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The angular deficit factor in the Levi-Civita vacuum metric has been parametrized
using a Riemann-Liouville fractional integral. This introduces a new parameter into
the general relativistic cylinder description, the fractional index α. When the frac-
tional index is continued into the negative α region, new behavior is found in the
Gott-Hiscock cylinder and in an Israel shell. C© 2011 American Institute of Physics.
[doi:10.1063/1.3579130]

I. INTRODUCTION

The 1917 Levi-Civita1 solution is a standard vacuum exterior for cylindrical matter distributions.
The metric can be written in terms of two parameters: mass density σ and angular deficit b,

ds2 = −r4σ dt2 + r−4σ [r8σ 2
(dr2 + dz2) + b2r2dφ2]. (1)

The interior matches add a mass/length parameter, λ, to the description of the complete solution.
Currently, 3-dim cylindrical matter distributions with positive density are believed to provide a good
description for 0 ≤ σ < 1/2.2–17 The literature has tended to focus on the (σ, λ) ranges but one
additional feature in many of the interior solutions is the boundary location and size that varies as
a function of the density. The size of the circumference remains finite even as the density increases
and a coordinate radius blows up.6, 7 This suggests that the boundary circumference is an interesting
parameter to include in the analysis of cylinder solutions.

In this paper, we consider a circumference calculated using a Riemann-Liouville fractional
integral. This introduces a new parameter into the cylinder description, the fractional index α. The
circumference calculated from the Levi-Civita metric involves the angular deficit factor. A fractional
circumference can relate the physical behavior of the angular deficit to a mathematical framework
through b(α). Matches to an interior will provide a fractional parametrization of all of the cylinder
parameters. An unexpected result of the fractional extension is a new family of solutions occurring
at one of the angular deficit embedding6 transition points.

In Sec. II, we briefly review the literature leading to limits on the range of σ , and develop the
fractional circumference. The idea is applied to the σ = 0 Gott-Hiscock6, 7 constant density string
solution, providing a parametrization of λ. The method is extended to a σ �= 0 shell16 in the third
part of the paper and the behavior of λ and σ are linked. An appendix introducing some of the basic
fractional integral definitions is included.

II. CYLINDER SOLUTIONS

A. The range of σ

The Riemann tensor of metric (1) is zero for σ = (0,1/2) and is singular as r approaches zero,

lim
r→0

[
Rabcd Rabcd = 64σ 2(4σ 2 − 2σ + 1)(2σ − 1)2

r4(4σ 2−2σ+1)

]
→ ∞.

a)Author to whom correspondence should be addressed. Electronic mail: englass@umich.edu.
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The literature contains a number of discussions that provide interior matter distributions motivating
some of this behavior. An infinite matter cylinder is often considered because, in the small σ limit, a
test particle at rest experiences an acceleration

..
r= −2σ/r . This is the Newtonian acceleration for a

particle a distance r from a line source of mass/length (σ ).13 In addition, through metric matching,
σ can often be related to the matter stress-energy coming from the field equations. The identification
is not absolute. The constant density Gott-Hiscock solutions6, 7 and the U(1) string solutions of
Garfinkle18 both use the σ = 0 Levi-Civita vacuum. The exact cylindrical solid matter solutions that
can be matched to the Levi-Civita vacuum indicate a restricted range for σ, 0 ≤ σ < 1/2. Some of
the 3-dim matter solutions that can be matched to σ = 0 also show restricted ranges in the cylinder
mass/length, λ, following from the field equations. Israel shells bounding vacuum Levi-Civita and
a second vacuum interior indicate a broader range.16

One of the early investigations of static cylindrical solutions, due to Marder2, directly examined
the relation between σ and the cylinder λ by matching to a Levi-Civita vacuum with no angular
deficit. Krori and Paul3 used Marder’s solution to establish a limit σ < 1/2. For general σ, Davidson8

developed a set of static cylindrical solutions which were used by Bonnor et al.9, 10 to study the
possible range of σ . One of the motivating questions for this discussion was the zero Riemann
tensors for σ = (0, 1/2). The σ = 0 flat spacetime was interpreted as a matter-free vacuum but the
σ = 1/2 case was left an open question. Philbin13 extended cylindrical solutions into the negative
σ region and suggested that the endpoints |σ | = 1/2 described planar rather than cylindrical matter
distributions. Based on the behavior of gyros orbiting a cylindrical mass distribution, Herrera,
Ruifernández, and Santos14 also suggested that σ = 1/2 described a planar mass. In a later paper,15

Herrera et al. treated the σ = 1/2 transition point in greater detail and, with the (ϕ, z) coordinates
taken as interchangeable to include possible planar topologies, suggested models for the coordinate
range 0 ≤ σ < ∞.

Some of the work on static cylinders is embedded in discussions of rotating cylinders with the
parameter and density limits appearing for both cases. For example, one of the early indications of
a restricted relativistic density range was the rotating dust cylinder of Vishveshwara and Winicour.4

This interesting paper contains an expression for λ related to an angular deficit and identifies the
b = 0 deficit factor as a critical limit related to a rotating column with λ ≤ 1/4. Building on this
work, Lathrop and Orsene5 considered a cylinder with two counter-rotating dust currents and, for
this matter source, duplicated the Vishveshwara-Winicour4 density limit, as did later work by da
Silva et al.12

B. Fractional circumference

A fractional integral is a function convolution over a range. The fractional integral used to
calculate the fractional circumference is the Riemann-Liouville form19, 20

I −α[ f (x)] = 1

�(α)

∫ x

0
f (y)(x − y)α−1dy, (2)

where α is the fractional order, Re(α) > 0. A fractional circumference is calculated by integrating√
gφφ around the circle. x is identified as φ with the circumference following in the φ → 2π limit.

For the base metric, consider a 3 + 1 Minkowski metric with cylindrical coordinates (t, r, φ, z),

ds2 = −dt2 + dr2 + r2dφ2 + dz2.

The usual circumference of a circle in the (r, φ) plane for r = r0 is C = 2πr0. r0 is the coordinate
radius. A fractional circumference for the same coordinate radius is

C (α) = 1

�(α)
lim

φ→2π

∫ φ

0

√
gφφ(φ − y)α−1dy = 2πr0

(2π )α−1

�(1 + α)
, (3)

α = 1 gives the usual circumference. For 0 < α < 1, the circumference is less than the usual 2πr0

and for α > 1 it is larger. The methods of fractional calculus21, 23 have been very successful in
modeling transport processes with anomalous microscopic time and/or spatial structure.24, 25 One
could expect that the density of matter distributions interior to the boundary would reflect the
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transport processes responsible for their growth. In this case, it is the variation in the circumference
with α that we wish to link to matter distributions with an angular deficit, with the fractional
variation in circumference reflecting a fractional surface matter distribution. If coordinate ranges are
not imposed, the angular deficit can be transformed away. Here, it is strongly linked to a physical
description with the usual imposed angular coordinate ranges. Bonnor26 noted that the angular
deficit parameter, b, determines the topology of the manifold covered by metric (1) and cannot be
removed by scale transformations. Angular deficit is a topological defect such as the gravitational
Aharonov-Bohm effect discussed by Jensen and Kučera.27

In the following, we apply the fractional circumference to the parameters of the σ = 0 Gott-
Hiscock constant density string.

C. The Gott-Hiscock string

The Gott-Hiscock solution describes an interior constant density, δ, cylinder matched to a σ = 0
Levi-Civita vacuum with angular deficit b. The matter ( − ) and vacuum ( + ) metrics are

ds2
− = −c2dt2 + dρ2 + [

sin(δρ)

δ
]2dφ2 + dz2, (4)

ds2
+ = −c2dt2 + dr2 + b2r2dφ2 + dz2. (5)

The string radii in the interior and exterior are ρ0 and r0. The matching relations are sin(δρ0) = δbr0,
and b = cos(δρ0) and the mass per unit length, λ, of the constant density string is λ = (1 − b)/4.

The angular deficit/excess associated with b is �φ = 2π (1 − b) = 8πλ. The allowed range of b is
−1 ≤ b ≤ 1 and the positive λ range is 0 ≤ λ ≤ 1/2.

The boundary match provides an expression for the coordinate radius, r0 and associated cir-
cumference,

r0 = tan(δρ0)

δ
, (6)

C = 2πr0b = 2π
sin(δρ0)

δ
. (7)

A (r, φ) cross section of the exterior vacuum is regarded as a circle with a missing pie slice. r0b is
the radius of the equivalent closed circle. The matching relations indicate that r0 approaches ∞ as
δρ0 → π/2, while b = 0 and the circumference takes its maximum value. Gott6 has motivated this
behavior by embedding the (t, z) = const Levi-Civita vacuum into a 3-dim metric with coordinates
(w, r ′ = br, φ), the embedding relation between w and r ′ defining a cone in the 3-dim space. This
embedding picture is illustrated in the sketches of Figure 1. The shaded region represents a matter
cap in the interior. The sketches illustrate the entire b range. In the integer model, as the density
increases from λ = 0 (b = 1) to λ = 1/4 the upper sides of the cone tilt outward to form a b = 0
cylinder. As the mass continues to increase, the center moves out into the vacuum, the lower sides
tilting in to form an upward pointing cone. Conventionally, this is associated with negative b, angular
excess and a quasi-regular singularity4 in the vacuum.

The circle defined by the matter/vacuum match has an effective radius r0b and is clearly
maximum for the b = 0 cylinder.

1. Fractional angular deficit

The metric circumference of the string in the exterior spacetime is 2πbr0 where br0 is the
effective radius of the closed circle. Equating this to the α > 0 fractional circumference one finds a
fractional angular deficit factor,

2πbr0 = 2πr0
(2π )α−1

�(1 + α)
, (8)

b(α) = (2π )α−1

�(1 + α)
,
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FIG. 1. Embedding diagrams for the GH string.

α = 1 can be identified with b = 1, the vacuum case. Figure 2 shows b(α) over the range −0.5 ≤
α ≤ 1. b decreases toward 0 as α → 0 and λ moves toward the cone → cylinder transition value,
λ = 1/4.

In this region, br0, the effective radius in the circumference, increases from its vacuum 0 to its
maximum value br0 = 1/δ. This behavior is implicit in the embedding diagrams. The value of α

follows from δρ0 = sin−1(br0). In the α region shown in Fig. 2, the fractional index is only another
parameter that provides a mathematical base for b. However, while the fractional circumference is
strictly defined for α > 0, the graph shows a continuation across the origin into the undefined negative
alpha region. The interpretation of negative α will come from the string models it parametrizes. In
Fig. 2, there is no identification of an α parametrization for b = 0 until the alpha range is extended
further along the negative axis. This extension is shown in Fig. 3. There are a sequence of points
of decreasing amplitude, oscillating around b = 0. The fractional string model has only a small
extension into the negative b region with its vacuum quasi-regular singularity.

The identification of a fractional form for b can be extended to the string mass/length showing
λ oscillations about the cone → cylinder critical value λ = 1/4.

The mass/length is shown in Figures 4 and 5. Figure 4 supports the identification of b = 1, α = 1
with a zero string vacuum and Fig. 5 shows the expected oscillations in the string mass/length about
λ = 1/4. The string coordinate radius, r0 = tan(δρ0)/δ, blows up at δρ0 = π/2 but the product br0

entering into the circumference is finite, showing small oscillations around r0b = 1/δ, the effective

FIG. 2. (Color online) b vs α, α > −0.5.
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FIG. 3. b vs α, −0.5 < α.

radius for the cylindrical embedding. This example used a 3-dim matter distribution inside the
cylinder. The next example considers a cylindrical shell.

III. CYLINDRICAL SHELLS

2 + 1 cylindrical shells have also been used to explore the static parameter/density limits. A
sequence of cylindrical shells was first suggested by Marder2 and Wang et al.16 discussed a shell
with stress-energy resulting from a jump from exterior Levi-Civita to an interior Minkowski. A
simple cylindrical model with non zero σ has exterior ( + ) and interior ( − ) metrics,

ds2
+ = −(r/r0)4σ dt2 + (r/r0)−4σ [(r/r0)8σ 2

(dr2 + dz2) + b2r2dφ2], (9)

ds2
− = −dt2 + dρ2 + dz2 + ρ2dφ2. (10)

FIG. 4. (Color online) λ vs α, −0.5 < α.
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FIG. 5. λ vs α, α < −0.75.

The metric match across a surface (r0, ρ0) is

ρ0 = br0. (11)

This matching relation suggests that the circumference is bounded as b and r0 change. The extrinsic
curvatures are K ±

ab = n±
a;b = −�

±r
ab n±

r = ∂r gab/2 at r = r0. The shell has stress-energy, Sab, related
to the extrinsic curvature jump 〈Kab〉 = K +

ab − K −
ab, 〈K 〉 = 〈K a

a 〉, across the boundary.28, 29

Calculating the stress-energy one finds, with �(σ ) = 1 − 4σ + 4σ 2,

− 8π Si
j = 〈K i

j 〉 − hi
j 〈K 〉, (12)

− 8π St
t = 1 − b�(σ )

br0
, (13)

− 8π Sφ
φ = − 4σ 2/r0, (14)

− 8π Sz
z = 1 − b

br0
. (15)

Using the same simple density integral to calculate λ as was used in the Gott-Hiscock string, one
finds the stress-energy parameters

4λ = 1 − b�(σ ), (16)

8π Pφ = 4σ 2/r0, (17)

8π Pz = b − 1

br0
, (18)

8πε = 1 − b�(σ )

br0
. (19)

The general equation of state11, 17 is

ε + Pφ + Pz = 4σ/r0. (20)

Looking first at σ = 0, the usual stiff string equation of state is found. This is an interesting
comparison case to the GH string. It does describe a constant density object with an axial tension
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and λ but the limits are set by the angular deficit factor, not by trignometric limits. Using ad hoc
values b = (1, 0,−1), we have 4λ = (0, 1, 2). Thus, we have the same set of boundary values as the
GH string. With b = (2π )α−1/�(1 + α) the mass/length has the same form as for the GH string,

4λ = 1 − (2π )α−1

�(1 + α)
, (21)

and the same density oscillations around b = 0 are present. A large difference between the two cases
is that b is not limited to a unit range, without the GH identification of b. The current limits on
σ would restrict b. For σ �= 0, the immediate observations are, that for fixed radius, σ determines
the tangential stress while the axial stress is determined by b. Links between σ and b follow
from assumptions on the partial equations of state linking ε and individual stresses, or on relations
between the stresses. For example, a shell with uniform stress, Pφ = Pz imposes b = 1/(1 − 4σ 2).
In this model, isotropic stress is associated with negative mass/length. A physical solution will have
anisotropic stresses, avoiding a singularity at σ = 1/2.

IV. CONCLUSION

In this paper, we have examined a fractional parametrization b(α) of the angular deficit factor.
The original motivation was to match the physical behavior of the angular deficit to a mathematical
framework providing a fractional parametrization of cylinder parameters. For the Gott-Hiscock
cylinder, we found new behavior when the angular deficit factor is continued from a vacuum with a
conical defect across the embedding cylinder, b = 0, into a vacuum with a quasi-regular singularity.
The behavior may have implications for the stability of the cylinder solutions in the b parameter
range.30, 31 This is under investigation. The models considered in the paper are for the Levi-Civita σ

in the range 0 ≤ σ < 1/2. The applicability of a fractional angular deficit as developed here, depends
on an angular coordinate with an associated circumference. Herrera et al15 used coordinates (ϕ, z)
with ranges −∞ to ∞, imposing a periodicity, ϕ = ϕ + 2π on the angular coordinate for σ < 1/2.
Our result applies in that region. Their results seem to imply that σ = 1/2 is associated with a planar
topology and that there is no appropriate angular coordinate. For σ > 1/2 they suggest that the
Levi-Civita coordinates (ϕ, z) are interchanged, with z becoming the periodic measure, z = z + z0.
The circumference for this σ region would be

C (α) = 1

�(α)
lim
z→z0

∫ z

0

√
gzz(z − y)α−1dy = (z0)α

�(1 + α)
.

It is also possible that both z and ϕ are periodic in this region suggesting a toroidal matter distribution
rather than a cylindrical one. This extended view would allow two fractional circumferences to be
included in the modeling. The complete topological description of Levi-Civita matched matter
distributions, and its fractional extensions, still have many open questions. The infinite cylinder,
both static and rotating, continues to be an interesting and useful structure in general relativity: The
parameter effects due to including a cosmological constant in Levi-Civita32, 33 are beginning to be
examined34 and, with the recent connections to braneworld cosmologies,35, 36 relativistic cylinders
have acquired new physical relevance.

APPENDIX: FRACTIONAL CALCULUS

Fractional calculus was invented in 1695 when L’Hopital19, 20 asked Leibniz about the meaning
of his notation dn y

dxn for n = 1/2. This question, also asked by Bernoulli defined the idea of a fractional
derivative and L’Hopital’s question about derivatives has developed into a fractional calculus, a
framework for integrals and derivatives of non-integer order. Euler made the first real contribution
to the development of fractional calculus with his 1738 proof that the fractional derivative of xn

was meaningful.37 The first contribution using the idea is credited to Abel for his 1823 work on
the tautochrone.20 The idea of fractional calculus has attracted the attention of many of the same
people that are associated with the development of physics and general relativity: Lagrange, Laplace,
Fourier, Liouville, Riemann and Weyl19, 20 among others. There are several definitions of fractional

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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integrals depending on the integral limits. The Riemann form integrates from c to x , The Liouville
version from −∞ to x , and in this paper the Riemann-Liouville form is used from 0 to x .20

I −α[ f (x)] = 1

�(α)

∫ x

0
f (y)(x − y)α−1dy, (A1)

where α is the fractional order, Re(α) > 0. There is also a Weyl form for the fractional integral with
a +∞ limit.

In order for the Riemann-Liouville integral to converge it is necessary that f (x) satisfy the
condition

f (x−1) = O(x1−δ) δ > 0. (A2)

Functions obeying this condition are Riemann class; for example, the function xb, b > −1 is a
Riemann class function. The Weyl integral is useful for functions with the convergence property

f (−x) = O(x−ν−δ) δ > 0, x → ∞. (A3)

Functions satisfying this condition are said to be of Liouville class; for example, x−b with b > ν > 0,

is a Liouville function. The allowable parameter range eliminates constants from this class. There
can be overlap between classes.

The evaluation of fractional integrals uses the beta and gamma functions. The gamma function
is defined by

�(x) :=
∫ ∞

0
e−t tα−1dt, x > 0, (A4)

�(x + 1) = x�(x), x > 0.

For positive integer n, �(n + 1) = n!. �(x) is extended to negative x by the functional equations

�(x) := �(x + 1)

x
, − 1 < x < 0, (A5)

�(x) := �(x + 2)

x(x + 1)
, − 2 < x < −1,

�(x) := �(x + n)

x(x + 1) · · · (x + n − 1)
, − n < x < −n + 1.

The beta function is defined as

B(z, w) =
∫ 1

0
xz−1(1 − x)w−1dx (A6)

It is related to the gamma function

B(z, w) = �(z)�(w)

�(z + w)
. (A7)

For example, the fractional integral of f (x) = 1 is

D−ν
0 [1] = 1

�(ν)

∫ x

0
(x − y)(ν−1)dy. (A8)

Comparing with the definitions of the beta and gamma functions, we see the fractional integral of 1
is given by

D−ν
0 [1] = �(1)

�(ν + 1)
xν . (A9)

Another example is the fractional integral of f (x) = xα. Using the definitions the integral
becomes

D−ν
0 [xα] = �(1 + α)

�(α + ν + 1)
xν+α. (A10)
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For ν = 1, this becomes xα+1/(α + 1), the usual integral of xα. For α = −1, the gamma function in
the numerator is singular so the fractional integral of 1/x is not defined. The analytic continuation
used in the paper assigned meaning to the singular points of the gamma function.
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