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Observations by, for instance, the EISCAT Svalbard Radar (ESR) demonstrate that the symmetry

of the naturally occurring ion line in the polar ionosphere can be broken by an enhanced,

nonthermal, level of fluctuations (naturally enhanced ion-acoustic lines, NEIALs). It was in many

cases found that the entire ion spectrum can be distorted, also with the appearance of a third line,

corresponding to a propagation velocity significantly slower than the ion acoustic sound speed. It

has been argued that selective decay of beam excited primary Langmuir waves can explain some

phenomena similar to those observed. We consider a related model, suggesting that a primary

nonlinear process can be an oscillating two-stream instability, generating a forced low frequency

mode that does not obey any ion sound dispersion relation. At later times, the decay of Langmuir

waves can give rise also to enhanced asymmetric ion lines. The analysis is based on numerical

results, where the initial Langmuir waves are excited by a cold dilute electron beam. By this

numerical approach, we can detect fine details of the physical processes, in particular, demonstrate

a strong space-time intermittency of the electron waves in agreement with observations. Our code

solves the full Vlasov equation for electrons and ions, with the dynamics coupled through the

electrostatic field derived from Poisson’s equation. The analysis distinguishes the dynamics of the

background and beam electrons. This distinction simplifies the analysis for the formulation of the

weakly nonlinear analytical model for the oscillating two-stream instability. The results have

general applications beyond their relevance for the ionospheric observations. VC 2011 American
Institute of Physics. [doi:10.1063/1.3582084]

I. INTRODUCTION

Incoherent scatter radars are some of the most versatile

and widely used tools for studying the Earth’s ionosphere.

For the case where the ionospheric plasma is in thermal equi-

librium, the backscattered signal can be analyzed in terms of

the fluctuations-dissipation theorem from basic thermody-

namics and statistical mechanics,1,2 giving both the ion-

acoustic and the electron plasma wave spectra. In many

cases it is found, however, that the ionospheric plasma is out

of equilibrium, and that particularly the ion-line signal is sig-

nificantly distorted,3–5 giving rise to so-called naturally

enhanced ion-acoustic lines (NEIALs). In the NEIALs, the

two ion-lines will often have different amplitudes and corre-

spond to velocities, which do not match the expected ion

acoustic sound speed. In many cases also an unshifted ion

line can be observed1,5 between the up- and down-shifted

lines. These weakly shifted lines are often sporadic and can

be difficult to identify, and can appear more like a “filling-

in” between the two natural ion lines. Several models were

suggested,6,7 and they can account for some of these fea-

tures. For instance, the symmetry of the natural ion-line is

broken if a current is flowing through the plasma.1 It has also

been pointed out that an external “pump wave” could give

effects similar to those observed.8,9 An electron beam can

enhance electron plasma waves (Langmuir waves) signifi-

cantly above the thermal level, and then ion acoustic waves

can be excited by parametric decay of these waves. This lat-

ter model was invoked in other studies10,11 and has gained

confidence by several works.1,4,12 Consistent with the basic

features of these proposed models, observations of simulta-

neously enhanced levels of ion, and electron plasma waves

have been reported.13 The nonshifted (or weakly shifted) ion

line can be explained by two basically different models.

Since the speed of propagation is significantly lower than the

sound speed, the line is not a natural fluid mode. It is then ei-

ther a feature which has to be continuously maintained by
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some external agency, for instance, the electron beam, or,

alternatively, it is a natural mode existing beyond a standard

fluid model, a linear kinetic van Kampen–Case mode,14 or a

nonlinear BGK-mode.15,16 Either of these modes can in prin-

ciple have any velocity. In reality, the velocities will be re-

stricted to the range of thermal velocities of the appropriate

species. Propagation velocities that differ significantly from

the natural sound speed require very “artificial” shapes of the

velocity distributions. Some parametrized models suggested

in the literature16 represent one way of imposing conditions

on the distribution functions, in order to make them match

physically realistic velocity distributions at large distances

from the structures.

One problem concerning the model based on Langmuir

wave decay seems to be that sometimes very short wave-

length primary Langmuir waves are needed to account for

the observations, below a few tens of Debye lengths, kDe. It

might be possible to find a low velocity electron beam which

generates unstable waves for ub < 4uth, but the decay Lang-

muir wave (“daughter wave”) obtained from these will be

strongly Landau damped, implying that the growth rate of

the decay instability becomes negligible. For the EISCAT

Svalbard Radar (ESR)-radar,3 we have a transmitter fre-

quency of 500 MHz, giving kR � 2p=kR ¼ 0:6 m. For an

altitude � 400 km, with electron temperatures of Te � 3000

K, and plasma densities of n0 � 2� 1011 m�3, we find the

Debye length kDe � 8:5� 10�3 m, i.e., kR=kDe � 70, or

kRkDe � 0:09. The effects connected with plasma inhomoge-

neity have been largely ignored, although a consistent treat-

ment of the ionospheric plasma density gradient can bring

new understanding of the observational results.17,18

The ionospheric observations as such seem to be unam-

biguous,3 but the interpretation is made difficult by several

practical problems: the observed features are often sporadic in

nature, and can vary with time as well as altitude, on second

and kilometer scales, respectively.1,12 We bear in mind that

the radar is usually obtaining backscatter at one selected

wavevector kR, which is related to the scattering wavevector

kB by selection rules, which for a monostatic radar gives

kB ¼ 2kR. In order to observe the ion sound wave, we should

have the sound wavelength ks approximately equal to ð1=2ÞkR

and the primary Langmuir wavelength kL also approximately

ð1=2ÞkR. This means that in a decay process, we cannot, usu-

ally, at a given altitude, expect to observe the first generation

Langmuir waves simultaneously with the sound waves form-

ing the low frequency part of the decay products. In the case

where we have a “cascade” of decaying waves, we might

observe one or the other of the decay products, and it might

very well be the second or third generation that is observed,

instead of the first one. For the parameters mentioned before,

we have kLkDe � 0:18. The plasma conditions are strongly

variable19 and it is not always obvious under which conditions

the enhanced ion-lines (NEIALs) are observed, since the rele-

vant parameters are rarely monitored simultaneously. The

observations are not sufficiently detailed to allow only one

model for their explanation. It has been argued13 that a broad

band of Langmuir waves excited by an electron beam with

distributed velocities (Dub � ub) can generate a wide spec-

trum of waves that can account for the simultaneous observa-

tions of enhanced ion and electron lines at the same Bragg

condition, but these calculations have seemingly not been

published nor tested by numerical simulations.

The simple Langmuir wave decay can seemingly

account for the enhanced ion lines, but cannot directly

explain the unshifted component. In our first attempt to

explain this feature we considered the possibility of excita-

tion of ion phase-space vortices, or ion holes. These struc-

tures are well known from laboratory experiments and

numerical simulations.20,21 It has been found that excitation

of ion holes is ineffective when the electron/ion tempera-

ture ratio is below two,20 and this is after all the most com-

mon parameter range for many ionospheric conditions.

Analytical and numerical studies22 have demonstrated that

ion phase space holes can be maintained by an enhanced

level of Langmuir waves even for moderate ratios Te=Ti.

One purpose of the present study was to search for self-con-

sistently and spontaneously generated ion holes with a

trapped electron wave component. In order to make the

conditions for ion hole formation demanding, we choose a

temperature ratio of Te=Ti ¼ 1. Actually, it is possible to

construct ion phase-space vortices for any temperature ratio

Te=Ti > 0, but as stated before there is empirical evidence20

that Te=Ti � 2 is a limiting temperature ratio for their exis-

tence in practice.

Electron phase-space vortices, or electron holes,16,23,24

can be excited and they will have interest in the present con-

text also because such structures can have, in principle, any

velocity, also one below the ion sound speed. For physically

realistic velocity distribution functions, electron phase-space

vortices move at or below the electron thermal velocity25

(with ion vortices having velocities at or below the ion ther-

mal velocity). Although these vortices can be slow compared

to the ion sound speed, it will be unlikely to see them con-

fined to such slow velocities. Only their ion counterparts are

realistic candidates for subsonic nonlinear structures. Elec-

tron holes are well known from laboratory experiments,23,26

but their possible role in the generation of NEIALs and the

intermediate slow or subsonic ion signature is unknown.

Numerical simulations offer a possibility for studying

the relevant plasma phenomena in detail.12,27–30 The present

study is based on a direct numerical solution of the coupled

electron and ion Vlasov equations solved for a linearly unsta-

ble beam-background electron population. The analysis dis-

tinguishes, in particular, the dynamics of background and

beam electrons as well as the ions.

Sections II and III present our numerical analysis. The

theoretical analysis in Secs. IV and V supports the numerical

results. In particular, that analysis distinguishes the dynamics

of the background and the beam electrons, in agreement with

the numerical results. For the formulation of the weakly non-

linear model for the oscillating two-stream instability, this dis-

tinction turns out to have interesting implications. The wave

types entering the analysis are the usual Langmuir waves with

dispersion relation x2 ¼ x2
pe þ 3k2u2

th, and electron acoustic

waves31,32 with an almost linear proportionality between fre-

quency and wavenumber. Our analytical results support a

model where electron waves are excited by the electron beam

instability, with a dominant mode following an electron
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acoustic dispersion relation. Through an oscillating two-stream

instability, this wave subsequently excites a broad band of

Langmuir waves together with low frequency, broad band

electrostatic oscillations that do not satisfy any dispersion rela-

tion. In a later stage of the wave evolution, ion acoustic waves

are excited by Langmuir wave decay, where the electron

acoustic mode participates.

A one-to-one numerical simulation of the problem with

relevant ionospheric parameters is not possible, so the pres-

ent work addresses some qualitative features that we believe

to be relevant. Some previous preliminary results from

related studies33 supplement the analysis presented here by

using different plasma parameters.

II. BEAM-DRIVEN ELECTRON PLASMA WAVES

Concerning the unstable electron plasma waves, we have

two limiting cases. When the beam velocity is much larger

than any of the relevant thermal velocities, the most unstable

phase velocity is somewhere between the beam and back-

ground plasma velocities, in a region where the electron ve-

locity distribution is close to vanishing. For this case, we

might as well assume that both the beam and background dis-

tributions are adequately represented by d-functions. In this

limit, the instability can be modeled by a simple two-electron

beam model. In the other limit, the phase velocity uph ¼ x=k
of the most unstable mode will be close to the beam velocity

ub, so that ub � uTb � uph < ub, with uTb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Teb=m

p
being

the thermal velocity of the electron beam. For this fully ki-

netic limit, the instability is of the standard Landau type,

where the growth rate is determined by the slope of the elec-

tron velocity distribution at the phase velocity. The full time

evolution can involve both models: in an initial phase, we can

have the standard cold-beam model applying, until the waves

have reached an amplitude where they effectively scatter the

beam so that it disperses in velocity space. The resulting

“plateau” in the electron velocity distribution supports an

electron acoustic branch. When a significant number of par-

ticles are scattered into the velocity range of the linearly most

unstable waves, the process will continue at a rate determined

by the fully kinetic theory, implying a “two-stage” process of

the instability. Using a double water-bag model for the plasma

(one for the beam and one for the background) we obtain the

linear dispersion relation

1þ ð1� aÞ xpe

k

� �2 1

u2
s � ðx=kÞ2

þ a
xpe

k

� �2 1

Du2 � ðub � x=kÞ2
¼ 0 ; (1)

where a ¼ n02=n0 is the relative electron beam density, us is

the water-bag boundary velocity for the background plasma,

while Du is the width of the beam water bag in velocity space.

The background electron density is n01, so that

n01 þ n02 ¼ n0. We recall that for the background water bag

electrons we have
ffiffiffiffiffiffiffiffiffi
hu2i

p
¼ us=

ffiffiffi
3
p

, which is a relation needed

for defining the effective background electron temperature.

The linear dispersion relation for the problem can be

solved analytically (albeit with a lengthy general result) for

the case where the beam and background electron tempera-

tures are vanishing, in which case the beam velocity enters via

the normalizations.33 A somewhat more general result for the

reference case is shown in Fig. 1, obtained by the water-bag

model (1), which corresponds to a standard two-fluid model

for the electrons.34 The important part is the unstable branch,

appearing as a weakly dispersive electron acoustic mode. The

most unstable part of this mode appears here at frequencies

below the electron plasma frequency. Finite geometry (the fi-

nite diameter of a plasma column or the width of an elongated

plasma cavity), as in some experiments,35 implies nontrivial

modifications of the dispersion relation.

For a wide range of parameters for cold beams with

a � n02=n0 � 0:1, the most unstable wave is found for

kub=xpe � 1:2. For a! 0, we have kub=xpe ! 1. In partic-

ular, for a ¼ 1=2, we find the most unstable wave for a phase

velocity ub=2 as expected by symmetry reasons. For small a
the most unstable phase velocity increases, ultimately to

reach ub, with the most unstable frequency x � xpe. As an

approximation, we have the phase velocity for the most

unstable wave as uph � ubð1� aÞ. At the same time, we find

that the linear growth rate of the instability decreases with

decreasing a so that the plasma is stable in the limit where

the most unstable frequency approaches xpe. During this

transition, the entire electron acoustic branch remains unsta-

ble, with a growth-rate proportional to k in the long-wave-

length limit. As an approximate criterion for the beam

instability to be relevant, rather than the Landau instability,

we have ubð1� aÞ < ub � uTb or a > uTb=ub. The transition

from beam to Landau type instabilities were previously stud-

ied by analyzing the linear dispersion relation.36

The electron beam is exciting electron plasma waves by

the beam instability. The dominant wave component will be

the one with the largest temporal growth rate, which here

corresponds to a frequency below xpe. When these wave

amplitudes reach a sufficient intensity, they can excite new

waves by the oscillating two-stream instability (see, for

instance,37 for an excellent summary). The low frequency

component of these wave modes need not be represented by

a (linear) dispersion relation and can in principle be station-

ary, while the high frequency wave component will have an

angular frequency closer to xpe.

FIG. 1. Dispersion relation for the reference case with n02=n0 ¼ 0:025, with

the real part of the frequency <fxg given by a thick full line, and the growth

rate =fxg given by a thick dashed line, while a thin dashed line gives the

beam velocity ub for reference. We have Teb ¼ Te=5 The symbol � shows

the most unstable wave ðx; kÞ from the simulation, found in the time interval

f0; 75=xpeg, and 	 gives the corresponding growth-rate observed.
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III. NUMERICAL RESULTS

The basic equations for the numerical simulations are

the Vlasov equations for the electrons and ions, with the dy-

namics coupled through Poisson’s equation. Details of the

code have been presented elsewhere.22,38,39 The normaliza-

tions used in the code, in particular, is given by Ref. 40. We

use here a spatial simulation interval of 200 p kDe. The basic

set of equations is solved for an initial value problem with

periodic spatial boundary conditions, which is standard for

these types of problems. This gives a simplified alternative

to the full problem with conditions imposed at a boundary,

while at the same time retaining the important physics. The

analysis is restricted to one spatial dimension for practical

computational reasons. In particular for the case of Langmuir

wave decay, we do not expect this to pose any serious limita-

tion, in part because the growth rate for the decay instability

is known to have a maximum for aligned wavevectors.41 For

the observations relevant to the present study,4 the radar

beam is basically directed along the magnetic field lines,

inviting a comparison with models referring to that direction.

We have analyzed a large parameter range,

ub=uTe ¼ 2� 10:

n02=n0 ¼ 0:01� 0:1; and Teb=Te0 ¼ 0:2� 0:6:

We have used representative plasma parameters, so that

the numerical results can be used for qualitative and to some

extent quantitative comparisons with observations. Practical

limitations are, however, imposed by the numerical code. For

instance, the effects have to be observable within at most a

few thousand electron plasma periods. This condition restricts

our mass ratio and imposes limits on the relative beam density

n02=n0. In the first part of our simulations, we use an ion to

electron mass ratio of M=m ¼ 400. In order to have a well

defined electrostatic wave problem, we choose the initial con-

dition so that there is no dc-current in the system. We let the

background electron population drift slightly in the opposite

direction of the beam. The code has an extremely low noise

level, as compared to, for instance, standard particle-in-cell

(PIC) codes. In order to achieve a noticeable amplitude of the

unstable modes within a reasonable computing time, we intro-

duce some initial irregularities by a low level density pertur-

bation containing many Fourier components with wavelengths

in the range fL=20;Lg with L being the length of the system.

An interesting alternative model for this initial noise level has

been given by Ref. 12, who use a self-consistent representa-

tion that allows the instability to grow out of a synthetic ther-

mal noise level. Preliminary results from related studies33

used higher beam densities and can be seen as supplements to

the analysis presented here.

A. The initial time evolution

We first study, the space-time evolution of the electron

beam density for the early part of the time development,

t 2 f0; 75=xpeg. We observe a nearly exponential growth of

a spatially wide wave packet with well defined wavenumber.

The growth rate of the wave can be determined with good

accuracy and is inserted in Fig. 1. A broad wavenumber

band is unstable, but the initial time wave development is

dominated by the linearly most unstable wave, so that the

evolution appears to contain only one mode of oscillations.

In Fig. 2, we show the phase-space representation of the

electron beam alone, taken at time t ¼ 75=xpe, as well as the

phase-space variation of the background electrons taken at

the same time. The linear instability seems to saturate in a

wave-packet with a soliton-like shape.42,43 This structure is

not stable, but dissolves due to the phase-space breaking of

the beam electrons as can be observed in Fig. 2. The break-

ing is seen only in the beam electrons and not in the back-

ground, since only the near-resonant particles are affected.

In Fig. 3, we show the spatial and temporal Fourier trans-

form of the electron beam density in an ðx; kxÞ-distribution,

and also the corresponding representation of the background

electrons. These and similar figures are with logarithmic color

scale (base 10). The temporal Fourier transform is here re-

stricted to t 2 f0; 75=xpeg. The figures possess an

ðx; kxÞ ! ð�x;�kxÞ-symmetry, but the properties of the low

FIG. 2. (Color online) Top: phase-space distribution of the beam electrons

at time t ¼ 75=xpe. Bottom: phase-space distribution of the background

electrons at time t ¼ 75=xpe. Note that the color-coding has been changed

by a factor 10, as compared to the figure at the top.
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frequency parts are best seen in a representation retaining this

redundancy. We note a small “gap” in the ðx; kxÞ-plane

around k ¼ 0, which is due to the finite length of the system,

that places a lower limit on available wavenumbers.

We can clearly identify the real part of the frequency

<fxg as well as the wavenumber k for the most unstable

wave. These values are indicated in the linear dispersion

relation in Fig. 1. While the fundamental wave is clearly

visible in both the beam and the background dynamics, we

note that the third harmonics generated by nonlinear effects

are different in the two representations: for the background

the third harmonic is relatively much weaker than for the

beam mode because the harmonic excitations are close to

resonant for the slow beam mode, in contrast to the back-

ground electrons that support a wave near the electron

plasma frequency. The observed initial time evolution is in

good agreement also with laboratory experiments,44 but the

numerical simulations can provide, for instance, phase-space

information that is not available in the laboratory.

B. The intermediate time evolution

In Fig. 4, we show the phase-space distribution of the

beam and the background electrons, respectively, for a later

time in the evolution of the instability, here at t ¼ 500=xpe.

By inspection of Fig. 4 we find that the linear initial instabil-

ity described by Fig. 1, saturates into a stage where the electron

beam has spread out to form a plateau extending down to the

background electron component.44 We can model the dispersion

relation for this stage by keeping the original background elec-

trons, but transform the beam into a plateau, so that the number

of electrons in the beam is conserved. The plateau extends down

to the boundary uth of the background component. The upper

boundary of the plateau is u0 þ ð1=2ÞDu, in terms of the original

beam velocity and beam width. There is now no longer any gap

FIG. 3. (Color online) Top: temporal and spatial Fourier transforms of the

beam electron density, shown in an ðx; kxÞ -plane. Colors are with logarith-

mic scale. A dashed line gives the electron beam velocity for reference. The

analysis is restricted to the time interval t 2 f0; 75=xpeg We can readily

identify the most unstable mode, which is plotted into Fig. 1. Bottom: tem-

poral and spatial Fourier transforms of the background electron density,

shown in an ðx; kxÞ-plane. A dashed line gives the electron beam velocity.

The analysis is restricted to the time interval t 2 f0; 75=xpeg.

FIG. 4. (Color online) Top: phase-space distribution of the electron beam at

a time t ¼ 500=xpe. Bottom: phase-space distribution of the electron back-

ground at a time t ¼ 500=xpe. Note that the color-coding has been changed

by a factor 100, as compared to the figure at the top.
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in the electron distribution between the beam and the back-

ground components. The resulting dispersion relation shown in

Fig. 5 can be obtained by redefining some of the parameters

entering Eq. (1). In all cases we have x ¼ xpe for k ¼ 0. The

distribution is here linearly stable, since it now has only one

local maximum. We note the presence of two electron acoustic

modes, one with phase velocity close to ub and one where the

phase velocity is approximately given by uth. This latter mode

(shown with dashed line) is formally a solution in the present

water-bag model, but it is strongly Landau damped by the

Maxwellian distribution of the background electrons, and it

will generally not be observed. We note that for large jkj we

have a part of the dispersion relation well approximated by the

usual Langmuir result x2
0 � x2

pe þ 3k2u2
th, just as in Fig. 1.

In Fig. 6, we show the space-time Fourier transform of the

electron beam and the electron background densities, respec-

tively, for the time interval f75=xpe; 500=xpeg. In the top

Fig. 6, we recognize the electron beam modes, and note the

enhancement of wave intensity around the electron plasma fre-

quency, xpe. The corresponding figure for the background

electrons is entirely different. Here we note an enhancement of

the wave activity for the forward propagating electron plasma

wave, and some enhancement for frequencies slightly below

xpe, on the upper part (at the bending of the curve) of the elec-

tron acoustic wave, see the dispersion relation in Fig. 5. The

backward traveling electron plasma wave mode is visible.

Since the waves are enhanced to a nonthermal level, we expect

second harmonics to be noticeable, as indeed observed.29,45,46

C. A simple linearized fluid model

A simple linear fluid model can be proposed to account

for some elements of the results for times after formation of

the plateau in the electron beam component

@2

@t2
n1 � u2

t1r2n1 þ
e

m
n01r2/ ¼ 0 ; (2)

@

@t
� u0 
 r

� �2

n2 � u2
t2r2n2 þ

e

m
n02r2/ ¼ 0; (3)

with subscripts 1 and 2 referring to the background and pla-

teau electrons, respectively, and u0 being the average veloc-

ity of the plateau electrons.

The relations (2) and (3) are coupled through Poisson’s

equation

r2/ ¼ e

e0

ðn1 þ n2Þ : (4)

The model is derived for a water-bag model where the back-

ground electrons have boundaries f�u1; u1g and density n01

giving ut1 ¼ u1=
ffiffiffi
3
p

, while the plateau electron component

has boundaries fu1; ubg, and density n02.

Numerical solutions of the coupled equations (2–4) have

been carried out. For illustration, the initial perturbation was

chosen to be a sinusoidal variation corresponding approxi-

mately to the linearly most unstable wavelength, k0 excited by

the beaming instability. Alternatively, we used a broad spec-

trum obtained by a random superposition of wave-packets.47

FIG. 5. Dispersion relation for the fully developed reference case resulting

from the unstable condition given by Fig. 1. The electron distribution is here

modeled by the same water-bag for the background electrons, while the

beam has been changed into a plateau, with the same electron density as

before, but with the plateau now extending to the boundary of the water-bag

for the background electrons. The plasma is now stable. The thin dashed line

for the original beam velocity ub in Fig. 1 is retained for reference.

FIG. 6. (Color online) Top: temporal and spatial Fourier transforms of the

beam electron density, shown in an ðx; kxÞ-plane. Colors are with logarith-

mic scale. A dashed line gives the original electron beam velocity. The anal-

ysis is restricted to the time interval t 2 f75=xpe; 500=xpeg. Bottom:

temporal and spatial Fourier transforms of the background electron density,

shown in an ðx; kxÞ-plane. Dashed lines gives the original electron beam ve-

locity and the negative ion sound speed for reference. The analysis is re-

stricted to the time interval t 2 f75=xpe; 500=xpeg.
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Initially, we took n1 ¼ 0, i.e., no perturbation of the back-

ground electrons. Physically this corresponds to the case

where the linear instability has developed and scattered the

beam electrons so that they form a plateau, see Figs. 2 and 4.

These electrons retain their spatial fluctuation amplitudes,

while the motion of the background electrons is ignored so

far. We use this state as the initial condition. At later times,

both branches of the dispersion relation are excited, both with

wavelength k0. The beating between these two modes gives

rise to an interference pattern, where details depend on the ini-

tial distribution of wave amplitudes, but the qualitative fea-

tures are independent of the initialization. The excitation of

waves on the Langmuir-like branch with wavelengths corre-

sponding to the unstable spectrum is thus not due to nonlinear

effects. We found n1=n0 and n2=n0 to be of the same order of

magnitude, implying that n1=n01 � n2=n02, with n01 � n02.

D. Late times

We studied the space-time evolution of the ion density

in the time interval t 2 f0; 800=xpeg and noted the evolution

of narrow, localized spikes and depletions having distributed

propagation velocities. The space-time Fourier transform of

the ion density is shown in Fig. 7. We note a dominant com-

ponent around small wavenumbers, seemingly with a propa-

gation velocity below the ion sound speed. We note the

presence of a backward traveling ion sound component, but

its amplitude is small at this time.

We have also carried out simulations with 50%

longer time duration and a somewhat reduced mass ratio

M=m ¼ 200 to include more ion plasma periods. As expected

we see no differences at all in the initial evolution, as summar-

ized here in Figs. 2 and 3. In this time interval the ions have

no time to move, due to their large inertia. Significant differ-

ences between the two simulations are found only very late in

the time evolution. We show the temporal and spatial Fourier

transforms of the ion density in an ðx; kxÞ-plane in the bottom

Fig. 7. It shows a pronounced increase in the ion activity at

these late times. The predominant feature is an increased level

of backward propagating ion sound waves with relatively

large wavenumbers, up to kkDe � 0:5, and large bandwidths.

We note a significant line-broadening and a banded structure

of the wave spectrum. In addition, we find an enhancement of

the long-wavelength component, which was seen already in

the top Fig. 7. This latter part corresponds to forward propa-

gating waves. The corresponding analysis of the electron com-

ponent is not shown here. These results look very much like

those in Fig. 6, except for an additional enhancement of the

backward traveling electron plasma mode around xpe. We

note the banded structure of the backward traveling waves.

The first band is centered at a wavenumber which is close to

the wavenumber separation appearing as a band between the

forward and backward traveling electron plasma waves in Fig.

6. The slope of the small “glitches” in the ion sound spectrum

corresponds quite accurately to the electron beam velocity. In

multidimensional plasma simulations long term variations can

be expected48 but these phenomena will not be seen here.

Our conclusion from the analysis summarized in Secs.

III A and III B is that the initial part of the time evolution is

essentially described by the (unstable) linear electron beam

dispersion relation. The enhanced wave amplitudes disperse

the beam basically by electron trapping in the dominant

wave component (see Fig. 2) rather than quasilinear phase-

space diffusion. (The quasilinear phase-space diffusion is

found only for initially broad “bump-on-tail” distributions.)

A quasistable plateau is formed by this process. The distribu-

tion function is stable and supports an enhanced fluctuation

level of electron waves. The space-time Fourier transform

allows the dispersion branches to be identified, and these are

well accounted for by the dispersion relation obtained by a

simplified water-bag model, where an electron acoustic

mode enters as an important element. At the time this disper-

sion relation is established, we find that a broad range of

wavenumbers have been populated on the Langmuir-mode

like dispersion branch, see Fig. 6. At the same time we note

FIG. 7. (Color online) Top: temporal and spatial Fourier transforms of the ion

density, shown in an ðx; kxÞ-plane, see also Fig. 6. The dashed line with a neg-

ative slope gives the sound speed. The analysis is restricted to the time interval

t 2 f75=xpe; 500=xpeg. Bottom: temporal and spatial Fourier transforms of

the ion density, here with M=m ¼ 200, shown in an ðx; kxÞ-plane. The dashed

line with a negative slope gives the ion sound speed for the present mass ratio.

The analysis is here covering a time interval t 2 f75=xpe; 1300=xpeg.
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a corresponding broad wavenumber range of low frequency

wave enhancements. These do not seem to fall on any disper-

sion relation, where ion acoustic waves would have been a

relevant candidate. At a much later stage, we do find ion

acoustic waves excited, but these have a banded structure

and seem to be predominantly backward propagating.

Reducing the electron-ion mass ratio (as in Fig. 7) allows

this latter process to be observed at an earlier time.

The dominant mode observed is for frequencies and

wavenumbers close to the linearly most unstable waves

ðx0; k0Þ, consistent with the analytical dispersion relations in

Fig. 1 and 5, respectively. The dispersion relations for the

beam modes are weakly dispersive, and we have

Dð2x0; 2k0Þ � 0 in terms of the dispersion relation Dðx; kÞ,
where we have Dðx0; k0Þ ¼ 0. For this case we cannot

expect a nonlinear Schrödinger (NLS)-type equation to

account for the weakly nonlinear evolution of these waves.43

The space-time evolution of wave components with large

wavenumbers that are also excited, albeit at smaller ampli-

tudes, can be described by an NLS-equation with the assump-

tion that the waveforms within the wavenumber spectrum are

only weakly coupled so that the evolution of wavenumbers

k� k0 are independent of the wavenumbers k � k0.

E. Space-time intermittency

The plasma fluctuations are strongly intermittent in time

as well as in space, as illustrated in Fig. 8. We show here the

time variation of the normalized background electron den-

sity, n01=n0, as detected at two positions. Together with the

signal we show its wavelet transform.49 The wave amplitude

increases exponentially in a short initial interval, saturates

and then has significant variations in amplitude. The early

parts of the oscillations (in the interval t 2 f100; 300g) the

oscillations are noticeably anharmonic, as found analytically

for large amplitude electron waves with immobile ions.50

This anharmonic nature can be made evident by expanding

the time axis, with a short time sample shown in Fig. 9. The

positive excursions are larger than the negative ones, while

the average value of the oscillations is zero. As a further evi-

dence of the anharmonic wave-functions we note the strong

harmonic generation seen in the wavelet transform. Second

harmonics of the electron plasma frequency are seen at sev-

eral of the large amplitude bursts, sometimes also weak sig-

natures of the third harmonics are found. The wavelet

analysis supplements the space-time Fourier transform in

Fig. 6 where the localization in space and time is lost, allow-

ing on the other hand a compact representation.

Closer inspection of short time samples as in Fig. 9

show that the dominant frequency is initially below the

plasma frequency, corresponding to the beam mode. The

wave amplitude grows exponentially until t � 70� 80. The

intensity of this wave component is reduced when the pla-

teau has formed in the electron velocity distribution function.

During this time interval, the ions are not yet set in motion.

The plateau in the beam electron distribution is fully devel-

oped around t � 200. The ensuing amplitude variation seen,

for instance, in Fig. 9 is partly due to the beating of different

wave modes. Simultaneously, however, the ion dynamics

begin to be important. The conclusion from Fig. 9 is that the

electron nonlinearities (those found with immobile ions) de-

velop in the initial phase. For times t > 200, the waves

appear as narrow band only when inspected in the time do-

main, where all modes have frequencies close to the electron

plasma frequency. In a wavenumber presentation, many

modes are excited.

At later times we observe a bursty nature of the oscilla-

tions, while at the same time a low frequency part of the sig-

nal develops. The two time signals shown in Fig. 8 are

noticeably different, although they are obtained at relatively

FIG. 8. (Color online) Illustration of the space-time intermittency of the

oscillations, here illustrated by the normalized density variations of the

background electron density. The signal is shown for two positions 2/5 and

3/5 of the entire length of the system. A corresponding figure shows the am-

plitude of a wavelet transform of the signals. The wavelet amplitude is

shown on a logarithmic color-scale. The most intense frequency band corre-

sponds to the electron plasma frequency xpe=2p. Note bursts of second har-

monics, and weak signatures of a third harmonic signal. The lower left and

right hand corners of the wavelet transforms are omitted, since they contain

edge effects.

FIG. 9. (Color online) Short-time sample of a wavelet transform, see Fig. 8.
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close spatial positions, thus illustrating the spatial intermit-

tency as well. The peak electron density perturbation

becomes significant in some of the bursts, up to

n1=n01 � 0:3. The intermittent or “bursty” nature of the

Langmuir wave field and the corresponding low frequency

fluctuations observed in our numerical analysis is consistent

with the sporadic nature of phenomena found in nature.1,12

F. Summary of video

A short video clip (plasma waves.mpg) illustrates the

spatiotemporal intermittency of the waves in detail. The

video is self-explanatory, with the first frame showing the

electron beam, followed by the set-up for the autoscale/

fixed-scale representation of figures for the densities of ions,

the background and the beam electrons. A summary is given

in Fig. 10. Note that some small ion motion can be observed

already from the beginning of the electron beam instability.

Due to the finite electron/ion-mass ratio, ions are set into

motion from the very beginning of the instability. Usually

this motion would be too small to be seen, but due to the

extremely low noise level in the Vlasov code, this ion motion

can be seen on the autoscaled figure in the lower left corner

in the video.

In the early phase of the instability the ions are affected

only due to the artificial low mass ratio. The dominant signal

has the form of a finite amplitude wave-packet, which is illus-

trated by the phase-space representations in Fig. 2. The signal

has the visual appearance of a soliton. It is here seen to disin-

tegrate due to electron trapping, see Fig. 2. The modes sup-

ported by the electron beam (right outermost panels) initially

have the form of a sinusoid modulated by a near Gaussian en-

velope. The sinusoidal oscillations develop a near cnoidal

waveform containing higher harmonics. Eventually, these

beam modes develop an irregular spiky spatial variation. Dur-

ing this evolution, the oscillations supported by the back-

ground electrons remain much more regular in comparison.

The modes distinguished here refer to different regions of

ðx; kÞ-space. The time evolution summarized so far occurs

within a time-span of � 100=xpe, which is so short that the

ion density has only been perturbed slightly. Similar observa-

tions were made in a related laboratory experiment.51 For

t > 110=xpe, quasistationary density depletion (saturating at

dn=n � 0:02) begins to develop in the ion density (near the

position x=kDe � 200). The electron plasma waves are

strongly modulated in the vicinity of this depletion, but we see

no trapped wave component. This ion depletion is a fluid phe-

nomenon, and not associated with an ion phase-space vortex.

IV. ANALYTICAL RESULTS

The numerical results shown before demonstrate that the

Langmuir, the electron acoustic as well as the beam-mode

branches are excited in the system, see the dispersion rela-

tion shown in Fig. 5. The standard Zakharov set of model

equations12,52 cannot account for the details in the nonlinear

evolution of the observed waves. A more general set of basic

nonlinear wave equations have been proposed,53,54 here writ-

ten in a general three-dimensional version in the rest frame

of the dense electron population. We have

� 2ix0

@

@t
n1 � u2

t1r2n1 � x2
0n1 þ

e

m
n01r2/

¼ � e

m

n01=Te1

n01=Te1 þ n02=Te2

� �
r 
 �nr/ð Þ (5)

for the background electrons with space-time varying density

n1, where the thermal velocity is ut1. To simplify the nota-

tion, we let thermal velocities include a factor 3 from here

on. Both n1 and / in Eq. (5) vary on a time scale much

slower than x�1
0 .

For the electron component forming the “plateau” in the

dispersion relation shown in Fig. 5 we find

� 2ix0

@

@t
n2 � u2

t2r2n2 � x2
0n2 þ 2ix0u0 
 rn2

� 2u0 
 r
@

@t
n2 þ u2

0r2n2 þ
e

m
n02r2/

¼ � e

m

n02=Te2

n01=Te1 þ n02=Te2

� �
r 
 �nr/ð Þ (6)

for the space-time varying density n2 and thermal velocity ut2

while u0 is the average (unperturbed) velocity of these elec-

trons. We have a rapidly varying wave component with

expð�ix0tÞ and slowly varying amplitudes nj for j ¼ 1; 2.

The slowly varying bulk plasma density is denoted by �n. We

have ignored small terms like @2nj=@t2 as compared to

x0@nj=@t for j ¼ 1; 2. The analysis is based on the observa-

tion that the two electron species are clearly distinguished in

phase-space.55 The left sides of Eqs. (5) and (6) are linear and

can be derived from Eqs. (2) and (3). The different waveforms

supported by the background and the plateau electrons are

clearly discernible on Fig. 6. The model suggested here

becomes inapplicable when the beam and background elec-

tron components become mixed. In the present simulations

this mixing is a slow process, at least within the time-span of

FIG. 10. Illustration of the video set-up. The top row is with fixed scales,

the lower row with autoscale, allowing observation of also very small ampli-

tudes. The left column shows the ion density, middle column shows the elec-

tron background density, and the right hand column is for the beam electron

density. On the top of the figure we have time in units of x�1
pe (enhanced

online). [URL: http://dx.doi.org/10.1063/1.3582084.1]
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the simulations. As the plateau constituted by the original

beam electrons is distorted at later times, the electron acoustic

mode will slowly be damped by Landau damping.

The relations (5) and (6) are also here coupled through

Poisson’s equation (4), where n1, n2, and / now refer to high

frequency variations. If we let u0 ¼ 0 and Te1 ¼ Te2 with

ue1 ¼ ue2 we recover the corresponding part of the standard

Zakharov equation by adding the two Eqs. (5) and (6) and

using Eq. (4).

In a fluid ion model, the evolution of the low frequency

plasma density is governed by

@2

@t2
�n� C2

sr2�n ¼ xp0

x0

� �2e0

M
r2 r/j j2 ; (7)

where xp0 is the electron plasma frequency derived from the

total plasma density n0 ¼ n01 þ n02 The sound speed

Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0Te1Te2=M

n02Te1 þ n01Te2

s
�

ffiffiffiffiffiffi
Tef

M

r
(8)

is derived from the pressure of both the background and the

plateau electrons.53,54 For later reference we introduced an

effective electron temperature Tef . In writing Eq. (7) we

ignored the drift velocity of the plateau electrons, which

gives a small correction of minor importance. If we linearize

Eqs. (5) and (6), we recover the basic dispersion relation

x0 ¼ x0ðk0Þ in, for instance, Fig. 5 by taking @=@t! 0 and

r ! ik0. We explicitly used the wave potential / in the

Eqs. (5–7) as a reminder of the assumption of electrostatic

waves. When using the equations, it is simpler to introduce

E ¼ �r/.

A. The relative density variations

We found in Figs. 3 and 6 that the relative oscillation

amplitudes of the background and beam electrons can be sig-

nificantly different. This observation can be substantiated by

linearizing Eqs. (5) and (6) to give the Fourier transformed

expressions

n1

n01

¼ e

m

k2
0/

k2
0u2

t1 � x2
0

(9)

n2

n02

¼ e

m

k2
0/

k2
0u2

t2 � ðx0 � k0 
 u0Þ2
: (10)

Here x0 and k0 are related through the linear dispersion rela-

tion (1). We note from Eqs. (9) and (10) that for large ratios

n02=n01 we can have significant differences between the fluc-

tuation amplitudes of n1 and n2, in qualitative agreement

with Figs. 3 and 6. For k0 ¼ 0 and x0 ¼ xpe. we have

n1=n01 ¼ n2=n02. For parts of the dispersion relation we find

the two density perturbations, n1 and n2, to be in counter-

phase. The results are illustrated in Fig. 11, where we used

Eqs. (9) and (10) and inserted the dispersion relation x0ðk0Þ
to display the result as a function of wavenumber k0. We

used the same parameters as in the dispersion relation in

Fig. 5. For frequencies larger than the electron plasma fre-

quency, the relative oscillation amplitude of the background

electron component is large, while it is relatively smaller for

the electron acoustic branch and its continuation. The results

of the present subsection apply for the linear phase of the

oscillations, but will be used for an estimate for the weakly

nonlinear wave analysis.

V. THE OSCILLATING TWO-STREAM INSTABILITY

First we present a simple analysis of the oscillating two-

stream instability37 for the present conditions. We assume

Te2 � Te1 and n01 � n02 and let x0ðk0Þ represent an oscilla-

tion on the electron acoustic mode, with an electric field

E0 exp �iðx0t� k0 
 rÞð Þ, with E0 k k0 k bx. For this mode we

have for the high-frequency density fluctuations that n2 � n1.

For the present unmagnetized model, the preferred direction of

the initial unperturbed state is unambiguously given by E0.

For the physical problem the preferred direction is given by

the magnetic field aligned radar scattering, which is also the

direction of the electron beam propagation. Considering only

large velocities u0, the wavenumber k0 is small. When we per-

turb this primary long-wavelength wave with a small ampli-

tude wave with wavenumber K, the largest charge separations

induced by E0 will be found when K k E0. A one-dimensional

analysis taking the preferred direction along E0 will conse-

quently capture the dominant nonlinear interactions.

We now assume that waves on the Langmuir wave like

dispersion relation are excited for wavenumbers K � k0 by

the nonlinear evolution of the primary waves generated by

the electron beam instability. On this branch we have

n1 � n2, where we use the results of Fig. 11 for an estimate.

With these assumptions the sole role of the plateau electrons

is to support the oscillations with frequency x0.

We consider a perturbation of the initial plane wave

Eðx; tÞ ¼ E0e�iðx0t�k0xÞ þ Eþe�iðx0þXÞtþiðk0þKÞx

þ E�e�iðx0�XÞtþiðk0�KÞx ;

assuming jE6j � E0. The low frequency plasma density

variation is related to Eðx; tÞ by Eq. (7) with

�n ¼ �nþe�iðXt�KxÞ þ �n�eþiðXt�KxÞ :

We can determine the perturbed electric field by linea-

rizing Eq. (5). We assume the electron beam velocity to be

large compared to the background electron thermal velocity

and let k0 � 0. We thus obtain

FIG. 11. Normalized relative density fluctuations ðn1=n01Þðn02=n2Þ as a

function of k0 for the two branches of the dispersion relation in Fig. 5. The

branch that is heavily damped by electron Landau damping is omitted here.
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x2
pe

n01

n0

� x2
0 þ K2u2

t1 
 2x0X

� �
E6 ¼ �

e2

e0m
c �n6E0 ;

(11)

to be completed by an equation accounting for the ion dy-

namics to obtain �n6. Since we assumed the electron beam

density to be small, n02 � n01, we have x2
pen01=n0 � x2

pe.

Here we introduced the abbreviation

c � n01=Te1

n01=Te1 þ n02=Te2

;

i.e. c ¼ ðTef=Te1Þðn01=n0Þ.

A. Fluid model for the ions

From jEj2 � E2
0 þ E0ðEþe�iðXt � KxÞ þ E�eiðXt � _KxÞ

þE�þeiðXt � KxÞ þ E��e�iðXt � KxÞÞ and Eq. (7), we find

X2 � K2C2
s

� �
�nþ ¼ 2

xpe

x0

� �2e0

M
K2E0 Eþ þ E��

� �
; (12)

where � denotes complex conjugate. A similar expression

applies for �n� and therefore �nþ ¼ �n��.

Eliminating Eþ, E�, �nþ, and �n�, the dispersion relation

for X and K takes the form

X2 � K2C2
s

x2
pen01=n0 � x2

0 þ K2u2
t1

� x2
pe

n01

n0

� x2
0 þ K2u2

t1

� �2
 

� 4x2
0X

2
�
¼ �2c

K2e2

Mm

xpe

x0

� �2

E2
0;

(13)

where Cs is given by Eq. (8). The result (13) is contained in

a more formal expression presented elsewhere.53

A numerical solution of Eq. (13) is shown in Fig. 12, giving

the unstable solution only. We used normalized units, where fre-

quencies X (both real and imaginary) are normalized by the ion

plasma frequency xpi and wavenumbers K by xpi=Cs. We

introduced WE=WP � ce0E2
0=n0MC2

s . We have four solutions

of Eq. (13) for X, where one is damped, one is unstable as

shown, and finally two dispersive solution where=fXg ¼ 0

The condition for the solution X ¼ 0 (i.e., the boundary

of the unstable solution in Fig. 12) is readily obtained from

Eq. (13) as

2c
e2

Mm

xpe

x0

� �2

E2
0 ¼ C2

s x2
pe

n01

n0

� x2
0 þ K2u2

t1

� �
: (14)

The right hand side is positive for all K provided

x2
pen01=n0 � x2

0. For the present simulation results this

inequality is satisfied in general. If x2
pen01=n0 � x2

0, the oscil-

lations of the Langmuir wave like branch are driven below

their resonance frequency and the response is in phase with the

pump wave.37 If the opposite inequality holds, the response is

in counter-phase for a certain wavenumber interval, and the

wave stability properties are changed correspondingly.

As an approximation, with x2
0 � x2

pen01=n0 and

=fXg � CsK, we find <fXg ¼ 0 and the growth rate in the

familiar form

=fXg ¼ Kut1

2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c
C2

s

e2E2
0

Mm
� K2u2

t1

s
: (15)

For this case, we have an instability when

K2u2
t1 < ð2c=C2

s Þðe2E2
0=MmÞ

In the simulations we can find E � ðm=eÞu2
th=kDe for the

present case, while x0=xpe � 0:7� 0:8. These analytical

results show the marginally unstable wavenumber to be

given by KmkDe � 2, which is somewhat larger than the

observed value at saturation KmkDe � 0:5, see, for instance,

Fig. 7. The analysis refers, however, to ideal fluid conditions.

Kinetic ion effects, to be discussed in Sec. V B reduce the

unstable wavenumber range.

The mode ð<fXg;KÞ need not satisfy any linear disper-

sion relation, for ion acoustic waves, for instance. The pres-

ent simplified results give X either real or imaginary. A more

detailed kinetic analysis, including k0 6¼ 0, can give a small

real part of X for the unstable conditions.

Simultaneously with the evolution of the oscillating two-

stream instability, wave-steepening and harmonic generation

of the electron acoustic mode, corresponding to the almost lin-

ear parts of the dispersion relation, see Fig. 5, can occur.

The foregoing analysis was presented in one spatial

dimension to be consistent with our numerical simulations.

A generalization to two or three spatial dimensions is

straightforward.

B. Kinetic model for the ions

A fluid model for the ion dynamics will be adequate

when Te � Ti, but this inequality is seldom fulfilled in

FIG. 12. Real and imaginary parts of the frequency of the unstable solution of

Eq. (13). The results are shown in normalized units for the case where

x0 ¼ 0:8xpe, assuming an electron-hydrogen mass ratio and n02=n0 ¼ 0:0025

as in Fig. 1. Note that here <fXg ¼ 0 where =fXg 6¼ 0 We have

KCs=xpi ¼ KkDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tef =Te1

p
.

052107-11 Nonlinear beam generated plasma waves Phys. Plasmas 18, 052107 (2011)

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



nature. Our numerical results refer to a case where Te1 ¼ Ti.

For this and similar cases, we anticipate that ion Landau

damping will be important for the stable part of the low fre-

quency oscillations. The linearly unstable branch is influenced

by ion kinetic effects. In the quasineutral limit we use the lin-

earized ion Vlasov equation for the slowly varying ion veloc-

ity distribution function �f ðx; u; tÞ with �n ¼
Ð

�f du to obtain

@

@t
�f þ u 
 r�f � C2

s

@

@x
�nf 00ðuÞ ¼

xp0

x0

� �2e0

M
f 00ðuÞr r/j j2 ;

(16)

replacing Eq. (7). We introduced the unperturbed ion veloc-

ity distribution function as f0ðuÞ, normalized so thatÐ1
�1 f0ðuÞdu ¼ 1. Models of the form (16) have been used in

many studies of weakly nonlinear waves.43,56,57 For an

unstable mode, =fXg > 0, the spatially one-dimensional

model

�nðX;KÞ ¼ 2
e0

MC2
s

xpe

x0

� �2

E0 Eþ þE��
		 		 GðX=KÞ

1�GðX=KÞ ; (17)

is replacing Eq. (12). We here introduced

GðX=KÞ � C2
s

1

�1

f 00ðuÞ
u� X=K

du ;

with the Landau contour of integration running below the

singularity when K > 0 as indicated. If we insert f0 ¼ dðuÞ
in Eq. (17), we reproduce the fluid result with cold ions.

When f0ðuÞ is a finite temperature Maxwellian, we have

GðX=KÞ ¼ 1
2
ðTef =TiÞZ0ðX=KÞ in terms of the derivative of

the plasma dispersion function.37 At X ¼ 0, we have

Gð0Þ ¼ �Tef=Ti, and for Tef � Ti, we find that Eq. (17)

inserted into Eq. (11) reproduces Eq. (14) found from a cold

ion fluid model. We can thus argue that the simple ion fluid

model will reproduce the basic properties of the instability,

with kinetic effects being relevant only for details in the

growth rates. As far as the X ¼ 0 reference value of the elec-

tric field Eq. (14) is concerned, the ion kinetic effects give a

factor of approximately ðTi þ Tef Þ=Tef . This correction

amounts to approximately a factor 2 for the present simula-

tion conditions.

The kinetic ion model summarized in the present sub-

section can be particularly relevant for non-Maxwellian ion

distributions often found in the ionosphere, but we anticipate

that these cases will require a numerical solution of the

resulting (implicit) dispersion relation. The propagating ion

sound modes will be strongly Landau damped when Te � Ti

and these waves will have a correspondingly weak signature

in the ðx; kÞ representation.

VI. DISCUSSIONS AND CONCLUSIONS

We have analyzed the electron density variations of the

initial �100 electron plasma periods of the simulations and

find here only activity on the low-frequency electron acous-

tic-like branch of the dispersion relation, see Fig. 1. The real

and imaginary parts agree well with the numerical result, as

shown by open and full circles in Fig. 1 for the initial linear

phase of the instability. In particular, we recall that the ana-

lytical result was obtained by a simplified water-bag model

rather than a full kinetic dispersion model.36 The large line-

widths in Fig. 3 reflect the growth-rate of the linear instabil-

ity. Simultaneously, we find a strong scattering in velocity

space of the beam electrons. The activity in the ion density is

negligible in the same time-interval. As the linear instability

saturates, the high frequency (Langmuir-like) part of the dis-

persion relation becomes populated, see Fig. 3. Investiga-

tions of the ion density at later times show first the evolution

of a long-wavelength spatially varying density, which is

almost stationary, and does not follow any linear dispersion

relation. Later, we find a slow evolution of a backward trav-

eling ion acoustic wave and a smaller amplitude forward

propagating component, which is barely noticeable in Fig. 7.

The latter component originates from the decay from the

beam modes to the ion sound mode and a backward traveling

electron plasma wave.

If the numerical simulation should be extended for times

longer than those considered in the present study, we believe

that collisions should be taken into account: for the iono-

spheric regions of interest here, the plasma parameter (num-

ber of particles in a Debye sphere) has typical values of the

order of Np � 104. We can use the estimate for the electron

collision time sc � Np=xpe and find this to be approximately

250 ion plasma periods. For longer time-spans the electron

plateau will be eroded by collisions and the electron acoustic

mode will become heavily damped and unimportant for the

wave dynamics.

In order to illustrate the dynamics at a late time (as

measured in units of the ion plasma period), we also per-

formed simulations with extended time durations, up to

1300=xpe, and a reduced mass ratio M=m ¼ 200. We find an

enhanced activity both in the long and short wavelength parts

of the ion sound spectrum.

We have studied the electron and ion phase-spaces at

selected time intervals. Electron holes can be observed at sev-

eral stages of the instability. Although we note a strong activity

also in ion phase-space, we find it interesting that no long-lived

ion holes are formed. Numerical results20 have indeed indi-

cated that no ion holes should be formed for the present tem-

perature ratios Te=Ti. However, these observations refer to a

case without electron plasma wave activity. In studies of ion

upflow and naturally enhanced ion lines,58 it was found that

NEIALs were found predominantly at enhanced electron-ion

temperature ratios. Under these conditions it is possible that

ion and electron holes can have a more important role than in

our simulations. It will be worthwhile to repeat simulations

like ours for these conditions, taking into account also the non-

thermal ion velocity distribution due to the ion outflow.

We have presented results from numerical solutions of

the coupled electron-ion Vlasov equations, using parameters

that are relevant also for ionospheric conditions but nonethe-

less differ from those that can be modeled by standard stud-

ies based on, for instance, Zakharov-type equations with

energy sources and sinks.12

Our numerical results show the following features rele-

vant also for the observations of NEIALs: (1) The oscillating

two-stream instability37 of the electron beam generated
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waves excite high frequency as well as low frequency oscil-

lations. The latter do not necessarily follow the ion acoustic

dispersion relation and can appear as a broad unshifted or a

weakly shifted line, filling-in between the two normally

occurring ion acoustic lines. (2) The oscillating two-stream

instability simultaneously excites electron plasma waves

with x � xpe in a broad wavenumber range, that can decay

to another electron wave and an ion sound wave. An impor-

tant point is that the electron acoustic mode can participate

in the decay and the Langmuir-condensate consequently

becomes leaky when this line of decay is active.53 A part of

the decay product is an asymmetric population of sound

waves propagating in opposite directions. For Te � Ti these

waves are heavily ion-Landau damped. (3) Early in the evo-

lution of the Langmuir waves, we find nonlinear “spiky”

waveforms developing, a feature not involving the ion dy-

namics. These effects are not included in the standard mod-

els based on the Zakharov equations. (4) A robust feature of

our simulation is the presence of a wave branch with very

small propagation velocities, smaller than the ion sound

speed. These are excited in a range of wavenumbers K, with

an estimate 0 � jKj � u�1
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c=C2

s Þðe2E2
0=MmÞ

p
, see Secs.

V A and V B. Within this range it will be possible to observe

both Langmuir and weakly shifted ion lines simultaneously.

This analysis is, however, based on the presence of an elec-

tron acoustic branch, and this will disappear at later times.

Propagating ion acoustic waves appear late in our simula-

tions. An ion flow will make the unshifted line appear as

propagating, but we need sonic flows to confuse it with the

ion-line, and this will be exceptional. (5) Late in the evolu-

tion of the waveforms, we find that electron phase-space vor-

tices (but no ion vortices) are formed. These can saturate in

nonlinear ion-acoustic pulses, propagating at a speed larger

than the linear ion sound speed.16,59 Many of these electron

holes are quite faint (i.e., having relative density perturba-

tions � 1). Of those macroscopically noticeable (with den-

sity variations exceeding � 2%), we have approximately a

density of one electron hole per � 300kDe, with an individual

lifetime of approximately 200 electron plasma periods, spe.

These values refer to a ¼ 0:1. The electron holes are thus

transient phenomena here, but they can be formed by elec-

tron trapping at any time of the saturated stage of the insta-

bility. Very large electron holes are formed during the first

phase of the linear instability, where the initial electron

beam is dispersed, but these holes disperse within the first 50

spe. It is possible that the enhanced temperature ratios

Te=Ti � 2 observed in some experiments58 will allow long-

lived ion phase-space vortices.

A limitation of our simulations is the short spatial do-

main, which does not allow us to study influences of weak

large scale density gradients. Other studies17,18 indicated that

these effects could be important. Those results rely on an

entirely different computational model60 based on the weak

turbulence approximation. We have studied more localized

density gradients in ion density, but these were of scale

lengths too short to be relevant for those previous stud-

ies,17,18 and no conclusive results can be presented.

Finally, we emphasize that our results have applications

beyond their relevance for the ionospheric observations and

apply for electrostatic plasma waves generated by low den-

sity cold electron beams in collisionless plasmas. The condi-

tions analyzed in the present work can be found in many

laboratory plasmas as well as in nature.
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