expressions for ΠRP and ΠRN, given by (5) and (14) that

ΠRP(p∗(ŵR(Q), Q), ŵR(Q), Q) = Πu
RP

(pu(ŵR(Q)), ŵR(Q)) (since wP(Q) < ŵR(Q)), and

ΠRN(q∗min(ŵR(Q), Q), ŵR(Q), Q) = ΠRN(p̄(Q), ŵR(Q), Q) (since ŵR(Q) < wN(Q)).

Therefore, at w = ŵR(Q), the following identity must be satisfied:

ΠRN(p̄(Q), ŵR(Q), Q)−Πu
RP

(pu(ŵR(Q)), ŵR(Q)) = 0.

Implicit differentiation of the above identity with respect to Q yields:

0 =
dΠRN(p̄(Q), ŵR(Q), Q)

dQ
− dΠu

RP
(pu(ŵR(Q)), ŵR(Q))

dQ

= dp̄(Q)
dQ

∂ΠRN(qmin,w,Q)
∂qmin

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

+ dŵR(Q)
dQ

∂ΠRN(qmin,w,Q)
∂w

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

−dpu(ŵR(Q))
dQ

∂ΠuRP(p,w)
∂p

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

− dŵR(Q)
dQ

∂ΠuRP(p,w)
∂w

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

(B-13)

Note that the third term on the right-hand side of (B-13) is zero since pu satisfies the first-order

condition of Πu
RP

(p, w). Recall that

ΠRN(qmin, w,Q) = a

∫ ∞
qmin

[(1− β)x+ βqmin − w − cT]f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Taking the partial derivatives of these functions, we obtain

∂ΠRN(qmin, w,Q)

∂qmin
= a(−qmin + w + cT)f(qmin) + aβF (qmin),

∂ΠRN(qmin, w,Q)

∂w
= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the partial derivatives above in (B-13) and rearranging the terms, we obtain:

dŵR(Q)

dQ

(
F (p̄(Q))− F (pu(ŵR(Q)))

)
=
dp̄(Q)

dQ

[(
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q))

]
(B-14)
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Note from (B-12) that
(
−p̄(Q) + wN(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) = 0. Since ŵR(Q) < wN(Q), it

follows that (
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) < 0.

Furthermore, dp̄(Q)
dQ ≤ 0 since p̄(Q) is such that aF (p̄(Q)) = Q. Hence, the right-hand side of

(B-14) is positive. We then consider the left-hand side of (B-14). Note that, since wP(Q) < ŵR(Q),

it follows that pu(ŵR(Q)) > pu(wP(Q)) = p̄(Q), where the equality is by definition of wP(Q).

Hence, F
(
p̄(Q)

)
> F

(
pu(ŵR(Q))

)
. Since the right-hand side of (B-14) is positive, we now conclude

dŵR(Q)
dQ ≥ 0.

Subcase (1.b) can be proven similarly by implicit differentiation of the same identity.

(2) only wN(Q) exists

We consider two separate subcases: (2.a) ŵR(Q) < wN(Q) and (2.b) wN(Q) ≤ ŵR(Q). The

proof of (2.a) is similar to case (1.a), and (2.b) is similar to case (1.b).

(3) only wP(Q) exists

Note that if wP(Q) exists but wN(Q) does not exist, Lemma B.1(c) shows that ∆R(w,Q) ≥ 0

for all w ≥ c. Therefore, ŵR(Q) does not exist, and this case cannot occur.

(4) both wP(Q) and wN(Q) do not exist

The analysis is similar to case (1.b).

Proof of (c): Suppose that wo
N

(Qo) = w∗
N

(Qo) for some Qo. Pick a capacity level Q′ such that

Q′ > Qo. We consider three cases depending on whether there exists a feasible wholesale price at

which the quantity sold under negotiation will be capacity-constrained at each capacity level, Qo

and Q′: (1) both wN(Qo) ≥ c and wN(Q′) ≥ c exist, (2) neither of them exists, and (3) wN(Qo) ≥ c

exists, but wN(Q′) ≥ c does not exist. (The case that wN(Qo) ≥ c does not exist and wN(Q′) ≥ c

exists cannot occur since wN(Q) decreases in Q, which is proven in part (a) of this lemma.)

(1) wN(Qo) ≥ c and wN(Q′) ≥ c

Note that wo
N

(Q) = min{ŵR(Q), w∗
N

(Q)} (from Lemma B.2(a)) and that w∗
N

(Q) = max{wN(Q), wu
N
}

(from Proposition 2). Therefore, given that wo
N

(Qo) = w∗
N

(Qo), it must be that ŵR(Qo) ≥ w∗
N

(Qo) =

max{wN(Qo), wu
N
}. Observe that wu

N
is constant with respect to Q and, from part (a) of this lemma,

wN(Q) decreases when Q increases. Also observe from part (b) of this lemma, ŵR(Q) increases as

Q increases. Therefore,

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ max{wN(Q′), wu

N
},

and wo
N

(Q′) = w∗
N

(Q′).
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(2) neither of them exists

In this case, there does not exist a feasible wholesale price at which the quantity sold under

negotiation is capacity-constrained at either Qo or Q′. Hence, w∗
N

(Qo) = wu
N

and w∗
N

(Q′) = wu
N

. It

follows that

wo
N

(Qo) = min{ŵR(Qo), wu
N
} and wo

N
(Q′) = min{ŵR(Q′), wu

N
}.

Then, wo
N

(Q′) = w∗
N

(Q′) follows since wo
N

(Qo) = w∗
N

(Qo) = wu
N

and ŵR(Q′) ≥ ŵR(Qo) (from part

(b) of this lemma).

(3) only wN(Qo) ≥ c exists

In this case, w∗
N

(Q′) = wu
N

. The result follows from the following set of inequalities:

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ wu

N

where the first inequality comes from part (b) of this lemma and the second inequality comes from

the fact that wo
N

(Qo) = w∗
N

(Qo) = max{wN(Qo), wu
N
}. Hence, wo

N
(Q′) = w∗

N
(Q′) = wu

N
.

Proof of (d): It is not difficult to check that ΠMN(w, q∗min(w,Q), Q) increases in Q. Therefore, if

Qo < Q′, then

GN(Qo) = ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Qo), Qo) ≤ ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Q′), Q′). (B-15)

Furthermore, since ŵR(Q) increases in Q, wo
N

(Qo) must be feasible for the optimization problem

(B-11) at Q = Q′ > Qo. Therefore,

GN(Q′) = ΠMN(wo
N

(Q′), q∗min(wo
N

(Q′), Q′), Q′) ≥ ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Q′), Q′). (B-16)

Combining (B-15) and (B-16), we obtain GN(Q′) ≥ GN(Qo).
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