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ABSTRACT 
 

Glyoxysomes are specialized peroxisomes found in plant seedlings that promote the 

mobilization of lipid stores for energy. Although several glyoxysomal proteins have been 

identified, many of their functions remain relatively unknown. Here I present a characterization 

of GX06 (At4g36880), a predicted glyoxysomal protease found in Arabidopsis thaliana which 

has a putative peroxisomal targeting signal type 1 (PTS1) of SSV>. A yellow fluorescent 

protein-GX06 fusion showed peroxisomal localization by fluorescence microscopy. This 

suggests the possible identification of a novel PTS1 (SSV>), which must be confirmed with 

further testing. GX06 exhibited both pH- and temperature-dependent processing of casein in 

radiolabeled casein substrate assays. An analysis of GX06 mRNA expression using quantitative 

real-time PCR revealed high expression in flowers and seedlings, and in particular, dark-grown 

seedlings. SALK-line mutant plants with GX06 T-DNA insertions grew larger and developed 

faster than wild-type Arabidopsis thaliana plants, based on measurement of leaf span and 

number of leaves, suggesting a possible inhibitory function for GX06 in the glyoxysome. 

 

INTRODUCTION 
 

Peroxisomes are single-membrane-bound organelles that perform a wide variety of 

metabolic functions in eukaryotic organisms. They process very-long-chain fatty acids, which 

have hydrocarbon tails longer than 22 carbons and cannot be metabolized in the mitochondria. 

For the detoxification of harmful substances, peroxisomes harbor catalase. Catalase is an enzyme 

responsible for peroxidation reactions, the reduction of hydrogen peroxide to water. Peroxisomes 

are also the production site of plasmalogens, ether phospholipids that can be found in a variety of 

human tissues, most notably in the myelin sheaths of neurons. In humans, various defects in 
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peroxisome biogenesis or mutations in specific peroxisomal proteins lead to disorders such as 

Zellweger syndrome, neonatal adrenoleukodystrophy, and rhizomelic chondrodysplasia punctata, 

with varying degrees of lethality (Braverman et al., 1998; Purdue et al., 1997). Peroxisome 

biogenesis disorders often involve mutations in the PEX genes, which play an important role in 

peroxisomal protein import. Consequences of these disorders include the accumulation of very-

long-chain fatty acids and deficient plasmalogen synthesis, leading to both physical and mental 

developmental disorders (reviewed in Steinberg et al., 2006).  

Because peroxisomes lack genomic DNA, all peroxisomal proteins, including membrane 

proteins, must be post-translationally transported across the membrane from the cytosol or 

endoplasmic reticulum (Lazarow and Fujiki, 1985; Fujiki et al., 2006). The two different 

pathways for protein import into the peroxisome matrix depend on the peroxisome targeting 

signal present in the cargo protein, and are mediated by different receptors. A peroxisome 

targeting signal type 1 (PTS1) is characterized by a carboxyl-terminal tripeptide that has the 

general consensus sequence [S/A/C/P]-[K/R/H]-[L/M/I] (Lametschwandtner et al., 1998; 

Hayashi et al., 1997; Reumann et al., 2007). However, it was demonstrated that peroxisomal 

proteins may have PTS1 sequences that differ greatly from this established scheme. For example, 

SLM> and SKV> have both been characterized as PTS1s, although the sequences only overlap 

with two of the three residues specified by the consensus sequence (Reumann et al. 2009). 

According to the online database AraPerox, peroxisomal proteins may contain ‘rare’ PTS1 

tripeptides like SSI> which differ significantly from the general consensus sequence (Reumann 

et al., 2004). In fact, several confirmed PTS1 proteins listed in the database have residues not 

even included in the original consensus sequence, suggesting that perhaps the consensus 

sequence should be modified to [S/A/C/P]-[K/R/H/N/S]-[L/M/I/V]. Novel PTS1 sequences 
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continue to be identified. A peroxisome targeting signal type 2 (PTS2) is characterized by an 

amino-terminal nonapeptide sequence that is proteolytically removed in plants and animals, but 

not in yeast (Helm et al., 2007).  

The proteins involved in the import of peroxisomal proteins across the membrane are 

called peroxins, abbreviated as PEX proteins. PTS1 proteins are recognized by the Pex5 receptor 

in the cytosol, which physically binds cargo proteins and carries them to the peroxisomal 

membrane (Urquhart et al., 2000). Upon docking to the membrane, Pex5 interacts with 

membrane proteins Pex13 and Pex14, which make up the docking complex (Agne et al., 2003). 

This docking complex also serves to bind Pex7, the cytosolic receptor for PTS2 proteins. There 

are two main models for the translocation of cargo proteins into the peroxisome lumen, and the 

mechanism is not well understood. In the simple shuttle model, only the cargo passes the 

membrane to the peroxisome matrix while the receptors (Pex5 or Pex7) remain on the 

membrane. The extended shuttle model postulates that the receptor passes through the membrane 

while still attached to the cargo, releasing it after arrival in the matrix (reviewed in Lanyon-Hogg 

et al., 2010). After the cargo is released into the peroxisome, the Pex5 receptor recycles back to 

the cytosol (Dammai and Subramani, 2001).  

Plant peroxisomes are involved in the detoxification of photosynthetic byproducts, 

metabolism of fatty acids, and biosynthesis of hormones (Hayashi and Nishimura, 2003; Nyathi 

and Baker, 2006; reviewed in Lanyon-Hogg, et al., 2010). Characterization of the various 

proteins involved in plant peroxisomal functions is crucial to our understanding of this organelle. 

Different classes of peroxisomes have specialized functions dependent upon the developmental 

stage of the plant. Glyoxysomes are a type of specialized peroxisome. They are present in 

developing seedlings, play a vital role in mobilizing lipid stores, and house glyoxylate cycle 
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enzymes (Beevers, 1979; Olsen and Harada, 1995). Glyoxysomes, which are especially abundant 

in dark-grown seedlings, are responsible for providing nutrients to growing seedlings by 

converting fatty acids into useable forms of energy through β-oxidation. The glyoxylate cycle 

resembles the tricarboxylic acid cycle, but involves the conversion of acetyl-CoA to succinate 

rather than α-ketogluterate. Succinate is then used for the synthesis of carbohydrates through 

gluconeogenesis. The four main glyoxysomal enzymes that comprise the glyoxylate cycle are 

citrate synthase, isocitrate lyase, malate dehydrogenase, and malate synthase (Kato et al., 1995; 

Turley et al., 1990; Gietl, 1990; Graham et al., 1989). This cycle is especially important for 

seedlings, which need carbohydrates to germinate and grow but do not yet have the means to 

obtain and process carbon dioxide through photosynthesis. Once grown in the light, glyoxysomes 

can become leaf or unspecialized peroxisomes (Titus, 1985; Figure 1). 

 

Figure 1. Model of Seedling Development. Glyoxysomes are present at the seedling stage and 
can become other types of peroxisomes once the plant is exposed to light. Each type of 
peroxisome has a different function in the plant’s physiological processes.  
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A series of proteins predicted to be targeted to glyoxysomes, each containing a PTS1, 

was discovered in collaboration with Dr. Jianping Hu’s laboratory at Michigan State University. 

Among these proteins was GX06, the sixth glyoxysomal protein found in the proteomics project 

(Hu lab, unpublished data). GX06 function has yet to be determined. This 41.6 kD protein has a 

putative PTS1 of SSV>, which has not been previously described, but resembles predicted rare 

PTS1 signals like SSL> and SSI> and fits the modified consensus sequence obtained from 

examination of the confirmed PTS1 sequences annotated on AraPerox (Reumann et al., 2004). If 

GX06 is indeed a peroxisomal protein and its peroxisomal import is mediated by the SSV> 

PTS1, this would represent the discovery of a novel PTS1.  

GX06 has been declared a putative cysteine protease based on the presence of the D/E-R-

F-N-I-N motif, a highly conserved sequence in almost all cysteine proteases (Beers et al., 2004; 

Figure 2). GX06 is considered a C1A family papain-like cysteine protease. Some cysteine 

endopeptidases of this family have been implicated in degrading seed storage proteins during the 

germination stage, a plausible role considering the predicted glyoxysomal localization of GX06 

(Yamauchi et al., 1996). Based on homology, the predicted catalytic region of cysteine proteases 

consists of Cys, His, Asn/Asp, and GX06 has several candidate residues that fit this scheme 

(Beers et al., 2000; Figure 2).  
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Figure 2. Protein sequence of GX06. GX06 has 376 residues and a predicted molecular weight 
of  41.6 kD. The putative PTS1 signal consists of the C-terminal tripeptide, SSV>, shown in red. 
The catalytic region prediction is based on homology to cysteine proteases; residues are shown in 
green. GX06 contains a D/E-R-I-F-N-I-N motif (shown in blue), a highly conserved sequence 
present in the propeptide of almost all cysteine proteases (Beers et al., 2004).  
 

An analysis of the GX06 temporal expression profile on Genevestigator, a gene 

expression database, indicates that GX06 mRNA is highly expressed at the earliest stage of 

development – in seedlings undergoing germination (Figure 3). It has been suggested that once 

proteins are identified as peroxisomal, they can be categorized by their expression profiles. RNA 

expressed at high levels in the seedling stage is consistent with glyoxysomal localization 

(Kamada et al., 2003). Using this reasoning, the expression profile of GX06 suggests that its 

SSV> C-terminal tripeptide is in fact a true PTS1. 

My CMB Honors thesis project was the characterization of GX06, which has putative 

protease activity in the glyoxysome and may be essential for normal function. Characterizing the 

function of GX06 in Arabidopsis thaliana will assist in the development of a global picture of 

how glyoxysomal proteins interact to guide the plant through its early developmental stages.   

M A P S T K V L S L L L L Y V V V S L A S G D E S I I N D H L Q L P S D G K W R T D E E V R S I Y 
L Q W S A E H G K T N N N N N G I I N D Q D K R F N I F K D N L R F I D L H N E N N K N A T Y 
K L G L T K F T D L T N D E Y R K L Y L G A R T E P A R R I A K A K N V N Q K Y S A A V N G K E 
V P E T V D W R Q K G A V N P I K D Q G T C G S C W A F S T T A A V E G I N K I V T G E L I S L 
S E Q E L V D C D K S Y N Q G C N G G L M D Y A F Q F I M K N G G L N T E K D Y P Y R G F G G 
K C N S F L K N S R V V S I D G Y E D V P T K D E T A L K K A I S Y Q P V S V A I E A G G R I F Q 
H Y Q S G I F T G S C G T N L D H A V V A V G Y G S E N G V D Y W I V R N S W G P R W G E E 
G Y I R M E R N L A A S K S G K C G I A V E A S Y P V K Y S P N P V R G N T I S S V Stop  
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Figure 3. Genevestigator temporal expression profile for GX06 (At4g36880, 
https://www.genevestigator.com/gv/plant.jsp). GX06 mRNA is expressed at relatively high levels 
at the seedling stage and decreases to a baseline level of expression as the plant matures.  
 
 
 
RESULTS 

GX06 showed glyoxysomal localization 

 To test GX06 subcellular localization, I first used an in vitro glyoxysomal protein import 

assay (Behari and Baker 1993, Brickner et al., 1997). The glyoxysome import assay involves the 

incubation of radiolabeled GX06 with glyoxysomes, Mg-ATP, and buffer at 25ºC, the 

temperature ideal for import (Figure 4). As a negative control, one sample is incubated at -20°C, 
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a temperature at which the glyoxysomes will freeze and not allow import. GX06 that has 

transported across the glyoxysomal membrane would be protected from degradation after the 

addition of Proteinase K, while any protein that failed to import would be digested. Because the 

import assay requires the use of the Proteinase K protease, I first generated a protease 

concentration curve by incubating radiolabeled GX06 with various concentrations of Proteinase 

K at 37°C to detect GX06 degradation. GX06 appeared to be optimally degraded by Proteinase K 

at 5.0 µg/mL, a concentration which was then used in the import assay (Figure 5). Glycolate 

oxidase (GLO), with a major PTS1 of ARL>, was used as the positive control for import. GLO 

was imported as expected (Figure 6, lane 7). The only GLO protein appearing on the SDS-PAGE 

gel was that which had been imported into the glyoxysome. GX06 was not imported in this 

assay; no protein was detected (Figure 6, lane 3). However, even the import of GLO, the positive 

control, appeared to be minimal, suggesting that GX06 may have been imported, but at levels 

below detection. 
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Figure 4. Diagram of glyoxysomal protein import assay. Glyoxysomes were incubated in the 
presence of radiolabeled GX06 protein at the temperatures specified. Proteinase K and protease 
inhibitor were added to two of the three samples. Samples were analyzed by SDS-PAGE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. GX06 Protease Concentration Curve. Digestion of GX06 with increasing 
concentrations of Proteinase K. GX06 degradation increased with protease concentration to a 
maximum of approximately 80%. For subsequent protein import assays, 5 μg/mL Proteinase K 
was used to digest unimported GX06 protein. 
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GX06 – 
41.6 kD 

– GLO  
40.6 kD 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Glyoxysome protein import assay with GX06 and GLO. Lanes 1-4 show GX06, lanes 
5-8 show GLO. Lanes 1 and 4 are translated protein only. PK, Proteinase K.  
 

Because the in vitro import assay may not be ideal for assessing GX06 localization, an in 

vivo system was also employed. A yellow fluorescent protein-GX06 fusion construct (YFP-

GX06) was created for transformation into Agrobacterium tumefaciens and subsequent 

infiltration into Nicotiana tabacum leaves. Leaves were given two days post-infiltration to grow 

and recover, and were then imaged by fluorescence microscopy. The positive control used was 

CFP-SKL>, a fusion construct between cyan fluorescent protein and three additional amino 

acids, where SKL> is a major PTS1 known to target protein to all types of peroxisomes (Hayashi 

et al., 1997). CFP-SKL> and YFP-GX06 appeared to co-localize in the tobacco leaves, 

suggesting that YFP-GX06 was peroxisomal and its PTS1 was sufficient to mediate transport 

into the peroxisome (Figure 7). Thus, although the in vitro glyoxysome import assay did not 

detect GX06 import, the data from tobacco infiltration and fluorescence microscopy suggested 

that GX06 was indeed peroxisomal in localization.  
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Figure 7. In vivo fluorescence microscopy of the YFP-GX06 fusion protein. A. tumefaciens 
strains containing either pCHF3-CFP-SKL or pCAM-eYFP-GX06 were mixed together and 
infiltrated into tobacco leaves. CFP-SKL> and YFP-GX06 appeared to co-localize, indicating the 
peroxisomal localization of the YFP-GX06 fusion protein. This experiment was repeated three 
times; representative results are shown. 
 
GX06 had pH- and temperature-dependent protease activity 

 To test the optimum conditions for GX06 protease activity, I performed several protease 

assays using radiolabeled casein as a substrate. Casein, a protein found in mammalian milk, has 

very unstable tertiary structure due to its lack of disulfide bonds (Mercier et al., 1971; 

Bhattacharyya and Das, 1999). As a result, it functions as an ideal substrate because it can be 

cleaved by a variety of proteases. The protease assay consisted of incubating GX06, radiolabeled 

casein, and buffer, with a (-) protease negative control for 4 hours at 37°C. To determine the 

optimum pH for GX06 activity, buffers of various pHs were used. Percent casein remaining was 

determined by quantifying the SDS-PAGE gel with phosphor imaging, and values were adjusted 

by setting the (-) protease control to 100%. GX06 appeared to be most proteolytically active at 

acidic pHs, specifically pH 5 (Figure 8). GX06 activity was tested at pH 7-9 as well, but 

processed casein minimally at basic pHs (data not shown).  

CFP-SKL>            YFP-GX06      Merge 



13 
 

 

Figure 8. pH-dependent degradation of radiolabeled casein. Data were compiled from 3 trials; 
error bars indicate standard deviation. GX06 appeared to be more proteolytically active at pH <6, 
and had maximum activity at pH 5. 
 
 To determine the optimum temperature for GX06 activity, the protease assay mixtures 

were incubated in buffer at pH 5, but at different temperatures. Samples were then run on an 

SDS-PAGE gel and quantified by phosphor imaging. Again, values for percent casein remaining 

were adjusted to the (-) protease sample as 100%. GX06 protease activity appeared to increase 

with temperature, suggested by the decrease in percent casein remaining (Figure 9). Thus, GX06 

had pH- and temperature-dependent protease activity. 
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Figure 9. Temperature-dependent degradation of radiolabeled casein. Data were compiled from 
three trials; error bars indicate standard deviation. GX06 protease activity appeared to increase 
with temperature.  
 
GX06 mRNA was highly expressed in flowers and dark-grown seedlings 

A search for the GX06 gene (At4g36880) in the gene expression search engine 

Genevestigator gave a temporal map of GX06 expression across the developmental stages of A. 

thaliana (Figure 3). To construct a spatial map of GX06 mRNA expression within different types 

of plant tissues, RNA was isolated from Arabidopsis thaliana plants, converted to cDNA through 

reverse transcription, and analyzed with quantitative real-time PCR for GX06. GX06 was highly 

expressed in flowers and seedlings compared to other tissues, as determined by the smaller CT 

value (Figure 10). UB10, ubiquitin, served as the positive control because it is expressed at a 

high and steady level across all plant tissues (Callis and Vierstra, 1989). 
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Figure 10. Quantitative real-time PCR of GX06 mRNA levels in various tissues. Total RNA was 
isolated from various tissues as indicated and converted to cDNA for qPCR. High expression is 
indicated by a low CT, the cycle at which fluorescence is detected above a threshold value. GX06 
was more highly expressed in seedlings and flowers, as shown. UB10, ubiquitin, was equally 
expressed across all tissues. 
 
 To further characterize the high expression seen in seedlings, I tested whether GX06 

would be more highly expressed in dark-grown or light-grown seedlings. At the seedling stage, 

glyoxysomes are important in mobilizing lipid stores for energy and growth. Once seedlings are 

grown in light, they begin to photosynthesize and no longer have great need for glyoxysomes. 

RNA was isolated from dark-grown and light-grown seedlings, converted to cDNA, and again 

analyzed by quantitative real-time PCR. Dark-grown seedlings had higher GX06 mRNA 

GX06 

UB10 
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expression levels than light-grown seedlings (Figure 11). This provided additional confirmation 

that GX06 is a glyoxysomal protein by correlating GX06 expression with its predicted role in the 

plant. 

 

Figure 11. Quantitative real-time PCR of GX06 mRNA levels in light-grown and dark-grown 
seedlings. GX06 was expressed at higher levels in dark-grown seedlings. This corresponds with 
the higher abundance of glyoxysomes, and therefore glyoxysomal proteins, at early stages in 
plant development before seedling germination.  
 
gx06 mutant plants developed faster and grew larger than wild-type Arabidopsis thaliana 

 To assess the phenotype of gx06 mutant plants, seeds from two lines containing T-DNA 

insertions in the GX06 gene were obtained from the Arabidopsis Biological Resource Center. 

SALK 051510C has a T-DNA insertion in intron 1 of GX06 which runs in the reverse direction 
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to the gene, while SALK 085378C has a T-DNA insertion in exon 3 of GX06 which runs in the 

same direction as the gene (Figure 12A, B). The T-DNA insertions are greater than 4 kb in 

length, effectively knocking out any potential GX06 function. Both mutations are in Col-0 

Arabidopsis thaliana background lines. 48 seeds from each 051510C, 085378C, and Col-0 wild-

type lines were planted. Throughout the course of four weeks, they were assessed for percent 

survival, leaf span, and number of leaves. By the first week, the fewest wild-type Col-0 plants 

had germinated, and the survival rate of these plants continued to decline at a greater rate than 

both of the SALK mutant lines (Figure 13). Plants that germinated but died afterward were 

usually much smaller than normal and grew very poorly until death. SALK 085378C plants had 

the greatest survival rates, with 88% survival after four weeks, compared to wild-type plants 

whose survival rate was 71% at the end of four weeks. 

A  

 

B 

 

 

 

 

 

  

 
 
Figure 12. Gene maps of GX06 with the insertion sites of SALK 051510C and 085378C lines. 
A, SALK 051510C insertion in intron 1 and SALK 085378C insertion in exon 3 are shown. B, 
the two SALK lines of interest are circled in red; their relative directionalities are indicated. 
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 Leaf span and number of leaves were the two criteria used to assess growth of the plants. 

As Arabidopsis thaliana plants grow, the leaf spans of the rosette leaves increase; larger leaf 

spans indicate more robust growth. The number of leaves per plant increases quickly over time, 

indicating developmental progression. On average, plants of both SALK lines 051510C and 

085378C had greater leaf spans than wild-type plants over all four weeks (Figure 14). Plants of 

SALK line 051510C appeared to have the greatest leaf spans of all three lines. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 13. Percent survival of wild-type and mutant plants over four weeks. 48 seeds per line 
were planted and scored at each week for survival.  
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Figure 14. Average leaf spans of wild-type and mutant plants over four weeks. 48 seeds per line 
were planted. Leaf span was measured from the tips of the longest rosette leaves. Error bars 
indicate standard deviation. 
 
 The number of leaves per plant was also scored in order to measure growth and 

development in the three plant lines. After the plants grew inflorescences at three weeks, the 

cauline leaves that grew on the inflorescences were added to the number of rosette leaves for the 

total number of leaves per plant. Again, the SALK line mutant plants generally grew more leaves 

than the wild-type plants (Figure 15). The most obvious difference was seen between SALK 

051510C and wild-type plants, while the SALK 085378C had very similar numbers of leaves as 

wild-type plants.  
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Figure 15. Average number of leaves of wild-type and mutant line plants over four weeks. 48 
seeds per line were planted and scored for number of leaves per plant. Total number of leaves 
was calculated as number of rosette leaves plus number of cauline leaves after inflorescences 
grew. Error bars indicate standard deviation. 
 
 Although the differences in measurements of average leaf span and average number of 

leaves were not statistically significant, the phenotypic differences were clearly seen. SALK line 

mutant plants appeared larger in leaf span and had greater numbers of leaves. This was most 

notable when comparing SALK 051510C plants to wild-type plants (Figure 16). Based on all the 

phenotypic data describing the differences between wild-type lines and SALK mutants, it was 

inferred that GX06 is not vital to Arabidopsis thaliana because gx06 plants still survived and 

grew. However, GX06 may have an inhibitory function in the plant because the absence of 

normal protein in mutant lines correlates to larger and faster plant growth. Further evaluation is 

needed to elucidate the role of GX06 in the plant. 

 



21 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 16. Phenotypic comparison of wild-type and SALK 051510C plants. Plants were two 
weeks old in these photographs. 
 
 
 
DISCUSSION AND FUTURE DIRECTIONS 

  The results presented above show that GX06 is peroxisomal, has pH- and temperature-

dependent protease activity, is highly expressed in flowers and dark-grown seedlings, and that 

plants with gx06 mutations grow larger and faster than wild-type plants. GX06 peroxisomal 

localization was first examined through glyoxysome protein import assays, which tested whether 

GX06 imported into glyoxysomes and was protected from protease digestion by the glyoxysomal 

membrane. The results obtained from the import assays were not conclusive; GX06 did not 

appear to import successfully into the glyoxysome (Figure 6). The GLO positive control showed 

successful import, but the band in the SDS-PAGE gel was very faint, indicating that only a small 
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fraction of the GLO protein added to the assay mixture actually imported. Since GLO has a 

major PTS1 and is a known peroxisomal protein, yet it showed weak import, it could be that too 

few GX06 proteins imported across the glyoxysome membrane to be detectable on the gel. 

Because this was an in vitro approach to assessing localization, the conditions used in the assay 

may not have been ideal for GLO or GX06 import. Further optimization of this assay may 

provide more information about GX06 peroxisomal localization. 

 A yellow fluorescent protein-GX06 fusion protein construct (YFP-GX06) was created to 

test in vivo localization. Because proteins are constantly being imported into leaf peroxisomes 

naturally, this system is more sensitive to GX06 import than the in vitro glyoxysome protein 

import assays. YFP-GX06 appeared to colocalize with CFP-SKL>, the positive control, 

suggesting that GX06 is peroxisomal (Figure 7). This represents the discovery of a novel PTS1. 

Interestingly, the SSV> sequence fits only one of the three residues in the general consensus 

scheme [S/A/C/P]-[K/R/H]-[L/M/I] for PTS1 proteins (Lametschwandtner et al., 1998 and 

Hayashi et al., 1997). However, as more novel PTS1 proteins have recently been discovered, it is 

evident that sequences may deviate significantly from the scheme and yet still import 

successfully into the peroxisome (Reumann et al., 2009). If the SSV> PTS1 is corroborated in 

further testing, a modification of the known consensus sequence may be necessary. Although 

these results are promising, more work needs to be done to understand GX06 targeting to the 

peroxisome. For example, the SSV> PTS1 signal in GX06 could be mutated through site-

directed mutagenesis.  The mutated protein should not import into peroxisomes and would 

therefore not co-localize with CFP-SKL>.  

 GX06 processed radiolabeled casein in a pH- and temperature-dependent manner. GX06 

was most active at acidic pH levels of 2-5 (Figure 8). The acidic optimum pH of GX06 is 
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interesting in comparison with the different optimum pH requirements of other known 

glyoxysomal proteins, such as isocitrate lyase at pH 6.75, and malate synthase at pH 8 (Lamb et 

al, 1978, Bowden and Lord 1978). It has been reported that the matrix of peroxisomes is an 

acidic environment with pH of approximately 5.8-6.0. This environment is the result of the 

presence of ATPases on the peroxisomal membrane which establish a proton gradient in yeast 

(Nicolay et al., 1987; Waterham et al., 1990). ATPase activity has also been detected in rat liver 

peroxisomes, suggesting that matrix acidity is a general property of peroxisomes in many 

different species (Del Valle et al., 1988). GX06 optimal activity at acidic pH levels is consistent 

with acidic peroxisome matrix pH, providing further evidence that GX06 is a glyoxysomal 

protease.  

GX06 protease activity increased with temperature and degraded casein optimally at 

65°C (Figure 9). The temperature curve was performed to be sure that 37°C, the temperature of 

incubation in the pH assay, was suitable for GX06 activity. GX06 processed similar amounts of 

radiolabeled casein at 25°C and 37°C, suggesting that the activity seen in the pH assay (37°C) 

could be comparable to physiological conditions in the plant (25°C). Interestingly, GX06 had 

greatest protease activity at 65°C, a temperature at which many enzymes are degraded. This 

suggests that GX06 may be a thermostable protease.  

These results are preliminary, and the optimal conditions under which GX06 would 

function may be different in vivo because these experiments were performed with a casein 

substrate. In the future, it would be interesting to determine the true substrate of GX06, possibly 

by using an α-GX06 antibody for immunoprecipitation and examining the proteins to which 

GX06 is bound in vivo. Once a substrate for GX06 is identified, the catalytic region of GX06 

could be determined through protease assays. Based on homology to other cysteine proteases, the 
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putative catalytic triad of GX06 consists of a Cys, His, and Asn. The DNA sequence coding for 

these residues could be mutated through site-directed mutagenesis and the effect on protease 

activity of GX06 could be assessed through degradation of the substrate, similar to the casein-

substrate assays used above. Identifying the true substrate of GX06 and testing its catalytic 

region would further clarify the role of this protease in the glyoxysome.  

 GX06 mRNA was highly expressed in flowers and seedlings, particularly dark-grown 

seedlings (Figures 10 and 11). Dark-grown seedlings have never been exposed to light, and 

would therefore have an abundance of glyoxysomes and glyoxysomal enzymes. GX06 is still 

expected to be expressed in light-grown seedlings at higher than basal levels because there may 

be glyoxysomes remaining in the seedling that have not yet been converted to other types of 

peroxisomes. Although flowers, the sites of pollen production, do not normally have 

glyoxysomes, it has been shown that that glyoxysomal function is induced during pollen 

development (Zhang et al., 1994). The higher GX06 expression in dark-grown seedlings and in 

flowers further supports the conclusion that GX06 is a glyoxysomal protease. In the future, GX06 

expression should be examined in the individual flower tissues such as the pistil, sepal, and 

anthers.  

 Plants with T-DNA insertions in the GX06 gene grew larger and developed faster than 

wild-type Arabidopsis thaliana plants, as determined by measurement of leaf span, and number 

of leaves over four weeks (Figures 13-16). Based on the abundance of GX06 mRNA in seedlings 

compared with other tissues, it is likely that the gx06 mutation exerted an early growth effect on 

the A. thaliana plants (Figure 10). gx06 mutant plants may have developed normally after the 

seedling stage, but the differences in phenotypes between gx06 and wild-type plants that arose at 

early developmental stages persisted throughout the rest of the plants’ life cycle. Since gx06 
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plants were larger, had greater average leaf spans, and a greater number of leaves than wild-type 

plants, it is possible that GX06 has an inhibitory function in the plant. gx06 mutant plants still 

show relatively normal phenotypes; thus, it is clear that GX06 is not critical for plant survival. 

This suggests that the protease may have a generalized or redundant function. 

The work presented in this thesis serves as a preliminary investigation into the role of 

GX06 in Arabidopsis thaliana. It has been shown that GX06 was likely glyoxysomal based on 

fluorescence microscopy, had pH- and temperature-dependent protease activity, was highly 

expressed in dark-grown seedlings compared to other plant tissues, and may have inhibited 

growth in the plant. Future work on defining the PTS1 of GX06, identifying a true substrate, and 

determining sites of high expression will all serve to further elucidate the exact function of GX06 

in Arabidopsis thaliana. If the carboxyl-terminal sequence SSV> of GX06 is confirmed through 

further testing as a true PTS1, it will represent the discovery of a novel signal and may require an 

extension of the general consensus sequence and a change in the way PTS1 sequences are 

defined. Identifying a substrate and further refining the expression profile for GX06 will aid in 

understanding how the role of this protease relates to other proteases in the overall function of 

glyoxysomes in the developmental progression from seedling to mature plant.  

 

MATERIALS & METHODS 

Glyoxysome Isolations and Glyoxysome Protein Import Assays 

 Glyoxysomes were purified as described previously (Harrison-Lowe and Olsen 2006). 

Pumpkin seeds (Cucurbita pepo var. Connecticut Fields, supplied by Petoseed Co., Inc., Saticoy, 

CA) were grown in damp vermiculite in complete darkness for 7 d at 25°C. Approximately 50 g 

cotyledons were harvested and homogenized in grinding buffer (40 mM tetrasodium 
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pyrophosphate, 2 mM EDTA, 0.6 M D-mannitol) in a blender with five 3 s bursts. The mixture 

was filtered through Miracloth and centrifuged at 3000 × g at 4°C for 10 minutes in a swinging 

bucket Sorvall HB-6 rotor. The lipid layer was removed and the sample was poured into fresh 

tubes and spun at 10,000 × g at 4°C for 20 min. Pellets were gently resuspended in 1 mL 

resuspension buffer (20 mM Hepes, 0.6 M D-mannitol). The resulting sample was loaded onto 

28% Percoll in resuspension buffer, overlaid on a 2M sucrose cushion, and centrifuged at 18,000 

× g at 4°C for 30 min in the swinging bucket rotor without braking. Glyoxysomes forming a 

visible band at the 28% Percoll/Suc interface were collected and diluted 3-fold with resuspension 

buffer. The sample was then centrifuged at 6800 × g at 4°C for 14 min with braking. The pellet 

was resuspended in resuspension buffer to 25 μg/μL.  

The glyoxysome protein import assay was conducted as previously described (Brickner et 

al., 1997). 10 μL fresh glyoxysomes (250 μg) were incubated with 360,000 cpm GX06 

translation product, 100 mM Mg-ATP, and import buffer (50 mM Mes-KOH, pH 6.0, 1M Suc, 

20 mM KCl, 2 mM MgCl2, 10 mM NaN3) in 200 μL final volume. Import reactions were 

incubated at 25°C for 1 h, except for the negative control, which was incubated at -20°C for 1 h. 

Samples were then treated with 5 μg/mL Proteinase K for 30 min on ice to digest any protein that 

had not imported into the glyoxysomes. Reactions were stopped with 1 mM phenyl methane 

sulphonyl fluoride (PMSF) final concentration for inhibition of Proteinase K. The import 

samples were loaded onto 0.7 M Suc cushion (in import buffer, 500 μL), and centrifuged at 8500 

× g at 4°C for 15 min. Pellets were resuspended in 70 μL 1X sample buffer, boiled for 5 min, and 

stored at -20°C until further analysis. Samples were visualized by SDS-PAGE and 

autoradiography.  
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Generation of Constructs 

GX06 was amplified from a λ-YES cDNA library with Pfu Turbo using the primers SalI-

GX06-forward 5’-GTC GAC ATG GCT CCT TCA ACA AAA G-3’ and SalI-GX06-reverse 5’- 

GTC GAC TCA AAC ACT GCT GAT AGT AT-3’ for the insertion of flanking SalI restriction 

sites. GX06 was cloned into the pCRII-TOPO vector (Invitrogen, Grand Island, NY).  

Radiolabeled GX06 protein used in glyoxysomes protein import assays was created by 

linearizing GX06 in pCRII-TOPO vector with KpnI and in vitro transcription with T7 RNA 

polymerase (Promega, Madison, WI). In vitro translation was performed by adding GX06 mRNA 

to a cell-free wheat germ extract translation system containing radiolabeled 35S-methionine. 

Transient cDNA Expression and Fluorescence Microscopy 

The pCAM-35S-eYFP-c1 vector was designed for gene fusion to YFP for fluorescence 

microscopy (a gift from Nielsen lab, University of Michigan, Ann Arbor, MI). GX06 was 

subcloned from pCRII-TOPO into the vector at the 3’ end of the eYFP gene by digestion with 

SalI, gel purification with a QIAEXII kit (Qiagen, Valencia, CA), and ligation with T4 DNA 

ligase (Promega, Madison, WI). Agrobacterium tumefaciens GV3101 strains were transformed 

with the pCAM-eYFP-GX06, pCHF3-CFP-SKL, or p19 helper plasmids. A. tumefaciens cells 

were incubated with 10 μg corresponding plasmid for 5 minutes on ice, 5 min in liquid nitrogen, 

and 5 min at 37°C. 1 mL LB was added and cells recovered with rotation at room temperature 

for 2 h. Cells were centrifuged at 2000 × g for 2 min and all but 200 μL were removed. The 

pellet was resuspended and cells were plated onto LB + gent20, riff25, and kan100 (pCAM-eYFP-

GX06) or amp100 (pCHF3-CFP-SKL, p19) media and grown for 2 days at 30°C. For tobacco 

infiltrations, cells picked from media plates were grown in 5 mL liquid cultures at 30°C 

overnight and resuspended in infiltration buffer (0.01 M MgCl2, 0.1 μM Acetosyringone) to an 
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optical density of 0.8 at 600nm.  Equal volumes of the strains containing the three plasmids were 

mixed and infiltrated into 5-week old N. tabacum leaves with 1-mL needleless syringes. Leaf 

tissues were prepared for imaging after 2 days. Confocal images of leaf tissues were acquired 

using a Leica SP5 laser confocal microscope (excitation 514 nm, emission 525-566 nm YFP, 

excitation 458 nm, emission 470–498 nm, GFP) with a 40X lens. Images were cropped using 

Leica Application Suite Advanced Fluorescence software.  

Radioactive Casein Substrate Assays 

 The CSN2 gene encoding casein in pCMV-SPORT6 vector was linearized using NotI and 

transcribed in vitro with SP6 RNA polymerase (Promega, Madison, WI). In vitro translation was 

performed by adding CSN2 mRNA to a cell-free wheat germ extract translation system 

containing radiolabeled 35S-methionine. 

The pET-28a(+) vector was designed for the addition of an N-terminal His-Tag for the 

overexpression and purification of a protein of interest. GX06 was cloned into the pET-28a(+) 

vector with the SalI restriction enzyme and transformed into BL21 Escherichia coli 

overexpression cells. 1 L BL21 E. coli containing pET-28a(+)-GX06 was grown with 0.1 mg/mL 

final kanamycin to OD600 0.45, induced with 1 mL of 100 mM IPTG, and grown for 1 h. Cells 

were harvested at 4000 × g for 15 min in a Sorvall GSA rotor. Pellets were resuspended in 50 

mL ice-cold binding buffer (50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 20 mM imidazole). The 

sample was transferred to new tubes for storage at -20°C until purification. For purification, each 

sample of cells was sonicated for 2 minutes, pooled and sonicated again for 30 s, and centrifuged 

at 13,000 × g for 15 min at 4°C. The supernatant was combined with 2 mL equilibrated nickel 

bead slurry and rotated at 4°C for 1 h. The solution was centrifuged for 3 min at 1500 × g and the 

supernatant was transferred to a Ni Sepharose column. 15 mL elution buffer was added (10 mM 
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imidazole in binding buffer). Fractions were collected; the four fractions with highest OD280 

were pooled and filtered at 4100 × g for 5 min and subjected to overnight dialysis at 4°C in 

dialysis buffer (50 mM Tris-HCl, 150 mM NaCl, 100 mM Suc). Dialyzed GX06 was aliquoted 

for storage at -70°C. Samples were run on SDS-PAGE gel and Coomassie stained to check for 

presence of GX06 protein.  

In the radiolabeled caseine-substrate protease assays, GX06 was incubated with 35S-

methionine-labeled casein, and 5X degradation buffer (125 mM Tris-HCl, 500 mM KCl, 50 mM 

MgCl2) for 4 h at 37°C. Buffer pH was adjusted to pH 2-6 with HCl or NaOH. In the temperature 

assays, all samples were incubated in 5X degradation buffer at pH 5 at the specified temperatures 

for 4 h. Samples were analyzed by SDS-PAGE and casein degradation was quantified by 

phosphor imaging.  

Isolation of RNA and Quantitative Real-Time PCR 

 For spatial expression analysis of GX06 mRNA, young leaf, flower, cauline leaf, and root 

tissues were isolated from 4-week old Col-0 ecotype Arabidopsis thaliana plants. Seedlings were 

grown on MS medium with 2% Suc in 12 h light/12 h dark cycles and harvested after 7 days. For 

comparison of expression in light- and dark-grown seedlings, A. thaliana seeds were grown on 

MS medium supplemented with 2% Suc either in 12 h light/12 h dark cycles (light-grown 

seedlings) or in complete darkness (dark-grown seedlings) for 7 days.  

RNA was isolated from various A. thaliana tissue types with a TRI reagent 

(Chomczynski and Sacchi 1987). RNA was then converted to cDNA following Promega protocol 

#TM337 for first-strand cDNA synthesis (Promega, Madison, WI). The cDNA, primers, and 

SYBR Green mix were combined and analyzed with qPCR. Primers used were GX06 forward 5’-

CGC TAA GGC CAA GAA TGT CAA CCA-3’ and GX06 reverse 5’-TCT GGA ACC TCC 
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TTG CCG TTT ACA-3’ Real-time PCR thermocycler conditions were: 95°C for 15 min, 40 

cycles of 95°C for 15 s and 60°C for 1 min, final hold at 4°C. Quantification and analysis were 

done using Applied Biosystems StepOnePlus software.  

Plant Growth Conditions 

Wild-type Arabidopsis thaliana plants were of the Col-O ecotype. The gx06 mutants, 

SALK lines 051510C and 085378C, in Col-O background, were ordered from the Arabidopsis 

Biological Resource Center. Plants were grown on soil in a 12-h-light/12-h-dark cycle at 25°C 

for assessment of mutant phenotypes. 

Wild type Nicotiana tabacum plants were grown on soil in 12-h-light/12-h-dark cycles at 

25°C in a separate chamber.  
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