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Abstract
A Schrödinger representation approach is used to calculate the atom-field dynamics following
spontaneous emission by an atom in its excited state to a superposition of its two ground-state
sublevels, in the case where the frequency separation of the ground-state sublevels is large
compared to the excited-state decay rate. The emitted radiation is incident on a broadband
photodetector. Using a relatively simple model for the photodetector, we show how a
measurement of a photo-signal leaves the atom in a coherent superposition of the two ground
states. The relative phase between the two ground-state amplitudes can be interpreted in terms
of the temporal phase acquired in the time interval between spontaneous emission (viewed as a
quantum jump process) and detection. Alternatively, the phase can be associated with a spatial
phase of the entangled atom-field system; the source atom is projected into a state containing
this spatial phase when the emitted photon is detected.

1. Introduction

The theory of spontaneous emission in an atomic lambda
system is generally well understood, but recent experiments
demonstrating entanglement between the emitted photon’s
polarization and the resulting state of the atom have raised
new questions about the nature of the entanglement between
the spontaneously emitted radiation and the resulting state of
the atom [1–3]. In these experiments, an atom or solid-state
spin system having the level scheme shown in figure 1(a) is
prepared in its excited electronic state. Spontaneous emission
results in a superposition of the two ground-state sublevels of
the lambda scheme that is entangled with the spontaneously
emitted radiation. The direction, polarization and frequency of
the emitted field may be correlated with the final state of the
source atom. Atom-field entanglement has been demonstrated
in experiments where the ground-state coherence of the
lambda system is measured in correlation with the polarization
and direction of the emitted photon [4, 5]. In the case of
orthogonal optical transitions and nearly degenerate ground
states, the entanglement between the spontaneously emitted
photon and resulting source atom ground-state coherence is
well understood [4]. On the other hand, it is not immediately

obvious whether or not a post-selection measurement of the
photon’s polarization correlates with a specific source atom
ground-state coherence when the frequency separation ω21 of
the two ground states is much larger than its excited-state
decay rate [5, 2]. We present a model system in which both
the emission and detection processes are treated quantum
mechanically in the Schrödinger picture. Using this model,
we are able to follow the system’s evolution and show that
in certain limits, a fast photodetector can be used to exploit
the latent atom–photon entanglement from a lambda system,
even if the two transitions are frequency mismatched by
an amount greater than the spontaneous emission rate. A
similar result was reported by Economou et al in 2005;
however, our model features a quantum mechanical treatment
of the detection process which shows how the entanglement
is preserved and gives insight into the quantum eraser like
effect which leads to the entanglement [2, 5–7]. A related
problem has been addressed by Metz and Barrett, where the
authors analyse the case of interfering frequency-mismatched
photons from two different atoms, each in a separate
cavity [8].
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Figure 1. Level diagram depicting the eigenstates of the system.
The source atom is taken to be at X = 0 and the detector atoms
extend from X = X0 to X = X0 + L0.

2. Preservation of atom-field entanglement

In order to understand how measurement-induced atom-field
entanglement comes about in a lambda system, we construct a
fully quantum mechanical model of both the photon emission
and detection processes. The model consists of a source
atom with ground states |1〉 and |2〉 which are both coupled
via an optical dipole transition to excited state |3〉 (see
figure 1(a)). These ground states can represent hyperfine levels
of a single atom or electron spin eigenstates of a solid-state
system. The source atom is initially prepared in the excited
state |3〉 and then decays via spontaneous emission to the
states |1〉 and |2〉. A single-photon state is emitted from the
source atom. In the case of orthogonally polarized transitions,
it is known that the polarization of the emitted photon and
the resulting ground state of the source atom are entangled
[2, 4, 5]. The photon’s polarization state is rotated prior to
reaching the detector, in effect, mixing the two orthogonal
polarization components of the emitted radiation. The
correlated state of the atom-field system is then demonstrated
by a measurement of the ground-state atomic coherence,
performed conditionally on the detection of a photon.

To model this process, regardless of the frequency
separation of the ground-state sublevels, we take the detector
to consist of an ensemble of atoms having ground state
|g〉, dipole-coupled excited state |e〉, and a reservoir state
to which the excited state |e〉 decays (see figure 1(b)).
The excited-state decay occurs at the rate � and the decay
to the reservoir is intended to represent a ‘click’ at the
photodetector. It is assumed that the rate � is much larger
than the excited-state decay rate γ3 of the source atom as well
as the frequency difference ω21 of the ground-state sublevels.
The fast decay rate is crucial to the recovery of the ground-state
coherence. Our detector model can be considered to represent
a simple physical model for an avalanche photo-diode (APD)
(or photomultiplier tube (PMT)) operating in the Geiger mode.
In the case of an APD, a single photon creates a pair of carriers
in the active region of the detector and 1/� is related to the
timing resolution (jitter) of the detector. In principle, a narrow
band detector could contain frequency which-path information
about the spontaneously emitted radiation, which implies that
any ground-state coherence created by the emission process
is negligibly small. By choosing a large bandwidth of the
detector, represented by the decay rate �, such which-path
information is not present.

A measurement at the detector projects the source atom
into a coherent superposition of its ground-state sublevels
which is independent of the detection time, but depends on a
spatial phase ω21X0/c, where X0 is the distance from the source
atom to the entrance plane of the detector. In some sense,
the effect is similar to a ‘quantum-eraser’ effect [5], where the
which-path information of a decaying lambda quantum system
can be erased by another pulse followed by the fast decay
of the source atom [7]. Our result is unique in that it relies
on a fast decay rate in the detector, not the source atom, and
provides insight into the results observed in recent experiments
studying spin–photon interfaces [5, 9]. This atomic coherence
is the signature of atom-field entanglement, where the resulting
phase associated with the ground-state coherence of the
source atom is correlated with the projected measurement of
the spontaneously emitted photon. Alternatively, the relative
phase can be interpreted in terms of the temporal phase
acquired in the time interval between spontaneous emission
(viewed as a quantum jump process) and detection.

The calculation is carried out using the Schrödinger
representation and parallels that given in previous work
[10–12]. In order to focus on the effect of the frequency
mismatch of the two decay channels, several simplifications
are made. We consider an effective one-dimensional problem
in which the radiation striking the detector is assumed to
propagate in a single direction. In addition, the polarization
of the emitted radiation on both transitions is assumed to be
identical. If the polarizations are orthogonal, as is often the
case, one would use a polarizer to couple the two modes into a
single, linearly polarized field that is incident on the detector.
Of course, radiation from a localized source atom is emitted
in all directions. We are concerned here only with that portion
of the emitted radiation that strikes the detector.

The Hamiltonian for the atom-field system is

H =
∑

m

�ωdσ
m
ee +

∑
j

�ω ja
†
ja j

+
∑

m

∑
j

�g j
[
eik jXmσ m

+ a j − a†
j e−ik jXmσ m

−
]

+ �ω3σ
s
33 + �ω2σ

s
22

+
∑

j

∑
s=1,2

�g j,s
[
eik jXσ s

+a j − a†
j e−ik jXσ s

−
]
, (1)

where k j = ω jc, ωd is the transition frequency of the
detector atoms, σee, σ33 and σ22 are the population operators
|e〉〈e|, |3〉〈3| and |2〉〈2| for the source atom, respectively, σ s

±
are raising and lowering operators for the source atom, σ m

± are
raising and lowering operators for detector atom m, and a†

j and
a j are the usual raising and lowering operators for the field,
respectively. The zero of energy is taken as that associated
with the source atom in state |1〉 and all the detector atoms
in their ground states. As a consequence, �ωα (α = 2, 3)

is the energy of the state α of the source atom and �ωd is
the energy corresponding to one detector atom in its excited
state and all the others in their ground states. The atom-field
coupling strength for the source atom-field and detector atom-
field interactions are given by

g j,s = −i

(
ω j

2�ε0AL

)1/2

μ3s; s = 1, 2, (2a)

2



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 124020 J R Schaibley and P R Berman

g j = −i

(
ω j

2�ε0AL

)1/2

μd, (2b)

where μ3s is a source atom dipole matrix element (assumed
real) in the direction of the field polarization between the
states 〈3| and |s = 1, 2〉 , μd is a detector atom dipole matrix
element (assumed real) in the direction of the field polarization
between its excited and ground state, A is the cross-sectional
area of the detector, also equal to the cross-sectional area of
the quantization volume of our field, and L is the length of
the quantization volume. The source atom is taken to be at the
origin and the detector atoms are located in a cylinder whose
axis is the x-axis and whose end caps are located at X0 and
X0 + L0, with X0 > 0.

The state vector of the system in an interaction
representation is given by

|�〉 = b3,G,0(t)|3, G, 0〉 e−iω3t +
∑

j

b1,G, j(t)|1, G, k j〉 e−iω jt

+
∑

j

b2,G, j(t)|2, G, k j〉 e−i(ω2+ω j )t

+
∑

m

b1,m,0(t)|1, m, 0〉 e−iωdt

+
∑

m

b2,m,0(t)|2, m, 0〉 e−i(ω2+ωd )t, (3)

where the first subscript of the bs labels the state of the source
atom (1, 2, 3), the second subscript labels the state of the
detector atoms, |G〉 or |m〉 (|G〉 corresponds to all detector
atoms in their ground state |g〉, and |m〉 to detector atom m in
its excited state |e〉 and all other detector atoms in their ground
states), and the third subscript corresponds to the mode of the
single-photon radiation field, |0〉 or |k j〉. The final state of the
detector is not needed explicitly in the calculation at this stage,
so it is not included in the state vector.

Substituting the wavefunction into Schrödinger’s
equation, we find the equations of motion for the state
amplitudes,

ḃ1,G, j(t) = ig j,1 e−i(ω31−ω j )tb3,G,0(t)

+ i
∑

m

gj e−ik jXm e−i(ωd−ω j )tb1,m,0(t), (4a)

ḃ2,G, j(t) = ig j,2 e−i(ω32−ω j )tb3,G,0(t)

+ i
∑

m

gj e−ik jXm e−i(ωd−ω j )tb2,m,0(t), (4b)

ḃ1,m,0(t) = −i
∑

j

g j eik jXm e−i(ω j−ωd )tb1,G, j(t), (4c)

ḃ2,m,0(t) = −i
∑

j

g j eik jXm e−i(ω j−ωd )tb2,G, j(t), (4d)

ḃ3,G,0(t) = −i
∑
s=1,2

g j,s

∑
j

e−i(ω j−ω3s)tbs,G, j(t), (4e)

where ω32 = ω3 − ω2 and ω31 = ω3 − ω1.
It is convenient to move to a continuum description of the

radiation modes by replacing bj(t) with
√

2π
L b(k, t),

∑
j with(

L
2π

) ∫ ∞
−∞ dk and ω j with ωk = kc. With these substitutions,

the evolution equations become

ḃ1,G(k, t) = i

√
L

2π
g1 e−i(ω31−ωk )tb3,G,0(t)

+ i

√
L

2π

∑
m

gd e−ikXm e−i(ωd−ωk )tb1,m,0(t), (5a)

ḃ2,G(k, t) = i

√
L

2π
g2 e−i(ω32−ωk )tb3,G,0(t)

+ i

√
L

2π

∑
m

gd e−ikXm e−i(ωd−ωk )tb2,m,0(t), (5b)

ḃ1,m,0(t) = −igd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb1,G(k, t) dk,

(5c)

ḃ2,m,0(t) = −igd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb2,G(k, t) dk,

(5d)

ḃ3,G,0(t) = −i

√
L

2π

∑
s=1,2

gs

∫ ∞

−∞
e−i(ωk−ω3s )tbs,G(k, t) dk.

(5e)

In these equations, we have anticipated the Weisskopf–
Wigner approximation by evaluating the frequencies in the
various g’s at the corresponding atomic resonance frequencies,
namely

gs = −i

(
ω3s

2�ε0AL

)1/2

μ3s; s = 1, 2, (6a)

gd = −i

(
ωd

2�ε0AL

)1/2

μd . (6b)

If equations (5a) and (5b) are integrated formally and
substituted into equation (5e), and if the back action of the
detector atoms on the source atom is neglected, equation (5e)
becomes

ḃ3,G,0(t) = L

2π

∑
s=1,2

g2
s

∫ t

0
dt ′

∫ ∞

−∞
dk e−i(ωk−ω3s)(t−t ′)b3,G,0(t

′)

= − (γ3/2)b3,G,0(t), (7)

where

γ3 = 1

4�ε0Ac

(
ω31μ

2
31 + ω32μ

2
32

)
(8)

is the excited-state decay rate in our one-dimensional field
model (see also [12]). Thus, the initial state amplitude decays
as

b3,G,0(t) = e−γ3t/2
(t), (9)

where 
(t) is a Heaviside function.
The decay to the reservoir state of the detector atoms is

now incorporated into the equations for ḃ1,m,0(t) and ḃ2,m,0(t)
as

ḃ1,m,0(t) = − igd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb1,G(k, t) dk

− �

2
b1,m,0(t), (10a)

3
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ḃ2,m,0(t) = − igd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb2,G(k, t) dk

− �

2
b2,m,0(t). (10b)

If the decay rate � is large compared with γ3, the solution
of these equations is given approximately by the quasi-static
amplitudes,

b1,m,0(t) ≈ −2i

�
gd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb1,G(k, t) dk,

(11a)

b2,m,0(t) ≈ −2i

�
gd

√
L

2π

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb2,G(k, t) dk.

(11b)

Owing to the similarity of the equations for b1,m,0(t) and
b2,m,0(t), only the details of the b2,m,0(t) calculation is
presented. Inserting the expression for b2,m,0 into equation
(5b) and using equation (9), we obtain the equation of motion

ḃ2,G(k, t) = i

√
L

2π
g2 e−i(ω32−ωk )t e−γ3t/2
(t) + 2

�

L

2π
g2

d

×
∑

m

∫ ∞

−∞
ei(k′−k)Xm e−i(ωk′ −ωk )tb2,G(k′, t) dk′.

(12)

If we define a Fourier space state amplitude by

Bs,G(X, t) = 1√
2π

∫ ∞

−∞
eikX bs,G(k, t) dk, (13)

the equation of motion for the field amplitude B2,G(X, t)
becomes

Ḃ2,G(X, t) = i
√

Lg2 e−iω32t e−γ3t/2δ(X + ct)
(t)

+ 2

�
g2

dL
∑

m

δ(X − Xm + ct)B2,G(X, t). (14)

We convert the sum over m to an integral using∑
m

→ NA
∫ X0+L0

X0

dXm, (15)

where N is the density of detector atoms. In the limit L0 → ∞,
we find

Ḃ2,G(X, t) = i
√

Lg2 e−iω32t e−γ3t/2δ(X + ct)
(t)

− αc

2

(X − X0 + ct)B2,G(X, t), (16)

where

α = 2ωdNμ2
d

�ε0c�
(17)

is the absorption coefficient of the detector. The solution of
equation (16), subject to the initial condition B2,G(X, 0) = 0,
is

B2,G(X, t) = i
√

Lg2

c
eiω32X/c eγ3X/2c
(−X )
(X + ct)

× exp

[
−αc

2

(
t + X − X0

c

)

(X − X0 + ct)

]
.

(18)

Returning to expression (5d) for b2,m,0(t), we find

b2,m,0(t) = − 2i

�

√
L

2π
g2

∫ ∞

−∞
eikXm e−i(ωk−ωd )tb2,G(k, t) dk

= − 2i

�

√
Lg2 eiωdtB2,G(Xm − ct, t). (19)

Inserting equation (18) into equation (19) and using the fact
that (Xm − X0) > 0, we obtain

b2,m,0(t) = − L

�

gdg2

c
ei(ωd−ω32)t eik32Xm e− γ3

2 (t− Xm
c )

× e− α
2 (Xm−X0 )
(ct − Xm), (20)

where ki, j = ωi, j/c. A similar calculation for b1,m,0(t) yields

b1,m,0(t) = − L

�

gdg1

c
ei(ωd−ω31)t eik31Xm e− γ3

2 (t− Xm
c )

× e− α
2 (Xm−X0)
(ct − Xm). (21)

Equations (20) and (21) are consistent with the fact that the
atom m cannot be excited for times t < Xm/c.

The state vector of the source–detector system is given by
equation (3). The timing resolution of the detector is taken to
be equal to �−1, which is faster than all relevant time scales in
the problem. Thus, a measurement of a detector signal at time t
that results from decay into the reservoir from the detector atom
m projects the source atom into a superposition of its ground
states. Since we do not know which detector atom fired, we
must average over all possibilities. The projected state must
be normalized as well. In other words, the i j density matrix
element of the source atom following the measurement is
given by

ρi j(t) =
∫ X0+L0

X0
dXmbi,m,0(t)[b j,m,0(t)]∗ eiω jit

∑2
s=1

∫ X0+L0

X0
dXm|bs,m,0(t)|2

, (22)

where we have allowed for finite L0. The resulting atomic
ground-state coherence is

ρ12(t) = μ31μ32

μ2
31 + μ2

32

×
∫ X0+L0

X0
e−α(Xm−X0 ) e−γ3(t− Xm

c ) eik21Xm
(ct − Xm) dXm∫ X0+L0

X0
e−α(Xm−X0) e−γ3(t− Xm

c )
(ct − Xm) dXm

,

(23)

where we have assumed that

ω32 ≈ ω31 ≈ ωd, (24)

except where differences in these frequencies appear in
phases. The atomic-state coherence is linked to the atom-field
entanglement that was present just before the measurement
at the photodetector. The degree of atomic coherence that is
produced depends on the values of α and L0. For large α (large
absorption) or k21L0 
 1, the phase factor eik21Xm is effectively
constant over the range of Xm contributing to the integral. For
example, in the limit when αL0 � 1 and α � k21, γ3, we find

ρ12(t) = μ31μ32

μ2
31 + μ2

32

eik21X0 . (25)

In some sense, the phase factor eik21Xm in equation (23)
represents a memory of which-path information. If this factor

4
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varies significantly over the integration range contributing in
equation (23), it would diminish the source atom coherence.
By choosing an optically dense medium for the detector and a
sufficiently large �, any which-path information is ‘erased.’

The off-diagonal density matrix element depends on the
relative spatial phase of the fields emitted on each transition at
the entrance plane of the detector, where most of the absorption
occurs. This dependence can be viewed as resulting from the
Einstein–Podolsky–Rosen-like correlation associated with the
entangled atom-field state. When the measurement is made, the
source atom is projected into a state in which the coherence
ρ12 contains the spatial phase k21X0. Alternatively, the phase
can be interpreted in terms of a quantum jump-type process.
If we view spontaneous emission as a quantum jump process,
detection near the entrance plane of the detector at time t
implies that spontaneous emission (viewed as a quantum jump)
occurred at time t − X0/c. Therefore, in the time interval X0/c
between ‘emission’ and detection, the ground-state coherence
accumulates a phase equal to ω21X0/c = k21X0.

Experimentally, the ground-state atomic coherence
can then be measured through standard quantum control
techniques and time correlated with the detection time of
the spontaneously emitted photon. Such a measurement is an
indirect proof of the atom-field entanglement that existed just
prior to the measurement. The signature of the atom–photon
entanglement is a coincidence oscillation in time at the ground-
state frequency ω21.

For consistency of our model, the total probability to
measure a click in the detector should equal 1/2 when γ3t � 1.
The factor of 1/2 arises since emission can be either to the
right or left in our one-dimensional field model. To verify
this, we first calculate the probability dP to measure a click
in the detector in the time interval between t and t + dt. This
probability for a successful measurement at time t is given by

dP(t) = NA�dt
2∑

s=1

∫ ∞

X0

dXm|bs,m,0(t)|2

= �

(
NAL

�

gd

c

)2 (
g2

1 + g2
2

)
dt

∫ ∞

X0

e−α(Xm−X0 )

× e−γ3(t− Xm
c )
(ct − Xm) dXm

=
(

NAL2

�c2

)
g2

d

(
g2

1 + g2
2

) e
−γ3

(
t− X0

c

)
− e−α(ct−X0 )

α − γ3/c
× 
(ct − X0) dt. (26)

The total probability for long times is

P(∞) =
∫ ∞

0
dP(t) =

(
NAL2

�c2

)
g2

d

(
g2

1 + g2
2

)
αγ3

. (27)

Using equations (6), (17), (8) and (24), this reduces to
P(∞) = 1/2, as predicted. Had we used a three-dimensional
model for field emission for an optically dense detector which
is in the radiation zone of the source atom, we would find that
both dP(t) and P(∞) are multiplied by 2A/4πX2

0 , reflecting
the fact that only a fraction A/4πX2

0 of the emitted radiation
strikes the detector.

3. Discussion

The theory of spontaneous emission in a lambda system has
been thoroughly investigated in the past [1–3]. In this paper,
we presented a model which includes the quantum mechanical
detection process in order to bring new insight into the details
of measurement and atom-field entanglement. Specifically, we
studied a system in which the two transition frequencies of
the lambda scheme, ω31 and ω32, could be resolved owing to
the condition ω21 > γ3. At first glance, it would appear that the
ground-state coherence would be small following emission,
owing to the very small overlap of the Lorentzian spectral
profiles associated with each transition. However, our analysis
shows that the fast detection of the spontaneously emitted
radiation effectively erases the frequency information stored
in the field, resulting in a significant ground-state coherence
ρ12 of the source atom that is correlated with the measurement
of a detector signal. The creation of the ground-state coherence
following the measurement is connected with the atom-field
entanglement that was present just before the measurement
at the photodetector. Our result is applicable to experiments
demonstrating entanglement between the polarization state of
the spontaneously emitted photon and the resulting ground
states of a lambda system and is consistent with the results
reported thus far [2, 4, 5, 9].

Two specific examples of lambda systems in which the
ground-state sublevel splitting is large compared to the excited-
state spontaneous emission rate are the charged InAs quantum
dot (QD) system and the diamond nitrogen vacancy (NV)
centre system. Charged InAs QDs have typical spontaneous
emission rates of the order γ3/2π ≈ 0.20 GHz, while the
ground-state frequency splitting is of the order ω21/2π ≈ 10
GHz, determined by an externally applied magnetic field that
is typically chosen to be sufficiently large to allow for state
initialization through resonant optical pumping [13]. In a
recent work on the diamond NV centre system, the ground-
state frequency splitting is chosen to be 122 MHz in order
to perform frequency selective excitation, and the excited-
state spontaneous emission rate is γ3/2π ≈ 15 MHz. As
reported by the authors, a fast photodetector with ≈ 300 ps
timing resolution is used to destroy the which-path frequency
information in the emitted radiation [5].

We have presented a quantum mechanical model of the
detection process which consists of an excitation of an atomic
ensemble followed by fast decay at the rate � to another
‘avalanche’ state of the detector, intended to represent the
triggering of an avalanche detector or PMT. It is assumed in
the calculation that this decay rate � is fast relative to the
relevant frequency scales in the problem (γ3, ω21). The fast
decay from the excited state of the detector atoms is crucial to
the result as it destroys all frequency information contained in
the spontaneously radiated emission. On the other hand, the
model does not require detailed information about the resulting
state of the detector.
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