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Pairs of unequal strength, counter-rotating vortices were produced in order to examine the

inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The

acoustic signatures of these cavitation bubbles were characterized during their inception, growth,

and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound.

The spectrum of these bubbles, and the peak resonant frequency can generally be related to

quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated

cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few

kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a

quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and

growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow

that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship

was determined between the observed peak frequency of the oscillations, the highly stretched

vortex properties, and the water nuclei content. It was found that different cavitation spectra could

relate to different flow and fluid properties and therefore would not scale in the same manner.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3626121]
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I. INTRODUCTION

In propulsors and turbo-machinery, the first form of cav-

itation is often vortex cavitation. Propulsor flows are typi-

cally characterized by concentrated regions of vorticity,

where multiple co- and counter-rotating vortices are interact-

ing together. Cavitation generally occurs in the core of these

vortices since their static pressure is lower than that of the

surrounding fluid. Predicting and scaling the onset of cavita-

tion and its acoustic spectra is often important to the design-

ers of such devices. Therefore, this topic has been studied

extensively and a summary on vortex cavitation can be

found in Arndt (2002). Generally, the primary (i.e., strong-

est) vortex in these flows is the first to incept, and scaling

laws are based on this observation, such as that offered by

McCormick (1962).

The conditions that generate primary vortex cavitation

are predictable, but there exist flow conditions whereby

weaker secondary vortices will incept before the primary

vortex. This can occur when the core pressure of the second-

ary vortex is significantly reduced as the result of vortex

stretching, which can result from its interaction with other,

stronger vortices in the flow. Specifically, stretched second-

ary vortices can create localized regions of very low pressure

in the vortex core. The drop in core pressure can amount to a

significant level of tension, and given the availability of a

nucleus, cavitation inception can occur, even at relatively

high level of ambient static pressure. The prediction and

scaling of such secondary vortex cavitation inception is

more difficult due to three dimensional and unsteady nature

of the secondary flow. See, for example, Chesnakas and

Jessup (2003) for a propulsors flow, Gopalan et al. (1999)

and Ran and Katz (1994) for jets, Belahadji et al. (1995),

Iyer and Ceccio (2002), Katz and O’Hern (1986) and

O’Hern (1990) for shear layers, and Gopalan et al. (2002)

for tip leakage vortex cavitation.

The dynamics and noise emission from vortex cavitation

bubbles has been extensively considered (Arndt, 2002).

Mellen (1954) showed that the acoustic intensity of cavita-

tion decreases as f�2, and that the frequency at which this

roll-off begins is related to the bubble size. Later studies

related the observed cavitation spectra in a flow to single

bubble dynamics in a quiescent fluid. In flow over a head-

form, Arakeri and Shanmuganathan (1985) observed that the

acoustic intensity increases at higher frequencies (>10 kHz)

with the increase in the availability of nuclei, and that a peak

can be observed forming at 63 kHz. In conditions of low

cavitation single bubble dynamics was sufficient to relate the

observed spectra, but with heavy cavitation and at high fre-

quency this was not the case. Kumar and Brennen (1993)

substantiate this result and showed that the Rayleigh-Plesset

equation for bubble dynamics is not sufficient to predict the

cavitation spectra at high frequency (30 to 80 kHz). Simi-

larly, in propulsor flow Strasberg (1977), and Blake et al.
(1977) attempt to scale the cavitation spectra based on single

bubble dynamics and the size of the cavitation region. This

scaling employed the assumption that all similar cavitating

flows spectra can be related to basic flow properties, such as

the local cavitation number and model size, and that all

nuclei cavitate in the same manner. This method of estimat-

ing the vortex cavitation spectra works well for fully cavitat-

ing flows, but for incipient vortex cavitation it fails to

predict resonant peaks of the spectra. Shen et al. (2002)

apply a variation of this scaling method for a single bubble

in a vortical flow, and validated their results to numerically

simulated single incipient cavitation bubble spectrum that

resembles a sharp broadband peak.
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A recent study of a ducted rotor propulsor at the U. S.

Navy’s Naval Surface Warfare Center - Carderock Division

(Chesnakas and Jessup, 2003; Oweis et al., 2006a,b) shows

that the location and inception pressure of the cavitation was

associated with the presence of multiple, interacting vortices,

and that a wide variation of spectra exist for the incepting

vortex cavitation. Specifically, Chesnakas and Jessup (2003)

found that the spectra of the incepting cavitation depended on

the static pressure surrounding the propulsor. As the static

pressure was lowered from a condition of no cavitation, the

initial bubble acoustic signatures resemble a pop, a sharp

broadband peak. As the pressure was further lowered the bub-

ble signature took the form of a chirp. An acoustic chirp was

much longer in duration than a pop, and it contained a well-

defined tone when compared to the broadband pop. The

measured tone of a chirp was between 2 and 6 kHz in fre-

quency and its persistence was of more than 2 ms.

Cavitating jets present similar flow conditions where

multiple vortices are interacting. Gopalan et al. (1999) con-

ducted a study on cavitating jets where the primary and sec-

ondary vortices were characterized and the nuclei size and

distribution were controlled to diameters between 150 and

200 lm. They observed cavitation events associated with the

interaction of primary and secondary vortices with a circula-

tion ratio of �0.1. Long cylindrical bubbles would fill the

core of the weaker secondary vortex, and the frequency of

their acoustic signature would be the same as that of the res-

onant frequency of a spherical bubble of the same radius in

quiescent flow and higher frequencies. The acoustical signa-

tures observed were shorter than 1 to 2 ms in persistence

(i.e., a pop). The frequency content of the bubble noise they

measured was 29 kHz or higher, even for cylindrical bub-

bles. Tonal bursts of noise were not reported. Similarly in a

study of tip vortex leakage cavitation by Gopalan et al.
(2002) report observing pop of the bandwidth of 20 to 28

kHz and 5 to 8 kHz during bubble fission. Here again nuclei

were supplied and of �100 lm in size.

Predicting these varied incipient vortex cavitation spec-

tra from non-cavitating flow properties has been extensively

considered (Arndt, 2002), but few experimental studies have

been able to connect the vortex properties, the bubble dy-

namics, and the resulting bubble acoustic emissions. Here,

the dominant tone of the chirp bubble was experimentally

related to the vortex properties, and it is shown to relate to

the resonant frequency of the bubble vortex system. Gener-

ally the spectra predicted in the open literature were either

the resonant spectra of a bubble in a quiescent flow or a

broadband collapse. The simplest case is cavitation in a sin-

gle line vortex, which was recently examined by Choi and

Ceccio (2007). In that study a relatively large laser induced

nucleus (10–100 lm) was created in the core of a single line

vortex, and the nucleus was then exposed to a pressure

reduction and recovery as the vortex flowed through a Ven-

turi. The resulting vortex cavitation bubble incepted immedi-

ately upon convecting into a region of fluid in tension in the

core. The bubbles grew along the vortex axis, reached a max-

imum volume, and then collapsed when the pressure recov-

ered. The noise produced was primarily associated with

bubble collapse, and only pop type noise was recorded,

while no chirp type bubbles were detected. Persistent acous-

tic or visual bubble oscillations were not observed during

this series of experiments.

Numerical models of the cavitation phenomena and

acoustic emission have also been developed. Latorre (1982)

models a nuclei being captured by a line vortex and esti-

mates its spectra using the Fitzpatrick-Strasberg formulation

for modeling the bubble growth. This model fails to include

the coupling between the vortex dynamics and the bubble

dynamics (i.e., as the bubble grows the vortex is being dis-

placed outward). Choi and Chahine (2004) develop a numer-

ical model of tip vortex cavitation inception that also models

a bubble being affected by the vortex pressure field, but not

the effect of the bubble on the vortex. This study predicts

that bubble fission would be louder than its initial growth

and that its acoustic emission would take the form of a

broadband pop. These models fail to predict the bubble

chirps observed by Chesnaka and Jessup (2003).

Vortex cavitation inception resulting in a well defined

tone of frequencies lower than the resonant frequency of just

the bubble has been predicted analytically and numerically

for cavitation bubbles in a line vortex by Choi et al. (2009).

In this study the interactions between a single cylindrical

bubble in the core of a line vortex and the surrounding vorti-

cal flow were computed, including the redistribution of the

vorticity surrounding the bubble due to the volume changes

of the bubble. It was found that bubbles could undergo radial

oscillation, during bubble growth and collapse. These radial

oscillations would take place with a period that was on the

order of the vortex time scale sv¼ 2/rc = uh,max, where rc

and uh,max are the (non-cavitating) core radius and maximum

tangential velocity. Unlike previous studies where the bubble

acoustic emission frequencies are related to the resonant fre-

quencies of quiescent flow bubble, in this work it is related

to the vortex=bubble flow system resonant frequency. It was

also found that the amplitude of this oscillation was related

to the timescale of the pressure reduction that initiated the

cavitation, DT, and the final core cavitation number, rc, once

the minimum pressure was reached. As the core cavitation

number decreases for a constant ratio of DT = sv, the ampli-

tude of the radial oscillations increased. And for a constant

core cavitation number, the amplitude of the oscillations

increased as DT = sv decreased.

Based on the numerical results of Choi et al. (2009), it

is unlikely that a chirp producing cavitation event would be

observed in the flow examined by Choi and Ceccio (2007).

The 10–100 lm nucleus incepted immediately upon being

subjected to a low value of tension in the core, and the time-

scale of the pressure reduction was relatively slow. Effec-

tively, the vortex core cavitation number was between 0 and

�0.9 and DT = sv was greater than 1. Under these conditions,

it would not be expected that the vortex cavitation bubbles

would undergo periodic radial oscillations that would pro-

duce an audible chirp. Similarly, Gopalan et al. (1999) had

the nuclei sizes and distributions controlled to diameters

between 150 and 200 lm. These bubbles would incept with

minimal tension, so chirps would not be expected to be

heard in this case with frequencies of 2 kHz to 14 kHz as

predicted by Choi et al. (2009) based on the cavitating
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vortex time constant, sv. In both studies, such harmonic tones

were not reported.

Yet, chirp type acoustic emission from cavitation bub-

bles have been experimentally observed and reported by

Chesnakas and Jessup (2003). The analysis of Choi et al.
(2009) suggest that a vortex cavitation bubble will lead to a

tonal pulse if a nucleus is exposed to a rapid application of

strong tension, and this can take place in the core of a rapidly

stretched vortex. A canonical flow that could lead to the flow

condition described is a pair of counter-rotating parallel vor-

tices (Devenport et al., 1997). In Chang (2007) it is shown

that unstable pairs of counter-rotating vortices can provide a

well-controlled flow field that can lead to rapid vortex

stretching and cavitation of the secondary vortex.

In the present work, it is shown how vortex cavitation

associated with the rapid vortex stretching can lead to both

pop and chirp type acoustic emissions from incipient cavita-

tion bubbles. Here, it is examined how the dynamics and

acoustic emission of these bubbles relate to the underlying

natural nuclei distribution and properties of the vortical flow.

It is experimentally shown that the observed chirp frequency

is related to the resonant frequency of the vortex=bubble

flow system. This manuscript is divided into three additional

sections. Section II will describe the experimental setup

employed and the instruments used to characterize the flow

field and cavitation. The acoustic emission of the vortex cav-

itation bubbles are related to the flow field in Sec. III, and

conclusions are presented in Sec. IV.

II. EXPERIMENTAL SETUP

The experimental setup has two basic objectives: estab-

lishing a canonical flow whereby vortex cavitation can be

studied, and studying the details of the acoustic signal gener-

ated by the bubbles in relation to the bubble dynamics and

flow conditions. As stated in the introduction in real flow

applications the spectra of these vortex cavitating bubbles

can vary from broadband to narrowband (chirps). In canoni-

cal flows broadband cavitation bubbles have been studied

extensively, but to the authors knowledge a canonical flows

that generate chirp type vortex cavitation bubbles have not.

From the literature, the form of cavitation of interest is

formed with multiple interacting vortices (Chesnakas and

Jessup, 2003; Oweis et al., 2006a,b) where weaker vortices

were cavitating at higher cavitation numbers than the stron-

ger vortices. Thus, the generation of a pair of parallel coun-

ter-rotating vortices was sought. The ratio of the circulation

of this pair would be conducive to a rapid stretching of the

secondary weaker vortex around the primary stronger

vortex. The details of the flow set up are described in Chang

(2007) and of the acoustic setup in Chang and Dowling

(2009), and the following short description is given to aid

the reader.

A. Flow facility and test models

The experiments were conducted in the University of

Michigan 9-Inch Water Tunnel. Upstream of the test section

the water tunnel has a series of flow management screens

followed by a circular contraction with an area ratio of 6.4:1.

The test section has a 22.9 cm, or approximately 9 in. diame-

ter inlet that smoothly transitions to a 22 cm� 22 cm

rounded rectangular cross section. The length of the test sec-

tion is 1 m. The test section has four acrylic windows that

are 93.9 cm� 10.0 cm for viewing purposes. The flow speed

and static pressure in the test section can be controlled to

values between 0 and 18 m s�1 and from near vacuum to

200 kPa. A de-aeration system is used to control the dis-

solved oxygen content of the water. The tunnel holds 3.8 m3

(1000 gal) of water, which is filtered at the inlet to 1 lm.

The vortices were generated with a pair of non-standard

but similar hydrofoils. When mounted the camber was in the

same direction. The hydrofoils were both 95 mm in span,

with the first 167 mm in chord and the second 134 mm in

chord. The smaller foil had a rounded edge. The two hydro-

foils were mounted on opposite side windows at the same

height and location along the length of the test section. The

trailing edges of the two foils end at the same distance along

the test section length (Fig. 1). The hydrofoil mounts allow

rotation to achieve different angles of attack, creating coun-

ter-rotating vortex pairs with varying strengths. The span-

wise gap between the two foils at zero angle of attack was

12.5 mm.

The free-stream flow velocity, U1, which was set to

10 6 0.3 m s�1 and the chord-based Reynolds number was

1.67� 106 based on the larger foil. The foils and their angle

of attack in conjunction with the free-stream flow velocity

set the properties of the two vortices. These properties were

measured at 1 chord-length downstream from the trailing

edge of the foil once the vortex has rolled up and before the

instability started which was approximately 1.5 to 2 chord-

lengths downstream of the trailing edge of the foil. The prop-

erties of the vortex were measured in a plane perpendicular

to the free-stream flow with Stereo Planar Particle Imaging

Velocimetry (SPIV) were a thousand double-pulsed uncorre-

lated images were averaged. The radial velocity distributions

of the two vortices were then fit a Gaussian profile with a

method similar to Choi and Ceccio (2007). The circulation

and core size for the primary vortex were �0.227 m2=s and

6.0 mm, and for the secondary vortex 0.058 m2=s and 3.7

mm. The distance between the two cores was 21.0 mm. The

error in these measurements is 66%, and the details of the

measurements are from Chang (2007).

FIG. 1. Hydrophone and high-speed video camera set up. Dimensions are in

centimeters.
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During the experiments, the water was de-aerated to

achieve between 10% and 50% dissolved oxygen (DO) con-

tent at atmospheric pressure, which was measured with an

Orion 810 dissolved oxygen meter. The free-stream static

pressure, P1, was varied to generate different cavitation

numbers, and it ranged from 200 to 100 kPa. This corre-

sponds to a free-stream cavitation number, r1, ranging from

4 to 2, where PV is the water vapor pressure and r is the

water density:

r1 ¼
P1 � PV

ð1=2ÞqU2
1
: (1)

The error of the cavitation number measured experimentally

between different set ups and its true value is 60.1. The

source of this error is the uncertainty in the free-stream ve-

locity (60.3 m=s) given the pressure transducer and temper-

ature-thermocouple was accurate to 61 kPa and 60.1 �C,

respectively.

The presence of a nucleus is necessary for cavitation

inception, and the size of the nucleus dictates the fluid ten-

sion required to initiate rapid volume growth. Hence, the

observed event rate of the vortex cavitation, bubble dynam-

ics, and the acoustics emission was strongly dependent on

the free-stream nuclei content. The Cavitation Supceptibility

Meter (CSM) from GEC Alsthom ACB was used to deter-

mine the nuclei density with varying dissolved oxygen con-

tent of the water in the tunnel water and that the water

quality was consistent through different set ups. Detailed

results can be found in Chang (2007). The CSM can produce

a maximum tension in its Venturi of approximately 100 kPa.

At a given tension cavitation inception is detected acousti-

cally and the events are counted. The CSM then provides the

number of nuclei activated for a given volume of water at a

given pressure. The CSM was found to be accurate within

615% of the measured nuclei density for a given pressure.

The inception pressure is then assumed to be the critical

pressure, PCR, of a clean gas nucleus with a bubble of radius

RC. As discussed in Brennen (1995) the critical pressure,

PCR, is related to a clean gas nucleus bubble radius, RC, by

RC >
4S

3 PV � PCRð Þ ; (2)

where S is the surface tension and PV is the vapor pressure.

The nuclei content of the water at different DO and pressures

was measured, and it was found that at 25% DO most nuclei

required a depression on the fluid pressure below vapor pres-

sure of 100 kPa or greater to incept, while at 50% DO it

required 50 kPa of tension. These measurements imply that the

majority of nuclei were of approximately 1–3 lm in size and

5–8 lm in size, respectively. Given the error of the CSM the

two nuclei density populations can still be considered distinct

where the average size of the nuclei differs by a factor of 3.

The flow and fluid setup described above ensured that the

secondary, weaker, vortex would incept at a higher cavitation

number than the primary, stronger, vortex. The inception loca-

tion was downstream of the instability between 2 and 3 chord-

lengths downstream of the trailing edge of the hydrofoil.

B. High speed video imaging and acoustic
measurements

Images of the vortex cavitation bubbles were acquired

with two 8-bit Phantom V9.0 high-speed movie cameras

with 50 or 85 mm focal length Nikon lenses in conjunction

to 12 mm extension rings. The bubbles were illuminated

from behind by four 300 W incandescent lights, and a light

diffuser was used to prevent glare. The spatial resolution of

the images varied depending on the effective resolution,

frame rate, and the distance between the camera and the bub-

ble being imaged. For gross bubble features and localization,

the set up used yielded an image with 526� 1200 pixels (60

mm across by 150 mm along the flow) or 504� 528 pixels

(approximately 45 mm square) with the respective frame

rates of 2500 and 5400 frames per second (fps). The expo-

sure time was varied depending on the lighting available to

values between 180 and 31 ls. To generate a three-dimen-

sional location of the bubbles imaged and observe their

shape, the cameras were focused in the same area of the tun-

nel but at right angles, from the side and from below, as

shown in Fig. 1. The movies were scaled by correlating the

distance in pixels from the image of an immersed ruler at the

approximate location of the bubbles. To study bubble dy-

namics, the cameras were set to acquire at 11 000 frames per

second of 526 pixels� 256 pixels for a 33 mm� 16 mm

viewing area. At this resolution, the error associated with

determining the location of the edge of the bubble within a

frame was 61 pixel or 60.06 mm, therefore the error in

determining the diameter of a bubble was 60.08 mm.

An array of hydrophones was used to record the cavitat-

ing bubbles acoustic emission and locate the spatial position

of sound-producing bubbles. The acoustic localization was

conducted to confirm that the sound produced by the bubble

that was high-speed video imaged corresponded to the acous-

tic recordings. A detailed description of the method and the

array used can be found in Chang and Dowling (2009), with

a summary provided here. The acoustic localization array

was comprised of 16 hydrophones, Reson TC-4013. The

receiving sensitivity of the hydrophones is �211 6 3 dB re 1

V lPa�1 from 1 Hz to 170 kHz. The hydrophones were

driven by a Reson VP-2000 voltage preamplifier that was

powered by a Hewlett-Packard E3610A DC power supply at

12 V DC. To eliminate the 60 Hz noise signal from the power

supply, the preamplifier filter was set to 100 Hz high pass and

1 MHz low pass, and its gain set to 10 dB. The signal from

the preamplifier is then filtered with a Khron-Hite 3364 four-

pole tuneable active filter. The filter setting used was Butter-

worth high pass 1 kHz, and low pass 200 kHz with a 40 dB

gain. Its attenuation is 24 dB per Octave. The hydrophones

were mounted on the Lucite windows of the water tunnel test

section. The Lucite window had a pocket of quiescent de-aer-

ated water where the transducers were placed separate from

the main flow by a 1 cm thick Lucite plate. The cavitation

events of interest were occurring in the downstream half of

the water tunnel test-section. Therefore, the receivers were

placed in that half, with eight on the top and eight on the side

windows ranging from 31 to 67.5 cm (1.8 to 4 chord lengths)

from the hydrofoil trailing edge. Figure 1 shows the general
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locations of the hydrophones. The signals from the acoustic

array where then digitized by four National Instrument A=D

systems, NI-PCI-6110 S, acquiring data synchronously at 1

MHz. The sampling rate ensured that the Nyquist anti-alias-

ing criteria are met. The dynamic range of the A=D cards is

12 bits for 610 V.

The acoustic and video data acquired is correlated in

time. A common trigger, the acoustic signal of one of the

receiving hydrophones, provided the synchronization of

these two independent systems. The trigger event was a 1 V

rising signal, which then prompted the video and acoustic

systems to save their respective buffers. This data could then

be used to validate that the acoustic recording corresponds to

the video of the bubble and compare the bubble dynamics

with the sound it produces.

III. ACOUSTIC EMISSION OF THE VORTEX
CAVITATION BUBBLES

A. Acoustic emission from the incipient vortex
cavitation bubbles

The acoustic signal produced by the incipient cavitation

was studied at dissolved oxygen contents less than 25% and

high static pressure 157 kPa (r1¼ 3.1). The sound pulse

was synchronously recorded with high-speed video to relate

the acoustic signal to the inception, growth, and collapse of

the bubble. The recorded acoustic signals could be sorted

into two broad categories: pops which corresponded to a

sharp noise pulse of duration less than 2 ms, and a chirp cor-

responded to a periodic sound emission that lasted over 2

ms. These acoustic signal types could then be related to the

state of the bubble when it was emitted (e.g., inception,

growth, diminution, or collapse). For example, Fig. 2 shows

a case where inception led to a pop. Figure 3 shows a col-

lapsing bubble that produced a pop. However, in many cases,

both growth and collapse did not lead to a detectable sound.

Figure 4 shows two bubbles with the case where the growth

and diminution of the bubble produced a periodic chirp,

though the highest peak of the signal was during bubble

growth. Here, 153 cavitation events were studied acousti-

cally and with high-speed video. The acoustic signal was

strongest during inception pops (42%) and growth chirps
(48%) comprising 90% of the events. Collapse pops
accounted for the remaining 10%. Moreover, it was found

that for the chirp growth=diminution bubbles, approximately

20% of bubbles produced the strongest portion of their

FIG. 2. Four images of a growing

vortex cavitation bubble in the sec-

ondary vortex producing an acoustic

pop. The acoustic emission recorded

by a hydrophone is also shown. The

image field-of-view is 78 mm� 39

mm. Flow is from left to right.

r1¼ 3.1 and DO¼25%.

FIG. 3. Four images of a growing

vortex cavitation bubble in the sec-

ondary vortex producing an acoustic

pop during collapse. The broadband

acoustic pulse was abrupt lasting

approximately 1 ms. The image

field-of-view is 78 mm� 39 mm.

Flow is from left to right. r1¼ 3.1

and DO¼25%.
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signature when the bubble was arresting its growth and ini-
tiating its diminution (Fig. 5). The acoustic traces of the

pops and chirps were qualitatively similar to those observed

by Chesnakas and Jessup (2003) for the cavitation occurring

in the tip region of a ducted rotor.

The sound pressure level was estimated for the 153 bub-

bles measured and categorized into the different events. The

acoustic data was sampled by using a taper-to-constant dura-

tion Tukey window that was 300 points for a growth pop or

collapse, or 2000 points for a chirp. The sample data was

transformed with a 212 point Fast Fourier Transform (FFT)

with additional zero padding as required. The recorded levels

were corrected to account for the relative distance between

the source and the receiver, in this case the closest hydro-

phone to the event. The reference pressure was 1 lPa.

Figure 6 shows the resulting sound pressure level. The

acoustic energy was concentrated at frequencies between

1 and 30 kHz for a growth pop such as those recorded at

inception, and between 2 and 6 kHz during bubble chirp,

growth=diminution, with a sound pressure level peak at

approximately 3 kHz. The measured bubble collapse pop
acoustic signal displayed a greater bandwidth than signals

measured during growth. The growth pop and collapse pop
show great overlap with the maximum sound pressure level

value was measured at �10 kHz, though the collapse pop was

found to be �2 dB lower than the growth pop at this peak

value. From 100 Hz to 4 kHz the collapse pop sound pressure

level was higher than the growth pop. The acoustic emission

of the cavitation bubbles was also related to the nuclei distri-

bution. With higher dissolved oxygen content the nuclei are

larger and more readily available. The resulting cavitation

bubbles became more elongated, and their acoustic impulse

during growth and collapse was weaker.

The resonant frequency of a spherical cavitation bubble

can be estimated as discussed by Brennen (1995) with

x ¼ 3cP1
qR2

þ 2S 3c� 1ð Þ
qR3

� �1=2

; (3)

where c¼ 1 is the polytropic gas constant, S¼ 0.071 N m�1

is the surface tension, q¼ 998 kg m�3 is the density of

water, P1¼ 157 kPa, R is the bubble radius which is esti-

mated from the videos to be at most 0.5 mm (with the

FIG. 4. Two sets of four images

showing cavitation bubbles in the

secondary vortex producing an

acoustic chirp. The two bubbles pro-

duced acoustic pulses with a center

frequency of �3 to 4 kHz. The

acoustic signal persisted from 5 to

10 ms. The image area is 78

mm� 39 mm. Flow is from left to

right. r1¼ 3.1 and DO¼25%.
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smallest bubble that could be resolved to be �0.2 mm). The

resonant frequency was found to be approximately 7 to 17

kHz, which corresponds to the peak sound pressure level fre-

quency value found for the bubble at the initial inception

and final collapse pop. The peak sound pressure level fre-

quency of a chirp is considerably lower, which could be due

to the bubble length and persistence. However, Gopalan et
al. (1999) found that the resonant frequencies of elongated

vortex cavitation bubbles produced by secondary flows in a

turbulent jet were of the same value or higher than that of a

spherical bubble. The higher frequencies observed by Gopa-

lan et al. (1999) could be due to the elongated bubbles fis-

sion and collapse to bubbles of smaller size than the radius

of the elongated bubble or the incepting nucleus. Another

mechanism, such as coupling between the flow and the bub-

ble dynamics, could be driving this lower resonant frequency

in the chirp. This hypothesis will be discussed in more detail

in the following section.

The strength of the acoustic signal is directly related to

the volumetric acceleration of the bubble (Brennen, 1995)

PA ¼
€Qq

4pD
; (4)

where €Q is the volumetric acceleration of the bubble, and PA

is the estimated pressure at distance D from source. Ceccio

and Brennen (1991) and Kuhn de Chizelle et al. (1995) dis-

cuss how the rapid collapse of traveling bubble cavitation

lead to sharp acoustic pulses that are very similar to the pop
type signal observed in the present study. And, Choi and

Ceccio (2007) recorded similar acoustic traces for collapsing

vortex cavitation bubbles. Oweis et al. (2004) compared the

sound produced by collapsing vortex cavitation bubbles to

spherical bubbles with equivalent volume in an originally

quiescent flow, and they found that when the bubbles remain

nearly spherical in the core of the vortex, the noise produc-

ing efficiency of the bubbles approached that of the spherical

bubbles. However, once the bubbles became significantly

elongated, the intensity of the pop type sound produced upon

collapse was reduced.

The non-dimensional acoustic impulse of the cavitation

bubbles studied was estimated as in Choi and Ceccio (2007).

The non-dimensional acoustic impulse is representative of

the fraction of available potential mechanical energy that the

bubble has converted to acoustic energy. It is defined as

Î ¼ ImdH

ð1=3ÞqcDPCr3
bh

� �1=2
; (5)

where Im is the integral of the peak pressure pulse, h is the

pulse peak width, dH is the distance between the bubble and

FIG. 5. Time trace of a cavitation

bubble acoustical signature. (a)–(c)

The inception process where the

bubble slowly grows and chirps. The

bubble experiences rapid growth and

has a pop like signature, and then

(c)–(e) the bubble is slowly shrink-

ing and producing a chirp like signa-

ture. (f) Finally, the bubble

collapses, and its collapse was qui-

eter than the initial growth or pop.

Flow is from left to right. r1¼ 3.1

and DO¼ 25%.

FIG. 6. Sound pressure levels of the distinct bubble dynamics and acoustic

signature observed for the 153 counter-rotating vortex (CRV) bubbles:

growth pop (solid line), collapse pop (dashed line), chirp (dash-dot line),

and background noise (dotted line). r1¼ 3.1 and DO¼25%. There were

119 growth pops (sometimes embedded in a chirp event) and 16 bubble col-

lapse pops. There were also 65 bubbles that chirped some of which did not

have a distinct time of rapid growth over which a pop could be measured.

The acoustic signal was sampled with a taper-to-constant-duration ratio of

0.5 Tukey window of 300 points for the pops growth and collapse bubbles

and 2000 points for the chirp events. The noise was similarly sampled to the

chirps. A 212-point Fast Fourier Transforms (FFTs) was conducted on the

sampled data and zero padding was used as necessary.
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the hydrophone, qc is the characteristic acoustic impedance

of water, rb is the bubble radius, and DPc is the collapsing

pressure is generally estimated from the local cavitation num-

ber, rC. From Vogel and Lauterborn (1988), a sharp pressure

pulse from a collapsing bubble has a measured pulse width of

10–100 ns that is beyond the resolution of the hydrophones

used here. Therefore, it is assumed to be 10 ns. Here, the local

cavitation number could not be estimated directly from flow

measurements, but as with DPc can be estimated based on

the size of the nuclei incepted which were 1 to 10 micro-

meters. The bubble radius is estimated from the highest reso-

lution high-speed videos taken as �0.3 mm. In Fig. 7 the

non-dimensional acoustic impulse of the 153 bubbles meas-

ured at a dissolved oxygen of 25% and a r1¼ 3.1 and plotted

in conjunction with the data from Choi and Ceccio (2007),

the acoustic impulse of the inception and collapse pop were

found to be of the same magnitude and a order of magnitude

larger than those measured in the single line vortex experi-

ment conducted by Choi and Ceccio (2007). In addition, the

cases where the strongest portion of the signature occurs

when the bubble was arresting its growth (and initiating its

diminution), the emissions were also of the same magnitude

as the inception and collapse pop (Fig. 5).

The explosive growth of a nucleus can produce large

volumetric acceleration and, therefore, a detectable acoustic

emission. However, the magnitude of inception and

growth=diminution induced acoustic emission is often much

less than the pulses produced upon final bubble collapse.

This is illustrated in the scaling discussed by Blake et al.
(1977). Observation of traveling bubble cavitation by Ceccio

and Brennen (1991) also confirmed that the sound produced

upon nucleus growth was usually much smaller than the col-

lapse acoustic pulse, and that bubble deformations could

mute the sound produced upon collapse. Moreover, Choi and

Ceccio (2007) did not report significant acoustic emissions

associated with bubble growth within their single vortex.

These prior results appear at odds with the present observa-

tions in which substantial acoustic emission were detected

upon vortex bubble inception and its growth=diminution.

Only Gopalan et al. (2002) reports inceptions pop in their

study of the effect of gap size in tip leakage vortex cavita-

tion, which is similar to this case where a secondary flow

incepts prior to the primary vortex.

An explanation for this apparent inconsistency comes

from an examination of both the underlying cavitating vorti-

cal flow and the freestream nuclei distribution. The study of

Choi and Ceccio (2007) employed relatively large (100 lm

radius) laser-induced nuclei in the core of a single vortex.

These large nuclei were then exposed to a relatively gradual

pressure reduction as the vortex passed through a Venturi.

Such large nuclei will cavitate when the local pressure just

falls below the vapor pressure, and their rate of growth will

be moderate as the surrounding pressure decreases. Simi-

larly, Gopalan et al. (1999) nuclei of 150 to 200 lm were

supplied to the jet, again these nuclei would immediately

cavitate upon experiencing tension. This is contrasted with

the observations of vortex bubbles in the present flow, where

the nuclei in the vortex cores were small, with equivalent

radii of around 1 lm. These nuclei need a substantial ten-

sion, greater than 100 kPa, to incept. Such a strong tension

can be achieved via vortex stretching, and bubbles exposed

to the high tension will grow explosively, producing a rapid

volumetric acceleration and, consequently, a strong acoustic

pop, see Fig. 7. The rapidly varying pressure in the second-

ary vortex can also create situation where a sudden increase

in pressure would arrest the growth of a bubble and lead to

its diminution and eventual collapse. This would also pro-

duce a high volumetric acceleration and a pop acoustic emis-

sion, see Figs. 5 and 7.

B. Chirping vortex cavitation bubbles and the inferred
properties of the stretched secondary vortex

Because a chirp is characterized by a periodic sound

pulse consisting of many, lower frequency, pressure cycles,

this type of acoustic emission (illustrated in Fig. 4) can be

correlated to periodic oscillation of the bubble volume. A se-

ries of high-speed video images of chirping bubbles were

taken at 11 000 fps. The time series of images were used to

estimate the time-varying bubble volume, and the resulting

volumetric acceleration, after assuming that the bubbles

were axisymmetric. The maximum duration of a given video

recording was 2.5 milliseconds, and this, in conjunction with

the frame rate, limited the volumetric oscillation frequencies

that could be resolved from the video images to a range of

400–5500 Hz. This corresponds to acoustic wavelengths

between 3.7 and 0.27 m. Since the size of the bubble is less

than one-tenth of the wavelength of interest, it can be

assumed that the bubble behaves as a point source and that

FIG. 7. (Color online) Figure reprinted from Choi and Ceccio (2007). The

symbols T1, T2, R1, and R2 represent different single line vortices studied

by Choi and Ceccio (2007) which had circulation ranging from 0.252 to

0.302 m2=s and core radius of 3.75–5.15 mm. The grayed out area is where

the non-dimensional acoustic impulse is estimated to be for the 153 counter-

rotating vortex cavitation bubbles with a r1¼ 3.1 and DO¼ 25%. The bub-

ble radius, rb, is estimated for be 0.3 mm, DPc is O(10�5 Pa), and h¼ 10 ns

as in the Choi and Ceccio (2007). The cavitation number, rc, for vortex cav-

itation events in the present study were estimated from the original nuclei

sizes (1 to 10 lm). If h takes on the measured value, which ranged from

1.6� 10�5 s to 2.2� 10�4 s, the values of Î would then range from 0.02 to

0.23.
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the acoustic pressure can be estimated from the volumetric

acceleration [Eq. (4)].

Figure 8 shows the measured and estimated acoustic

emission from two chirping bubbles. Note that the acoustic

signal was shifted in time with respect to the estimated pres-

sure curve from the video data by a lag corresponding to the

point of maximum correlation. The measured time lag is an

artifact of a combination of the error in the synchronization

of the two systems, where the video system at 11 000 fps

could have delay with respect to the acoustic system of 0 to

0.09 milliseconds (0 to 1 frame period), and the relative dif-

ference between the speed of light and sound, which could

generate a delay of the acoustic signal with respect to the

video data of 0.04 to 0.18 milliseconds depending on the rel-

ative location of the source to the receiver. Thus, overall

error in timing of the acoustic signal with respect to the

video data was �0.050 to þ0.180 milliseconds. The correla-

tion between the two signals suggests that periodic volume

oscillations of the bubble are, indeed, responsible for the

chirp.

The single vortex cavitation bubbles studied by Choi

and Ceccio (2007) did not exhibit any chirping type acous-

tic signature. Similarly, in Gopalan et al. (1999) or Gopalan

et al. (2002) no chirp were reported, only pop type signals

of 2 ms in duration. Once more, this difference can be

ascribed to the variation in the nuclei populations and pres-

sure histories in the vortex cores. In the present study, the

high tension required for initiating bubble growth in the

secondary vortex leads to explosive nuclei growth. In turn,

as the bubble grows it will redistribute the surrounding vor-

ticity, causing the local core pressure to increase, retarding

the bubble growth. If this process occurs slowly, the volu-

metric oscillations of the bubble may not produce a detect-

able sound pulse. Conversely, the explosive growth can

lead to strong interactions with the surrounding vortical

flow and cause bubble oscillations. The numerical and ana-

lytical study of bubble dynamics by Choi et al. (2009)

examined the volume oscillations of two- and three-dimen-

sional vortex cavitation bubbles, and they discuss how the

radial volume oscillations of vortex cavitation bubbles

occur with a timescale related to the underlying vortex

properties:

sV ¼
2prC

uh;max

¼ 4pr2
C

bC0

; (6)

where b¼ 0.715.

In the present experiment the chirping bubbles emit

with frequencies on the order of 2.5–5 kHz. Following the

discussion of the vortex dynamics of this flow that are pre-

sented in Chang (2007), a combination of a reduced second-

ary vortex core radius and increased axial jetting in the core

can account for the observed inception at pressures between

112 and 157 kPa (corresponding to 2.2<r1< 3.1). The ini-

tial value of the secondary core radius is rC,S� 3.5 mm. And,

with the assumption that the circulation is unchanged at

CS� 0.06 m2 s�1, the stretching would have to reduce the

core radius to [1=2] to [1=4] its original size to 0.9

mm< rC< 1.8 mm in order to produce the observed cavita-

tion in the secondary vortex. Choi et al. (2009) showed how

two-dimensional vortex cavitation had volume-oscillations

periods, Tp, between 0.6sV<Tp< 1.4sV, while of a limited

number of three-dimensional bubble simulations had periods

on the order of 0.6sV. For the stretched secondary vortex, the

timescale of oscillations would then be expected to fall

between 2.6� 10�4 s< sV< 10� 10�4 s, implying that the

frequency of the chirp can range between 0.7 kHz

<1=Tp< 6.4 kHz. The measured frequencies of the experi-

mentally observed chirps fall within this range.

Choi et al. (2009) showed that the oscillation frequency

and amplitude depended on a number of flow parameters,

including the original vortex circulation and core size, the

core cavitation number, and the rate at which the core pres-

sure was reduced. These parameters are not easily deter-

mined for the unstable vortical flow examined in the present

study. Nevertheless, the measured volume oscillation period,

Tp, was on the order of the inferred period of the stretched

secondary vortex (e.g.,� 0.6 to 1.4 tV). Hence, the measured

sound frequency is that expected from the predicted second-

ary vortex properties. Finally, it should be noted the impor-

tance of the axial jet in depressing the pressure in the core

and its relation to the acoustic signature. If the depression of

the pressure in the vortex core were solely due to a reduction

in core radius the bubble oscillation frequency would be

increased.

FIG. 8. The measured acoustic emission (solid line) of a single vortex cavi-

tation bubble plotted with the computed pressure inferred from the volumet-

ric acceleration of the visually recorded bubble (dashed line). The center

frequency of the signal was �3–4 kHz. A correlation of (top) 84% and (bot-

tom) 70% was found for these two cases. The phase of the signals were

shifted with a lag corresponding to the maximum correlation point. There is

an equivalent shift in the acoustic signal of (top) �0.036 ms and (bottom)

�0.158 ms. r1¼ 3.1 and DO around 25%.
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C. Chirping vortex cavitation bubbles and nuclei
content

The type of acoustic emission of the cavitation bubbles

was related to the nuclei distribution and free-stream cavita-

tion number for the flow (Fig. 9). The fraction of bubbles

that chirp was found to achieve a maximum value of �0.5

for a dissolved oxygen content of 14% at r1¼ 2.5. At

higher or lower values of r1 the fraction was lower. How-

ever, to achieve �50% chirping bubbles at 44% dissolved

oxygen content, r1 was increased to 3.6. In addition, it was

observed for the 44% dissolved oxygen case that, as the

number of chirping events increased to its �50% maximum,

the period of the chirps changed in relation to the r1. At the

lower r1, the periods of chirps tended to be longer, with

some up to 1 ms long (r1¼ 2.2). As the r1 was increased,

the average period of the chirp decreased, to a minimum

observed value of 0.1 ms (r1¼ 3.6).

The changes in the acoustic signature with r1 and dis-

solved oxygen content can be related to the results by Choi et
al. (2009). The bubble and flow dynamics are coupled in vor-

tex cavitation, though a cavitating bubble may not necessarily

initiate an oscillation with frequency related to sV. From the

discussion in Brennen (1995) of Rayleigh-Plesset equation a

smaller nucleus, requiring a lower critical pressure to be acti-

vated, will experience a greater volumetric growth once acti-

vated than a larger nucleus. Therefore, a small nucleus

experiencing the same rate of pressure drop as a larger nu-

cleus is more likely to overshoot its equilibrium bubble radius.

At the higher dissolved oxygen content (i.e., larger nuclei) or

at lower r1, (i.e., lower free-stream pressure), the tension

needed to incept nuclei in the core of the secondary vortex is

reduced. Therefore, these larger nuclei will grow slowly and

may only produce a pop upon bubble growth or collapse. As

the available nuclei in the flow become smaller in size (i.e.,

lower dissolve oxygen) or as r1 increases, the tension in the

vortex core will have to be much higher to initiate inception.

These smaller nuclei upon inception will experience greater

radial acceleration than the larger nuclei and are likely to

overshoot their equilibrium radius. This in turn initiates the ra-

dial oscillation of both the bubble and the vortex fluid sur-

rounding it at a frequency related to sV. Choi et al. (2009)

showed that the greater the rate of change in pressure and=or

the greater the absolute value of the pressure drop experienced

by the nucleus, the greater will be the amplitude of oscillation

of the bubble at a frequency related to sV. Therefore, more

chirping bubbles are expected for flows in which a rapid
application of high tensions is needed to incept small nuclei.

In fact, this trend is evident in Fig. 9 for 44% dissolved oxy-

gen content at a r1 of 3.6 and for the 14% dissolved oxygen

content at a r1 of 2.5. In addition, since vortex stretching

leads to the reduction in core pressure, it will also lead to a

reduction in sV (due to smaller core radius). Therefore, the fre-

quency of the chirp increases with increasing cavitation num-

ber, compared to the frequency observed from the similar

vortex cavitation bubbles produced at lower cavitation num-

ber (i.e., lower required tensions produced via stretching), as

stated above. Conversely, as r1 further increases and=or the

dissolved oxygen content further decreases, the extent of the

vortex stretching needed to initiate cavitation will be large

enough to produce a rapid bubble growth, leading to a loud

pop. And, such rapid bubble growth can disrupt the nominally

two-dimensional vortical flow that originally surrounded the

nucleus, which would preclude the establishment of radial

oscillations of the bubble and vortex fluid. After inception, the

bubble can quickly collapse and the majority of the events

would not chirp. This is the case for 14% DO content and

r1¼ 3.5, where from high-speed videos of incepting bubbles

they were found to be short lived (�2 frames at 2500 fps).

IV. CONCLUSIONS

The acoustic emission and dynamics of vortex cavitation

bubbles produced from the unstable interaction of two coun-

ter-rotating vortices was examined and found to exhibit a va-

riety of characteristics. Unlike the previous studies of

cavitation in a single vortex (Choi and Ceccio, 2007), the low

pressure in the cavitating vortex was produced after a weaker,

secondary vortex was turned and stretched by the stronger,

primary vortex. This process resulted in a sharp decrease in

the core pressure of the secondary vortex, through a reduction

in the core size and, possibly, the creation of an axial jetting

flow in the vortex core (Chang, 2007). The reduced core pres-

sure can reach tensions of order 100 kPa, which is sufficient

to cavitate nuclei of order 1–3 lm in diameter.

The cavitating nuclei often produced sharp popping

sounds when they grew explosively, and when they col-

lapsed. Explosive growth occurred when large tension sur-

rounded the bubble at the point of inception, producing a

sharp sound emission. This contrasts with the relatively gen-

tle growth of the large laser induced nuclei cavitating in a

line vortex studied by Choi and Ceccio (2007) where grow-

ing bubbles were not observed to make an audible sound

pulse. Moreover, sharp transitions of core pressure, even sur-

rounding an elongated bubble, would often produce an

acoustic pulse resembling a pop in the present study.

FIG. 9. Illustrated above is the percentage of events that produced a chirp
for varying r1 and DO over a 3 s interval. Acoustic events were detected if

the signal was 20 dB higher than the background noise level. The number

by the symbol corresponds to the total number of cavitation events detected.
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Elongated vortex cavitation bubbles were often

observed to emit a periodic acoustic tone, or chirp, with an

acoustic emission similar to that reported by Chesnakas and

Jessup (2003). This second type sound was characterized by

a periodic acoustic signal that was correlated to the growth

and volume oscillation elongated bubble. Such acoustic sig-

nals were not observed in the study of Choi and Ceccio

(2007), in the Gopalan et al. (1999) study of jets, or in the

Gopalan et al. (2002). In those studies, the required fluid ten-

sion to initiate the vortex cavitation was much lower due to

the larger nuclei (�100 lm in size) undergoing inception.

The resulting cavitation bubbles did not grow with rapid vol-

ume-acceleration, as compared to the bubbles studied here.

Also, the spectrum of these bubbles was found to be related

to the bubble’s resonant frequency in a quiescent flow and

unrelated to the vortex properties.

Volume oscillation of two-dimensional and elongated

vortex cavitation bubbles were predicted analytically and

numerically by Choi et al. (2009), and they found that elon-

gated bubbles can undergo periodic volume oscillations

under specific conditions that are unrelated to the resonant

frequency of a bubble in a quiescent flow. The oscillation

frequency is dependent on a number of flow parameters,

including the rate at which the tension is applied to the origi-

nal nucleus. Bubble volume oscillations resulted from the

redistribution of the surrounding vorticity by the radial

growth and collapse of the elongated bubble. The frequency

of the volume oscillations scaled with the time-scale of the

vortex, sV. In the present study, elongated vortex cavitation

bubbles were observed to emit chirps, and the acoustic signal

was directly correlated to the measured volume oscillations

of the elongated bubbles. The frequency of oscillation

observed experimentally was within the range of frequencies

expected from the inferred vortex properties of the stretched

secondary vortex. Moreover, the propensity of bubbles to

chirp was related to the underlying nuclei content and, there-

fore, the degree of tension needed to initiate inception.

Finally, the richness of the bubble dynamics and acous-

tics emissions of the vortex cavitation is indicative of the

many flow parameters that play an important role in the bub-

ble’s inception, growth, and collapse. The type and fre-

quency content of a bubble’s noise emission is highly

dependent on parameters such as the size of the nucleus, the

level of tension required to initiate cavitation, and the rate at

which the tension is applied and relieved. The present results

illustrate how the effect of the available nuclei size, and their

density can change the acoustic emissions of a secondary

vortical flow.
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