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We show that the torsion of the Weitzenböck connection is responsible for the fic-
titious pseudogyroscopic force experienced by a general mechanical system in a
noncoordinate moving frame. In particular, we show that for the class of mechanical
systems subjected to nonintegrable constraints known as non-abelian nonholonomic
Chaplygin systems, the constraint reaction force directly depends on this torsion. For
these Chaplygin systems, we show how this torsional force can in some cases be
removed by an appropriate choice of frame depending on a multiplier f (q), linking
these results to the process of Chaplygin Hamiltonization through time reparameter-
ization. Lastly, we show that the cyclic symmetries of f in some cases lead to the
existence of momentum conservation laws for the original nonholonomic system and
illustrate the results through several examples. C© 2011 American Institute of Physics.
[doi:10.1063/1.3525798]

I. INTRODUCTION

Elie Cartan’s method of moving frames10 has a long history of applicability in mechanics,3, 34

nonholonomic mechanics,3, 11 and general relativity.36 As such, it represents a type of central node in
a network linking these fields together. However, historical divergences exist which have prevented
new results and interpretations based on the method from traveling between fields. With respect to
our purposes here, the most interesting divergence is centered around Einstein’s search for a unified
field theory in the late 1920s and early 1930s.

Around this time period (overlapping with the development of Cartan’s method of moving
frames), Einstein began19 an attempt to develop a unified field theory of gravitation and electro-
magnetism modeled on what is now called a Weitzenböck spacetime26, 41 (for a comprehensive
overview of the period of interest to us here, see Ref. 42). These are Riemann–Cartan manifolds26, 41

equipped with a zero curvature yet nonzero torsion Weitzenböck connection46 defined in terms of a
moving frame. Such spacetimes possess absolute parallelism, teleparallelism, or distant parallelism
(see Box 15.8.4 of Ref. 20 for a discussion), allowing the path independent parallel transport of
vectors. Although Einstein abandoned his attempt at using moving frames to develop his theory,
the fruitful discussions surrounding the method of moving frames and the associated Weitzenböck
connection12, 42 led to the discovery that general relativity itself can be reformulated in terms of
the Weitzenböck connection. In this formulation, the Einstein–Hilbert action is comprised of the
Weitzenböck torsion square instead of the scalar curvature.41 The reformulation is now called
the teleparallel equivalent of general relativity1 and has some advantages41 over the conventional
formulation.

The components of the Weitzenböck torsion are equivalent to the objects of anholonomity,41, 43

which are well known from the study of mechanical systems in a moving basis.43 (If the configuration
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space of the mechanical system is a Lie group and the basis consists of the left-invariant vector fields,
then the objects of anholonomity are the same as the structure constants of the Lie algebra.) With
respect to Hamel’s formulation of mechanics,5, 28, 32 they are equivalent to Hamel’s transpositional
symbols.30 Thus, although the objects of anholonomity, as well as their other counterparts above, are
known widely throughout the mechanics literature, it seems that their connection to the Weitzenböck
torsion has largely been ignored. In fact, several recent works27, 31, 45 have either explicitly used the
objects of anholonomity or studied mechanics on a Riemann-Cartan manifold without making
reference to the Weitzenböck connection.

Our goal in this paper is twofold: to show that the Weitzenböck connection is responsible
for the fictitious pseudogyroscopic force (see Ref. 18, footnote 11, Ref. 15, p. 106, and Ref. 30)
appearing in the noncoordinate basis treatment of mechanics, and to apply the insights gained from
this to the study of Chaplygin Hamiltonization.22, 24 With regard to the first objective, we will show
that the torsion of the Weitzenböck connection is equivalent to the curvature of the Ehresmann
connection defined by the constraint one-forms of a typical nonholonomic system. This establishes
the constraint reaction force as a fictitious force arising from the anholonomy of the basis in a
precise way through the Weitzenböck connection. As for the second objective, we will show that in
some cases it is possible to remove this torsion by exploiting the fact that it arises from the adapted
nonholonomic basis. This process will be shown to have the same effect as the reparameterization
of time encountered in our earlier results22, 24 on Chaplygin Hamiltonization. Within this context,
we will also show how associated symmetries in the multiplier correspond directly to momentum
conservation laws in special cases.

After recalling some basic facts about the geometry of a Riemann–Cartan manifold in Sec. II, we
introduce the Weitzenböck connection in Sec. II D and use it to illustrate the torsion force arising in a
noncoordinate moving frame in Sec. III. We then consider the mechanics of nonholonomic systems
in Sec. IV and rephrase our earlier conditions for Hamiltonization22, 24 in terms of the Weitzenböck
torsion in Sec. V. Making use of the moving frame approach, we then show how the symmetries
of the Hamiltonizing multiplier can in part lead to momentum conservation laws for the original
nonholonomic system. We illustrate this by examples in Sec. VI.

II. THE RIEMANNIAN–CARTAN GEOMETRY OF MECHANICS

Consider an N dimensional Riemannian manifold Q with metric g equipped with a g-metric
compatible affine connection ∇ possessing (in general) nonzero torsion, sometimes called a
Riemann–Cartan manifold (Q, g,∇).26, 41 In this section we briefly recall the relevant definitions and
results from Riemann–Cartan geometry which we will use throughout the remainder of the paper.

A. Noncoordinate bases

As noted in Sec. I, many problems in mechanics and general relativity make use of so-called
noncoordinate bases, also known as nonholonomic and anholonomic bases. Let us now recall the
definition.37

Definition 1: A noncoordinate basis {ea = ei
a(q)∂i } is a frame of basis vectors obtained from

the coordinate basis {∂i } of Tq Q by a GL(N ,R)-rotation of the basis {∂i } preserving the orientation
(thus, {ei

a(q)} ∈ GL(N ,R) and we take det(ei
a) > 0) and such that [ea, eb] �= 0 for at least one pair

of basis vectors, where [·, ·] is the Lie bracket of vectors fields on Q.

Moreover, by introducing the coframe θa := Ea
i (q)dqi such that θa(eb) = δa

b , we can express
the components of g with respect to the coframe:

g = gi j dqi ⊗ dq j = g(∂i , ∂ j )dqi ⊗ dq j = g(Ea
i ea, Eb

j eb)θa ⊗ θb = Gabθ
a ⊗ θb, (2.1)

where Gab = gi j ei
ae j

b are the components of the metric with respect to the noncoordinate dual basis
and where hereafter we shall use the Latin indices a, b, c, . . . to index quantities in the nonholonomic
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basis and reserve the later Latin indices i, j, k, . . . for the coordinate basis, with both indices ranging
from 1 to N .

Now, the Lie brackets of a nonholonomic basis define a new frame-dependent object:

[ea, eb] = −�c
abec, (2.2)

with �c
ab := −Ec

j

(
ei

a∂i e
j
b − ei

b∂i e
j
a
) = −ei

ae j
b

(
∂ j Ec

i − ∂i Ec
j

) = 2ei
ae j

b∂[i Ec
j], (2.3)

where we have used the orthogonality of the basis and its dual to arrive at the equivalent expressions
in (2.3).

The �c
ab are known as the objects of anholonomity43 and encode information about the an-

holonomy of the moving basis. For each fixed frame, they are the components of a type (1,2) tensor.
In fact, from (2.3) one can show20, 44 that if [ea, eb] = 0, then the {ea} are in fact a coordinate
or holonomic basis and the components ei

a are the entries of the Jacobian matrix transferring the
coordinate basis {ei } into another coordinate basis {ea}. The objects of anholonomity are perhaps
most familiar in the case when Q = G is a Lie group and the ea’s are left-invariant vector fields. In
this case, the −�c

ab become the structure constants Cc
ab of the Lie group.3 We also note in passing

that � is antisymmetric in its two lower indices.

B. Affine connections

In this section we focus on the local components of the affine connection ∇ with respect to the
nonholonomic basis {ea} (for a modern introduction to the theory of connections, see Ref. 16). The
connection ∇ takes two vector fields X, Y on Q to the vector field ∇X Y , the covariant derivative of
Y with respect to X . In components, in a nonholonomic basis we have

∇X Y = Xb
(
eb(Y a) + �a

bcY c
)
ea =: Xb∇bY cec, (2.4)

where ∇aY := ∇ea Y and where the Xb = Eb
i Xi are the components of X with respect to the

nonholonomic basis. The � here are the Christoffel symbols of the second kind defined by ∇bec

= �d
bced or equivalently by �a

bc = Gad�dbc, where �abc = g(ea,∇bec) are the Christoffel symbols
of the first kind. In the special case where α : I → Q is a curve on Q, if ∇α̇(t)α̇(t) = 0 then α(t) is
called a geodesic. Locally, this yields the geodesic equation (A7) in Appendix.

The torsion and curvature tensors of ∇ are defined by

T (X, Y ) = ∇X Y − ∇Y X − [X, Y ], (2.5)

R(X, Y )Z = ∇X∇Y Z − ∇y∇X Z − ∇[X,Y ] Z ,

with local components given by (A1) and (A2) in Appendix, respectively. Specializing to the unique
torsion-free and g-metric compatible Levi-Civita connection,16 its covariant derivative ∇g is defined
by20

g(W,∇g
U V ) : = 1

2
[U (g(V, W ) + V (g(U, W )) − W (g(U, V ))]

+ 1

2
[g([U, V ], W ) − g([U, W ], V ) − g(U, [V, W ])], (2.6)

which should be regarded as a definition of ∇g
U V in terms of the right-hand side. The components

�abc and �a
bc can then be extracted by letting W = ea, U = eb, andV = ec in (2.6) and are given

by (A3) and (A5) of Appendix, respectively.
In an anholonomic basis, where � �= 0 from (2.2), anywhere the Lie brackets of the basis appear

there will now be a correction term to geometric objects associated with our affine connection. Indeed,
this correction term depends on the objects of anholonomity (see (A1)–(A3)). The presence of these
�a

bc as an additional contribution can be understood physically as emerging from the fact that
the ei

a(q), being dependent on q, vary from point to point and are obtained at each q ∈ Q by a
GL(N ,R) rotation of the coordinate basis preserving the orientation. Such rotation generally twists
the nonholonomic basis as q varies throughout Q and thus contributes, for example, to the torsion
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(for example, recall the Frenet–Serret frame carried by a curve in R3). Indeed, the “rotation” in the
so-called Ricci rotation coefficients (A4) can be similarly understood; with respect to the Levi-Civita
connection, (A3) tells us that they contribute to the rotation that a parallel transported basis vector
in an anholonomic basis experiences relative to the original basis vector.25, 29

C. Ehresmann connections

Suppose now that Q has a fiber bundle structure3 with projection map π : Q → M and define
the vertical space Vq := ker Tqπ .

Definition 2: The vector-valued one-form A on Q such that

(a) Aq : Tq Q → Vq is a linear map for each q ∈ Q and
(b) A(vq ) = vq for all vq ∈ Vq,

is known as an Ehresmann connection.

If we take as bundle coordinates qi = (rα, sC ), where hereafter A, B, C, . . . range from 1 to
K < N and α, β, γ, . . . range from 1 to σ = N − K , then π : (rα, sC ) �→ r and locally we can take
A to be of the form

A = θC (q)
∂

∂sC
, where θC (q) = dsC + AC

α (r, s)drα. (2.7)

The reason for the special form for θC we have taken will become apparent when we consider the
mechanics of nonholonomic systems in Sec. II A.

The associated horizontal space D := ker A defines a σ -dimensional distribution on Q, from
which we obtain the decomposition Tq Q = D ⊕ Vq . In fact, for any vq = vi∂i ∈ Tq Q we have

vq = vα
(
∂α − AC

α (r, s)∂C
) + ωC∂C , where ωC = vC + AC

α (r, s)vα,

=: vαeα + ωC eC , (2.8)

from which it follows that v ∈ D if and only if v = vαeα or equivalently ωC = 0. Thus, the Ehresmann
connection decomposes a vector vq ∈ Tq Q into the sum of its horizontal part vh

q and its vertical part
vv

q , where

vh
q = vq − A(vq ) = vαeα,

vv
q = A(vq ) = ωC eC . (2.9)

Moreover, given a tangent vector vr ∈ Tr M , where r = π (q) ∈ M , we define the horizontal lift of
vr to be the unique vector vh

r ∈ Dq that projects to vr under Tqπ , vh
r = vα

r eα �→ vα∂α = vr .
The curvature of A is the vertical-vector-valued two-form B on Q defined by its action on two

vector fields X, Y on Q through

B(X, Y ) = −A([Xh, Y h]) (2.10)

and has local components B(X, Y )C = −θC ([Xh, Y h]) = BC
αβ XαY β given by (A8) in Appendix. We

can see clearly from (2.10) that the curvature of A is zero if and only if the horizontal distribution
D is integrable (in the sense of Frobenius),3 which is equivalent to the requirement that the moving
basis defined in (2.8) be holonomic. However, if the curvature is nonzero, then (2.8) defines a
nonholonomic frame according to our Definition 1. Since

[Xh, Y h] = [Xαeα, Y βeβ ] = −�C
αβ XαY βeC ⇒ −θC ([Xh, Y h]) = �C

αβ XαY β, (2.11)

a straightforward computation of the �’s in (2.11) based on the nonholonomic frame defined in
(2.8) shows that �C

αβ = −BC
αβ , i.e., the curvature coefficients of A are the negatives of the objects

of anholonomity. We will return to this crucial observation below. We note in passing that although
comparing (2.10) to (2.11) would seem to imply that the components should be the same, due to the
difference in the signs of AC

α in (2.7) and (2.8) they instead have the aforementioned relationship.
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Lastly, we note that if we take π : T Q → Q to be the tangent bundle, then π : (q, q̇) �→ q, so
that the fibers (the tangent spaces) are coordinatized by s = q̇ . If we now require that the sum of
two (local) horizontal sections be horizontal, then (see Ref. 3, p. 109)

Ac
b(q, q̇) = �a

bc(q)q̇c, (2.12)

where all indices now run from 1 to N since Q and Tq Q have the same dimension (N ). We then
define geodesic motion along a curve α(t) ∈ Q by parallel transport of its tangent vector α̇(t) along
the curve, i.e., α̇h(t) ∈ D or α̇v(t) = 0. We then see from (2.9) and (2.12) that ωa = 0 gives back the
geodesic equations (A7).

D. The Weitzenböck connection

Let us now return to the discussion surrounding affine connections (see Sec. II B). As we
discussed, the Levi-Civita connection “senses” the presence of an anholonomic basis through the
objects of anholonomity. However, is there a connection which produces the torsional effects that �

induces, yet has zero curvature? The answer is yes, and the connection is known as the Weitzenböck
connection or, in the context of Riemann–Finsler geometry, the crystallographic connection.2

The Weitzenböck connection ∇w arises by instead taking ∇ to have zero curvature and nonzero
torsion (in contrast to the Levi-Civita connection). With respect to such a flat connection, the
parallel transport of vectors would now be path independent. Thus, this condition is equivalent to
the existence of n vector fields covariantly constant with respect to the connection ∇w,41

0 = ∇w
i e j

c = ∂i e
j
c + ek

c W j
ik, (2.13)

which gives the connection coefficients of the Weitzenböck connection,

W i
jk = ei

a∂ j Ea
k . (2.14)

The connection ∇w is g-metric compatible41 and also parallel transports the dual basis. This
follows from the fact that since ∂i

(
e j

a Ea
k

) = ∂iδ
j
k = 0, we have that

∇w
j Ea

k = ∂ j Ea
k − Ea

i W i
jk = ∂ j Ea

k − Ea
i

(
ei

b∂ j Eb
k

) = ∂ j Ea
k − δa

b∂ j Eb
k = 0.

Moreover, using the standard transformation law for connections16, 37 shows that the components
of the Weitzenböck connection in the moving frame, W a

bc, vanish. From (A1) we then arrive at the
components of the torsion of the Weitzenböck connection,

w

T a
bc= �a

bc, (2.15)

which shows that the objects of anholonomity can be thought of as the components of the torsion
of the Weitzenböck connection relative to the nonholonomic moving frame {ea}. Moreover, if we
combine this with the analysis of the curvature of the Ehresmann connection in the bundle picture
from Sec. II C, we see that the torsion of the Weitzenböck connection W defined by a nonholonomic
frame is the negative of the curvature of the Ehresmann connection A defined by its coframe.

From (2.4) and using W a
bc = 0, we see that the covariant derivative of a vector field Y in the

direction of another vector field X associated with the Weitzenböck connection is particularly simple
in the nonholonomic frame,

∇w
X Y = Xaea(Y b)eb, (2.16)

which is simply the directional derivative of Y in the direction of the vector field X , resembling
the covariant derivative of flat space (the resemblance is not accidental, since, after all, W has
zero curvature). Continuing the similarity, since W has zero curvature, the Weitzenböck connec-
tion makes possible path independent parallel transport, leading to teleparallelism (as discussed in
Sec. I), as in flat space. However, the difference with a flat connection is of course that W possesses
torsion.
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III. GEOMETRIC MECHANICS

The torsion of W creates a closure failure in infinitesimal parallelograms and is intimately related
to the transpositional relations31, 38, 39 of mechanics. Let us now describe this and its relevance to
our goals in this paper.

A. The transpositional relations in mechanics

We begin by first introducing the notion of a virtual displacement.3

Definition 3: Consider a trajectory q(t) ∈ Q with fixed endpoints q(a) = qa and q(b) = qb. A
variation of the trajectory is a smooth (C2) mapping w : [a, b] × [−δ, δ] �→ Q such that

(i) w(t, 0) = q(t), ∀ t ∈ [a, b],
(ii) w(a, ε) = qa, w(b, ε) = qb.

A virtual displacement corresponding to the variation of q(t) is defined as δq(t)
= (∂/∂ε)w(t, ε)|ε=0, with δq(a) = δq(b) = 0.

The virtual displacement is thus a vector field defined along the curve q(t). As such, it depends
on the choice of frame as

δq(t) = δqi (t)∂i = δqi (t)ea
i (q(t))ea =: �a(q(t))ea, (3.1)

where �a(q(t)) are the images of δqμ(t) in the moving frame (and thus they satisfy �c(q(b))
= �c(q(a)) = 0).

Denoting dt := d/dt , we have dtδqi (t) = δdt qi (t) from the definition of a virtual displace-
ment. Thus, with respect to a torsionless connection, from (2.5) we have the identity 0 = ∇q̇δq
− ∇δq q̇ − [q̇, δq]. In other words, the parallelogram formed by the parallel transport of the tangent
and virtual displacement vector fields closes (as it should for a torsionless connection). However, in a
nonholonomic frame (which possesses torsion by (2.15), one would expect that such a parallelogram
would not close. Indeed, this fact was recognized at least as early as Ref. 33. Using the results of the
previous sections, along with the notation ωa = Ea

i q̇i for the quasivelocities (the components of q̇
with respect to the moving frame {ea}), for the Weitzenböck connection we get

[q̇, δq] = ∇w
q̇ δq − ∇w

δq q̇− w

T (q̇, δq)

= ωaea(�b)eb − �aea(ωb)eb−
w

T b
cd ωc�deb

= (dt�
b)eb − (δωb)eb−

w

T b
cd ωc�deb. (3.2)

The expression (both left-hand side and right-hand side) in (3.2) is called a transpositional
relation in mechanics.39 Such relations were studied early on in the modern history of analytical
mechanics (see Ref. 38 and references therein), but not from the viewpoint of Riemann–Cartan
geometry. Early derivations of different forms of the equations of motion of nonholonomic systems
created controversy, since the first line of (3.2) involves the “variation velocities” (the velocity vectors
tangent to the variation curves), which are a priori undefined.38, 39 However, a proper definition was
given in Ref. 38, along with a good discussion of the historically different choices for these variation
velocities (see also Refs. 27, 35, and 45). For our purposes, we shall follow Hamel28 and define
these variation velocities to be q̇w := ∂w(t, ε)/∂t . Then, [q̇, δq] = 0 and we arrive at the relevant
transpositional relation in our case,

(dt�
b) − δωb =

w

T b
cd ωc�d = −[ω,�]b, (3.3)

where the last equality follows from the definition (2.2).
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Equation (3.3) relates the transpositional relation used by Hamel to the torsion of W (through
(2.15)). It should thus be no surprise that Hamel’s own equations involve the Weitzenböck
connection.

B. The Hamel equations

Consider the regular mechanical Lagrangian L : T Q → R given by L = T − V , where
T (q, q̇) = (1/2)g(q̇, q̇) = (1/2)gi j q̇ i q̇ j and V : Q → R, and define the Weitzenböck Lagrangian
Lw(q, ω) := L(q, q̇ i = ei

a(q)ωa). Then a straightforward computation using (3.3) (see Ref. 5) proves
the following equivalence of critical action principles.

Proposition 1: The following statements are equivalent:

(i) The curve q(t) is a critical point of the action functional∫ b

a
L(q, q̇) dt, (3.4)

where we choose variations of q(t) that satisfy δq(a) = δq(b) = 0.
(ii) The curve (q(t), ω(t)) is a critical point of the action functional∫ b

a
Lw(q, ω) dt, (3.5)

with respect to the variations δω induced by the variations δq = �aea through (3.3) given by

δω = dt� + [ω,�]. (3.6)

Now, given the equivalence of the action principles in Proposition 1, we can derive the equivalent
equations of motion in both the coordinate and nonholonomic frames. The latter are called the Hamel
equations,5, 32 and we have the following analog of Proposition 1 (we remind the reader of the index
conventions of Sec. II A).

Proposition 2: The following statements are equivalent to (i) and (ii) of Proposition 1:

(a) The curve q(t) satisfies the Euler–Lagrange equations

d

dt

∂L

∂ q̇ i
− ∂L

∂qi
= 0 (3.7)

or written with respect to the Levi-Civita connection ∇g in the coordinate basis {∂i },

∇g
q̇ q̇ = −grad(V ) or

dq̇i

dt
+

{
i

jk

}
q̇ j q̇k = −gil∂l V, (3.8)

where grad(V ) = (g jk∂k V )∂ j is the gradient of V in the coordinate basis and the
{ i

jk

}
are the

Christoffel symbols of the metric g.

(b) The curve (q(t), ω(t)) satisfies the Hamel equations

d

dt

∂Lw

∂ωd
− ed (Lw) = ∂Lw

∂ωa

w

T a
dc ωc (3.9)

or written in terms of the Levi-Civita connection ∇g in the moving basis {ea},

∇g
q̇ q̇ = −grad(V ) or

dωa

dt
+ �a

bcω
bωc = −Gabeb(V ), (3.10)

where grad(V ) = (Gabeb(V ))ea is the gradient of V in the moving basis and the �a
bc are the

components of the Levi-Civita connection from (A6).

Proof: The equivalence of (i) and (a) is a standard computation of the variational derivative of
the action functional in (3.4),3 along with a straightforward expansion of (3.7) in a coordinate basis
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(see Ref. 9). The equivalence of (ii) and (b) follows by once again varying (3.4) but instead with
respect to the variations (3.6),

δ

∫ b

a
L(q, q̇) dt =

∫ b

a
δLw(q, ω) dt

=
∫ b

a

[
∂Lw

∂qi
δqi + ∂Lw

∂ωa
δωa

]
dt

=
∫ b

a

[
∂Lw

∂qi
ei

d − d

dt

∂Lw

∂ωd
− ∂Lw

∂ωa

w

T a
cd ωc

]
�d dt, (3.11)

where we have used (3.1) and (3.3). Upon assuming the independence of the variations �, this
variational derivative vanishes if and only if the Hamel equations (3.9) are satisfied (we have used
the antisymmetry of � in (3.9)).

Lastly, by using the fact that Lw(q, ω) = (1/2)Gabω
aωb − V (q) to compute (3.9) we

arrive at

Gda
dωa

dt
+ Gda

{
a

bc

}
ωbωc − Gbe

w

T e
dc ωbωc = −ed (V ), (3.12)

where the
{ a

bc

}
are the Christoffel symbols of the moving basis given by (A6). Multiply-

ing (3.12) by the inverse G f d , by (A3), and the antisymmetry of T it then follows that

�a
bcω

bωc = ({ a
bc

} − T a
b c

)
ωbωc, where T a

b c = Gbd Gae
w

T d
ec. Using this in (3.12) then

yields (3.10). �

Let us now discuss the insights gained from (3.9). To better illustrate our point, let us specialize
to the V = 0 case and assume we have chosen a g-orthonormal moving basis. Then from (A3) we
have �a

bc = γ a
bc, so that �a

bcω
bωc = −� a

b cω
bωc. Since

{ a
bc

}
vanishes by orthogonality, it then

follows from (3.12) that

ṗb =
w

T a
bc paω

c, (3.13)

where pa = ∂Lw/∂ωa = δabω
b. In a coordinate basis, the time rate-of-change of the momenta of

an unconstrained mechanical system is determined by the metric, as (3.7) shows. However, in a
noncoordinate basis, as (3.13) shows, they are here determined by the torsion of the Weitzenböck
connection. This is precisely the situation encountered in, for example, the Euler equations on
Q = SO(3).

In general, Proposition 2 shows that the geometric origin of the fictitious force arising in
the Hamel equations (3.9) is precisely the torsion of the Weitzenböck connection. Physically,
this should not be surprising, since by the very definition of the nonholonomic frame {ea} from
Sec. II A, an observer utilizing the moving frame employed in (3.10) would experience the addi-
tional rotational forces from the point-to-point rotation of the frame {ea} quantified by the � term
in (3.12). Moreover, as we shall see in the context of nonholonomic mechanics in Section IV B, the
Weitzenböck torsion will also be responsible for the “pseudogyroscopic” constraint reaction force
(see footnote 11 of Ref. 18, p. 106 of Ref. 15, and Ref. 30) present in the reduced equations of
motion.

IV. NONHOLONOMIC MECHANICS

Suppose now that we impose linear, homogeneous nonholonomic constraints on our mechanical
system and let D be the nonintegrable distribution describing these constraints. Locally, D is
given by

D = {q̇ ∈ T Q|θC (q̇) = 0},
where the θC are the constraint one-forms and where we refer the reader to the index conventions of
Sec. II C.
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Now, let {ẽα} be a basis for D and extend this to a basis {ẽα, ẽC } for T Q such that the
{ẽC} spans the g-orthogonal complement to D. We can then decompose q̇ ∈ T Q into q̇ = ωα ẽα

+ ωC ẽC . The nonholonomic mechanics is then derived by projecting the Hamel equations from
Proposition 2 onto D, resulting in a nonholonomic (affine) connection.

A. The nonholonomic connection

Let P : T Q → D and Q : T Q → D⊥ be complementary g-orthogonal projectors. Then the
affine connection ∇ defined by

∇X Y = ∇g
X Y + (∇g

X Q
)
(Y ) (4.1)

is called the constrained affine connection7, 8, 15 or the nonholonomic connection.17 It can be verified
that this is indeed an affine connection15, 17 and that it is metric with respect to the metric g on D
induced from g (Ref. 17) (we will denote the components of this induced metric by Gαβ).

The nonholonomic equations of motion are given by projecting (3.9) or (3.10) onto D through
P (or equivalently by setting ωC = 0) and are given (in our notation) by

∇ q̇ q̇ = −P(grad(V )), or
dωα

dt
+ �α

βγ ωβωγ = −G
αβ

ẽβ(V ), (4.2)

where �α
βγ = G

αδ
�δβγ (recall (A3)), with G

αβ
the matrix inverse of the submatrix Gαβ of G.

These equations appear in Ref. 27, and if we orthogonalize the basis {ẽα}, then (4.2) reproduces the
equations in Ref. 8. Moreover, in analogy with (3.13), if we further assume that V = 0, then we can
express (4.2) as

ṗβ =
w

T a
βγ paω

γ . (4.3)

The preceding equations show that whereas physically the main force generating the nonholonomic
dynamics is the constraint reaction force arising from the nonholonomic constraints, geometrically
the constraint force is nothing but the (projected) torsion force arising from the Weitzenböck con-
nection defined by the nonholonomic moving (and rotating) basis {ẽα}. Incidentally, Eq. (4.3) are a
special case of the generalized Suslov equations (see Ref. 3, Section 8.6).

The insight gained from (4.3) can now be used to recharacterize the process of Chaplygin
Hamiltonization.22, 24 Before doing so, let us now define the particular class of nonholonomic
systems known as non-abelian Chaplygin systems.3, 15, 30

B. Non-abelian Chaplygin systems

Non-abelian Chaplygin systems on Q are described by the triple (L , G,D), where L is a
(regular) mechanical Lagrangian (see Sec. III B), and G is a Lie group acting freely and properly on
Q which leaves L and the constraints described by the nonintegrable distribution D invariant. They
are characterized by the splitting of the tangent spaces according to Tq Q = TqOrb(q) ⊕ D, where
Orb(q) is the group orbit through q. Therefore, there is a unique principal connection A : T Q → g

on the bundle π : Q → M := Q/G whose horizontal space is D.3 In the special case when G = Rk

or G = Sk , we call the system abelian Chaplygin. This case corresponds to the classical Chaplygin
systems considered by Chaplygin himself.15

Denote r = π (q) and ξ = g−1ġ ∈ g (with g ∈ G), so that q ∈ Q can be written as q = (rα, g A),
with the index conventions of Sec. II C. We can then decompose q̇ ∈ T Q into its horizontal and
vertical parts as in (2.8) and (2.9), where the moving frame {ẽa} = {ẽα, ẽA} is now given by

ẽa = ẽi
a∂i =

(
Iσ×σ −AA

α gB
A

0K×σ gB
A

)(
∂α

∂B

)
. (4.4)

The {ẽα} form a nonholonomic basis for D, and the nonholonomic constraints are given sim-
ply by ωB = 0, where ωB = ξ B + AB

α (r )ṙα in analogy to (2.8). Then, as in Sec. IV A, we arrive
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at the equations of motion by projecting the Eq. (3.9) or (3.10) onto D through P .3 Anticipat-
ing the appearance of the �a

βγ as in (4.3), a straightforward computation shows that �α
βγ = 0,

while

[ẽα, ẽβ ] = −�D
αβ ẽD =: BD

αβ ẽD, (4.5)

where BD
αβ = ∂AD

α

∂rβ
− ∂AD

β

∂rα
− C D

ABAA
αAB

β , (4.6)

and where the C D
AB are the structure constants of g, [ẽA, ẽB] = C D

ABẽD = −�D
ABẽD .

In agreement with the relationship we found in Sec. II C, the −�C
αβ are the local components

of the curvature of the principal connection A.3 In fact, a quick glance at Ref. 5, Eqs. (2.19)–
(2.21) shows that in the general case of a mechanical system with symmetry (nonholonomic or
not), the nontrivial forces arising in the equations of motion are just the various components of the
torsion of the Weitzenböck connection. We note that in our notation the function P(Lw) = Lw

c is the
constrained reduced Lagrangian lc : T M → R of Ref. 5.

V. TIME REPARAMETERIZATION AND CHAPLYGIN HAMILTONIZATION

Given the fact that one can choose any nonholonomic frame to express the dynamics of a
mechanical system, one may wonder if there are particularly useful choices which simplify the
equations of motion. A popular avenue is to try and Hamiltonize the nonholonomic system through
Chaplygin’s reducibility theorem.6, 13, 14, 21

As noted in Refs. 22 and 24, one can view Chaplygin’s time reparameterization dτ = f (q)dt
from Sec. I in a different way as follows: we have q̇ = dq/dt = f (q)(dq/dτ ) =: f (q)ω, which
defines the quasivelocities ω = q ′ on Q (for a recent discussion of quasivelocities in nonholonomic
mechanics, see Ref. 5), where we will henceforth denote differentiation against τ with a prime.
These quasivelocities define a moving frame, as discussed in Sec. II A. Thus, we can now study
Chaplygin Hamiltonization within the framework of the nonholonomic moving frames discussed in
the earlier sections.

A. Chaplygin Hamiltonization

In view of this interpretation of time reparameterization, consider the non-abelian Chaplygin
nonholonomic systems from Sec. IV B and choose the nonholonomic basis {ea = f ẽa}, where
f = f (r ) is a nowhere zero smooth function, with {ẽa} the nonholonomic basis from Sec. II A.
Since � now depends on f , we can decompose it as follows:

− �c
abec = [ea, eb] (5.1)

= [ f ẽa, f ẽb] = 1

f

(
ea( f )δc

b − eb( f )δc
a

)
ec − f �̃c

abec,

which relates the �c
ab to the �̃c

ab (here �̃ is the object of anholonomity corresponding to the
original basis {ẽ}), which do not depend on f .

To obtain the reduced nonholonomic equations of motion, we now project the equations (3.9)
onto D using the projector P from Sec. IV A. Rather than repeating the calculation, we note that the
result is given simply by setting ωC = 0 in (3.12), to obtain

Gαρ

dr ′ρ

dt
+ �αβγ r ′βr ′γ = GβC

w

T C
αγ r ′βr ′γ − eα(V ), (5.2)

where Gαβ = f 2Gαβ . Then, we have the following.

Theorem 3: The reduced nonholonomic equations of motion of a non-abelian Chaply-
gin nonholonomic system are Lagrangian after the time reparameterization dτ = f (r )dt, with
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Lτ
c (r, r ′) = (1/2)Gαβr ′αr ′β − V (r ), if and only if there exists a nowhere zero smooth f (r ) such that

GβC

w

T C
αγ +Gγ C

w

T C
αβ= 0, for all α, β, γ. (5.3)

Moreover, the sufficient condition is simply GβC

w

T C
αγ = 0.

Proof: We can rewrite (5.2) more suggestively as

Gαρ

dr ′ρ

dt
+ f

2

[
∂β(Gγα) + ∂γ (Gβα) − ∂α(Gβγ )

]
r ′βr ′γ = GβC

w

T C
αγ r ′βr ′γ − f ∂α(V ), (5.4)

where we have used the fact that eα( f ) = f ẽα( f ) = f ∂α( f ) due to the fact that f only depends on
r , and similarly for V and G. On the other hand, the Euler–Lagrange equations of Lτ

c are

Gαρ

dr ′ρ

dt
+ f

2

[
∂β(Gγα) + ∂γ (Gβα) − ∂α(Gβγ )

]
r ′βr ′γ = − f ∂α(V ). (5.5)

Clearly, (5.4) and (5.5) are equivalent if and only if (5.3) is satisfied, although a sufficient

condition is that GβC

w

T C
αγ = 0. �

Written out explicitly, the condition (5.4) reads

∂ f

∂rγ
Gβα + ∂ f

∂rβ
Gγα − 2

∂ f

∂rα
Gβγ = f

(
GβCBC

αγ + Gγ CBC
αβ

)
, (5.6)

where we note that one can replace G by G everywhere (since they differ by a multiplicative
factor of f 2). Equation (5.6) matches our earlier necessary and sufficient conditions for Chaplygin
Hamiltonization,24 and we also note that their solubility implies that the original nonholonomic
system conserves measure with density f σ−1.22, 24 In the special case that f = const. solves (5.6),
then the nonholonomic system is called conditionally variational.23

Now, given the discussion surrounding (4.3), we can now geometrically interpret the condi-
tion (5.3). Chaplygin Hamiltonizable systems are ones for which we can eliminate the fictitious
Weitzenböck torsion force arising from the anholonomy of the basis by inducing a counter force
(arising from (5.1)) through a reparameterization of time. This reparameterization is also physically
interesting, since it relates time measured between the nonholonomic and Hamiltonized frames (see
Example 5.3 below), loosely analogous to the distinction between “proper time” and “universal
time” in general relativity.

1. Conservation laws through moving frames

Let us first begin with a simple observation. Theorem 3 provides us with a Hamiltonian form of
the constrained nonholonomic mechanics for a non-abelian Chaplygin system (provided a solution
f to (5.3) exists). As such, one may then apply any of the well-known results from the unconstrained
theory of Hamiltonian mechanics to this Hamiltonized system. In particular, one can investigate
the integrability of the original nonholonomic system by applying Hamilton–Jacobi theory to the
Hamiltonized system (this is currently work in progress40). In addition, if this Hamiltonized system
is invariant under the action of a Lie group G (note that we no longer need to worry about the
constraints), then one may perform a Marsden–Weinstein reduction3 to a lower-dimensional system
and in the process acquire momentum conservation laws resulting from the corresponding momentum
equations (we will see this below in Example 5.1).

The process of finding the symmetry groups which leave Lτ
c invariant can become complicated if

the Hamiltonized form of the restriction of the metric g toD (the Gαβ in our notation) is complicated.
However, since according to (2.1) these components depend on the choice of our original moving
frame, we can eliminate this extra layer of complexity by g-orthonormalizing the basis {ẽ} from
(4.4). After doing so, the Hamiltonized constrained reduced Lagrangian Lτ

c would only depend on
r through f and V , making the search for symmetry groups easier. In the special case when there
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is no potential (V = 0), one could then explicitly relate the symmetries of f to the existence of
momentum conservation laws for the original nonholonomic system.

Let us make our point more explicit by considering the special case of cyclic symmetries.
Suppose now that we g-orthonormalize the moving frame {ẽ} from (4.4). Then, assuming there
exists a new f satisfying the corresponding (5.3), we have the following result.

Proposition 4: Consider a non-abelian Chaplygin nonholonomic system for which we have
g-orthonormalized the basis (4.4), and suppose that there exists f satisfying the corresponding
Hamiltonization conditions (5.3). Then, if uα( f ) = uα(V ) = 0, we have the conservation law

χα = kα/ f 2, (5.7)

where kα ∈ R and χα is the α-component of the velocity in the g-orthonormalized basis.

Proof: Let {uα} denote the g-orthogonalized {ẽα}. The kinetic energy metric is now f 2δαβ due
to the orthonormalization. Thus, the nonholonomic equations of motion are then given by (5.2),
with Gαρ replaced by f 2δαρ and GβC�C

αγ replaced by f 2δβC�̂C
αγ (we will denote the objects

of anholonomity of the g-orthonormalized basis by �̂). Now, since we assume that there exists
an f satisfying the new Hamiltonization conditions (the conditions (5.3) with the aforementioned
replacements of G and �), then the reduced dynamics of the nonholonomic system are Lagrangian
after the time reparameterization dτ = f (r ) dt . Since the αth Hamiltonized nonholonomic equation
is given by

d

dτ
( f 2χα) − uα

(
f 2

2
δβγ χβχγ − V

)
= 0, (5.8)

this leads directly to the conservation law (5.7) if uα( f ) = uα(V ) = 0. �

We remark that since the new quasivelocity χα = χα
β r ′β = (1/ f )χα

β ṙβ , the conservation law
(5.7) can easily be written in terms of ṙ (or the nonholonomic momentum for that matter). Moreover,
if V = 0, then Proposition 4 provides a direct link between the symmetries of the Hamiltonizing
multiplier f and the momentum conservation laws of the original nonholonomic system.

For reference purposes, we note that applying Proposition 4 requires the existence of a solution
f (r ) to the g-orthonormalized version of (5.3), given by:

(
uν

γ δβ
α + uν

βδγ
α − 2uν

αδβ
γ

) ∂ f

∂r ν
= − f

(
�̂β

αγ + �̂
γ

αβ

)
, (5.9)

where the uα
β are the components of the g-orthonormalized basis {u} and the �̂ are its associated

objects of anholonomity, computed from (2.3).

VI. EXAMPLES

A. The vertical rolling disk

Consider the nonholonomic vertically rolling disk pictured in Fig. 1 with configuration space
Q = R2 × S1 × S1 and parameterized by the coordinates (x, y, θ, ϕ), where (x, y) is the position
of the center of mass of the disk, θ is the angle that a point fixed on the disk makes with respect to
the vertical, and ϕ is measured from the positive x-axis. This system has Lagrangian and constraints
given by

L = 1

2
m(ẋ2 + ẏ2) + 1

2
I θ̇2 + 1

2
J ϕ̇2,

ẋ − Rcos ϕ θ̇ = 0,

ẏ − Rsin ϕ θ̇ = 0, (6.1)

where m is the mass of the disk, R is its radius, and I, J are the moments of inertia about the axis
perpendicular to the plane of the disk and about the axis in the plane of the disk, respectively.

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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FIG. 1. (Color online) The vertically rolling disk.

For simplicity, let us take m = I = J = 1. Then, since (6.1) is invariant under the additive action
of G = R2

xy , the system is abelian Chaplygin according to Sec. IV B. The Ehresmann connection A
from (2.7) describing the constraints is given by

A = (dx − cos ϕ dθ )∂x + (dy − sin ϕ dθ )∂y, (6.2)

and its kernel is D = span{∂ϕ, ∂θ + cos ϕ∂x + sin ϕ∂y}. Thus, the moving frame (4.4) is given
explicitly by {ẽ} = {ẽα, ẽC }, where

{ẽα} = {ẽϕ = ∂ϕ, ẽθ = ∂θ + cos ϕ ∂x + sin ϕ ∂y},
{ẽC} = {ẽx = ∂x , ẽy = ∂y}. (6.3)

The nonzero components of the associated Weitzenböck torsion are

w

T x
θϕ= − sin ϕ,

w

T y
ϕθ= − cos ϕ,

and from this, a straightforward calculation shows that the right-hand side of (5.6) vanishes, implying
that f = const. is a solution. Thus, Theorem 3 tells us that the reduced nonholonomic equations
are Lagrangian after the “reparameterization” by f with Lτ

c = (1/2) f 2(θ ′2 + ϕ′2). However, since
in this case f = const., one need not reparameterize at all (thus the vertical disk belongs to the
special class of nonholonomic systems studied in Ref. 23). Moreover, since Lτ

c is cyclic in both θ

and ϕ, then we immediately have the conservation laws θ̇ = kθ and ϕ̇ = kϕ . It is also interesting
to note that in the standard literature (see Ref. 3, Section 5.6.1), the θ conservation law is induced
by a horizontal symmetry while the ϕ is not, whereas here we have found both conservation laws
directly.

With respect to Proposition 4, a MAPLE verification shows that the conditions (5.9) also have
the solution f = const. However, no new insight is gained since we have already arrived at the two
conservation laws describing the reduced constrained dynamics.

B. The nonholonomic free particle

Consider a nonholonomically constrained free particle with unit mass (more details can be
found in Ref. 3), and Lagrangian and constraint given by

L = 1
2 (ẋ2 + ẏ2 + ż2),

ż + x ẏ = 0. (6.4)
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The system is Chaplygin Hamiltonizable with f (x) = (1 + x2)−1/2 solving (5.3) (see also
Ref. 24), which are given in this case by

∂ f

∂x
(x, y) = − x

1 + x2
f (x, y),

∂ f

∂y
(x, y) = 0.

It then follows that Lτ
c = (1/2) f 2(x ′2 + (1 + x2)y′2). From this, we again see that since Lτ

c is cyclic
in y, then we have the associated conservation law y′ = ky , where ky is a constant. Using the fact
that ẏ = f y′ from Sec. II A, we can rewrite this conservation law as

√
1 + x2 ẏ = ky .

With respect to Proposition 4, a straightforward calculation of the g-orthonormalized basis {u}
gives ⎛

⎜⎝
ux

uy

uz

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0
0 1√

1+x2 − x√
1+x2

0 x√
1+x2

1√
1+x2

⎞
⎟⎠

⎛
⎜⎝

∂x

∂y

∂z

⎞
⎟⎠ ,

and the only non-zero objects of anholonomity (or equivalently Weitzenböck torsion components)
are �̂

y
xz = −1/(1 + x2) and �̂z

xy = 1/(1 + x2). Moreover, since only the objects of anholonomity
with all Greek indices (x and y in our case) enter into the right-hand sides of (3.9) and (5.9), it follows
immediately that f = const. is a solution to (5.9). Thus, the g-orthonormalizing basis has removed
the need for Hamiltonization (or, equivalently, our system is Hamiltonian in the g-orthonormalized
basis).

As in the example above, since f is independent of both x and y and the potential V = 0, then
by Proposition 4 it follows that, with χ x = ẋ and χ y = √

1 + x2 ẏ, we have the conserved quantities
χ x = kx and χ y = ky where kx and ky are constants. Thus, we not only recover the y conservation
law already extracted, but in addition the x one as well.

Now, since the reduced dynamics in this case are completely integrable by using the aforemen-
tioned conservation laws, we can explicitly investigate the time reparameterization dτ = f (x)dt .
Let us assume that αx := ẋ(0) �= 0 and αy := ẏ(0) �= 0. Then the solutions to the reduced dynamics
are given by

x(t) = αx t, y(t) = αy

αx
ln(x(t) +

√
1 + (x(t))2), (6.5)

where we have chosen, without loss of generality, the initial conditions x0 = 0 and y0 = 0. We can
now explicitly find the reparameterization by integrating dτ = (1 + (x(t))2)−1/2 dt . We arrive at

τ (t) = 1

αx
ln

(
x(t) +

√
1 + (x(t))2

)
+ τ0, (6.6)

where τ0 = τ (t = 0), but we shall set τ0 = 0 henceforth for simplicity. Using x(t) from (6.5) in (6.6)
allows us to invert (6.6) and find t(τ ),

t(τ ) = 1

αx
sinh (αxτ ) . (6.7)

Using (6.6) and (6.7) in (6.5) then allows us to express the reduced dynamics in terms of τ :

x(τ ) = sinh (αxτ ) , y(τ ) = αyτ. (6.8)

Although we could have found the explicit reparameterizations (6.8) directly from the Euler–
Lagrange equations of Lτ

c (in fact, the linearity of y(τ ) follows directly from the quadrature of the
conservation law y′ = ky from above), by directly employing the reparameterization in (6.5), we
have managed to find the explicit relationship between the constants of motion for the dynamics
expressed in the two times.

C. The knife edge on an inclined plane

Consider a plane slanted at an angle α from the horizontal and let (x, y) denote the position of
the point of contact of the knife edge with respect to a fixed Cartesian coordinate system on the plane
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(see Ref. 3, Section 1.6). Moreover, let ϕ represent the orientation of the knife edge with respect to
the xy-axis. The Lagrangian and constraints are then given by

L = 1
2

(
ẋ2 + ẏ2 + ϕ̇2

) + x sin α,

ẏ − tan ϕ ẋ = 0, (6.9)

where we have set all the parameters (mass, moment of inertia, and the gravitational acceleration)
equal to one for simplicity.

Now, the only nontrivial equations in (5.3) are

∂ f

∂ϕ
(x, ϕ) = − tan ϕ f (x, ϕ),

∂ f

∂x
(x, ϕ) = 0, (6.10)

whose solution is spanned by f (ϕ) = cos ϕ. Now, although f has zeroes, we will nonetheless
see that this will not prevent the application of the results obtained thus far. Indeed, we have that
Lτ

c = (1/2) f 2(sec2 ϕx ′2 + ϕ′2) + x sin α. Although there are no cyclic symmetries here, the Euler–
Lagrange equations for Lτ

c are given by

x ′′ = sin α, ϕ′′ = tan ϕϕ′2, (6.11)

from which it follows that x ′ = sin ατ + K1 and ϕ′ = K2 sec ϕ, where K1, K2 are arbitrary constants,
and here we take K2 �= 0. Using q̇ = f q ′ from Sec. V converts these into

ẋ = sin α cos ϕτ + K1 cos ϕ, ϕ̇ = K2, (6.12)

and without the loss of generality, taking ϕ(0) = 0 gives ϕ(t) = ωt , where we have set K2 = ω. This
is precisely the ϕ solution to the reduced nonholonomic dynamics, given by

ẍ + tan ϕϕ̇ ẋ = sin α cos2 ϕ, ϕ̈ = 0. (6.13)

To make sense of the other first integral in (6.12), we need to find τ (t). We do this by using our
solution ϕ(t) to explicitly integrate dτ = f (ϕ) dt = cos(ϕ(t)) dt , arriving at

τ (t) = 1

ω
sin(ϕ(t)), (6.14)

where we have again set τ (t = 0) = 0 for simplicity. Then, using (6.14) in (6.12) gives ẋ
= sin α

ω
cos ϕ sin ϕ + K1 cos ϕ, from which we identify K1 as ẋ(0) =: κ . A simple quadrature of

(6.12) then gives the solution to the reduced nonholonomic dynamics,

x(t) = sin α

2ω2
sin2(ϕ(t)) + κ

ω
sin ϕ + x0, ϕ(t) = ωt, (6.15)

which agrees with that found in Ref. 3, Section 1.6. We also wish to note that since ω has units of
inverse time, then it follows from (6.14) that τ has units of time, so that (6.14) does indeed represent
a reparameterization of time. Hence, our system is Hamiltonian in τ -time, but nonholonomic in
t-time.

VII. CONCLUSION

We have endeavored to show that the Weitzenböck connection W plays a central role in
the mechanics of systems in general and is particularly fundamental to the interesting physical
and geometric characteristics that nonholonomically constrained systems possess. Indeed, we have
shown that the pseudogyroscopic force that arises when considering the equations of motion of
such systems in a moving frame adapted to D (the projection by P of the equations (3.9)) is in fact
a torsional force arising from the torsion of the Weitzenböck connection through its relationship
(2.15) with the objects of anholonomity of the frame. Given the considerable interest in the so-called
teleparallel equivalent of general relativity (see1), we believe this relationship could provide an
interesting set of research questions. For example, loosely speaking, when studying the motion of
a mechanical system in the teleparallel theory one begins in a Minkowski spacetime, chooses a
moving frame, and then interprets the Weitzenböck torsion of this frame as a gravitational force
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acting on the system. In principle, this is precisely what we have done in the examples above (before
enforcing the constraints), except that the relevant interpretation of the Weitzenböck torsion for us
is as a constraint force which enforces the nonholonomic constraints.

In addition to the theoretical aspects associated with the Weitzenböck torsion, in Sec. II A
we also showed how this torsional force can, in some cases, be removed via an appropriate time
reparameterization. Aside from the interesting parallelism between this time reparameterization and
the distinction between “proper” and “coordinate” time in general relativity (see the discussion at
the end of Sec. VI A), this ability to remove the torsional force induced by a moving frame allowed
us to better understand the process of Chaplygin Hamiltonization. In a nutshell, one is searching for
an inertial frame in which the nonholonomic dynamics are not subjected to a pseudoforce, relative
to the reparameterized time. Moreover, the freedom in the choice of a moving frame, in addition to
making results like that of Proposition 4 possible, in theory allows one to investigate, for example,
which moving frames give one the most conservation laws for a given nonholonomic system. Given
the framework developed in Sec. II A, this is now theoretically possible (whereas those who have
worked with moving frames before would tend to consider the choice of a “good” frame something
of an art).
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APPENDIX

A simple calculation37 of the components of the torsion T a
bc = 〈θa, T (eb, ec)〉 and the curvature

Ra
bcd = 〈θa, R(ec, ed )eb〉 tensors yields

T a
bc = �a

bc − �a
cb + �a

bc, (A1)

Ra
bcd = 2e[b�

a
c]d + 2�a

[b|e|�
e

c]d + �a
eb�

e
cd . (A2)

In addition, by letting U = eb, V = ec, andW = ea in (2.6) we have �abc = g(ea,∇g
b ec) given by

�abc = 1

2
[eb(Gca) + ec(Gba) − ea(Gbc)] + γ a

bc, (A3)

where the γabc are the components of the second bracketed term in (2.6) and are known as the Ricci
rotation coefficients,20, 25

γabc = −1

2

[
Gad�

d
bc + Gbf �

f
ac + Gcf �

f
ab

]
. (A4)

From (A3) we can the define the Christoffel symbols of the second kind �a
bc by

�a
bc =

{
a

bc

}
+ γ a

bc, (A5)

where we have introduced the notation for the well-known Christoffel symbols,{
a

bc

}
= 1

2
Gad [eb(Gcd ) + ec(Gbd ) − ed (Gbc)] , (A6)

noting that in the coordinate basis these reduce to the standard Christoffel symbols
{ i

jk

}
. Locally,

the geodesic equation is then given by

α̈a +
{

a

bc

}
α̇bα̇c = 0. (A7)
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Lastly, the components of the curvature of the Ehresmann connection A of (2.7) are given by3

BC
αβ = ∂β AC

α − ∂α AC
β + AB

α ∂B AC
β − AB

β ∂B AC
α , (A8)

and by (4.6) in the case of a principal connection.
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46 Weitzenböck, R., Invariantentheorie (P. Noordhoff, Groningen, 1923).

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/j.hm.2005.11.005
http://dx.doi.org/10.1088/0305-4470/31/22/016

