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We use a general transmission matrix formalism to determine the thermal response of organic

light-emitting diodes (OLEDs) under high currents normally encountered in ultra-bright illumination

conditions. This approach, based on Laplace transforms, facilitates the calculation of transient

coupled heat transfer in a multi-layer composite characteristic of OLEDs. Model calculations are

compared with experimental data on 5 cm� 5 cm green and red-emitting electrophosphorescent

OLEDs under various current drive conditions. This model can be extended to study other complex

optoelectronic structures under a wide variety of conditions that include heat removal via conduction,

radiation, and convection. We apply the model to understand the effects of using high-thermal-

conductivity substrates, and the transient thermal response under pulsed-current operation. VC 2011
American Institute of Physics. [doi:10.1063/1.3671067]

I. INTRODUCTION

Organic light-emitting diodes (OLEDs) have attracted

attention due to their high efficiency, broad color gamut,

ease of fabrication, and mechanical flexibility when depos-

ited on plastic or metal foil substrates.1,2 A particular chal-

lenge in achieving intense OLED sources for illumination or

other applications is to efficiently remove heat that can

accelerate degradation of the organic active materials under

the high currents required. This is a particular problem for

large area devices where Joule heating can be substantial,3,4

leading to a pronounced temperature rise during operation.

An example of such heating is the electrophosphorescent

stacked red-green-blue OLED that has been demonstrated as

a high intensity white lighting source.5 At a current density

of 40 mA/cm2 and an operating voltage of 10 V, the opti-

mized device demonstrates a luminance of 10 000 cd/m2,

corresponding to a power efficiency (PE) of 12 lm/W. This

leads to a power dissipation of 4 kW/m2 that can result in a

temperature rise in excess of 30 �C.

Since localized Joule heating degrades the efficiency,

operational lifetime,6 and brightness uniformity,7 it is impor-

tant to quantitatively understand the thermal environment of

the multilayer composite device under high current opera-

tion, and then to mitigate the effects of heating by optimized

device and system design guided by this understanding. In

this work, we calculate the thermal properties of OLEDs

using an approach based on transmission matrix analysis that

is generally applicable to complex multilayer structures.

Laplace transforms are used to determine the response of the

system to the combined effects of thermal radiation, conduc-

tion, and convection, while also taking into account the non-

dissipative energy loss through OLED light emission. Our

approach is an extension of the heat-transfer method intro-

duced by Pipes8 used to analyze heat flow across insulating

walls, however, in our approach we include: (i) parallel and

series pathways required for accurate consideration of losses

by the combined processes of thermal convection, conduc-

tion, and radiation, (ii) thermal generation within the layers

themselves, (iii) losses through light emission, (iv) heat flow

across interfaces with finite thermal resistances between

layers, and (v) response to a thermal impulse. This complex

set of conditions is common in many multilayer optoelec-

tronic devices.

The calculated results are found to accurately compare

with thermal measurements for OLEDs obtained using time-

resolved infrared imaging under various operating condi-

tions. The model predictions agree with the experimental

data for two sets of electrophosphorescent OLEDs (or PHO-

LEDs), one emitting in green and the other in red.

This paper is organized as follows: In Sec. II, the trans-

mission matrix approach along with some modifications that

are specific to the PHOLED structure and thermal conditions

is described. Section III details the experimental methods

used for the assessment of thermal power dissipation and the

measurement of the transient temperature response. The

comparison between model prediction and experimental

results are presented in Sec. IV and are analyzed in Sec. V.

Also described in Sec. V is the application of these results to

PHOLEDs to assess their potential for high intensity opera-

tion, including the use of substrates with a range of thermal

conductivities, and under pulsed operation. We compare our

results in this section with the more complex finite element

method for solving differential equations, and find agreement

between both approaches. In Sec. VI we present conclusions.

The Appendix provides details of the calculation procedure.

II. THEORY

When a thin film with uniform thickness is subjected

to an input heat flux, Q, incident on one surface, the one

dimensional law of heat conduction, also known as Fourier’sa)Electronic mail: stevefor@umich.edu.
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law, states that the heat flux is proportional to the negative of

the local temperature gradient,

� @T x; tð Þ
@x

¼ 1

K
Q x; tð Þ; (1a)

where T(x,t) is the temperature of the thin film at point x and

time, t, Q(x,t) is the heat flux, and K is the thermal conductiv-

ity of the thin film. The continuity equation states that the

heat flux at point x raises the temperature as follows:

@T x; tð Þ
@t

¼ � 1

C

@Q x; tð Þ
@x

; (1b)

where C ¼ cv � q is the volumetric heat capacity, which is a

product of specific heat at constant volume, cv, and density,

q. This equation expresses the conservation of heat in an

infinitesimal thin film volume. Equations (1a) and (1b) are

combined to yield

@T x; tð Þ
@t

� a
@2T x; tð Þ
@x2

¼ 0; (2)

where a¼K/(cv � q) is the heat diffusivity of the material.

Internal heat generation is not included, and the solution is

subject to the boundary conditions of both heat flux and tem-

perature incident at the material surface.

Laplace transforms can be used to simplify the solutions

to Eq. (1) yielding9

� @T̂ x; sð Þ
@x

¼ 1

K
Q̂ x; sð Þ; (3a)

� @Q̂ x; sð Þ
@x

¼ CsT̂ x; sð Þ; (3b)

where T̂ x; sð Þ and Q̂ x; sð Þ are the Laplace transforms of the

temperature and heat flux, respectively, and s is the Laplace

variable. Pipes has shown that this system of equations has

solutions expressed as follows:8

T̂1

Q̂1

" #
¼

cosh hið Þ Zi sinh hið Þ
sinh hið Þ

Zi
cosh hið Þ

2
4

3
5 T̂2

Q̂2

" #
¼

Ai Bi

Ci Di

� �
T̂2

Q̂2

" #

¼ T hið Þ½ � T̂2

Q̂2

" #
; (4)

where T̂iðx; sÞ; Q̂iðx; sÞ (i¼ 1,2) are the Laplace transforms of

the temperature and heat flux on two sides of the layer of

interest, i (1 is for the heat flux at the input, and 2 at the out-

put), hi ¼ Li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cis=Ki

p
is the operational propagation coeffi-

cient characterized by Ki, Ci, and Li (the thickness of the ith
layer), Zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= KiCisð Þ

p
is the characteristic thermal imped-

ance of the layer, and Ai, Bi, Ci, and Di (Di¼Ai) denote the

matrix elements.

Equation (4) represents a general approach to solve the

transient thermal conduction problem for a multi-layer com-

posite subject to boundary conditions as described by either

the temperature or the heat flux at a given surface or inter-

face. Since both the interface temperature and heat flux

across interfaces between adjacent layers are continuous, the

entire composite can be described as the product of matrices

in series. An example representation of a two-layer compos-

ite, with layers denoted as i and j, is shown in Fig. 1(a).

To account for resistances to the thermal flux between

layers, we consider the interface to be a thin layer with negli-

gible specific heat. That is, letting Ci¼ 0 in Eq. (4), we

include interface effects with the reduced transmission matrix,

1 Rint

0 1

� �
; (5)

where Rint is the total (empirical) thermal resistance (m2 K/W)

of the interface.

The method can be further modified to incorporate radi-

ation by introducing a parallel matrix describing power

losses that additively combine, such as radiation and conduc-

tion. The parallel heat transfer pathway is shown schemati-

cally in Fig. 1(b), where Q̂m
1i and Q̂n

1i (Q̂m
2i and Q̂n

1i) denote

heat flux input (output) carried along two independent heat

transfer pathways labeled m and n. In this case, m and n
correspond to thermal conduction and radiation, respectively.

Once again, following Pipes,9 we therefore take into account

both modes within a single layer of interest, i. Here Q̂m
1i þ Q̂n

1i

is the Laplace transform of the total heat flux into i. Then,

Eq. (4) can be rearranged as

Q̂k
1i

Q̂k
2i

� �
¼ Ak

i =Bk
i �1=Bk

i

1=Bk
i �Ak

i =Bk
i

� �
T̂1

T̂2

� �
; (6a)

Q̂1i

Q̂2i

� �
�
X

k¼m;n

Q̂1i

Q̂2i

� �
¼
X

k¼m;n

Ak
i =Bk

i �1=Bk
i

1=Bk
i �Ak

i =Bk
i

� �
T̂1

T̂2

� �
; (6b)

where k¼m or n. Here, we assume the heat flux along the

boundary plane between layers is negligible compared to the

heat flux normal to the layers.

In a typical OLED, the heat source is assumed to be the

emission layer (EML) combined with the hole transport layer

(HTL), the electron transport layer (ETL), and the exciton

FIG. 1. (a) Heat flow for layers in series. Here, T1 and T2 denote the Laplace

transformation of ambient temperatures on both sides of the composite;

Q̂2i jð Þ and Q̂1i jð Þ are the thermal input and outflow of material i(j). Here,

Q̂2i ¼ Q̂1j is based on the continuity of the interface heat flux between adja-

cent layers. (b) Heat flow for layers in parallel, where Q̂m
1i; Q̂

n
1i denote input

heat flux carried by two thermal dissipation modes, and Q̂m
1i þ Q̂n

1i is the total

heat flux into material, i.
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blocking layer (EBL), embedded inside the multilayer com-

posite, as shown schematically in Fig. 2(a). That is, we need

to consider the case where the layers themselves act as heat

sources, rather than simply as heat-transfer media. Since the

thermal properties of these various organic thin films are of-

ten similar, for simplicity and without loss of generality we

assume only a single organic layer characterized by the aver-

age thermal constants of all such layers comprising the

OLED active region. As shown in Fig. 2(a), we characterize

this feature by analyzing two sub-matrices, ML hð Þ and

MR hð Þ, one to the left and the other to the right of the heat

source, respectively. We then separate the heat flux input

into two parts, QL
src and QR

src, following the boundary

condition:

QL
src þ QR

src ¼ Qtherm ¼ JV � Qopt; (7)

where QL
src and QR

src are the heat fluxes input to the left and

right matrices, respectively, Qtherm is the thermal power gen-

eration of the device, J and V are the current density and

voltage required for device operation, and Qopt is the power

removed in the form of emitted light. Thus, Eq. (4) becomes

T̂src

Q̂L;R
src

� �
¼ ML;R hð Þ
� � T̂0

Q̂L;R
0

� �
; (8)

where T̂src and T̂0 are Laplace transforms of the source and

ambient temperatures, respectively, and QL
src and QR

src are the

Laplace transforms of heat fluxes dissipated through ML hð Þ
and MR hð Þ, respectively. In this study, ML hð Þ is composed of

the conduction matrices for the indium tin oxide (ITO)

anode, glass substrate, and air in sequence, and MR hð Þ is

composed of the thermal conduction matrices for a single

composite organic layer, metal cathode, and air in sequence,

as shown in Fig. 2(b). For devices with encapsulation,

the matrices for the air gap T hAirGap

� �� �
and the glass lid

T hEncap

� �� �
have to be included in the matrix product.

For radiative losses, we use the Stefan-Boltzmann law,

Qrad ¼ erðT4
src � T4

0Þ ¼ erðT2
src þ T2

0ÞðTsrc þ T0ÞðTsrc � T0Þ
ffi hradðTsrc � T0Þ; (9)

where the last term on the right is an approximation for Tsrc

	 T0¼ 300 K, which is the ambient temperature. Here, e is

the emissivity of the OLED gray body (assumed to equal 0.5

for this study3), and r is the Stefan-Boltzmann constant.

Now, we have hrad 	 5 W=m2 K for an estimated 20 �C tem-

perature rise. The linear radiation approximation is treated as

a parallel matrix following Eq. (5),

1 Rrad

0 1

� �
; (10)

where Rrad¼ 1/hrad is the thermal resistance to radiation (in

the case of radiation, the heat capacity is zero). Combining

Eqs. (4) and (10) into Eq. (6b), we obtain the total matrix,

MR hð Þ, that takes into account conduction, convection, and

radiation,

MR hð Þ
� �

¼ AR BR 1� cradð Þ
CR 1þ cradð Þ AR

� �
; (11)

where crad ¼ BR=Rrad 
 1 is the radiation perturbation term,

and AR, BR, and CR are the matrix elements of the product

of 2� 2 matrices: ½TðhOrgÞ�½TðhAlÞ�½TðhAirGapÞ�½TðhEnCapÞ�
½TðhAirÞ�. The left matrix, ML hð Þ, can be similarly con-

structed. Convection in this case is treated analogously to

conduction, where an effective conductance, Kconv, is used to

characterize the heat removal at the boundary between the

OLED surface and the ambient. Here, Kconv depends on the

ambient conditions, significantly varying between cases such

as stagnant or forced-air cooling.

III. EXPERIMENT

We studied two sets of PHOLEDs of different sizes:

1 mm� 1 mm unencapsulated fac-tris(phenylpyridine) irid-

ium (Ir(ppy)3) devices on 1 cm� 1 cm substrates, and

5 cm� 5 cm large-area encapsulated devices (provided by

Universal Display Corp., Ewing, NJ). The small devices

were used to investigate two-dimensional (2-D) heat spread-

ing, whereas the larger devices allowed for a direct compari-

son of the experiment to our 1-D model. Note that for

lighting applications, the devices are expected to be large

(i.e., they occupy a significant fraction of the substrate area),

and hence the 1-D approach is more suitable, whereas small

devices approximate point heat sources in such applications

as intense light emitters (e.g., lasers).

The 1 mm2 devices were prepared as follows. A 20 X/sq,

pre-patterned (in 1 mm stripes) ITO-coated glass substrate

was degreased in detergent solution, followed by thorough

rinsing in de-ionized water. The substrate was then boiled in

FIG. 2. (a) Illustration of the series and parallel heat pathways for an OLED

used in setting up the matrix product. The matrix product describing the

thermal flux to the left is ML hð Þ, and is composed of transport in air, glass

substrate, and ITO anode in sequence, and MR hð Þ is the product for thermal

transport to the right, composed of the organic layer, metal cathode, air gap,

encapsulation, and air in sequence. (b) The construction of MR hð Þ, where

T̂src and T̂0 are the source and ambient temperatures, respectively, Q̂L
src and

Q̂R
src are the heat fluxes dissipated through the left and right surfaces, and

Q̂L
src þ Q̂R

src is the total thermal power flow. The conduction matrices for the

organic, metal cathode, and air layers are multiplied in sequence while radia-

tion is incorporated as a parallel pathway.
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trichloroethane, and rinsed in acetone in an ultrasonic tank,

boiled in isopropanol, and dried in pure nitrogen gas. Next,

the substrate was exposed to UV/ozone for 10 min prior to

transfer into a high vacuum (�10�7 Torr) deposition chamber.

A 40 nm-thick HTL consisting of 4,40-bis[N-(1-naphthyl)-N-

phenyl-amino]-biphenyl was followed by a 25 nm-thick

Ir(ppy)3 doped at 8 wt. % in a 25 nm-thick 4,40-bis(N-carbazo-

lyl)biphenyl host as the phosphorescent emission layer

(EML); a 40 nm-thick 2,9-dimethyl-4,7-diphenyl-1,10-

phenanthroline (BCB) layer was used as the combined ETL

and EBL followed by a 10 nm-thick Li doped BCP layer in a

1:1 molar ratio, and finally capped with a 100 nm-thick Al

cathode. Undoped BCP was used to prevent Li diffusion into

the EML, and to maintain the charge balance at high bias. The

1 mm2 device structure and the electrode pattern designs for

the large and small devices are shown in Figs. 3(a) and 3(b).

The large-area green and red PHOLEDs emit at peak

wavelengths of k¼ 530 nm and 630 nm, respectively. The

structure of these two packaged devices is as follows: glass

(0.7 mm)/ITO (120 nm)/organic layers (120 nm)/Al cathode

(100 nm)/air gap (30 lm)/glass encapsulation (0.7 mm) (see

Fig. 4(a)). Encapsulation prevents degradation of the devices

due to contact with air or moisture over the extended testing

sequence. Figure 4(b) shows the 5 cm� 5 cm ITO and Al

patterns on the glass substrate. It is important to provide

uniform current injection to achieve homogeneous emission

across the entire device area. The sheet resistivity of the ITO

anode (20 X/sq) is considerably greater than that of the Al

cathode (0.3 X/sq for 100 nm thick Al),10,11 making uniform

current injection from the anode particularly challenging.

Hence, both the anode and cathode are pumped from two

opposing contacts, as shown in Fig. 4(b). Here, hole injection

is via the top and bottom contacts in the figure, and electron

injection is from the left and right contact pads.

The J-V characteristics of the completed devices were

measured using a semiconductor parameter analyzer (HP

4145B). Optical characterization of the devices employed a

calibrated reference detector using standard methods.12 The

fraction of the total input power flux removed through non-

dissipative optical emission (Qopt) was calculated based on

output spectra and luminance at a fixed current density, i.e.,

Qopt¼ 1.7[Iph/RkA]. Here, Iph is the detector photocurrent

corresponding to light output in the forward-viewing direc-

tion, Rk is its wavelength-weighted-average responsivity

over the PHOLED spectrum, and A is the PHOLED emitting

area. The factor 1.7 adjusts for non-absorbed light emitted in

all directions, including waveguide and glass-mode emis-

sion.13 Thermal surface image measurements were acquired

using a non-contact thermal camera (FLIR A325). To

eliminate stray light and to provide a thermally stable envi-

ronment where the images were taken, samples were inserted

into a box with a light absorbing black interior. The

PHOLED current was provided via a Keithley 2400 source

meter.

FIG. 3. (Color) (a) Schematic structure of small-area

Ir(ppy)3 devices: glass (1 mm)/ITO (120 nm)/organic

layers (105 nm)/Al cathode (100 nm). (b) Patterning of

the ITO and Al anode and cathode stripes, each 1 mm

wide. (c) Thermal images of the Ir(ppy)3 device under a

fixed voltage of 10 V (corresponding to a current den-

sity of 1 A/cm2) after 10, 20, and 30 s operation follow-

ing the onset of the voltage ramp. The dashed square

indicates the device location.
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The transient temperature data for each sample were

obtained by tracking their thermal images under various cur-

rent densities. For this purpose, the frame rate of the thermal

imaging system was 60 Hz, which is adequate for the purposes

of these experiments. Two sets of data were recorded: device

heat-up and cool-down. To capture the transient temperature

rise, the devices were operated under constant voltage for

5 min until equilibrium was reached, with their thermal

images captured at a frame rate of 2 s�1. To observe the cool-

down dynamics, the devices were turned off after reaching

equilibrium at a fixed V, and the temperature transient was

similarly obtained until room temperature was reached.

IV. RESULTS

Figure 3(c) shows the surface thermal images (as viewed

from the substrate) of the 1 mm2 Ir(ppy)3 device after 10, 20,

and 30 s following the onset of a 10 V step (corresponding to

J¼ 1 A/cm2). While the thermal distribution is localized

around the light-emitting area, it is observed to spread out

from the active device region. The temperature difference

between the center of the device and the substrate edges after

60 s is 21 �C after equilibrium is established following the

onset of the current step (Fig. 3(c)).

To model the relationship of temperature versus thermal

flux, a uniformly distributed, well-defined temperature pro-

file is needed. For this purpose, we use the large-area

devices. Figure 4(c) shows the transient thermal images (also

measured from the substrate surface) of the large-area green

device at 7 V (corresponding to J¼ 9 mA/cm2) after 60, 120,

180, and 240 s following the onset of the voltage step. There

is a pronounced temperature variation across the device area,

with higher temperatures close to the anode contacts near the

device edge. This results from the high ITO resistivity that

provides less current near the device center than at its edges.

The temperature variation across the surface is within 1.8 �C
when the devices are operated at 5.5 V<V< 7.0 V, corre-

sponding to peak surface temperatures from 24 to 36 �C. The

temperatures reported here are medians in the range detected

by the thermal camera over the active device area, thereby

ignoring the minor thermal gradients observed.

The external quantum efficiency (EQE) and PE for the

large-area green and red emitting PHOLEDs are shown in

Figs. 5(a) and 5(b), respectively. The corresponding J-V char-

acteristics are shown in Fig. 6, along with the luminance-

current density (L-J) characteristics. The estimated heat flux

contributions under each operating condition are summarized

for the large-area green device in Table I, and for the red

PHOLED in Table II.

Now, the total input power flux is Qtot¼ J �V. The ther-

mal power dissipation is then given by Qtherm¼Qtot�Qopt.

For the green device at a luminance of between 540 and

620 cd/m2 and the analogous red device at a luminance of

between 220 and 240 cd/m2, approximately 97 to 99% of the

FIG. 4. (Color) (a) Schematic structure of large-area

devices: glass (0.7 mm)/indium tin oxide (120 nm)/or-

ganic layers (120 nm)/Al cathode (100 nm)/air gap (30

lm)/glass encapsulation (0.7 mm). (b) Illustration of

the patterns used for the ITO and Al anode and cathode

contacts, both 5 cm wide. (c) Thermal images of the

large-area green device under a fixed voltage of 7 V (or

a current density of 3.4 mA/cm2) after 60, 120, 180,

and 240 s operation following the onset of the voltage

ramp. The dashed square indicates the device location.
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total power is dissipated through several thermal channels

including conduction, convection, and radiation (see calcu-

lated values based on measured device efficiencies for

Qtherm/Qtot listed in Tables I and II).

Figure 7 shows the device surface temperature at various

V for the large-area green and red PHOLEDs following the

onset of the voltage step (symbols). These results are com-

pared with the matrix model calculations indicated by the

solid lines. For the green device (Fig. 7(a)), the temperature

was obtained at 5.5, 6.0, 6.5, and 7.0 V, corresponding to

Qtherm¼ 197, 270, 353, and 447 W/m2, respectively. The

data for the red device are similarly shown in Fig. 7(b) at

9.0, 10.0, 11.0, and 12.0 V, corresponding to Qtherm¼ 188,

288, 413, and 563 W/m2, respectively.

To compare the temperature of the heat-generating layer

(i.e., the EML at temperature, Tsrc) to the device surface tem-

perature (corresponding to the calculations and measure-

ments in Fig. 7, respectively), we calculate the thermal

gradient across the device. The resulting gradient obtained

using Eq. (1a) is shown in Fig. 8 for the ITO and glass sub-

strate, assuming thermal fluxes, Q1¼ 197, Q2¼ 270,

Q3¼ 353, and Q4¼ 447 W/m2 for the green device under the

same conditions of operation as in Fig. 7 and Table I. For all

of the power densities considered, a temperature difference

of approximately 0.1 �C is observed between the source layer

and the substrate surface. Since the measured surface tem-

perature is 30 �C, this small difference contributes a

negligible error to our fits in Fig. 7. Note that the thermal

gradient from the EML to the top package surface is

expected to be larger due to the presence of the metal cath-

ode, air gap, and glass encapsulation layer (cf., Fig. 2).

Figure 9 shows the surface temperature under various

voltages following the end of the voltage pulse (data points),

in which case the device cools to the ambient temperature of

FIG. 5. The external quantum (EQE) and power efficiencies (PE) vs the

drive current density of large-area (a) green, and (b) red electrophosphores-

cent OLEDs (PHOLEDs).

FIG. 6. (a) Current density vs voltage (J-V), and (b) luminance vs current

density (L-J) characteristics of large-area green (squares) and red (dots)

PHOLEDs.

TABLE I. Summary of efficiency and thermal parameters of the large-area

green PHOLED.

Voltage

(V)

Current

density (mA/cm2)

Qtot

(W/m2)

Qopt

(W/m2)

Qtherm/Qtot

(%)

5.5 3.69 203 6 97

6.0 4.60 276 6 98

6.5 5.52 359 6 98

7.0 6.48 454 7 98

TABLE II. Summary of efficiency and thermal parameters of the large-area

red PHOLED.

Voltage

(V)

Current

density (mA/cm2)

Qtot

(W/m2)

Qopt

(W/m2)

Qtherm/

Qtot (%)

9 2.15 194 6 97

10 2.94 294 6 98

11 3.81 419 6 99

12 4.74 569 6 99
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T %25 �C. As in Fig. 7, the results are similarly compared

with transmission matrix model calculations (solid lines).

V. DISCUSSION

The results of the thermal power calculations in Sec. II

under selected drive conditions are provided in Tables I and II.

The thermal transients are shown in Fig. 7, in both cases using

the materials thermal properties summarized in Table III. The

temperatures are found by inverting the matrix in Eq. (6),

given the thermal input vector, Q̂. This is accomplished

through a polynomial expansion whose order is determined by

meeting the convergence criterion, as discussed in the

Appendix. We find that a 4th order polynomial results in an

error of only 62% compared to higher order solutions, and

hence is used for all results discussed here.

From Fig. 7, the maximum temperature increase for the

green PHOLED is 10 �C at 7.0 V (corresponding to J¼ 6.48

mA/cm2, or Qtot¼ 454 W/m2), and 11.5 �C for the somewhat

less efficient red device at 12.0 V (corresponding to J¼ 4.74

mA/cm2, or Qtot¼ 569 W/m2). There are no adjustable pa-

rameters used in the calculation with the exception of those

FIG. 7. Transient temperature response (open symbols) measured using

infrared imaging at different voltages for large-area (a) green, and (b) red

PHOLEDs following the onset of the voltage step. The results are compared

with transmission matrix model calculations (solid lines). The corresponding

drive currents and other operating parameters for these conditions are pro-

vided in Tables I and II, with the parameters used for the calculations pro-

vided in Table III.

FIG. 8. Calculated temperature gradient across the ITO and glass layers for

heat fluxes of Q1¼ 197 W/m2, Q2¼ 270 W/m2, Q3¼ 353 W/m2, and

Q4¼ 447 W/m2 generated in the PHOLED light emitting layer (EML). The

surface temperatures at each heat flux are obtained from measurements using

infrared imaging. The small thermal gradient suggests that the thermal meas-

urements made at the glass surface are an accurate determination of the tem-

perature of the EML.

FIG. 9. Transient temperature response (open symbols) measured using

infrared imaging at different voltages for large-area (a) green, and (b) red

PHOLEDs following the end of the drive voltage step at time, t¼ 0. The

devices were operated at a fixed voltage until temperature equilibrium was

reached. The results are compared with transmission matrix model calcula-

tions (solid lines). The corresponding drive currents and other operating pa-

rameters for these conditions are provided in Tables I and II, with the

parameters used for the calculations provided in Table III.
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used to model convective losses, i.e., the thermal conductiv-

ity and the thickness of the air boundary layer and the radia-

tive emissivity, as we will discuss next. There are only small

discrepancies between the model prediction and the experi-

mental results. The largest disagreement is for the green de-

vice at 7.0 V, where the steady-state calculated temperature

is 0.9 �C higher than observed. This difference is possibly

due to uncertainties in measuring device temperature arising

from thermal inhomogeneities introduced by the resistive

ITO contact apparent in Fig. 4(c).

An advantage of the matrix methodology is the simplifi-

cation of the calculation of the thermal transient response.

For example, the response of the devices following the cur-

rent pulse is modeled by introducing the Laplace transform

of a step function into the heat source term. In this case, we

define the thermal input function, f(t), as

f tð Þ ¼
0;�1 < t < �t0

Q;�t0 � t < 0

0; 0 � t < þ1

8<
: ; (12)

where t is time, and t0 is the duration of a constant heat flux

pulse, Q. The corresponding Laplace transform is

Lff ðtÞg ¼ Q � Lfuðtþ t0Þg � Q � LfuðtÞg

¼ Q � et0s

s
� 1

s

	 

¼ Q �

Xþ1
k¼1

ðt0sÞk

s � k!
; (13)

where u(t) is the unit step function. Figure 9 shows the ther-

mal transient response at t0¼ 120 s as measured for the green

(Fig. 9(a)) and red (Fig. 9(b)) PHOLEDs using time-resolved

thermal imaging (data points) compared to the transmission

matrix model calculations. The measurement and the calcu-

lated heat response are in reasonable agreement for the dura-

tion of the cooling transient under the same bias conditions

as employed in Fig. 7, where we modeled the device turn-on

transients.

To obtain the fits in Figs. 7 and 9, both radiation and

convection are included in the matrices that describe the

composite thermal system. Indeed, Rrad and tair are two fit-

ting parameters in this study, where the equilibrium tempera-

ture is sensitive to tair, and the thermal transient response is

somewhat sensitive to our choice of Rrad. The fits yield the

radiative resistance, which is a parallel heat loss channel to

both conduction and convection, giving Rrad 	 0:2 m2 K=W

for the green device, and Rrad 	 0:4 m2 K=W for the red

device, which agree with the ideal gray-body estimate of

1=Rrad ¼ hrad 	 5 W=m
2

K in Sec. II. The higher thermal

resistance of the red PHOLED is consistent with its lower ef-

ficiency (with PE¼ 4.3 to 7.8 lm/W for green versus 1.3 to

3.6 lm/W for red; see Tables I and II). Table III summarizes

the thermal parameters used for modeling the structure in

Fig. 4(a), e.g., layer thickness, material density, heat

capacity, and thermal conductivity.23–27

Developing an accurate model for convection depends

on the ambient conditions (e.g., forced air versus a stagnant,

or free, air layer, and whether a heat sink is employed, etc.).

In our case, we assume free convection,14 where the thermal

boundary between the device radiating surface and the ambi-

ent is modeled by an effective thermal conductivity, kair, and

boundary layer thickness, tair. To approximate these parame-

ters for the PHOLEDs used here, we simulated the thermal

conditions by positioning a thermometer at different distan-

ces from a “semi-infinite” hot surface (i.e., a hot plate) main-

tained at 30 to 40 �C. In contrast to radiation which only

depends on the temperature and emissivity of the surface,

convection depends on the orientation of the hot surface,

e.g., whether it is horizontal or vertical. In our case, the hot

plate was vertically positioned to be consistent with the

PHOLED orientation, although the orientation was not found

to significantly affect our measurements over the tempera-

ture range studied. By measuring temperature versus dis-

tance, we obtain tair¼ 1 to 5 cm. For matrix fitting under the

conditions listed in Table I and II, we assume tair¼ 1.1 cm is

obtained for the green device, and tair¼ 1.2 cm for the some-

what hotter red PHOLED for these fits. In addition,

kair¼ 0.025 W/K m (see Table III) was obtained from Refs.

15 and 16.

Although we have measured the specific convection

conditions that apply in our experiments, the sensitivity of

the calculations to kair is a potentially significant source of

error. This is apparent from the plot in Fig. 10, where the de-

vice temperature is calculated as a function of 0.01< kair

< 0.20 W/K m for a constant thermal flux input of 100, 200,

500, and 1000 W/m2 and an ambient temperature of 25 �C. A

sensitive dependence on the air conductivity is observed

over the range of 0.01< kair< 0.05 W/K m. Since the fitted

value of kair¼ 0.025 W/K m is typical of free convection,

this result suggests that to avoid unacceptable thermal

increases at very high PHOLED operating powers, forced air

convection is required.

Finally, we consider the effects of thermal contact resis-

tances, Rint, between the various interfaces. Its incorporation

is analytically straightforward by the inclusion of interface

TABLE III. Summary of the thermal parameters used in modeling.

Materials Thickness (lm) Density (kg/m3) Heat capacity (J/kgK) Thermal conductivity (W/Km) Reference

Air … 1.2 1.0� 103 2.5� 10�2 15, 16

Glass 700 2.6� 103 8.2� 102 3.0 23

ITO 1 7.2� 103 3.4� 102 8.0 24

Organic 0.1 1.2� 103 1.7� 103 2.0� 10�1 25

Al 0.1 3.9� 103 9.0� 102 2.0� 101 26, 27

Air gap 30 1.2 1.0� 103 2.5� 10�2 15, 16

Encap 700 2.6� 103 8.2� 102 3.0 23
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matrices in the series product in Eq. (5). Note, however, that

the accurate measurement of Rint in complex composite sys-

tems such as PHOLEDs and other multilayer devices can be

problematic. For the devices shown in Fig. 4, the most resis-

tive interfaces are at the boundaries between ITO and the

organic composite, and between the organics and the Al

cathode. It has been shown17 that for these systems, Rint¼ 1

� 10�8 m2 K/W. Although a nonlinear dependence of the

interface resistances on temperature has also been reported,18

such effects have been neglected for simplicity.

Given that the model introduced in Sec. II is both

straightforward to implement and is accurate for a well-

defined set of thermal parameters, it is useful to extend it to

PHOLEDs operating under a range of practical conditions.

For example, we have applied this model to explore the

effects of substrates with a variety of thermal conductivities.

These include glass, sapphire (K¼ 35 W/K m) and Si

(K¼ 150 W/K m), as shown in Fig. 11. Compared to glass

substrates, the device temperature rise is considerably

smaller for a thermal power input> 1 kW/m2. For example,

at Qtherm¼ 5 kW/m2, the temperature rise is only 1.3 �C for

Si, 9.8 �C for sapphire, and 82 �C for glass.

For comparison, the corresponding results obtained using

conventional finite element analysis (FEA) to solve the system

of partial differential equations describing the multilayer

PHOLEDs are also shown in Fig. 11. For the FEA calculation,

we use the Comsol Multiphysics solver as a test of our matrix-

based approach. The systematically higher temperature

obtained from FEA above 40 �C is possibly due to the 2-D ge-

ometry assumed, where a device area of 1 mm� 1 mm is

employed to accommodate the grid for the ultra-thin film

structure. Compared to the FEA, the matrix calculation is far

less computationally intensive for calculating temperature pro-

files of large-area devices since it simplifies the complex and

time consuming calculations needed for arbitrary multi-layer

structures. Furthermore, the physical parameters are easily

identified, and their corresponding effects on the total thermal

dissipation can be efficiently analyzed. Ultimately, the matrix

model allows for the rapid iteration of both structure and mate-

rials properties that can be used to optimize thermal manage-

ment in complex structures. This capability has proven

invaluable in the design of the optical properties of multilayer

structures using an analogous optical matrix approach.19

A second application is to estimate the temperature

increase under very high current pulses required for high inten-

sity illumination or even electrically driven organic lasers.20

Figure 12 shows the thermal response following 1, 5, and 10 ms

pulses for an ultrahigh thermal flux of 106 W/m2. For each case,

the thermal parameters and device structures are the same as

those for the large-area devices. Here, Rrad 	 0:4 m2 K=W is

used, similar to that of the large-area red device. Also, for these

calculations, we assume tair¼ 5 mm compared to that used

under a lower power, steady-state operation of the large-area

devices (where we measure tair¼ 1.1 to 1.2 cm). In this case,

we assume that an equilibrium air boundary does not fully

develop during the very short heat pulse.

While the thermal response is somewhat sensitive to the

choice of tair, we observe a nearly logarithmic decay in

FIG. 10. Calculated PHOLED temperature due to convective losses as a func-

tion of air conductivity at input heat fluxes of 100, 200, 500, and 1000 W/m2.

FIG. 11. Calculated PHOLED temperature (open dots) as a function of ther-

mal input power for devices using glass, sapphire, and silicon substrates.

The results are compared with the finite element analysis (solid dots). Where

only matrix results are shown (open symbols), the differences with FEA

calculations are negligible on the scale of the plot.

FIG. 12. Temporal response of the PHOLED temperature (solid dots) at

various pulse widths of 1, 5, and 10 ms under a fixed, ultrahigh thermal input

power of 106 W/m2. Linear fits are displayed as solid lines. The physical

and thermal parameters are the same as for the large-area devices. Now,

Rrad 	 0:4 m2 K=W, whereas tair 	 5 mm is used here compared to that of

the large-area devices due to the short pulse duration.
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temperature, as shown by the solid lines in Fig. 12; maxi-

mum temperatures of 25.0, 28.9, and 33.9 �C for pulse dura-

tions of 1, 5, and 10 ms, respectively. Clearly, the effects of

convection under both steady-state and pulsed operation are

complex, and are beyond the scope of this study. Hence, fur-

ther study of these effects is required to fully understand

thermal transients under very high device excitation.

VI. CONCLUSIONS

In this work, we use a transmission matrix formalism to

accurately model the thermal response of multilayer composite

structures typical of OLEDs and other optoelectronic devices.

The model, based on Laplace transforms, is used to determine

the steady-state and transient thermal response of multilayer

PHOLEDs used in display and lighting applications. The model

results are compared with measurements of encapsulated large-

area PHOLEDs obtained via thermal imaging. The formalism

is used to account for diverse series and parallel power loss

channels including conduction, convection, light emission, and

thermal radiation. Agreement is obtained between the model

and observation using only measured properties such as ther-

mal conduction, interface thermal resistance, and convective

boundary layers, thereby validating the approach.

The results offer insights for the temperature manage-

ment of organic electronic devices, and, in particular, of

OLEDs employed at high intensity, as required for lighting

applications. For example, forced convection can lead to

doubling of the effective air conductivity, thereby lowering

the device temperature at high drive currents. The model,

which is similar to transmission matrix formalisms used to

calculate optical fields in multilayer composites, can be

adapted to the study of a variety of thermal conditions and

device structures, making this work a significant advance in

understanding and controlling the temperature response of a

range of important optoelectronic devices.
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APPENDIX: INVERSE LAPLACE TRANSFORM
CALCULATION

The numerical system stability is important for obtain-

ing an accurate calculation of the inverse Laplace transform.

Here, the matrix elements in Eq. (4) are calculated using a

series expansion of the form,21

Ai ¼ Di ¼ cosh Li

ffiffiffiffiffiffiffiffi
s=ai

p� �
¼
X1
k¼0

L2k
i

2kð Þ!ak
i

sk; (A1)

Bi ¼ Ri ¼ sinh Li

ffiffiffiffiffiffiffiffi
s=ai

p� �.
Li

ffiffiffiffiffiffiffiffi
s=ai

p� �
¼ Ri

X1
k¼0

L2k
i

2k þ 1ð Þ!ak
i

sk; (A2)

Ci ¼ Li

ffiffiffiffiffiffiffiffi
s=ai

p
sinh Li

ffiffiffiffiffiffiffiffi
s=ai

p� �.
Ri ¼

1

Ri

X1
k¼1

L2k
i

2k � 1ð Þ!ak
i

sk;

(A3)

where s is the Laplace variable, and Ai, Bi, and Ci are the ma-

trix elements of the ith layer, as defined in Eq. (4). Addition-

ally, Li, Ri, and ai are the thickness, thermal resistance, and

thermal diffusivity of the ith layer, respectively.

The convergence of these polynomial expansions must

be tested for convergence to be rigorously valid and free

from large errors. A convergence problem originates from

the instability of the inverse Laplace transformation function

obtained from the power series in Eqs. (A1)–(A3).22 As

shown in Fig. 13, the temperature rise for a model, 1-mm-

thick glass slab where Qtherm¼ 200 W/m2 is calculated for

various polynomial orders (n¼ 6, 7, and 8), with the roots of

the truncated polynomial provided in Table IV. A stable so-

lution requires that all poles have a negative real part in the

case of n¼ 6 and 7. For n¼ 8, two roots have a positive real

FIG. 13. Heat transfer for the multilayer composite PHOLED is calculated

using different polynomial expansion orders (n¼ 6, 7, and 8). Note the con-

vergence of the solutions for n¼ 6 and n¼ 7, whereas the solution becomes

unstable at n¼ 8.

TABLE IV. Roots of the truncated denominator polynomial.

Polynomial order

Root n¼ 6 n¼ 7 n¼ 8

1st �0.87 �0.86 �0.86

2nd �7.73 �7.81 �7.81

3rd �5.65þ 24.25i �16.2 �18.82þ 21.4i

4th �5.65� 24.25i �16.3þ 13.09i �18.82� 21.4i

5th �13.27þ 6.49i �16.3� 13.09i �19.87þ 4.51i

6th �13.27� 6.49i �3.21þ 34.5i �19.87� 4.51i

7th �3.21� 34.5i 0.814þ 46.2i

8th 0.814� 46.2i
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part, corresponding to the fluctuation shown in Fig. 13. From

this figure, the truncated denominator polynomial guarantees

a stable solution with an error of <2% for n� 7. For the cal-

culations in this study, we find that n¼ 4 provides sufficient

accuracy while being computationally efficient.
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