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Ultra-strong laser pulses can be so intense that an electron in the focused beam loses significant

energy due to c-photon emission while its motion deviates via the radiation back-reaction. Numeri-

cal methods and tools designed to simulate radiation-dominated and quantum-electrodynamically

strong laser-plasma interactions are summarized here. VC 2011 American Institute of Physics.

[doi:10.1063/1.3638138]

I. INTRODUCTION

Progress in laser technologies has resulted in the opportu-

nity to create ultra-strong electromagnetic fields in tightly

focused laser beams. In the present paper, we discuss the nu-

merical methods designed to simulate processes in strong

pulsed laser fields interacting with plasma. Attention is paid to

the recently achieved range of intensities, J� 2 � 1022 W=cm2,1

and the larger intensities projected, J� 1025 W=cm2.2

For a typical laser wavelength, k� 1 lm, electron

motion in laser fields at J� 1018 W=cm2 is relativistic,

jaj � 1; a ¼ eA

mec2
; (1)

where me and e¼�jej are the mass and the electric charge

of an electron, respectively.

However, if we want to evaluate the properties of an

electron in a strong field as an emitting particle moreover, a

particle, which emits photons; we need to be guided by the

more severe condition

jaja ¼ ajaj � 1; (2)

in which the fundamental fine structure constant is present,

a ¼ e2=ðc�hÞ � 1=137, linking its radiation to its motion

(herewith, the subscript a denotes the dimensionless parame-

ter multiplied by a). With the recently achieved intensity of

J� 2 � 1022 W=cm2� (1=a2) � 1018 W=cm2, this newly im-

portant dimensionless parameter exceeded unity!

However, this estimate could be applicable only to a

“theoretical laser,” for which the photon energy, �hx, would

be comparable to the “characteristic” atomic unit (au) of

energy, 2Ry¼ a2mec
2. For a real laser, in addition to the field

magnitude, importance rests on the laser photon energy nor-

malized by the double Rydberg, 2Ry,

xau ¼
�hx
2Ry
� 45nm

k
; 2Ry ¼ a2mec2 � 27:2eV:

For the majority of ultra-strong lasers, this parameter is of

the order of 10�1: xau� 0.04 for the Nd-glass laser (k �
1.06 lm) and xau� 0.06 for the Ti-sapphire laser (k � 0.8

lm). Therefore, the following product:

xau

da

dn

���� ����
a

¼
ffiffiffiffiffi
J

Jp

s
; Jp ¼

cE2
p

4p
� 2:4 � 1025W=cm2; (3)

is less than one even for planned intensities (although

jda=dnja might be greater than one). Herewith, estimates are

made for a 1D wave field, a¼ a(n), n¼x(t – x=c), and

0� n� nmax. Eq. (3) is expressed in terms of the local instan-

taneous intensity of the laser wave, J. Note that the left hand

side (LHS) of Eq. (3) equals the ratio, jEj=Ep, of the wave

electric field, jEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4pJ=c

p
, to the characteristic field,

Ep ¼ ej =�k2
C

�� , constructed from an elementary charge and the

Compton wavelength,

�kC ¼
�h

mec
� 3:9 � 10�11cm; kC ¼ 2p�k C � 2:4 � 10�10cm:

This field strength is associated with the Coulomb field

between the components of a virtual electron-positron pair
(which are “separated” by the Compton wavelength). Across

the interval of intensities bounded by inequality (2) from

below and by Eq. (3) from above, that is, at

xau �
45nm

k
�

ffiffiffiffiffi
J

Jp

s
� 1; (4)

the role of important physical effects changes dramatically,

incorporating radiation and its back-reaction, and quantum

electrodynamic (QED) effects of electron recoil and spin as

well as pair production. Given that currently available laser

intensities can access this kind of interaction, it is clear that

the development of a suitable model is timely.

A. Radiation-dominated laser fields

An accelerated electron in a strong laser field emits high-

frequency radiation. The radiation back-reaction deceleratesa)Electronic mail: igorsok@umich.edu.
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such an electron, the effect being more pronounced for longer

laser pulses.3 In Ref. 4, a condition for the field to be

radiation-dominated is formulated in terms of the ratio

between the magnitudes of the Lorentz force and the radiation

force, which gives

2

3
xauðE � pkÞa

da

dn

���� ����
a

� �2

� 1: (5)

Herewith, the electron dimensionless energy, E, and its mo-

mentum, p, are related to mec
2 and mec correspondingly, and

subscript k herewith denotes the vector projection on the

direction of the wave propagation.

While a strong laser pulse interacts with energetic elec-

trons, which move opposite the direction of the pulse propaga-

tion, the condition E � pk � 2E � 1, facilitates the

fulfillment of inequality (5). In the course of a strong laser pulse

interacting with a dense plasma, the counterpropagating elec-

trons may be accelerated in a backward direction by a charge

separation field. For this reason, the radiation effects in the

course of laser-plasma interaction are widely investigated (see

Refs. 4–6) and efficient computational tools are in demand.

B. QED-strong laser fields

In QED, an electric field should be treated as strong if it

exceeds the Schwinger limit: Ej j � ES ¼ mec2= ej j�kCð Þ (see

Ref. 7). Such field is potentially capable of separating a virtual

electron-positron pair providing an energy, which exceeds the

electron rest mass energy, mec
2, to a charge, e ¼ 	 ej j, over an

acceleration length as small as the Compton wavelength.

Typical effects in QED-strong fields are high-energy photon

emission from electrons or positrons and electron-positron

pair creation from high-energy photons (see Refs. 8–10).

Here, we assume that the field invariants (see Ref. 11)

are small as compared to the Schwinger field

jE2 � B2j 
 E2
S; jðE � BÞj 
 E2

S; (6)

where B is the magnetic field. Below, the term “QED-strong

field” is only applied to the field experienced by a particle.

For example, a particle in the 1D wave field may experience

a QED-strong field, E0 ¼ jdA=dnjxðE � pkÞ=c, because the

laser frequency is Doppler upshifted in the comoving frame

of reference. The Lorentz-transformed field exceeds the

Schwinger limit, if

v ¼ 2

3
E0=ES ¼

2�kC

3�k
ðE � pjjÞ

da

dn

���� ����� 1; (7)

where �k ¼ c=x. Numerically, the parameter, v, equals

v ¼ 3

2
xauðE � pkÞa

da

dn

���� ����
a

� 0:7
ðE � pkÞ

103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

1023½W=cm2�

s
:

C. Estimates for laser-driven electrons

In the critical parameters as in inequalities (5) and (7),

the factor, E � pk is not linked to the wave intensity in the

case where electrons are accelerated by an external source. In

the course of the laser-plasma interaction, however, for bulk

electrons ðE � pjjÞ � E � jp?j. As long as the radiation back-

reaction does not dominate, the conservation law for the gen-

eralized momentum of an electron gives p? � �a, and the

LHS of inequality (5) may be evaluated in terms of the laser

intensity. The wave becomes radiation-dominated, if

J � JpðxauÞ4=3 � ð3� 5Þ � 1023W=cm2:

Less certain is the estimate for the significance of QED

effects. On one hand, for fields just approaching the

radiation-dominated regime, QED effects are already not

fairly neglected, v� (3=2)(xau)1=3 � (0.5 – 0.6). On the

other hand, in radiation-dominated fields, the estimate for E
that we used above is not reliable. Because of this complex-

ity, we surmise that the significance of QED effects in this

regime can only be verified by direct numerical simulations.

D. Paper content and structure

Numerical simulations of laser-plasma interactions

become increasingly complicated while proceeding to higher

intensities. At intensities J� 2 � 1022 W=cm2, the model

should incorporate the radiation back-reaction on the emit-

ting electron. In this range, v
 1 for bulk electrons, making

QED-effects negligible. This model is presented in Sec. II.

At J� 3 � 1023 W=cm2, QED corrections should be incorpo-

rated to achieve quantitative accuracy for electrons with

v� 1. These corrections may be found in Sec. III. At larger

intensities, J� 1024 W=cm2, the high-energy photons emit-

ted by electrons and positrons produce a macroscopically

large number of electron-positron pairs, as shown in Sec. IV.

In each section, we first summarize the theoretical

model. Then we provide an analytical solution which may be

used to benchmark numerical models. After this, we describe

the elements of the numerical scheme.

II. QED-WEAK FIELDS v
 1ð Þ

A. Theoretical notes

1. Emission spectrum

In Ref. 12, the spectral and angular distribution,

dErad=ðdx0dnÞ, of the radiation energy, emitted by an elec-

tron with position, x(t), and velocity, v(t), and related to the

interval of frequency, dx0, and to the element of solid angle,

dn, for a polarization vector, l, is described with the follow-

ing formula:

dEradðx0; n; lÞ
dx0dn

¼ ðx
0Þ2

4p2c
ðAclðx0Þ � l�Þj j2: (8)

Here, the vector amplitude of emission, Acl(x0), is given by

the following equation:

Aclðx0; nÞ ¼
e

c

ðþ1
�1

vðtÞ exp ix0 t� ½n � xðtÞ�
c

� �� �
dt;

see Eq. (14.67) in Ref. 12. We express dErad=ðdx0dnÞ in terms

of the time integral of the radiation loss rate, dIcl=(dx0dn),

093109-2 Sokolov, Naumova, and Nees Phys. Plasmas 18, 093109 (2011)

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



which is related to the unit of time, the element of a solid angle,

and the frequency interval, and is summed over polarizations,

@

@t

X
l

dErad

dx0dn

" #
¼ dIclðtÞ

dx0dn
:

The spectral and angular distribution of the radiation loss

rate is given by the Fourier integral,

dIclðsÞ
dx0dn

¼� e2ðx0Þ2

4p2cEðsÞ

ðþ1
�1

p sþ f
2

� �
� p s� f

2

� �� 	

 exp ic

ðsþf=2

s�f=2

½k0 � pðs0Þ�ds0
( )

df:

The cogent feature of the particle relativistic motion in

strong laser fields is that the emitted radiation is abruptly

beamed about the direction of the velocity vector,

p(s)=jp(s)j. Therefore, the angular spectrum of emission can

be approximated with the Dirac function,

dIclðsÞ
dx0dn

¼ d2 n� p

jpj

� �
dIclðsÞ

dx0
:

In the frequency spectrum of emission,

dIclðsÞ
dx0

¼ e2x0

2pcE2ðsÞ

ðþ1
�1

1

f
p sþ f

2

� �
� p s� f

2

� �� 	

 sin

x0

EðsÞ
f
2
þ
ðsþf=2

s�f=2

½pðsÞ � pðs0Þ� � 1f gds0
 !" #

df;

for relativistically strong wave field, satisfying Eq. (1), the

sine function varies rapidly, so that the main contribution to

the integral determining the emission spectrum comes from

a brief time interval with small values of f, resulting in a uni-
versal emission spectrum,

dIclðsÞ
dx0

¼ Icl

QclðrÞ
xc

; Icl ¼ �
2e2ðfLe � fLeÞ

3m2
ec3

; (9)

QclðrÞ ¼
9
ffiffiffi
3
p

8p
r

ð1
r

K5=3ðr0Þdr0; r ¼ x0

xc
; (10)

xc ¼ Ev: (11)

Here, Qcl(r) is the unity-normalized spectrum of the gyro-

synchrotron emission, such that
Ð

QclðrÞdr ¼ 1 and K�(r) are

MacDonald functions. We use the dimensionless photon fre-

quency, ~x0 ¼ �hx0=ðmec2Þ, the characteristic frequency,

~xc ¼ �hxc=ðmec2Þ, and the dimensionless wave vector,ek0 ¼ �hk0, for emitted c-photons and omit tildes in the formu-

lae. Both the radiation energy loss rate, Icl, and the QED-

strength parameter,

v ¼ 3

2

�kC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðfLe � fLeÞ

p
mec2

; (12)

are expressed in terms of the 4-square of the Lorentz 4-force:

f l
Le ¼ EðfLe � u=c; fLeÞ, where u ¼ cp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
is the veloc-

ity and fLe ¼ eEþ e
c½u
 B� is the Lorentz three-force.

Thus, the acceleration of electrons by a laser pulse (or

by a wake-field, which may also cause the relativistic quiver-

ing motion of electrons) must be accompanied by

gyrosynchrotron-like emission spectrum (which is actually

observed—see Refs. 13 and 14). The general character of

such emission spectrum had been noted in Ref. 13 (this com-

ment may be also found in Sec. 77 in Ref. 11). The material

of the present subsection was published in Ref. 15.

2. Equation for the radiation emission and transport

The above considerations justify the method for calcu-

lating the high frequency emission as described in Ref. 3

(see also Ref. 13). In addition to calculating the electromag-

netic fields on the grid using a particle-in-cell (PIC) scheme,

one can also account for the higher-frequency (subgrid)

emission, by calculating its instantaneously radiated spec-

trum. Compared with direct calculation of the right hand

side (RHS) of Eq. (8) (the means of calculating the emission

used, for example, in Refs. 16 and 17), the approach sug-

gested here, though mathematically equivalent, may be

decidedly more efficient.

Generally, the radiation transport equation (RTE, cf.

Ref. 18) should be solved for the radiation energy density,

related to the element of volume, dV (herewith, the symbolP
l is omitted),

I ¼ dErad

dx0dndV
:

An electron located at the point, x¼ xe(t), contributes to the

RHS of the RTE as follows:

@I
@t
þ cðn � rÞI ¼

X
e

IclQclðrÞ
xc

d2 n� p

p

� �
d3ðx� xeÞ:

The LHS of the RTE describes the radiation transport, while

in the RHS, in addition to the emission source, there should

be the terms accounting for the radiation absorption and

scattering. However, at v
 1 and at realistic plasma den-

sities, these effects may be neglected. Under these circum-

stances, the RTE can be easily integrated over time and

space, giving

dErad

dx0dn
¼
ðt

0

X
e

IclQclðrÞ
xc

d2ðn� p

p
Þ

 !
dt: (13)

Since Eq. (13) depends on frequency only via Qcl(r), one can

calculate instead of Eq. (13) an integral as follows:

dEðmÞrad

dnd �x
¼
ðt

0

X
e

Icl

xc
d2 n� p

p

� �
d log �x� log xcð Þ

" #
dt:

Once this modified spectrum has been integrated over the

whole simulation time, a true spectral distribution can be

recovered using a simple convolution as follows:

dEradðx0; nÞ
dndx0

¼
ð

Qcl

x0

�x

� �
dEðmÞrad ð �x; nÞ

dnd �x
d log �x: (14)
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Manifestly, the result is the same, which allows one to avoid

calculating the spectrum, Qcl(r), at each time step.

3. Equation for electron motion: Accounting the
radiation back-reaction

Here, we use the equation of motion for a radiating elec-

tron as derived in Refs. 3 and 19. In 4-vector form, this equa-

tion may be written for the electron 4-momentum, pa,

normalized per mec, in terms of the Lorentz 4-force

f a
Le ¼ eFabpb and the field 4-tensor Fab¼ (E, B),

dpa

ds
¼ e

mec2
Fab dxb

ds
� Iclp

a

mc2
; (15)

dxa

ds
¼ cpa þ s0f a

Le

me
; s0 ¼

2e2

3mec3
: (16)

Three-vector formulation of Eqs. (15) and (16) is

dp

dt
¼ fLe

mec
þ e½�u
 B�

mec2
� uE2ð�u � fLeÞ

mec3
; (17)

dx

dt
¼ uþ �u; �u ¼ s0

me

fLe � uðu � fLeÞ=c2

1þ s0ðu � fLeÞ=ðmc2Þ ;

�u being the back-reaction effect on the electron velocity.

4. Comparison with the Landau-Lifshitz (LL) equation

Many authors simulate the motion of an emitting elec-

tron using the equation suggested by LL (see Eq. (76.3) in

Ref. 11), motivating a comparison with the approach we use.

To simplify the formulae, we introduce the 4-velocity, ui,

and normalize the field tensor,

ua ¼ 1

c

dxa

ds
; ~Fab ¼ s0eFik

mec
¼ 2aFik

3ES
:

All 4-vector equations in this paragraph are written without

indices, and the tensor multiplication is denoted with dot-

product and=or powers of tensor, e.g., ~F � u ¼ ~Fikuk,
~F2 � u ¼ ~F � ~F � u ¼ ~Fik ~Fklu

l, etc. Now we re-write the LL

equation

du

ds
¼ 1

s0

~F � uþ ~F � u

 �

þ d ~F

ds
� u� u

s0

ðu � ~F2 � uÞ (18)

and compare it with Eqs. (15) and (16),

dp

ds
¼ 1

s0

~Fu� p

s0

ðp � ~F2 � pÞ; u ¼ pþ ~F � p: (19)

Solving the momentum from the second of Eqs. (19),

p ¼
P1

n¼0 ð� ~FÞn � u. Accounting for the anti-symmetry of

the field tensor, the first of Eqs. (19) may be re-written for 4-

velocity and 4-acceleration, similarly to Eq. (18),

du

ds
¼ 1

s0

~F � uþ ~F � u

 �

þ d ~F

ds
�
X1
n¼0

ð� ~FÞn � u� u

s0

ðu �
X1
n¼1

~F2n � uÞ: (20)

The only distinction from Eq. (18) is that in Eq. (20), the infi-

nite series are present, while in Eq. (18), there are only start-

ing terms of these series.

How large is the difference numerically? For the second

series, one may evaluate both the total sum,

u �
X1
n¼1

~F2n � u ¼ p � ~F2 � p ¼ 2

3
a

� �2
4

9
v2

� �
;

and the residual sum, omitted in Eq. (18),

u �
X1
n¼2

~F2n � u ¼ 2

3
a

� �4
4

9
v2 E2 � B2

E2
s

þ ðE � BÞ
2

E4
s

 !
:

The residual sum is reduced by a factor, 2a=3ð Þ2
� E2 � B2ð Þ=E2

S, which is small according to inequality (6).

How theoretically important is the distinction between

the two approaches? We discussed this issue in Refs. 3 and

19 and noted that the LL equation conserves neither the gen-

eralized momentum of electron nor the total energy-

momentum of the system consisting of an emitting electron,

the external field, and the radiation. Another distinction is

that the LL approach maintains the identity, u2¼ 1, while

Eqs. (19) maintain more important identity, p2¼ 1, turning

to the Dirac equation in the limit of QED-strong fields. For

the square of the 4-velocity, we obtain

u2 ¼ p2 � p � ~F2 � p � 1� 1:05 � 10�5v2; (21)

which is not exactly unity, but in QED-weak fields, v
 1,

the distinction is negligible.

The computational advantages of Eqs. (19) as compared

to the LL equation are first, the higher efficiency: compare

the compact expression for three-force in Eq. (17) with that

given in Ref. 11 (see Sec. 77, problem 2); and second, the

numerical scheme for Eq. (17) is more reliable, as it is bound

to yield total energy conservation. Thus, even for fields in

the QED weak regime, the use of Eqs. (19) is more suitable

than the use of the LL equation.

B. Analytical solution

Pertaining to the validation against a semi-analytical

theory, we begin by describing the spectrum of emission

from an electron in the field of a 1D circularly polarized

wave. A constant wave amplitude, a0 is assumed to be below
the radiation-dominated regime. In this case, p? � �a, so

that E2 � pk
2 ¼ 1þ a2

0. The modified spectrum can be

expressed in terms of the characteristic frequency, which is a

function of the current value of the electron energy,

xc

xc0

¼ 1þ
ðE � pkÞ2

1þ a2
0

; (22)

as well as the parameter, xc0, which is introduced as the fol-

lowing function of the wave amplitude and frequency,

xc0 ¼
3

4
xaua

2 a0 þ a3
0


 �
: (23)
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The maximum frequency of emission is determined by the

initial momentum of electron,

xcmax

xc0

¼ 1þ
ðE � pjjÞ2n¼0

1þ a2
0

:

Then, n*(n) is a normalized phase,

n� ¼ 2

3
a3xaua2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

q� �
n: (24)

For the whole pulse, the total normalized phase,

n�1 ¼
2

3
a3xaua2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

q
nmax �

2

3

J

Jp

� �3=2 nmax

ðxauÞ2
;

characterizes the capability of the pulse to arrest the counter-

propagating electron by means of the radiation back-

reaction. Particularly, a pulse of duration corresponding to

n�1 � 1 arrests an electron of any energy. The modified spec-

trum has a shape close to a power-law (see derivation details

in Ref. 20),

dEðmÞrad

d �x
¼ mec2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

4xc0

�x=xc0

�x=xc0 � 1ð Þ3=2
; (25)

xcmin

xc0

� �x
xc0

� xcmax

xc0

; (26)

where xcmin should be found from Eq. (22), for given n�1,

xcmin

xc0

¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcmax=xc0 � 1

p þ n�1

 !�2

: (27)

The true (transformed) spectrum can be obtained from the

modified spectrum as in Eq. (25) by applying a convolution

transformation following Eq. (14). The longer the pulse, the

more softened and broadened the radiation spectrum

becomes (see Fig. 1).

C. Numerical model

Now we introduce the following normalized variables:

~t ¼ xt; ~x ¼ xx=c; ~u ¼ u

c
;

~E ¼ jejE
mecx

; ~B ¼ jejB
mecx

; ~j ¼ 4pjejj
mecx2

:

Note that the electric current density, ~j, is normalized per

jejncrc, where ncr¼mex
2=(4pe2) is the critical density.

Below, we use these dimensionless variables and omit tildes

in notations. The equations of motion for electrons and posi-

trons read

dpe;p

dt
¼ fLe;p 	 ½�ue;p 
 B� � ue;pE2

e;p fLe;p � �ue;p


 �
;

dxe;p

dt
¼ ue;p þ �ue;p; Ee;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

e;p

q
; ue;p ¼

pe;p

Ee;p
;

the normalized Lorentz force and �u being

fLe;p ¼ 	 Eþ ½ue;p 
 B�

 �

; e ¼ s0x ¼
2

3
a3xau

ue;p ¼ e
fLe;p � ue;pðue;p � fLe;pÞ

1þ eðue;p � fLe;pÞ
: (28)

For reference, we also provide the energy equation

dEe;p

dt
¼ 	 ue;p þ �ue;p

� 

� E


 �
� E2

e;p fLe;p � �ue;p


 �
: (29)

For ions with the charge number, Z, and the mass, Mi, the

momentum is normalized per Mic, so that, in their equation

of motion, the electron-to-ion mass ratio comes

dpi

dt
¼ Z

Mi=me
Eþ ½ui 
 B�ð Þ; (30)

dxi

dt
¼ ui; ui ¼

piffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

i

p : (31)

Below we assume that Z¼ 1 and Mi¼Mp is the proton mass.

The normalized Maxwell equations read

@E

@t
þ j ¼ r
 B;

@B

@t
¼ �r
 E: (32)

1. Macroparticles and their current

We assume that a rectangular grid splits the computa-

tional domain into the control volumes (cells), DV ¼
Q

Dxk.

If the electron density equals ncr, there are ncrDV electrons per

cell. The latter number is typically very large, so that the

plasma electrons cannot be simulated individually and they

are combined into macroparticles with a large number of

“electrons-per-particle,” Nepp. In a plasma of critical density,

the number of (macro) particles per cell is Nppc¼ ncrDV=Nepp.

The electron current density inside the given cell is

expressed in terms of the sum over electron macroparticles

in this cell. As long as the electric current density is

FIG. 1. (Color online) The shape of normalized spectra, ðdErad=dx0Þ
�½4xc0=ðmec2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

Þ�, versus the normalized frequency, x0=xc0, for differ-

ent pulse duration. The figure is scalable, particular choice of physical pa-

rameters, may be the following: jaj ¼ 50, E ¼ 180 MeV, pulse durations are

5 fs (curve 1), 36 fs (curve 2), and 220 fs (curve 3). The spectrum broaden-

ing and softening is due to the radiation reaction. In the absence of this reac-

tion, curve 1 without changing its shape would scale proportionally to the

pulse duration. A zero value of log(x0=xc0) corresponds to � 150 keV.
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normalized per ncrc, the contribution to the latter sum from

each macroparticle equals �(1=Nppc)dxe=dt. On adding the

contributions from positrons and protons, we obtain

j ¼
�
P

e ðue þ �ueÞ þ
P

p ðup þ �upÞ þ
P

i ui

Nppc
: (33)

2. Energy integral and energy balance

We now establish the relationship between the energy

integral and the finite sum, which represents this integral in

simulations. Particularly, the field energy may be calculated

as the total of point-wise field magnitudes squared:

Efield ¼ 1
2

P
cells ðE2 þ B2Þ, which is by a factor of

E0 ¼ mec2ðncrDVÞ different from the dimensional field

energy. Now consider the total plasma energy, which

includes the particle energy as well,

Eplasma ¼ Efield þ
P

cells
Mi

me

P
i Ei þ

P
e Ee þ

P
p Ep

� �
Nppc

:

Equations (29), (32), and (33) give dðEplasma þ EradÞ=dt ¼ 0,

where

dErad

dt
¼
P

cells

P
e;p E2

e;p fLe;p � �ue;p


 �
Nppc

(34)

is the radiation energy loss rate. Therefore, the contribution

from electrons and positrons to the dimensionless radiation

energy at each time step, Dt, is calculated as

E2
e;p fLe;p � �ue;p


 �
Dt=Nppc. Once integrated over the simulation

time, the radiation energy may be converted to physical units

on multplying it by a factor of E0.

3. Algorithmic implementation

The algorithmic changes to the standard PIC scheme are

minimal as long as we ignore the radiation transport and

only integrate over time the energy emitted by electrons (and

positrons, if any). To collect the radiation, we introduce

energy bins (an array) Erad ijkðlogð �xÞi; hj;ukÞ, which discre-

tize the modified frequency-angular spectrum of emission.

Inside the desired interval of the photon energies, we intro-

duce a logarithmic grid, logð �xÞi, equally spaced with a step,

D logð �xÞ. We also introduce a grid, hj, uk, for the two polar

angles of the spherical coordinate system, with Dnjk being

the element of solid angle, Dnjk ¼ sin hj


 �
DhDu.

To calculate both the spectrum of emission and the radi-

ation back-reaction, we modify only that part of the PIC

algorithm which accounts for the electron motion. Specifi-

cally, we employ the standard leapfrog numerical scheme

which involves, among others, the following stages: (1) for

each electron macroparticle, update momentum through the

time step by adding the Lorentz force, following the Boris

scheme: pnþ1=2
e ¼ pn�1=2

e þ Dt fLeðEn;BnÞ; (2) solve the

energy and the velocity from the updated momentum:

Enþ1=2
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpnþ1=2

e Þ2
q

, unþ1=2
e ¼ pnþ1=2

e =Enþ1=2
e ; (3) use

the calculated velocity to update the particle coordinates:

xnþ1
e ¼ xn

e þ unþ1=2
e Dt and account for the contribution of the

electric current element to the Maxwell equations. Again,

these stages are standard and may be found in Ref. 21. We

introduced new steps into this algorithm between stages (2)

and (3) as follows.

2.1. Once stage (2) is done, recover the Lorentz force:

fLe ¼ ðpnþ1=2
e � pn�1=2

e Þ=Dt.

2.2. Find v ¼ 3
2
xaua2Enþ1=2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

Le � ðfLe � unþ1=2
e Þ2

q
.

2.3. Find �ue by putting fLe and unþ1=2
e into Eq. (28).

2.4. Calculate xc ¼ Enþ1=2
e v and find the discrete value of

logð �xÞi most close to log xc. Find the angles, hj, uk

closest to the direction of pnþ 1=2
e . Add the radiation

energy into the proper bin

Erad ijk ! Erad ijk þ
ðEnþ1=2

e Þ2ðfLe � �ueÞDt

xcNppcD logð �xÞDnjk
:

2.5. Add the radiation force: pnþ1=2
e ! pnþ1=2

e þ Dt �½�uef

Bn� � unþ1=2

e ðEnþ1=2
e Þ2ðfLe � �ueÞg.

2.6. Find unþ1=2
e ¼ pnþ1=2

e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpnþ1=2

e Þ2
q

þ �ue and use this

velocity through stage (3).

Note that the algorithm modification is applied only to

electrons (positrons), keeping unchanged the ion motion as

well as the fields.

The frequency-angular spectrum may be reduced to a

frequency one: Erad i ¼
P

jk Erad ijkDnjk, to an angular one:

Erad jk ¼
P

i Erad ijk �xiD logð �xÞ or to the total radiation energy:

Erad ¼
P

ijk Erad ijk �xiD logð �xÞDnjk.

While postprocessing the results, we apply the convolu-

tion transformation, Eq. (14), to the radiation spectrum and

multiply it by E0. The resulting spectrum, dErad=ðdndx0Þ, is

a function of log½�hx0= mec2ð Þ�.

D. Simulation result

The analytical solution presented in Sec. II B has been

used to benchmark the numerical scheme. In the test simula-

tion, electrons with an initial momentum, pk ¼ 300, propa-

gate toward the laser pulse with sharp (2k) fronts. The

circularly polarized laser pulse has amplitude, jaj ¼ 15, and

duration, 100(2p=x). Interacting with the pulse, the particles

radiate energy, finally approaching momentum of pk � 130.

In Fig. 2(a), the spectrum of the resulting radiation

dErad=dx0 is shown. We also provide the modified spectrum

(the distribution over �x ¼ xc), which is close to satisfying a

power law, and in full agreement with the analytical solution.

In Figs. 2(b) and 2(c), evolution typical of the angular radiation

distribution, dErad=dn, is provided for the same simulation.

One can see that the majority of the radiation is concentrated in

a narrow angle with respect to the direction of backscattered

light (0�). A softer part of the radiation exhibits a wider angular

distribution and becomes less intense [Fig. 2(c)].

III. QED-MODERATE FIELDS (v� 1)

When v is not small (J� 3 � 1023 W=cm2), QED effects

come into play. Here, we describe how to extend the methods
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used above towards finite v. This is achieved by applying re-

alistic QED emission spectra as derived in Ref. 15, with the

radiation force modified accordingly.

This approach is applicable as long as we ignore the onset

of some new effects which are only pertinent to QED-strong

fields. Specifically, while employing the radiation force,

dpl
rad=ds, it is admitted that the change in the electron momen-

tum, ds � dpl
rad=ds, within the infinitesimal time interval, ds, is

also infinitesimal. This “Newton’s law” approximation is per-

tinent to classical physics, and it ignores the point that the

change in the electron momentum at v� 1 is essentially finite

because of the finite momentum of emitted photon. The

approximation, however, is highly efficient and allows one to

avoid time-consuming statistical simulations. Its error tends to

zero as v! 0, and it is sufficiently small at v� 1.

Another effect which we ignore in this section is pair

production due to c-photon absorption in the strong laser

field. This neglect allows us to avoid solving the computa-

tionally intense radiation transport problem.

A. Theoretical notes

1. Emission spectrum

The emission probability found in Ref. 15 within the

framework of QED can be reformulated in a form similar to

Eq. (8). The polarized part of emission may be reduced to

Eq. (8) with the modified vector amplitude,

AQEDðx0Þ ¼
ffiffiffiffiffiffi
1

Cfi

s
Acl

x0

Cfi

� �
; Cfi ¼

ðk � piÞ
ðk � pf Þ

;

where subscript i and f denote the parameters of an electron

prior to and after the emission of a single photon, and

dIpol
QEDðx0Þ
dx0

¼ Cfi

dIcl
x0
Cfi

� �
dx0

¼ CfiIcl

xc
Qcl

r

Cfi

� �
: (35)

Within the framework of QED, the electron possesses not

only an electric charge, but also a magnetic moment associ-

ated with its spin. Usually the spin is assumed to be depolar-

ized (as is done in Ref. 15), and, accordingly, a depolarized

contribution to the emission appears

dIdepol
QED

dx0
¼ IclðsÞ

xc

9
ffiffiffi
3
p

8p
1� Cfi


 �2 r

Cfi
K2=3

r

Cfi

� �
: (36)

Thus, the QED effect in the emission from an electron in a

strong field reduces to a downshift in frequency accompa-

nied by an extra contribution from the magnetic moment of

electron. The universal emission spectrum in QED-strong

fields is given by the sum of Eqs. (35) and (36),

dIQED

dx0
¼ Icl

xc
qðvÞQQEDðr; vÞ; IQED ¼ IclqðvÞ;

where QQED ¼ Q0QED=q is the unity normalized spectrum,

qðvÞ ¼
Ð1

0
Q0QEDðr; vÞdr � 1 is the normalization parameter,

and the spectrum before normalization is

Q0QEDðr; vÞ ¼
9
ffiffiffi
3
p

8p
r

ð1
rv

K5=3ðr0Þdr0 þ v2rrvK2=3ðrvÞ
" #

;

and rv¼ r=(1 – vr). The graph of IQED is shown in Fig. 3.

2. Equation for electron motion: Accounting the
radiation back-reaction

As long as QED effects modify emission,

QclðrÞ ! QQEDðr; vÞ; Icl ! IQED; (37)

the radiation back-reaction needs to be revised accordingly.

In Refs. 3 and 19, it is noted that QED is not compatible

with the traditional approach to the radiation force in classi-

cal electrodynamics, while Eqs. (15) and (16) may be

employed at finite value of v on substituting IQED for Icl.

Alternatively, within the framework of QED, the radiation

back-reaction may be found by integrating the 4-momentum

carried away with the emitted photons and that absorbed

FIG. 2. (Color online) Test simulation result: (a) radiation energy spectrum

(line 1), dErad=dx0, and the modified spectrum, dErad=d �x (line 2); (b) and

(c) the angular distribution of the radiation at instants: (b) t¼ 10 T, (c)

t¼ 50 T, where T¼ 2p=x.

FIG. 3. Emitted radiation power in the QED approach vs classical (solid),

an interpolation formula IQED ¼ Icl=ð1þ 1:04
ffiffiffiffiffiffiffiffiffiffiffi
Icl=IC

p
Þ4=3

(dashed). Here,

IC¼ Icl=v
2.
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from the external electromagnetic field in the course of emis-

sion. For a 1D wave field, this procedure gives the following

equation (see Ref. 15):

dpa

ds
¼ f a

Le

mec
þ IQED

mec2

ka

ðk � pÞ � pa

� 	
; (38)

and in such a field, FabFblpl= p�F
�bFblpl


 �
¼ ka= k � pð Þ,

where ka is the wave 4-vector. Eq. (38) coincides with Eqs.

(15) and (16), in which the substitutions of Eq. (37) are

made. Similarly, the three-vector formulation for �u is appli-

cable to the 1D wave field, if the substitution is done as

follows:

s0 ! s0

IQED

Icl

¼ s0qðvÞ: (39)

Although this approach is derived for the 1D field, we may

apply it to an arbitrary 3D focused field. An argument in

favor of this generalization is that the property of a 1D wave,

(k � k)¼ 0, which is used while deriving Eq. (38), holds as an

approximation for any field. Indeed on calculating the 4-

square of FabFblpl= p�F
�bFblpl


 �
, which 4-square is similar

to (k � k)=(k � p)2, we find

p � F4 � p
ðp � F2 � pÞ2

¼ 9

4
v�2 E2 � B2

E2
S

þ 81

16
v�4 ðE � BÞ

2

E4
S


 1;

which holds at v� 1 according to inequality (6).

Another criterion which should be checked at v� 1 is

the requirement for the difference, 1� u2ð Þ / v2, as in Eq.

(21) to be small. Applying the substitution in Eqs. (39) to

(21), we find that 1� u2ð Þ � 2 � 10�6, reaching its maximal

value at v� 3.4. This “error” is negligible, even if one

assumes, than any theory allowing u2
= 1, is erroneous.

B. Analytical result

In Fig. 4, we show the emission spectrum for an electron

interacting with a laser pulse (see Ref. 15 for detail). We see

that the QED effects essentially modify the spectrum even

with laser intensities which are already achieved.

C. Numerical model

As long as the QED spectrum of emission depends on v,

the bins for collecting the radiation energy should be refined,

Erad ijklð �xi; njk; vlÞ. Once, for a given electron (or positron), the

parameter v is calculated; the discrete value of vl should be

found most close to v. Then, parameter e should be found fol-

lowing Eq. (39), e¼ qls0x, using pre-tabulated value,

ql¼ q(vl). Then, �ue should be expressed in terms of e and the

radiated energy should be added to a proper energy bin,

Erad ijkl ! Erad ijkl þ
ðEðnþ1=2Þ

e Þ2ðfLe � �ueÞDt

xcNppcD logð �xÞDnjk
:

While postprocessing the results, a convolution similar to

Eq. (14) should be applied with vl-dependent spectra,

dEradðx0; nÞ
dndx0

¼ E0

X
vl

ð
QQED

x0

�x
; vl

� �
Erad ijkld log �x:

D. Simulation result

In a 1D simulation presented in Fig. 5(a), a linearly polar-

ized laser pulse with a step-like profile having 2-k front and

amplitude a¼ 300 interacts with plasma of density n0¼ 30ncr

during 50 cycles. About half of laser energy is converted to

high energy photons. The data for backscattered photons indi-

cate that values of v � 1 are achieved. These values are reason-

able, as the energies of electrons moving toward the pulse are

as high as 180 MeV, and the field magnitude is intensified. One

can see that �65% of emitted photons exceed 10 MeV and that

96% are above 1 MeV. In simulation presented in Fig. 5(b) for

a¼ 600 and n0¼ 60ncr, the value of v exceeds one.

FIG. 4. The emission spectrum for 600 MeV electrons interacting with 30-

fs laser pulses of intensity 2 � 1022 W=cm2 and wavelength k¼ 0.8 lm, with

(solid) and without (dashed) accounting for the QED effects. The QED

effects cut off the high-energy part of the emission, though the reduction in

the radiation back-reaction elevates the low-energy emission.

FIG. 5. (Color online) Backscattered

light in simulations of the interaction of

laser pulse of intensity (a) 2
 1023

W=cm2, (b) 8
 1023 W=cm2, with

plasma of density (a) 6.5
 1022 cm�3,

(b) 1.3
 1023 cm�3. For each vl (vertical

axis), the convolution integral (the term

in the above formula for convolution) is

calculated and presented as a function of

�hx0 (horizontal axis). The line shows the

total emitted energy as a function of the

cutoff photon energy (i.e., the integral

spectrum).
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IV. QED-STRONG FIELDS v� 1ð Þ

A. Theoretical notes

In cases where v� 1, the photons cannot be considered

as freely escaping from the plasma. Note that the processes

of the emitted photon interaction with the other electrons
may be evaluated in terms of the scattering cross-section,

which is on the order of the Thomson cross-section, rT

� 6.65 � 10�25 cm2. Even in plasmas of high electron den-

sity, ne, the scattering length, (rTne)
�1, is much longer than

the spatial scale of laser-plasma interaction. As the laser in-

tensity grows, the scattering efficiency slowly decreases,

while the coincident process of the direct c-photon absorp-

tion in strong field greatly increases. Therefore, one needs to

solve the RTE in order to quantify this absorption.

This may be done using the Monte-Carlo method, in

which the radiation field is evaluated statistically (see Ref.

22). Instead of the radiation energy density, the photon distri-

bution function is introduced as follows:

fcðx;x0; nÞ ¼
Iðx;x0; nÞ

mec2x0
: (40)

Similar to the way that electron macroparticles represent the

electron distribution function, photon marcoparticles may be

employed to simulate the photon distribution function. To

simulate emission, the photons are created with their mo-

mentum selected statistically. The photon propagation in the

direction of n is simulated in the same way as for electrons.

The absorption with the known probability is also simulated

statistically.

Now we may split the radiation into one part, which

may be treated in the way we followed so far (see Secs. II

and III) and another, to be treated as Monte-Carlo photons.

To do this, we choose a parameter v*� (0.05 – 1) and

assume that: (1) an electron with v� v* contributes only to

dErad=ðdx0dnÞ ; while (2) for an electron with v> v*, the

regular spectrum of emission, Q0QED r; vð Þ (which is normally

truncated at r¼ 1=v), is now truncated at r¼ v*=v2< 1=v,

and the emission of photons with v*=v2� r� 1=v, or, the

same, v�

v � x0
E � 1, is treated statistically. The regular radia-

tion loss rate as well as the contribution to the radiation force

which is proportional to �pIQED should be both multiplied

by a factor of qt(v)=q(v) at v> v*, where the truncated spec-

trum integral equals qtðvÞ ¼
Ð v�=v2

0
Q0QEDðr; vÞdr. The unity

normalized truncated spectrum to be used in postprocessing

is Qtðr; vÞ ¼ qðvÞQQEDðr;vÞ
qtðvÞ , r < v�=v2. The emission probabil-

ity to be used at v> v*, r> v*=v2 may be found in the sup-

plement to Ref. 10,

dWe!e;c ¼
jK2=3ðrvÞ þ

ð1
rv

K5=3ðr0Þdr0

p
ffiffiffi
3
p

axau

d
x0

E

� �
dðxtÞ
E ;

where rv ¼ x0=E
vð1�x0=EÞ, j ¼ ðx

0=EÞ2
1�x0=E, and for a 1D wave field, we

use an equation,
dðxtÞffiffi
3
p

axau
¼

ffiffi
3
p

adn
2v

da
dn

��� ���. If the emission probabil-

ity is averaged over time or over an ensemble, we return to

the above spectrum of emission, x0mec2 dWe!e;c=ðdrdtÞ
� �

¼ IQEDQQEDðr; vÞ. Here, we apply the formula, 1ffiffi
3
p

axau

¼ 9
ffiffi
3
p

IQED

8v2qðvÞxmec2, which is also used in the numerical scheme.

B. Semi-analytical solution

In Ref. 10, we demonstrated that as long as the distribu-

tion functions, fe,p,c, for electrons, positrons, and photons in a

1D wave field are integrated over the transversal components

of momentum, their evolution is described by simple kinetic

equations with the collision integrals. We solved these equa-

tions numerically. The choice of initial conditions corre-

sponds to the 46.6 GeV electron beam,8 and the laser

intensity of J � 5 � 1022 W=cm2 for k¼ 0.8 lm to be

achieved soon. As long as the Monte-Carlo method is not

used, the numerical results, such as the total pair production,

may be used to benchmark the numerical scheme described

here.

C. Numerical model

The modification of the numerical scheme as used in

Sec. III is needed only for electrons and positrons with

v> v*. The radiation energy added to the proper energy bin

is corrected at algorithm stage 2.4 as follows:

Erad ijkl ! Erad ijkl þ
qtðvlÞ
qðvlÞ

ðEðnþ1=2Þ
e Þ2ðfLe � �ueÞDt

xcNppcD logð �xÞDnjk
;

and the same correction factor is applied to the second term

in braces at algorithm stage 2.5. After stage 2.5, a probable

hard photon emission from the electron with v> v* is

accounted, using the probability,

dWe!e;c

dðx0=EÞ ¼ dw
x0

E ; v
� �

; d ¼ E
ðnþ1=2Þ
e ðfLe � �ueÞDt

v2
;

w
x0

E ; v
� �

¼ 9
ffiffiffi
3
p

8pqðvÞ jK2=3ðrvÞ þ
ð1

rv

K5=3ðr0Þdr0

" #
:

The total probability of emission is given by a complete inte-

gral, We!e;c ¼ d
Ð 1

v�=v w x0
E ; v

 �

d x0
E

 �

. Both within the QED

perturbation theory and within the Monte-Carlo scheme,

We!e,c is assumed to be less than one. The probability of no

emission equals 1 – We!e,c� 0. The partial probability,

We!e;c x0 < x00

 �

, for the emission with the photon energy

not exceeding the given value, x00, is given by the incom-

plete probability integral,

We!e;cðx0 < x00Þ ¼ d
ðx0

0
=E

v�=v
w

x0

E ; v
� �

d
x0

E

� �
:

Therefore, for given d and v and for a randomly generated

number, 0� rnd< 1, one can solve x0=E from an integral

equation as follows:

ðx0=E

v�=v
w z; vð Þdz ¼ rnd

d
�
ð1

v�=v
w z; vð Þdz; (41)
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if the gambled value of rnd does not exceed We!e;c: 0

� rnd � We!e;c. Otherwise (if We!e;c < rnd � 1), the extra

emission does not occur. With calculated x0=E, the emission

is accounted for by creating a new photon macroparticle with

momentum, pðnþ1=2Þ
e ðx0=EÞ and the recoil of an electron is

accounted for by reducing the ultimate electron momentum,

pðnþ1=2Þ
e ! pðnþ1=2Þ

e ð1� ðx0=EÞÞ.

1. Photon propagation and absorption

The new element of the numerical scheme is the photon

macroparticle, which simulates (ncrDV)=Nppc real photons.

Its propagation with dimensionless velocity equal to n is

treated in the same way as for electrons and ions.

If the photon escapes the computational domain, its

energy should be accounted for while calculating the total

emission from plasma. For this purpose, we introduce the

energy bins, EðtotÞ
rad ijkðlogðx0Þi; hj;ukÞ, such that the logarith-

mic equally spaced grid for the photon energy, log(x0)i, and

the polar angle grid coincide with those introduced above.

The contribution from the escaping photon with total energy,

x0mec
2ncrDV=Nppc, should be added to the bin with the clos-

est log(x0)i, hj, uk, with the macroparticle energy being con-

verted to the spectral energy density by dividing by

Dx0 ¼x0D log (x0),

EðtotÞ
rad ijk ! E

ðtotÞ
rad ijk þ

mec2ðncrDVÞ
NppcD logðx0Þ :

The photon absorption with electron-positron-pair creation is

gambled in the same way as the emission. Other absorption

mechanisms may be also included. In postprocessing the

simulation results, the softer c-photon emission should be

added to the total radiation spectrum,

dEradðx0; nÞ
dndx0

¼ EðtotÞ
rad ijk þ mec2ðncrDVÞ



X
vl

ð
Qt

x0

�x
; vl

� �
Erad ijkld log �x :

D. Simulation result

Repeating the test simulation as described in Sec. III D

and applying the Monte-Carlo scheme at v> v*¼ 0.1, and

without photon absorption, we notice only an increase in the

fluctuations of the high-energy portion of the radiation spec-

trum. In this region, the photons are statistically underrepre-

sented, the number of particles per D log (x0) being small.

V. CONCLUSION

Thus, the range of field intensities which may be simu-

lated with good accuracy using the described tools is now

extended towards the intensities as high as (2 – 3) � 1023

W=cm2. In such fields, which are typical for the radiation-

dominated regime of the laser-plasma interaction, the sug-

gested scheme is validated against a semi-analytical solu-

tion. Different versions of the equation of the emitting

particle motion are compared and their proximity is

demonstrated.

Extension of the model for moderately QED-strong

fields can be easily incorporated into the scheme. The effi-

ciency degradation compared to the standard PIC scheme is

as low as 15%. The emission spectra are substantially modi-

fied by QED effects and simulation results for a realistic

laser-plasma interaction are provided.

Regarding the QED-strong field of the laser-plasma

interaction, the Monte-Carlo approach at large v, appears to

be extremely challenging and computationally intense

(although, in principle, such simulations are doable—see

Ref. 23). Roughly, for each electron (or positron) particle,

one needs to trace about ten high-energy photon particles,

potentially convertible to electron-positron pairs. This high

photon-to-electron number ratio is caused by a compara-

tively low photon absorption probability, which is much

lower than the photon emission probability. Full 3D simula-

tion of the radiation transport (especially for such a non-

trivial mechanism of absorption as we use here) is on a fron-

tier of computational physics and it may be only achievable

with forthcoming exa-flop-class supercomputers.
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