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Abstract
In a statistical cluster or loop model such as percolation, or more generally
the Potts models or O(n) models, a pinch point is a single bulk point where
several distinct clusters or loops touch. In a polygon P harboring such a model
in its interior and with 2N sides exhibiting free/fixed side-alternating boundary
conditions, boundary clusters anchor to the fixed sides of P . At the critical
point and in the continuum limit, the density (i.e. frequency of occurrence)
of pinch-points between s distinct boundary clusters at a bulk point w ∈ P
is proportional to〈

ψc
1 (w1)ψ

c
1 (w2) . . . ψc

1 (w2N−1)ψ
c
1 (w2N )�s(w, w̄)

〉
P .

The wi are the vertices of P , ψc
1 is a conformal field theory (CFT) corner

one-leg operator, and �s is a CFT bulk 2s-leg operator. In this paper, we use
the Coulomb gas formalism to construct explicit contour integral formulas for
these correlation functions and thereby calculate the density of various pinch-
point configurations at arbitrary points in the rectangle, in the hexagon, and for
the case s = N, in the 2N-sided polygon at the system’s critical point. Explicit
formulas for these results are given in terms of algebraic functions or integrals
of algebraic functions, particularly Lauricella functions. In critical percolation,
the result for s = N = 2 gives the density of red bonds between boundary
clusters (in the continuum limit) inside a rectangle. We compare our results
with high-precision simulations of critical percolation and Ising FK clusters in
a rectangle of aspect ratio two and in a regular hexagon, and we find very good
agreement.
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Figure 1. Percolation configurations with (left figure) centers of bloated bonds (red) marking
two-pinch points and boundary arcs (right figure, green and blue) connecting the vertices of the
rectangle pairwise. The left illustration is a sample in the discrete setting, and the right illustration
shows only the (filled) boundary clusters of a sample in the continuum limit.

1. Introduction

We consider critical bond percolation on a very fine square lattice inside a rectangle R with
wired left and right sides. Of intrinsic interest to the system are bonds whose activation or
deactivation will respectively join or disconnect the percolation boundary cluster anchored to
the left side of R from that anchored to the right side. Such a bond that connects them is an
example of a red bond [1]. Red bonds inherit their name from the following scenario. If we
suppose that only activated bonds conduct electricity and that the wired left and right sides
of R are attached to opposite leads of a battery, then an activated red bond carries the total
current and is hottest, and its deactivation stops the flow of current. Red bonds carry similar
significance in other physical scenarios modeled by percolation. Many of their properties have
been studied before, first in context with cluster ramification [2]. The average number of red
bonds weighted by cluster size was measured in [1], and the fractal dimension of the set
of red bonds is predicted in [3, 4] and measured in [5]. Further fragmentation properties of
percolation clusters are considered in [6]. In this paper, we calculate the density (i.e. frequency
of occurrence) of red bonds at a given bulk (i.e. interior) point w ∈ R and some generalizations,
which we now explore.

In percolation, red bonds are marked by pinch points, or bulk points where distinct
percolation clusters touch. We consider the two boundary arcs (i.e. perimeters of the boundary
clusters) of the percolating system in R. At the center w of a red bond, the two boundary arcs
pass very close to each other, separated there by only the red bond (figure 1). In the continuum
limit, four distinct boundary arcs appear to emanate from w, each ending at a different vertex
of R. In reality, these four curves are not distinct but join pairwise at (or very close to) w to
form two boundary arcs. Each boundary cluster is pinched into a narrow channel between an
adjacent pair of boundary arcs, and they touch each other at (or pass very close to) w where
the tips of these channels meet (or almost meet). Thus, we call w a pinch point [7] (figure 1).
The detail of whether or not the red bond at w is activated is lost in the continuum limit where,
formally speaking, bonds do not exist but their clusters do. But the location of the red bond
remains. It is marked by the pinch point at w. Thus, the continuum limit of the density of red
bonds in R equals the density of pinch points between the left and right boundary clusters
in R.

The connection between red bonds and pinch points generalizes the problem of computing
the red bond density in R to computing the pinch-point density involving s boundary clusters
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Figure 2. Centers of bloated bonds (orange and purple) mark one-pinch points on the perimeters
of the boundary clusters in the discrete (left) and continuum (right) settings. (Color online only.)

in a 2N-sided polygon P . In particular, we suppose that P harbors critical percolation in
its interior and exhibits a free/fixed side-alternating boundary condition (FFBC). That is, the
boundary condition (BC) of the sides of P alternate from fixed, or ‘wired,’ (i.e. all bonds
activated) to free (i.e. no conditioning imposed on the activation of the bonds). In this paper,
we label an FFBC event with the symbol ς . In such an event, the FFBC conditions a boundary
cluster to anchor to each wired side. Now, we define an s-pinch point to be a bulk point
w ∈ P where s distinct boundary clusters touch (or pass very close). In the continuum limit,
2s boundary arcs emanate from w, each ending at a different vertex of P (figure 1). Clearly,
we must have 1 � s � N because at most, N distinct boundary clusters can anchor to the fixed
sides of P . When s = 1 we define a one-pinch point to be a bulk point touched (or approached)
by just one of the boundary arcs. As the continuum limit is approached, the density of pinch-
point events decays as a power law of the shrinking lattice spacing (section 3.2). This power,
with other scaling exponents, is determined in [3, 7]. (For 2N-sided polygons with N > 2, the
density of red bonds is still dominated by pinch points involving two clusters in the large system
limit because s-pinch points with s > 2 occur much less often, as discussed in section 4.)

We obtain another generalization by considering the statistics of the boundary arcs, which
fluctuate in P with the law of multiple-SLEκ [8]. The case of percolation entails κ = 6, but we
may consider other κ ∈ (0, 8) as well. In these terms, an s-pinch point is a bulk point w ∈ P
where s distinct multiple-SLEκ curves touch (or pass very near each other). In particular, a
one-pinch point is a bulk point on (or very near) one of these curves (figure 2), and the problem
of calculating its density generalizes the same problem for when there is one SLEκ curve. The
latter was originally solved in [9]. In our situation with multiple boundary arcs, the regions
that a boundary arc can explore in P are influenced by the presence of the other boundary
arcs, so a one-pinch point can be interpreted as measuring the repulsion between the various
boundary arcs. In the case of percolation, this ‘repulsion’ is not felt until the boundary arcs
actually collide due to the locality property of SLEκ with κ = 6 [10, 11].

The range κ ∈ (0, 8) describes boundary arcs in many interesting critical lattice models,
including those of the Q-state Potts model for Q � 4. As in percolation, an s-pinch point is
still a bulk point where s distinct boundary clusters touch in the Q-state Potts model inside P
with an FFBC. However, now there are two different types of clusters to consider: FK clusters
and spin clusters. Boundary arcs of the former type are multiple-SLEκ curves with speed κ in
the dense phase (i.e. κ ∈ (4, 8)) and related to Q through [12]

Q = 4 cos2(4π/κ), κ ∈ (4, 8), (1)
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and boundary arcs of the latter type are multiple-SLEκ curves with ‘dual’ speed κ̂ = 16/κ in
the dilute phase (i.e. κ̂ ∈ (0, 4]) and κ related to Q through (1). Scaling exponents and fractal
dimensions associated with pinch points are found in [4]. The generalization of red bonds
from percolation to other models is also considered in [5].

In this paper, we calculate various continuum limit pinch-point densities in the rectangle
R and in the hexagon H (and for s = N in any 2N-sided polygon) conditioned on a specified
FFBC event ς and for arbitrary κ ∈ (0, 8), but before we begin, we refine our definition of
a pinch point. We suppose that a multiple-SLEκ process evolves 2N distinct boundary arcs
anchored to the vertices of P until they join pairwise in the long-time limit to form N distinct
boundary arcs in one of CN possible connectivities. Here, CN is the Nth Catalan number, given
by

CN = (2N)!

N!(N + 1)!
. (2)

(The number of possible connectivities CN equals the dimension of the Temperley–Lieb
algebra TLN [13], whose elements can be represented diagrammatically in the same way as
our connectivities [14].) We let � label a pinch-point event, that is, an event containing all
boundary arc configuration samples in which s distinct boundary arcs, each with both endpoints
among 2s specified vertices of P , pass within a small distance δ from a specified bulk point
w ∈ P , and the other boundary arcs join the remaining vertices of P in some particular
connectivity. Then for a specified FFBC event ς , the type-� s-pinch-point density ρP

(�|ς )(w)

is the probability of the pinch-point event � conditioned on the FFBC event ς , and it equals
the ratio of the (continuum limit) partition function ZP

(�|ς ) summing exclusively over samples
in � ∩ ς divided by the (continuum limit) partition function ZP

ς summing exclusively over
samples in ς .

The purpose of this paper is to study the asymptotic behavior of the type-� pinch-point
density as δ → 0. The asymptotic behavior of the partition functions ZP

(�|ς ) and ZP
ς are

supposed to be

ZP
(�|ς )/Z f ∼

δ,δi→0
c2N

1 C2
s δ

θ1
1 . . . δ

θ1
2Nδ2�sϒP

(�|ς ),

ZP
ς /Z f ∼

δi→0
c2N

1 δ
θ1
1 . . . δ

θ1
2NϒP

ς ,
(3)

where Z f is the free partition function (summing over all samples in the system configuration
space), where the functions ϒP

(�|ς ) and ϒP
ς are universal partition functions, where θ1 is the

boundary one-leg weight associated with the free/fixed boundary condition change (BCC) at
each vertex of P , and where �s is the bulk 2s-leg weight associated with the bulk s-pinch-
point event. Also, c1 is a non-universal scaling coefficient associated with each BCC, Cs is
a non-universal scaling coefficient associated with the s-pinch-point event (and is not the sth
Catalan number), and the ith BCC occurs within distance δi from the ith vertex wi of P . Then
the density ρP

(�|ς ) behaves as

ρP
(�|ς ) = ZP

(�|ς )/ZP
ς ∼

δ→0
C2

s δ
2�sϒP

(�|ς )/ϒ
P
ς . (4)

Thus, determining the behavior of ρP
(�|ς ) to within a constant amounts to determining the

universal partition functions ϒP
(�|ς ) and ϒP

ς .
The organization of this paper is as follows. In section 2, we identify the universal partition

function ϒP
(�|ς ) with a bulk-boundary conformal field theory (CFT) correlation function of

certain primary operators, and we find an explicit formula for it using the Coulomb gas
formalism. Also in this section, we calculate the N-pinch-point weight (defined later) of a
2N-sided polygon, and we find that it is completely algebraic. In section 3, we compute
various s-pinch-point densities in the rectangle (N = 2) and in the hexagon (N = 3). We find
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Ψ1

Ψ2

Ψ3

Figure 3. An s-pinch-point event is induced by the insertion of a bulk 2s-leg operator.

that the formulas for the (N − 1)-pinch-point densities are given by algebraic factors times
Lauricella functions of cross-ratios of (the half-plane conformal images of) the bulk point w

and the vertices wi of P . In section 4, we compare some of our predictions with high-precision
simulations of percolation and Ising FK clusters inside a rectangle and a regular hexagon and
find very good agreement.

2. CFT description

In the continuum limit, ϒP
(�|ς ) equals a correlation function of appropriate primary operators

belonging to a CFT [15] of central charge [16]

c = c(κ) := (6 − κ)(3κ − 8)/2κ. (5)

These primary operators are chosen as follows. To alternate the BC on the sides of P from
free to fixed to free, etc, we insert a corner one-leg operator ψc

1 (wi) at each vertex wi of P
into the correlation function. Corner operators are defined in [17, 18], and they are used in
section 3.3. The collection of 2N corner one-leg operators introduces N non-crossing boundary
arcs that connect the vertices w1, . . . , w2N pairwise in one of CN possible connectivities. Now,
to generate an s-pinch point at w ∈ P , we require s of these arcs to touch at (or come very
close to) this point. One may view this as the event in which 2s distinct boundary arcs emanate
from w, which is conditioned by the insertion of a spinless bulk 2s-leg operator �s(w, w̄)

into the correlation function [19, 7] (figure 3). Hence, ϒP
(�|ς ) is given by the (2N + 2)-point

function

ϒP
(�|ς ) = 〈

ψc
1 (w1)ψ

c
1 (w2) . . . ψc

1 (w2N−1)ψ
c
1 (w2N )�s(w, w̄)

〉
P . (6)

The standard approach to studying this correlation function is to conformally map the interior
of P onto the upper half-plane H. The half-plane version of this correlation function is

ϒ(�|ς ) = 〈ψ1(x1)ψ1(x2) . . . ψ1(x2N−1)ψ1(x2N )�s(z, z̄)〉H (7)

= 〈ψ1(x1)ψ1(x2) . . . ψ1(x2N−1)ψ1(x2N )�s(z)�s(z̄)〉C, (8)

where we have used Cardy’s method of images [17] to rewrite the half-plane correlation
function on the right side of (7) as the whole-plane correlation function (8). Here, �s(z) has
holomorphic weight �s and antiholomorphic weight zero. First, we will focus on calculating
ϒ(�|ς ), and later in section 3.3, we will transform ϒ(�|ς ) to ϒP

(�|ς ).
In the multiple-SLEκ picture, the bulk 2s-leg operator conditions a specified collection of

2s of the 2N available multiple-SLEκ curves to grow from their respective origin points at the
vertices of P toward the common bulk point w ∈ P until they join pairwise very near w in any

5
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Figure 4. The unique loop configuration corresponding to a particular bond/dual-bond
configuration in R with the left/right sides wired. Boundary loops (surrounding boundary clusters)
are black and solid, and bulk loops (surrounding bulk clusters) are gray and dashed.

one of Cs possible connectivities. Here, Cs is the sth Catalan number (2). The s-pinch-point
event �, defined previously, contains all samples that exhibit any one of these Cs connectivities
near the pinch-point. Each connectivity is equally likely to occur.

Moreover, we may view each pinch-point sample in � as a collection of loops that surround
the perimeters of the bulk and boundary clusters in P . These clusters are, for example, FK
clusters or spin clusters in a Potts model, and the loops for the former case are shown in
figure 4. This picture is consistent with the continuum limit of the O(n) model if we set the
loop fugacity n equal to [10, 20]

n = n(κ) := −2 cos(4π/κ). (9)

In this interpretation, the endpoints of the boundary arcs are joined pairwise via N exterior
arcs to form between one and N boundary loops (red loops in figure 4) that dodge in an out
of P [18, 21, 22]. These exterior arcs live outside P and connect its vertices pairwise, and
their connectivity is determined by the choice of FFBC. All samples in the same FFBC event
ς whose boundary arcs join in the ith connectivity inside P have the same number pi of
boundary loops. Because the s-pinch-point event � sums over all Cs possible connectivities
of the boundary arcs that are conditioned to approach the s-pinch point, we may factor out the
fugacity factors associated with the boundary loops to write ϒ(�|ς ) in the form

ϒ(�|ς ) = (np1 + . . . + npCs )
�. (10)

The factor 
� is called the (half-plane) type-� pinch-point weight, and it bears the same
partition function interpretation as ϒ(�|ς ), but with the boundary loops having fugacity 1. We
will elaborate on the relation between an FFBC event and the number of boundary loops in
each of its samples further in section 3.2.

The bulk 2s-leg and boundary s-leg operators �s and ψs respectively are primary operators
of a boundary CFT in the upper half-plane. The highest-weight vector of their Verma modules
respectively belongs to the (0, s) and (1, s + 1) (resp. (s, 0) and (s + 1, 1)) positions of the

6
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Kac table in the dense phase (resp. dilute phase) of SLEκ [19]. The Kac weights associated
with these positions are given by [15]

hr,s(κ) = 1 − c(κ)

96

⎡
⎣(r + s + (r − s)

√
25 − c(κ)

1 − c(κ)

)2

− 4

⎤
⎦

= 1

16κ

{
(κr − 4s)2 − (κ − 4)2 κ > 4

(κs − 4r)2 − (κ − 4)2 κ � 4
.

(11)

Thus, the conformal weights �s and θs of the boundary one-leg operator and the bulk 2s-leg
operator in either phase are respectively

�s = 16s2 − (κ − 4)2

16κ
, θs = s(2s + 4 − κ)

2κ
. (12)

CFT translates the reducibility of the Verma module associated with each boundary one-
leg operator into the following semi-elliptic system of 2N PDEs that govern the correlation
function (7), or equivalently, the pinch-point weight 
�:[
κ

4
∂2

i +
2N∑
j �=i

(
∂ j

x j − xi
− θ1

(x j − xi)2

)
+ ∂z

z − xi
− �s

(z − xi)2
+ ∂z̄

z̄ − xi
− �s

(z̄ − xi)2

]

� = 0,

i ∈ {1, . . . , 2N}. (13)

The domain of 
� is such that xi < x j when i < j and z and z̄ are in the upper and
lower half-planes H and H

∗ respectively. We treat z and z̄ as independent holomorphic and
antiholomorphic variables until the very end of our calculations, where we set z̄ = z∗.
(Throughout this paper, ‘z∗’ denotes the complex conjugate of z.) In addition, the three
conformal Ward identities ensure that 
� is conformally covariant such that each boundary
point xi has scaling weight θ1, and the bulk point z and its image point z̄ have holomorphic
weight �s: [

∂z + ∂z̄ +
2N∑
i=1

∂xi

]

� = 0, (14)

[
z∂z + z̄∂z̄ + 2�s +

2N∑
i=1

(xi∂xi + θ1)

]

� = 0, (15)

[
z2∂z + z̄2∂z̄ + 2�s(z + z̄) +

2N∑
i=1

(
x2

i ∂xi + 2θ1xi
)]


� = 0. (16)

The Ward identities restrict 
� to a conformally covariant ansatz, which may be chosen to be


�(x1, . . . , x2N; z, z̄) = |z − z̄|−2�s

N∏
i=1

(x2i − x2i−1)
−2θ1 G(η2, . . . , η2N−2;μ, ν), (17)

where {η2, . . . , η2N−2, μ, ν} is a maximal set of independent cross-ratios that can be formed
from the points x1, . . . , x2N, z and z̄, and where G is an unspecified function differentiable in
each independent variable. We choose

ηi : = (xi − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − xi)
,

μ : = (z − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − z)
, ν := (z̄ − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − z̄)
. (18)

7
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x1 x2

z

Figure 5. The one-pinch-point configuration in the upper half-plane. We note that the limits
x2 → x1 and z → x ∈ R \ {x1, x2} each generate a boundary two-leg operator to leading order.

This ansatz reduces the number of variables in the problem from 2N +2 to 2N −1. A standard
approach that takes advantage of this reduction is to transform (13) into a system of PDEs
governing x2θ1

2N 
�, and then to take the limit

{x1, x2, . . . x2N−2, x2N−1, x2N, z, z̄} → {0, η2, . . . , η2N−2, 1,∞, μ, ν}. (19)

This gives a system of 2N PDEs governing the unknown function G from which we can glean
information, ideally, exact solutions. Because we mainly consider the cases N = 1, 2 and 3 in
this paper, we use the following notation throughout:

η := η2, τ := η3, σ := η4. (20)

We can explicitly solve (13)–(16) in the case s = N = 1 (i.e. the two-sided polygon). In
this one-pinch-point event, a boundary arc γ connecting x1 with x2 passes some very small
distance ε from the specified bulk point z ∈ H. We denote the corresponding pinch-point
weight by 
12. Substituting the ansatz


12(x1, x2; z, z̄) = |z − z̄|−2�1 (x2 − x1)
−2θ1 G

(
(x1 − z)(x2 − z̄)

(x1 − z̄)(x2 − z)

)
(21)

(slightly modified from (17)) into (13) yields a second-order, linear, homogeneous differential
equation in G. The general solution is

F(x1, x2; z, z̄) = (x2 − x1)
−2θ1+θ2 |z − z̄|−2�1+θ2

|x1 − z|8/κ−1|x2 − z|8/κ−1

×
[

c1 + c2β

(
4

κ
, 1 − 8

κ

∣∣∣∣ (x1 − z)(x2 − z̄)

(x1 − z̄)(x2 − z)

)]
, (22)

where β is the incomplete beta function, c1 and c2 are arbitrary real constants, and the
weights θ1, θ2 and �1 are given in (12). We argue that c2 = 0 in our application by sending
z → x ∈ R \ {x1, x2}. Because the boundary arc γ is conditioned to touch z, γ will touch the
real axis at x in this limit, and two boundary arcs will emanate from x. Thus, the bulk operator
�1(z) must fuse with its image �1(z̄) to create a boundary two-leg operator ψ2(x) to leading
order. Or instead we send x2 → x1. Then in this limit, the two endpoints of γ touch at x1,
and the boundary operators ψ1(x1) and ψ1(x2) fuse to create ψ2(x1) to leading order as well
(figure 5). In both cases, the cross-ratio υ in the argument of the function G in (21) approaches
1. Because

β(a, b|υ) ∼
υ→1

−b−1(1 − υ)b if b < 0, (23)

and because b = −θ2 < 0 for κ < 8 (12), we see that

F(x1, x2; z, z̄) ∼
υ→1

(x2 − x1)
−2θ1+θ2 |z − z̄|−2�1+θ2

|x1 − z|8/κ−1|x2 − z|8/κ−1

[
c1 + c2

θ2

(
(x2 − x1)(z − z̄)

(x1 − z̄)(x2 − z)

)−θ2
]

. (24)

8
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To ensure that the bulk-image or boundary–boundary fusion has the two-leg channel at leading
order, the second term in the brackets must be absent. Thus, c2 = 0, and we find the one-
pinch-point weight for an SLEκ connecting the real points x1 and x2:


12(x1, x2; z, z̄) = (x2 − x1)
2/κ |z − z̄|(8−κ)2/8κ

|x1 − z|8/κ−1|x2 − z|8/κ−1
. (25)

If we put x1 = 0 and x2 = ∞ as in the usual setup for SLEκ , then we have

lim
x2→∞ x2θ1

2 
12(0, x2; z, z̄) = |z − z̄|κ/8−1 sin arg(z)8/κ−1 (26)

� ε−2�1P{B(ε, z) ∩ γ �= ∅} κ ∈ (0, 8), (27)

where P{B(ε, z) ∩ γ �= ∅} is the probability that γ intersects a ball B(ε, z) centered at z ∈ H

and of small radius ε. Equation (27) is rigorously proven in [9]. This rigorous result is supposed
by physicists to be stronger. Namely, it is expected to be

P{B(ε, z) ∩ γ �= ∅} ∼
ε→0

Cε2�1 |z − z̄|κ/8−1 sin arg(z)8/κ−1 κ ∈ (0, 8), (28)

for some constant C. This is equivalent to the prediction (4) when N = 1. We note that �1 > 0
for κ < 8, so this probability goes to zero as ε → 0, as it must. Below, we will compute this
pinch-point weight with another method.

As we observed in this example, it appears to be generally true that the set of pinch-point
densities span a proper subspace of the solution space of the system (13)–(16). This follows
from the result (A.23) in the appendix.

The system (13)–(16) is very difficult to solve directly when N > 1, but fortunately the
Coulomb gas formalism [23] provides a tractable approach to constructing explicit solutions.
To this end, we write a chiral operator representation for (8). That is, we represent a primary
field of holomorphic weight h and antiholomorphic weight zero by a chiral operator Vα(z)
of charge α. A primary field, this chiral operator is defined to be the normal ordering of a
exp[i

√
2αϕ(z)] with ϕ(z) the holomorphic part of a massless free boson, and its holomorphic

weight is h = α(α − 2α0). Here, 2α0 is the background charge, and it equals α+ + α− with
the screening charges α± given in (29) later. Only chiral operators of charge α or 2α0 − α

have equal holomorphic weights, so we call these two charges conjugates. The two conjugate
charges α±

r,s associated with the Kac weight hr,s are

α±
r,s = 1 ± r

2
α+ + 1 ± s

2
α−, α± = ±

{
(
√

κ/2)± κ > 4
(
√

κ/2)∓ κ � 4
, (29)

and we let V ±
r,s(z) be a chiral operator of charge α±

r,s. Adopting dense phase (i.e. κ > 4) notation
conventions, we represent ψ1(xi) by the chiral operator V −

1,2(xi), and we represent �s(z, z̄) by
the vertex operator V +

0,s(z)V̄
+

0,s(z̄). The correlation function (8) now has total charge

2Nα−
1,2 + 2α+

0,s = 2α0 + (s − N)α−. (30)

We wish for this total charge to equal 2α0 in order to satisfy the neutrality condition. This
is necessary in order for the correlation function to satisfy the conformal Ward identities
(14)–(16). We see that the neutrality condition is presently satisfied only when N = s.

We momentarily restrict our attention to the case s = N, where the correlation function
is neutral. Here, we find an explicit, algebraic formula for the upper half-plane N-pinch-point
weight in a 2N-sided polygon:


N-pinch point = 〈V −
1,2(x1) . . .V −

1,2(x2N )V +
0,s(z)V

+
0,s(z̄)V−(u1) . . .V−(uN−s)〉

= |z − z̄|(4N+4−κ)2/8κ

2N∏
i< j

(x j − xi)
2/κ

2N∏
i=1

|z − xi|1−4(N+1)/κ . (31)

9
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x1 x2 x1 x2

= 4eπi(β1−β2) sinπβ1 sinπβ2

Figure 6. The Pochhammer contour entwining the points x1 and x2. If the numbers β1 and β2,
where e2π iβ1 and e2π iβ2 are the monodromy factors associated with x1 and x2 respectively, are
greater than negative one, then a Pochhammer contour may be replaced with the simple contour
shown on the right.

The bulk point z is connected to all boundary points xi hosting the BCCs via the N boundary
arcs that touch at z. We note that (31) is identical to (25) when N = 1, as it must be. This result
was also computed in [24, 25] by using other methods.

Next, we consider the cases with s < N. In order for the total charge (30) of the correlation
function to equal 2α0, we must insert N − s copies of the Q− screening operator, leading to
the following modified (2N + 2)-point function:∮

�1

. . .

∮
�N−s

〈
V −

1,2(x1) . . .V −
1,2(x2N )V +

0,s(z)V
+

0,s(z̄)V−(u1) . . .V−(uN−s)
〉
du1 . . . duN−s. (32)

After including a useful prefactor discussed later, we find that (32) is given by(
N−s∏
m=1

n(κ)�(2 − 8/κ)

4 exp π i(β1m − β2m) sin πβ1m sin πβ2m�(1 − 4/κ)2

)
|z − z̄|(κ−4s−4)2/8κ

×
⎛
⎝ 2N∏

i< j

(x j − xi)
2/κ

⎞
⎠(

2N∏
i=1

|z − xi|(κ−4s−4)/κ

)
(33)

×
∮

�1

. . .

∮
�N−s

(
N−s∏
p<q

(up − uq)
8/κ

)(
2N∏

k=1

N−s∏
l=1

(xk − ul )
−4/κ

)

×
(

N−s∏
m=1

(z − um)(4s+4−κ)/κ (z̄ − um)(4s+4−κ)/κ

)
du1 . . . duN−s. (33)

Here, e2π iβ1m and e2π iβ2m are the monodromy factors (relative to um) of the two branch points
entwined by the mth contour, and n(κ) is the O(n) model loop fugacity (9). We choose the
branch of the logarithm with arg z ∈ [−π, π ) for all complex z so each branch cut parallels
the real axis. Every pinch-point weight 
� will be some linear combination of functions of the
form (33), with each term using a different set of contours {�m}. A proof that (33) solves the
system (13–16) is given in the appendix.

What remains is to determine a collection of closed, non-intersecting integration contours
{�m}N−s

m=1 appropriate for a particular type-� pinch-point event. The simplest closed contour
along which an integration is nonzero is a closed Pochhammer contour entwining only a pair
among the branch points x1, . . . , x2N, z and z̄ of the integrand, as shown in figure 6. Throughout
this paper, we take each �m to be such a contour.

Now we explain convenience of the prefactor in (33). A first reason involves the limit
xi+1 → xi that sends the 2N-sided polygon to a (2N −2)-sided polygon. After multiplying the
half-plane weight 
� by (xi+1 − xi)

2θ1 and taking this limit, this product goes to either zero
or an s-pinch-point weight for the half-plane conformal image of a (2N − 2)-sided polygon
with vertices sent to x1, . . . , xi−1, xi+2, . . . , x2N . Meanwhile, one can show that (33) goes to
either zero or the same expression except with all factors containing xi, xi+1 and uN−s omitted,

10
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the uN−s integration omitted, a factor of β(−4/κ,−4/κ)−1 = �(2 − 8/κ)/�(1 − 4/κ)2 (with
β(a, b) the Euler beta function) and [4 sin2(4π/κ)]−1 omitted, and possibly a fugacity factor
n(κ) omitted. So to within a factor of n(κ), we retain the same normalization as that for the
case of the 2N-sided polygon with N �→ N − 1.

A second reason involves the cases κ = 4/a for some positive integer a. At these special
values, all of the powers in the integrand of (33) are integers. As a result, the mth Pochhammer
contour entwining two branch points, now with their respective monodromy factors e2π iβ1m

and e2π iβ2m equaling one, disintegrates into two pairs of oppositely-oriented loops. One pair
surrounds the first point, the other pair surrounds the second, and each integration thus gives
zero. More precisely, one can show that the (N − s)-fold integral in (33) is O((κ − 4/a)N−s)

as κ → 4/a with a ∈ Z
+. Meanwhile, in this same limit, the complete prefactor (with each

β1m and β2m equaling −4/κ or 4(s + 1)/κ − 1) is

N−s∏
m=1

(
− cos(4π/κ)�(2 − 8/κ)

2 sin πβ1m sin πβ2m �(1 − 4/κ)2

)
= O((κ − 4/a)−(N−s)). (34)

Therefore, the product of the prefactor (34) with the integral in (33) is finite and nonzero in the
limit. We note that n(κ)�(2 − 8/κ) is also finite when κ → 8/a with a an odd integer greater
than 1. These two cases cover all of the singularities of the gamma functions appearing in (34)
for κ ∈ (0, 8).

A third reason involves simplifying the contours. In some cases, a Pochhammer contour
entwining two branch points may be replaced by a simple curve that starts and ends at the
those points (figure 6) [26]. Each branch point has some monodromy e2π iβ relative to each
integration variable: for each xi, β = −4/κ , and for z and z̄, β = 4(s + 1)/κ − 1. The
former power is greater than negative one only when κ > 4, so only then can we replace a
Pochhammer contour entwining an xi by a simple curve. Otherwise, such a replacement yields
a divergent integral. The latter power is greater than negative one for all κ ∈ (0, 8), so any
Pochhammer contour entwining z with z̄ can be replaced by a simple curve. Replacement of
the mth contour by a simple curve cancels the factor of 4 exp π i(β1m −β2m) sin πβ1m sin πβ2m

in the denominator of (33). Throughout this paper, we will explicitly use simple curves in
place of Pochhammer contours and omit these factors. If one of these replacements creates
a divergent integral, then we implicitly revert back to using a Pochhammer contour for that
integral, and we include the omitted factor.

3. Calculation of pinch-point densities

In this section, we calculate the explicit formula for the type-� s-pinch-point density ρP
(�|ς )

conditioned on the FFBC event ς for various s-pinch-point events � for either a rectangle
R (N = 2) or for a hexagon H (N = 3). We proceed in the four steps enumerated in the
following list.

(1) We compute the half-plane pinch-point weight 
� for the pinch-point event � of interest.
(2) We construct from 
� the universal partition function ϒ(�|ς ) that sums exclusively over

the event � ∩ ς .
(3) We transform ϒ(�|ς ) into the universal partition function ϒP

(�|ς ) with the appropriate
polygon P for its domain.

(4) With P = R or H, we divide ϒP
(�|ς ) by the universal partition function ϒP

ς that sums
exclusively over the FFBC event ς to obtain the formula for the pinch-point density ρP

(�|ς )

in P .

11
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3.1. Half-plane pinch-point weights

3.1.1. The case N = 2, s = 2 and N = 3, s = 3. First, we consider the two-pinch-point
weight 
1234 for N = 2 and the three-pinch-point weight 
123456 for N = 3. The subscripts
on each weight indicate the indices of the points xi that are connected to the pinch point by
a boundary arc, and in this case, these are all of the available vertices. The weights are given
by (31) with N = 2 and N = 3 respectively, and both may be expressed in the covariant form
(17), which we will find convenient later. We find that the half-plane (s = N = 2)-pinch-point
weight is


1234 = [(x2 − x1)(x4 − x3)]
1−6/κ |z − z̄|κ/8−6/κ−1η8/κ−1(1 − η)2/κ

× |μ − ν|24/κ−2[μν(η − μ)(η − ν)(1 − μ)(1 − ν)]1/2−6/κ , (35)

and the half-plane (s = N = 3)-pinch-point weight is


123456 = [(x2 − x1)(x4 − x3)(x6 − x5)]
1−6/κ |z − z̄|κ/8−16/κ−1

× [η(σ − τ )]8/κ − 1[τσ (τ − η)(σ − η)(1 − η)(1 − τ )(1 − σ )]2/κ |μ− ν|48/κ − 3

× [μν(η − μ)(η − ν)(τ − μ)(τ − ν)(σ − μ)(σ − ν)(1 − μ)(1 − ν)]1/2 − 8/κ ,

(36)

where the cross-ratios η, τ, σ, μ and ν are defined in (18), (20). The correct normalization of
these pinch-point weights depends on bulk-boundary fusion coefficients, but because it is not
needed for our purposes, we ignore it in this paper.

Before we calculate s-pinch-point weights for s < N, we comment on the normalizations
of these weights too. When s < N, virtually all samples in the s-pinch-point event � will
have at least one interval (xi, xi+1) with its endpoints mutually connected by a boundary arc
that does not pass near the pinch-point. The fugacity of this boundary arc is one because
we are working with pinch-point weights, so when we send xi+1 → xi (after multiplying by
(xi+1 − xi)

2θ1 first), we must recover an s-pinch-point weight (independent of xi) in a system
with BCCs at the remaining 2(N − 1) points on the real axis. Continuing this process until
no such intervals remain, we eventually reach an s-pinch-point weight in a system with BCCs
at the remaining 2s points on the real axis. The weight of this event is given by (31) with
N = s. Therefore, the s-pinch-point weights with s < N are normalized so they equal the
s-pinch-point weight (31) with N �→ s after this sequence of N − s limits is taken.

3.1.2. The case N = 2, s = 1. Next, we consider one-pinch-point events with N = 2
boundary arcs. Here, one boundary arc γ1 connects the points xi and x j with a bulk point
z ∈ H, and the other boundary arc γ2 connects the remaining points xk and xl . The weight

i j:kl of this event is given by (33) with N = 2 and s = 1.

The formula for 
i j:kl has a single contour integral �i j:kl , and the contour is chosen so the
chiral operators exhibit specific fusion rules that depend on which vertices are connected to z
through γ1. For example, we consider 
23:41 (figure 7). If we let the bulk point z approach a
boundary point x in the segment (x1, x2), then γ1 must touch (x1, x2) at x in this limit, which
is equivalent to placing a boundary two-leg operator ψ2(x) there. Therefore the bulk operator
�1(z) must fuse with its image �1(z̄) to give ψ2(x) to leading order. Now, when the two chiral
operators V +

0,1(z) and V +
0,1(z̄) fuse, their product is a boundary chiral operator with charge

2α+
0,1 = α+

1,3, which carries the weight θ2 of a boundary two-leg operator as required (12). The
same is true of the intervals (x2, x3) and (x3, x4).

Next, we let the bulk point z approach a boundary point x in the interval (x4, x1). Because
γ2 joins x1 with x4, topological considerations show that both γ1 and γ2 must touch (x4, x1) at
x in this limit (figure 7). Therefore the leading operator of the ensuing bulk-image fusion must

12
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x1 x2 x3 x4 x1 x2 x3 x4

zz

Figure 7. The pinch-point configuration for 
23:41. The left (resp. right) illustration shows that
a boundary two-leg (resp. four-leg) operator is generated to leading order when z approaches the
intervals (x1, x2), (x2, x3) and (x3, x4) (resp. the interval (x4, x1)).

be a boundary four-leg operator. Previously, we saw that the total charge of the bulk-image
pair equals that of a boundary two-leg operator. But if we add the screening charge α−, then
this total charge becomes 2α+

0,1 +α− = α+
1,5, which is that of a chiral operator with the desired

boundary four-leg weight θ4 (12). The screening charge is pulled in with the bulk-image fusion
only if �23:41 contracts to a point in the process. Thus, �23:41 must be a simple curve starting
at z̄ and ending at z.

In order for 
23:41 to be a continuous function of z and z̄, each point of �23:41 must reside
on the same Riemann sheet of the integrand, so �23:41 can only cross the real axis through a
specific segment (xi, xi+1). (Here, x5 := x1.) This segment must be (x4, x1) in order to ensure
that �23:41 contracts to a point when we let z and z̄ approach a point in (x4, x1). This choice
creates another desired effect. In the event of a bulk-image fusion over (x1, x4)\{x2, x3}, �23:41

does not contract to a point, the screening charge is not drawn in, and an undesired boundary
four-leg operator in (x1, x4), which would contradict the assertions of the previous paragraph,
is not produced.

By cyclically permuting the indices, we find four one-pinch-point weights:
{
12:34,
23:41,
34:12,
41:23}. (37)

Each weight is given by (33) with N = 2, s = 1, and where �i j:kl is a simple curve connecting
z with z̄ and crossing the real axis only through (xk, xl ). In the formula for each weight, we
order the differences in the factors of the integrand so the branch cuts do not intersect �i j:kl

and the integrand restricted to �i j:kl is therefore a continuous function of x1, . . . , x4, z, z̄, and
u := u1.

It is useful to decompose these one-pinch-point weights (37) into a linear combination of
the integrals (with x5 := z and x6 := z̄)

Ii := β(−4/κ,−4/κ)−1
∫ xi

xi−1

duN

⎡
⎣ 4∏

j=1

(x j − u)−4/κ (x5 − u)8/κ−1(x6 − u)8/κ−1

⎤
⎦

i ∈ {1, . . . , 6}, (38)

in order to explicitly show that these weights are real (or at least share a common phase, as
they must be for physical reasons) and to express them in terms of Lauricella functions. The
operator ‘N ’ orders the differences in the factors of the integrand so Ii is real. (I1 is a sum of
integrations from x0 := x6 to ∞ and from −∞ to x1.) Because arg(z) ∈ [−π, π ) for z ∈ C,
the integrand has a branch cut that starts at each x j with j < i (resp. j � i) and points leftward
(resp. rightward) along the real axis. For simplicity, we momentarily suppose that x5 and x6 are
real as we decompose each one-pinch-point weight into a linear combination of the various Ii

times algebraic factors. For example, we can use figure 8 to find the decomposition


12:34 = A

[
2i sin

(
4π

κ

)
I5 + e4π i/κ I6

]
(x6 − x5)

κ/8+8/κ−2

×
4∏

i< j

(x j − xi)
2/κ

4∏
i=1

(x5 − xi)
1/2−4/κ (x6 − xi)

1/2−4/κ . (39)

13



J. Phys. A: Math. Theor. 45 (2012) 505002 S M Flores et al

x1 x2 x3 x4 x1 x2 x3 x4 x5 x6

z

z̄

Figure 8. The contour used for the one-pinch-point weight 
12:34. To facilitate calculation, we
at times place z and z̄ at adjacent locations x5, x6 respectively on the real axis as in the right
illustration. (In each figure of this paper, a blue (resp. orange, resp. red) circle marks a point of
charge α−

1,2 (resp. α+
0,s, resp. α−) in the dense phase.)

The proportionality constant A will be determined later. Now, to show that the one-pinch-point
weights have a constant phase that may be adjusted to unity, we seek a basis of integrals
for the span of {I1, . . . , I6} that are real when x5 = z and x6 = z̄. Integrating the screening
charge along a contour parallel to and immediately above (resp. below) the real axis gives the
− (resp. +) branch of the linear relation

I1 + e±4π i/κ I2 + e±8π i/κ I3 + e±12π i/κ I4 + e±16π i/κ I5 − e±8π i/κ I6 = 0, (40)

which allows us to write I5 and I6 in terms of I1, . . . , I4. Then, because the integral

I1 := β(−4/κ,−4/κ)−1
∫ x1

x4

du N

⎡
⎣(x5 − u)8/κ−1(x6 − u)8/κ−1

4∏
j=1

(u − xi)
−4/κ

⎤
⎦

= I5 − e8π i/κ I6 + I1 (41)

is real when x5 = z and x6 = z̄, we find a real basis {I1, I2 := I2, I3 := I3, I4 := I4} for the
span of {Ii}6

i=1. We anticipate that the coefficients found from decomposing the 
i j:kl over this
basis will share a common phase.

However, it is more useful for our purposes (of calculating one-pinch-point weights for
the hexagon later) to compute this decomposition via a different approach in which the four
integrals Ii arise naturally as conformal blocks. We consider the one-pinch-point weight

12(x1, x2; z, z̄), given by 〈ψ1(x1)[2]ψ1(x2)�1(z)[2]�1(z̄)〉. Here, the bracketed subscript
between a pair of primary fields indicates the unique fusion channel propagating between
that pair, so ‘[s]’ indicates the s-leg channel when s > 0 and the identity channel when s = 0.
To increase N from 1 to 2, we insert the charge-neutral collection

∫ x4

x3
duV −

1,2(x3)V
−

1,2(x4)V−(u)

with x2 < x3 < x4 into the chiral operator representation of this four-point function. We find

〈ψ1(x1)[2]ψ1(x2)ψ1(x3)[0]ψ1(x4)�1(z)[2]�1(z̄)〉 = nJ × I4, (42)

where the function J is given by (33) with N = 2 and s = 1:

J = |z − z̄|κ/8+8/κ−2
4∏

i< j

(x j − xi)
2/κ

4∏
i=1

|z − xi|1−8/κ . (43)

The new pair of boundary one-leg operators at x3 and x4 fuse through only the identity
channel because the screening charge is integrated along a simple curve connecting x3 with
x4. The original boundary one-leg operators at x1 and x2 still fuse through only the two-leg
channel. Three of the four one-pinch-point events (i j:kl) are consistent with these fusion rules,
(41:23), (12:34) and (23:41), so (42) must be a linear combination of the pinch-point weights

12:34,
41:23 and 
23:41. Indeed, this linear combination is (figure 9)


41:23 + n
12:34 + 
23:41 = nJ × I4. (44)

As usual, n is the loop fugacity (9) of the O(n) model.

14
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= n

++

x1 x2 x3 x4

z

Figure 9. The decomposition of (42) into a linear combination of the weights 
12:34, 
41:23 and

23:41 as given in (44).

The coefficients of the linear combination on the left side of (44) are found in the following
way. First, to find the coefficient of 
12:34, we send x4 → x3 on both sides of (44). (We always
implicitly multiply by (xi+1 − xi)

2θ1 before sending xi+1 → xi so the limit exists.) Then

41:23,
23:41 → 0, 
12:34 → 
12 (25) and nJ × I4 → n
12. This justifies the coefficient of
n that dresses 
12:34 in (44). Next, to find the coefficient of 
41:23, we send x3 → x2. On the
left side of (44), 
12:34,
23:41 → 0 and 
41:23 → 
14, or really 
12 with x2 �→ x4. On the
right side, we use (40) to write nJ × I4 as a linear combination of nJ × I1, nJ × I3, nJ × I5

and nJ × I6. (These are the four nJ × Ii that have either both or neither bounds of integration
among {x2, x3}. Again, x5 = z and x6 = z̄.) All of the integrals in this combination except
nJ × I3 vanish in this limit, and nJ × I3 goes to n
12. Because nJ × I3 carries a coefficient of
n−1 in this linear combination, the right side of (44) becomes 
12 with x2 �→ x4. This justifies
the coefficient of one that dresses 
41:23 in (44). The same reasoning gives the coefficient of
1 for 
23:41 in (44).

Cyclically permuting the indices in (44) gives three more equations relating the four one-
pinch-point weights (37) to the four integrals Ii. Upon inverting these equations to isolate the
weights, we find


i j:kl = J

[
2 I j + (n2 − 2) Il − n Ii − n Ik

n2 − 4

]
. (45)

For each index i, we can multiply J × Ii by (x2 − x1)
6/κ−1(x4 − x3)

6/κ−1|z − z̄|1−κ/8 to arrive
with a function Gi that depends only on cross-ratios η,μ and ν, according to (17). After
making the replacement (x1, x2, x3, x4, z, z̄) �→ (0, η, 1,∞, μ, ν), we find

G1(η, μ, ν) = (η|μ − ν|)8/κ−1(1 − η)2/κ

(μν(η − μ)(η − ν)(1 − μ)(1 − ν))4/κ−1/2

×FD

(
1 − 4

κ
; 4

κ
, 1 − 8

κ
, 1 − 8

κ
; 2 − 8

κ

∣∣∣∣1 − η, 1 − μ, 1 − ν

)
, (46)

G2(η, μ, ν) = (μν|μ − ν|2)4/κ−1/2(1 − η)2/κ

((η − μ)(η − ν)(1 − μ)(1 − ν))4/κ−1/2

× FD

(
1 − 4

κ
; 4

κ
, 1 − 8

κ
, 1 − 8

κ
; 2 − 8

κ

∣∣∣∣η,
η

μ
,
η

ν

)
, (47)

G3(η, μ, ν) = (η2(1 − μ)(1 − ν)|μ − ν|2)4/κ−1/2

(μν(η − μ)(η − ν))4/κ−1/2(1 − η)6/κ−1

× FD

(
1 − 4

κ
; 4

κ
, 1 − 8

κ
, 1 − 8

κ
; 2 − 8

κ

∣∣∣∣1 − η,
1 − η

1 − μ
,

1 − η

1 − ν

)
, (48)

G4(η, μ, ν) = (η|μ − ν|)8/κ−1(1 − η)2/κ

(μν(η − μ)(η − ν)(1 − μ)(1 − ν))4/κ−1/2

× FD

(
1 − 4

κ
; 4

κ
, 1 − 8

κ
, 1 − 8

κ
; 2 − 8

κ

∣∣∣∣η,μ, ν

)
. (49)
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Figure 10. The decomposition of (54) into a linear combination of the weights 
6123:45, 
1234:56
and 
2345:61, as given in (56).

We have expressed each Gi in terms of the Lauricella function FD, defined as [27]

FD(a, b1, . . . , bm, c | x1, . . . , xm) := �(a)

�(c)�(c − a)

×
∫ 1

0
ta−1(1 − t)c−a−1(1 − x1t)−b1 . . . (1 − xmt)−bm dt, (50)

by writing the integration variable u of Ii as the following Möbius transformation of the
integration variable t in (50):

i = 1 : u = t − 1

t
, i = 2 : u = ηt,

i = 3 : u = 1 − (1 − η)t, i = 4 : u = 1

t
.

(51)

These transformations are chosen so each FD has m = 3 arguments with the first argument
between 0 and 1 and the last two arguments being complex conjugates of each other. These
choices ensure that each FD is real. Thus, the half-plane pinch-point weights 
i j:kl , expressed
in the covariant form (17), are given by


i j:kl = [(x2 − x1)(x4 − x3)]
1−6/κ |z − z̄|κ/8−1

[
2Gj + (n2 − 2)Gl − nGi − nGk

n2 − 4

]
(η, μ, ν),

(52)

with η,μ, ν and n defined in (18), (20), (9) respectively. We note that our normalization in
(52) ensures that (xl − xk)

2θ1
i j:kl → 
i j (25) as xl → xk. Now, if we let κ approach 4/a with
a ∈ Z

+ so n → ±2, then the limit 
i j remains finite. Thus (52) must be finite when n = ±2,
although showing this explicitly appears to be difficult. Comparing (52) with (39), we find
that A = −in/

√
4 − n2.

3.1.3. The case N = 3, s = 2. Next, we consider two-pinch-point events with N = 3
boundary arcs. Here, two boundary arcs γ1 and γ2, with endpoints respectively at xi, x j ∈ R

and xk, xl ∈ R, touch at a bulk point z, and the remaining boundary arc γ3 has endpoints at
xm and xn. We note that this setup restricts the allowed boundary arc connectivities to those
in which γ3 does not separate γ1 from γ2, so xm and xn must be either adjacent or among
{x6, x1}. The weight 
i jkl:mn of this event is given by (33) with N = 3 and s = 2. By cyclically
permuting the indices, we find six such two-pinch-point configurations.

The formula for 
i jkl:mn contains a single contour integral �i jkl:mn that is determined via
the same reasoning that was used for the case N = 2 and s = 1 previously. We summarize
the argument. The two-pinch-point event is conditioned by the insertion of a bulk four-leg
operator �2(z). Topological considerations (as can be understood upon examining figure 10)
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show that fusing this operator with its image across any interval (xa, xb) with (a, b) �= (m, n)

(resp. (a, b) = (m, n)) must, to leading order, give rise to a boundary four-leg (resp. six-leg)
operator ψ4 (resp. ψ6). Because 2α+

0,2 = α+
1,5 is the charge of a chiral operator with the

boundary four-leg weight θ4, this requirement is already satisfied when (a, b) �= (m, n). If
�i jkl:mn is a simple curve with endpoints at z and z̄ and crossing the real axis only through
(xm, xn), then the screening charge is drawn into a bulk-image fusion across this interval,
shifting the product to a chiral operator with net charge 2α+

0,2 + α− = α+
1,7. This operator has

the desired boundary six-leg weight θ6 (12).
To express the two-pinch-point weights in terms of Lauricella functions, we write them

as linear combinations of the six real integrals

Ki := β(−4/κ,−4/κ)−1
∫ xi

xi−1

duN

⎡
⎣(z − u)12/κ−1(z̄ − u)12/κ−1

6∏
j=1

(u − x j)
−4/κ

⎤
⎦

i = 1, . . . , 6. (53)

(As before, the operator ‘N ’ orders the differences in the factors of the integrand so the
integrand is real, and K1 is integrated from x0 := x6 to ∞ and then from −∞ to x1.)
To proceed, we consider the two-pinch-point weight 
1234. Inserting the charge-neutral
collection

∫ x6

x5
duV −

1,2(x5)V
−

1,2(x6)V−(u) into the chiral representation of its six-point function
〈ψ1(x1)[2]ψ1(x2)ψ1(x3)[2]ψ1(x4)�1(z)[4]�1(z̄)〉 with x4 < x5 < x6, we get the conformal
block

〈ψ1(x1)[2]ψ1(x2)ψ1(x3)[2]ψ1(x4)ψ1(x5)[0]ψ1(x6)�1(z)[4]�1(z̄)〉 = nLK6, (54)

where the pre-factor L is given by (33) with N = 3 and s = 2:

L := |z − z̄|κ/8+18/κ−3
6∏

i< j

(x j − xi)
2/κ

6∏
i=1

|z − xi|1−12/κ . (55)

After following the reasoning that led to (44), we find (figure 10)


6123:45 + n
1234:56 + 
2345:61 = nL × K6. (56)

Another five equations relating the six weights with the six integrals Ki is found by cyclically
permuting the indices in (56). These equations may be simultaneously solved to give


i jkl:mn = nL

[
(2 − n2)(Ki + Km) + n(K j + Kl ) − 2Kk + (n3 − 3n)Kn

(n2 − 4)(n2 − 1)

]
. (57)

(We note the present double-use of n as an index and as the loop fugacity of the O(n) model.)
To finish, we seek a form for the weights that expresses the Ki in terms of Lauricella functions
and exhibits the conformally covariant ansatz of (17). To this end, we define the function

Hi := [(x2 − x1)(x4 − x3)(x6 − x5)]
2θ1 |z − z̄|2�2 L × Ki (58)

= [(x2 − x1)(x4 − x3)]
6/κ−1|z − z̄|1+6/κ−κ/8L′ × K′

i, (59)

with L and Ki adjusted to respective quantities L′ and K′
i that are finite in the limit x6 → ∞:

L′ := (x6 − x5)
2/κ−1L, K′

i := (x6 − x5)
4/κKi. (60)

According to (17), Hi is strictly a function of the cross-ratios η, τ, σ, μ and ν. After making
the replacement (x1, x2, x3, x4, x5, x6, z, z̄) �→ (0, η, ρ, σ, 1,∞, μ, ν), we find

Hi(η, τ, σ, μ, ν) = K′
i(η, τ, σ, μ, ν)

×[η(σ − τ )]8/κ−1[τσ (τ − η)(σ − η)(1 − η)(1 − τ )(1 − σ )]2/κ |μ − ν|24/κ−2

×[μν(μ − η)(ν − η)(μ − τ )(ν − τ )(μ − σ )(ν − σ )(μ − 1)(ν − 1)]1/2−6/κ , (61)
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with each K′
i(η, τ, σ, μ, ν) := K′

i(0, η, τ, σ, 1,∞;μ, ν) finite and equaling a Lauricella
function FD times algebraic prefactors:

K′
1(η, τ, σ, μ, ν) ∝ FD({χ j} | 1 − η, 1 − τ, 1 − σ, 1 − μ, 1 − ν), (62)

K′
2(η, τ, σ, μ, ν) ∝ η1−8/κτ−4/κσ−4/κμ12/κ−1ν12/κ−1FD

(
{χ j}

∣∣∣∣η,
η

τ
,

η

σ
,

η

μ
,
η

ν

)
, (63)

K′
3(η, τ, σ, μ, ν) ∝ η1−8/κτ 4/κ−1(τ − η)1−8/κ (σ − η)−4/κ

× (1 − η)−4/κ (μ − η)12/κ−1(ν − η)12/κ−1

× FD

(
{χ j}

∣∣∣∣1 − η

τ
,
σ (τ − η)

τ (σ − η)
,

τ − η

τ (1 − η)
,
μ(τ − η)

τ (μ − η)
,
ν(τ − η)

τ (ν − η)

)
, (64)

K′
4(η, τ, σ, μ, ν) ∝ τ−4/κ (τ − η)1−8/κ (σ − η)4/κ−1(σ − τ )1−8/κ (1 − τ )−4/κ

× (μ − τ )12/κ−1(ν − τ )12/κ−1FD

(
{χ j}

∣∣∣∣σ − τ

σ − η
,
η(σ − τ )

τ (σ − η)
,

× (1 − η)(σ − τ )

(1 − τ )(σ − η)
,
(μ − η)(σ − τ )

(μ − τ )(σ − η)
,
(ν − η)(σ − τ )

(ν − τ )(σ − η)

)
, (65)

K′
5(η, τ, σ, μ, ν) ∝ (1 − η)−4/κ (1 − τ )−4/κ (1 − σ )1−8/κ (1 − μ)12/κ−1(1 − ν)12/κ−1

× FD

(
{χ j}

∣∣∣∣1 − σ,
1 − σ

1 − η
,

1 − σ

1 − τ
,

1 − σ

1 − μ
,

1 − σ

1 − ν

)
, (66)

K′
6(η, τ, σ, μ, ν) ∝ FD({χ j} | η, τ, σ, μ, ν). (67)

Again, we have expressed each K′
i in terms of FD by writing its integration variable u as the

following Möbius transformation of the integration variable t in (50):

i = 1 : u = t − 1

t
, i = 2 : u = ηt,

i = 3 : u = ητ

τ − (τ − η)t
, i = 4 : u = η(σ − τ )t − τ (σ − η)

(σ − τ )t − (σ − η)
,

i = 5 : u = 1 − (1 − σ )t, i = 6 : u = 1

t
.

(68)

The transformations are chosen so the first three arguments of each FD is between 0 and 1,
and the last two arguments are complex conjugates. These choices ensure that each FD is real.
Each FD uses the same set of seven parameters:

{χ j}7
j=1 =

{
1 − 4

κ
; 4

κ
,

4

κ
,

4

κ
, 1 − 12

κ
, 1 − 12

κ
; 2 − 8

κ

}
. (69)

Combining (57) and (58), we find that each weight is given by the conformally covariant
formula


i jkl:mn = [(x2 − x1)(x4 − x3)(x6 − x5)]
1−6/κ |z − z̄|κ/8−6/κ−1

×
[

n(2 − n2)(Hi + Hm) + n2Hj − 2nHk + n2Hl + n2(n2 − 3)Hn

(n2 − 4)(n2 − 1)

]
× (η, τ, σ, μ, ν), (70)

with each Hi explicitly given among (61–67), η, τ, σ, μ and ν given by (18, 20), and n given
by (9). We note that our normalization in (57) ensures that (xn −xm)2θ1
i jkl:mn → 
i jkl (35) as
xn → xm. If we let κ approach the zeros 4/a and 12/(3a±1), with a ∈ Z

+, of the denominator
of (70) in this relation, then the limit 
i jkl remains finite. Therefore, (70) must be finite when
n = ±2,±1, although this seems to be very difficult to prove directly.

18



J. Phys. A: Math. Theor. 45 (2012) 505002 S M Flores et al

=

= +

z

z̄

x1 x2 x3 x4 x5 x6

n

Figure 11. The decomposition of the integral in (72) into a linear combination of 
12:34:56 and

12:36:45. The contour �12 connecting z with z̄ in the top-left illustration can be deformed into the
contour that is a vertical reflection of �12 across [x5, x6] plus the dashed contour in the top-right
illustration. According to (71), integration along the dashed contour gives zero.

3.1.4. The case N = 3, s = 1. Lastly, we consider one-pinch-point events with N = 3
boundary arcs. Here, a boundary arc γ1 connects xi, x j and z, another γ2 connects xk and xl ,
and the last γ3 connects xm and xn. We denote the half-plane weight of this event by 
i j:kl:mn,
and it is given by (33) with N = 3 and s = 1. This formula contains a double contour
integral, and the contours must not intersect in order to guarantee a solution of the system
of null-state PDEs (see the appendix). According to the discussion preceding (2), there are
C3 = 5 possible boundary arc connectivities, and in each, z may touch any one of the three
boundary arcs to give a total of fifteen possible one-pinch-point events.

Now we associate certain choices of integration contours with particular linear
combinations of these configurations. In the previously considered cases with one screening
charge, we noted that a half-plane pinch-point weight with a simple contour connecting z with
z̄ by crossing a specified interval (xa, xb) corresponds to a specified pinch-point event, and
now we investigate to what extent this remains true in our present situation with two screening
charges. We suppose that γ1 connects x1, x2 and z. Then x3, . . . , x6 are connected pairwise
by the two remaining boundary arcs in one of two possible ways. In both cases, topological
considerations show that fusion of the bulk two-leg operator �1(z) with its image across the
intervals (x3, x4) or (x5, x6) must give rise to a boundary four-leg operator to leading order.
Hence, we choose the first contour �12 to be a simple curve connecting z and z̄ and crossing
the real axis only through (x3, x4). A natural choice for the second contour would be the same
as for the first but crossing (x5, x6) instead, yet this is not allowed because this contour would
then intersect �12 at z and z̄. We suppose that the second contour is [x4, x5] instead. Now, it is
easy to show that

∮
�

∫ x5

x4

(u2 − u1)
8/κ

∏
i=1,2

(ui − x4)
−4/κ (x5 − ui)

−4/κ . . . du2 du1 = 0, (71)

where u1 is integrated around a simple loop � surrounding [x4, x5], and where the ellipsis
stands for the rest of the integrand in (33) with N = 3 and s = 1. Then this identity (71)
allows us to deform �12 into a simple curve crossing the real axis only through (x5, x6), so
a bulk-image fusion across (x5, x6) will produce a boundary four-leg operator there as well
(figure 11). The formula that follows from these contour choices equals a linear combination of
both possible connectivities of the two boundary arcs joining x3, . . . , x6 pairwise. The relative
coefficients of this combination can be found in the usual way. Thus, we have from (33) with
N = 3 and s = 1 that
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12:34:56 + n
12:36:45 = n|z − z̄|κ/8+8/κ−2

iβ(−4/κ,−4/κ)2
√

4 − n2

×
6∏

i< j

(x j − xi)
2/κ

6∏
i=1

|z − xi|1−8/κ

∫
�12

∫ x5

x4

du1 du2 N [. . .]. (72)

(As before, ‘N ’ orders the differences in the factors of the integrand so the integrand is real.)
The ellipsis stands for the rest of the integrand in (33), and the normalization follows from
requiring that we recover the two-pinch-point weight 
12:34 with x6 �→ x4 upon sending
x5 → x4. Although this density is a natural observable, the left side is not a single one-pinch-
point configuration. Cyclic permutation of the indices generates only five more equations
involving just 12 of the 15 possible weights. One of the missing weights is 
14:23:56, and the
other two missing weights are generated by rotating the hexagon.

In order to isolate all 15 weights, we pursue our second strategy of splicing
charge-neutral pairs into simpler correlation functions. We begin with the one-pinch-point
weight 
12(xi, x j; z, z̄), given by 〈ψ1(xi)[0]ψ1(x j)�1(z)[2]�1(z̄)〉. We insert into its chiral
representation a first charge-neutral collection

∫ xl

xk
V −

1,2(xk)V
−

1,2(xl ) V−(u1) du1, chosen so xk

and xl are not separated within the real axis by xi and x j, and then we insert a second charge-
neutral collection

∫ xn

xm
V −

1,2(xm)V −
1,2(xn)V−(u2) du2, chosen so xm and xn are not separated within

the (one-point compactified) real axis by xi, x j, xk or xl . We find 15 distinct conformal blocks,
each with n = m + 1 and l = k + 1 (i.e. the inserted boundary arcs are not nested) or l = k + 3
(i.e. the inserted boundary arcs are nested) (The case n = 7 or l = 7, 8, 9 is identified with
n = 1 or l = 1, 2, 3 respectively). Each block has the form

〈ψ1(xi)[2]ψ1(x j)ψ1(xk)[0]ψ1(xl )ψ1(xm)[0]ψ1(xn)�1(z)[2]�1(z̄)〉 = n2M × Kkl;mn, (73)

where Kkl;mn is the real-valued integral

Kkl;mn := β(−4/κ,−4/κ)−2
∫ xl

xk

∫ xn

xm

du1 du2 N
[
(u1 − z)8/κ−1(u1 − z̄)8/κ−1(u2 − z)8/κ−1

×(u2 − z̄)8/κ−1(u2 − u1)
8/κ

6∏
i=1

(u1 − xi)
−4/κ (u2 − xi)

−4/κ

]
, (74)

and where M is given by (33):

M := |z − z̄|κ/8+8/κ−2
6∏

i< j

(x j − xi)
2/κ

6∏
i=1

|z − xi|1−8/κ . (75)

The Kkl;mn can be decomposed into linear combinations of the 15 crossing weights in the usual
way. This decomposition is shown for four of the Kkl;mn in the top row of table 1, and the
other 11 are found by cyclically permuting the indices. We thus find an invertible system of
15 equations with the 15 weights as unknowns. The formulas that follow from this inversion
are complicated, and we leave their further investigation to the interested reader.

3.2. Half-plane universal partition functions

In this section, we construct half-plane universal partition functions from the weights computed
in section 3.1. We complete these calculations only for the cases N = 2 and 3. However, the
method is clearly generalizable to polygons with more sides. In this section, our figures and
some of our language suggest that we have conformally mapped the upper half-plane onto the
interior of a 2N-sided polygon P with the vertices numbered counterclockwise in ascending
order starting with the bottom-left vertex, with the ith vertex wi the image of xi, with xi < x j
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Table 1. The M × Kkl;mn (columns) may be decomposed into linear combinations of the fifteen
one-pinch-point densities (rows). (Relative) coefficients for four of the 15 decompositions are
shown in this table.

one-pinch point M × K12;34 M × K12;45 M × K12;56 M × K12;63

0 0 0 0
0 n n2 n
n2 n 0 n

0 1 1 1

1 n 1 0

1 0 1 0

0 n n 1

0 1 n 1

n 1 0 1

n 1 0 1

n 1 0 1

0 1 n 1

0 0 0 0

n n2 n 0

n 0 n n2

whenever i < j, and with the bottom side of P sitting flush against the real axis. This language
streamlines the discussion of this section, and the implementation of this transformation is
postponed to the next section 3.3.

We begin with a background discussion. In the present context, the Kac operator ψ1(xi)

bears two complementary interpretations. First, it is a boundary one-leg operator because it
conditions the system so a single boundary arc anchors to the point xi on the real axis. As
described in section 2, the 2N boundary one-leg operators in (7) generate N non-crossing
boundary arcs that cross the upper half-plane and join the xi pairwise in one of CN possible
connectivities, with CN given by (2). If λ is an event in which the boundary arcs join in a
specified connectivity, then we call the (continuum) O(n) model partition function summing
exclusively over all samples in λ and with boundary arcs having fugacity 1 the ‘weight’ 
λ of
the event λ. Because only closed loops should enjoy the full loop fugacity n and the boundary
arcs do not close into loops (yet), we have endowed them with fugacity 1.

Because the bulk loops have fugacity n but the boundary arcs only have fugacity 1, the
weight 
λ is almost, but not quite, a physical continuum O(n) partition function. Indeed, we
must account for how we physically condition the boundary arcs to anchor to the specified
boundary points, and this matter will endow the boundary arcs with the proper fugacity n. For
instance, in the dilute 2 � Q � 4 Potts model, boundary arcs are scaling limits of interfaces
between clusters with all spins in, say, state A and clusters with all spins in any state but A, so
we condition a boundary arc to anchor to xi by changing the BC there from wired to spin A to
freely assuming all spins except A. And in the dense 1 � Q � 4 Potts model, boundary arcs
are scaling limits of FK-cluster perimeters, so we condition a boundary arc to anchor to xi by
changing the BC there from wired to spin A to free. Thus, we find a second interpretation of
ψ1(xi) as a BCC operator because it changes the BC at xi from fixed to free or vice versa. (In
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Figure 12. A boundary loop (red) surrounding an FK boundary cluster. If all sites inside (resp.
outside) of the red curve are (resp. are not) in spin state A, then the outer loop of activated dual
bonds (heavy dash) is a boundary loop surrounding a spin boundary cluster.

our application, ψ1 will also sum over the Q possible spin types for the adjacent fixed segment
whenever we are working with the Q-state Potts model.)

In our application, each vertex wi of the polygon (or in the present setting, its half-plane
conformal image xi) under consideration will host a free-to-fixed or fixed-to-free BCC. This
sets up an FFBC, of which there are many to consider. For example, we can condition a pair of
fixed sides to be independently wired, that is, not constrained to exhibit the same state, or to be
mutually wired, that is, constrained to exhibit the same state. By taking different combinations
of these options, we generate many different FFBC events. We denote a specified FFBC event
by ς .

Because its boundary arcs have fugacity 1, the weight 
λ is independent of our choice
of FFBC event ς . To promote 
λ into a true O(n) partition function that sums exclusively
over λ ∩ ς and endows the boundary arcs with fugacity n, we close the boundary arcs into
boundary loops by connecting the vertices of the polygon pairwise via the non-crossing
exterior arcs mentioned in the discussion preceding (10). (In our present setting, the exterior
arcs actually live in the lower half-plane.) How this is done is described in [18], and we
summarize the details for the rectangle and the hexagon. We connect the endpoints of a fixed
segment that is independently wired with a single exterior arc, and we connect each endpoint
of every segment in a collection of mutually wired segments to another endpoint of another
segment in that collection via an exterior arc. The exterior arcs close the boundary arcs into
lλ,ς ∈ {1, . . . , N} distinct boundary loops with each boundary loop contributing a fugacity
factor of n (figure 12). Thus, the universal partition function summing exclusively over the
event λ ∩ ς is nlλ,ς 
λ. By summing over either all boundary arc connectivity events λ or only
those λ with samples in the s-pinch-point event �, we find the respective half-plane universal
partition functions

ϒς =
∑

λ

nlλ,ς 
λ, ϒ(�|ς ) =
∑

λ ∩ � �=∅
nlλ,ς 
�. (76)

There are CN and Cs terms in the left and right sum of (76) respectively, with CN and Cs the
Nth and sth Catalan numbers respectively (2). By factoring the pinch-point weight 
� out of
the right sum, we obtain (10).

First, we sum (76) for pinch-point events in the rectangle R with the left/right sides wired.
When N = 2, there are two possible boundary arc connectivity events, enumerated according
to figure 13, and there are two possible FFBC events, also enumerated according to figure 13
after reflecting the interior arcs outward into exterior arcs. Thus, ς1 is the independent wiring
event, and ς2 is the mutual wiring event. Both FFBC events are possible in the dense phase
of the Potts model, but only the latter is possible in the dilute phase. If � is a specified
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1 2

3 4 521

Figure 13. An illustration of the labeling that we will use for the boundary arc connectivities of R
and H.

nn n2n2

Figure 14. The four boundary loop configurations for R. Each boundary loop contributes a factor
of n.

one-pinch-point event, then the boundary arcs connect in exactly one way, so there is only one
term in the sum (76). Using figure 14, we find that in the independent wiring FFBC event ς1,

ϒ(12:34|1) = n
12:34, ϒ(34:12|1) = n
34:12, (77)

ϒ(41:23|1) = n2
41:23, ϒ(23:41|1) = n2
23:41, (78)

and we find that in the mutual wiring FFBC event ς2,

ϒ(12:34|2) = n2
12:34, ϒ(34:12|2) = n2
34:12, (79)

ϒ(41:23|2) = n
41:23, ϒ(23:41|2) = n
23:41, (80)

with the one-pinch-point half-plane weight 
i j:kl and the loop fugacity n given in (52) and (9)
respectively. If � is the two-pinch-point event, then for the mutual wiring and independent
wiring events, we find

ϒ(1234|1) = ϒ(1234|2) = (n + n2)
1234, (81)

with the two-pinch-point half-plane weight 
1234 and the loop fugacity n given in (35) and (9)
respectively.

The half-plane universal partition function ϒς summing exclusively over the FFBC event
ς can be computed from (76) by using appropriate generalizations of Cardy’s formula for
horizontal and vertical crossings in the rectangle [28]. The boundary arc connectivity events
are labeled in figure 13, so with ϒi := ϒςi and 
i := 
λi , we find

ϒ1 = n
1 + n2
2, ϒ2 = n2
1 + n
2, (82)

where the weights 
1 and 
2 are given by


i = �(12/κ − 1)�(4/κ)

�(8/κ)�(8/κ − 1)
[(x4 − x2)(x3 − x1)]

1−6/κGi

(
(x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)

)
, i = 1, 2,

(83)

and where G1 and G2 are given by [8]

G1(η) = G2(1 − η) = η2/κ (1 − η)1−6/κ
2F1

(
4

κ
, 1 − 4

κ
; 8

κ

∣∣∣∣ η
)

, (84)

with 2F1 the Gauss hypergeometric function.
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Figure 15. Three possible exterior arc connectivities of H out of five possibilities. Left to right,
there are two, two and three boundary loops, giving rise to boundary loop fugacity factors of n2, n2

and n3 respectively.

Next, we sum (76) for pinch-point events in the hexagon H with the bottom and top
left/right sides wired. When N = 3, there are five possible FFBC events. They are enumerated
according to figure 13, so ς3 is the independent wiring event, ς2 is the mutual wiring event,
and ς1 (resp. ς4, resp. ς5) is the event with the bottom and top-left (resp. bottom and top-right,
resp. top-left and top-right) sides mutually wired and the remaining fixed side independently
wired. We call any of the events ς1, ς4 and ς5 a mixed FFBC, and as usual, only the mutual
wiring event is possible in the dilute phase. If � is a specified one-pinch-point event, then
there is only one term in the sum (76). With p the number of boundary loops in each sample
of � ∩ ς (figure 15), we find

ϒ(i j:kl:mn|ς ) = np
i j:kl:mn, p ∈ {1, 2, 3}, (85)

with the loop fugacity n given by (9) and with the half-plane weight 
i j:kl:mn given by inverting
the system of equations that is partly shown in table 1. Next, if � is a specified two-pinch-point
event, then there are two terms in the sum (76) because the two boundary arcs touching at the
two-pinch point can be separated into two nonintersecting boundary arcs in two ways. The
first and second way has p1 and p2 boundary loops respectively, with {p1, p2} = {1, 2} or
{2, 3}. Therefore,

ϒ(i jkl:mn|ς ) = (np1 + np2 )
i jkl:mn, {p1, p2} = {1, 2} or {2, 3}, (86)

with the two-pinch-point half-plane weight 
i jkl:mn and the loop fugacity n given by (70) and
(9) respectively. Finally, if � is the three-pinch-point event, then there are five terms in the
sum (76) because the three boundary arcs touching at the three-pinch point can be separated
into any of the five possible connectivities shown in figure 13. If ς is either the independent
wiring FFBC ς3 or the mutual wiring FFBC ς2, then we have

ϒ(123456|2) = ϒ(123456|3) = (n + 3n2 + n3)
123456, (87)

and if ς is any of the mixed FFBCs ς1, ς4, or ς5, then we have

ϒ(123456|1) = ϒ(123456|4) = ϒ(123456|5) = (2n + 2n2 + n3)
123456, (88)

with the three-pinch-point half-plane weight 
123456 and the loop fugacity n given in (36) and
(9) respectively.

There are many combinations of pinch-point events � and FFBCs events ς for the
hexagon. We give explicit formulas for some type-� pinch-point densities with the independent
wiring event ς3. Except for the three-pinch-point density, which is too rare to accurately
measure, these results are verified via simulation in section 4. First, the following combination
sums exclusively over all samples with a specified one-pinch point on a boundary arc
connecting vertex 1 with vertex 2:

ϒ(12:34:56|3) + n2ϒ(12:36:45|3) = n3[
12:34:56 + n
12:36:45]. (89)
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The linear combination on the left side is chosen so the right side equals n3 times (72). Next,
the universal partition function for a two-pinch point between two boundary arcs that connect
vertices w6, w1, w2 and w3 of the hexagon is given by (86). We find

ϒ(6123:45|3) = (n + n2)
6123:45, (all fixed sides independently wired) (90)

with n and 
6123:45 given in (9) and (70) respectively. Finally, the three-pinch-point partition
function ϒ(123456|3) is already given in (87).

To finish, we give the half-plane universal partition function ϒi := ϒςi summing
exclusively over the FFBC event ςi. This is done as follows [21, 22]. If we label the points
x1, . . . , x6 by a, b, c, d, e and f in any way with x6 = e or f , then the FFBC event ςi with its
exterior arcs pairing x1, . . . , x6 into {a, b}, {c, d}, {e, f } is given by

ϒi = n3β(−4/κ,−4/κ)−2
5∏

j<k

(xk − x j)
2/κ

5∏
j=1

(x6 − x j)
1−6/κ

∫ b

a

∫ d

c
du1 du2

×N
[

5∏
j=1

(u1 − x j)
−4/κ (u2 − x j)

−4/κ

× (u1 − x6)
12/κ−2(u2 − x6)

12/κ−2(u2 − u1)
8/κ

]
. (91)

(As before, ‘N ’ orders the differences in the factors of the integrand so the integrand is real.)
If κ � 4, then we replace the simple integration contours with Pochhammer contours that
entwine the endpoints and we divide by an extra factor of 4 sin2(4π/κ).

3.3. Transforming the universal partition functions

In this section, we transform the half-plane universal partition functions to universal partition
functions for system in the appropriate 2N-sided polygon.

We let Z(�|ς ) (resp. Zς ) be the half-plane partition function summing exclusively over the
pinch-point and FFBC event � ∩ ς (resp. FFBC event ς ), where the jth BCC occurs within a
small distance ε j from the specified point x j on the real axis in the FFBC event ς . Now, if we
send the upper half-plane onto a simply connected domain D with a smooth boundary via a
conformal bijection f , then conformal invariance says that

ZD
(�|ς )(w1, . . . , w2N;w) = Z(�|ς )(x1, . . . , x2N; z),

ZD
ς (w1, . . . , w2N ) = Zς (x1, . . . , x2N ), (92)

where ZD
(�|ς ) (resp. ZD

ς ) is the partition function summing exclusively over the event � ∩ ς

(resp. ς ) in the image system, and where w j = f (x j) ∈ ∂D and w = f (x). As the half-plane
partition functions Z(�|ς ) and Zς have the respective asymptotic behaviors

Z(�|ς )/Z f ∼
ε j,ε→0

C2
s c2N

1 ε
θ1
1 . . . ε

θ1
2Nε2�sϒ(�|ς ),

Zς/Z f ∼
ε j→0

C2
s c2N

1 ε
θ1
1 . . . ε

θ1
2Nϒς, (93)

the image partition functions ZD
(�|ς ) and ZD

ς have the respective asymptotic behaviors

ZD
(�|ς )/Z f ∼

δ j,δ→0
C2

s c2N
1 δ1(w1)

θ1 . . . δ2N (w2N )θ1δ(w)2�sϒD
(�|ς ),

ZD
ς /Z f ∼

δ j→0
c2N

1 δ1(w1)
θ1 . . . δ2N (w2N )θ1ϒD

ς , (94)
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with δ j(w j) = ε j|∂ f (x j)|, with δ(w) = ε|∂ f (x)|, and with ϒD
(�|ς ) and ϒD

ς respectively given
by the usual conformal covariance transformation laws

ϒD
(�|ς ) := |∂ f (x1)|−θ1 . . . |∂ f (x2N )|−θ1 |∂ f (z)|−2�sϒ(�|ς ),

ϒD
ς := |∂ f (x1)|−θ1 . . . |∂ f (x2N )|−θ1ϒς. (95)

Although it is conformally invariant, the type-� pinch-point density given by the ratio
ZD

(�|ς )/ZD
ς is unnatural because the radii of the disks containing either the pinch-point or

the BCCs vary with their locations in the closure of D. For this reason, it is natural to
replace δ(w) and each δ j(w j) with small numbers δ and δ j that are independent of w and w j

respectively. The type-� pinch-point density that results is conformally covariant instead of
conformally invariant.

Now we let D be an equiangular 2N-sided polygon P with vertices at w1, . . . , w2N . This
is the standard setting for this paper. To replace δ(w) with δ as prescribed previously is valid
as long as w is sufficiently far from the vertices. But to replace the other δ j(w j) with δ j is not
valid because the derivative of f blows up at each vertex. Instead, we replace

ZP
(�|ς ) −→ ZP

(�|ς ) ∼
δ j,δ→0

C2
s c2N

1 δ
θ1
1 . . . δ

θ1
2Nδ2�sϒP

(�|ς ),

ZP
ς −→ ZP

ς ∼
δ j→0

c2N
1 δ

θ1
1 . . . δ

θ1
2Nδ2�sϒP

ς , (96)

where ϒP
(�|ς ) and ϒP

ς are the respective correlation functions

ϒP
(�|ς ) = 〈ψc

1 (w1) . . . ψc
1 (w2N )�s(w, w̄)〉P ,

ϒP
ς = 〈ψc

1 (w1) . . . ψc
1 (w2N )〉P , (97)

that use corner one-leg operators in place of boundary one-leg operators at the vertices of P .
We define the corner one-leg operator by

ψc
1 (w j) = lim

ε j→0

(
φ

π
ε

1−π/φ

j

)θ1

ψ1(w j + ε je
iα ), (98)

where φ is the interior angle of P at the vertex w j, and where ε jeiα is a complex number (with
ε j real) such that w j +ε jeiα is on a side of P and very close to w j. Because P is an equiangular
2N-sided polygon, φ = (N −1)π/N. It is easy to check that if we use corner one-leg operators
in place of ordinary boundary one-leg operators, then our redefined partition functions (96)
are finite.

First, we transform the N = 2 half-plane universal partition functions into universal
partition functions for the system in the rectangle R (figure 16). The rectangle has aspect
ratio R, vertices w1 = 0, w2 = R, w3 = R + i and w4 = i, and interior angles φ = π/2. We
therefore have

ϒR
(�|ς ) = 〈ψc

1 (0)ψc
1 (R)ψc

1 (R + i)ψc
1 (i)�s(z, z̄)〉R = lim

ε j→0
(16ε1ε2ε3ε4)

−θ1

×〈ψ1(ε1)ψ1(R − ε2)ψ1(R + i − ε3)ψ1(i + ε4)�s(z, z̄)〉R. (99)

We use the Schwarz–Christoffel map that conformally sends the upper half-plane onto R and
whose continuous extension to the real axis sends the points {0, m, 1,∞} counterclockwise to
the respective vertices {w1, w2, w3, w4}:
f (z) = 1

2K′(m)

∫ z

0
ζ−1/2(m − ζ )−1/2(1 − ζ )−1/2 dζ , f −1(w) = m sn(w K′ | m)2. (100)

Here, K(m) is the complete elliptic integral of the first kind, K′(m) := K(1−m), and m ∈ (0, 1)

is the modular parameter of the transformation, related one-to-one with R ∈ (0,∞) through
R = K(m)/K′(m). This transformation (and its continuous extension to the real axis) is
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Figure 16. The transformation of the upper half-plane to the interior of the rectangle and the
hexagon and our enumeration of the vertices of either polygon.

invertible, so we define x′
j to be the half-plane pre-image of the jth vertex of R shifted by a

small amount ε j as shown in (99). These points are given in [29] to leading order, and they are
respectively near zero, m, one and infinity. Conformal covariance gives

ϒR
(�|ς )(m;w, w̄) = |∂ f (z)|−2�s lim

ε j→0
(16ε1ε2ε3ε4)

−θ1

×
4∏

j=1

|∂ f (x′
j)|−θ1ϒ(�|ς )(w

′
1, w

′
2, w

′
3, w

′
4;w, w̄), (101)

with ϒ(�|ς ) given in section 3.2. The right side may be computed explicitly, and we find (with
z = f −1(w)) that

ϒR
(�|ς )(m;w, w̄) = |2mK′sn(wK′ | m)cn(wK′ | m)dn(wK′ | m)|[16s2−(κ−4)2]/8κ

×[m(1 − m)]6/κ−1K′24/κ−4 lim
x→∞ x6/κ−1ϒ(�|ς )(0, m, 1, x; z, z̄). (102)

We note that η → m as ε1, . . . , ε4 → 0. The universal partition function ϒR
ς for R is found

from (82) in the same way after dropping all covariance factors associated with the bulk point
w. The result is [18]{

ϒR
1 (m)

ϒR
2 (m)

}
= n2K′(m)24/κ−4

{
F(1 − m)

F(m)

}
,

F(m) :=2 F1

(
2 − 12

κ
, 1 − 4

κ
; 2 − 8

κ

∣∣∣∣∣m
)

.

(103)

Next, we transform the N = 3 half-plane universal partition functions into universal partition
functions for the system in the hexagon H with vertices w1 = 0, w2 > 0, w3, . . . , w6 in the
upper half-plane, and interior angles φ = 2π/3. We have

ϒH
(�|ς ) = 〈ψc

1 (w1)ψ
c
1 (w2)ψ

c
1 (w3)ψ

c
1 (w4)ψ

c
1 (w5)ψ

c
1 (w6)�s(w, w̄)〉H

= lim
ε j→0

(
729

√
ε1ε2ε3ε4ε5ε6

64

)−θ1
〈

6∏
j=1

ψ1(w j + ε je
( j−1)π i/3)�s(w, w̄)

〉
H

. (104)

We use the Schwarz–Christoffel map that sends the upper half-plane conformally onto H and
whose continuous extension to the real axis sends the points {0, m1, m2, m3, 1,∞} clockwise
to the respective vertices {w1 = 0, w2, . . . , w6} of H (figure 16):

f (w) = 2

3

∫ w

0
ζ−1/3(m1 − ζ )−1/3(m2 − ζ )−1/3(m3 − ζ )−1/3(1 − ζ )−1/3 dζ . (105)
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This transformation (and its extension to the real axis) is invertible, so we define the point x′
j

to be the half-plane pre-image of the jth vertex shifted by ε je( j−1)π i/3. To leading order in ε j,
these points are

x′
1 = f −1(w1 + ε1e0π i/3) = √

m1m2m3 ε
3/2
1 ,

x′
2 = f −1(w2 + ε2e1π i/3) = m1 +

√
m1(m2 − m1)(m3 − m1)(1 − m1)ε

3/2
2 ,

x′
3 = f −1(w3 + ε3e2π i/3) = m2 +

√
m2(m2 − m1)(m3 − m2)(1 − m2)ε

3/2
3 ,

x′
4 = f −1(w4 + ε4e3π i/3) = m3 +

√
m3(m3 − m1)(m3 − m2)(1 − m3)ε

3/2
4 ,

x′
5 = f −1(w5 + ε3e4π i/3) = 1 +

√
(1 − m1)(1 − m2)(1 − m3)ε

3/2
5 ,

x′
6 = f −1(w6 + ε3e5π i/3) = −ε

−3/2
6 , (106)

and they are respectively near zero, m1, m2, m3, one and infinity. Conformal covariance gives

ϒH
(�|ς )(m1, m2, m3;w, w̄) = |∂ f (z)|−2�s lim

ε j→0

(
729

√
ε1ε2ε3ε4ε5ε6

64

)−θ1

×
6∏

j=1

|∂ f (x′
j)|−θ1ϒ(�|ς )(w

′
1, w

′
2, w

′
3, w

′
4, w

′
5, w

′
6;w, w̄), (107)

with ϒ(�|ς ) given in section 3.2. The right side may be computed explicitly, and we find (with
z = f −1(w)) that

ϒH
(�|ς )(m1, m2, m3;w, w̄) = |27z(m1 − z)(m2 − z)(m3 − z)(1 − z)/8|[16s2−(κ−4)2]/24κ

×[m1m2m3(m2 − m1)(m3 − m1)(m3 − m2)(1 − m1)(1 − m2)(1 − m3)]
(6 − κ)/2κ

× lim
x→∞ x6/κ − 1ϒ(�|ς )(0, m1, m2, m3, 1, x; z, z̄). (108)

We note that (η, τ, σ ) → (m1, m2, m3) as ε1, . . . , ε6 → 0. The universal partition function
ϒH

ς for H is found from (91) in the same way after dropping all covariance factors associated
with the bulk point w. The result is

ϒH
ς (m1, m2, m3) = [m1m2m3(m2 − m1)(m3 − m1)(m3 − m2)]

(10−κ)/2κ

× [(1 − m1)(1 − m2)(1 − m3)]
(10−κ)/2κn3β(−4/κ,−4/κ)−2

×
∫

ab

∫
cd
N

⎡
⎣(u2 − u1)

8/κ

2∏
i=1

u−4/κ

i (1 − ui)
−4/κ

3∏
j=1

(mj − ui)
−4/κ

⎤
⎦ du2 du1,

(109)

where {a, b} is the pair of finite endpoints for one of the two exterior arcs, and where {c, d} is
that for the other exterior arc. These endpoints are among {0, m1, m2, m3, 1}. (As before, ‘N ’
orders the differences in the factors of the integrand so the integrand is real.) In the event of
the FFBC with all fixed sides independently wired (ς3) (91), we have a = 0, b = m1, c = m2

and d = m3.

3.4. Pinch-point densities in polygons

In this section, we give explicit expressions for some of these densities for the rectangle R
(N = 2) and for the hexagon H (N = 3). The behavior of the type-� pinch-point density
ρP

(�|ς ) in the polygon P is given by (4) with the bulk s-leg exponent �s given by (12) and with
the universal partition functions ϒP

(�|ς ) and ϒς computed in section 3.3 for the rectangle and
the hexagon.
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1 2

34

δ

w

Figure 17. Illustration of the type-(12 : 34) pinch-point configuration in the rectangle. The
boundary cluster is shaded gray.

Figure 18. Contour plot of Ising FK cluster (κ = 16/3) one-pinch-point density ρR
(12:34|1).

3.4.1. A one-pinch-point density for the rectangle. The density of type-(12 : 34) one-pinch
points in the rectangle R with the left/right sides independently wired behaves as (figure 17)

ρR
(12:34|1)(m;w, w̄) ∼

δ→0
C2

1δ
1−κ/8

[
(1 − m)6/κ−1

2F1(2 − 12
κ

, 1 − 4
κ
; 2 − 8

κ
| 1 − m)

]
[

Im[sn(wK′|m)2]

K′|sn(wK′|m)cn(wK′|m)dn(wK′|m)|
]κ/8−1

×
[

2G2 + (n2 − 2)G4 − nG1 − nG3

n(n2 − 4)

]
(m, z, z̄) . (110)

The Gi are given in (46-49), and n is given in (9). The density ρR
(12:34|2) with the left/right

sides mutually wired is found by replacing the argument of the hypergeometric function with
1 − m in (110) and multiplying by n. Figure 18 shows a contour plot of ρR

(12:34|1) for Ising FK
boundary clusters (κ = 16/3).

3.4.2. A two-pinch-point density for the rectangle. The density of two-pinch points in the
rectangle R with the left/right sides independently wired behaves as (figure 19)

ρR
(1234|1)(m;w, w̄) ∼

δ→0
C2

2δ
6/κ−κ/8+1

[
224/κ−2K′6/κ−κ/8+1(n−1 + 1)[m(1 − m)]8/κ−1

2F1(2 − 12
κ

, 1 − 4
κ
; 2 − 8

κ
|1 − m)

]

×
[

Im
[
sn(wK′|m)2

]
|sn(wK′|m)cn(wK′|m)dn(wK′|m)|

]κ/8+18/κ−3

. (111)
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1 2

34

δ

w

Figure 19. Illustration of the two-pinch-point configuration in the rectangle. Boundary clusters are
shaded gray.

Figure 20. Contour plot of Ising FK cluster (κ = 16/3) two-pinch-point density ρR
(1234|1).

The density ρR
(12:34|2) with the left/right sides mutually wired is found by replacing the argument

of the hypergeometric function with 1−m in (111). Figure 20 shows a contour plot of ρR
(1234|1)

for Ising FK boundary clusters (κ = 16/3).

3.4.3. A combination of one-pinch-point densities for a hexagon. Equation (89) is a
combination of one-pinch-point densities in the hexagon H with the bottom and top-left/right
sides independently wired (figure 21). We have

[ρH
(12:34:56|3) + n2ρH

(12:36:45|3)](m1, m2, m3;w, w̄) ∼
δ→0

C2
1δ

1−κ/8n(4 − n2)−1/2|z − z̄|κ/8+8/κ−2

× |27z(m1 − z)(m2 − z)(m3 − z)(1 − z)/8|1/3−κ/24 |I1(m1, m2, m3; z, z̄)|
I2(m1, m2, m3)

.

(112)

Here, I1 is the definite integral (as before, ‘N ’ orders the differences in the factors of the
integrand so the integrand is real)

I1(m1, m2, m3; z, z̄) :=
∫

�

∫ 1

m3

N

⎡
⎣∏

i=1,2

(ui − z)8/κ−1(ui − z̄)8/κ−1

×(u2 − u1)
8/κ

∏
i=1,2

u−4/κ

i (1 − ui)
−4/κ

3∏
j=1

(mj − ui)
−4/κ

⎤
⎦ du1 du2 (113)
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Figure 21. Illustration of the type-(12 : 34 : 56) one-pinch-point configuration plus n2 times the
(12 : 36 : 45) one-pinch-point configuration in the hexagon. Boundary clusters are shaded gray.
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Figure 22. Illustration of the type-(6123 : 45) two-pinch-point configuration in the hexagon
(left, boundary clusters are shaded gray), and a contour plot of the Ising FK cluster (κ = 16/3)

two-pinch-point density ρH
(123456|3)

(right).

with the contour � starting at z̄, crossing the real axis through either (m2, m3) or (1,∞), and
ending at z. One can show that I1 is purely imaginary. Also, I2 is

I2(m1, m2, m3) :=
∫ m1

0

∫ m3

m2

du2 du1N

⎡
⎣∏

i=1,2

u− 4/κ

i (1 − ui)
− 4/κ

∏
j=1,2,3

(mj − ui)
− 4/κ

⎤
⎦

× (u2 − u1)
8/κ . (114)

3.4.4. A two-pinch-point density for a hexagon. The density of two-pinch points in the
hexagon H with the top and bottom-left/right sides independently wired behaves as (figure 22)

ρH
(6123:45|3)(m1, m2, m3;w, w̄) ∼

δ→0
C2

2δ
6/κ−κ/8+1(n−1 + 1)

×β(−4/κ,−4/κ)2|z − z̄|κ/8−6/κ−1I2(m1, m2, m3)
−1

× [m1(m3 − m2)]1−6/κ |27z(m1 − z)(m2 − z)(m3 − z)(1 − z)/8|1/3−κ/24+2/κ

[m1m2m3(m2 − m1)(m3 − m1)(m3 − m2)(1 − m1)(1 − m2)(1 − m3)]2/κ

×
[

(2 − n2)(H6 + H4) + nH1 − 2H2 + nH3 + n(n2 − 3)H5

(n2 − 4)(n2 − 1)

]
× (m1, m2, m3; z, z̄), (115)
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Figure 23. Illustration of the three-pinch-point configuration in the hexagon (left, boundary clusters
are shaded gray) and a contour plot of the Ising FK cluster (κ = 16/3) two-pinch-point density
ρH

(123456|3) (right).

where I2 is given in (114) and the Hi are given in (61, 62–67). Figure 22 shows a contour plot
of ρH

(6123:45|3) for Ising FK boundary clusters (κ = 16/3).

3.4.5. A three-pinch-point density for a hexagon. The density of three-pinch points in the
hexagon H with the top and bottom-left/right sides independently wired behaves as (figure 23)

ρH
(6123:45|3)(m1, m2, m3;w, w̄) ∼

δ→0
C2

3δ
16/κ−κ/8+1(27/8)16/3κ−κ/24−1/3(n−2 + 3n−1 + 1)

× |z(m1 − z)(m2 − z)(m3 − z)(1 − z)|4/3−κ/24−32/3κ

× |z − z̄|κ/8+32/κ−4β(−4/κ,−4/κ)2I2(m1, m2, m3)
−1, (116)

where I2 is given in (114). Figure 23 shows a contour plot of ρH
(6123:45|3) for Ising FK boundary

clusters (κ = 16/3).

4. Simulation results

In this section, we present simulation results that verify our predicted pinch-point densities
ρR

(12:34|1) and ρR
(1234|1) (110), (111) for the rectangle and ρH

(12:34:56|3)+n2ρH
(12:36:45|3) and ρH

(6123:45|3)

(112), (115) for the hexagon. We simulated critical bond percolation on a 2000 × 1000 square
lattice (aspect ratio R = 2) in a rectangle R and critical site percolation on a triangular lattice
in a regular hexagon H inscribed in a 2000×2000 rhombus. (Actually, only half of the sites
in R belonged to the physical lattice, and the other sites belonged to the medial lattice. This
was for the purpose of performing a hull-walk later. This was also true when we sampled
Ising FK clusters in H, but it was not true when we sampled site percolation clusters in H.
In the latter case, all of the sites in our simulation belonged to the physical lattice.) Using
the Swendsen–Wang (SW) algorithm [30], we also sampled critical Ising FK clusters on the
same lattices in R and H respectively. We independently wired the left/right sides of R, and
we independently wired the bottom and top left/right sides of H, leaving all other sides free
in both situations. Our simulation results show good agreement with our predictions. We used
Mathematica (version 8) to evaluate all definite integrals that appear in our analytic predictions
via the ‘NIntegrate’ function, and we used the Schwarz–Christoffel toolbox [31] for MATLAB
to numerically perform the transformation from the upper half-plane to the interior of H.
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Figure 24. Typical percolation (left) and Ising FK (right) cluster (black, purple and red bonds)
and hull-walk samples (blue and green) generated by our simulations in R. Centers of bloated
bonds (resp. dual bonds) (red) are two-pinch points in the left (resp. right) illustration. We note that
for percolation (left), our simulation only generates bonds that comprise the boundary clusters’
perimeters.

To approximate the continuum limit of these critical models, we used very large lattices in
our simulations. This suppressed the frequency of each s-pinch-point event at every lattice site,
so we generated many samples in order to compensate this effect. Overall, about 16 months
of computer time (with about a 2 GHz processor) were used to sample percolation clusters in
R and H and Ising FK clusters in R, and over thirty-two months of computer time were used
to sample Ising FK clusters in H, running simulations on many processors simultaneously.

As usual, we number the vertices of R and H counterclockwise, starting with the left
vertex of the bottom side of either polygon as vertex 1. In this section, we also shift the hexagon
so its center coincides with the origin.

4.1. The rectangle

To measure the density of percolation pinch points (κ = 6), we simulated critical bond
percolation on the square lattice inR. One-pinch points are bonds insideR and on the perimeter
of a boundary cluster, and two-pinch points are red bonds whose activation or deactivation
respectively connects or disconnects the left and right boundary clusters. Because pinch points
occur only on boundary cluster perimeters, our simulations only sampled these perimeters via
percolation hull-walks on the medial lattice [32–34]. They did not generate entire percolation
bond configurations.

We performed two hull-walks to generate the two boundary cluster perimeters in R
(figure 24). The first (resp. second) walk starts at the medial lattice site a/2 units below vertex
1 (resp. above vertex 3), where a is the lattice spacing. One walk ends at the medial lattice site
a/2 units below vertex 2, and the other ends at a/2 units above vertex 4. Each step of the walk
is located at the midpoint of a bond, and at each step we decide to activate or deactivate
that bond with critical bond activation probability pc = 1/2. If the bond is activated, then
the walk turns right. Otherwise it turns left. Each site that is visited by either hull-walk is a
one-pinch point, and each site that is visited by both hull-walks is a two-pinch point, or red
bond. (Actually, one-pinch-point events and two-pinch-point events at w ∈ R are mutually
exclusive according to our definitions. However, our method counts a two-pinch point as one-
pinch points of both hull walks too. This miscounting is insignificant, though, because the
ratio of the two-pinch-point density to any one-pinch-point density vanishes as the system size
increases, or equivalently, as the lattice spacing a goes to zero, with power a2(�2−�1 ) = a6/κ .)
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Table 2. The error (theory minus simulation) averaged over x, and the standard deviation of the
error from that average, of the data displayed in figures 25 and 26.

Avg. error y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6

Perc. s = 1 −0.004 0.023 −0.003 0.012 −0.002 −
Perc. s = 2 0.010 0.012 0.014 0.014 0.014 −
Ising s = 1 −0.080 − −0.062 −0.048 −0.036 −0.346
Ising s = 2 0.008 − 0.009 0.012 0.014 0.046

Std. dev. y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6

Perc. s = 1 0.002 0.026 0.002 0.025 0.000 −
Perc. s = 2 0.003 0.003 0.003 0.005 0.004 −
Ising s = 1 0.008 − 0.006 0.013 0.006 0.042
Ising s = 2 0.004 − 0.006 0.005 0.007 0.034

When both of the hull-walks are finished, we note how they connect the vertices of R and
bin one-pinch-point events accordingly. If they connect vertex 1 with vertex 2 and vertex 3 with
vertex 4 (resp. vertex 1 with vertex 4 and vertex 2 with vertex 3) to create a horizontal (resp.
vertical) crossing, then one-pinch-point events on the first and second hull-walks contribute to
ρR

(12:34|1) and ρR
(34:12|1)

(
resp. ρR

(41:23|1) and ρR
(23:41|1)

)
respectively. Two-pinch-point events did

not need to be sorted this way, although it is interesting to note that the red bonds are activated
(resp. deactivated) in the event of a horizontal (resp. vertical) crossing. After generating about
2 × 108 samples, we tallied the number of each kind of pinch-point event at each site in an
array and divided the total by the corresponding array value at the center of R to eliminate
the non-universal constant and scaling factor appearing in (110, 111). With this normalization
scheme, our measured densities always equal one at the center of R.

Our percolation pinch-point simulation results are compared with our theory predictions
for ρR

(12:34|1) and ρR
(1234|1) (respectively (110) and (111) with κ = 6) in figure 25. For the figure,

we rescale R to

R = {w = x + iy|0 < x < 2, 0 < y < 1}, (117)

and we plot all densities as a function of the real part x of an interior point w = x + iy ∈ R
with y fixed to 0.1, 0.2, 0.3, 0.4 and 0.5. The top plot shows the density ρR

(12:34|1) of points
touched by the hull-walk connecting vertices 1 and 2. The left/right peaks of the top curve in
the figure show that these events are most likely to occur near vertices one and two, and this
is expected because these vertices are connected by the hull-walk. The bottom plot shows the
density ρR

(1234|1) of two-pinch points, or red bonds. Our results show that these events are most
likely to occur near the center of R, and this is expected because there is more room in the
center of R for the hull-walks to collide. Errors averaged over x and the standard deviation
from this average are shown in table 2.

To measure the density of Ising FK pinch points (κ = 16/3), we generated about 4 × 108

samples of critical Ising FK clusters on the square lattice in R via the SW algorithm with
critical bond activation probability pc = √

2/(1 + √
2). In each sample, the left/right sides of

Rwere independently wired. That is, all FK bonds of either side were activated and necessarily
the same color as the other bonds in its boundary cluster, but the bond color of the left boundary
cluster was allowed to differ from that of the right. The perimeters of the boundary clusters
anchored to these wired sides were explored via the hull-walk used for percolation to detect
the pinch points (without ever activating or deactivating FK bonds during the walk) (figure 24).
One-pinch-point events and two-pinch-point events were detected by the hull-walk in the same
way as in bond percolation. However, we note that the ‘red bond definition’ of a two-pinch
point in percolation does not have a perfect analog with FK clusters. If two boundary FK
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Figure 25. Density of percolation (κ = 6) one-pinch points ρR
(12:34|1) (top) and two-pinch points

ρR
(1234|1) (bottom) versus x in a 2000×1000 rectangle rescaled to 2 × 1 for various values of y.

Densities are normalized to equal one at the center (1, 0.5) of R.

clusters of different colors are separated by a single unactivated bond, we cannot activate this
bond and join the clusters, so such a bond is not ‘red’ according to the definition of a ‘spin
red bond’ in [5]. (However, because the Q colors of the Q-state Potts model are distributed
uniformly across the FK clusters, the fractal properties of the set of spin red bonds and the set
of two-pinch-point bonds are the same.)

Our Ising pinch-point simulation results are compared with our theory predictions for
ρR

(12:34|1) and ρR
(1234|1) (respectively (110) and (111) with κ = 16/3) in figure 26. Explanations
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Figure 26. Density of Ising FK (κ = 16/3) one-pinch points ρR
(12:34|1)

(top) and two-pinch points
ρR

(1234|1) (bottom) versus x in a 2000×1000 rectangle rescaled to 2 × 1 for various values of y.
Densities are normalized to equal one at the center (1, 0.5) of R.

and notable features of these two plots are the same as those for figure 25, except that y
is fixed to 0.1, 0.3, 0.4, 0.5 and 0.6. Errors averaged over x and the standard deviation from this
average are shown in table 2. We note that our measurements of the one-pinch-point density
consistently exceeded our predictions by a small amount that increased as y decreased. We
suspect that this is a finite-size effect that may be reduced by sampling from a larger system.
A similar effect was observed for the simulations in [18].
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Figure 27. Typical percolation (left) and Ising FK (right) cluster samples in H generated by our
simulations. In the left illustration, red, blue and green, and white (resp. light gray, black, resp.
transparent) sites are activated (resp. deactivated, resp. undecided), black paths are smart kinetic
walks, red, blue and green (resp. light gray) sites form the inner (resp. outer) boundary arc of a
boundary cluster, and black sites are two-pinch points. In the right illustration, bloated sites and
centers of bloated bonds (red) are two-pinch points.

4.2. The hexagon

To measure the density of percolation pinch points, we generated about 6.56 × 108 samples
of critical site percolation on the triangular lattice (site activation probability pc = 1/2) in
H. Again, because pinch-point events occur on the perimeters of the three boundary clusters,
our simulations sampled only these perimeters via three distinct site–percolation hull-walks
on the triangular lattice (left illustration in figure 27). The first, second and third hull-walks
respectively started at vertices 1, 3 and 5 and in the direction pointing into the adjacent free
side of H. Each hull-walk necessarily ended at an even vertex, and no two hull-walks could
end at the same vertex. The finished hull–walk actually consists of two juxtaposed paths of
neighboring activated and deactivated sites. We will call the former (resp. latter) path the inner
(resp. outer) boundary arc of the boundary cluster (figure 27). A path, called a smart kinetic
walk, passes between these juxtaposed paths with each step on the dual (honeycomb) lattice
[35].

Pinch-point events were counted in almost the same way as in the simulations for
the rectangle. Each point on the inner boundary arc is a one-pinch point, activated (resp.
deactivated) sites shared between two inner or outer boundary arcs are two-pinch points, and
activated (resp. deactivated) sites shared between three inner or outer boundary arcs are three-
pinch points. Again, although one-pinch-point, two-pinch-point and three-pinch-point events
are technically mutually exclusive, we counted three-pinch-point events as two-pinch-point
events and two-pinch-point events as one-pinch-point events in our simulations, knowing that
this over-counting has a negligible effect on our results.

Our percolation pinch-point simulation results are compared with our theory predictions
for ρH

(12:34:56|3) + ρH
(12:36:45|3) and ρH

(6123:45|3) (respectively (112) and (115) with κ = 6) in
figure 28. Three-pinch-point events were so rare that we could not generate enough samples to
verify our three-pinch-point density prediction (116). For the figure, we center H at the origin,
rescale it to have side-length 1, and orient it as in figure 27, and we plot all densities as a function
of the real part x of an interior point w = x + iy ∈ H with y fixed to −0.69,−0.52,−0.31 and
−0.03. The top plot shows the density ρH

(12:34:56|3) + ρH
(12:36:45|3) of one-pinch points touched
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Figure 28. Density of percolation (κ = 6) one-pinch points ρH
(12:34:56|3)+ρH

(12:36:45|3) (top) and two-
pinch points ρH

(6123:45|3) (bottom) versus x in a regular hexagon inscribed in 2000×2000 rhombus
and adjusted to have side-length 1 and center at the origin. Densities are normalized to one at the
center of H.

by the hull-walk connecting vertices 1 and 2. (This density includes all such events without
regard to how the other two walks connect vertices 3 to 6.) As expected, this density is greatest
near vertices one and two, which are connected by the hull-walk. The bottom plot shows the
density ρH

(6123:45|3) of two-pinch points, or sites touched by a hull-walk connecting vertices
one and two and another hull walk connecting vertices 3 and 6. This density grows at first
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Table 3. The error (theory minus simulation) averaged over x, and the standard deviation of the
error from that average, of the data displayed in figures 28 and 29.

Avg. error y = −0.69 y = −0.52 y = −0.31 y = −0.03

Perc. s = 1 −0.005 −0.004 −0.003 −0.002
Perc. s = 2 −0.017 −0.024 −0.024 −0.013
Ising s = 1 0.006 0.001 −0.000 −0.000
Ising s = 2 0.140 −0.002 0.005 0.068

Std. dev. y = −0.69 y = −0.52 y = −0.31 y = −0.03

Perc. s = 1 0.004 0.004 0.003 0.002
Perc. s = 2 0.011 0.015 0.013 0.006
Ising s = 1 0.006 0.006 0.004 0.002
Ising s = 2 0.052 0.114 0.107 0.045

as we move from the bottom side of H toward its center, as expected, and then it diminishes
as the center is approached. This diminishing is also expected because ρH

(6123:45|3) is greatest
below the center of the rectangle conformally equivalent to H with vertices 1, 2, 3 and 6, and
the image of this point in H is below the origin and on the y-axis. Errors averaged over x and
the standard deviation from this average are shown in table 3.

To measure the density of Ising FK pinch points, we generated 5.68 × 108 samples of
critical Ising FK clusters on the triangular lattice in H via the SW algorithm. The critical
probability of FK bond activation on the triangular lattice is pc = (

√
3 − 1)/

√
3 ≈ 0.422 65

[36]. Because the triangular lattice is not self-dual, a hull-walk similar to that of R that steps
on both regular and dual sites equally often is not so easy to implement. For this reason, we
chose our hull-walk to step along the bonds in H forming the perimeter of a boundary FK
cluster (i.e. the inner boundary arcs). We also tracked the activated dual bonds that surrounded
the boundary clusters (i.e. the outer boundary arcs). The s-pinch-point events were identified
with intersections between s distinct inner or outer boundary arcs in the same way as with
percolation (figure 27).

Our Ising FK cluster pinch-point simulation results are compared with our theory
predictions for ρH

(12:34:56|3) + 2ρH
(12:36:45|3) and ρH

(6123:45|3) (respectively (112) and (115) with
κ = 16/3) in figure 29. Explanations and noticeable features of these two plots are the same
as those for figure 28. The top plot shows the density ρH

(12:34:56|3) + 2ρH
(12:36:45|3) of one-pinch

points touched by the hull-walk connecting vertices 1 and 2. The factor of two arises from the
factor of n2 in (112) and because n = √

2 when κ = 16/3. This factor may seem unnatural,
but omitting it considerably worsens the agreement of prediction and simulation. Thus, this
agreement gives a non-trivial verification of our prediction for the relative coefficients between
the two densities in (112). Errors averaged over x and the standard deviation from this average
are shown in table 3. We note that the one-pinch-point density deviates from our prediction
by much less than that in the rectangle. This seems peculiar because the system size in the
rectangle and in the hexagon are about the same. One might suspect that the larger coordination
number of the triangular lattice over that of the rectangular lattice causes this effect, but this
suspicion is contradicted by the large errors in the hexagon two-pinch-point case. We therefore
do not propose a possible explanation for this observation. The deviations of our two-pinch-
point simulation results from our prediction (115) with κ = 16/3 are larger than those for
percolation. This may be understood as follows. The two-pinch-point density scales as a2�2

as the lattice spacing a goes to zero [37]. For percolation (κ = 6), the power is 5/4, but for
Ising FK clusters (κ = 16/3), the power increases to 35/24. Thus on a very large lattice,
the frequency of Ising FK two-pinch-point events is suppressed even more than that of the
percolation two-pinch-point events. Indeed, this is what we have observed. We expect that
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Figure 29. Density of Ising FK (κ = 16/3) one-pinch points ρH
(12:34:56|3)

+ 2ρH
(12:36:45|3)

(top)
and two-pinch points ρH

(6123:45|3)
(bottom) versus x in a regular hexagon inscribed in 2000×2000

rhombus and adjusted to have side-length 1 and center at the origin. Densities are normalized to 1
at the center of H.

more samples would lessen the deviation. However, such simulations would require very
considerable computer resources.

5. Summary

We summarize the main results of this paper. The half-plane weight 
� of the type-�
s-pinch-point configuration is given by (52), (35) for the cases N = 2 and s = 1 and 2
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and is given by (72), (70), (36) for the cases N = 3 and s = 1, 2 and 3 also for various
pinch-point events �. After specifying a particular FFBC event ς , we construct the universal
partition function ϒ(�|ς ) that sums exclusively over the event �∩ς , and we transform it into a
universal partition function with the rectangle R or the hexagon H for its domain. The results
are (102) and (108) respectively. Then to within non-universal factors, the type-� pinch-point
density ρP

(�|ς ) is found by dividing the transformed universal partition function by the universal
partition function ϒP

ς summing exclusively over the FFBC event ς . This prediction agrees well
with measurements by simulation that sampled one-pinch-point and two-pinch-point events
between critical percolation and Ising FK boundary clusters in rectangles and hexagons with
every other side independently wired.

We suspect that s-pinch-point densities in 2N-sided polygons with N > 3 and s < N
can be obtained from (33) through a careful selection of integration contours. (The case
s = N is given in (31) for all N ∈ Z

+.) However, whether our techniques can be generalized
to correspond each pinch-point density one-to-one with a particular selection of integration
contours for arbitrarily large N ∈ Z

+ is unclear. If this is possible, then the formulas that result
will surely be very complicated.
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Appendix

We demonstrate that the Coulomb gas solution (33) solves the null-state PDEs (13) and the
Ward identities (14)–(16). This calculation is modeled after a similar calculation presented
in [38]. Throughout this section, we use the dense phase (κ > 4) conventions for our
Kac charge and screening charge notations (29), we modify the notation of (33) by letting
x2N+1 = z, x2N+2 = z̄, and x2N+2+ j := u j, and we assume that s < N. When s = N, (33)
reduces to (31), and because this formula is purely algebraic, it is easy to directly verify that
it solves the system. As usual, x1 < x2 < . . . < x2N−1 < x2N .

To begin, we consider the function

�( x1, . . . , x2N+2+M ) =
2N+2+M∏

i< j

(x j − xi)
2αiα j . (A.1)

Our strategy is to choose the αi (i.e. the charges of the chiral operators) such that for 1 � i � 2N,

[
κ

4
∂2

i +
2N∑
j �=i

(
∂ j

x j − xi
− θ1

(x j − xi)2

)
+ ∂2N+1

x2N+1 − xi

+ ∂2N+2

x2N+2 − xi
− �s

(x2N+1 − xi)2
− �s

(x2N+2 − xi)2

]
� =

2N+2+M∑
k=2N+3

∂k(. . .), (A.2)

where we recognize the differential operator of the ith null-state PDE (13) on the left side of
(A.2), and then integrate x2N+3, . . . , x2N+2+M on both sides of (A.2) around nonintersecting
closed contours �1, . . . , �M such as Pochhammer contours entwining pairs of the points
x1, . . . , x2N+2 (figure 6). Integration on the right side gives zero. On the left side, the integrand
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is a smooth function of x1, . . . , x2N+M+2 because the contours do not intersect. Thus, we may
commute each differentiation with each integration to find that the M-fold integral

∮
� solves

the system (13).
With some algebra, we find that for any choice of {h j}, {α j}, M ∈ Z

+, and 1 � i � 2N,⎡
⎣κ

4
∂2

i +
2N+2+M∑

j �=i

(
∂ j

x j − xi
− h j

(x j − xi)2

)⎤⎦�

=

⎡
⎢⎣2N+2+M∑

j,k �=i
j �=k

α jαk(κα2
i − 1)

(x j − xi)(xk − xi)
+

2N+2+M∑
j �=i

αiα j(καiα j − κ/2 + 2) − h j

(x j − xi)2

⎤
⎥⎦�.

(A.3)

If we set h j = θ1 for 1 � j � 2N, h j = �s for j = 2N +1, 2N +2, and hj = 1 for j > 2N +2
(the conformal weight of the V± chiral operators that generate screening operators), then for
1 � i � 2N, we can write (A.3) as⎡
⎣κ

4
∂2

i +
2N∑
j �=i

(
∂ j

x j − xi
− θ1

(x j − xi)2

)
+ ∂2N+1

x2N+1 − xi
+ ∂2N+2

x2N+2 − xi

− �s

(x2N+1 − xi)2
− �s

(x2N+2 − xi)2

]
� =

2N+2+M∑
k=2N+3

∂k

(
− �

xk − xi

)

+

⎡
⎢⎣2N+2+M∑

j,k �=i
j �=k

α jαk
(
κα2

i − 1
)

(x j − xi)(xk − xi)
+

2N+2+M∑
j �=i

αiα j(καiα j − κ/2 + 2) − h j

(x j − xi)2

⎤
⎥⎦�.

(A.4)

Next, we choose a particular i ∈ {1, . . . , 2N}. If we set

αi = α−
1,2 = 1/

√
κ, α j = α0 ± √

α0 + h j, j �= i, (A.5)

then the term in brackets on the right side of (A.4) vanishes, giving the desired form (A.2). In
order to satisfy (A.5) for all 1 � i � 2N, we need

α j = α−
1,2, 1 � j � 2N, (A.6)

α j = α±
0,s, 2N + 1 � j � 2N + 2, (A.7)

α j = α±, 2N + 3 � j � 2N + 2 + M. (A.8)

Explicit formulas for (A.6)–(A.8) are given by (29). If we make this choice, then
∮

� solves
the 2N null-state equations.

To finish, we choose M and the signs of the square roots in (A.7), (A.8) so F := ∮
�

solves the conformal Ward identities (14)–(16) too. This happens if the sum of the powers
in � involving the screening charge α j equals negative two for each j � 2N + 3. We now
motivate this claim. The Ward identities dictate that F must have the conformally covariant
form (17), which is equivalent to demanding that the function

G(x1, . . . , x2N+2) := (x2N+2 − x2N+1)
2�s

2N−1∏
j=1, odd

(x j+1 − x j)
2θ1 F(x1, . . . , x2N+2) (A.9)
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= (x2N+2 − x2N+1)
[16s2−(κ−4)2]/8κ

2N−1∏
j=1,odd

(x j+1 − x j)
6/κ−1 (A.10)

×
∮

. . .

∮
�(x1, . . . , x2N+2+M )dx2N+3 . . . dx2N+2+M (A.11)

only depends on a set of 2N−1 independent cross-ratios that can be formed from x1, . . . , x2N+2.
In particular, we choose

η j = f (x j), j = 2, . . . , 2N − 2, 2N + 1, 2N + 2, f (x) := (x − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − x)
,

(A.12)

and we note that f (x1) = 0 < η2 < η3 < . . . < η2N−2 < f (x2N−1) = 1 < f (x2N ) = ∞.
Then this condition amounts to requiring that G satisfy

G(x1, x2, . . . , x2N−2, x2N−1, x2N; x2N+1, x2N+2) = G(0, η2, . . . , η2N−2, 1,∞; η2N+1, η2N+2).

(A.13)

Because the right side must ultimately be finite (and this requirement fixes M once the signs in
(A.7, A.8) are chosen), we momentarily ignore all of its infinite factors. Thus, the jth integral
on the left side of (A.13) has the form∫ 2N+2∏

k=1

(xk − x j)
βk

2N+2+M∏
l=2N+3

l �= j

(xl − x j)
βl dx j, (A.14)

and the jth integral on the right side of (A.13) has the form (using η j instead of x j for our
symbol of integration)∫

η
β1
j (1 − η j)

β2N−1

2N+2∏
k=2

k �=2N−1,2N

(ηk − η j)
βk

2N+2+M∏
l=2N+3

l �= j

(ηl − η j)
βl dη j. (A.15)

(We note that the integrand of (A.14) contains an extra factor that was ignored in (A.15) when
x2N was set to infinity.) The simplest way to achieve the equality in (A.13) is for these two
integrals to be the same up to algebraic prefactors. Upon introducing the change of variables

η j = f (x j), j �= 1, 2N − 1, 2N, (A.16)

with f defined in (A.12), the integral (A.15) transforms into∫ 2N+2∏
k=1

k �=2N

(
xk − x j

x2N − x j

)βk 2N+2+M∏
l=2N+3

l �= j

(
xl − x j

x2N − x j

)βl dx j

(x2N − x j)2
, (A.17)

times an algebraic prefactor whose explicit formula is presently unimportant. The main point
for now is that in order to match the integral in (A.17) with that in (A.14), we must have

β2N = −β1 − . . . − β j−1 − β j+1 − . . . − β2N−1 − β2N+1 − . . . − β2N+M+2 − 2. (A.18)

Thus the sum of the powers in the integrand of the jth integral (A.14) appearing in
∮

� (when
that integral is considered to be evaluated first) should equal negative two. This must be true
for all j ∈ {2N + 3, . . . , 2N + M}. We note that this requirement is satisfied if all of the α j

in (A.1) sum to 2α0, with 2α0 = α+ + α− the background charge; this is the Coulomb gas
neutrality condition [23]:

− 2 =
∑
i�= j

βi = 2α j

∑
i�= j

αi = 2α j

(∑
i

αi − α j

)
= 2α±

(∑
i

αi − α±

)

⇐⇒
∑

i

αi = 2α0. (A.19)
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(In (A.19), we have used the identities α+ + α− = 2α0 and α+α− = −1.) Thus, we should
choose M and the signs of the square roots in (A.7), (A.8) so the total charge

∑
j α j equals 2α0

and
∮

� therefore solves the Ward identities. We suppose that m+ (resp. m−) of the screening
charges equal α+ (resp. α−) with m+ + m− = M necessarily. Then the total charge is

2α0 =
∑

j

α j = 2Nα−
1,2 + α±

0,s + α±
0,s + m+α+ + m−α− (A.20)

= −Nα− + α+ + (1 ± s)α−/2 + (1 ± s)α−/2 + m+α+ + m−α− (A.21)

=
⎧⎨
⎩

(m+ + 1)α+ + (−N + s + m− + 1)α− ++
(m+ + 1)α+ + (−N − s + m− + 1)α− −−
(m+ + 1)α+ + (−N + m− + 1)α− +−

. (A.22)

The ++ (resp. −−) case corresponds to using the + (resp. −) sign for both α0,s, and the +−
case corresponds to using the + sign for one of the α0,s and the − sign for the other. In order
for these expressions to equal 2α0, we need the coefficients of α+ and α− in (A.22) to equal
one. Therefore, m+ = 0 and m− = M, so all M screening charges use the − sign. The number
of screening charges is thus given by

M =
⎧⎨
⎩

N − s ++
N + s −−
N +−

. (A.23)

The ++ case is used exclusively in this paper because it apparently contains all of the pinch-
point densities when N = 1, 2 and 3. We anticipate that the ++ case contains all pinch-point
densities for all N ∈ Z

+. Moreover, we see that these solutions span a subspace of a larger
solution space containing all cases in (A.23) (among possibly more solutions). (To explicitly
show that

∮
� satisfies the conformal Ward identities (14–16), we can check that relation

(A.13) is satisfied by introducing the substitution (A.16) on the right side and performing
some straightforward algebra.)
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[8] Bauer M, Bernard D and Kytölä K 2005 Multiple Schramm–Loewner evolutions and statistical mechanics

martingales J. Stat. Phys. 120 1125–63
[9] Beffara V 2008 The dimensions of the SLE curves Ann. Probab. 36 1421–52

[10] Gruzberg I A 2006 Stochastic geometry of critical curves, Schramm–Loewner evolutions, and conformal field
theory J. Phys. A: Math. Gen. 39 12601–56

[11] Lawler G, Schramm O and Werner W 2001 Values of Brownian intersection exponents I: half-plane exponents
Acta Math. 187 237–73

[12] Duminil-Copin H and Smirnov S 2001 Conformal invariance of lattice models arXiv:1109.1549v4 [math.PR]

44

http://dx.doi.org/10.1088/0305-4470/14/5/013
http://dx.doi.org/10.1088/0305-4470/10/11/008
http://dx.doi.org/10.1103/PhysRevLett.58.2325
http://dx.doi.org/10.1103/PhysRevLett.62.3054
http://dx.doi.org/10.1088/1742-5468/2009/02/P02028
http://dx.doi.org/10.1103/PhysRevA.46.6252
http://dx.doi.org/10.1016/0370-1573(89)90042-2
http://dx.doi.org/10.1007/s10955-005-7002-5
http://dx.doi.org/10.1214/07-AOP364
http://dx.doi.org/10.1088/0305-4470/39/41/S01
http://dx.doi.org/10.1007/BF02392618
http://arxiv.org/abs/1109.1549v4


J. Phys. A: Math. Theor. 45 (2012) 505002 S M Flores et al

[13] Temperley N and Lieb E 1971 Relations between the ‘percolation’ and ‘colouring’ problem and other graph-
theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem
Proc. R. Soc. A 322 251–80

[14] Di Francesco P, Golinelli O and Guitter E 1997 Meanders and the Temperley–Lieb algebra Commun. Math.
Phys. 186 1–59

[15] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Infinite conformal symmetry in two-dimensional
quantum field theory Nucl. Phys. B 241 333–80

[16] Bauer M and Bernard D 2003 Conformal field theories of stochastic Loewner evolutions Commun. Math.
Phys. 239 493–521

[17] Cardy J 1984 Conformal invariance and surface critical behavior Nucl. Phys. B 240 514–32
[18] Simmons J J H, Kleban P, Flores S M and Ziff R M 2011 Cluster densities at 2-D critical points in rectangular

geometries J. Phys. A: Math. Theor. 44 385002
[19] Rushkin I, Bettelheim E, Gruzberg I A and Wiegmann P 2007 Critical curves in conformally invariant statistical

systems J. Phys. A: Math. Theor. 40 2165–95
[20] Smirnov S 2006 Towards conformal invariance of 2D lattice models Proc. Int. Congr. Math. 2 1421–52
[21] Flores S M, Kleban P and Ziff R M 2012 Partition functions and crossing formulas for critical systems in

polygons (in preparation)
[22] Flores S M 2012 Correlation functions in two-dimensional critical systems with conformal symmetry

PhD Thesis University of Michigan
[23] Dotsenko V S and Fateev V A 1984 Conformal algebra and multipoint correlation functions in 2D statistical

models Nucl. Phys. B 240 312–48
[24] Cardy J 2004 Calogero–Sutherland model and bulk-boundary correlations in conformal field theory Phys. Lett.

B 582 121–6
[25] Doyon B and Cardy J 2007 Calogero–Sutherland eigenfunctions with mixed boundary conditions and conformal

field theory correlators J. Phys. A: Math. Theor. 40 2509–40
[26] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (Minneapolis, MN: Feshbach)
[27] Exton H 1976 Multiple Hypergeometric Functions and Applications (New York: Wiley)
[28] Cardy J 1992 Critical percolation in finite geometries J. Phys. A: Math. Gen. 25 L201–6
[29] Simmons J J H and Kleban P 2011 Complete conformal field theory solution of a chiral six-point correlation

function J. Phys. A: Math. Theor. 44 315403
[30] Swendsen R S and Wang J S 1987 Nonuniversal critical dynamics in Monte Carlo simulations Phys. Rev.

Lett. 58 86–88
[31] Driscoll T A and Trefethen L N 2002 Schwarz–Christoffel Mapping (Cambridge: Cambridge University Press)
[32] Gunn J M F and Ortuño M 1985 Percolation and motion in a simple random environment J. Phys. A: Math.

Gen. 18 L1095–101
[33] Grassberger P 1986 On the hull of two-dimensional percolation clusters J. Phys. A: Math. Gen. 19 2675–7
[34] Ziff R M 1998 Hull-generating walks Physica D 38 377–83
[35] Weinrib A and Trugman S Z 1985 New kinetic walk and percolation perimeters Phys. Rev. B 31 2993–7
[36] Kim D and Joseph I 1974 Exact transition temperature of the Potts model with q states per site for the triangular

and honeycomb lattices J. Phys. C: Solid State Phys. 7 L167–9
[37] Cardy J 1987 Conformal invariance Phase Transitions and Critical Phenomena vol 11 ed C Domb and

J L Lebowitz (London: Academic) p 55
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