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In this paper we present a physics-based model for the electrochemical response of ionic liquid-ionic

polymer transducers (IPTs) and show how the mobile ionic liquid ions influence the charging

characteristics and actuation performance of a device. It is assumed that a certain fraction of the ionic

liquid ions exist as “free,” making for a total of 3 mobile ions. This leads to predictions of distinctly

different charging characteristics for ionic liquid versus water-based IPTs, since for the latter there is

only a single mobile ion. The large ionic liquid ions are modeled by including steric effects in a set of

modified Nernst-Planck/Poisson equations, and the resulting system of equations is solved using the

method of matched asymptotic expansions (MAE). The inclusion of steric effects allows for a

realistic description of boundary layer composition near actuator operating voltages (�1 V). Analytical

expressions for the charge transferred and differential capacitance are derived as a function of the

fraction of free ionic liquid ions, influence of steric effects in formation of the electric double layer, and

applied voltage. It is shown that the presence of free ionic liquid ions tends to increase the overall

amount of charge transferred, and also leads to a nonmonotonic capacitance-voltage curve. We suggest

that these results could be used to experimentally identify the extent of free ionic liquid ion

movement and to test the validity of the assumptions made in the underlying theory. A comparison

with numerical results shows that while the MAE solution procedure gives valid results for

capacitance and charge transferred, it cannot predict the dynamic response due to the presence

of multiple time scales in the current decay. This is in contrast to previous results in analyzing

water-based IPTs, where the MAE solution is in good agreement with numerical results at all times

and applied voltages due to the presence of only a single mobile ion. By examining the structure of

the electric double layer in the ionic liquid IPT, it is shown that although the additional mobile ions

lead to more charge transferred, they likely do not increase the bending moment generated by a

cantilevered IPT because of the increase in symmetry in boundary layer charge density profiles.

These results are in good qualitative agreement with recent experiments. VC 2011 American Institute
of Physics. [doi:10.1063/1.3569709]

I. INTRODUCTION

Ionic polymer transducers (IPTs) are sensors and actua-

tors which operate through a coupling of molecular-scale

chemical, electrical, and mechanical interactions. These

transducers consist of an ion-exchange membrane placed in

a certain cation form (typically Liþ or Naþ), solvated with a

polar solvent, and electroded on both sides. When a DC volt-

age (1–5 V) is applied to the faces of an IPT in a cantilever

configuration, the transducer will bend toward the anode as

shown in Fig. 1. Conversely, a voltage will be generated by

an IPT when a mechanical deformation is imposed.

Recent work has specifically focused on using ionic

liquids in IPTs.1–9 The environmental and electrochemical

stability of an ionic liquid in actuator systems allows for last-

ing device performance in free-air usage and at higher

applied potentials.10,11 However, despite the advantages of

using ionic liquids, the charge transport and actuation mech-

anisms in these devices are not well understood; a model

does not currently exist that explains the observed differen-

ces in charging and actuation characteristics for IPTs with

different ionic liquids, and for ionic liquid IPTs in compari-

son with water-based IPTs. This work represents the first

time a physics-based approach has been taken in modeling

the unique actuation and charging characteristics of ionic liq-

uid IPTs.

In an ionic liquid IPT, the charging characteristics are

distinctly different from a water-based IPT due to the pres-

ence of the ions of the ionic liquid, which make for a total of

3 mobile ionic species. The presence of multiple mobile

ionic species in ionic liquid IPTs has been noted in recent ex-

perimental investigations.6–8 In our previous work, we

applied Nernst-Planck/Poisson theory to form an electro-

chemical model of charge transport in ionic liquid IPTs by

considering 3 mobile ionic species, and obtained numerical

solutions using the finite element method to analyze bound-

ary layer charge dynamics.12 However, these solutions were

limited to low applied voltages due to the treatment of the

ions as point charges. At typical transducer operating vol-

tages, steric effects between the ions of the ionic liquids

become important as these large ions pack into the electric

double layer. The influence of steric effects on the structure

of the electric double layer has been modeled in electrolyte

solutions at high concentrations and large applied voltagesa)Electronic mail: ngbourne@umich.edu.

0021-8979/2011/109(8)/084901/14/$30.00 VC 2011 American Institute of Physics109, 084901-1

JOURNAL OF APPLIED PHYSICS 109, 084901 (2011)

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3569709
http://dx.doi.org/10.1063/1.3569709
http://dx.doi.org/10.1063/1.3569709


(see, for example, Refs. 13–23), and has recently been mod-

eled in neat ionic liquids.24–27 Here, we use the so-called

modified Nernst-Planck/Poisson (MNPP) equations to model

the electrochemical behavior of the large ionic liquid ions.

The mathematical treatment is similar to that presented by

Kilic et al.21,22 We show how the electrochemical response

of an ionic liquid IPT depends on the movement of the ionic

liquid ions, and compare this with corresponding results for

water-based IPTs. Analytical expressions for the charge

transferred and differential capacitance are derived using

the method of matched asymptotic expansions (MAE), and

the boundary layer concentration profiles for the mobile ions

are computed. The MAE solution procedure greatly simpli-

fies the analysis and computational cost in comparison to a

full numerical solution and allows for analytical expressions

for charge transferred and capacitance to be obtained. The

presence of mobile ionic liquid ions will tend to increase the

total amount of charge transferred when a voltage is applied,

and also leads to a nonmonotonic capacitance-voltage rela-

tion. The current response obtained from the MAE solution

procedure is compared to numerical results at low applied

voltages, thus demonstrating when the implicit assumption

of linear dynamics introduced by using the MAE solution

procedure is a good approximation of the charging dynamics.

When there is a single mobile ionic species, the MAE solu-

tion is a good description of charging dynamics at all times

and applied voltages, but when there are multiple mobile

ions, the MAE solution becomes a poor description of charg-

ing dynamics due to the presence of multiple time scales in

the coupled response. These results are discussed along with

explanations regarding the performance characteristics of

ionic liquid IPTs as actuators and electrochemical supercapa-

citors and suggestions for future device development.

The paper is organized as follows. In Sec. II we assem-

ble the governing equations for the transient charging

response of an ionic liquid IPT. In Sec. III the resulting sys-

tem of equations is solved using the method of matched as-

ymptotic expansions. The solution is applied to determine

the charge transferred and capacitance of the IPT as a func-

tion of the applied voltage in Sec. IV. The dynamic charging

response from the matched asymptotic expansion is com-

pared to numerical results in Sec. V, and the charge density

and individual ionic concentration profiles are computed

numerically in Sec. VI. These results are discussed in Sec.

VII in comparison to a water-based IPT, and the implications

toward device performance are noted. The conclusions are

summarized in Sec. VIII.

II. MODEL DEVELOPMENT

When a voltage is applied to the faces of an IPT, the

mobile ions in the ionomer will move to screen the applied

field. The movement of ions causes the formation of thin

layers near each electrode that have an excess or a depletion

of charge. These layers, referred to as boundary layers, are

the “active regions” during actuation. Electrostatic interac-

tions between the ions cause pressures to develop in the

boundary layers, and the resulting pressure gradient causes

the movement of solvent molecules. The boundary layers

will either expand or contract as the solvent molecules

move to neutralize the pressure gradient, causing an elastic

deformation of the polymer backbone material. Equilibrium

will consist of a balance between electrostatic interactions,

migration and diffusion potentials, and the resulting elastic

stress from boundary layer expansion or contraction. It is

found that the cathode boundary layer undergoes a larger

expansion than the anode boundary layer, and thus an IPT

in a cantilever configuration will bend toward the anode as

shown in Fig. 1. For more details on IPT actuation mecha-

nisms, see, for example, Refs. 28 and 29 as well as our pre-

vious work.12

It is well known that the actuation performance of an

IPT is directly related to its capacitance; see, for example

Akle et al.30 NPP theory has been widely used as a standard

model in describing electrochemical migration of the ions of

an electrolyte solution under an applied potential,23,31–34 and

the charging characteristics of IPTs are commonly modeled

by applying the Nernst-Planck/Poisson (NPP) system of

equations and taking the neutralizing counter-cation to be

the only mobile ionic species. An analytical solution for the

equilibrium charge distribution considering a single mobile

ionic species in an IPT was given by Nemat-Nasser,29 and

numerical solutions featuring a coupling to the actuation

response were obtained by Wallmersperger et al.35–37 and

Leo et al.38 Porfiri39 showed that the capacitance of an IPT is

a decreasing function of the applied voltage, and incorpo-

rated these results into an actuation model which shows the

influence of electrode structure on charge transferred and

actuation performance.40 Aureli et al.41 demonstrated how

rough electrodes lead to a large increase in the capacitance

of the IPT due to the large microscopic surface area; their

model uses a local value of the electric permittivity (bounds

for IPT permittivity are given by Porfiri42) and incorporates

effects of electrode roughness due to the fractal-like elec-

trode structure commonly observed in IPTs. Chen et al.43

used equilibrium numerical solutions of the NPP equations

to form a nonlinear circuit model of an IPT. Other research

has also focused on equivalent circuit representations of

IPTs.44–49 Farinholt and Leo48 include a theoretical and experi-

mental analysis of the impedance response of IPTs in the fre-

quency domain.

Here, we use NPP theory for the counter-cation and the

so-called MNPP equations for the ionic liquid ions. The

FIG. 1. An IPT will bend toward the anode when a voltage is applied due to

cation and solvent movement.
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MNPP equations were first derived by Bikerman13 and have

since been reformulated by a number of authors.14–20 The

equations can be derived using a lattice-gas model which

includes steric effects by accounting for the finite size of the

ions in the entropic contribution to the free energy. For a

complete review of the theoretical developments describing

steric effects in electrolytes, see Bazant et al.23 Here, we

begin with the electrochemical potential for each ionic spe-

cies; more details on the derivation of the MNPP equations,

including the free energy expressions for the system, can be

found elsewhere.13–24 Letting the indices 1, 2, and 3 corre-

spond to the counter-cation, ionic liquid anion, and ionic liq-

uid cation, respectively, the electrochemical potentials of

each ionic species are

l1 ¼ FUþ RT ln C1; (1a)

l2 ¼ �FUþ RT ln
C2

Cmax � C2 � C3

; (1b)

l3 ¼ FUþ RT ln
C3

Cmax � C2 � C3

; (1c)

where U is the electric potential, Cmax is the maximum con-

centration of the ionic liquid ions, and R, T, and F are the

universal gas constant, temperature in Kelvin, and Faraday’s

constant, respectively. For simplicity, we assume that the

sizes of the ionic liquid ions are equal so that Cmax is the

same for both the anion and cation. It is important to note the

difference in Eq. (1a) with Eqs. (1b) and (1c). In Eq. (1a),

the term RT ln C1 is obtained by using Boltzmann’s equation

and applying Maxwell-Boltzmann statistics in the typical

limit where the number of possible states is much larger than

the number of particles. Eqs. (1b) and (1c) contain the same

term, respectively, for the different ions, but have the addi-

tional term �RT lnðCmax � C2 � C3Þ. As C2 þ C3 ! Cmax,

this term tends to positive infinity, meaning that the energy

required to further increase the concentration of either ionic

liquid ion becomes infinite. This leads to a maximum in ionic

concentration.

To be strict, steric effects should also be included for the

counter-cation, since the same reasoning would certainly

apply in imposing a finite maximum concentration. The

inclusion of steric effects in describing a single mobile ionic

species in an IPT was recently addressed by Porfiri.40 Here,

since the counter-cation is generally much smaller than the

ionic liquid ions, we omit steric effects for the counter-cation

in order to simplify the analysis and focus on the essential

mechanisms caused by the movement of the large ionic liq-

uid ions.

Using a linear diffusion model (Fick’s law of diffusion),

the flux of each ionic species is

Ji ¼ �
DiCi

RT

@li

@X
; (2)

where Di are the individual ionic diffusion coefficients. Sym-

metry along the length and width of the IPT is presumed to

reduce the problem to the through-thickness direction X as

shown in Fig. 2. The continuity equation for each ionic spe-

cies is

@Ci

@s
þ @Ji

@X
¼ 0; (3)

where s is the temporal variable. From elementary electro-

statics, the Poisson equation for the system is

@2U
@X2
¼ �F

e
ðC1 � C2 þ C3 � C0Þ; (4)

where e is the local permittivity of the IPT and C0 is the con-

centration of the fixed anionic groups, both of which are

assumed to be constant. The governing equations for the

ionic liquid IPT system consist of Eq. (4) along with the

result of inserting Eqs. (1) and (2) into Eq. (3).

To proceed, we first nondimensionalize using the fol-

lowing definitions:

u ¼ U
F

RT
; ci ¼

Ci

C0
i

;

x ¼ X

h
; t ¼ s

sc
:

(5)

The characteristic time scale for the problem is chosen fol-

lowing Bazant et al.50 and Kilic et al.21,22 as well as our pre-

vious work9,51 to be

sc ¼
kh

D1

; k ¼ eRT

C0F2

� �1=2

; (6)

where k is the Debye length.

In an ionic liquid IPT, it is not known if all, some, or

none of the ions of the ionic liquid exist as “free” ions, able

to selectively move under the applied field. In contrast to a

neat ionic liquid, specific interactions with the ionomer are

likely to change the state of ionic liquid ions swollen in an

IPT. Here, we build on the description of charge transport in

an ionic liquid IPT given by Bennett,1,52 who took the coun-

ter-cation to be the only mobile charge carrier, and consider

how the introduction of mobile ionic liquid ions influences

the actuation and charging characteristics. This is also the

same approach taken in our previous work.12 Since the frac-

tion of free ionic liquid ions is not known, we set

C0
2 ¼ C0

3 ¼ aC0
1, where C0

1 ¼ C0 and a represents the fraction

of free ionic liquid ions versus mobile counter-cations. Addi-

tionally, we introduce the parameter b to represent the rela-

tive diffusion coefficient of the ionic liquid ions to the

counter-cations, set equal for simplicity: D2 ¼ D3 ¼ bD1.

Note that a and b are likely different for the ionic liquid

anion and cation, e.g., if it was seen that ionic liquid cations

FIG. 2. (Color online) A diagram of the system for modeling ion transport,

showing the through-thickness x direction and the microstructure of Nafion.
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replace counter-cations than there would be more free ionic

liquid cations than anions. For this case, using a� and aþ for

the ionic liquid anion and cation instead of a� ¼ aþ ¼ a
would be a straightforward extension of the current model.

Here we retain single values of a and b for the ionic liquid

anion and cation for simplicity in analyzing the dominant

charge transfer response. Now, also defining d ¼ k=h� 1,

the governing equations become

@c1

@t
þ d

@j1

@x
¼ 0; (7a)

@c2

@t
þ db

@j2

@x
¼ 0; (7b)

@c3

@t
þ db

@j3

@x
¼ 0; (7c)

d2 @
2/
@x2
¼ �c1 þ ac2 � ac3 þ 1; (7d)

where ji ¼ Jih=ðDiC
0
i Þ is the nondimensional flux. Taking

the electrodes to be blocking, the boundary and initial condi-

tions are written in nondimensional form as

ciðx; 0Þ ¼ 1; (8a)

jið61; tÞ ¼ 0; (8b)

/ð61; tÞ ¼ 6
v0

2
; (8c)

where v0 is the nondimensional applied voltage. Following

the same notational convention, we later use V0 to refer to

the dimensional applied voltage.

III. MATCHED ASYMPTOTIC EXPANSIONS

In this section, the method of matched asymptotic

expansions (MAE) is applied to find an approximate solution

to Eq. (7) with boundary and initial conditions in Eq. (8).

The basic approach consists of nondimensionalizing the gov-

erning equations, obtaining an outer solution valid in the

bulk region, changing coordinates to obtain an inner solution

valid in the boundary layers, enforcing matching conditions

between the two solutions in the limit of thin boundary

layers, and using these conditions to obtain an approximate

solution to the governing equations. This yields a set of ana-

lytical expressions for the charge transferred and differential

capacitance as a function of the applied voltage. The derived

first order ODE’s are then solved numerically to obtain cur-

rent and the ionic concentration profiles.

As an alternative to using the MAE solution procedure,

Eqs. (7) and (8) could be directly solved numerically. How-

ever, especially due to the nonlinearities from the inclusion of

steric effects, as well as the thinness of the boundary layers, a

full numerical solution would require significant computational

effort. Since the MAE solution procedure leads to analytical

results or relatively simple ODE’s to solve, it has the distinct

advantage of being able to easily show how the fraction of free

ionic liquid ions (a), relative diffusion coefficient of the ionic

liquid ions (b), influence of steric effects on the electric layer

[later defined in Eq. (15) as j], and magnitude of the applied

voltage affect the leading order charging and actuation charac-

teristics of the transducer.

The method of matched asymptotic expansions has

been previously applied to analyze electrochemical sys-

tems, 21,22,50,53–55 and also to analyze the charging charac-

teristics of IPTs with a single mobile ionic species.39,40 The

analysis here has similarities to that of Porfiri39,40 and

Kilic,21,22 but with a different electrochemical system under

consideration. In Refs. 39 and 40, a single mobile species

was assumed in modeling the IPT. In Refs. 21 and 22, a sym-

metric binary electrolyte was considered. For the ionic liquid

IPT system, we now have 3 mobile ionic species: the coun-

ter-cation and the (assumed) symmetric ionic liquid ions,

with an unknown free concentration represented by a. To

this end, when a ¼ 0 our results reduce to those in Ref. 39,

and if the counter-cation and fixed anionic groups are omit-

ted, become identical to those in Refs. 21 and 22. However,

the consideration of 3 mobile ionic species in an ionic liquid

IPT leads to distinct differences in the underlying physical

mechanisms and the associated observable charging charac-

teristics in comparison with the results in Refs. 21, 22, 39.

A. Inner and outer expansions

For the outer, or bulk, region, denoted by the bar accent,

the expansion is of the form

ci ¼ �ciðx; tÞ ¼ �c
ð0Þ
i þ d�c

ð1Þ
i þ :::

Using this in Eq. (7) along with the boundary conditions in

Eq. (8) and equating terms with like powers of d yields the

leading order solution of the system of PDE’s:

�uð0Þðx; tÞ ¼ AðtÞ
2

xþ BðtÞ; (9a)

�c
ð0Þ
i ðx; tÞ ¼ 1: (9b)

The coefficients AðtÞ and BðtÞ may be functions of time,

since �uð0Þ was obtained by only integrating with respect to x.

At an equilibrium time te the potential is constant in the bulk

region and thus AðteÞ must equal 0. Therefore, BðteÞ is identi-

fied as the bulk potential “offset,” which is zero for a sym-

metric electrolyte. For the IPT system, the presence of fixed

anionic groups leads to a highly asymmetric charge distribu-

tion, and therefore BðteÞ 6¼ 0.

To examine the boundary layers, we first need to make a

coordinate transformation to the inner or “stretching” coordi-

nate, defined as g6 ¼ ð1 � xÞ=d. The cathode boundary

layer is thus modeled with g�, and the anode boundary layer

with gþ. The inner expansion, denoted by the hat accents, is

of the form

ci ¼ ĉ6
i ðg6; tÞ ¼ ĉ

6ð0Þ
i þ dĉ

6ð1Þ
i þ :::

Note that there are now two expressions for potential and

concentration, e.g., û� and ûþ, which correspond to the

boundary layer coordinates g� and gþ, respectively. For ease

of notation, the 6 designation will be left off and only speci-

fied where necessary to differentiate between the two
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solutions. This change of variables removes the singular per-

turbation in the Poisson equation, and the governing equa-

tions now become

d
@ĉ1

@t
þ @ ĵ1
@g
¼ 0; (10a)

d
@ĉ2

@t
þ b

@ ĵ2

@g
¼ 0; (10b)

d
@ĉ3

@t
þ b

@ ĵ3

@g
¼ 0; (10c)

@2/̂
@g2
¼ �ĉ1 þ aĉ2 � aĉ3 þ 1: (10d)

The fraction of free ionic liquid ions to mobile counter-cati-

ons, a, is contained in the nondimensional form of the Pois-

son equation [Eq. (10d)].

Matching between the inner and outer solutions is

enforced in the limit of thin boundary layers, e.g.,

lim
d!0

ĉiðgÞ ¼ lim
d!0

�ciðxÞ:

Using the definition of g6, this is equivalently expressed as

lim
g6!1

û6ðg6Þ ¼ lim
x!61

�uðxÞ ¼ 6
AðtÞ

2
þ BðtÞ; (11a)

lim
g6!1

ĉi
6ðg6Þ ¼ lim

x!61
�ciðxÞ ¼ 1; (11b)

where Eq. (9) is also used. These are known as the van

Dyke matching conditions between the inner and outer

solutions.21

B. Leading order solution to inner expansion

Eq. (10) consists of 4 coupled equations for the 4

unknown variables û and ĉi. However, since at leading order

Eq. (10) contains no terms with a time dependence, it is

taken that the boundary layers are in a state of quasiequili-

brium with the bulk region. This occurs because the Debye

time, sD ¼ k2=D1, is the characteristic time scale for local ion

movement into the boundary layers, and this quantity is

much smaller than the charging time scale: sD � sc.21,50 We

can therefore use the equilibrium condition of constant

chemical potential to obtain a leading order relationship

between ionic concentration and potential in each boundary

layer:

l̂iðĉ
ð0Þ
i ; ûð0ÞÞ ¼ l̂ið1; ûBÞ; (12)

where ûð0Þ refers to leading order potential in the diffuse

region and ûB is potential in the bulk region, where the ionic

concentrations at leading order are 1 according to Eq. (9b).

The effective bulk potential for each boundary layer is the

potential as the inner coordinate goes to infinity, i.e.,

û6
B ¼ limg6!1 û6, which is defined using the matching

conditions in Eq. (11). The difference between the potential

at a point in the diffuse layer and the bulk potential is called

the zeta potential, and this is defined for each inner coordi-

nate as

ẑ6 ¼ û6 � û6
B : (13)

Now, using Eq. (1) for the electrochemical potentials of the

ions, Eqs. (12) and (13) lead to the following leading order

expressions for the ionic concentrations as a function of zeta

potential:

ĉ
ð0Þ
1 ¼ e�ẑð0Þ ; (14a)

ĉ
ð0Þ
2 ¼

eẑð0Þ

1� jþ j cosh ẑð0Þ
; (14b)

ĉ
ð0Þ
3 ¼

e�ẑð0Þ

1� jþ j cosh ẑð0Þ
; (14c)

where

j ¼ 2

cmax

(15)

is the ion-packing parameter. j! 0 represents an infinite

maximum concentration, i.e., treating the ions as point

charges. In an ionic liquid, the ions form a latticelike struc-

ture which also has “holes” that fluctuate due to Brownian

motion.32 Because of the holes, the maximum concentration,

say, the cations reach can be greater than twice its initial

concentration (considering a neat ionic liquid and assuming

both ions have equal size).56 For an ionic liquid IPT, the cor-

rect value to choose for j is unclear, since not all of the ionic

liquid ions are free, and because the boundary layers in an

IPT will expand as ions and solvent move in. For these rea-

sons, a smaller value of j than that for a neat ionic liquid is

likely to be appropriate. We discuss reasonable values of j
for an ionic liquid IPT in Sec. IV.

Equation (14a) is the typical Boltzmann distribution,

while Eqs. (14b) and (14c) include the effects of lattice satu-

ration and represent modified Boltzmann distributions. Sub-

stituting Eq. (14) into Eq. (10d) yields the leading order

modified Poisson-Boltzmann equation for the system:

@2ẑð0Þ

@g2
¼ 2a sinh ẑð0Þ

1� jþ j cosh ẑð0Þ
� e�ẑð0Þ þ 1: (16)

This equation is integrated to obtain

1

2

@ẑð0Þ

@g

� �2

¼ 2a
j

ln 1� jþ j cosh ẑð0Þ
� �

þ e�ẑð0Þ þ ẑð0Þ � 1;

(17)

where the constant of integration is determined using the

condition limg!1 ẑ ¼ 0 to be �1.39 We now note that since

the leading order system of equations for the inner expansion

does not have a time dependence, conservation of charge

must be explicitly enforced.39 This is because the continuity

equation is not included in obtaining the leading order solu-

tion, and there is no remaining consideration in the equations

to prevent charge from being created or destroyed. A satis-

factory condition is obtained by applying Gauss’s law and

transforming to the inner coordinates:
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dûþð0Þ

dgþ

����
0

¼ �dû�ð0Þ

dg�

����
0

: (18)

Now, take Eq. (17) at each boundary, g� ¼ 0 and gþ ¼ 0,

subtract the resulting two equations, and apply the charge

conservation condition in Eq. (18) to simplify. To simplify

the notation, let n6 represent the leading order inner solution

for the zeta potential at each electrode, i.e., n6 ¼ ẑ6ð0Þð0Þ.
Using the boundary conditions in Eq. (8) transformed to g-

coordinates, the bulk potential for the inner solution defined

from the matching conditions in Eq. (11), and the definition

of the zeta potential in Eq. (13), we obtain a simple relation-

ship for y, the total potential drop over the boundary layers:

y ¼ nþ � n� ¼ v0 � AðtÞ: (19)

At equilibrium, A ¼ 0 and y is equal to the applied voltage.

Now the governing equation for n6 as a function of y can be

defined, which is written here using nþ:

G nþ; y; a
� �

� 2a
j

ln
1� jþ j coshnþ

1� jþ j cosh nþ � y
� �

 !

þ e�nþ 1� eyð Þ þ y ¼ 0 (20)

This equation can be solved numerically to determine n6ðyÞ.
However, when a is small, an approximate analytical solu-

tion of Eq. (20) solution can be used to derive analytical

expressions for charge transferred and differential capaci-

tance as functions of the applied voltage. We derive this ap-

proximate solution here to use in Sec. IV. In Sec. V and VI a

numerical solution of Eq. (20) is used to examine the

dynamic response and the boundary layer ionic concentra-

tion profiles.

For small a, we seek a solution to Eq. (20) of the form

nþ ¼ nþ0 þ anþ1 þ ::::

The first two terms in this expansion are then determined by

using the Taylor series expansion of Gðnþ; y; aÞ about

a ¼ 0, i.e., by solving

Gðnþ0 ; y; 0Þ ¼ 0; (21a)

@Gðnþ1 ; y; aÞ
@a

����
a¼0

¼ 0: (21b)

Eq. (21a) is solved for nþ0 and Eq. (21b) is solved for nþ1 . The

series expansion of Gðnþ; y; aÞ about a ¼ 0 is terminal and

contains only two terms. Solving Eq. (21) yields the leading

order inner solution for the zeta potential at each electrode:

nþ ¼ ln
ey � 1

y

� �
þ a

y

2
; (22a)

n� ¼ ln
ey � 1

y

� �
� a

y

2
� y: (22b)

Because a series expansion was used to obtain Eq. (22), it is

seen that Eq. (19) is not satisfied, i.e., nþ � n� 6¼ y. This

condition can be enforced by setting

y ¼ v0 � AðtÞ
aþ 1

(23)

when Eq. (22) is used. The leading order zeta potentials at

the cathode, n�, and at the anode, nþ, are plotted in Fig. 3

for a ¼ 0:1. The approximate result in Eq. (22) is compared

with numerical solutions of Eq. (20). Although Eq. (22) does

not depend on j, the numerical solution does; as shown in

Fig. 3, the difference is larger for n� than for nþ since n� is

smaller in magnitude. This means that although in principle

either value of the zeta potential should yield the same result

in calculating charge transferred and capacitance, the ap-

proximate solution in Eq. (22) leads to different results for

n� versus nþ. Since nþ has a smaller relative difference

from the numerical solution, however, it is seen to lead to a

better correlation with results for charge transferred and ca-

pacitance obtained by using a numerical solution of Eq. (20).

We therefore use nþ in the next section to obtain analytical

expressions for these quantities and to examine how they

depend on a, j, and y.

IV. CAPACITANCE AND CHARGE TRANSFERRED

Using Gauss’s law, the charge per unit surface area

stored at either electrode in the limit of thin boundary layers

is expressed in nondimensional form using the inner coordi-

nates as

q6 ¼ kF

eRT
Q6 ¼ 6

@û6ð0Þ

@g6

����
g6¼0

¼ 6
@n6

@g6
; (24)

where q refers to nondimensional and Q to dimensional

charge transferred. This equation was already used to express

the condition for conservation of charge in Eq. (18). From

Eq. (24) it is clear that smaller boundary layers lead to larger

amounts of charge transferred. This result seems counter-in-

tuitive at first, however, it is well known in interfacial elec-

trochemistry and follows from the flux equations and the

definition of the Debye length. As the concentration of an

electrolyte increases, more charge will be held in the electric

FIG. 3. The inner zeta potential as a function of the total potential drop over

the boundary layers (y) with a free ionic liquid fraction of a ¼ 0:1 at (a) the

cathode (n�) and (b) the anode (nþ), showing the analytical solution in Eq. (22)

compared with results obtained by numerically solving Eq. (20) for different

values of j.
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double layer in response to an applied voltage. From Eq. (6),

the size of the double layer varies inversely with the initial

concentration, and therefore charge transferred varies inver-

sely with the size of the boundary layers. For an ionic liquid,

charge transferred still varies inversely with the size of the

boundary layers for a given applied potential, but the rela-

tionship will be affected by steric effects which cause the

boundary layer size to increase with the applied potential.

Using the point charge approximation in classic NPP theory,

the boundary layer size is independent of the applied poten-

tial. From the definition of the nondimensional charge trans-

ferred in Eq. (24), it also follows that the total charge

transferred is independent of the polymer thickness 2h. This

result is also well known in analyzing the electric double

layer.34

The charge transferred is now obtained by inserting ei-

ther nþ or a from Eq. (22) into Eq. (17), and then using the

results in Eq. (24). Taking charge transferred to be positive,

i.e., q ¼ jq�j ¼ jqþj, and using nþ this yields

q ¼
ffiffiffi
2
p

e�nþ þ nþ � 1þþ 2a
j

ln 1� jþ j cosh nþ
� �
 �1=2

:

(25)

nþ is used in Eq. (25) [and in Eq. (26)] because of its better

relative agreement with the numerical solution, a comparison

of which was shown in Fig. 3. We showed in our previous

work57 that the analytical expressions for charge transferred

and differential capacitance [Eqs. (25) and (26)], which use

the approximate solution of nþ in Eq. (22a), show a good

correlation with results obtained by numerically solving for

nþ when the fraction of free ionic liquid ions is small and

steric effects are included.

The specific differential capacitance of the IPT is the

change in charge transferred with respect to a change in the

applied voltage. However, the applied voltage referred to here

is the potential difference which functions to move charge.

This corresponds to the total potential drop across the bound-

ary layers, y. Therefore, the specific differential capacitance is

x ¼ k
e
X ¼ @q

@y

where x is nondimensional and X is dimensional capaci-

tance. Using Eq. (25), this is evaluated to be

x ¼ 1

q
1� e�nþ þ 2a sinh nþ

1� jþ j cosh nþ

� �
ey

ey � 1
� 1

y
þ a

2

� �
:

(26)

Eqs. (25) and (26) give the charge transferred and capaci-

tance of the ionic liquid IPT as a function of the total poten-

tial drop across the boundary layers (y) and the modeling

parameters a and j, which represent the fraction of free ionic

liquid ions and the influence of steric effects, respectively.

Figure 4 shows the charge transferred and Fig. 5 the differen-

tial capacitance, plotted as functions of the total boundary

layer potential drop. In Figs. 4(a) and 5(a), a ¼ 0:1 and j is

varied, and in Figs. 4(b) and 5(b), j ¼ 0:1 and a is varied.

For reasonable values of a and j we estimate a ¼ 0:1 and

j ¼ 0:1. In an ionic liquid IPT actuator, the number of ionic

liquid ions per sulfonate group is �2 (the discussion and cal-

culations behind this estimate are in Ref. 12). This means

that the ratio of free ionic liquid ions to the total amount of

ionic liquid ions is �a=2. Because of this, the maximum con-

centration of free ionic liquid ions relative to their initial

concentration may be better represented as ð2=aÞð2=jÞ
instead of 2=j. Therefore, j � 1 is an unrealistic parameter

choice for the ionic liquid IPT system when a� 1. For sim-

plicity, we choose a ¼ j for reasonable parameter values,

and note that we may even have j < a for the system. The

concentration of free ionic liquid ions is also likely to depend

on the magnitude of the applied voltage and may vary in

time when a voltage is applied;12 this effect is ignored in the

current treatment.

Figure 4 shows that the overall amount of charge trans-

ferred increases when a increases, and for a given value of a,

increases when j decreases. This means that an ionic liquid

IPT will tend to have a larger total amount of charge trans-

ferred for a given applied voltage in comparison with a

water-based IPT, which is represented by a ¼ 0. In Fig. 5, it

is seen that the initial capacitance as y! 0 varies for differ-

ent values of a, but stays the same for different j. For certain

ranges of a and j the capacitance-voltage curve becomes

nonmonotonic, i.e., there is an initial increase in capacitance

followed by a decrease. Whether or not the capacitance-volt-

age relationship is monotonic depends on the values of both

a and j. As j! 0 the ionic liquid ions are treated as point

FIG. 4. Nondimensional charge transferred for (a) a free ionic liquid frac-

tion of a ¼ 0:1 with different values of the ionic liquid ion packing parame-

ter, j, and (b) j ¼ 0:1 and different values of a.

FIG. 5. Nondimensional differential capacitance for (a) a free ionic liquid

fraction of a ¼ 0:1 with different values of the ionic liquid ion packing pa-

rameter, j, and (b) j ¼ 0:1 and different values of a.
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charges and steric effects are neglected. Figures 4(a) and 5(a)

show that j! 0 leads to unreasonable predictions in charge

transferred when a > 0; it is therefore essential to include

steric effects in a model of the electric double layer in ionic

liquid IPTs. For all values of a with j > 0, the capacitance

always goes to zero as the total potential drop over the

boundary layers, y, increases: limy!1 x ¼ 0. This means

that the capacitance always continues to decrease with the

applied voltage after any initial increase, eventually reaching

a point where increasing the applied voltage results in zero

additional charge transferred. However, this point is reached

well outside of the electrolysis limit of the ionic liquid.

As an example of the decreasing differential capaci-

tance, consider the case of a ¼ j ¼ 0:1. The calculated val-

ues for charge transferred for this case are shown in Table I

for different applied voltages, along with a comparison of a

water-based IPT, which is represented by a ¼ 0. From the ta-

ble, it is seen that nearly as much charge accumulation

occurs from 0 to 1 V as from 1 to 4 V for the ionic liquid

IPT. The same result holds for the water-based IPT, which

was recently analyzed by Porfiri.39,40

Figures 4 and 5 and Table I emphasize that the IPT is a

highly nonlinear and nonideal capacitor. For an ideal capaci-

tor, charge transferred is a linear function of the applied volt-

age and therefore the capacitance is constant. The voltage

range where an IPT can be approximated as an ideal capacitor

is very small, since the nonlinearity is seen even at low

applied voltages. Ideal behavior looks to be limited to applied

voltages less than the thermal voltage, i.e., v0 < 1, or

V0 < RT=F which is �25 mV near room temperature. How-

ever, at lower applied voltages it may be important to also

include effects of overscreening by the large ionic liquid ions

for an accurate model of the electric double layer.58 Regard-

less, with an ionic liquid in the system, the response becomes

further from ideal, and for certain ranges of a and j the capac-

itance-voltage relationship becomes nonmonotonic. These

results have important implications toward actuation. Specifi-

cally, even though using an ionic liquid as solvent in an IPT

will allow for higher applied voltages without electrolysis,

increasing the applied voltage from, say, 1 to 2 V results in a

much smaller amount of additional charge transferred than

going from 0 to 1 V. This implies a reduced effectiveness in

increasing the actuation response with respect to applying

higher voltages to the IPT, and since ionic liquid IPT actua-

tors are typically operated in the range of 3–4 V, this result is

directly relevant for IPT actuation performance.

We also see that the fraction of free ionic liquid ions (a)

and the influence of steric effects (j) have a large impact on

the shape of the capacitance-voltage curve, and determine

whether or not the differential capacitance is a monotonically

decreasing function of the applied voltage. In Sec. II we said

that the fraction of free ionic liquid ions was unknown;

indeed, this is an important question which needs to be

addressed in order to accurately model the electric double in

ionic liquid IPTs and understand the mechanisms of charge

transport. From the results in Fig. 5, we propose that the ca-

pacitance-voltage relationship of an IPT can possibly be

used to identify the extent of free ionic liquid ion movement

for transducers with different ionic liquids. As mentioned in

Sec. II, if the fraction of free ions was different for the ionic

liquid anion and cation, this change would be a straightfor-

ward extension of the model and could be incorporated in

order to make a comparison with experimental results.

V. DYNAMIC RESPONSE

Using the results from the matched asymptotic expan-

sion, we now look to examine the dynamic response. Specifi-

cally, we solve the governing ODE derived in Appendix A to

examine the current decay in response to an applied step

voltage. The MAE solution is compared to a full numerical

solution for low applied voltage and the limit j! 0. From

this comparison is it seen that the presence of nonlinear dy-

namics causes the MAE solution to be a poor description of

current decay for a > 0, although it has previously been

shown to yield a good correlation with numerical results for

the case of a ¼ 0.12,39

At leading order, the current in the IPT is

i ¼ h

Fc0D1

I ¼ 1

2
þ ab

� �
AðtÞ; (27)

where i is nondimensional and I is dimensional current, and

the sign is chosen such that a positive applied voltage causes

a positive current. The derivation of this equation and of the

governing ODE for AðtÞ is in Appendix A. From Eq. (27) for

current and Eqs. (24) and (25) for charge transferred, it is

seen that the magnitude of the current through the IPT varies

inversely with the thickness, and the magnitude of the charge

transferred varies inversely with the Debye length.

The solution of Eq. (A4) to obtain the current via Eq. (27)

is plotted in Fig. 6 for two different applied step voltages. A

numerical solution of Eq. (20) for nþ was used to generate

TABLE I. Non-dimensional charge transferred at equilibrium for an ionic

liquid IPT, qIL, with a ¼ j ¼ 0:1 and for a water-based IPT, qW , where

a ¼ 0.

V0 IL IPT (qIL) DqIL Water IPT (qW) Dqw

1 V 13.65 13.65 8.25 8.25

2 V 20.10 6.45 12.00 3.75

3 V 24.97 4.87 14.85 2.85

4 V 29.04 4.07 17.24 2.39

FIG. 6. Transient current in response to a step voltage of (a) v0 ¼ 1

(V0 � 25 mV) and (b) v0 ¼ 6 (V0 � 150 mV) for a ¼ 0:1 and two values of

b. The numerical (FEM) results are for j ¼ 0, and the MAE results use the

small value of j ¼ 0:001.
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these results. Figure 6 shows results for the applied voltages

v0 ¼ ð1; 6Þ, which correspond to V0 � ð25; 150Þ mV near

room temperature. The parameter values used here are

a ¼ 0:1, b ¼ ð0:1; 1Þ, and j ¼ 0:001, with the latter chosen

to represent the limit as j! 0 and thus to correspond to

classic NPP theory, i.e., neglecting steric effects.

These results are compared to numerical results gener-

ated using the method in our previous work, where steric

effects were not included in the model.12 In Ref. 12 an

applied voltage of V0 ¼ 150 mV was considered, and the

results in this voltage range were found to be reasonable

even without the inclusion of steric effects; results for this

applied voltage are shown in Fig. 6(b). The boundary layer

size in the numerical results shown in Fig. 6 was defined so

that d ¼ 10�5. These results show that at short times, even

for different relative diffusion coefficients of the ionic liquid

ions (b), the results from the matched asymptotic expansion

(MAE) are in excellent agreement with the finite element

method (FEM) solution. However, at long times, the two sol-

utions deviate, with the FEM solution showing a very slow

current decay while the MAE current continues to decay

exponentially. This difference is entirely due to the nonlinear

dynamics and the presence of the diffusive time scale, which

will always exist for a > 0; nonlinear boundary layer charg-

ing dynamics in ionic liquid IPTs are discussed in Ref. 12.

The reason for attributing this difference solely to the nonlin-

ear dynamics is clear when considering the case b ¼ 1; here,

all the ions are given the same diffusion coefficient, so there

must be a physical phenomenon (the nonlinear dynamics)

which is accounted for in the FEM, but not the MAE, results.

The reason for this difference in results comes from the

MAE solution procedure of matching between inner and outer

solutions in the limit as d! 0. This essentially excludes non-

linear dynamics since in this limit the boundary layers are

always in equilibrium with the bulk region. As discussed in

Ref. 12 in regards to ionic liquid IPTs, the nonlinear dynamics

occur when large amounts of ion adsorption in the boundary

layers cause a local depleted region which then fills in via dif-

fusion. (These effects are discussed in detail by Bazant et al.50

and Kilic et al.21 in regards to a binary electrolyte system).

Diffusion is represented by the dominant time scale

sd ¼ h2=D1, and indeed we see that sc=sd ¼ k=h ¼ d. For the

FEM results, d� 1 is satisfied, but d is still nonzero. The dif-

fusive time scale sd therefore causes the nonlinear dynamic

response and the slow current decay at long times shown in

the FEM solutions in Fig. 6. A value of d ¼ 10�5 is a reasona-

ble choice for an IPT actuator, as can be seen from the follow-

ing example. Using Eq. (6) with e ¼ 10e0 (EMI-Tf ionic

liquid, Nafion, free water, and bound water have relative per-

mittivities of 15.1, 3, 78, and �7:5, respectively,42,59,60 so this

is a reasonable choice) and C0 ¼ 1150 mol/ m3 (see Appendix

C of Ref. 12) yields k ¼ 1:5 Å. For an IPT actuator with a

total thickness of 2h ¼ 30 lm, we have k=h ¼ 10�5. A rea-

sonable range may therefore be set as 10�6 < d < 10�5. This

means that the nonlinear dynamic response is expected to con-

tribute to the current decay at long times in typical IPT actua-

tor systems (the extent of the nonlinear dynamics increases

with the applied voltage and when b� 1), although there are

other considerations which also affect the dynamic response.

The fractal-like structure of the interpenetrating electrodes

will impact the charging dynamics, typically causing the cur-

rent decay to follow a stretched-exponential form.41,61–70 The

porous nature of Nafion may also lead to a stretched expo-

nential response.71 Additionally, surface transport, which is

neglected in formulating the 1D model here, is also expected

to make a significant contribution to the nonlinear dynamics

of an IPT, since the electrodes are far from uniform and large

voltage are applied.72

However, since sc=sd ¼ d� 1, we can expect that the

response at short times is well approximated by d! 0 (i.e.,

by the MAE results), and this is exactly what is seen in Fig. 6.

Even for b 6¼ 1, when both the timescales sc and sc=b are

present, Fig. 6 shows that the MAE results are still a good

description of the current decay at short times. We can con-

trast this comparison with that of the MAE and FEM results

for the case of a ¼ 0, which was shown in our previous

work12 as well as by Porfiri.39 For a ¼ 0, the MAE and FEM

results are in excellent agreement at all times because there

are no nonlinear dynamics when a ¼ 0. For a > 0, there will

always be nonlinear dynamics and the MAE solution

becomes a definite approximation to the transient response.

Although limits for weakly and strong nonlinear dynamics

are derived in Refs. 50 and 51 for a typical binary electrolyte

solution, these limits are not directly applicable here due to

the asymmetry of the present problem. However, we can see

from Fig. 6 and from the fact that sc=sd ¼ d� 1 that the

approximation of linear dynamics leads to a good description

of current decay at short times, especially for low applied

voltages [for example, the MAE results have only deviated

from the FEM results by 5% at t ¼ 6 for the case of b ¼ 0:1
and v0 ¼ 6 shown in Fig. 6(b)]. At higher applied voltages,

the approximation will fail at shorter times, but it can reason-

ably be expected that the linear dynamics will continue to be

a good approximation to current decay for t < 1 (i.e., for

times less than the charging time).

Due to the nonlinear capacitance and the presence of

multiple time scales, it is suggested that to characterize the

capacitance by representing the IPMC as an RC circuit it is

necessary to either use an applied voltage less than the ther-

mal voltage when looking at the step response (as was done

by Aureli et al.41), or a sufficiently high frequency such that

the boundary layers never have time to fully form (i.e., y
does not change much) when looking at the impedance

response. The argument is mostly heuristic, but we can say

that since the charging time scale sc is on the order of milli-

seconds,12,41 a frequency on the order of kHz should be used

as a minimum in characterizing the impedance response.

Although the measurements were performed for neat ionic

liquids (not ionic liquid in an ionomer), Lockett et al.73

found that a frequency of 1 kHz could be used to obtain a

satisfactory correlation with the full impedance results when

measuring the capacitance-voltage relationship of different

imidazolium-based ionic liquids. This agreement may be due

to the fact that the current is large at this frequency and

therefore there is not enough time for y to change a large

amount in magnitude with the applied sine wave. Therefore

an RC circuit is a decent approximation at this frequency

(specifically a constant-phase element (CPE), not a
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capacitor, is a better representation when used in series with

a resistor to model the electric double layer; see, for example,

Ref. 34). Olesen et al.74 discuss some of these issues regard-

ing the nonlinear response of an electrochemical system,

including steric effects, to the application of an AC voltage.

From the discussion and comparison to numerical results

in this section, it is seen that the MAE solutions obtained here

for the dynamic current decay in response to an applied step

voltage are quite limited, only applying approximately to

unelectroded samples at low applied voltages and short times.

This is in contrast to results considering a single mobile ionic

species, where the absence of nonlinear dynamics causes the

MAE results to be applicable at all times for all reasonable

applied voltages. However, since the capacitance and charge

transferred refer to equilibrium configurations, they are always

valid, regardless of b and v0. Capacitance and charge trans-

ferred are calculated per unit surface area. This unit surface

area can be taken to be the microscopic surface area as long

as the Debye length is much smaller than the microscopic sur-

face roughness.40 Therefore, Eqs. (25) and (26) for charge

transferred and capacitance are valid for fully electroded IPTs

if the boost in capacitance due to the large microscopic sur-

face area is accounted for.

VI. IONIC CONCENTRATION AND CHARGE DENSITY

Since at leading order the boundary layers are in a state

of quasiequilibrium with the bulk region, the ionic concen-

tration profiles can be determined for a given value of y. As

discussed in the previous section, these concentration pro-

files are valid at equilibrium, and valid transiently when

there are only linear dynamics. The approximation of linear

dynamics is limited to small v0 and short times when consid-

ering a step voltage. By just considering the equilibrium dis-

tributions, however, we can see how the inclusion of steric

effects impacts boundary layer composition and can obtain

concentration profiles that are valid for higher applied vol-

tages that those obtained in Ref. 12, where steric effects for

the ionic liquid ions were omitted.

To calculate ionic concentration, first define f ðẑ6Þ
¼ �@ẑ=@g and use Eq. (17) to express this solely in terms of

the leading order expression for boundary layer potential,

ẑð0Þ. The sign of the square root from using Eq. (17) is deter-

mined so that f ðẑ6Þ is positive at the negative electrode,

which is associated with ẑ�, and vice versa. This can be inte-

grated to determine g as a function of ẑ:

g6ðẑ6Þ ¼ 6

ð ẑ6

ẑ6ð0Þ

dẑ6

f ðẑ6Þ : (28)

This gives an implicit expression for potential as a function

of the inner coordinates which can be tabulated numerically.

The ionic concentrations as a function of position are then be

determined using Eq. (14).

Boundary layer concentration profiles for a ¼ j ¼ 0:1
and different values of the total potential drop across the

boundary layers, y, are shown in Fig. 7 for the different ionic

species. These plots show the basic behavior that the cations

move toward the cathode and anion toward the anode, and

that there will be a depleted region at the electrode opposite

these. The concentration of the ionic liquid ions has a maxi-

mum of 2=j, and the anion reaches this concentration value at

the anode for y ¼ 10 and higher. Not as many ionic liquid cat-

ions move toward the cathode as anions move toward the an-

ode because of the mobile counter-cation, and the ionic liquid

cation does not reach the maximum possible concentration of

2=j even for y ¼ 40 (which is �1 V near room temperature).

The concentration of the counter-cation is exponentially

increasing at the cathode, and the maximum concentration at

the electrode is listed in Fig. 7(a) for each value of y.

In Fig. 7 it appears as if conservation of mass for each

ionic species is not enforced. However, this is actually not

the case. For large applied voltages there will be neutral salt

absorption by the double layer,21 and this will cause a slight

depletion in concentration in the bulk region. The charge

density in the bulk region will still remain zero. In the limit

FIG. 7. Boundary layer concentration profiles for a ¼ j ¼ 0:1 and different

values of the total potential drop across the boundary layers, y, showing (a)

the counter-cation, (b) the ionic liquid anion, and (c) the ionic liquid cation.

The concentration of the counter-cation at the cathode is listed in (a) for

each value of y.
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of thin boundary layers, the approximation ciðbulkÞ �1 still

holds, although ciðbulkÞ will actually be slightly less than 1.

A value of ciðbulkÞ <1 is associated with the nonlinear dy-

namics discussed in the previous section.

With the ionic concentration profiles, the charge den-

sity, q, is a simple calculation. The charge density for the

same parameter values, a ¼ j ¼ 0:1, is shown in Fig. 8.

The different characteristics of each boundary layer can

easily be seen in the plot of charge density. The anode

boundary layer (ABL) is much larger than the cathode

boundary layer (CBL), and its size increases with the

applied voltage. Since a large amount of the small counter-

cations move into the CBL, its size is only slightly depend-

ent on the applied voltage. When steric effects are omitted,

the size of the CBL is not dependent on the applied voltage,

and its size is characterized solely by the Debye length.

Since we took a to be small, this is still the dominant trend

seen in Figs. 7 and 8.

The ABL in an ionic liquid IPT is distinctly different from

the ABL in a water-based IPT, as was also discussed in

Ref. 12. In comparison with the results in Ref. 12, here the

ABL does not have a region of increasingly negative charge

density because steric effects are included. This is a more accu-

rate description of the electric double layer at higher applied

voltages considering the large sizes of the ionic liquid ions.

The charge density will be �1 in the ABL of a water-based

IPT but will reach �1� 2a=j in an ionic liquid IPT. The CBL

is similar for water-based and ionic liquid IPTs in terms of size

and charge density, but the charge density in the CBL for a

given applied voltage will be higher for the ionic liquid IPT,

where a > 0, versus the water-based IPT, where a ¼ 0.

VII. DISCUSSION

A. Charging characteristics

Figure 5 shows that the ionic liquid IPT is a nonlinear

capacitor, with the capacitance generally a decreasing func-

tion of the applied voltage. For large values of a or small

values of j the capacitance-voltage relationship is nonmono-

tonic: there is an initial increase in capacitance followed by

a decrease. For a neat ionic liquid, the use of the MNPP

equations yields nonmonotonic capacitance-voltage curves

for j < 1=3.24 The ionic liquid IPT converges to follow this

behavior as a increases; however, for small a, smaller values

of j are needed for ionic liquid IPT versus a neat ionic liquid

for the capacitance-voltage curve to be nonmonotonic. Since

a ¼ j is a reasonable choice for parameter values as dis-

cussed in Sec. IV, it may be expected that an ionic liquid

IPT will typically feature a nonmonotonic capacitance-volt-

age curve. However, since many factors can influence the

correct values of a and j, a firm conclusion is best reached

through a comparison with experimental results. The capaci-

tance-voltage relationship has not been measured for ionic

liquid IPTs, and this sort of an experimental model verifica-

tion should be the subject of future work. Kim and Kim75

report a capacitance-voltage measurement for a water-based

IPT but did not analyze whether their results were affected

by assumptions of electrode structure. As mentioned in Sec.

IV, we suggest that measurements of capacitance-voltage for

ionic liquid IPTs can possibly be used to identify the extent

of free ionic liquid ion movement for IPTs with different

ionic liquids. Newly developed experimental techniques

such as neutron imaging76 and fluorescence spectroscopy77

may also prove useful for identifying the extent of free ionic

liquid ion movement.

Figures 4 and 5 show that the presence of free ionic liq-

uid ions will tend to increase the overall amount of charge

transferred in response to an applied voltage. Therefore, to

maximize the capacitance of an ionic liquid IPT, an ionic liq-

uid should be used where a large fraction of the ions exist as

free. The influence of steric effects, which is described by

the parameter j, also has a large effect on the capacitance

and charge transferred. However, since the ionic liquid exists

in the polymer, not as a neat solution, the correct value of j
will be different from that for a neat solution. Again, a com-

parison of experimentally measured capacitance-voltage

curves for an ionic liquid IPT with those predicted by Eq. 26

could give insight as to the correct values of a and j to use

to describe an actuator system.

We also saw that although the capacitance, charge trans-

ferred, and equilibrium ionic concentration profiles are well

described by the results of the matched asymptotic expan-

sion, the dynamic response is not. This is in contrast to the

water-based IPT with a ¼ 0, where there are no nonlinear

dynamics and the results of the matched asymptotic expan-

sion show an excellent agreement with numerical results at

all times.12,39 In Sec. V we showed that nonlinear dynamics

and the presence of multiple times scales causes the calcu-

lated current from the matched asymptotic expansion to only

be a good approximation at short times and small applied

voltages. The electrode structure and porous nature of the

ionomer will also affect the dynamic response; these are

additional factors which need to be considered in comparing

the theoretical results here with experiment.

B. Actuation performance

Although the presence of free ionic liquid ions will tend

to increase the total amount of charge transferred, this does

not necessarily mean it will increase the actuation response in

FIG. 8. Boundary layer charge density profile for a ¼ j ¼ 0:1 and different

values of the total potential drop across the boundary layers.
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bending of a transducer. As discussed in Ref. 9, where a

micromechanics model is applied to model the actuation of

ionic liquid IPTs, the mobile ionic liquid ions can affect the

actuation response in bending by both finite size effects and

from changes in boundary layers stress caused by changes in

charge density. The physical mechanisms responsible for the

coupling between changes in charge density and the stress

developed in the boundary layers are, in general, quite compli-

cated; modeling these processes is currently the subject of

research (see, for example, Refs. 9, 29, and 37). However,

using the results of Sec. VI, the influence of ionic liquid ions

on the actuation response of IPTs can be assessed. Figure 7

shows the ionic concentrations in the boundary layers for the

parameter values a ¼ j ¼ 0:1 and for different values of the

total potential drop across the boundary layers, which is equal

to the applied voltage at equilibrium. These plots show that

the counter-cation is still by far the dominant charge carrier,

with large amounts accumulating at the cathode. For the ionic

liquid ions, although it was specified that the same number of

free positive and negative ions exist, the concentration distri-

butions are quite asymmetric. The amount of ionic liquid

anions moving into the anode boundary layer (ABL) is much

larger than the amount of ionic liquid cations moving into the

cathode boundary layer (CBL). However, the presence of a

mobile anion also increases the amount of counter-cations

moving into the CBL. Since an increase in charge density in

the ABL makes a negative contribution to the overall bending

moment of the actuator, the extra charge transferred due to the

presence of the mobile ionic liquid ions may not increase the

overall bending actuation response of the IPT. This suggests

that the maximum electromechanical conversion efficiency

for bending movement of an ionic liquid IPT actuator will

occur when a ¼ 0, i.e., the case with the largest asymmetry in

the charge distribution. In practice, this may correspond to

using an ionic liquid where the ions are more tightly bound

and do not dissociate as easily when swollen in Nafion. Since

it is the asymmetry in the charge density distribution that

drives bending actuation, a similar performance increase to

using an ionic liquid with a ¼ 0 may be achieved by using an

ionic liquid where the anion is relatively immobile compared

to the cation. These conclusions are the same as were reached

in our previous work,12 where they were discussed in more

depth, and have been qualitatively shown to be in agreement

with recent experimental results.7 Here, our solutions are valid

for higher applied voltages, although for V0 � 1 V Fig. 7(a)

shows that MNPP theory might also be needed for the coun-

ter-cation since a high concentration value is obtained. With

the present analysis the inclusion of steric effects leads to a re-

alistic description of boundary layer composition at voltages

near IPT operating voltages.

VIII. CONCLUSIONS

Using a modified Nernst-Planck equation to account for

steric effects in movement of the large ionic liquid ions, we

analyzed the charging characteristics of ionic liquid IPTs by

considering both the anion and cation of the ionic liquid in

addition to the counter-cation as mobile ionic species. Analyt-

ical expressions for the charge transferred and capacitance as

functions of the applied voltage, free ionic liquid fraction a,

and packing parameter j were derived using the method of

matched asymptotic expansions. The results show distinct dif-

ferences in charge transfer characteristics in ionic liquid IPTs

versus their water-based counterparts: for a given applied

voltage, the presence of free ionic liquid ions causes an

increase in the overall amount of charge transferred. How-

ever, the decreasing differential capacitance translates into

marginally less charge transferred as the applied voltage is

increased. A governing ODE for the dynamic charging

response was derived using the results of the matched asymp-

totic expansion, and the leading order relationship for charge

stored in the boundary layers with respect to time (i.e., cur-

rent) was established. Although it was shown that at leading

order the charge stored in the boundary layers is determined

solely by the total potential drop across the boundary layers

(y), a comparison with numerical results demonstrated that

the leading order dynamics are only a good description for

short times and small applied voltages. The solution here

using the method of matched asymptotic expansions does not

capture the multiple time scales and nonlinear dynamic

response discussed in Ref. 12. Therefore, although the results

of the matched asymptotic expansion are a good description

of capacitance and charge transferred with respect to the

applied voltage and of the equilibrium ionic concentration

profiles, a full description of the dynamic response requires a

numerical solution or an alternate solution procedure. The

distributions for boundary layer ionic concentration and

charge density were obtained numerically and used to explain

the actuation characteristics of ionic liquid IPTs in compari-

son with water-based IPTs. Specifically, although an ionic liq-

uid IPT will have more charge transferred that an identical

water-based IPT, the increased charge density in the anode

boundary layer will make a negative contribution to the over-

all bending moment. This suggests that to maximize electro-

mechanical conversion efficiency in bending actuation, an

ionic liquid with a small fraction of free ions should be used,

and to maximize the overall charge transferred, an ionic liq-

uid with a large fraction of free ions should be used. Measure-

ments of the capacitance-voltage relationship for ionic liquid

IPTs in comparison with the theoretical result of Eq. (26) can

possibly be used to identify the extent of free ionic liquid ion

movement for ionic liquid IPTs with different ionic liquids.
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APPENDIX A: GOVERNING EQUATIONS FOR LEADING
ORDER CURRENT RESPONSE

To derive the governing ODE for AðtÞ [recall that current

is related to AðtÞ by Eq. (27)], begin by considering the total

diffuse charge stored from the electrode to a point g in the

double layer. This can be expressed using the inner coordi-

nates as
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qðgÞ ¼
ðg

0

ðĉ1 � aĉ2 þ aĉ3 � 1Þdg; (A1)

where the quantity in parenthesis is the charge density. Dif-

ferentiating with respect to time and using Eq. (10), this

becomes

dqðgÞ
dt
¼ � 1

d
ðĵ1 � aĵ2 þ aĵ3Þ; (A2)

where ĵi are the fluxes of the ions. We now match the inner

and outer solutions in the limit of thin boundary layers as in

Sec. III. This yields

lim
g6!1

dqðgÞ
dt
¼ lim

g!1
� 1

d
ðĵ1 � aĵ2 þ aĵ3Þ

¼ lim
x!61

�ð�j1 � a�j2 þ a�j3Þ

¼ � 1

2
þ ab

� �
AðtÞ; (A3)

where Eqs. (7), (9a), and (10) are used. Positive charge accu-

mulates in the cathode boundary layer, which is modeled

with g�, and negative charge accumulates in the anode

boundary layer, which is modeled with gþ. As g!1 in the

integral of Eq. (A1), the calculated charge transferred repre-

sents the total charge in the double layer. Therefore, Eq.

(A3) leads to Eq. (27) for the transient current in the

membrane.

To determine the governing ODE for AðtÞ, recall that

the charge transferred is known from Eq. (25). Using this,

we have a governing first-order nonlinear ODE for AðtÞ
which can be evaluated numerically:

@q

@y

@y

@t
¼ 1

2
þ ab

� �
AðtÞ; (A4)

where @q=@y ¼ x is given in Eq. (26). The initial condition

will vary depending on the nature of the applied voltage. For

a step voltage applied at t ¼ 0, the initial condition is

Að0Þ ¼ v0 since the zeta potential will initially be zero at the

instant when the voltage is first applied.
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