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ABSTRACT

The problem of interest is the unstable growth of structure at density transitions affected by blast waves, which arise
in natural environments such as core-collapse supernovae and in laboratory experiments. The resulting spikes of
dense material, which penetrate the less dense material, develop broadened tips, but the degree of broadening varies
substantially across both experiments and simulations. The variable broadening presumably produces variations
in the drag experienced by the spike tips as they penetrate the less dense material. The present work has used
semianalytic theory to address the question of how the variation in drag might affect the spike penetration, for cases
in which the post-shock interface deceleration can be described by a power law in a normalized time variable. It
did so by following the evolution of structure on the interface through the initial shock passage, the subsequent
small-amplitude phase of Rayleigh–Taylor instability growth, and the later phase in which the spike growth involves
the competition of buoyancy and drag. In all phases, the expansion of the system during its evolution was accounted
for and was important. The calculated spike length is strongly affected by the drag attributed to spike tip broadening.
One finds from such a calculation that it is not unreasonable for narrow spikes to keep up with the shock front of
the blast wave. The implication is that the accuracy of prediction of spike penetration and consequent structure by
simulations very likely depends on how accurately they treat the broadening of the spike tips and the associated
drag. Experimental validation of spike morphology in simulations would be useful.
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1. INTRODUCTION

Experiments, simulations, and observations in nature have
long examined the behavior of the Rayleigh–Taylor (RT) insta-
bility (Rayleigh 1900; Taylor 1950), driven by the buoyancy of
one fluid layer relative to another. Unstable buoyancy can de-
velop by heating of a fluid layer that is deeper within a gravita-
tional potential well, by the deceleration of a denser fluid layer
against a less dense layer, or by other means. More recently,
the study of systems driven by shock waves made evident the
Richtmyer–Meshkov (RM) process (Richtmyer 1960; Meshkov
1969; not strictly speaking an instability), in which the deposi-
tion of vorticity as a shock wave crosses an interface leads the
interface to develop structure over time. A blast wave is a shock
front followed by a deceleration, produced when a shock wave
that is no longer sustained is overtaken by a rarefaction. When a
blast wave encounters transitions in a fluid where the density de-
creases, the resulting unstable dynamics is a combination of RM
and RT. Such systems are extremely common in astrophysics,
where blast waves are produced by any strong but temporary
release of energy and where they have many opportunities to
encounter transitions in fluid density. Perhaps the archetypical
example is the blast wave produced in a core-collapse supernova
(SN), which proceeds to cross several such transitions in density
as it traverses the stellar envelope. Here we are concerned with
a specific and mysterious aspect of blast-wave-driven (BWD)
instabilities, known as “spike penetration.”

In the jargon of interface instabilities, spikes are the regions
of denser material that penetrate beyond the initial interface into
the less dense material. These are contrasted with bubbles, which
are the converse. The nomenclature arises from RT processes
in Earth’s gravitational field, where the bubbles rise and the
spikes fall. The equations that describe the spikes and bubbles
are identical, but their nonlinear structure is not. The spikes are

of greater interest in certain contexts. In core-collapse SNe, they
carry the inner material outward. If they penetrate far enough,
spikes from inner layers can in principle deliver material into
the structures produced by instabilities at outer interfaces, as is
seen for example in the modeling of Fryxell, Arnett, and Muller
(Arnett et al. 1989; Fryxell et al. 1991; Muller et al. 1991) but not
in the different models of Kifonidis et al. (2000, 2003, 2006). In
present-day experiments at high energy density, measurements
of spike structure are far more accurate than those of bubble
structure because the spikes are formed by more dense material
in a less dense background. These considerations motivate our
focus here on the spikes as such.

Early experiments with RM processes in compressible flows
involved the study of systems having small changes in density
(low “Atwood” number) and/or weak shock waves (see Jacobs
& Sheeley 1996 and references therein). In early work at high
Mach number, there was some speculation that RM spikes
would never prove able to overtake the driving shock wave
(Dimonte et al. 1996). In contrast to these expectations, RM
at high Mach number soon proved able to produce spikes
that overtook and distorted the shock wave itself (Glendinning
et al. 2003). In retrospect, at least for some classes of initial
conditions, this is strictly a matter of the relative velocities at
which the spikes and the shock advance from the location where
one would find an unperturbed interface (the “mean interface”
location). This is clearly explained, and applied to astrophysical
observations of certain supernova remnants (SNRs), in work
by Miles (2009). Pure RT instabilities, in contrast, develop at
decelerating interfaces in the absence of shock waves so that
there is no interaction of spikes with a shock.

In BWD instabilities, there is the potential for the spikes
and the shock front to interact. However, no simulation to date
has (to my knowledge) produced a spike that overtook the
shock front, with the exception of (at least) one unpublished
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two-dimensional simulation in which overtaking occurred only
on axis (Aaron Miles 2009, private communication). In contrast,
two experimental studies have seen evidence of spikes that over-
take shock waves (Drake et al. 2004; Kuranz et al. 2010). This
is not, however, the only difference. The morphology of the
spikes (i.e., their lateral structure) differs greatly among simula-
tions and even among experiments studying BWD instabilities.
From comparing the simulations, it is not clear to what extent
the differences among them arise from the behavior of the nu-
merical scheme at the grid scale, from differences in equations
of state, or from other causes. In addition, because the motions
of the spike material relative to the surrounding fluid are very
subsonic, large differences in structure may result from small
variations in vorticity (in either simulations or experiments).

The variation in one aspect of spike morphology might
plausibly account for the variations in spike penetration. This
is the amount of drag produced by the spike tip. In classic RT
systems (Jacobs & Catton 1988), the spike tip develops a broad,
mushroom-like head in consequence of lift forces generated
by shear flows near the tip. In the strongly nonlinear phase,
the evolution of spike length is determined by the competition
between buoyant forces and drag forces (see Dimonte 2000 and
references therein). The drag forces in turn depend upon the
projected area of the mushroom tip (and also in principle upon
its shape). All else being equal, spikes with smaller spreading
near the tip would be expected to penetrate further. My goal here
is to quantitatively explore the implications. Unfortunately, the
required calculation is not trivial.

In order to address the connection of spike penetration and
spike tip broadening, we will consider here a description of
the dynamics of evolving spikes, aimed at addressing the
questions just raised. Our approach involves some limitations
and simplifications. The analysis here is planar, as are the
relevant experiments to date. We will divide the evolution into
two phases. The first phase will be a linear growth phase, which
will be taken to last until the amplitude of the perturbation
reaches 10% of its wavelength. After this, we will treat the
evolution according to a standard buoyancy-drag model. This
approach leaves out the transition of the evolution from strictly
linear to strongly nonlinear, during which, for example, the
harmonic content of the perturbations increases and the growth
rate decreases (Remington et al. 1995). This might result in
some difference in the location of the spikes but will not affect
their terminal velocity or whether a regime exists in which they
can overtake the forward shock, which is our principal interest
here.

We will consider only the growth of the spikes beyond the
location of the mean interface. We will show that a power-law
deceleration of the interface is a sensible model and will use this
to produce and analyze the self-similar structure of the material
between the forward shock and the mean interface. Under
certain assumptions, one could also produce a self-similar model
of the material between the reverse shock and the interface,
following Chevalier (1982), and could treat both bubbles and
spikes. However, as the spikes are more accurately observed
in experiments and of substantial interest in core-collapse SNe,
this will be our focus here.

Recent work has identified one other mechanism that can af-
fect bubble or spike penetration in RT driven by a steady or
slowly varying acceleration. This is the accumulation of vortic-
ity within the structure. This has been observed in simulations
(Glimm et al. 2002; Ramaprabhu et al. 2006; Betti & Sanz 2006;
Wei & Livescu 2011) and in experiments (Wilkinson & Jacobs

2007). None of this work has explored the case of the steadily
decreasing acceleration encountered in BWD instabilities, for
which there will be less accumulation of vorticity in the struc-
tures. Thus, the potential importance of vorticity accumulation
for this case is unclear. If this effect were important, it ought to
be present in the simulations of BWD cases as well. Also, in
the context of the present discussion, this effect is the opposite
of that needed to explain the difference between the existing
simulations and experiments. Correspondingly, we focus here
on the question raised above, seeking to quantify the effects that
spike tip drag may have on spike penetration.

Finally, it is worthwhile to state that the applicability of
the present analysis to thermonuclear SNe is at best uncertain.
The thermonuclear burning does produce hot, buoyant matter
that drives RT instabilities. However, white dwarf stars do not
initially contain composition interfaces within their volume,
and in addition the explosion involves the release of energy
throughout the star rather than at its core, so it seems unlikely
that the development of structure in the explosion can be
accurately described as a BWD instability at composition
interfaces. That said, if the speculation of Miles (2009) regarding
the potential that the structure is strongly affected by initial
conditions is correct, then some of the discussion here regarding
the interplay of RM and RT will be relevant.

2. THEORETICAL CONTEXT

Here we discuss the theoretical models used below and the
constraints on their validity.

Buoyancy-driven, unstable hydrodynamic processes often
drive the growth of structure in an initially stratified medium. In
general, modulations in the density, relative to the background,
stratified state, are unstable when the gradients of pressure and
entropy are parallel (see chap. 1 of Landau & Lifshitz 1987 or
Drake 2005). This implies, for the case generally described as
the RT instability, that such modulations are unstable in systems
having opposed gradients of density and pressure. These are the
cases of specific interest here. In such cases, the background
pressure gradient creates a background acceleration. In the lab
frame this acceleration is −∇po/ρo, where the background pres-
sure and density are po and ρo, respectively. In the non-inertial
frame of the interface or of the shock, the acceleration, a, is of
opposite sign so a = ∇po/ρo. This acceleration is generally
designated as g, by analogy to gravitational acceleration. (In
gravitationally dominated systems it is gravity that establishes
the background pressure gradient.) In dynamic systems, phe-
nomena such as the accumulation of matter in a shocked layer
establish ∇po. The stratification of the density typically occurs
in layers orthogonal to ∇po. In general, the stratification may
involve a continuous change in density, as in a gravitationally
bound hydrostatic atmosphere, or a relatively abrupt change (an
interface), as when two regions of distinct composition are in
contact. Our focus here will be on the second case, which occurs
for example in core-collapse SNe or SNRs as an initial transition
region evolves into an abrupt interface preceded by a forward
shock and followed by a reverse shock. A similar structure de-
velops after a blast wave crosses the interface between disparate
materials in laboratory experiments (Ryutov et al. 1999; Kuranz
et al. 2009b). We will refer to the density on the denser side of
the interface as ρ1, and to the (smaller) density on the less dense
side of the interface as ρ2.

The fundamental equations used to describe the physical
system in the following are the Euler equations, which may
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be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p, and (2)

∂p

∂t
+ u · ∇p = −γp∇ · u, (3)

where ρ is mass density, u is fluid velocity, p is pressure, and γ
is related to the equation of state as is described just below. The
models of the RT instability used below require only the first
two of these equations, and so depend upon their applicability
but not upon the equation of state.

The equation of state enters here in determining the compres-
sion produced by the shock wave and the post-shock interface
velocity, in Equation (5) below. In order to obtain a relatively
tractable description of the unstable dynamics, we need to de-
fine a relatively simple treatment of the equation of state. Here
we define γ as a typical polytropic index such that pressure p
and internal energy ε are related as ε = p/(γ − 1) and p ∝ ργ .
For a fully ionized plasma state with negligible radiation pres-
sure, γ approaches 5/3. If the radiation pressure is dominant,
γ = 4/3. In an actively ionizing material, γ is near 4/3 but 1.4
is often a better value. As a given system evolves among these
states, in core-collapse SNe or in laboratory experiments after
the initial ionization, the changes in γ are smooth and gradual.
Here we take γ to be constant within any given material, noting
that only phase transitions or strong, anomalous changes in γ
with the parameters could change the conclusions reached here
regarding the question of interest. See also Ryutov et al. (1999)
on this point.

The Euler equations are applicable when processes not
included in them do not alter the dynamics and for non-
relativistic speeds. They may apply to ionizing matter, ionized
matter, matter in which the radiation pressure is dominant,
and simple degenerate matter. They may fail, for example, to
accurately describe the interface behavior if radiation energy
transport removes a significant fraction of the energy from the
shocked matter, or if viscous dissipation or viscous momentum
transport is significant. They can reasonably be applied to core-
collapse SNe and to laboratory experiments in which similar
structures are driven by strong shock waves, as is discussed
by Ryutov et al. (1999), and also to a wide range of other
astrophysical phenomena as seen in many simulation studies.
Working with these equations when they apply and when the
equation of state does not depart too greatly from γ -law-gas
behavior provides conclusions whose degree of quantitative
accuracy depends upon the impact of the neglected physical
processes and upon how close the equation of state is to the
model just described.

Within the context of the Euler equations, the validity of the
discussion that follows also requires that the blast wave that
drives the dynamics at the interface must be stable. If γ of either
shocked fluid becomes small enough, the density jump at the
shock front can become large enough that the thickness of the
blast wave becomes small on the scale of relevant transverse
dimensions. In this case coupling of waves on the shock with
those on the rarefaction can lead to a variant of the Vishniac
instability (Vishniac 1983; Vishniac & Ryu 1989; Doss 2011),

causing modulations of the entire layer. For the specific case
of non-radiating blast waves, Vishniac & Ryu (1989) conclude
that this threshold is approximately γ � 1.1. In addition, a post-
shock layer could become unstable if radiative losses cause the
shell of shocked material to become thin (Liang & Keilty 2000),
even if the value of γ as defined above was large.

3. ONE-DIMENSIONAL MOTION

3.1. Initial Interface Dynamics

In the systems of interest, there will be some initial modu-
lation on the interface and/or on the shock front that traverses
it. The shock will be a very strong shock and will move from
higher density to lower density as it crosses the interface. The
relevant one-dimensional dynamical analysis, used below, is
developed in Drake (2006). The details of the shock inter-
action with a modulated interface in this case set the stage
for the subsequent evolution. It will be most useful to work
in the “lab frame,” in which the upstream fluid is initially at
rest. Before it reaches the interface, the shock is of velocity
us1 in the denser material, so that the post-shock fluid veloc-
ity is up1 = 2us1/(γ + 1) and the post-shock sound speed is
c1 = up1

√
γ (γ − 1)/2. When the shock wave emerges into a

second material of much lower density, the interface releases at
a speed approaching umax = up1 + 2c1/(γ − 1). In terms of us1,
this is

umax = 2us1

(γ + 1)

(
1 +

√
2γ

(γ − 1)

)
, (4)

so that the post-shock interface moves faster than us1 for
γ < 4.2. The consequence is that the modulations on the
interface become inverted and compressed during the shock
passage. (Only for small enough density drops, not of interest
here (Drake 2006), does the modulation fail to invert during
shock passage.) The actual interface velocity uint (again ignoring
small effects of small modulations) is determined by the balance
between the pressure of the adiabatic rarefaction of the denser
material and the post-shock pressure in the less dense material,
pint. The equation describing this balance is written as

pint = 2

(γ + 1)
ρ1u

2
s1

(
1 − γ − 1

2

(uint − up1)

c1

)2γ /(γ−1)

= γ2 + 1

2
ρ2u

2
int, (5)

where the polytropic index of the (shocked) less dense material
is γ2, and ρ1 and ρ2 remain the initial, unshocked densities
of the more dense and less dense materials, respectively. This
equation can be solved for uint, but not in any convenient form.
Examining its solutions, one finds that uint is typically within
about 25% of 1.6us1 and is not strongly sensitive to any of the
other parameters so long as ρ1/ρ2 is of order five or larger.

A specific modulation is compressed by a factor of
(γ + 1)/(γ − 1) by the shock but is also stretched during the
inversion as the shock passes. If the initial peak-to-valley ampli-
tude is 2a so that the shock-transit time is Δt = 2a/us1, then the
amplitude of the inverted modulations after the shock passes,
ao, is approximately given by 2ao ∼ (1.6us1Δt − 2a) = 1.2a.
The result is that a modulation of initial approximate amplitude
−(ao/0.6) cos(kx), where k is the spatial wavenumber, becomes
a modulation of amplitude ao cos(kx) as the shock reaches its
end. (Here we ignore the introduction or removal of harmonic
components as shock passage occurs.) If we define time t = ts
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Figure 1. Shock position data from experiments, compared to power-law
models. In each case α is determined by a least-squares fit for specific values of
ts and us2o. The legend shows ts, us2o, and α. The corresponding values of t1
are 1.2, 1.4, and 1.6 ns.

(A color version of this figure is available in the online journal.)

as the moment the shock crosses the mean interface, then the
modulation has the shape ao cos(kx) at time tδ ≈ ts + (a/us1).
Given that our concern is with much longer evolution times, we
can take tδ = ts for our work here. The specific parameters of
our reference laboratory experiment confirm this. For character-
istic (Miles et al. 2004; Drake et al. 2004; Kuranz et al. 2009a)
experimental parameters (ts ∼ 2.5 ns, us1 ∼ 50 km s−1, and
a ∼ 2.5 μm), one has ao ∼ 1.5 μm and tδ ∼ ts + 0.05 ns, with
ts ∼ 2.5 ns. This confirms that it will suffice here to take tδ = ts .

Two related items are worth noting. First, the initial shock
velocity in the low-density fluid is us2o = (γ + 1)uint/2. For
uint as estimated above and γ = 1.4, this is us2o ∼ 1.9us1.
Second, practical simulations do not resolve the shock well
enough to follow the dynamics just described. To do so would
require accurate resolution of the multidimensional behavior of
the shock wave as it propagated through the modulations of
the interface, which are themselves often a small fraction of the
corresponding wavelength. This translates into a need for at least
thousands of zones per wavelength (and perhaps much more), a
substantial challenge in three dimensions. The evaluation of the
response of the interface at early times by practical simulations
is correspondingly suspect.

3.2. Interface Deceleration

In our systems of interest, the interface immediately begins
to decelerate as the shock wave in the lower-density region
accumulates mass. This effect is negligible during the short
time from t = ts − Δt/2 to t = ts + Δt/2 = tδ , but dominates
the longer-term behavior. In the experiments, the observed
shock positions included considerable variability that is not
understood in detail. A likely speculation is that variations in
the actual alignment of the target to the laser beams cause
variations in average laser ablation pressure. Figure 1 shows
relevant experimental data, with error bars corresponding only
to the well-understood sources of variability. One can treat
the deceleration as a power law in time, as for example does
Chevalier (1976). The figure shows three power-law models of
these data. The form of these models is Rs = Roτ

α μm, where

Rs is the shock position and

τ = t − to

ts − to
= t − to

t1
, (6)

where the time that the fitted curve reaches r = 0 is to. Note
that this time does not correspond to an actual shock location,
but rather serves to define the curve that approximates the
shock position after the shock crosses the interface. In addition,
Equation (6) defines t1, which will be useful below. One can see
in the figure that the experimental data in no sense demand such
a power-law dependence, but are reasonably consistent with
such a model. The point of using such a model is not to fit any
specific physical system, but rather to become able to explore
the interplay of spike tip broadening and spike penetration. We
will use the nominal, central fit for specific applications below.

The fit just described also implies an initial shock velocity
within the lower-density material (shocked foam in the reference
experiment), labeled above us2o. This is

us2o = αRo

t1
, (7)

where us2o is connected with the initial shock front velocity in
the denser material, us1, as described above. In developing the
fits shown in Figure 1, us2o was constrained to be consistent
with the value of us1 corresponding to the shock breakout time.

As the shock wave propagates into the low-density material
and decelerates, the shocked material develops density structure
for two reasons. First, the pressure gradient produced by the
deceleration implies that initially shocked material must expand
adiabatically as the shock moves beyond it. Second, the entire
shocked layer gradually expands as the post-shock pressure
slowly decreases as the shock slows. These effects cause the
density near the interface to be lower than the immediate post-
shock density. We can solve for the density profile on the
assumption that the shock wave has a power-law behavior and
propagates into a material of constant density, which allows us to
treat the shocked, low-density material as a self-similar system.
This is essentially Parker’s 1963 model of an expansion-driven
outer shock (Parker 1963). We need to understand this expansion
in order to account for its influence on the observed instability
growth.

As a similarity variable, one can use ξ = r/Rs , where r
is position, and we work in one dimension here. In this case
the Euler equations for density, momentum, and pressure can
be recast as ordinary differential equations, as for example in
Drake (2006). Here the relation of the physical variables ρ, u,
and p to the corresponding similarity variables Ω, U , and P is

ρ = ρ2Ω(ξ ), u = ṘsU (ξ ), and p = ρ2Ṙs
2
P (ξ ). The boundary

conditions at the shock front are strong-shock conditions, so
that the post-shock density, velocity, and pressure there are
ρ = ρ2(γ +1)/(γ −1), u = 2Ṙs/(γ +1), and p = 2ρ2Ṙ2

s /(γ +1),
respectively. Figure 2 shows the resulting profiles for γ = 1.4
and α = 0.8, which are reasonable for the experimental case.
The values are normalized to the boundary conditions just given.
At any given time, the interface-driven shock traces out as much
of this structure as is necessary to conserve mass, so that a
larger fraction of the profiles shown in the figure is present
at later times. Eventually, the pressure at the interface drops
below the value required for the self-similar solution, and the
interface stops and reverses direction. The self-similar model
then no longer applies and the expansion of the shocked material
becomes more rapid.
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Figure 2. Self-similar profiles of the shocked, low-density material for a power-
law shock deceleration such that Rs ∝ τ 0.8.

(A color version of this figure is available in the online journal.)

The conservation of mass can be expressed as

ρ2(Rs − Ro) =
∫ Rs

Rp

ρ(r)dr, (8)

where Rp is the interface (or “piston”) position. One can integrate
a profile like that of Figure 2 to find Rp as a function of Ro and Rs.
For γ = 1.4 and α = 0.8, as above, the corresponding function
is fit over the range of interest, to within 1% accuracy, by

Rp

Rs

= 0.717 + 0.547

(
Ro

Rs

)
− 0.454

(
Ro

Rs

)2

+ 0.193

(
Ro

Rs

)3

.

(9)
Given the power-law dependence of Rs on τ , one can fit Rp as a
power of τ for specific applications. For the experiments cited
above, one finds Rp = Roτ

αp = 150τ 0.708 in μm. Figure 3
compares this fit to a numerical solution of Equation (8). The
fit is accurate to 3%. The corresponding acceleration of the
interface is αp(αp − 1)Rot

−2
1 ταp−2 = −15.8τ−1.29 μm ns−2.

We will use this below.

3.3. Expansion of Shocked Matter

The shocked matter expands as the shock decelerates. One
consequence is that the length of a spike or bubble increases
both because of unstable growth and because of the expansion.
We will refer to the spikes henceforth but a similar analysis
could be developed for the bubbles, subject to understanding the
spatial profiles on the denser side of the interface. Locally, the
expansion occurs adiabatically when the pressure decreases as
material moves further from the shock. However, because lateral
pressure gradients smooth rapidly in the subsonic region where
the instability grows, the spikes and bubbles are at the same
pressure (at any given position along their length) and expand
corresponding to equal changes in pressure. The increase of
spike length includes contributions from both the length increase
due to expansion and the length increase due to the instability.
One can describe this, following Miles (2009), as

dh

dt
= uinst + ηh, (10)

where the length of the spike (the displacement of its tip from
the mean interface location) is h, uinst is the rate of increase
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Figure 3. Shock position and interface position. The dashed line shows the
power-law fit to interface position discussed in the text. The shock position
corresponds to γ = 1.4 and α = 0.8. The interface fit has αp = 0.708.

(A color version of this figure is available in the online journal.)

in the spike length due to the instability, and η is defined for
one-dimensional expansions as

η = 1

h

∫ Rt

Rp

∂ ln v

∂t
dr, (11)

where Rt is the spike tip location, so h = Rt − Rp, and v is the
specific volume (= 1/ρ), so ∂(ln v)/∂t is the fractional rate of
expansion. The fractional rate of expansion can be found, from
the continuity equation, Equation (1), to be

∂ ln v

∂t
= ∂u

∂r
+ u

∂ ln ρ

∂r
(12)

for planar expansions for which u = 0 in the frame of reference
of interest, which in this case is the frame of the interface. (In
other frames of reference, one finds a total derivative on the
left-hand side.)

The instability growth is best analyzed relative to the location
of the interface in the absence of instability (designated the mean
interface), and thus in the non-inertial frame of reference moving
with the interface. Thus, one seeks to evaluate Equations (10),
(11), and (12) in this frame. Sufficiently close to the interface
u ∼ 0 so η ∼ ∂u/∂r and the analysis of Miles (2009)
follows. We refer to this limit as the Miles approximation
below. Otherwise, we can use the self-similar solution described
above to evaluate η as a function of interface position and spike
position. In terms of this solution, u = Ṙs(U (ξ ) − U (ξp)),
Ṙs/Rs = α/(t1τ ), and

η = α

t1τ

1

(ξt − ξp)

∫ ξt

ξp

(
∂U (ξ )

∂ξ
+

(U (ξ ) − U (ξp))

Ω(ξ )

∂Ω(ξ )

∂ξ

)
dξ,

(13)
where ξt is the similarity variable corresponding to Rt.

Figure 4 shows the argument of the integral in Equation (13)
as solid lines. One proceeds as follows to find the factor η
at any given moment. First, one must integrate these curves
from (ξ − ξp) = 0 to (ξt − ξp) and then divide the result by
(ξt − ξp), thus obtaining an average of the values shown from
the interface to the spike tip. Second, to obtain properly scaled
physical units of inverse time, one must multiply the result by
Ṙs/Rs = α/(t1τ ). Figure 5 shows the full range of values of the
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Figure 4. Relative values of ∂(ln v)/∂t are shown against normalized distance
from the interface location, extending in each case to the shock. These are
evaluated for a power-law shock position having α = 0.8 in a fluid with γ = 1.4.
From bottom to top, these correspond to ξp = Rp/Rs of 0.85, 0.90, and 0.96. In
each case the dashed curve shows the Miles approximation and the solid curve
shows the full result.

(A color version of this figure is available in the online journal.)

average just described. For calculations that combine unstable
behavior with stretching, one can interpolate the value of η from
such results.

In working with Equation (10) one must evaluate the rate
of increase of the spike length due to the expansion and also
due to the instability. It is worthwhile to discuss this further,
as one may wonder what effect the expansion itself may have
on the instability. We note that the expansion stretches both
the bubbles and the spikes, but does not change the amount of
fluid that has penetrated beyond the mean interface location into
the other fluid (the amount of interpenetration). The instability
equations that govern the interpenetration of the fluids, in both
the linear and nonlinear regimes, do not depend explicitly on
density, but rather only on the Atwood number and hence on
the density ratio at the interface. Equation (12) implies that
the rate of stretching is continuous across the interface, and
thus that the density ratio remains constant. (One also observes
this in simulations.) The instability equations used below
are derived under the assumption of incompressibility, but
because the evolution of the spikes and bubbles is very subsonic,
these equations should remain accurate here. As a result, the time
dependence of the unstable growth can be taken directly from the
solutions of the instability equations, without needing to further
consider the effects of expansion. This conclusion would have to
be modified if we intended to follow the evolution of the modal
content of the interface modulations as the amplitude increases,
as the stretching does alter this. However, we will not need to
account for this effect because individual spikes or bubbles of
significant amplitude act largely independently (Dimonte 2000;
Kuranz et al. 2009a).

4. EVOLUTION OF TWO-DIMENSIONAL STRUCTURE

4.1. Linear Phase

Now we turn to the first phase of the evaluation of uinst,
while the amplitude of the modulations is small. The passage
of the shock over the modulated interface inverts, compresses,
and stretches the modulations, as discussed above. In addition, it
produces lateral velocity modulations on the interface (a process
often referred to as the deposition of vorticity). Here we consider
the specific case of a mean interface in the x–y plane. In the
absence of further acceleration of the interface, the modulations
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Figure 5. Values of ηt1τ/α evaluated from Equation (13), for a system with
α = 0.8 and γ = 1.4. The results are displayed against Ro/Rs , which implies
ξp as discussed above, and the spike length as a fraction of the interface-to-shock
distance, (ξt − ξp)/(1 − ξp).

(A color version of this figure is available in the online journal.)

would evolve via the RM process. We take the initial velocity in
the z-direction, w, immediately after shock passage, to be that
corresponding to the Richtmyer model of this process, so that

w(t = ts , z = 0) = wi = kaoAuint cos(kx), (14)

where k is the wavenumber of the modulation, z = 0 is the
location of the mean interface in its accelerating frame of
reference, and A is the post-shock Atwood number of the
interface, given by (ρ2 − ρ1)/(ρ2 + ρ1). Here we define A
as positive and note again that the interface inverts during
shock transit for cases of interest. There is some support in the
literature for the use of an average of the pre-shock and post-
shock modulation amplitudes in this expression. This arose from
the examination of simulation results (Meyer & Blewett 1972)
and experiments (Dimonte & Remington 1993; Dimonte et al.
1996), which show that this is a better model than the use of the
post-shock amplitude without consideration of the shock-transit
dynamics discussed above. I suggest that in reality the behavior
may be that corresponding to Equation (14), evaluated with the
actual post-shock amplitude including both compression and
stretching during shock transit. None of the prior literature has
considered this stretching in discussing RM. However, sorting
this out is not important to address the question that drives
the present paper. Dimonte & Ramaprabhu (2010) provide an
extensive review and discussion of the nonlinear evolution of
pure RM. In addition, Wouchuk (2001) provides a more general
model of the asymptotic growth rate of pure RM from linear
theory, beginning with the moment after the shock has crossed
the interface, in the context of prior RM theory. However, these
works are not relevant here where the interface decelerates
immediately following shock passage.

Fundamentally, in the BWD instability, the shock passage
creates an initial state for RT. Because the interface decelerates
from the moment the shock enters the lower-density material,
the further evolution of the modulations takes place under
conditions of RT instability. There is no period of time during
which one could say the modulations grow by RM effects
alone. We proceed here to apply the linear incompressible
theory to describe the subsequent RT growth. The fundamental
justification for this is that the compressible terms in the fluid
equations scale as Mach number squared, and the fastest rate
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of increase of the spike amplitude is of order 1/4 of the sound
speed in the shocked, low-density matter. Correspondingly, there
is very little compression associated with the instability growth
as such and compressible effects should be small. The specific
correction terms found in the compressible theory of the RT
instability (Mitchner & Landshoff 1964; Plesset & Hsieh 1964)
are of order g/(kc2

s ) as compared to 1, where the sound speed at
the interface is cs. The quantity g/(kc2

s ) is �0.1 and decreases
with time in the specific case we consider here. The compressible
effect that does matter here is the expansion discussed above and
accounted for below.

If the initial modulations are in the linear regime, as assumed
in the derivation of Equation (14), and as we will assume here,
then the corresponding linear RT theory is like that developed by
Chandrasekhar (1961). Here, for specific conditions of interest,
we quote the results of derivations identical to those he describes.
We take the interface to be abrupt, the densities to be constant
on either side of the interface, and the viscosity to be negligible.
Assuming a cos(kx) or equivalent x-dependence, the differential
equation for ζ , the displacement of an element of fluid relative
to its initial displacement from the mean interface, is

ρo

(
∂2
z − k2

)
∂2
t ζ = −g(∂zρo)k2ζ, (15)

where ∂q = ∂/∂q, ρo is the initial density profile, and in general
g is time dependent. Here when g is positive the pressure and
density gradients are opposed and instability growth occurs.
This equation also holds for ρo that varies only at the interface.
In contrast, the analogous differential equation for w includes a
term involving both ζ and the derivative of g in time, not easily
resolved. When ∂zρo ≈ 0 except at the interface, and under
boundary conditions such that ζ → 0 at z → ±∞, this implies
that ζ ∝ exp(−kz) for z > ζ and ζ ∝ exp(kz) for z < ζ .

With the above assumptions and results, the boundary condi-
tions give the general differential equation for ζ ,

∂2
t ζ − Agkζ = 0, (16)

valid for time-dependent g. For constant g this has the familiar
solutions proportional to exp(±√

Akgt). We consider here the
case in which g varies as a power law in time, so that

g = goτ
β. (17)

Here, τ is defined as above for a power-law interface position
Rp, in terms of a shock breakout time ts and a reference
time to, whose difference is t1. With Rp = Roτ

αp as above,
and maintaining the required sign for g relative to the above
derivations, one has go = αp(1 − αp)Ro/t2

1 .
The displacement of the interface, ζo, must be the same when

approached from either direction. Using the definition of τ to
transform Equation (16) to an equation for ζo(τ ), one finds

∂2
τ ζo − d2τβζo = 0, (18)

where d2 = (Akgot
2
1 ).

For the case of decelerating blast waves of interest here,
one wants a solution to this equation starting at time t = ts .
The power β is �1 and g starts at a finite value. For β = 0,
Equation (18) gives the solution discussed above, as it should.
For non-zero β, the solution involves the modified Bessel
functions of the first kind and is as follows:

ζo(τ ) = C1
√

τ I 1
β+2

(
2d

β + 2
τ

β

2 +1

)
+ C2

√
τ I −1

β+2

(
2d

β + 2
τ

β

2 +1

)
,

(19)
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Figure 6. Evolution of modulation amplitude (thick, blue) and velocity (thin,
red) under the influence of a power-law deceleration.

(A color version of this figure is available in the online journal.)

in which Iχ is the modified Bessel function of the first kind
with index χ and the constants are set to match the boundary
conditions. Taking the derivative of this equation gives the
equation for the velocity of the interface, which is

wo(τ ) = C1τ
(1+β)/2 I β+1

β+2

(
2d

β + 2
τ

β

2 +1

)

+ C2τ
(1+β)/2 I− β+1

β+2

(
2d

β + 2
τ

β

2 +1

)
. (20)

We evaluate the result for the specific case of the
experiments discussed above. For these experiments, ap-
proximate values of the parameters are A = 0.7, k =
2π/71 μm, ao = 1.5 μm, uint = 75.9 km s−1, go = 15.8 μm ns−2,
ts = 2.5 ns, β = −1.29, and wi = 11.3 μm ns−1, so that d =
1.4. In this case Equations (19) and (20) become

ζo(τ ) = 471
√

τ I−1.41(3.92τ 0.354)

− 470
√

τ I1.41(3.92τ 0.354) and (21)

wo(τ ) = 466τ−0.146 I−0.41(3.92τ 0.354)

− 465τ−0.146 I0.41(3.92τ 0.354). (22)

These are plotted in Figure 6, in which the thicker curve is ζo in
μm and the thinner curve is wo in km s−1.

For this specific case, we evaluate the effect of expansion
as discussed in Section 3.3, by evaluating the spike amplitude
equation (Equation (10)) using the results for the expansion rate
η whose normalized values are displayed in Figure 5. Numerical
integration of this equation gives the results shown in Figure 7.
For this specific case the amplitude corresponding to 10% of the
wavelength is 7.1 μm. One sees that this is reached quickly, at a
time of 1.3 in units of τ . This corresponds to a physical time of
4.3 ns (the shock breakout was at 2.5 ns). During the linear RT
phase one sees that the relative effect of the expansion is quite
small.

The equations developed here describe the instability growth
through its initial, linear phase. Before we turn to the nonlinear
phase, we should note that such a phase may not even exist. If
the initial modulations of the interface were large enough that
their post-shock amplitude were more than about 10% of their
wavelength, their further growth would be nonlinear from the
start.
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Figure 7. Evolution of modulation amplitude during the linear-theory RT growth
phase including (solid, blue) and not including (dashed, red) effects of expansion
under the influence of a power-law deceleration.

(A color version of this figure is available in the online journal.)

4.2. Buoyancy-drag Evolution

We consider next the evolution of a spike of nonlinear
amplitude, falling toward the region of higher pressure. The
corresponding basic equation for the evolution of the spike
velocity u in the direction of g (taken to be positive), under the
simplifying assumption that the density is constant throughout
the spike, is(

(ρ1 + ρ2)
du

dt
− (ρ1 − ρ2)g

)
V = −(Cρ2u

2)As, (23)

in which C is a drag coefficient, V is the volume of the spike,
and As is the area of the spike tip. The various terms in this
equation deserve some discussion. The factor of ρ2 on the
leftmost term in this equation represents the effect of the mass
of the less dense fluid displaced by the spike. In general the
coefficient on ρ2 depends on its shape and might not be unity
(see chap. 1 of Landau & Lifshitz 1987). The buoyancy force,
proportional to g, might be multiplied by a numerical factor if
the mixing of the fluid reduces the density contrast, but can be
taken to be unity here, to satisfy the physical constraint that as
ρ1 approaches zero the spike motion should approach free fall.
The drag coefficient C has a value of 2π for the cylindrical,
three-dimensional (3D) spikes that are relevant here (it is 6π
for two-dimensional spikes) but may also depend in detail on
other factors. Finally, the volume of the spike corresponds to
the material that has penetrated beyond the location of the mean
interface and the area of the spike tip is the cross-sectional area
transverse to the flow. Note that for bubbles the factor of ρ2
on the right-hand side would be replaced by ρ1. A much more
thorough discussion of all these terms may be found in Dimonte
(2000).

There are two common limits of the ratio V/As in the
literature, neither of which will apply in the end to the cases of
interest here. In the first limit, the spikes or bubbles are simple,
cylindrical structures, so that this ratio is the instantaneous
amplitude h of the spike (Dimonte 2000). This model has
effectively explained a number of experiments (Kuranz et al.
2009a) in which the observed shape of the spikes is more or
less cylindrical. In the second limit, bubbles exist over a large
range of spatial scales but are observed to have a self-similar
structure, so that V/As is proportional to the bubble width, often
designated λ and corresponding approximately to 2π/k. The
drag term then is smaller for the larger bubbles, which grow less
during the initial phase but eventually reach larger amplitude

than the smaller ones. Given a broad spectrum of initial bubbles
(or sufficient mode coupling), one can infer that the bubble
amplitude grows in time, t, as αBgt2, where αB is a coefficient
of order 0.05 whose exact value has been the subject of much
discussion (see Dimonte et al. 2004 and references therein).
In such many-mode systems the spikes end up squeezed in
between the dominant bubbles at any given time and so do not
exhibit the same self-similar behavior. They tend to have an αS ,
defined for spikes by analogy to αB for bubbles, that is larger
and that depends (see Dimonte 2000 and references therein) on
the density ratio ρ2/ρ1.

However, it is unclear whether astrophysical systems resem-
ble either of these limits. Observations of structure attributed
to RT instabilities, in the SNR E0102 (Hughes et al. 2000), in
the Crab pulsar wind nebula (Hester et al. 1996), and in the
Tycho SNR (Warren et al. 2005), seem dominated by distinctly
spaced, relatively large-scale structures rather than the sort of
finely structured, many-mode RT mix layer seen in some ex-
periments (Dimonte & Schneider 1996) and some simulations
(for example, see Cabot 2006), having very broad modulation
spectra as initial conditions. This may reflect the finite duration
of the acceleration in the astrophysical systems combined with
divergence, which limits the lateral scale of the largest structures
that can grow to large amplitude. Alternatively, it may reflect
the scale of the structures in the initial conditions. However, in
simulations at least the spikes in such systems are not simple
cylinders but rather grow “mushroom caps.” This can be seen,
for example, in simulations of SNRs (Chevalier et al. 1992) and
of SN 1987A (Fryxell et al. 1991; Kifonidis et al. 2006).

The physical origin of these mushroom caps is a well-known
shear flow effect. The fluid displaced by the spike tips must
flow more quickly than the adjacent fluid, lowering the pressure
at the spike tips and allowing them to expand laterally. The
important physical point here is that these mushroom caps would
be expected to increase the drag on the spikes. Qualitatively,
it seems clear that larger mushroom caps will produce more
drag. Quantitatively, the eddy flow behind the caps will change
the drag as would any turbulence. It is difficult to gain insight
from published simulation results about the connection between
spike tip structure and drag. Most of the simulation work is pure
RT or pure RM, and in the BWD work there is no obvious
correlation of spike tip shape with penetration (Miles et al.
2004). However, typically the publications show the shape of
the structures at few times, and it is the integrated behavior
over time that determines the penetration. In one case of pure
RT, when increased resolution produces narrower spikes they
penetrate further (Calder et al. 2002). It is important to also
note that the actual size of the mushroom caps as evaluated by
simulations is rather uncertain. The generation of the mushroom
caps involves small-scale, subsonic flow and regions of high
vorticity, which are not necessarily well resolved or accurately
calculated. Certainly different simulations, or even different
equation-of-state treatments in the same simulation (Miles et al.
2004), give varying results for the cap size. One must conclude
that while the presence and origin of the mushroom caps are
clear, their precise structural details and the resulting drag they
should produce are not well known.

Here we will deal with this uncertainty by formally defining
As as an effective area—the area of a cylindrical structure whose
drag equals that produced by the mushroom cap. We will then
express the ratio As/V as ψ2/h, where ψ = √

As/Astem, in
which Astem is the average cross-sectional area of the spike,
dominated by the stem but including the mushroom cap so that
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Figure 8. Distance from the mean interface is plotted against τ , for ψ = 1.5
and other parameters of the reference case (γ = 1.4, α = 0.8, αp = 0.71, β =
−1.29, go = 15.8 μm ns−2, A = 0.7, t1 = 1.4 ns). The solid blue line is
the computed position of the spike tip from the combination of buoyancy drag
effects and expansion, the red long-dashed line is without expansion, and the
green dashed line is the position of the shock.

(A color version of this figure is available in the online journal.)

the total volume is correct. Thus, ψ is approximately the ratio
of the cap radius to the stem radius. It may range in value from
one (or perhaps less for pointed spikes as seem to have been
observed; Kuranz et al. 2009a) to several. We will use 5 as
an upper limit. In general ψ may vary as the spikes evolve in
time, but we will treat it as constant to characterize the range of
possible behavior. With these definitions, and recognizing that
u = dh/dt , Equation (23) for 3D spikes becomes

h
d2h

dt2
+ (1 − A)πψ2

(
dh

dt

)2

− Agh = 0. (24)

For simplicity we will suppose that ψ is constant and continue
to use the previous model that g = goτ

β . We also note that,
once again, the rate of growth of the spikes does not depend
explicitly on density, so that the discussion of the previous
section regarding how to include the effects of expansion still
applies.

It is also worthwhile to emphasize a difference between the
present analysis and most models of pure RT in the literature.
The models in the literature (see Ramaprabhu & Dimonte 2005
and references therein) typically allow spikes or bubbles to grow
to nonlinear amplitude and then immediately assign them the
asymptotic velocity found by setting the second derivative in
Equation (23) equal to zero. However, the transition to this
velocity takes increasing time at high Atwood number, as can
be seen in Figure 9 of Ramaprabhu & Dimonte (2005). In the
present work, in contrast to the pure RT cases just discussed, we
solve for the time-dependent velocity using the buoyancy-drag
equation. This would be needed for pure RT for experiments
like those of interest and for the many astrophysical systems
that have A > 0.5. It is even more important when the system
is BWD because then the asymptotic velocity decreases with
time, greatly complicating any attempt to base an analysis on
this velocity.

In terms of the variable τ and other variables defined above,
Equation (24) becomes

h
d2h

dτ 2
+ (1 − A)πψ2

(
dh

dτ

)2

− Agot
2
1 τβh = 0. (25)

For specific values of the parameters, one can solve this
numerically and thus find uinst as is needed in Equation (10).
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Figure 9. Distance from the mean interface is plotted against τ , for variations
in spike tip drag. The parameters are as described in the text with ψ =1 (solid),
2 (long-dashed), and 5 (short-dashed). The thin, black short-dashed line is the
shock position.

(A color version of this figure is available in the online journal.)

One can then solve Equation (10) numerically, using the same
treatment of the expansion that was used above for the linear
theory. Figure 8 shows the results for ψ = 1.5 using the
parameters given in the caption and initiating the buoyancy-drag
calculation at τ = 1.3 when the spike amplitude has reached
7.1 μm, which is 10% of the initial modulation wavelength. One
can see that the effect of the expansion is to nearly double the
basic growth due to the instability. This is of the same order
as previous estimates (Miles et al. 2004; Kuranz et al. 2009b,
2009a). One can also see that for this value of ψ the spikes
would extend about 2/3 of the way from the mean interface to
the shock at τ ∼ 15, which corresponds to an experimental time
t ∼ 25 ns. At this time, the spikes would trail the forward shock
by about 100 μm.

5. RESULTS AND DISCUSSION

It is now finally possible to address the question that motivated
this study, and ask how variations in spike tip drag affect
spike penetration. This is done in Figure 9, for ψ = 1, 2,
and 5. For ψ = 1, corresponding to cylindrical spikes with
no tip broadening, the computed spike position exceeds the
shock position for the present reference model having α = 0.8.
However, the spikes actually would not penetrate (much) beyond
the shock. The present model does not evaluate the greatly
increased drag that spikes extending through the shock would
encounter. Such spikes would be expected to extend to the
shock, and potentially to distort it. A very modest amount of
increased drag makes a substantial difference in the computed
spike penetration. When the effective radius of the tip is only
twice that of the stem (ψ = 2), the spike is found to extend less
than half the distance from the mean interface to the shock. It is
again substantially shorter for ψ = 5.

The polytropic index γ and the shock position exponent α act
independently in this model. Increasing γ increases the shock-
to-interface distance, which more than doubles as γ increases
from 1.2 to 1.6. This is no surprise, as the immediate post-
shock compression decreases by a comparable amount. For the
specific experimental data discussed above, these limits (1.2 and
1.6) are beyond those reasonably allowed by the data. The spike
penetration decreases as γ increases, although the decrease is
typically not large. The net effect is that the spikes reach the
shock more readily for smaller values of γ , which produce
narrower shocked layers.
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Figure 10. Distance from the mean interface is plotted against τ , with the three parts of the figure showing variations in α as indicated. In all cases ψ = 1.77 and
γ = 1.2. In each case, the solid blue line is the computed position of the spike tip from the combination of buoyancy drag effects and expansion, the red long-dashed
line is without expansion, and the green dashed line is the position of the shock.

(A color version of this figure is available in the online journal.)

Figure 10 shows the impact of changing α over the range
of 0.75–0.85. The three cases shown correspond to the three
fits shown in Figure 1. Here again, the limits are somewhat
beyond those consistent with all the evidence about the reference
experiments. Note that both ts and t1 are different in these three
cases, so although the effect of the instability as such is the
same in the normalized units of τ , the physical time required to
reach this degree of penetration differs. That said, one sees that
increasing α corresponds to decreased total spike penetration,
although in the specific case shown the spikes are near the shock
for all values of α. (Note again that when the spikes are computed
by this model to be beyond the shock, realistically that means
they are at the shock.) The same trend occurs when the spikes
do not reach the shock, but the variation in spike penetration
with α is modest.

Thus, we see that the spike penetration distance depends very
strongly upon the shape (specifically the effective projected
area) of the spike tips. Within the context of the parameters
used here for our primary example, one would expect narrow
spikes to always reach the forward shock in BWD instabilities.
If this applied directly to the experiments that have seen nar-
row spikes (Kuranz et al. 2009a, 2010), the question would not
be why sometimes the spikes reach the shock, but rather why
they do not always do so. However, it would be overreaching
to draw such a specific conclusion from the present approxi-
mate model of the material properties and behavior. Recalling
that different simulations of the same problem find consider-
able variations in spike morphology, it would appear that the
amount of spike penetration found in simulations is significantly
uncertain.

As the calculation presented above is planar, some remarks
are in order regarding the dynamics of spherical expansions,
including core-collapse SNe and young SNRs. These systems
produce far more expansion than planar systems do, so that
the spikes present at late times have a length that was almost
entirely produced by expansion. However, it takes some growth
of structure to produce a spike that can be stretched by
the expansion. An implication of Equation (10) is that early
structure growth dominates the later spike length because it
is this structure that is stretched. This in turn implies that the
degree of RM vorticity deposition is central to the long-term
behavior, since this drives the early structure growth. We note
that core-collapse SN explosion modeling has yet to include
any systematic evaluation of how modulations at composition
interfaces may affect the subsequent structure, and that this is a
large lever.

Also in the context of astrophysics, the preponderance of
simulations using the piecewise parabolic method (PPM) should
not blind one to the fact that this is only one possible method.
On the one hand, in may be that PPM may be correct regarding
the spike tip dynamics. On the other hand, it may be that no
present method calculates the spike tip dynamics accurately.
If, for example, it turned out that the PPM method produces
unrealistically fat spike tips, then the challenge of successfully
modeling SN 1987A (Hammer et al. 2010) would be greatly
reduced.

6. CONCLUSION

In the present work I undertook to address a simple ques-
tion in the context of BWD instabilities. The context was the
penetration of spikes of dense material into a region of less
dense material in consequence of the passage of a blast wave.
The question was what range of effects spike tip broaden-
ing could have on the penetration of the spikes produced by
such instabilities when buoyancy causes the (RT) amplifica-
tion of structure initially produced by (RM) vorticity deposition
when the shock front in the blast wave encounters an inter-
face. The approach was to examine the evolution of a single
3D mode, which developed over time into independent spikes.
This type of dynamics has been present in a number of labora-
tory experiments and could be present in astrophysical contexts
where a surface is perturbed by a well-defined local modula-
tion. The question of interest had to be addressed in several
steps.

In the common geometry of experiments and core-collapse
SNe, where a shock front encounters an interface at which the
density decreases, any modulations of the interface are inverted
and stretched by the immediate rarefaction of the dense material
while also being shortened by shock compression. Vorticity
is also deposited across the interface. These elements were
addressed using a combination of standard RM theory and basic
fluid dynamics. This analysis revealed that the behavior of the
perturbation during the shock passage through it has a significant
impact on the post-shock state, creating an immediate reversal
of the phase of the perturbation for typical conditions. Prior
work on the RM process has often failed to pay attention to
this issue. The interface decelerates after the shock front leaves
it. It is useful to treat this deceleration as characterized by a
power law in time, enabling one to find the corresponding, self-
similar structure of the plasma properties between the shock
wave and the interface. Such a power-law model also provided
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a reasonable, although far from unique, description of some
experiments whose results were used as a reference case here.

During the interface deceleration, two things occur simultane-
ously—buoyancy causes RT growth while the structure present
is stretched by the ongoing rarefaction of the post-shock ma-
terial. Fortunately, these two effects act additively, so one can
evaluate them independently in formulating a differential equa-
tion for the spike growth. Unfortunately, the stretching is not
accurately represented by any simple model and depends on the
specific history of spike length, so one is fairly much stuck with
using numerical evaluations of the combined effects. I under-
took this first for the linear phase of RT growth and then for
the nonlinear phase in which the principal forces are those of
buoyancy and drag acting on established spikes. The calculation
ignored any potential intermediate phase in which the modulated
interface may have developed a more complex modal structure
before the spikes began to experience significant drag.

To address the question of interest, it was necessary to account
for the variations in drag that presumably correspond to differing
spike tip widths. I did this in the context of the buoyancy-drag
dynamics. The drag was characterized by a parameter, ψ , that is
approximately equal to the ratio of the spike tip diameter to the
spike-stem diameter, although in full detail it will be modified
by the impact of the shape of the spike tip on the drag and by the
relative volumes of the spike stem and spike tip. For a given set
of parameters, characterizing the initial post-shock modulations,
the long-term shock deceleration, the polytropic index, and the
relative size of the drag, it was then possible to evaluate the total
spike penetration to compare this with the shock position.

The results showed that the amount of spike penetration
depends very strongly upon the relative amount of drag. Narrow
spikes, such as have been observed in some experiments,
would often be expected to penetrate to the forward shock.
Spikes having noticeable spike tip broadening would rarely if
ever be expected to reach the forward shock, but the actual
degree of penetration would be quite sensitive to the actual
spike tip properties. Since the spreading of the spike tip is
a very subsonic process, small effects either in reality—such
as modest magnetic fields (Kuranz et al. 2010; Fryxell et al.
2010)—or in simulations—such as vorticity generation or
dissipation by the numerics—can readily change the result. It is
significant but unfortunate that the calculation of subsonic flows
affected substantially by vorticity, which produces the spike tip
broadening, turns out to have such leverage on the large-scale
dynamics. The implication is that one needs to find a way to
validate these codes, against relevant and adequately diagnosed
experiments, if one is to be able to believe that they correctly
evaluate the degree of spike penetration and the consequent
long-term implications for structure of astrophysical objects.
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