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Abstract

Gasoline consumption is an important policy issue, with major impacts
on pollution, climate change and global trade. Previous research has
focused on vehicle choice and distance traveled as the determinants of
total gasoline consumption, treating the fuel economy of the vehicle as
a fixed parameter. However, even for the same vehicle, driver behaviors
cause large differences in efficiency. I use a rich dataset of naturalistic
driving to analyze second-by-second fuel consumption and find that total
gasoline use would fall by 17-26% if all drivers behaved like the most
efficient individuals.
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The car as we know it is on the way out. To a large extent, I deplore
its passing, for as a basically old-fashioned machine, it enshrines a
basically old-fashioned idea: freedom. In terms of pollution, noise
and human life, the price of that freedom may be high, but perhaps
the car, by the very muddle and confusion it causes, may be holding
back the remorseless spread of the regimented, electronic society.

— J. G. Ballard

1 Introduction

Driving is a core part of the American ethos, with many costs and inefficiencies.
According to the US Environmental Protection Agency, the transportation sec-
tor accounts for approximately 31% of national greenhouse gas emissions.! A
quarter of world oil production, approximately 22 million barrels per day, goes
to make consumer gasoline.?

There are many reasons society and individuals might choose to reduce
gasoline consumption, from pollution to financial savings. Burning gasoline
releases carbon dioxide (COz), which contributes to global climate change. Es-
timates of the short-term marginal damage of CO are usually $5-25 per ton.?:4
Those marginal damage estimates are consistent with a least-cost approach to
stabilize CO5 at atmospheric concentrations of 550 ppm and realize an average
warming of 2.9 °C.° If the governments of the world decide to set tighter limits,
e.g. 450 ppm, that decision implies a higher estimate of damages and engen-
ders higher costs of abatement. For reference, current COy concentrations are
396.8 ppm.® Damages of $5-25/ton of CO, translate to 4.8-24¢ per gallon of
gasoline.”

Beyond global warming, burning fuel has a number of undesirable effects,
both environmental and economic. Automobiles burning gasoline and diesel are

1US EPA, OAR, Climate Change Devision (2013). Inventory of US Greenhouse Gas Emissions
and Sinks: 1990-2011.
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html

2US Energy Information Administration (2011, 2012).
http://www.eia.gov/tools/fags/faq.cfm?id=307&t=11
http://www.eia.gov/cfapps/ipdbproject /IEDIndex3.cfm?tid=5&pid=5&aid=2

3In this case, “short term” means within the next 100 years, a brief period for the global
climate but a very long one for economists.

4Estimates of future damages are discounted to present values. Indeed, most of the variance
in estimated damages is from the assumed discount factor of future generations’ utility rather
than disagreement on the costs of damages (Metcalf, 2009).

5550 parts per million by volume of COs equivalent: mainly carbon dioxide but also including
methane, nitrous oxide, HFC-23, HFC-134a and sulfur hexafluoride.

6Tans, P. (2013, March). Trends in Atmospheric Carbon Dioxide.
http://www.esrl.noaa.gov/gmd/ccgg/trends/

7US Energy Information Administration (2012).
http://www.eia.gov/tools/fags/faq.cfm?id=307&t=11
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responsible for problems of local air pollution, smog and particulates, estimated
to cause $71-277 billion of damage in the US each year (Muller and Mendelsohn,
2007). Oil and gasoline consumption have a real, negative impact on the US
and other countries. It is worth examining ways to reduce the amount of gaso-
line consumed while retaining the convenience offered by automobiles. There
are three approaches to reduce gasoline consumption: change vehicles, drive
fewer miles or modify driving behavior. I will examine the variation in driving
behavior and find enormous heterogeneity between drivers.

Driver behaviors impact gasoline consumption substantially through their
behaviors and driving decisions. Previous research has focused on two major
areas: buying durable goods and driver response to gasoline prices. Both vehicle
purchase and the gasoline price elasticity are certainly important considerations.
I believe that my approach, focusing on the role of driver behavior, has been
under-explored in the existing literature.

A very detailed dataset, with six weeks of observations from 108 drivers,
allows me to examine driver behavior and fuel consumption in a novel way.
Using second-by-second recordings, I calculate the effects drivers have on their
vehicles’ fuel consumption. I estimate that if every driver behaved like the most
efficient driver, the fuel savings would be 17% for highway driving and 26% for
city driving. These savings are as large as removing a fifth of all vehicles from the
road.® Changes of that magnitude would be important on the microeconomic
level, reducing household gasoline expenditure, and at the macroeconomic level,
reducing US oil consumption and imports.

In Section 2 I discuss the data collection, cleaning and calculation proce-
dures. Section 3 provides a theory of gasoline consumption and details a model
of driver heterogeneity. Section 4 discusses results and Section 5 provides a
conclusion.

2 Methods

2.1 Data Collection

The University of Michigan Transportation Research Institute (UMTRI) used
records from the Michigan Secretary of State to select a random sample of
drivers in southeast Michigan (LeBlanc et al., 2010). The UMTRI researchers
provided a vehicle to each of the 117 study participants. The vehicles were
almost identical versions of the Honda Accord SE from the 2006 or 2007 model
year. (The only differences between the Accord 2006 and 2007 model years
were minor cosmetic changes.) The US Environmental Protection Agency’s fuel

81In fact, removing a fifth of all vehicles would result in a smaller decrease in fuel use in the
general equilibrium because drivers would use the other 80% of cars more.



ratings are the same for the two model years, at 13.1 liters per 100 kilometers
(L/100km) or 18 miles per gallon (mpg) for city driving and 9.05 L/100km
(26 mpg) for highway driving.” The vast majority, more than 90%, of driving
occurred within southeast Michigan, a relatively flat region that contains urban
and rural areas.

UMTRI conducted the study with the primary purpose of testing a crash
warning system. The system was installed in every car and would beep when
it detected a dangerous situation. The crash monitoring system provided infre-
quent haptic and audio warnings to drivers, but did not control acceleration,
braking or steering. I will assume that the crash warning system did not signif-
icantly impact the distribution of drivers’ fuel use behavior. Drivers may have
behaved differently in the UMTRI vehicles than they would in their own. The
change in behavior decreases the external validity of the following analysis to
the extent that the behavioral changes systematically impact fuel consumption.

The cars were extensively instrumented, with global positioning system
(GPS) receivers, a compass, an external thermometer, internal and external
cameras, a crash warning system, a radar system and systems to record the
output of the vehicle computer. The vehicle itself reported transmission gear,
engine speed, air conditioner use, windshield wiper use and, most importantly,
fuel. The data from the onboard computer were recorded ten times per second,
and one observation per second was extracted for analysis. Fuel consumption
was measured at a resolution of 0.2 milliliters (mL) or 0.00676 fluid ounces.

Of the 117 drivers, 9 did not follow the experimental protocols. I have
excluded them from further analysis, using only the 23,177,377 observations
from the 108 compliant drivers. All estimates have been appropriately weighted
to account for the amount of time each driver spent driving. In the regressions
that address highway and non-highway driving separately, I have weighted by
the inverse of the total time each driver spent on that road type.

Possible sources of vehicle heterogeneity are differences in maintenance
history, tire pressure or manufacture. Though it is possible to include dummy
variables for each vehicle in the model, doing so is problematic because most
drivers used only one vehicle and the estimated vehicle coefficients would un-
duly influence the estimated driver effects. Recall that the EPA fuel efficiency
ratings for these vehicles are identical and the vehicles were well maintained by
UMTRI. Henceforth, I neglect differences between vehicles, making it possible
to directly examine the influences of each driver’s choices. As a check for ro-
bustness, I tested regressions with errors clustered by driver and by vehicle and
found the results very similar. Other factors, including cargo weight, should
not be thought of as vehicle heterogeneity, but are instead a component of the
driver effect.

9EPA (2013). Compare Side-by-Side Fuel Economy.
http://www.fueleconomy.gov /feg/Find.do?action=sbs&id=21962
http://www.fueleconomy.gov /feg/Find.do?action=sbs&id=23569
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The next data consideration is the fuel measurement system. The fuel
gauge reported cumulative fuel consumption of each trip with a precision of
0.2 mL. The measurements are therefore multiples of the form x = 0.2n mL;
n € Z. The true fuel use corresponding to a measurement of x could be any-
where in the range [z — 0.1, = + 0.1], which is somewhat coarse for the second-
by-second calculations detailed below. Most of the fuel use is on the order
of 0-1 mL/s.'% T further assume that for any measured z, real fuel use is
approximately uniformly distributed in the range [z — 0.1, 4+ 0.1]. Though
this assumption obviously does not hold at x = 0, it seems reasonable over the
remaining range of fuel use. While the car is running, fuel use is non-zero.
However, for 1,763,246 periods, representing 9.86% of the remaining data, the
difference in fuel use between two seconds is observed to be 0.0 mL. If possible,
I would like to avoid losing these data, one of the factors that informs the choice
of units in Section 2.4.

2.2 Data Cleaning

Originally, there were 23,177,377 one-second observations in the study, excluding
the non-compliant participants.!! Mechanistically, the first and last one-second
observations of each trip are lost to calculate the differences between adjacent
observations (n = 49,550). Next, I drop observations for which the vehicle was
moving slower than 5 kilometers per hour (kph) or 3.11 miles per hour (mph)
or speed data were missing, 4,590,558 seconds and 348 seconds, respectively.
Dropping speed as in this way is fundamentally non-random, and the low speed
behavior of a vehicle can be important.'? However, most speed and acceleration
decisions occur when driving at some positive speed. Data about a non-moving
vehicle are problematic for models that examine the relationship between speed,
acceleration and fuel use.

Anomalously high values of fuel consumption, measured in liters per 100 kilo-
meters (L/100km), can result from using very large amounts of gasoline or trav-
eling very small distances. All of the analysis that follows depends on a valid
measure of fuel consumption. For very small differences in distance, the calcu-
lated fuel consumption becomes unreliable (approaching +o00). Despite these
concerns, L/100km is still a more appropriate unit than miles per gallon (mpg),
as detailed in Section 2.4. The graph in Figure 1 shows the observations with
a very small differences in distance, after dropping observations with reported
speed below 5 kph. The vertical line indicates represents the difference in dis-
tance (over one second) that corresponds to a speed of 5 kph. To ensure the
validity of the fuel consumption calculation, I am dropping observations with a

10The possible use for a measured value of = 0 is the range (0, 0.1].

1 Before cleaning there are 6438 driver—hours of data.

12For example, hybrid vehicles are able to substantially reduce their fuel use by switching to
an electric motor while moving at low speed.



Issues of Small Distances
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Figure 1: The graph above represents the points with reported speed above
5 kph. To avoid the issues of invalid fuel consumption, I will drop all points to
the left of the vertical line, which represents a calculated speed of 5 kph.

difference in distance smaller than 1.389 meters (4.557 ft) per second. The ob-
servations plotted in that graph are a random sample of 1% of the data, though
other random draws yield similar results.

K

The UMTRI dataset includes a speed variable, measured by the cars
speedometers. Speed is the derivative of distance traveled with respect to time,
expressed as v = ‘é—f in standard notation.'® Therefore, I can calculate speed
from distance traveled. For the vast majority of observations, the two measures
agree well, but there is a spurious trend, shown in Figure 2. That figure graphs
the difference between speed, as provided by UMTRI, and the derivative of po-
sition. Looking at the difference, some noise is expected, but the positive linear
trend is problematic. Therefore, I am dropping all cases where calculated speed
and provided speed differ by more than 5 kph (3.11 mph). The diagonal line of
Figure 2 has a slope of 0.50. Figure 2 is a random subset of 0.1% of the dataset,
though the results are robust to different random draws.

Next, there is cause to worry about anomalous position data: latitude,
longitude, altitude and change in altitude. A few observations for latitude and
longitude are obviously wrong. In lieu of a formal analysis based on global
information system (GIS) calculations, I drop all data points that are outside

13More precisely, velocity is derivative of position with respect to time and speed is the
absolute value of velocity. I follow the physics convention of using v as the symbol for both.



Anomalous Speed Observations
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Figure 2: Some values of speed provided in the dataset do not agree with the
speed calculated as the derivative of position. Values that differed by more than
5 kph (horizontal black line) were dropped.

the contiguous 48 states.'* For the purposes of this study, data outside of the
range [—125, —70] °E and [24, 49] °N are dropped.!®:16

Though it is possible for a GPS receiver to calculate altitude directly,
the UMTRI researchers gathered elevation data by matching the recorded two-
dimensional GPS data with GIS maps. For the most part, these matched data
agree with observations on Google Earth for the same latitude and longitude,
but there are a few anomalies. The minimum altitude observation of the orig-
inal data is miles below sea level and the maximum is taller than Mt. Everest.
Because change in altitude is a component of the model, I must drop erroneous
values of altitude and Aaltitude. To apply some logical bounds, the highest
road in the US has an elevation of 4,345 m (14,255 ft)!7 and the lowest —86 m
(—282.2 ft), so I drop any observations outside of the range [—86, 4345].18 Fi-

14While T do not include latitude or longitude directly in any of my models, impossible ob-
servations are always a cause for concern. A more sophisticated approach would use GIS
software to eliminate any impossible data points: those in the middle of the ocean or too
far from preceding observations.

15Southeast Michigan is within driving range of Ontario, Canada. Any trips to southern
Canada are retained, since most destinations in eastern Canada are south of the 49*" par-
allel.

16Coordinates obtained from Google Maps (2013). https://maps.google.com/

"Dailey, D. (2007). Discover America’s Highest Road.
http://suitel01.com/article/discover-americas- highest-road-a22242

18 As with the latitude and longitude data, a far more thorough way to clean the altitude data.
would involve GIS.
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Table 1: Excluded data

Variable Criteria to drop No. dropped®
Differencing® First and Last 49,550
Speed® < 5 kph or missing 4,590,906
Distance difference® < 1.38889 m 24,616
Speed agreement ‘fl—’t‘— speed| > 5 kph 460,445
Latitude <24 or >49 °N 209,956
Longitude < —1250r > =70 °E 76
Altitude < —86 or > 4345 m 533,794
A Altitude 98] > 8 m/s 674
Sum 5,870,017 (25.3%)

@The number dropped for each criterion, after the previous exclusion criteria.
bBecause of differencing, the first and last observations of each trip are lost.
¢Only 348 observations are missing speed data.

@A distance of 1.389 m in one second is equivalent to traveling at 5 kph.

nally, I check that the data for change in altitude are reasonable. A road grade
of 30% is quite steep, representing a rise of 30 m for every 100 m traveled. Slopes
this severe are rare, and almost never found on highways. Assuming a maximum
non-highway speed of 26.8 m/s (60 mph), the maximum elevation change should
be no more than 7.7 m/s. I exclude absolute values of Aaltitude greater than
8 m/s (26.3 ft/s). In total, problems with reported position force me to drop
744,400 observations. The final cleaned dataset has 17,264,635 observations
from 108 drivers, approximately 70.2% of the original data collected.

2.3 Descriptive Statistics

Descriptive statistics for the cleaned data are listed in Table 2. Notable in
the table are the large standard deviations in many of the variables. Speed,
acceleration and fuel consumption all have large standard deviations, illustrating
the wide variety of drivers, behaviors and driving circumstances in the study.
After dropping the anomalous values noted in Section 2.2, the speed reported
in the dataset and speed calculated as a derivative of distance agree very well.

Driver characteristics are included in the dataset and this summary table,
though the nature of the analysis described in Section 3.3 precludes me from
including the sex, age or income variables in my regressions. These variables
would be perfectly collinear with the individual driver coefficients I include in
the models.

Extrema of latitude, longitude and altitude are excluded from the summary
table for privacy reasons. These data could theoretically identify a point in space,
which would compromise the privacy of the study participants.



Table 2: Summary statistics, weighted by total driving time

Variable Mean S. D. Min. Max.
Latitude (°N) 42217 0.966 t t
Longitude (°E) —83.675 1.115 T 1
Altitude (m) 205.23  54.23 t t
A Altitude (m/s) —0.001 0265 —7.984  7.946
Odometer (km) 34,809 15,825 9,545 84,246
Engine speed (RPM) 1752 539 0 6915
Outside temperature (°C) 14.38 10.84  —17.22 46.11
AC use (0/1) 0215 0411 0 1
Trip duration (min) 15.32 18.20 0 260.75
Trip distance (km) 14.09 25.45 0 495.22
Speed® (kph) 69.98  34.86 5 214.22
Distance rate® (kph) 69.97 34.85 5  214.24
Acceleration (kph/s) —0.016 2.281  —25.01 16.91
Fuel rate (mL/s) 1.778 1.316 0 26.9
Fuel consumption (L/100km) 11.775 12.468 0 541.397
Sex (M=0, F=1)° 0405  0.491 0 1
Household median income® ? ($) 64,354 26,925 19,141 155,282
Household mean income ¢ ($) 77,815 32,518 24,188 189,285
Total time driven® (hr) 52.33 19.55 15.00 97.66
Highway time®¢ (hr) 12.90 8.237 0.2892 36.17
Non-highway time € (hr) 39.43 17.73 9.558 84.94

“Speed, provided in the dataset.

bSpeed, calculated as the derivative of distance.
¢Driver characteristics not weighted by driving time.
4Based on participants’ ZIP codes, not survey data.

2.4 Choosing Units for Fuel Use

There are two widely used standards for measuring the fuel use of a vehicle,
miles per gallon (mpg) and liters per 100 kilometers (L/100km), respectively
called “fuel economy” and “fuel consumption”. Unlike most conversions between
metric and imperial units, mpg and L/100km are not linear transformations of
one another. Miles per gallon is a measure of the distance that can be traveled
for a given quantity of fuel, while liters per 100 kilometers is a measure of the
fuel required to travel a certain distance. If the quantity of fuel used is small, the
calculation of mpg will be very sensitive to errors in fuel measurement. Similarly,
if the distance traveled is small, the calculation of L/100km will be sensitive to
small errors in distance measurement.

Fortunately, distance traveled can be measured very accurately, so the error



in distance is small. However, as mentioned before, the fuel gauge measurement
precision was only 0.2 mL, implying a root mean squared error of (10y/3)~! =~
0.0577 mL.19

Both fuel use and distance traveled are recorded cumulatively over the en-
tire trip. Fuel consumption is the difference in fuel use divided by the difference
in distance traveled:

fuelusedgis+1 — fuelusedgrs—1
FuelC s = . : 1
yert-onsdt 10 (distaes+1 — distars—1) (1)

Where FuelCons is fuel consumption, measured in L/100km. The subscripts
d, t and s are a hierarchical ordering of driver, trip and second, respectively.
Because fuelused is measured in mL and dist in kilometers, a factor of 10 is
necessary in the denominator to convert FuelCons to L/100km.

d fuel [ d fuel ddist \ '
FuelCons ddist <dtime) . <dtime>

_ fuelsi1 — fuels_q 2A time
B 2A time distsy1 — dists_1

l

) +0 ((A time)2>

Equation 1 is an approximation for the derivative of fuel use with respect to dist
traveled, which may be expressed: The center difference formula of Equation 1
is more accurate than the forward difference:

fueluseds 1 — fueluseds
10 (distsy1 — disty)

Or the backward difference:

fueluseds; — fueluseds_1
10 (dists — dists—1)

Because both the forward and backward difference calculations have errors on
the order of (A time) rather than (A time)”.

One way to decrease the sensitivity of fuel consumption to small errors
would be to average over longer time periods. In a longer time, the car would
travel further and consume more fuel. Therefore, the errors in measurement
would have smaller effects.?’ The downside of averaging over a longer time
period is the loss of granularity. Because drivers make acceleration and speed
decisions on a second-by-second basis, I would like to preserve as tight a focus
as possible. T have tested different averaging periods and found the estimated
results to decrease slightly in magnitude with longer averaging periods.

Figure 3 and Figure 4 represent the distributions of fuel consumption for
highway and non-highway driving, respectively. Most of the observations in

19 Assuming a uniform distribution within each 0.2 mL interval.
20 Assuming that the errors in measurement of fuel use and distance are homoskedastic, a
reasonable guess for GPS systems and fuel gauges.

10



Highway Fuel Consumption
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Figure 3: Fuel consumption, calculated on a second-by-second basis, for highway
driving. The EPA estimate of 9.05 L/100km is marked by the right vertical line.
Average performance, indicated by the line on the left, is only slightly more
efficient than EPA estimates.

both graphs occur below their respective EPA estimates for highway and city
driving, indicating that for most seconds the car is operating more efficiently
than the EPA estimate. In Figure 3 the EPA estimate is the line on the right
and average consumption is line on the left. In Figure 4 the EPA estimate and
average fuel consumption lines overlap. The high efficiency calculated here is
an artifact of using speeds above 5 kph, which avoids fuel-intensive idling.

3 A Theory of Fuel Economy Differences

3.1 The Economics of Driving

Drivers do not consume gasoline. At least, they have no interest in consuming
gasoline directly. Drivers really consume transportation, the ability to get where
they want to go. In turn, the demand for transportation translates to a demand
for driver—kilometers (also called vehicle—kilometers). Drivers only consume
gasoline to move their vehicle where they want to travel.

Of course, driving a car comes at some cost. Each kilometers driven re-
quires both gasoline and the driver’s time, as well as wear and tear on the

11



Non-Highway Fuel Consumption
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Figure 4: Fuel consumption, calculated on a second-by-second basis, for non-
highway driving. Notably, the bulk of the graph occurs at consumption levels
below the EPA estimate, marked by a vertical line at 13.1 L /100km, indicating
that for most seconds the car is operating more efficiently than the EPA esti-
mate. Average performance is indicated by a vertical bar that overlaps the EPA
estimate.

vehicle.2! The conventional view on driving is that a driver has some fixed cost
per mile, and then decides how many miles to drive (how much transportation
to consume). In fact, the fuel costs depend on the driver’s behavior, both in
route planning as well as speed and acceleration choices. Fuel consumption is a
variable the drivers choose implicitly through their behavior. The price drivers
pay is a function of both time and fuel consumption, and these are often trade-
offs of one another. Drivers who value their time highly may drive faster and
accelerate more aggressively.?? Indeed, Wolff (2012) attempts to calculate the
value drivers place on their time by measuring highway speeds. People may also
derive utility from driving fast or accelerating rapidly, an ancillary benefit to
the transportation they consume.

Safety is another concern in drivers’ speed choices. Consumers of trans-
portation may choose to drive slower if they believe that doing so is less risky.
Preferences for safety may also affect the drivers’ vehicle purchase decisions,

21The vehicle has a substantial upfront capital cost, and the lifespan of the car is largely
determined by use (kilometers driven) rather than the passage of time.

22The most efficient speed for these Honda Accords is 98 kph (61 mph), faster than city
driving but slower than most highway driving (LeBlanc et al., 2010). Accelerating heavily
to reach the most efficient speed is still a fuel-intensive process.

12



possibly pushing safety-conscious drivers toward heavier vehicles that are both
sturdier and less efficient. Jacobsen (2012) found that each one-mpg increase
in the corporate average fuel economy (CAFE) standard increases expected US
fatalities by 149 per year. Put simply, a more efficient CAFE standard pushes
manufacturers toward lighter vehicles, which often provide less protection in
crashes.

There is a behavioral economics perspective as well; drivers may plan to
drive efficiently, but in the moment may drive faster or slower than they planned.
Consumers may also undervalue their fuel savings (overvalue their time) at the
moment they make their decisions. In fact, many drivers have a very poor idea
how their behaviors impact their fuel consumption.

The decisions drivers make can be broken into three useful categories, di-
visions that mirror the time scales over which the decisions occur: vehicle de-
mand, demand for vehicle-miles traveled and demand for vehicle performance.
The first two of these have been widely studied in the economics literature.
Vehicle purchase decisions were not part of this study, therefore participants
did not make any strategic decisions. Demand for vehicle-miles traveled also
incorporates other characteristics of the route, including hills, traffic and road
type. Second-by-second driving decisions that affect vehicle performance include
speed, acceleration and air conditioning use. Drivers have continuous control
over these three variables and on a second-by-second basis how they want their
vehicles to perform.

The longest time scale of decision making is the choice of vehicle, the
discrete choice for durable goods. A priori, I believe that driver choices in one
time scale are correlated with choices in other time scales. The driver who
chooses to buy a sports car may tend to drive aggressively, even in a different
vehicle. The UMTRI researchers avoided this confounding problem by assigning
the same type of vehicle to every driver.

Vehicle maintenance decisions are made on the same time scale as purchase
decisions, and for simplicity I group both together. This study is particularly
useful in that each driver was given a well-maintained, identical vehicle and
allowed to drive naturally for a substantial period of time, avoiding the issue of
vehicle purchase. (See section 2 for more information about the vehicles used
in the study.)

Much of the economics literature has focused on the discrete choice de-
mand for durable goods as the major determinant of fuel consumption (and fuel
efficiency). When shopping for a car, drivers decide what make and model to
buy, weighing a number of vehicle parameters. From the inconsequential, like
paint color, to more relevant questions of carrying capacity, engine power and
fuel economy, drivers choose the characteristics that matter to them. Assuming
a rational actor model, drivers also include fuel efficiency and projected fuel
costs in their evaluation of each vehicle. Higher fuel economy, more efficient

13



vehicles often require more advanced technologies and are therefore more ex-
pensive, all else equal. Drivers weigh the current cost of capital (an efficient
car) against expectations of future gasoline costs. Sivak and Schoettle (2012)
discuss the importance of vehicle choice, noting that the least efficient car of
model year 2011 gets 21 L/100km (11 mpg). While the most efficient model
achieves 6.5 L/100km (36 mpg).?

The net present cost of a vehicle depends on the initial cost of the car, the
expected gasoline costs, the depreciation rate of the car and the discount rate
of future costs and savings. Several studies have investigated the implicit dis-
count rates inferred from consumers’ automotive purchases. Very high discount
rates would indicate little regard for the future, pushing the consumer to buy
a cheap, inefficient car now and pay higher gas costs later. In fact, consumers
appear to have foresight in their vehicle purchases. Espey and Nair (2005) found
very low implied discount rates, approximately 4 percent. Their analysis used
contemporaneous gasoline prices of $1.50-2.00. Current gasoline prices of ap-
proximately $3.50-4.00 may influence consumers to discount differently. More
recently, Busse et al. (2013) examined the prices paid for new and used cars
of different efficiencies and found that consumers discount at rates similar to
auto loan interest rates. Discounting at the rate of borrowing is the rational
behavior, indicating that consumers are not myopic.?*

In another recent study, Allcott and Wozny (2012) approach the question
from a different angle, setting the discount rate according to consumers’ bor-
rowing costs (or savings returns) and calculating how buyers behavior compares
to the theoretical interest rate. Allcott and Wozny find that consumers value
future fuel savings 26% less than they should, given their discount rates.

Of course efficiency and cost minimization are not the only, or even the
most important factors in an automotive purchase. For many drivers, the size,
shape, carrying capacity, seating capacity, safety, luxury or performance of a
car will be more important than the fuel efficiency, costs of gasoline or upfront
vehicle cost.

Vehicle maintenance also occurs on long time frames, months to years.
According to the Environmental Protection Agency, performing maintenance on
a severely out-of-tune car will improve fuel economy by approximately 4%.25-26
The vehicles used in this study were well maintained and thoroughly checked
between drivers (LeBlanc et al., 2010).

23Including only traditional gasoline internal combustion engines, not hybrid, electric or al-
ternative fuel vehicles.

24Tf consumers pay for a car from savings, the appropriate discount rate is the interest they
would earn on those savings had they forgone their vehicle purchase.

25In some rare cases vehicle maintenance can improve fuel economy by 40% or more, particu-
larly repairing a broken oxygen sensor.

26EPA (2011). Gas mileage tips — driving more efficiently.
http://www.fueleconomy.gov /feg/drivehabits.shtml
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The next time step after vehicle purchase is route choice, demand for vehi-
cle miles traveled, that occurs on timescales of minutes to days. Drivers decide
where they want to go, then pick routes to maximize their utility.2” The benefit
a route offers is a function several related factors, including time of day, traffic,
scenic views, duration of the trip, fuel spent and others.

Drivers may employ “trip chaining” as a route planning technique to reduce
total travel time and fuel consumption. Under a trip chaining scheme, drivers
will travel to several destinations in a row rather than returning to their home
between each stop. This behavior often decreases the total distance traveled,
and therefore the gasoline used. Fuel usage depends strongly on route choice.
Perhaps the most obvious factor is the distance traveled, but there are other
important aspects. In Section 3.2 I discuss how climbing and descending hills
increases fuel consumption. Similarly, a route with many stop lights or stop
signs will increase fuel consumption, all else equal, because each time the car
has to accelerate, the engine consumes a substantial amount of fuel.

The final and finest time step involves driving choices, demand for vehicle
performance, including how fast to drive and how hard to accelerate. These
choices are made on time scales ranging from a fraction of a second to several
minutes. Obviously, the choices of automobile and route affect operational deci-
sion making; a van cannot accelerate like a sports car and no one drives 30 kph
(19 mph) on the expressway.?® By using a naturalistic design, the study was able
to control vehicle choice and collect very rich data on demand for vehicle—miles
and vehicle performance.?? Study participants were given a car and allowed to
drive as they preferred for six weeks.

Researchers have conducted other naturalistic driving studies, but these
are limited to small numbers of drivers traveling along fixed routes. Evans
(1979) and Lenner (1995) are examples of studies that allowed drivers to use
instrumented vehicles, but only along controlled, predetermined routes. Ishiguro
(1997) conducted a similar study in which drivers drove heavy vehicles. The
present study conducted by UMTRI is a useful opportunity because of the large
number of drivers (n = 108), the freedom the drivers were given and the level
of detail in the data.

Evans (1979) allowed drivers to make speed and acceleration decisions nor-
mally, but used a small set of routes and a small sample of drivers. Collected

27In reality, drivers may choose their destination based on their route, for example the driver
who takes a scenic drive and decides to stop for lunch. In any case, drivers pick a route,
then make vehicle performance decisions along that route.

28Except in congested traffic.

29The term “naturalistic driving” refers to a study where drivers are allowed to drive and
make decisions as they wish, while researchers maintain some control over drivers’ actions.
“Naturalistic” is distinct from natural driving, where data is recorded about drivers as they
behave normally. Studies that examine patterns of natural driving are limited. in that they
do not follow individual drivers, and cannot control for vehicle choice.
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three decades earlier than the UMTRI study, Evans’ data were not nearly as pre-
cise or fine-grained. Because I have access to drivers’ second-by-second decisions,
it is possible to draw statistically powerful inferences from detailed models.

Evans et al. investigated the tradeoff between fuel consumption and trip
time and found that a 1% increase in trip time (and therefore a 1% reduction
in average speed) caused a 1.1% increase in fuel consumption. However, he
noted that highway driving occurs above the most efficient speed, while most
city driving occurs below the most efficient speed.

3.2 The Physics of Driving
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Figure 5: Power flows for (a) city and (b) highway driving. Note the large
standby losses for city driving and the large aerodynamic losses on the highway.
I excluded the standby losses from my analysis by dropping observations with
a speed below 5 kph.

Source: Transportation Research Board (2006). Tires and Passenger Vehicle Fuel Economy.

To build a model of the physics of driving, one first needs to understand the
power flows in an automobile. I define Pj,,4 to be total vehicle load, neglecting
minor effects like wind and road curvature (Ross, 1997). The car provides a
power Pj,qq to the wheels:

Pload = Ptires + Pair + Pinertia + Paccessm’y + Phill (2)
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Where Pi;res is the power used to overcome rolling resistance, P,;, is the power
used to overcome air resistance and Pj,erti¢ 1S the power used to accelerate the
car. Pgecessory is the power consumed by accessories, notably air conditioning.
Py is the power to move the automobile up a slope, or the power reclaimed as
the vehicle moves down.

Piires, Pair and Pyccessory are always non-negative, as rolling resistance,
air resistance and accessories can only cost energy.3® Pj,ertie and Phiy can be
negative if the car is slowing or descending a hill, respectively.

However, there are additional inefficiencies in the engine and drive train,
as illustrated in Figure 5. The energy contained in the fuel burned is much less
than the energy delivered to the wheels (Pyye; > Poqd). Instead, the engine and
drivetrain create thermodynamic and mechanical inefficiencies, some of which
are inescapable features of heat-based engines. Ross (1997) provides a more
involved discussion of heat engines, pressure—volume charts and thermodynamic
work than would be appropriate here.

It is worth keeping in mind that power is simply the time-derivative of
energy; % = P. A fuel tank is full of energy stored as gasoline, and one
liter of gasoline contains approximately 8.787 kilowatt-hours (kWh) of energy.3?
A gasoline fuel rate of 1 mL/s represents approximately 31.6 kW of chemical
power.?? Power is measured in units of energy per time while fuel consumption
is measured in energy per distance. Therefore, the factor relating power and
fuel consumption has units of time per distance, or the reciprocal of speed.

. energy energy  time power
Fuel consumption = — = — - — = (3)
distance time  distance  speed

Therefore fuel consumption is a function of power divided by speed.

3.2.1 Air Resistance

P,; is a function of the size (A) and shape (Cp) of the automobile, the density
of air (p) and the cube of speed (v3) (Ross, 1997).33

30While it is technically possible that wind pushes a car forward, the typical speeds of wind
are small relative to the typical speeds of automobiles. I will neglect this technicality.

31Pure gasoline contains about 9.7 kWh/L, but the addition of various additives lowers the
volumetric energy content. The total energy also fluctuates seasonally with different fuel
blends.
US EPA: Office of Air and Radiation (1995). Fuel Economy Impact Analysis of RFG.
http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100B3FL.txt

321 mL/s of gasoline also represents 42.4 horsepower. It turns out that the output of one
horse over a sustained period is approximately 1 horsepower (Stephenson and Wassersug,
1993).

330ther equations are appropriate for low speeds, where air flow is said to be “laminar” rather
than “turbulent”. Because I include velocity flexibly in section 3.3, the specifics of the air
drag function are not particularly important as long as the function is well approximated
by a Taylor series (Weisstein, E. W. (2013). Taylor Series.)
http://mathworld.wolfram.com/TaylorSeries.html
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To the extent that air density fluctuates with temperature, air resistance is also
a factor of temperature. Air density at 30 °C is 1.164 kg/m?3, while at —20 °C
it is 1.395 kg/m?, 20% denser. 3* Speed exerts a much stronger influence than
temperature, though for the sake of completeness I include inverse temperature
in the model.

3.2.2 Rolling Resistance

As the vehicle rolls forward, the tires deform slightly. The bottom of a tire
flattens out, then springs back as the wheel rotates further. Each time the
wall of the tire deforms and returns, it costs a small amount of energy. The
number of cycles of deformation is a linear function of the distance traveled, and
therefore the energy expended to overcome rolling resistance is approximately
proportional to the distance traveled (Transportation Research Board, 2006).
The resistance also depends on the design of the tire, ambient temperature, tire
temperature and tire pressure.?®

The National Research Council of the National Academies investigated
the potential efficiency gains from changes in rolling resistance and tire choice.
Their policy suggestion in 2006 was a 10% reduction in rolling resistance over
the following decade (Transportation Research Board, 2006). The report pro-
jected a 1-2% increase in fuel economy (miles per gallon) from such a change.
(An increase of 1-2% in fuel economy represents a 1-2% decrease in fuel con-
sumption.)

Ptires:CR'M'g'v

Where CF is a coefficient of rolling resistance specific to the tire, M is the mass
of the car, g = 9.8 m/s? is the acceleration due to gravity and v is the speed of
the vehicle Ross (1997).

Using Equation (5), the contribution of rolling resistance should be incor-
porated in the constant in the fuel consumption model, as Cr, M and g are
(almost) constants.3¢

Ptires

[

=Cr-M-yg (5)

34WolframAlpha (2013).
https://www.wolframalpha.com/input/?i=air+density+at+-20C
https://www.wolframalpha.com/input/?i=air+density+at+30C

35There is also a some energy expended to compress the road surface. On paved roads, the
deflection is very small, and this is not a major energy expenditure.

36 C'r will vary slightly with temperature and M is impacted by vehicle load. The gravitational
parameter g is almost constant over the surface of the earth.
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3.2.3 Inertia, Speed and Acceleration

One of the largest power uses, particularly in city driving, is the change in
vehicle inertia. Ross (1997) notes that:

1 d dv
Piertia=—-0-M-—*) =86 M- -v-—
rtia = 5 T Ut
Which can be simplified to:
Pinertia dv
Limertia o M. — 5. M - 6
v dt @ (6)

In the above equation, M is the mass of the vehicle, § is a factor to correct for
the rotational and linear inertia of the car and a is acceleration.3” Therefore, I
calculate acceleration and include it in the model specification.

3.2.4 Hills

It takes a strong push to move an automobile up a hill, so it is important to
include a parameter for elevation changes.

d
thZM'g'U‘ﬁ(h)

And therefore,
Py dh
Mg — 7
9o (7)

Where M is the vehicle mass, g is the acceleration of gravity and % is the
change in elevation per second. Since the change in elevation may be positive or
negative, hills may increase or decrease fuel consumption in any given second.

Drivers brake to maintain a safe speed while descending a hill, reducing the
amount of energy that can be reclaimed from a decrease in elevation. Boriboon-
somsin and Barth (2009) found that otherwise equivalent hilly and non-hilly
routes created a 15-20% difference in fuel economy.

When specifying the model of driver choices, I must consider the extent
to which drivers control their change in elevation. Do changes in elevation
happen to a driver or does the driver cause these changes? Unlike ambient
temperature, elevation changes are within a driver’s control, at least to some
extent. Second-by-second changes in elevation depend both on route choice
(hilly vs. flat) and driving speed (how fast to ascend a hill). In some situations,
change in elevation may act as an unsought proxy for speed. Southeast Michigan
has few topographical features, so the proxy effect is less worrisome for this study
than it would be in other areas of the US.

37§ is a unit-less empirical constant, approximately 1.03-1.04 (Berry, 2010; Ross, 1997).
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3.2.5 Air Conditioning

The use of air conditioning (AC), the last form of power from Equation 2, de-
pends strongly on ambient temperature. In this study 47.4% of observations
above 25 °C used AC, while only 0.169% of observations included AC use at
temperatures below 0 °C.3® Air conditioning is an energy-intensive accessory.
Other accessories also use power, but Farrington and Rugh (2000) found that
“the air conditioning system is the single largest auxiliary load on a vehicle by
nearly an order of magnitude.” Furthermore, most other accessories are neces-
sary for safety e.g. headlights, defrosters and windshield wipers. I am interested
in the ways drivers vary in their voluntary choices, so these other accessories
are of less interest. I do not have reason to believe that use of accessories other
than air conditioning is a substantial contribution to between-driver variation.

3.2.6 A Brief Introduction to Internal Combustion Engines

To understand how an engine burns fuel and drives a vehicle, it is helpful to
discuss briefly the mechanics of an internal combustion engine. Figure 6 is a
diagram showing the movement of a piston in a four-stroke engine, the type
used in modern automobiles. At the beginning of the cycle, the piston is at
the top of its range and begins to move downward (the first stroke) meanwhile,
fuel is injected, as shown in B. The piston begins to move upward, compressing
and heating the fuel and air mixture in the cylinder (the second stroke), step C.
When the piston reaches the top, the spark plug fires, exploding the fuel in
step D. The explosion forces the piston downward, providing power to the car
in step E. Finally, the piston moves up again and the exhaust gas is driven out
of the cylinder.

One might ask whether fuel use is discretized, as gasoline is only injected
once in the six step cycle. In some sense, it is, but these cycles occur so rapidly
that I can treat fuel use as a continuous measure.?? Even at the slow engine
speed of 500 revolutions per minute, the six-cylinder engine would create 25
explosions per second, much faster than the data are collected. Fuel is injected
in minuscule quantities, approximately 0.02 mL per explosion. Therefore I will
not worry further about the discrete nature of fuel injection.

3.2.7 Temperature

Temperature has an enormous impact on the performance of automobiles for
myriad reasons in addition to its influences on rolling and air resistance. Below
I discuss these effects in the broadest terms. Looking again at Figure 6, if the

38Drivers may also use AC to control humidity, regardless of ambient temperature. Running
the compressor is still energy-intensive, so AC should be included at any temperature.
39Except for the issues of discrete measurement discussed in Section 2.2.
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Figure 6: A four-stroke cycle (A) Start of cycle, (B) Fuel
intake, (C) Compression, (D) Spark, (E) Power and (F) Ex-
haust

Source: Wapcaplet (2005, June 9). Four stroke cycle.
https://commons.wikimedia.org/wiki/Category:Four-stroke_cycle

walls of the cylinder are cold, much of the energy released in the explosion of
step (E) will go to heating the engine rather than driving the piston. The car
adjusts by injecting more fuel in each cycle to heat the engine while providing
sufficient power. Cold starts, where the engine begins at ambient temperature,
are particularly demanding of fuel. To the extent that the heat loss continues
to cool the engine below its ideal operating temperature, cold ambient temper-
atures will require additional fuel throughout the trip.*°

Additionally friction of all types increases at colder temperatures. The
many moving parts in a car each have a slightly harder time moving at low
temperatures. A few notable examples are the crankshaft, axles, wheel bearings
and tires. Some components will warm up throughout the trip, mitigating the
effect of cold ambient temperatures.

Hysteresis is an important factor because an engine that is still warm from
the previous trip will behave differently than a cold engine. Unfortunately,

40Tf ambient temperatures are warm, the engine instead has to work to cool off using the car’s
radiator.
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the dataset does not have information on the temperature of the engine block.
Instead, I use an interaction of the time between the current and previous trips,
the elapsed time for the current trip and the ambient temperature to capture
the hysteretic effects.

3.3 Model Specification
3.3.1 Driver-Specific Effects

In the discussion of driver-specific effects it is worth differentiating the degree of
control drivers have over each variable in the study, and when they have control.
Some, like ambient temperatures, are entirely outside a driver’s control. Others,
like route choice, are within a driver’s control at one point, but not at later
times (the factors bundled with demand for vehicle-miles). Finally, drivers
have second-by-second control of some variables, like speed and acceleration.
This analysis focuses on the impact of the demand for vehicle performance,
controlling for the decisions made at longer time scales.

In an effort to measure the impacts drivers exert, I specify three models:
one with driver effects alone and no controls; one with driver effects and controls
for factors outside the drivers’ immediate control; and one that controls for the
demand for vehicle performance. In each of these models, I will estimate the
impact the drivers have on fuel consumption, and note the variation in driver
effects decline as decisions of speed and acceleration are included.

Rather than evaluate the many permutations of speed and acceleration
to find specific behaviors that impact fuel efficiency, this analysis focuses on
the overall impact a driver has on fuel consumption. Broadly speaking, I am
interested in how drivers differ in their style and how those styles impact fuel
use, without delving into the details of any one style. Calculating how specific
vehicles perform under various kinetic schemes is a valuable exercise, one best
left to physics and automotive engineering. Though I included a basic discussion
of automotive physics in Section 3.2, the economics of driver behavior is the main
focus of this thesis.

In principle, it is useful to consider driver specific effects as a form of
mixed-effects model. The driver effects and the covariates would fill the roles of
random effects and fixed effects, respectively.*!

FuelConsg; = BX; +vUq + €g;

Where fuel consumption by driver d for observation ¢ is explained by some vector
of fixed effects, X;, and random effects of each driver U;. Each observation has

41Stata offers the xtmixed command, which estimates a mixed-effects model via maximum
likelihood estimation. Because the dataset is so large, xtmixed and autocorrelated errors
require more computational resources than I have, even with use of a powerful workstation.
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some error €4;. The random effects are specific to each driver, and the drivers
in the sample are drawn from a larger population.*? From a statistical point of
view, the drivers should be included as a random affect because they are drawn
from the broad pool of all drivers.

Because of the difficulties of implementing a random effects model in such
a large data set, I elected to include each driver as a fixed effect instead, with an
indicator variable in the model. I interpret the coefficient on a driver’s indicator
as the “treatment effect” of being that driver.*> Specifying the fixed-effects
model does have advantages over the mixed effects model mentioned: allowing
each driver their own coefficient allows for a non-normal distribution of driver
effects. 4

The evaluation follows three major steps. First, I estimate a regression
of the fixed effect of each driver with no covariates. That simple model is not
terribly informative, but it provides a benchmark for adding the other covari-
ates. Next, I run a regression taking into account variables the driver cannot
control: windshield wiper speed, temperature, odometer, altitude, change in al-
titude, cumulative duration and cumulative distance of the trip. I include these
variables in the model very flexibly, including many interactions and quartic
terms.?® Given the many degrees of freedom available, it makes sense to empha-
size flexibility over parsimony. Finally, I estimate the driver effects in a model
that includes speed and acceleration, variables over which drivers have complete
control. I conduct separate analyses for highway and non-highway driving.

FuelConsars = vaDa + €4ts (8)

FuelCons is fuel consumption, measured in L,/100km and indexed hierarchically
by driver (d), trip (¢) and second (s). D represents an indicator for each driver
and 74 are the associated coefficients. €4¢s represents the observation specific
errors.

Here I present the second equation, with day of week, odometer, altitude,
warm start, ambient temperature and windshield wiper variables but without
out speed, acceleration or air conditioning:

FuelConsgys = faDa~+ Bw Wars * warmaes + Baaltias + Boodomars + Nas (9)

FuelCons is fuel consumption, measured in L/100km and indexed by driver (d),
trip (¢) and second (s). D represents an indicator for each driver and f; are
the associated coefficients. Wy is a vector of weather effects. warm is a

42The assumption of random sampling may or may not be valid. The drivers were randomly
sampled within southeast Michigan, but there may be response bias.

43Wooldridge (2009) notes that the dummy variable regression employed in Equation 9 esti-
mates the same coefficients and standard errors as the fixed effects estimator.

44 However, I will assume normality in Table 3 to calculate the standard errors.

45Though the driver does control the window wipers directly and has instantaneous control, I
include windshield wipers as a proxy for other weather variables outside the drivers’ control.
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function designed to capture engine block warmth (including time since the
beginning of the trip, ambient temperature and duration of the previous stop.)
The * operator indicates an interaction between every combination of variables
in W and warm. A function of altitude, including polynomials of level and
change per second, is represented by alti. Finally, odom is a quartic function of
vehicle’s odometer reading, included with the goal of capturing any unresolved
maintenance issues. The associated vectors of coefficients are 84 and Bo for
alti and odom, respectively.

The function outlined above contains a good deal more variables than the
physical model specified in Section 3.2. T worked to include the data I had in a
very flexible way to capture as much of non-driver variation as possible.

In the third model, I compare the remaining inter-driver variation after
controlling for speed, acceleration and air conditioning use:

FuelConsgrs = gDg+ vWas x warmges * ACqes + Y aaltitudegss (10)
+  Yoodometerats + Yy speedits + PaccaCCats + Vats

All of the variables are the same as in Equation 9, with the addition of polyno-
mials in speed and acceleration and the indicator variable for air conditioning.
The vectors of coefficients are ¥y and ¥4... AC is included in the vector of
weather variables.

3.3.2 Highway vs. Non-Highway Driving

Highway driving is a very different activity than driving in a city, requiring a
different set of skills and different behaviors. The US Environmental Protection
Agency recognizes the difference in fuel consumption patterns between highway
and city driving, and the agency publishes two fuel economy rankings for the
different road types. As shown in Figure 5, the power flows are substantially
different in city driving than highway.

Driving on an expressway offers relatively little opportunity to choose speed
or accelerate.4® Most of the time, drivers pick a speed and stick to it, some-
times using the cars’ automated cruise control system.*” Some drivers choose
to exceed the speed limit while others go slower, but in most cases drivers do
not stray too far from the posted speeds. In congested traffic, the average speed
may be much lower than the posted speed, but the drivers still have very little
flexibility in their speed and acceleration decisions.

In contrast, city driving provides much more opportunity drivers to behave
differently. Different routes have differing speed limits, which the drivers may

46 Acceleration on the highway on-ramp is substantial, but acceleration on the highway itself
is minimal.
47T do not have data on cruise control use.

24



Highway Speeds

Density
02
1

0 50 100
Speed (km/h)

Figure 7: Speeds for highway driving, truncated at 160 kph. Vertical line at
112.7 kph (70 mph), the legal speed limit for many of Michigan’s highways.

or may not follow. City driving also requires frequent stops and starts. Each
time the car accelerates, the driver is implicitly choosing how much fuel to burn
and how quickly to reach the destination. Each time the car stops, it spends
some time idling before moving again, one of the substantial fuel costs of city
driving.

In light of the substantial differences, I have separated the analysis into
highway driving and non-highway driving, using the road classification provided
by UMTRI. The study classified road type into six categories: interstate or
major highways; major thoroughfares; secondary thoroughfares; minor streets;
highway ramps; and out-of-state or unknown. In my analysis I have analyzed
the first type as highway driving and all of the others collectively as non-highway
driving. The UMTRI researchers used a GIS system to match GPS observations
to known roads. Such a matching process requires a degree of “fuzziness” and is
prone to some error. I assume that there was no systematic error in road type
matching.
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Figure 8: Speeds for non-highway driving, truncated at 160 kph.

4 Results

As mentioned in Section 3.3, I estimated three different models. First, I looked
at each driver’s estimated effect without any covariates. The distribution of
the driver effects are graphed in Figures 9 and 12 for highway and non-highway
driving, respectively. In the second model, I examine the driver effects while
controlling for factors outside their immediate control. The estimates of these
coefficients are represented in Figures 10 and 13 for highway and non-highway
driving. Finally, the third model includes speed, acceleration and air condition-
ing behavior. The driver effects are shown in Figures 11 and 14 for highway and
non-highway driving.

Table 3 reports the standard deviation of the observed distribution of driver
coefficients. Several features of the table are particularly notable. First, there
is greater variation across drivers in non-highway driving. This result makes
intuitive sense, as drivers have more ‘degrees of freedom’ in city driving than
they do on the highway. The dispersion in driver coefficients fell, but not to
zero. Therefore, there are economically meaningful driver-specific effects on fuel
economy even after controlling for speed and acceleration. The histograms in
Figures 11 and 14 show the driver coeflicients.

26



Table 3: Standard deviation of estimated driver fixed-effects coefficients

Road type No covariates No behavior With behavior
(L/100km) (L/100km) (L/100km)
Highway 0.5523 0.5929 0.3451
Standard errors (0.00364) (0.00390) (0.00227)
Non-highway 1.666 1.794 0.4198
Standard errors (0.0110) (0.0118) (0.00276)
Note:

The standard error of a sample standard deviation is:
Gs=1/N—1— r() [ >N (5- —B)Q ~ 0.006585 5
(%) N Zui=1 \Fi B
These errors are underestimates of the true error; a more thorough analysis would take account
of the origin of the ; coefficients, which were estimated by weighted least squares.
Weisstein, E. W. (2013). Standard Deviation Distribution. Math World.
http://mathworld.wolfram.com/StandardDeviationDistribution.html

The level of each driver coefficient does not matter, the variation between
them is the result of interest. The estimate for each coefficient is measured
relative to Driver 1, and there is no reason to assume that driver is a special
benchmark. Therefore, in Figures 9-14 I subtract the median value of the dis-
tribution.

4.1 Potential Savings

Suppose all drivers became more efficient, behaving like the drivers with the
lowest estimated driver-effect. Table 4 represents the percentage by which fuel
use could decrease if all drivers drove like the most efficient, “best”, driver or
the “good” driver at the 10'" percentile of consumption. The savings in the
table above simply replace each drivers’ estimated fixed effect with the fixed
effect of the best (or good) driver. For the purposes of this calculation, I am
assuming that all of the drivers behave like the best driver or the good driver,
even those who were previously more efficient than that individual.

Recall Equation 9:
FuelConsgs = PaDa+Bw Warsxwarmgs+ B aaltitude gy s+ Boodometer gis+nass

Then total predicted fuel use is:

Fmse = Z (ansdts . Al’dts)
d,t,s
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Figure 9: Driver effects for highway driving with no covariates.
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Figure 10: Driver effects for highway driving, including day of week, odometer,
altitude, warm start, ambient temperature and rain but not speed, acceleration
or AC decisions.



Driver—Specific Coefficients
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Figure 11: Driver effects for highway driving, including speed or AC decisions,
as well as day of week, odometer, altitude, warm start, ambient temperature
and rain.
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Figure 12: Driver effects for non-highway driving with no covariates.
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Driver—Specific Coefficients
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Figure 13: Driver effects for non-highway driving, including day of week, odome-
ter, altitude, warm start, ambient temperature and rain but not speed, acceler-
ation or AC decisions.
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Figure 14: Driver effects for non-highway driving, including speed and AC deci-
sions, as well as day of week, odometer, altitude, warm start, ambient tempera-
ture and rain.
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Table 4: Estimated fuel savings

Preferred (%) Comparison (%)
Road Type A B
Highway Best® 16.95 19.99 8.27
(0.115) (0.116) (0.0297)
Good® 8.17 8.10 4.67
(0.124) (0.128) (0.0308)
Non- Best 25.90 22.68 9.52
Highway (0.345) (0.334) (0.0738)
Good 17.63 14.80 6.11
(0.354) (0.344) (0.0762)

Notes:

The preferred results are from the model of Equation 9, which controls for factors outside a
driver’s influence.

A corresponds to the model of driver effects with no covariates, Equation 8

B corresponds to the model of driver effects with speed, acceleration and air conditioning,
Equation 11

The standard errors in parentheses are calculated by error propagation from heteroskedasticity
robust errors clustered by driver.

To calculate hypothetical fuel use, I simply substitute the best (or good) driver
coefficient in for the fuel consumption at each second.

FuelUsepes; = Z ((FUEC\OHSCMS — BaDg + ﬁbm) . Awdts)

d,t,s

From the values of Fmsebest and F@segood I calculate the percentage
changes shown in Table 4.

The standard errors are calculated using the propagation of error technique:
2 2
Ul?est = Z [(UFuelBest . Axdts) + (FuelBeStdts : UA:E) :|
d,t,s

I drop the error in distance measurement, o, because it is very small relative
tO T puelCons-

2 2] _ 2 2 2 2
Opest ~ § [(JFuelBest . A‘rdts) ] - § : [ (UFuelCons + 03, + Jﬂbest) : Awdts]
d,t,s d,t,s

Finally, applying the formula for error in a percentage change:*8

2 2
. Opest 4 O FuelUse
2 2
FuelUsej,,, FuelUse
48US Bureau of the Census. (1999). Percent Changes.

http://www.census.gov/acs/www/Downloads/data_-documentation/Accuracy/PercChg.
pdf

FuelUsepest
FuelUse

O A%best = 100 ’
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The equations for the fuel savings due to good fuel consumption behavior are
very similar to those for best fuel consumption behavior.

The preferred results come from the model of Equation 9, which controls
for factors outside the drivers’ control, but not for speed, acceleration or AC use.
The comparisons A and B are respectively from the model with no covariates
(Eqn. 8) and the model with controls for speed, acceleration and AC (Eqn. 11).
The comparison models are not useful to calculate potential fuel savings, but
they do provide information about the relative importance of speed, acceleration
and AC use. Reading from the first row, best highway driving practices would
save 16.95% of fuel use, of which we can attribute 8.27% to other driver-specific
factors.

Of course, fuel is not the only cost paid by drivers. They also pay in time.
If driving more efficiently meant driving slower and trips took proportionately
more time, then drivers are paying in time to save on fuel. On the other hand,
if drivers could decrease their fuel consumption by driving more rapidly, then
they could save both money and time. More efficient driving at higher speeds
is a rarity because, while city driving occurs below the most efficient speed, the
benefit is outweighed by the cost of accelerating the car after every stop signal.

4.2 Environmental Effects of Fuel Savings

The US Environmental Protection Agency (EPA) estimates that the US emit-
ted 5,732.5 million metric tons (1.264x10'3 1b) of carbon dioxide equivalent in
2011. Of these emissions, mobile combustion (transportation) accounted for
1,760.5 million metric tons (3.881x102 1b), or 30.7% of the total.®

The EPA calculates the combined fuel economy of a vehicle using the for-
mula M PGqvg = 0.55M PG i1y +0.45M PGhighway 59 Following their weighting,
the best driver condition saves 19.28% of overall fuel and the good driver con-
dition saves 11.61%. In turn, these translate to savings of 339.4 million metric
tons (7.483x 10! 1b) and 204.4 million metric tons (4.506x 101! 1b) for best and
good driving, respectively. Using the estimated marginal damages of $5-25 per
ton of CO4 equivalent, changing to more efficient driving practices would save
$1.022-8.845 billion in damages. Damage from other, local forms of pollution
would also be reduced 11-20%.

49US EPA: Office of Air and Radiation, Climate Change Devision (2013). Inventory of U.S.
Greenhouse Gas Emissions and Sinks: 1990-2011
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html

50US EPA (2013). Gasoline Vehicles: Learn More About the New Label.
http://www.fueleconomy.gov/feg/label /learn-more-gasoline-label.shtml
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5 Conclusion

The decreases in fuel consumption calculated in Section 4 are large. Are they
estimates beyond reason? It would be extreme to expect every driver in the
US to drive efficiently as the best 1%. Nonetheless, the results of this analysis
show that there is considerable scope for behavioral changes to reduce drivers’
fuel consumption, either through educational campaigns or incentives to drive
efficiently. Fuel taxes are one such incentive, albeit a politically unpopular one.
If a substantial fraction of the efficiency gains could be realized in the population
of American drivers, the fuel savings and externality reductions may be very
large. Fuel savings of approximately 12-19% are possible, with the associated
decreases in fuel costs and CO5 emissions.

A decline in fuel use of 12-19% would have general equilibrium effects,
which I have not considered. Generally speaking, a decline in fuel demand
would lead to a decrease in fuel prices, which would cause some increase in
quantity demanded. Incorporating such general equilibrium effects might lead
to smaller declines in fuel use than I have predicted.

In the near future, cars might not have drivers making the speed and
acceleration decisions. Autonomous vehicles are currently legal in four states of
the US: California, Nevada, Florida and Texas.’! As the routines controlling
these cars are written, the programmers and automotive engineers would do well
to consider the potential for fuel savings through more efficient driving patterns.

51Muller, J. (2012, September 26). With Driverless Cars, Once Again it is California Leading
the Way. Forbes.
http://www.forbes.com/sites/joannmuller/2012/09/26 /with-driverless-cars-once-again-it-
is-california-leading-the-way/
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