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1. Deriving Expressions (6), (7) and (8)

Only expression (8) needs derivation, since (6) and (7) are immediate consequences. Note

that f(γ) = f(γ|Z) by assumption, so that

E(γ|D > t,Z) =

∫ ∞
0

γf(γ|D > t,Z)dγ

=

∫∞
0
γf(γ)P (D > t|γ,Z)dγ∫∞

0
f(γ)P (D > t|γ,Z)dγ

.

Now, since P (D > t|γZ) = exp{−γA(t)}, where A(t) =
∫ t
0
λD0 (u) exp{αTZ(u)}du, it is

easily seen that∫ ∞
0

f(γ)P (D > t|γ,Z)dγ =

∫ ∞
0

1

θΓ(1
θ
)

(γ
θ

) 1
θ
−1

exp

[
−γ
{

1

θ
+ A(t)

}]
dγ

= {1 + θA(t)}−1/θ .

Similarly, ∫ ∞
0

γf(γ)P (D > t|γ,Z)dγ = {1 + θA(t)}−(1+1/θ),

so that

E(γ|D > t,Z) = {1 + θA(t)}−1 = w(t),

as given in equation (8) of the main paper.

2. Estimating function for θ

To show that expression (15) from Section 2 of the main manuscript is an unbiased estimating

function, we define

dH(t) = {Y`(t), dND
` (t),Z`; ` = 1, . . . , n}.

Under the assumption of independent censoring, it is easily seen that

E[NR
i (t)dND

i (t)|dH(t)] = (θ + 1)r2i(t)dN
D
i (t).
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Also, it can be seen that

E

{
n∑
j=1

r2i(t)

r2j(t)
Y ∗j (t)NR

j (t)|dH(t)

}
=

n∑
j=1

Y ∗j (t)NR
i (t).

Thus, it follows that the quantity

E{NR
i (t)|Di > t} = r2i(t)

can be ‘estimated’ with

n∑
j=1

r2i(t)

r2j(t)
Y ∗j (t)NR

j (t)

/
n∑
j=1

Y ∗j (t) = r2i(t)G(t),

where G(t) is defined in equation (16). It follows that

E[{NR
i (t)− (θ + 1)r2i(t)G(t)}dND

i (t)|dH(t)] = 0

Thus, we have

E{NR
i (t)− (θ + 1)r2i(t)G(t)]dND

i (t)} = 0,

and the integral of such terms in (15) also has mean 0.

3. Extension of proposed methods to competing terminal events

We now complete the description (from Section 4 of the main manuscript) of how the

proposed methods can be extended to accommodate terminating events with competing

risks.

Picking up where the description at the end of Section 4 left off, we obtain unbiased estimat-

ing functions forα1,α2 and β from the (pseudo) partial likelihood analysis of the rates in (23)

and (24) of the main manuscript. Similarly, estimating functions for the cumulative rate and

hazard functions are obtained using the Nelson-Aalen estimators. Finally, estimating func-

tions of θ1 and θ2 are obtained. Specifically, we redefine η = (βT ,αT1 ,α
T
2 , θ1, θ2, [λ

D
01]

T , [λD02]
T )T .

Here we are considering the time-independent case so that λR0 does not need to be estimated

simultaneously, which significantly simplifies the computation. Note that the more general
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time-dependent case is also feasible, however. Let φ represent a parameter (e.g. φ = α) and

define

S
(k)
m1(φ, t) = n−1

n∑
i=1

Yi(t)wmi(t)Z
⊗k
i exp(φTZi),

k = 0, 1, 2 and m = 1, 2, 3. Let hi3(t) = w3i(t) exp{βTZi} and let G3(t) equal G(t) as defined

in (16) of the article, but with wi(t) replaced by w3i(t). Further, let tD`1, . . . , t
D
`n`

be the ordered

distinct failure times for type `, ` = 1, 2.

As before, estimates of the intensities are discrete with jumps at the distinct event times.

We let λD0` = (λD0`1, λ
D
0`2, . . . , λ

D
0`n`

)T , where λD0`j = dΛD
0`(t

D
`j), j = 1, . . . , n`, and we define dD`j

as the number of type ` terminal event at tD`j. As above, ties are handled using the Breslow

Approximation. The unbiased estimating equations are

UG(η) = (UT
1G,U

T
2G,U

T
3G, U4G, U5G,U

T
6G,U

T
7G)T = 0, where the components of UG corre-

spond to the components in η = (βT ,αT1 ,α
T
2 , θ1, θ2, [λ

D
01]

T , [λD02]
T )T . Here, we have

U 1G =
n∑
i=1

∫ τ

0

{
Zi −

S
(1)
31 (β, t)

S
(0)
31 (β, t)

}
dNR

i (t),

U 2G =
n∑
i=1

∫ τ

0

{
Zi −

S
(1)
11 (α1, t)

S
(0)
11 (α1, t)

}
dND

i1 (t)

U 3G =
n∑
i=1

∫ τ

0

{
Zi −

S
(1)
21 (α2, t)

S
(0)
21 (α2, t)

}
dND

i2 (t)

U4G =
n∑
i=1

∫ τ

0

{
NR
i (t)− (θ1 + 1)h3i(t)G3(t)

}
dND

i1 (t)

U5G =
n∑
i=1

∫ τ

0

{
NR
i (t)− (θ2 + 1)h3i(t)G3(u)

}
dND

i2 (t).

Finally the jth elements of U 6G and U 7G are,

U6Gj = dD1j − nS
(0)
11 (α1, t

D
1j)λ

D
01j, j = 1, . . . nD1.

U7Gj = dD2j − nS
(0)
21 (α2, t

D
2j)λ

D
02j, j = 1, . . . nD2

Asymptotic properties are similar to those outlined above, sandwich-type estimators yield-
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ing estimates of the asymptotic variance of components of η̂. This method can be generalized

to handle any number of competing risks for the terminal event.

4. Extension of the methods to incorporate negative association

Although positive association between the rate of the recurrent events and the terminal event

is most common, negative association is also possible. In this section we consider a model

that reflects negative association, then develop an approach that incorporates both negative

and positive association.

We consider a model in which equation (4) in the main paper is replaced with

dΛR(t|γ) = γ−1 exp{βTZ(t)}dΛR
0 (t).

The equation for the death process is left unchanged as

dΛD(t|γ) = γ exp{αTZ(t)}dΛD
0 (t).

As before, we assume that γ ∼ Gamma(θ−1, θ−1). In this case, the common frailty reflects a

negative association between the event types.

The marginal rate function is given by

dΛR(t) = w∗(t) exp{βTZ(t)}λ0R(t)

and the marginal hazard by

dΛD(t) = w(t) exp{αTZ(t)}λ0D(t),

with the weight functions being w(t) [as defined in (8)] and

w∗(t) = E{γ−1|D > t} =
1 + θ

∫ t
0

exp{αTZ(u)}dΛD
0 (u)

1− θ
=

1

w(t)(1− θ)
.

In the equations for β and the increments of ΛR
0 (t), it is the weight function w∗(t) that is

appropriate. In the equations for α and ΛD
0 (t), the weight function w(t) applies as before.

Note that we require θ < 1 for finite expectation of γ in the negative correlation case.
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In this model, it can be seen that equations (12) and (13) are replaced with

r1i(t) = w∗i (t)

∫ t

0

exp{βTZi(u)}dΛR
0 (u)

and

r2i(t) =
wi(t)

1− θ

∫ t

0

exp{βTZi(u)}dΛR
0 (u),

respectively. Analogous to equation (14), It then follows that

r1i(t)

r2i(t)
= 1− θ.

The same estimating equation for θ can be used as in (15) except that 1 + θ is replaced with

1− θ.

This can be unified to apply to both positive and negative correlation as follows. We expand

the range of θ to (−1,∞) and use the equation (15) to estimate θ on this range. Negative θ

corresponds to negative correlation. Estimating equations for α and β are obtained in the

same way as before and correspond to weighted estimated equations of the same type as in

the main paper. The weights for α and ΛD
0 (·) are

wDi (t) =

[
1 + |θ|

∫ t

0

exp{βTZ(u)}dΛR
0 (u)

]−1
;

while for β and ΛR
0 (·), the weights are

wRi (t) = wDi (t), θ > 0

= {wDi (t)(1 + θ)}−1, θ < 0.

This combined model allows estimation of θ for both positive and negative association. For

values of θ̂ near zero, a confidence interval for θ would include both positive and negative

values. In most applications, however, positive values of θ well removed from 0 will be of

most interest. This is the nature of the application in the main paper.
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5. Further analysis of DOPPS data

In this section we describe additional analyses of the Dialysis Outcomes and Practice Patterns

Study (DOPPS) data. In particular, we employ the methods described in Section 3 of this

document.

In Table 1, we list results for a model for which deaths are classified as either cardiovascular

disease (CVD) or non-CVD. It is revealed that the increased mortality hazard for Italy is

much stronger for CVD than non-CVD deaths. On the other hand, the effect of age was much

more pronounced for non-CVD than CVD deaths. Although the model from Table 1 indicates

that congestive heart failure was not a significant predictor of all-cause mortality, it is shown

in Table 1 that CHF significantly increases the CVD mortality hazard. A similar comment

applies to CHD/CAD. Somewhat conversely, the PVD increase on mortality appears to be

strongest for non-CVD mortality. Results for hospitalization were very similar to those from

Table 1, which would be expected. The frailty parameter for the association between CVD

death and hospitalization is estimated to be θ̂1 = 1.30 with an estimated standard error 0.44

(P = 0.003). According to this estimate, a patient who is known to die of CVD at time t is

expected to have 2.3 times more hospitalizations than a patient who has the same covariate

values and is alive at time t,. The estimate of θ2 is 1.00 with an estimated standard error of

0.30 (p < 0.001). Thus, the rate of hospitalization is strongly and positively associated with

the hazard of both CVD and non-CVD death.

[Table 1 about here.]
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Table 1: Expectation-based analysis of Euro-DOPPS data with two types of terminal events:
CVD and non-CVD death

CVD Death Non CVD Death Hospitalization

Covariate α̂1 ŜE p α̂2 ŜE p β̂ ŜE p

Diabetes 0.644 0.414 0.120 -0.622 0.350 0.075 0.184 0.125 0.142
Sex=M 0.022 0.362 0.952 -0.195 0.279 0.484 -0.101 0.107 0.346
Educ: >College 0.129 0.646 0.841 -1.820 2.201 0.408 -0.259 0.165 0.118

Country
France 0.901 0.608 0.138 0.322 0.074 < 0.001 0.178 0.157 0.256
Germany -0.324 0.706 0.646 -0.260 0.110 0.019 -0.369 0.174 0.034
Italy 1.122 0.599 0.061 0.493 0.098 < 0.001 -0.228 0.173 0.186
Spain 0.501 0.624 0.422 0.091 0.109 0.405 -0.666 0.161 < 0.001
U.K. 0 . . 0 . . 0 . .

Age
per 5 yrs 0.143 0.069 0.040 0.249 0.086 0.004 0.025 0.020 0.213

Body mass index
BMI < 20 0.471 0.420 0.263 0.029 0.380 0.940 0.030 0.140 0.829
BMI > 30 -1.088 0.726 0.134 -0.057 0.381 0.881 0.045 0.160 0.779
BMI ∈ [20, 30) 0 . . 0 . . 0 . .

Comorbid conditions
Cer Vas Dis 0.973 0.407 0.017 0.679 0.261 0.009 0.147 0.126 0.241
CHF 0.840 0.362 0.020 0.137 0.275 0.618 0.121 0.128 0.344
CHD/CAD 0.835 0.358 0.020 0.047 0.335 0.888 0.159 0.119 0.180
Hypertension -0.787 0.362 0.030 -0.923 0.257 < 0.001 -0.311 0.133 0.020
PVD 0.545 0.416 0.190 0.794 0.322 0.014 0.299 0.124 0.016


