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Frictional systems under periodic loads —

History-dependence, non-uniqueness and energy

dissipation

J. R. Barber

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125,
U.S.A.

E-mail: jbarber@umich.edu

Abstract. Nominally static contacts such as bolted or shrink-fit joints typically experience
regions of microslip when subjected to oscillatory loading. This results in energy dissipation,
reflected as apparent hysteretic damping of the system, and also may cause the initiation of
fretting fatigue cracks. Early theoretical studies of the Hertzian contact problem by Cattaneo
and Mindlin were confirmed experimentally by Johnson, who identified signs of fretting damage
in the slip annulus predicted by the theory.

For many years, tribologists assumed that Melan’s theorem in plasticity could be extended to
frictional systems — i.e. that if there exists a state of residual stress associated with frictional
slip that is sufficient to prevent periodic slip in the steady state, then the system will shake
down, regardless of the initial condition. However, we now know that this is true only if there
is no coupling between the normal and tangential loading problems, as will be the case notably
when contact occurs on a symmetry plane.

For all other cases, periodic loading scenarios can be devised such that shakedown occurs for
some initial conditions and not for others. The initial condition here might be determined by the
assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading
path before the steady cycle is attained. This non-uniqueness of the steady state persists at
load amplitudes above the shakedown limit, in which case there is always some dissipation, but
the dissipation per cycle (and hence both the effective damping and the susceptibility to fretting
damage) depends on the initial conditions. This implies that fretting fatigue experiments need
to follow a well-defined assembly protocol if reproducible results are to be obtained. We shall
also present results showing that when both normal and tangential forces vary in time, the
energy dissipation is very sensitive to the relative phase of the oscillatory components, being
greatest when they are out of phase.

With sufficient clamping force, ‘complete’ contacts (i.e. those in which the contact area
is independent of the normal load) can theoretically be prevented from slipping, but on the
microscale, all contacts are incomplete because of surface roughness and some microslip is
inevitable. In this case, the local energy dissipation density can be estimated from relatively
coarse-scale roughness models, based on a solution of the corresponding ‘full stick’ problem.

1. Introduction

Many engineering structures comprise a number of separate elastic components connected by
nominally rigid connections such as bolted joints, shrink fits etc., which rely on friction to prevent
relative motion. Typically these connections transmit a substantial normal ‘clamping’ force that
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remains constant over time, and also time-varying forces that depend on the operation of the
machine or the environmental conditions. The latter are often periodic in nature, and may result
(for example) from machine vibration, operating cycles, or diurnal changes in environmental
temperature. In this paper, we shall restrict attention to cases in which elastodynamic effects can
be neglected and the contact problem regarded as quasi-static. This is not a serious restriction,
since even in problems of impact, the quasi-static Hertzian contact theory has been shown to
give good results [1].

Contact problems can be characterized as ‘complete’ or ‘incomplete’, depending on whether
the contact area is determined by the geometry of the contacting components [complete], or
whether it varies depending on the applied loads [incomplete]. In the latter case, the normal
contact pressure usually tends to zero at the edge of the contact area, and a relatively small
tangential force is sufficient to generate a region of ‘microslip’ — i.e. a region in which the
deformability of the materials permits local tangential motion, even though the greater part
of the contact area remains stuck. Under periodic loading, the microslip region will experience
small amplitude reversed slip and work will be done against the frictional forces. If the Coulomb
friction law applies, this will be reflected as apparent non-linear hysteretic (i.e. rate independent)
damping in the overall behaviour of the structure [2]. Indeed, it has been estimated that in
typical engineering structures, the energy dissipation in microslip at joints far exceeds that due to
internal damping in the material [3]. Also, the extremely localized plastic deformation associated
with this energy dissipation creates an environment favourable to the initiation and propagation
of fretting fatigue failures that are a critical determining factor in the life of aeroengines [4, 5].

By contrast, if the contact is complete, it is theoretically possible to apply a sufficiently large
clamping force to prevent microslip under any given tangential loading. However, we note that
all real engineering surfaces are rough on the microscale, and hence all contact problems are
incomplete in the sense that the ‘actual contact area’ (i.e. the area in which the surfaces are
within the range of interatomic forces) always increases with increasing normal load. Thus, even
in nominally complete contacts, we must anticipate some frictional energy loss and potential
fretting damage [6].

2. Shakedown and Melan’s theorem

The slip that occurs during the first few cycles of loading causes a state of residual stress that
generally tends to reduce the amplitude of subsequent periodic slip [7]. This is analogous with
the behaviour of elastic-plastic structures under periodic loading, and for many years researchers
in contact mechanics assumed that there should exist a frictional equivalent of Melan’s theorem
[8] which states essentially that if an elastic-plastic structure can shake down (meaning that
there exists an allowable state of residual stress that would be sufficient to prevent further
plastic deformation under the given periodic loading), then it will do so.

The equivalent frictional theorem can be enunciated as “If a set of time-independent

tangential displacements at the interface can be identified such that the corresponding residual

stresses when superposed on the time-varying stresses due to the applied loads cause the interface

tractions to satisfy the conditions for frictional stick throughout the contact area at all times,

then the system will eventually shake down to a state involving no slip, though not necessarily

to the state so identified.” This theorem was eventually proved by Klarbring et al., both for
discrete (e.g. finite element) systems [9] and continuous systems [10], but only under the rather
restrictive condition that the normal and tangential contact problems should be uncoupled. In
other words, the normal contact tractions must be unaffected if a tangential slip is imposed on
the system at any part of the contact interface. The basis of both proofs is to define a scalar
norm representing the difference between the instantaneous state and that which would occur
at the same point in the cycle in the identified ‘safe shakedown state’. In the discrete case,
this is expressed as a sum over the set of contact nodes, whereas in the continuum case, it is
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represented by an integral over the contact area. It can then be shown that if the system is

uncoupled, this norm changes only during periods (and at locations) where there is slip and that
any such changes in the norm are necessarily negative by virtue of the conditions defining the
Coulomb friction law.

For all other (i.e. coupled) cases, counter-examples to the frictional Melan’s theorem can
be found, in which there exist loading scenarios for which the system may shake down or not
shake down, depending on the initial conditions [9, 10]. A simple heuristic argument for this
conclusion is that when the system is coupled, any point that remains stuck throughout the
loading cycle could be subjected to a slip displacement sufficiently small to avoid violating the
friction law, and if the system is coupled, this may affect the normal tractions at other points
sufficiently to permit or inhibit cyclic slip.

3. Behaviour of coupled systems

The frictional Melan theorem shows that we must anticipate history-dependence in the steady-
state response of coupled systems. In fact, the above heuristic argument suggests that the
theorem is a special case of a more general result (as yet unproven) that the steady-state frictional
response to periodic loading in an elastic structure can depend on the initial conditions if and
only if there exists coupling between the normal and tangential contact problems [13].

There is some anecdotal evidence for this conjecture, notably:

(i) Fretting fatigue tests are very consistent for smooth ‘Hertzian-like’ contact geometries, but
much more erratic when a rectangular indenter is pressed against a plane surface. The
former geometry is reasonably approximated by two half planes, which involves no coupling
when the materials are similar, whereas the latter involves significant normal-tangential
coupling.

(ii) Experimental measurements of the effective damping of nominally identical bolted joints
exhibit significantly different behaviour, and even the same system, if disassembled and then
reassembled, can give different results. Depending on the assembly protocol employed, this
might be equivalent to a change in initial conditions.

To understand the reasons for this history-dependence, it is helpful to consider a two-
dimensional discrete system, which might comprise a finite element solution of a two dimensional
frictional elastic contact problem. The internal nodal displacements can be eliminated by
standard static reduction procedures, leaving a system with two degrees of freedom (displacement
components) at each contact node. The nodal forces (contact reactions) can then be expressed
as

qj = qw
j + Ajivi + Bijwi

pj = pw
j + Bjivi + Cjiwi , (1)

where pj , qj are the normal and tangential reactions respectively at node j, vi, wi are the
tangential (slip) and normal (separation) displacements at node i, pw

j , qw
j are the nodal reactions

that would be obtained if all the nodes were constrained in the position vi = wi = 0, and the
summation convention is implied. Notice that the matrices A,B,C represent a partitioning of
the stiffness matrix reduced to the contact nodes and hence A and C must be positive definite,
but no such restriction applies to B.

We consider the case where the time-varying external loads pw(t),qw(t) can be written in
the form

pw(t) = p0 + λp1(t) ; qw(t) = q0 + λq1(t) , (2)

where p0,q0 represent the time-dindependent mean loads, p1(t),q1(t) are periodic vectors with
mean value zero and λ is a non-negative scalar load factor characterizing the magnitude of the
periodic loading.
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In the simple case where there are only two contact nodes and they are both in contact,
w1 = w2 = 0 and the Coulomb friction inequalities |qj | ≤ fpi with equations (1) demand that

(A11 − fB11)v1 + (A12 − fB12)v2 ≤ fpw
1 − qw

1 I
(A11 + fB11)v1 + (A12 + fB12)v2 ≥ −fpw

1 − qw
1 II

(A21 − fB21)v1 + (A22 − fB22)v2 ≤ fpw
2 − qw

2 III
(A21 + fB21)v1 + (A22 + fB22)v2 ≥ −fpw

2 − qw
2 , IV

(3)

where f is the coefficient of friction and the equalities in these relations control the motions

I: v̇1 < 0 ; II: v̇1 > 0 ; III: v̇2 < 0 ; IV: v̇2 > 0 , (4)

with the dot indicating the derivative with respect to time. We restrict attention to cases where
the coefficient of friction is sufficiently small for the rate problem so defined to be well-posed.
The limiting coefficient imposed by this condition can be determined from Klarbing’s P-matrix
condition [11]. For higher coefficients of friction, conditions can be reached where the system
becomes wedged, or where sudden elastodynamic state changes are preciptated even when the
loading rate is extremely small [12].

Each of the constraints (3) excludes the region on one side of a certain straight line in vi-
space, suggesting that tracking the motion of the instantaneous state in this space might be
a useful way of characterizing the evolution of the system [14]. If the nodes are to remain in
contact, there must at all times t exist a region that is not excluded by any of the constraints.
Furthermore, as the external loads pw

i , qw
i vary in time, the constraint lines (3) move whilst

retaining the same slope, and hence cause the instantaneous state P to move either vertically
or horizontally in accordance with (4), as illustrated in Figure 1.

I

II

III

IV

v2

v1

P

Figure 1: Motion of the instantaneous state P due to the advance of constraint IV (v̇2 > 0).

If shakedown is to be possible there must exist a safe shakedown region that is not excluded
by any of the constraints at any time t in the periodic loading cycle. Ahn et al. [14] showed that
the system would always shake down if the safe shakedown region so defined was a quadrilateral,
but that the occurrence of shakedown depends on the initial conditions if it is a triangle.
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P1

P2

v2

v1

IIE

IVE

IIIE

IE

Figure 2: Cyclic slip limit cycle in the case where the safe shakedown region is triangular..

The reason for this is apparent from Figure 2, which shows the extreme positions IE, IIE,
IIIE, IVE of the four constraints — i.e. the positions that exclude the maximum amount of
space in the diagram. These extreme positions are not generally reached at the same time, in
which case it is possible for the system to oscillate along the line P1P2 implying cyclic slip at
node 2, because the constraint II never moves far enough to the right to push P into the safe
(unshaded) triangle. On the other hand, if we start from a position in the safe triangle, the
constraints will never push us out of it and shakedown will be assured. This criterion is easily
extended to the N -node system and is equivalent to the requirement that if all 2N extremal
frictional constraints are active in defining the safe region in vi-space, then the safe region is
always reached. If one constraint or more is inactive in defining this region, then the steady state
depends on the initial conditions and may comprise shakedown or cyclic slip with the node(s)
associated with the inactive constraint(s) permanently stuck.

3.1. System memory

For the steady-state behaviour under periodic loading to depend on the initial conditions, the
system must in some sense posess a ‘memory’ of these initial conditions. Now at any node
that is instantaneously separated or slipping, we have two equations to determine the degrees
of freedom vi, wi, namely pi = qi = 0 for separation and wi = 0, qi = ±fpi for slip (the sign
taken depending on the direction of slip). Thus, if an N -node system experiences a period when
all nodes are simultaneously either slipping or separated, there will be 2N equations for 2N
unknowns and the state is uniquely determined by the instantaneous values of pw

i (t), qw
i (t). In

this case, the subsequent evolution of the system cannot depend on the initial conditions. By
contrast, if a node is instantaneously stuck, we have only one equation, wi = 0, and the friction
inequality −fpi < qi < fpi. It follows that at any given time, the system memory must reside
in the slip displacements vi at those nodes that are instantaneously stuck.

We conclude that if all the nodes slip at some time during the cycle, but not all at the same
time, the memory must somehow be exchanged between nodes during each cycle and we would
expect this to lead to a degradation of memory and hence the attraction of the system to a
unique steady state. Behaviour of this kind is illustrated in Figure 3, where the constraints are
assumed to advance and recede in the sequence I, III, II, IV. Starting from two distinct points
A,B, we find that the trajectory is attracted to a unique rectangular orbit.
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v1

v2

IE

IIIE

IIE

IVE

A
B

Figure 3: Attraction of a coupled system to a unique periodic steady state.

This issue has been explored for the two-node system by Andersson [15], who shows that
for more complex loading patterns, conditions can arise where a steady periodic state is
unstable, so that small perturbations from it grow with successive cycles until the sequence
of stick/slip/separation states is altered, at which point we anticipate a qualitatively distinct
stable (attractive) steady state. In some many cases, two such attractive orbits exist and the
state eventually reached depends on which side of the unstable orbit the initial condition is
located. However, in other cases, the partition of the initial condition space into catchment
areas for the two stable orbits becomes fractal in the neighbourhood of the unstable orbit.

3.2. Effect of load factor

Consider now a system where the loading is defined by equation (2). If the scalar load factor λ
is sufficiently small, the system will shake down for all initial conditions and we can identify a
critical value of λ = λ1 at which one of the extreme constraints ceases to be active and a larger
value (λ2) at which the safe shakedown region becomes null. In the range λ1 < λ < λ2 the
system may or may not shake down depending on the initial conditions. For λ > λ2, shakedown
is impossible, but the steady state (and hence the frictional dissipation per cycle) still exhibits
some dependence on initial conditions as long as a subset of nodes remains permanently stuck.
However, at some even larger value λ3, we anticipate reaching a condition where all the nodes
slip at least once during the cycle, so the system is attracted asymptotically to a unique steady
state. Above a still larger value λ4 there will exist at least one point in the cycle at which all the
nodes either slip or separate, in which case the unique steady state is reached in the first one or
two cycles. This kind of behaviour under gradually increasing periodic loading was documented
by Jang and Barber [16] for a system comprising a two-dimensional elastic body containing a
set of plane cracks. Of course, for systems that are nominally stuck, such as a bolted joint, there
will usually be a permanently stuck region, implying that λ < λ3.

4. Uncoupled systems

Conditions are considerably simpler if the system is uncoupled, and the most practically useful
class of systems for which this condition is satisfied comprise those for which the two contacting
bodies can be approximated by half spaces of similar materials [17].
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P

P

Q

Q

x

Figure 4: The Cattaneo-Mindlin problem.

4.1. Cattaneo and Mindlin’s problem

The earliest theoretical study of microslip in a nominally static contact is that due to Cattaneo
[18], who considered the problem of the Hertzian contact of Figure 4, comprising two quadratic
surfaces loaded first by a normal compressive force P , which is then held constant whilst a
tangential force Q is applied.

This loading scenario is illustrated in Figure 5, where we also identify the limiting lines
Q = ±fP beyond which gross slip (sliding) would occur. Cattaneo showed that the tangential
contact tractions q(x, y) can be written as the superposition

q(x, y) = fp(x, y) − fpS(x, y) , (5)

where p(x, y) are the corresponding (Hertzian) normal tractions and pS(x, y) are the normal
tractions at a smaller fictitious load PS defined by

PS = P −
Q

f
. (6)

Q

PO PS

Q = f P

Q = -f P

Figure 5: Load path for the Cattaneo-Mindlin problem.

Figure 5 shows a geometrical construction from which the load PS can be determined. We also
note that if A(P ) denotes the contact area at a normal load P , microslip will occur in the region
A(P ) −A(PS) and stick in the region A(PS).

It should be noted that this form of superposition was to some extent prefigured in a much
earlier solution by Carter [19] to the related problem of a cylinder rolling on a plane. Cattaneo’s
result was ‘rediscovered’ apparently independently by Mindlin [20], who also considered the case
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where the tangential force varies periodically in time [21, 22]. For the contact of two spheres,
they predicted that microslip would occur in an annulus at the edge of the circular contact area,
a result that was verified experimentally by Johnson [23] by observing the fretting damage to
the surfaces in this region after a period of oscillation.

4.2. The Ciavarella-Jäger theorem

The superposition defined by equations (5,6) applies to a much broader class of contact problems,
as was shown, again apparently independently, by Ciavarella [24, 25] and Jäger [26]. If the
loading is as shown in Figure 5, it applies exactly to all two-dimensional contact problems
between similar materials for which the bodies may be approximated by half planes, and in an
approximate sense to corresponding three-dimensional problems. The approximation involved
in the latter case is that the slip directions predicted deviate somewhat from the direction of the
local frictional traction, particularly near the stick-slip boundary. This approximation is also
inherent in the Cattaneo and Mindlin solutions and its magnitude was assessed by Munisamy
et al. [27] and found to be extremely small. We shall see that Ciavarella and Jäger’s result
is extremely useful in estimating the frictional energy dissipation in fairly general contacts,
including those involving rough surfaces.

4.3. Periodic loading

The simplest form of periodic loading for the system of Figure 4 can be written

P (t) = P0 + P1 cos(ωt) ; Q(t) = Q0 + Q1 cos(ωt − φ) ,

which comprises a constant mean load (P0, Q0) and a sinusoidal periodic load in which the
normal and tangential components (P1, Q1) may not necessarily be in phase. The resulting
trajectory would then be elliptical as shown in Figure 6. The periodic cycle must be reached
by some preliminary loading phase, which we here identify by the segment OA. In other words,
the contact must be ‘assembled’ in some way.

Q

PO
B C

E

D

full stick
contact area
   growing

   growing
forward slip
      zone

    growing
backward slip
       zone

instantaneous
      stick

instantaneous
      stick

A

Q = f P

Q = - f P

Figure 6: Periodic loading path.

The evolution of the traction distribution can be tracked by considering the incremental
problem in which the normal and tangential loads P (t), Q(t) increase by ∆P,∆Q during the
small time increment ∆t. If the (compressive) normal load is increasing (dP/dt > 0), and if
|dQ/dP | < f , this incremental problem involves complete stick, so there is no microslip during
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the phase BC in Figure 6. Once we pass C, a microslip zone begins to develop at the edge of the
contact area and elementary calculations [28] show that the change in the traction distribution
can be described by a superposition similar to that of Ciavarella and Jäger.

This state continues until we reach the point E, where the derivative dQ/dP is again of
magnitude f , but the normal load is decreasing (dP/dt < 0). At this point the contact sticks
everywhere instantaneously and a reverse microslip zone starts to grow from the edges of the
contact area. As before, the resulting incremental tractions can be defined by superposed
Ciavarella-Jäger distributions. One result of some interest is that the minimum extent of the
stick region occurs just before the points E,B are reached and is equal to the contact area
at a reduced load PD, where the point D is identified by the geometrical construction shown
in Figure 6. The tractions in the permanently stuck region A(PD) depend on the initial load
path OA, and this constitutes the memory of the system. However, these stored tractions do
not influence those in the rest of the contact area, and hence they do not affect the frictional
energy dissipation or the damage due to fretting, which are therefore independent of the initial
assembly protocol.

4.4. In-phase loading

Figure 6 is presented for the case where the tangential and normal loads are out of phase. In
the special case where the phase lag φ = 0, the ellipse will condense to a straight line which
is traversed back and forth during the cycle. The behaviour then depends critically on the
magnitude of the ratio Q1/fP1. If Q1/fP1 < 1, the entire loading phase (dP/dt > 0) occurs
in a state of stick. Furthermore, during unloading (dP/dt < 0) the system passes through the
same states as during loading, but in reverse order, so there is no tendency for microslip and
no energy is dissipated at any point in the cycle. By contrast, if Q1/fP1 > 1, microslip occurs
during both the loading and unloading phases and the tractions are given by Ciavarella-Jäger
distributions, with the entire contact area becoming instantaneously stuck at the two extreme
points.

4.5. Frictional energy dissipation

The frictional energy dissipation during the loading cycle can be calculated either in a local
sense, using the instantaneous local tractions and slip displacements, or in a global sense, using
the applied tangential force Q(t) and the corresponding relative rigid-body displacement of
the contacting bodies. In the former case, for two-dimensional geometries, we can obtain the
dissipation per unit area as

W (x) =

∮

q(x, t)v̇(x, t)dt ,

where v(x, t) is the local slip displacement, and the integral is performed around one complete
loading cycle (t = 0..2π/ω). The distribution of W (x) through the contact area provides a good
measure of the severity of fretting and its maximum is likely to correlate with the location of
the first fretting fatigue cracks. For a Hertzian geometry, this maximum is found to be about
half way between the edge of the contact area and the edge of the permanent stick zone [29].
The total dissipation per cycle W can then be obtained by integrating W (x) over the maximum
extent A of the interface — i.e.

W =

∫

A

W (x)dx .

However, a more direct approach is to evaluate the integral

W =

∮

Q(t)V̇ (t)dt , (7)
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where V represents the relative tangential rigid-body displacement of the two contacting bodies.
The integrand in this case represents the incremental work done by the load Q(t) during a time
increment dt, but not all this work constitutes frictional dissipation — there is also a contribution
to the elastic strain energy of the bodies. However, if the integral is performed over a complete
cycle, the strain energy at the two limits will be identical and the integral will therefore represent
the frictional dissipation per cycle.

The integral (7) can also be written

W =

∮

Q(t)
dV

dQ
dQ , (8)

and hence can be evaluated if we can determine the incremental tangential compliance dV/dQ.
Also, since the traction distribution corresponding to dQ is at all points in the cycle the
derivative of one or more expressions of the form of equation (5), dV/dQ can be written down
by a similar superposition associated with the contact areas A(P ) and A(PS). In the two
dimensional problem, it is necessary to define a finite reference point in the elastic bodies
to avoid mathematical problems associated with logarithmically unbounded displacements at
infinity, but the choice of this reference point does not affect the final result and the compliances
are found to be identical with the corresponding normal compliances dU/dP , where U is the
rigid-body approach. Thus, the integral (8) can be determined provided we know the relation
between normal force P and the corresponding normal approach for the particular profiles of the
contacting bodies. In three-dimensional problems, this equivalence is not exact except for certain
contact geometries such as the ellipse, but the ratio between normal and tangential compliance
is quite tightly bounded, and for a wide range of three-dimensional contact geometries is closely
approximated by

dV

dQ
= λ

dU

dP
where λ =

(2 − ν)

2(1 − ν)
(9)

and ν is Poisson’s ratio [30, 31].

4.6. Effect of surface roughness

We have already remarked that most engineering surfaces are rough and hence the contact
problem is incomplete, even in cases where the large scale geometry makes it appear complete.
Thus, for example, if two coextensive rectangular blocks are pressed together, the contact area
A(P ) will comprise a set of ‘actual contact areas’ at the peaks of the asperities on the two
surfaces, and these contact areas will grow with increasing normal load. This implies that the
stick zones in the corresponding Ciavarella-Jäger distributions are defined by the set of actual
contact areas A(PS) at the fictitious load PS . It also implies that there will be dissipation and
the potential for fretting damage even in contacts where the solution of the ‘smooth’ contact
problem predicts complete stick.

Roughness wavelengths are typically short compared with the dimensions of the nominal
contact area, so a convenient way of incorporating the effect of roughness is first to solve the
equivalent smooth problem, find the spatial distribution of the mean and alternating tractions
p(x, y, t), q(x, y, t), and then approximate the local dissipation per unit area due to roughness
as being that obtained in a nominally uniform case where two plane surfaces with the given
roughness are subjected to the same nominal traction cycle.

Many theories have been advanced to describe the contact of rough surfaces, the most widely
used being those of Greenwood and Williamson [32] and Persson [33]. Though approaching
the problem in very different ways, both authors conclude that the relation between macroscale
quantities such as the normal force P and the incremental stiffness dP/dU is approximately linear
because the population of microscale contact events retains approximately the same distribution
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over a wide range of load levels. As P is increased, the number of actual contact areas increases.
Small areas get larger, but a sufficient number of new smaller areas are established to preserve
an approximately similar size distribution. Using Persson’s theory, Akarapu et al. [34] argue
that

dP

dU
=

P

γσ
, (10)

where σ is the RMS roughness height and γ is a numerical constant of order unity. More
generally, the incremental normal stiffness dP/dU due to roughness can be bounded, based
only on the peak-to-valley height [35], and the bounding procedure implies that a relatively
coarse numerical model of the surface is sufficient to give good estimates. In other words, only
the long wavelength terms in the surface profile spectrum make significant contributions to the
incremental stiffness.

Using (9, 10), we then have
dV

dQ
=

λγσ

P

and the integral in (8) can be performed numerically for the Ciavarella-Jäger distributions
developed during the load cycle of Figure 6. Putigniano et al. [36] showed that the resulting
expression can be presented dimensionlessly in the form

Ŵ ≡
W

λγσf2P0

= f
(

P̂1, Q̂1, φ
)

where P̂1 =
P1

P0

; Q̂1 =
Q1

fP0

,

and for Q̂1 < 0.5 they found that Ŵ ∼ Q̂3
1. Notice that if the mean force P0 is replaced by the

mean normal traction p0, the corresponding expression for W will then define the dissipation
per unit area of the nominal contact interface. The expressions P̂1, Q̂1 are already normalized
and will remain unchanged if forces are replaced by tractions.

We recall that for in-phase loading the dissipation is zero for Q1/fP1 < 1, which here

corresponds to Q̂1 < P̂1. For larger values of Q̂1, dissipation occurs for all phase angles, but is
significantly larger when φ = ±π/2, as shown in Figure 7.
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Fig.7. Dissipation as a function of relative phase φ for P̂1 = 0.4 and various values of Q̂1.
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5. Conclusions

The behaviour of elastic systems with frictional interfaces is qualitatively influenced by elastic
coupling between the normal and tangential tractions and displacements. When coupling is
present, the behaviour under cyclic loading, including frictional dissipation and susceptibility
to fretting damage, will generally depend on the initial conditions, which might include the
intial loading or assembly protocol. By contrast, for uncoupled systems, including the contact
of bodies of similar materials that can be modelled as half spaces, the steady-state response is
independent of initial conditions, and simple procedures, based on a theorem due to Ciavarella
and Jäger, can be used to calculate the dissipation. In particular, it is possible to estimate
the dissipation associated with surface roughness in nominally tight joints, and this is found to
depend only on the long wavelength components in the surface roughness.
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