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We use depth- and time-resolved x-ray diffraction to study thermal transport across single crystal

Bi films grown on sapphire in order to determine the thermal conductivity of the film and the

Kapitza conductance of the interface. Ultrafast Ti:sapphire laser pulses were used to heat the films;

x-ray diffraction then measured the film’s lattice expansion. Use of grazing incidence diffraction

geometry provided depth sensitivity, as the x-ray angle of incidence was varied near the critical

angle. The shift of the film’s Bragg peak position with time was used to determine the film

temperature averaged over an x-ray penetration depth that could be selected by choice of the angle

of incidence. For films that were thick compared to the laser penetration depth, we observed a large

temperature gradient at early times. In this case, measurements with the incident angle near or well

above the critical angle were more sensitive to the film conductivity or Kapitza conductance,

respectively. For thinner films, however, cooling was dominated by the Kapitza conductance at all

accessible time scales. VC 2011 American Institute of Physics. [doi:10.1063/1.3661164]

I. INTRODUCTION

With the continuing drive in nanotechnology to shrink

electronic and electro-optical devices, temperature control

and heat dissipation have become increasingly critical to the

design and use of such devices.1,2 Time-resolved x-ray dif-

fraction (TRXD), using an ultrafast laser as a heat source in

a pump-probe experiment, is a well-established noncontact

method of measuring thermal transport in micro- and nano-

structured systems. Due to the relatively weak interaction of

x-rays with matter, TRXD has been applied to probe temper-

ature changes of buried layers.3–6 In a specular diffraction

geometry for, say, a metal film, the penetration depth of

x-rays is typically on the lm scale, while the optical absorp-

tion length may be only tens of nm. Typically, the long pene-

tration depth of x-rays is considered an advantage. However,

this mismatch between the penetration depths of the pump

and probe also means that the x-rays may average across a

significant temperature gradient, extending into the depth of

the sample. For sufficiently perfect crystals, the temperature

gradient may be calculated from the detailed shape of the

x-ray rocking curve via fits using Takagi-Taupin theory,7–9

or uniformity of temperature can be attempted with a thin-

film sample, whose thickness is comparable to the lesser of

the pump or probe attenuation lengths.

In this work, we perform depth-sensitive TRXD on thin

films whose thickness D is substantially greater than the laser

penetration depth kL but less than the x-ray linear attenuation

length.10 Using grazing-incidence (GI) x-ray diffraction, we

limit the x-ray penetration depth kx by selecting an x-ray

angle of incidence a near the critical angle for external

reflection, ac. Using 1� d� ib for the material’s index of

refraction and K as the x-ray wavelength, the critical angle

ac ¼
ffiffiffiffiffi

2d
p

. The x-ray penetration depth is therefore11

kx ¼
ffiffiffi

2
p

4p
K½ðða2 � a2

cÞ
2 þ 4b2Þ1=2 þ a2

c � a2��1=2: (1)

To demonstrate the GI-TRXD technique, we choose thin

films of Bi grown on sapphire. Achieving depth sensitivity

through grazing incidence is, certainly, a well-established

technique. GI-TRXD was first demonstrated for femtosecond

phonon dynamics in Bi by Johnson et al.12,13 Previously, we

compared this method of determining thermal transport

properties to use of the specular Bragg peak;14 in this paper,

we focus our analysis on the grazing incidence technique

only and compare the results on two samples whose only

nominal difference is in film thickness. Specifically, we will

describe how to determine j and rK , the thermal conductiv-

ity of the film and the Kapitza conductance of the interface,

respectively, by performing TRXD at several angles of

incidence.

II. EXPERIMENTAL DETAILS

These measurements were performed at insertion device

beamline 7ID of the advanced photon source.15 7-keV x-rays

were selected by a diamond (111) double-crystal monochro-

mator and delivered to the sample mounted on a six-circle dif-

fractometer. A Rh-coated mirror focused the x-rays

horizontally to a width <100 lm. For each sample, measure-

ments were repeated at several values of a, the angle of inci-

dence, in order to vary the x-ray penetration into the film.

Diffracted x-rays were detected with an avalanche pho-

todiode (APD) in photon-counting mode. The temporal

response of the APD was fast enough to isolate individuala)Electronic mail: d-walko@anl.gov.
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x-ray bunches arriving at a 6.5 MHz rate. Electronic gating

selected the specific bunch, which was coincident with the

laser arrival at the sample (providing what we refer to as the

“laser on” signal) as well as the same bunch one round trip

earlier (“laser off”). Dead-time corrections were used to cor-

rect the observed count rate.16 The laser used for heating the

films was an amplified Ti:sapphire laser operating at a 5 kHz

repetition rate. The laser pulses were centered at 800 nm

with a �50 fs pulse duration. A laser fluence of approxi-

mately 0.2 mJ/cm2 was absorbed in the films. The laser

beam was not in grazing incidence; rather, the angle of inci-

dence was �20� from normal. In this configuration, the laser

penetration depth kL � 15 nm, based on the optical proper-

ties of Bi at 800 nm.

Two Bi films were grown by molecular-beam epitaxy on

1� 1 cm2 c-axis sapphire substrates for these measurements.

The films are single crystals with the c axis (the trigonal axis)

perpendicular to the surface. In this paper, we index the dif-

fraction spots in a hexagonal representation. For 7-keV x-rays,

ac ¼ 0:43�. Following Eq. (1), for a ¼ 0:4� and 3:0�, the

nominal x-ray penetration depth kx is 3.6 and 159 nm, respec-

tively, assuming an ideally smooth surface. The first sample,

which we refer to as the thin film, is 65 nm thick; the other,

the thick film, is 284 nm thick. The thickness of the thinner

film was measured by low-angle x-ray reflectivity; for the

thicker film, the thickness was measured by optical (laser)

pump-probe acoustic echoes. The miscuts of the films, as

measured using optical reflectivity to determine the optical

surface normals, were < 0:5�. The full widths of the 006

Bragg peaks were 0:23� for the thinner film and 0:54� for the

thicker film, suggesting a higher crystalline quality (i.e., lower

mosaic spread) for the thinner film. Figure 1 shows 014 rock-

ing curves from each of the two samples. The two curves for

each sample are the laser-on and laser-off data. The diffraction

peaks in Fig. 1 are scanned along the out-of-plane reciprocal

lattice coordinate L, rather than radially in a theta/two-theta

scan. The in-plane lattice parameters of the film are con-

strained by the substrate, so all lattice expansion is along the c

axis.

In these GI measurements, the signal from the Bi films is

relatively weak compared to standard TRXD scattering geo-

metries, especially at the smallest angles. Along with the de-

pendence of kx on a (Eq. (1)), the x-ray footprint eventually

becomes larger than the length of the sample at small enough

a. Data collection rates are further limited by the 5 kHz repeti-

tion rate of the laser. Therefore, to achieve reasonable signal-

to-noise ratios in the limited beamtime available, we measured

the laser-on and laser-off signals at one point on the high-

angle side of the 014 diffraction peak (L ¼ 4:02 reciprocal lat-

tice units, as indicated in Fig. 1). Depending on a, count times

from 30 up to 240 s per point were necessary for acquisition

of good counting statistics. For a Gaussian-shaped peak with

small position shifts in L, the change in intensity on the side

of the film’s diffraction peak has been shown to be propor-

tional to the shift of the peak and, thus, to the temperature

change of the film.3 For convenience in comparing data from

different grazing angles, we plot the normalized difference of

laser on and laser off in the upcoming figures. The calculated

temperatures are plotted on the same axes by scaling the cal-

culations to the data at late times (>5 ns for the thin film,

>40 ns for the thick film); effectively, this treats the absorbed

laser fluence, a quantity which is relatively difficult-to-

measure, as a free parameter.

III. RESULTS

Our GI-TRXD data are shown in Figs. 2 and 3. For the

thinner film, measurements were made at a ¼ 0:5� and 3:0�,
with corresponding x-ray penetration depths of kx¼ 11.8 nm

and 159 nm. While data from the shallower angle is more

surface-sensitive and data from the higher angle is a nearly

uniform average over the depth of the film, the measured

FIG. 1. (Color online) Time-resolved Bragg diffraction peaks in grazing ge-

ometry of the 014 reflections of (a) a 65-nm Bi film and (b) a 284-nm Bi

film. The dashed (blue) lines show the rocking curves before laser excitation

(“laser off”). The solid (red) lines show the rocking curves displaced to

lower angle shortly after laser excitation (“laser on”). The laser/x-ray delays

for the thin and thick films are 2.3 ns and 250 ps, respectively. The large star

symbols mark the location of GI-TRXD data collected in Figs. 2 and 3.

FIG. 2. (Color online) Normalized difference between the laser-off and

laser-on signals, as gated by the APD detector, for the thin Bi film (65 nm).

Symbols display the data (with selected error bars representing uncertainty

due to counting statistics) and lines display best fits according to

Eqs. (2)–(4). The angles of incidence and effective x-ray penetration depths

are as listed in the legend.
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decay curves track fairly closely as the temperature of the

film quickly becomes uniform. Simple fits to an exponential

decay give time constants of 4 to 5 ns. For the thicker film,

measurements were made at a ¼ 0:4�, 0:6�, 3:0�, and 6:0�.
The data from the shallower angles exhibit a faster decay, in-

dicative of heat dissipating away from the very top of the

film. Fitted time constants over the whole range of measure-

ment were �30 ns, but fits to the early times gave time con-

stants shorter than 10 ns. Data from the larger angles tend to

decay more slowly (time constants �40 ns), reflecting the

cooling of the whole film by heat transfer into the substrate.

For a quantitative analysis of our data, we numerically

solve the one-dimensional thermal diffusion equation for

both the film and substrate,

dTðt; xÞ
dt

¼ ðj=CÞ d
2TðtÞ
dz2

; (2)

where T, C, and j are the temperature rise, heat capacity,

and lattice thermal conductivity. For the sapphire substrate,

we use 3.1 J/cm3/K for the specific heat and 34.8 W/m/K for

the thermal conductivity. For the film, we assume a specific

heat of 1.19 J/cm3/K. The boundary condition at the interface

(z ¼ D) is

C
dTðtÞ

dt
¼ �rK

dT

dz
jz¼D; (3)

where rK is the Kapitza (boundary) conductance. Finite val-

ues of this parameter give rise to a temperature differential at

the interface; various models have been constructed to con-

nect rK to the probability of phonon transmission across the

interface. At the top surface of the film (z ¼ 0), we use the

insulating boundary condition

dT

dz
jz¼0 ¼ 0: (4)

We use, as an initial temperature profile in the film,

Tð0 < z < D; t ¼ 0Þ ¼ T0 expð�z=kLÞ. T0 is the initial maxi-

mum temperature rise, which could be on the order of 10 s of

K if the assumed exponential form is correct. To compare

with a data set collected at a given a, an average film tempera-

ture is calculated, weighted by an exponential factor with

appropriate length scale kx. The best fit for Kapitza conduct-

ance across the Bi/sapphire interface is 2500 6 100 W/cm2/K

from the thin film; data from this film is insensitive to j. More

specifically, as we show below, this film is sensitive to j only

for the first �100 ps. For the thick film, the measured Kapitza

conductance is 1100 6 150 W/cm2/K. The film’s thermal con-

ductivity is 10 6 3 J/m/K. However, we note that the best fit

occurs with kL ¼ 50 nm. This value for the laser penetration

depth is several times greater than expected from published

optical constants, but includes the effect of fast electron trans-

port on the initial temperature profile.

IV. DISCUSSION AND OUTLOOK

To summarize, we have used GI-TRXD to study thermal

transport properties in thin films of Bi on a� Al2O3. The

film’s thermal conductivity, which could only be measured

from the thicker sample, is consistent with published values

of 8 J/m/K for Bi; the strong correlation of thermal transport

with other parameters in the calculation make a more exact

determination difficult with this method. The measured val-

ues of rK for the two films are quite different. The best fit for

the thicker film, but not the thinner film, is roughly consistent

with the value of rK expected from the basic radiation limit

model. As described elsewhere,14 in this limiting case, pho-

nons of all frequencies can cross the interface up to the lower

cut-off frequency of the two materials. Based on the Debye

temperature of Bi, the cutoff frequency is 2.5 THz; this

yields a Kapitza conductance of rK ¼ 1300 W=cm2=K.

Instead, use of 2.93 THz for bismuth’s Raman-active A1g

phonon yields rK ¼ 2060 W=cm2=K. This value is closer to

the result from the thin sample, a higher quality crystal

whose cooling is dominated by rK on all accessible time

scales. This result, we argue, better reflects the fundamental

value of rK; the lower value observed for the thicker film

appears to be a result of a lower quality interface.

The noncontact method we describe should be generally

applicable to determination of thermal properties in thin

films and multilayer structures. It provides tunable depth de-

pendence as well as the ability to directly access the temper-

ature of subsurface crystalline material. The sensitivity of

these measurements to the parameters of interest depends on

the time scales accessible to experiment. We define the sen-

sitivity (see., e.g., Ref. 17) of measured value X to parameter

n as a log differential in the form

Sn ¼
@ lnðXÞ
@ lnðnÞ : (5)

In Fig. 4, we plot SrK
and Sj for the two films with two val-

ues of a each (0:5� and 3:0�), where X from Eq. (5) is the

FIG. 3. (Color online) Data and fit for the thick Bi film (284 nm). Results

for the higher two angles are offset vertically for clarity.
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time-dependent temperature averaging over a depth of

kx ¼ 11:8 or 159 nm. After a short delay, the Kapitza con-

ductance clearly dominates the temperature profile of either

film, with little if any dependence on grazing angle. On the

other hand, the measurements are fairly insensitive to the

film’s thermal conductivity, except at early times. The thin-

ner film is sensitive to j only for the more grazing angle and

only for the first �100 ps, which is comparable to the mini-

mum time scale accessible in the present measurements (lim-

ited by the x-ray bunch duration). The thicker film is

sensitive to j for several ns and, over this time scale,

enhanced at grazing incidence. Thus, the choice of film

thickness (thicker or thinner) for these measurements can be

guided by the preference in parameter of interest (rK or j,

respectively).

The long x-ray footprints at grazing incidence will gen-

erally require a laterally uniform sample as well as laterally

uniform illumination by the pump laser. Nevertheless, as a

diffraction-based technique, GI-TRXD may, in principle, be

applicable to a laterally structured surface if materials in the

areas of interest have strong diffraction peaks that can be

clearly resolved from those of other materials in the illumi-

nated volume. Count rates may also suffer if the signal

comes from only a small area of the sample surface; a high-

brightness x-ray source is necessary for these experiments. A

high repetition rate for the pump laser will also improve the

data-collection rate.

We note that fits to the lower- a data sets for the thicker

film are slightly improved by averaging over a larger depth

than expected from Eq. (1) for the given angle a. Empiri-

cally, we find better fits for the a ¼ 0:4� and 0:6� data to be

with kx ¼ 15 nm and 40 nm, respectively, rather than the

nominal 3.6 nm and 21 nm expected for a flat sample sur-

face. This discrepancy could be due to an angular misalign-

ment on the order of �0:1� or a �1 nm rms surface

roughness; either would increase the depth of material being

probed. Also conceivable is that the focusing mirror could

induce a horizontal divergence that would cause a spread in

a, even causing some portion of the x-ray beam to be inci-

dent at angles greater than the critical angle. However, in the

present setup, the divergence due to the mirror is �0:03� and

thus should not be an appreciable factor here. To avoid this

complication in the future, an energy-resolving detector can

be used to measure the x-ray fluorescence of the film, provid-

ing an independent means of determining the volume of ma-

terial being illuminated.
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