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Summary. In clinical and observational studies, the event of interest can often recur on the same subject. In a more
complicated situation, there exists a terminal event (e.g., death) which stops the recurrent event process. In many such
instances, the terminal event is strongly correlated with the recurrent event process. We consider the recurrent/terminal event
setting and model the dependence through a shared gamma frailty that is included in both the recurrent event rate and
terminal event hazard functions. Conditional on the frailty, a model is specified only for the marginal recurrent event process,
hence avoiding the strong Poisson-type assumptions traditionally used. Analysis is based on estimating functions that allow for
estimation of covariate effects on the recurrent event rate and terminal event hazard. The method also permits estimation of
the degree of association between the two processes. Closed-form asymptotic variance estimators are proposed. The proposed
method is evaluated through simulations to assess the applicability of the asymptotic results in finite samples and the sensitivity
of the method to its underlying assumptions. The methods can be extended in straightforward ways to accommodate multiple
types of recurrent and terminal events. Finally, the methods are illustrated in an analysis of hospitalization data for patients
in an international multi-center study of outcomes among dialysis patients.
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1. Introduction

In many medical studies, subjects can experience multiple
events or failures. Examples in the literature include mul-
tiple recurrences of bladder tumors, coughing and wheezing
episodes in bronchial asthma patients, and repeated hospi-
talizations among renal failure patients. Many methods have
been proposed for the analysis of repeated events. One ap-
proach is to use point processes to model the complete in-
tensity function, where complete intensity refers to the event
rate conditional on the complete preceding covariate and
event history; for example, Prentice, Williams, and Peter-
son (1981), and Lawless (1987). Various authors have revie-
wed available methods for the analysis of recurrent events;
for example, Kalbfleisch and Prentice (2002);Therneau and
Grambsch (2000), Cook and Lawless (2002); Cai and Schaubel
(2004). Cook and Lawless (2007) give an excellent synthesis
and overview.

Recent approaches have been more focused on modeling
the marginal rate conditional on baseline covariates, but
not conditioning on the preceding event history. This mar-
ginal rate is of particular interest when the study goals re-
late to population aspects of failure rates and covariate ef-
fects. Lawless and Nadeau (1995) suggest Cox-type models
for the marginal rate and obtain asymptotic results under
a discrete failure time model. Lin et al. (2000) use empi-
rical process theory to extend these methods to absolutely
continuous event times, based on approaches analogous to
the generalized estimating equation methods for longitudinal
data.

In many instances, there exists a separate terminal event,
death for example, which precludes the occurrence of addi-
tional repeated events. Further, it is often the case that the
terminal event is strongly correlated with the recurrent event
process. More explicitly, if the rate of the recurrent event is
unusually high (low) in an individual, that individual is also
subject to an increased (decreased) death hazard.

Methods for recurrent/terminal event data can also be clas-
sified as complete intensity or marginal. Shared random ef-
fects or frailty models incorporate the dependence between
the recurrent and the terminal event by allowing a common
frailty variable to have a multiplicative effect on their respec-
tive rates. These models are based on the assumption that
the complete intensity of the recurrent events and the ter-
minal event is fully specified by the observed covariates and
the unobserved frailty; for example, Wang, Qin, and Chiang
(2001); Huang and Wang (2004); Liu, Wolfe, and Huang
(2004). In all of the existing frailty models, it is assumed that
given the frailty, the recurrent event process is a nonhomo-
geneous Poisson process. Since this assumption is involved in
all aspects of the estimation, the estimation procedures would
generally be sensitive to deviations from the Poisson assump-
tion. Ye, Kalbfleisch, and Schaubel (2007)proposed a joint
semiparametric model in which the event rate is essentially
a marginal model in that it is conditional only on the cova-
riates and the frailty, but not on the previous event history
of the process. However, Ye et al. (2007) used a likelihood
approach to estimate the frailty parameter, which utilizes a
Poisson process assumption.
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As an alternative to complete intensity models, several au-
thors have proposed marginal models in which the rate func-
tions correspond to average rates that would arise across the
population; for example, Cook and Lawless (1997); Ghosh and
Lin (2002). Such marginal methods are robust to deviations
from the Poisson assumption, but the regression parameters
are somewhat hard to interpret.

In this article, we develop estimating equation-based me-
thods to estimate the marginal and association parameters
in a joint frailty model. The proposed method has at least
three important advantages over related approaches in exis-
ting literature. First, under the proposed approach, parame-
ter estimation is carried out completely in the absence of the
Poisson process assumption, which leads to greatly increased
robustness. Second, the estimate of the common frailty dis-
tribution relates directly and only to the association between
the recurrent and terminal event processes. Third, the analy-
sis allows simple incorporation of defined time-dependent co-
variates that are obtained as interactions between functions
of time and fixed covariates.

2. Proposed Methods: Expectation-Based
Analysis

Let NR∗
i (t) and ND∗

i (t) denote the processes that count the true
(possibly unobserved) recurrent and death events, respecti-
vely for the ith subject (i = 1, 2, . . . , n) in the time interval
(0, t], and let Di be the terminal event time. The censoring
time is denoted by Ci, with τ being the end-of-study time.
The observation time is then given by Xi = min(Ci, Di, τ),
with Yi(t) = I(Xi � t) representing the at-risk indicator. The
counting processes for the observed recurrent event and
death processes are, respectively NR

i (t) = ∫ t

0
Yi(u) dNR∗

i (u) and

ND
i (t) = ∫ t

0
Yi(u) dND∗

i (u) for t > 0. We suppose also that
a vector of fixed covariates Z = (Z1, Z2, . . .)

T is observed
(at t = 0) on each individual and consider a vector Z(t) =
[Z1(t), . . . , Zp(t)]

T of possibly time dependent modeled cova-
riates comprised of elements of Z and interactions of compo-
nents of Z with specified functions of time. Note that Z(t) is
a particular example of an external time-dependent covariate
(Kalbfleisch and Prentice, 2002).

Consider a (partial) marginal rate of the recurrent event
process given the terminal event time D = s and frailty va-
riable γ as

d�R(t|γ) = P
{
dNR∗(t) = 1|Z, D = s, γ

}
, s � t. (1)

Note that d�R(t|γ, Z) may depend on Z and the frailty γ,
but as the notation indicates, it does not depend on the gi-
ven death time D = s � t. As a consequence, this specifies
that (conditional on covariates, Z) γ accounts for the corre-
lation between the recurrent events and death. Note that we
also specify that P{dNR∗(t) = 1|Z, D = s, γ} = 0, s < t, which
explicitly acknowledges that the terminal event stops the re-
current event process.

It is easy to see that a consequence of the definition (1) is
that

d�R(t|γ) = P
{
dNR∗(t) = 1|Z, D � t, γ

}
, (2)

so that, given γ, (1) or (2) specifies the marginal rate of the
recurrent event process among those surviving to time t. In
addition, we specify the hazard function for the terminal event
as

d�D(t|γ) = P
{
dND∗(t) = 1|Z, D � t, γ

}
. (3)

These marginal rates given γ, (2) and (3), could be modeled
in many ways, but we consider Cox or relative risk models of
the form

d�R(t|γ) = γ exp
{
βT Z(t)

}
d�R

0(t), (4)

d�D(t|γ) = γ exp
{
αT Z(t)

}
d�D

0 (t), (5)

where d�D
0 (t) and d�R

0(t) are unspecified baseline hazard and
rate functions for the death and recurrent event processes,
respectively. We assume that the frailty γ has a gamma dis-
tribution with mean 1, variance θ, and density

gθ(γ) =
{

�

(
1

θ

)
θ1/θ

}−1

exp
{−γ

θ

}
γ1/θ−1. (6)

As is usually the case for frailty models, the mean is fixed at
E[γ] = 1 for identifiability and the distribution of γ is assumed
to be independent of Z.

We proceed by analyzing the average rates obtained by
taking the conditional expectation of (4) and (5) with respect
to γ given D � t and Z. With the gamma frailty model, this
yields the marginal rates,

d�R(t) = P
{
dNR∗(t) = 1|D � t, Z

}
= w(t) exp

{
βT Z(t)

}
d�R

0(t), (7)

d�D(t) = P
{
dND∗(t) = 1|D � t, Z

}
= w(t) exp

{
αT Z(t)

}
d�D

0 (t), (8)

where the “weight function” is given by

w(t) = E[γ|D � t, Z] = 1

1 + θ
∫ t

0
λD
0 (u) exp{αT Z(u)}du

. (9)

Derivations of (7), (8), and (9) are provided in the Supple-
mentary Materials.

Models (7) and (8) pertain to the underlying unobserved
counting processes NR∗ and ND∗, respectively. It is assumed
throughout that the censoring time is conditionally inde-
pendent of both the recurrent and terminal events, such that
P{dNR∗

i (t) = 1|Di � t, Ci � t, Zi} = P{dNR∗
i (t) = 1|Di � t, Zi}

and P{dND∗
i (t) = 1|Di � t, Ci � t, Zi} = P{dND∗

i (t) = 1|Di �
t, Zi}. Thus, with respect to the observed-data counting
processes, we have

P
{
dNR

i (t) = 1|Yi(t), Zi

} = Yi(t)wi(t) exp
{
βT Zi(t)

}
d�R

0(t),

(10)
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P
{
dND

i (t) = 1|Yi(t), Zi

} = Yi(t)wi(t) exp
{
αT Zi(t)

}
d�D

0 (t).

(11)

For specified w(t), models (7) and (8) have a standard propor-
tional rate/hazard form. Under independent censoring, unbia-
sed estimating equations for α and β can, therefore be obtai-
ned by taking the first derivatives of the pseudo partial like-
lihood arising from (10) and (11), treating wi(t) as a known
function. Similarly, simple estimates or estimating functions
are available for the underlying cumulative baseline rate and
hazard, �R

0(t) and �D
0 (t), again treating wi(t) as a known func-

tion. Of course, the weight function w(t) in (9) must also be
estimated, but we develop a recursive technique in which wi(t)
is updated on each iteration in solving a set of joint estimating
equations. We explicitly outline this approach shortly.

We estimate θ by constructing a separate estimating equa-
tion. For this purpose, we consider the previous number of
recurrent events for a subject known to die at time t, compa-
red to that for a subject known to be at risk of dying at time
t. Along these lines, we define r1i(t) = E[NR∗

i (t)|Zi, Di = t] and
r2i(t) = E[NR∗

i (t)|Di > t, Zi]. Under the assumed models,

r1i(t) = (θ + 1)wi(t)

t∫
0

exp
{
βT Zi(u)

}
d�R

0(u), (12)

r2i(t) = wi(t)

t∫
0

exp
{
βT Zi(u)

}
d�R

0(u), (13)

which provides a convenient way of describing θ as an asso-
ciation measure, since

θ + 1 = r1i(t)

r2i(t)
. (14)

For instance, if θ = 1, the expected number of recurrent events
in (0, t] for an individual with D = t is twice the expected
number for a randomly chosen individual with identical cova-
riates but Di � t. On the other hand, if θ = 0, the expectations
for the two subjects would be equal, which indicates a lack of
association between the death and recurrent event processes,
conditional on the covariates.

The relationship (14) leads to the following estimating func-
tion for θ,

n∑
i=1

τ∫
0

{
NR

i (t) − (θ + 1)G(t)r2i(t)
}

dND
i (t), (15)

where we define

G(t) =
∑n

j=1
r2j(t)

−1Y ∗
j (t)NR

j (t)∑n

j=1
Y ∗

j (t)
. (16)

where Y ∗
j (t) = Yj(t){1 − ND

j (t)} is an indicator that j is at
risk at t and fails after t. Note that when the modeled cova-
riates are time-independent, Zi(t) = Zi, the estimating func-

tion simplifies considerably since G(t)r2i(t) no longer depends
on �R

0(t). A demonstration of the unbiasedness of (15) is pro-
vided in the Supplementary Materials.

In summary, β can be estimated using a weighted version of
the estimating function proposed in Lin et al. (2000), while α

can be estimated through a weighted partial likelihood score
function. The baseline hazard and rate functions are estima-
ted using weighted Breslow-type estimators. In addition, θ can
be estimated as the solution to an unbiased estimating equa-
tion. Since estimation of each parameter depends on know-
ledge of at least a subset of the remaining parameters, the
proposed estimating equations must be solved iteratively.

First, for a parameter φ (e.g., φ = α), define

S
(d)
1 (φ, t) = n−1

n∑
i=1

Yi(t)wi(t)Z
⊗k
i (t) exp

{
φT Zi(t)

}
,

for d=0,1,2, where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . Further,
let tR1 , . . . , tRnR

be the nR ordered observed distinct recurrent
event times (across all subjects) and tD1 , . . . , tDnD

be the nD

ordered distinct observed failure times. Standard estimates
of the baseline recurrent event rates and the baseline ha-
zard are discrete with jumps at the distinct event times.
Let λR

0 = (λR
01, λ

R
02, . . . , λ

R
0nR

)T and λD
0 = (λD

01, λ
D
02, . . . , λ

D
0nD

)T ,
where λR

0j = d�R
0(tRj ), j = 1, . . . , nR and λD

0j = d�D
0 (tDj ), j =

1, . . . , nD. Let dR
j and dD

j be the number of recurrent events
at tRj and the number of deaths at tDj , respectively.

Letting η = (βT , αT , θ, [λD
0 ]T , [λR

0 ]T )T , the unbiased estima-
ting equations are

U(η) = (
UT

1 , UT
2 , U3, U

T
4 , UT

5

)T = 0,

where we have

U1 =
n∑

i=1

τ∫
0

{
Zi − S

(1)
1 (β, t)

S
(0)
1 (β, t)

}
dNR

i (t),

U2 =
n∑

i=1

τ∫
0

{
Zi − S

(1)
1 (α, t)

S
(0)
1 (α, t)

}
dND

i (t),

U3 =
n∑

i=1

τ∫
0

{
NR

i (t) − (θ + 1)r2i(t)G(t)
}

dND
i (t),

whereas the jth elements of U4 and U5 are,

U4j = dD
j − nS

(0)
1 (α, tDj )λD

0j, j = 1, . . . , nD

U5j = dR
j − nS

(0)
1 (β, tRj )λR

0j, j = 1, . . . , nR.

Our numerical approach to solving U(η) = 0 can be sum-
marized as follows:

(i) Let η(0) = (α(0), β(0), θ(0), λ
D(0)
0 , λ

R(0)
0 ) be initial esti-

mates, an issue address below.

(ii) Let w
(0)
i (u) = wi(u; λ

D(0)
0 , α(0), θ(0)).
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(iii) Replace wi(u) with w
(0)
i (u) in U1 = 0, U2 = 0, U4 = 0,

and U5 = 0 and solve for updated estimates β(1), α(1),

λ
D(1)
0 , and λ

R(1)
0 .

(iv) Given α(1), β(1), λ
D(1)
0 , and λ

R(1)
0 , w

(1)
i (u) =

wi(u; λ
D(1)
0 , α(1), θ(0)), obtain θ(1) by solving U3 = 0.

(v) Replace η(0) with η(1) and repeat step (ii) to (iv) until
convergence is obtained.

For initial values, one could take θ(0) = 1, α(0) = 0, β(0) = 0,

and set λ
D(0)
0 and λ

R(0)
0 to their respective Nelson–Aalen type

estimates. An alternative (which reduces the number of requi-

red iterates somewhat) is to set α(0) = α̃ and β(0) to β̃, where

α̃ and β̃ are based on separately fitted Cox-type models which

ignore the frailty; then set λ
D(0)
0 and λ

R(0)
0 to the increments

of the corresponding Breslow-type estimators. Either way, the
above algorithm has been found to converge quite quickly ba-
sed on simulations and various real-data applications.

Typically, the parameter vector (βT , αT , θ)T will be of chief
interest, with �D

0 (·) and �R
0(·) treated as nuisance parame-

ters. We propose that the variance of (β̂
T

, α̂
T
, θ̂)T be es-

timated by the appropriate submatrix of the robust va-

riance estimator, Â
−1


̂(Â
−1

)T, where η̂ is the estimator of
η, Â = A(η̂), A(η) = −n−1∂U(η)/∂ηT , 
̂ = 
(η̂), and 
(η) =
n−1

∑n

i=1
ξ̂i(η)⊗2. The vector ξi = (ξT

i1, ξ
T
i2, ξi3, ξ

T
i4, ξ

T
i5)

T repre-
sents the asymptotic score function contributions, with

ξi1 =
τ∫

0

{
Zi − s

(1)
1 (β, t)

s
(0)
1 (β, t)

}
dMR

i (t),

ξi2 =
τ∫

0

{
Zi − s

(1)
1 (α, t)

s
(0)
1 (α, t)

}
dMD

i (t),

ξi3 =
τ∫

0

{
NR

i (t) − (θ + 1)r2i(t)g(t)
}

dND
i (t),

ξi4j = dMD
i (tDj ), j = 1, . . . , nD (17)

ξi5k = dMR
i (tRk ), k = 1, . . . , nR (18)

where s
(d)
1 (φ, t) is the limiting value of S

(d)
1 (φ, t)

for d = 0, 1, 2 and φ = β, α, dMD
i (t) = dND

i (t)
− Yi(t)wi(t) exp {αT Zi(t)}d�D

0 (t), dMR
i (t) = dNR

i (t)
− Yi(t) exp{βT Zi(t)}wi(t)d �R

0(t), and g(t) is the limiting

value of G(t). To obtain ξ̂i (i = 1, . . . , n), one merely substi-
tutes empirical values in place of their respective limiting
values. Having obtained standard error estimates, confidence
intervals could be computed and Wald tests conducted via
the normal approximation.

A rigorous derivation of the asymptotic properties of the
proposed estimators appears to be quite involved and, hence,
is outside the scope of the current article. A proof of asymp-
totic normality could proceed by demonstrating that n1/2(η̂ −
η0) = A−1n−1/2

∑n

i=1
ξi + op(1), where A is as defined above

and the ξi (i = 1, . . . , n) are independent and identically dis-
tributed mean zero variates with structure given above. Under

such asymptotic linearity, the proposed robust variance esti-
mator would be valid. Note that the inference we consider only

applies to the subvector, (β̂
T

, α̂
T
, θ̂)T . The proposed inference

procedures make sense intuitively from two angles. First, sup-
pose that the baseline hazard and rate functions were para-
metric depending on a finite set of real valued parameters,
κ say. Then, under differentiability conditions, unbiased es-
timating equations for the components of κ can be obtained
to replace those in (17) and (18). The resulting estimating
equations would then be of fixed dimension and usual asymp-
totic results would hold under assumptions of finite variance
and differentiability. The resulting asymptotic normal distri-
bution for the estimators would have an estimated covariance
matrix of the sandwich type. Further, as the parametric mo-
del for the rate functions became richer, one would expect
estimates of β, α, and θ to become close to those obtained
from the semi-parametric analysis discussed above. Second,
in the semiparametric setting, it would appear that results
analogous to those of Murphy (1995) and Parner (1998) for
nonparametric maximum likelihood could be used to demons-
trate the consistency and asymptotic normality of the finite-
dimensional component of η̂. However, the estimating equa-
tions we propose are not likelihood-based.

The dimension of A can be large since there would be
a component at each observed failure or recurrent event
time, but at least in moderate sized problems can be ea-
sily handled with current software. Calculation difficulties for
large samples can be addressed by using the fact that the
matrix of partial derivatives of U5 with respect to the λR

0

components is diagonal. Let ηT
1 = (βT , αT , θ, [λD

0 ]T ), η2 = λR
0 ,

U(1)(η) = (UT
1 , UT

2 , U3, U
T
4 ), and U(2)(η) = UT

5 . It follows that

A =
(

A11 A12

A21 A22

)
= −n−1

(
∂U(1)(η)/∂ηT

1 ∂U(1)(η)/∂ηT
2

∂U(2)(η)/∂ηT
1 ∂U(2)(η)/∂ηT

2

)
.

The dimension of A is 2p + 1 + nR + nD, which may be large
as the sample size increases and direct numerical inversion
may be time consuming. Computation is simplified, however,
by utilizing the diagonal structure of A22

A−1 =
(

J−1 −J−1F2

−F1J
−1 A−1

22 + F1J
−1F2

)
,

where F1 = A−1
22 A21, F2 = A12A

−1
22 , and J = A11 − A12F1.

Thus, a matrix of dimension only 2p + 1 + nD needs to be
inverted directly. A further simplification is also possible by
utilizing the fact that the partial derivatives of U4 with respect
to �D

0 is upper triangular and again simple to invert.When
there are no time dependent covariates, the computation is
further simplified since λR

0 does not need to be estimated si-
multaneously.

3. Robustness of the Expectation-Based Method

In this section, we evaluate the robustness properties of the
approach proposed in Section 2, which we refer to as the
expectation-based method. Specifically, we examine the effect
of departures from the Poisson process assumption.

Ye et al. (2007) considered a model similar to that outlined
here, but employed maximum likelihood for the purposes of
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estimating θ. As such, a complete intensity model was requi-
red, and it was assumed that, given γ and Z, the recurrent
event process NR∗(t) was a nonhomogeneous Poisson process
with conditional intensity d�R(t|γ) with the same form as in
(4).

Unlike existing shared-frailty models, the semiparame-
tric analysis we propose completely drops the Poisson
process assumption. Instead of modeling the complete in-
tensity, E[ dNR∗(t)|Ft−], where Ft is the σ-field genera-
ted by {NR∗(u), ND∗(u), Z, γ : 0 ≤ u ≤ t}, the marginal rate
E[dNR∗(t)|Z, γ, D � t] is modeled. Thus, given γ, the propo-
sed approach allows for arbitrary dependence structure among
the recurrent events. The influence of the prior events on the
recurrent process or any possibly unknown factors is no lon-
ger required to be captured by the covariates Z(t) or γ in the
model.

In both the expectation-based analysis and the likeli-
hood analysis, θ can be interpreted in terms of the ra-
tio of r1i(t)/r2i(t) = θ + 1. In the expectation-based method,
however, this relationship is the basis of the estimating func-
tion (15) and the estimate of θ reflects the association bet-
ween the recurrent and terminal event processes only. In the
likelihood analysis and the related score function. Howe-
ver, the magnitude of θ̂ not only reflects the association
between the recurrent and terminal event processes, but also
measures the correlation among the recurrent events. Thus,
for example, if the two processes are weakly associated but
the recurrent events are highly correlated with each other,
then the association between recurrent and terminal event
processes will tend to be overestimated by θ̂.

To illustrate this point, let Ft = σ{NR
i (u), ND

i (u), Yi(u),
Zi, i = 1, . . . , n; 0 ≤ u ≤ t} record the full history of the re-
current event and failure time processes and consider a frailty
model for complete intensities given by

d�
†
R(t;Z) = P

{
dNR(t) = 1|Ft− , γ

}
= γδd�R

0(t) exp
{
βT Z(t)

}
, (19)

d�
†
D(t;Z) = P

{
dNR∗(t) = 1|Ft− , γ

}
= γd�D

0 (t) exp
{
αT Z(t)

}
, (20)

where γ is a shared gamma frailty as before and δ is a second
frailty variable with unit mean and positive variance that is
distributed independently of Z, D, and γ. Thus, given γ and
δ, the process NR∗ is a Poisson process that is stopped by the
death time D. Note that the marginal event rate for NR∗(t) gi-
ven only Z, γ, and D � t is still given by γd�R

0(t) exp{βT Z(t)}
as in (4). On the one hand, the Poisson process assumption
for the recurrent event process in a shared frailty model with
γ only is not valid in this case since the recurrent events will
be correlated (even given γ and Z) due to the frailty δ. The-
refore, the methods based on complete intensities described
in Wang et al. (2001), Huang and Wang (2004), Liu et al.
(2004), or Ye et al. (2007) are no longer valid. On the other
hand, the expectation analysis of Section 2 builds an estima-
ting equation in which θ reflects only the correlation between
the two processes and would be fully valid for the situation
described in (19) and (20).

Some discussion of model checking is in order. Arguably our
strongest assumption is that of proportionality, which applies
to both the recurrent event model (10) and the terminating
event hazard model (11). In both cases, although the baseline
rate function is flexibly specified, covariate effects are assumed
to be constant across follow-up time. For each model, this
assumption can be evaluated using techniques analogous to
those typically employed for the proportional hazards model.
For example, by appropriately expanding the covariate vector,
one can allow for covariate functions which vary parametri-
cally over time; for example, as described in Kalbfleisch and
Prentice (2002). For instance, see Schaubel and Cai (2005) for
an example in the context of a recurrent event rate model si-
milar to (10). Proportionality can then be tested using Wald
tests of the corresponding additional parameters. With res-
pect to the Gamma frailty assumption, the estimating func-
tion for θ, given in (15), is derived by taking the mean for
fixed t, then integrating over (0, τ], as detailed in the Supple-
mentary Materials. In principle, one could partition (0, τ] into
subintervals (e.g., quintiles, based on the observed deaths),

then compute quintile-specific θ̂j values (j = 1, . . . , 5), fixing

α̂ and β̂ at their originally estimated values. Considerably dis-
parate {̂θ1, . . . , θ̂5} would indirectly provide evidence that the
Gamma frailty assumption is not satisfied.

4. Extension to Terminating Events with
Competing Risks

The proposed method can be extended to more complicated
settings, including cases where there is more than one type
of terminating event. Suppose there are two competing risks
for the terminal event and for simplicity, we consider only
time-independent covariates, Z, in the model. Note that time-
dependent covariates can be easily handled as in Section 2. As
before, let Di and Ci be the terminal event time and the cen-
soring time for individual i. Let �i be the terminal event type,
taking the value � if subject i has a type � failure, � = 1, 2.
Conditional on Zi and γ, Ci is assumed independent of Di

and the recurrent event process. Let Xi = min(Di, Ci, τ) and,
as before, let Yi(t) = I(Xi � t) be the at risk process. In this
case, we define counting processes for the underlying (possi-
bly unobserved due to censoring) recurrent events and failure
types as NR∗(t) and ND�∗(t), � = 1, 2. The corresponding ob-
served counting processes are NR(t) and ND�(t), � = 1, 2. Let
γ1 and γ2 be independent gamma frailty variables with unit
mean and variances θ1 and θ2, respectively; it is assumed that
γ1 and γ2 are distributed independently of Zi. The models we
consider are

P
{
dNR∗(t) = 1|D � t, γ, Z

} = γ1γ2d�R
0(t) exp

{
βT Z

}
, (21)

P
{
dND�∗(t) = 1|D � t, γ, Z

} = γ�d�D
0�(t) exp

{
αT

� Z
}

� = 1, 2.

(22)

Note that (22) defines cause-specific hazard functions (Kalb-
fleisch and Prentice, 2002; p. 251) and specify the rate (given
γ) of type 1 and type 2 failures, respectively among indivi-
duals alive at time t. In this, γ� models the correlation bet-
ween the type � failure rates and the recurrent event process,
� = 1, 2. Taking expectations of (21), (22) and given D � t
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and Z yields the corresponding marginal models,

P
{
dNR

i (t) = 1|Yi(t), Zi

}
= Yi(t)w1(t)w2(t)d�R

0(t) exp
{
βT Zi

}
, (23)

P
{
dN

D�
i (t) = 1|Yi(t), Zi

}
= Yi(t)w�(t)d�D

0�(t) exp
{
αT

� Zi

}
� = 1, 2. (24)

In these expressions,

w�(t) = E
[
γ�|D � t, Z

]
= [

1 + θ��
D
0�(t) exp

{
αT

� Z
}]−1

, � = 1, 2

w3(t) = E
[
γ1γ2|D � t, Z

] = w1(t)w2(t).

Let r�
1i(t) = E[NR

i (t)|dN
D�
i (t) = 1, Zi], � = 1, 2 and r2i(t) =

E[NR
i (t)|Yi(t) = 1, Zi]. Then it can be seen that r�

1i(t)/r2i(t) =
θ� + 1, � = 1, 2 and, in this sense, θ1 and θ2 measure the asso-
ciation between the recurrent event process and the two fai-
lure types. This relationship also leads to simple estimating
equations for θ1 and θ2 as discussed below.

Analysis now proceeds very much as in the case of a single
failure type as discussed in Section 2. Details are provided in
the Supplementary Materials.

5. Simulation Studies

Simulations were carried out using a single binary covariate,
Z, taking values 1 or 0 with probability 0.5, and various set-
tings labeled A–F , which are listed in Table 1. The censoring
time was taken to follow a continuous uniform distribution
on [1, 10]. Given the frailty γ and the covariate Z, a sub-
ject’s recurrent events were generated from a Poisson process
with intensity function d�R(t|γ, Z) = γ exp(βZ)dt. The ter-
minal event time was generated from an exponential distri-
bution with hazard d�D(t) = 0.2γ exp(αZ)dt. Thus �R

0(t) = t

and �D
0 (t) = 0.2t.

In settings A, B, C, and D, the frailty variate γ followed a
gamma distribution with unit mean and variance θ. In Set-
tings E and F , we examined the performance of the proposed
estimators when the gamma distribution is misspecified. In
setting E, γ has a lognormal distribution with unit mean and
variance 0.65. In setting F , γ is generated as one-tenth of a
Poisson variable with mean 10.

From Table 2, it can be seen that the estimators are nearly
unbiased for α and β in all cases considered, including settings
E and F when γ does not follow a gamma distribution. There
is also no evidence of bias for θ when the frailty distribution is
correctly specified (settings A–D). The variance estimates are
accurate and the associated coverage probabilities are close
to the nominal level of 0.95 in all settings, including those
in which the distribution of γ was misspecified (E and F).
The final column in each setting of Table 2 gives the esti-
mated standard errors from Ye et al. (2007). The empirical
standard errors for α̂ and β̂ are only slightly larger for the
expectation-based analysis. This is important since α and β

are usually of primary interest. The variance of θ̂ increases
substantially as a result of dropping the Poisson assumption.

Table 1
Settings for the simulation study n = 200

Settings A B C D E F

α 0.5 0.5 0 0 0.5 0.5
β 0.5 0.5 0 0 0.5 0.5
θ 0.5 1 0.5 1 NA NA
E[mi] 3.05 2.73 2.72 2.45 3.05 3.38
E[�i] 61.2% 54.5% 54.3% 49% 61.1% 67.4%

E[mi]: average number of recurrent events per subject.
E[�i]: average percentage of subjects who experience the terminal

event.
For setting E, the frailty followed a lognormal distribution.
For setting F , the frailty was generated as a scaled Poisson

variate.

The potential increase in efficiency offered by the likelihood
analysis, with respect to θ̂, needs to be judged in light of the
facts that θ will often be of secondary interest, and that the
increased precision is due in large measure to the fact that θ

also measures correlations among the recurrent events in that
model. Note that the maximum likelihood estimates were also
approximately unbiased (data not tabulated).

We also simulated some data configurations where extra
between subject variation is allowed for the recurrent event
process, as described in (19) and (20). For example, in setting
G, the frailty variables, γ and δ, were generated from inde-
pendent gamma distributions with unit mean and variances
θ = 0.5 and θ = 1, respectively. Other aspects were as descri-
bed by setting A in Table 1 with β = 0.5, α = 0.5, �R

0(t) = t,
and �D

0 (t) = 0.2t and recurrent events were generated from
the Poisson process (given γ and δ). Table 3 summarizes re-
sults under setting G by comparing the expectation-based
analysis with the likelihood analysis in Ye et al. (2007). As an-
ticipated, the likelihood method substantially overestimates
var(γ) = θ. On the other hand, the marginal analysis is more
robust since the estimate of θ does not reflect the correlation
among recurrent events, but only measures the association
between the two processes.

6. Application

The Dialysis Outcomes and Practice Patterns Study
(DOPPS) is a well-known international study of end-stage re-
nal disease patients receiving hemodialysis. The DOPPS has
now gone on for many years and includes several phases. De-
tail regarding the design of the DOPPS study have been des-
cribed by Young et al. (2000). Subjects receiving dialysis are
typically patients whose kidney function has declined to the
point that they would be unable to survive without some form
of renal replacement therapy. Although death is arguably the
most important endpoint studied in this patient population,
hospitalizations are also very important. First, hospital ad-
missions reflect morbidity and therefore quality of life. Second,
hospitalization are inextricably tied to health care costs. Re-
latively few analyses of end-stage renal disease patients have
used hospitalization as the outcome.

We applied the proposed methods to jointly analyze
the death hazard and hospitalization rate given survival
among patients in the European component of the DOPPS
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Table 2
Simulation results for the expectation-based method in the marginal rate (MR) model (n=200)

Based on 1000 simulated samples

Setting A Setting B

MR model Bias CSE ESE 95% CP ESE* Bias CSE ESE 95% CP ESE*

β̂ −0.007 0.150 0.160 0.926 0.149 −0.004 0.205 0.207 0.945 0.220
α̂ 0.001 0.228 0.233 0.942 0.229 −0.003 0.277 0.266 0.964 0.275

θ̂ 0.006 0.131 0.129 0.936 0.091 0.013 0.210 0.221 0.927 0.154

Setting C Setting D

MR model Bias CSE ESE 95% CP ESE* Bias CSE ESE 95% CP ESE*

β̂ −0.005 0.153 0.159 0.935 0.160 −0.007 0.205 0.204 0.948 0.206
α̂ −0.006 0.231 0.233 0.946 0.242 −0.008 0.278 0.272 0.964 0.277

θ̂ 0.002 0.135 0.141 0.931 0.091 0.016 0.211 0.221 0.942 0.154

Setting E Setting F

MR model Bias CSE ESE 95% CP ESE* Bias CSE ESE 95% CP ESE*

β̂ 0.007 0.152 0.157 0.940 0.145 0.005 0.089 0.096 0.925 0.098
α̂ 0.004 0.215 0.220 0.947 0.213 0.004 0.181 0.186 0.950 0.185

CSE, mean of calculated standard error; ESE, empirical standard error; 95% CP, 95% confidence interval coverage probability.
ESE*, empirical standard error from likelihood method, Ye et al. (2007).
For setting E, the frailty followed a lognormal distribution.
For setting F , the frailty was generated as a scaled Poisson variate.

(Euro-DOPPS). Euro-DOPPS consisted of 101 facilities from
Germany, France, Italy, Spain, and the United Kingdom. For
the cohort used in the current analysis, data collection began
in 1998 and follow-up information was available until Decem-
ber 31, 2002. In an attempt to reconstruct an incident cohort,
the study population in this analysis only included patients
who had been on dialysis for less than 1 month at the time of
entering the study (n= 1158).

The primary objective of our analysis was to compare hos-
pitalization rates and mortality hazards by country. In parti-
cular, each of Germany, France, Italy, Spain were compared
to the United KingdomU.K., which served as the reference.
Adjustment covariates included age (5-year increments), sex
(ref: female), diabetes (yes/no; ref: non-diabetic), education
level (some college vs. lower), body mass index (BMI; ca-
tegorized), as well as various comorbid conditions coded as
yes/no (ref: no): cerebral vascular disease, congestive heart
failure, coronary heart or artery disease, hypertension, and
peripheral vascular disease.

Table 4 lists results based on our first model, in which
all deaths were combined. DOPPS patients from Italy ex-
perienced an all-cause mortality hazard of more than double
(e0.780 = 2.18) that of patients from the U.K. (p=0.041). Re-
lative to the U.K., the hospitalization rate was significantly
decreased by approximately 1/3 for patients from Germany
e−0.372 = 0.69; p=0.037) and by about 1/2 for patients from
Spain (e−0.666 = 0.51; p < 0.001). The impact of age appea-
red to be much stronger for death (25% increase per 5-year
increase) than for hospitalization (3% increase). Covariate ef-
fects are interpreted as conditional on the unobserved frailty
γ as in the models,(4) and (5). Thus, conditional on γ and
among the comorbidities evaluated, cerebral vascular disease,
hypertension, and peripheral vascular disease were significant
predictors of mortality; while, again conditional on γ, only
hypertension and peripheral vascular disease significantly pre-
dicted the hospitalization rate.

The frailty parameter was estimated to be θ̂ = 1.33 with
an estimated standard error of 0.22 (p<0.001). From (14),

Table 3
Simulation results for the MR model under setting G: robustness issues when extra variation presents in recurrent event

process (n = 200)

Likelihood method Expectation method

MR model Bias CSE ESE 95% CP Bias CSE ESE 95% CP

β̂ 0.164 0.214 0.292 0.695 −0.013 0.232 0.246 0.930
α̂ 0.175 0.242 0.319 0.716 0.006 0.233 0.231 0.952

θ̂ 0.761 0.142 0.266 0 0.015 0.233 0.210 0.951



Estimating Function Methods for Recurrent/Terminal Event Data 373

Table 4
Expectation-based analysis of Euro-DOPPS data based on a single mode of failure (all-cause mortality)

Death Hosptilization

Covariate α̂ ŜE p β̂ ŜE p

Diabetes −0.082 0.281 0.771 0.177 0.128 0.167
Sex = M −0.133 0.229 0.562 −0.102 0.109 0.349
Educ: �college −0.619 0.539 0.251 −0.269 0.168 0.110
Country

France 0.578 0.398 0.146 0.180 0.162 0.264
Germany −0.295 0.456 0.517 −0.372 0.178 0.037
Italy 0.780 0.382 0.041 −0.222 0.176 0.207
Spain 0.261 0.406 0.521 −0.666 0.165 <0.001
U.K. 0 — — 0 — —

Age per 5 years 0.221 0.050 <0.001 0.028 0.021 0.180
Body mass index

< 20 0.209 0.316 0.508 0.033 0.146 0.823
� 30 −0.441 0.386 0.254 0.046 0.165 0.782
∈ [20, 30) 0 — — 0 — —

Comorbid conditions
Cerebral vascular disease 0.859 0.276 0.002 0.155 0.133 0.241
CHF 0.479 0.256 0.062 0.122 0.132 0.357
CHD/CAD 0.410 0.264 0.120 0.159 0.123 0.195
Hypertension −0.938 0.256 <0.001 −0.324 0.138 0.019
PVD 0.744 0.281 0.008 0.310 0.131 0.018

this estimate suggests that a patient who is known to die
at time t is expected to have more than twice (2.33) as many
hospitalizations as a patient with identical covariates who has
not died at time t.

Further analyses of the DOPPS data that take account of
competing risks for death of CVD or non-CVD can be found
in the Supplementary Materials.

7. Discussion

There are many areas in the proposed method which can
possibly be improved or investigated further. The estima-
ting equation for θ, (15), is built by using the ratio of
the two moments, E[NR∗(t)|Y(t) = 1, Z(t), dND∗(t) = 1] and
E[NR∗(t)|Y(t) = 1, Z(t), dND∗(t) = 0]. The idea is simple and
natural. However, the estimating equation could be built diffe-
rently. For example, we could use ratios of different moments,
such as the ratio between E[NR∗(t)|Y(t) = 1, Z, dND∗(s) = 1]
and E[NR∗(t)|Y(t) = 1, Z, dND∗(s) = 0], where s � t. How to
combine all the information available to build an estimating
equation to increase efficiency and reach optimality remains
an open question.

It should be noted that the methods in this article can be
extended to allow for negative association between the termi-
nal and recurrent event rates as might arise, for example, if
the recurrent events were vaccinations and the terminal event
was the occurrence of disease. To do this, we specify γ−1 as
the frailty in the recurrent event process and retain γ as the
frailty in the death process, where γ has a gamma distribu-
tion with mean 1 and variance θ as before and it is assumed
that θ < 1 for finite expectation of γ−1. In this case, it can
be seen that r1i(t) = (1 − θ)r2i(t), i = 1, . . . , n; t > 0. Thus, the
same estimating Equation (14) with 1 + θ replaced with 1 − θ

can be used. If θ = 1/3 for example, an individual failing at t

would be expected to have 1 − θ = 2/3 as many failures as one
with the same covariates who survives past time t. This re-
flects a measure of the negative association between the rates.
More detail is given in the Supplementary Material where it is
also noted that the approach can be generalized to accommo-
date simultaneously both positive and negative correlation.

8. Supplementary Materials

Web Appendices referenced in Sections 2, 4, 6, and 7 are avai-
lable with this article at the Biometrics website on Wiley
Online Library.
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