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Abstract 

Several computational models of eye movements in reading have been developed over the years, 

but none can agree on the cause of regressions, movements to previously read words. Some 

models regard regressions as errors or exceptions to more general rules about eye-movements, 

but this study proposes a model which explores the idea that regressions are governed by the 

same mechanism as forward saccades, that regression behavior may be influenced by task goals, 

and that regressions are an emergent phenomenon in an optimal reading strategy. Human 

participants were given a reading task in one of three conditions that differentially rewarded 

speed and accuracy, and their results were compared to those of a series of computer simulations 

which found the optimal reading strategy for each condition using the proposed model. Although 

the model’s behavior did not match the humans’ in all respects, some important properties were 

captured, and the behavioral study did confirm the prediction that regression behavior is affected 

by task goals. Furthermore, the model’s failings provide insight into the human behavior and 

open pathways for future research.  

 

Keywords: reading, eye-movements, computational modeling, regressions, eye-tracking  
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Computational Models of Regressive Eye Movements in Reading 

 Between novels, emails, text messages, and even road signs, most people today read in 

some capacity every single day, and it is hard to imagine how society could function without this 

skill. However, it is often overlooked how complex and cognitively demanding this task actually 

is. Reading requires the precise coordination of eye movements, visual attention, and linguistic 

processing, and the suppression of both external and internal distractions.  

Many researchers in psycholinguistics have attempted to build computational models to 

explain how these processes work, but this task has proved difficult because the underlying 

mechanisms governing reading are mostly unconscious and opaque to the reader. For instance, 

readers of English are often unaware that although most of their eye movements go from left-to-

right, roughly 10% of their saccades are actually right-to-left movements called regressions 

(Reichle, Pollatsek, Fisher, & Rayner, 1998).  Regressions are hard to induce experimentally, so 

little is known about what causes them (Rayner, 1998) but being able to explain regressions is 

important for any model of reading for two reasons. Firstly, answering why readers make 

regressions answers a more fundamental question: how do readers choose the next word to read? 

Secondly, it has been shown that models which allow for regressions are able to read more 

quickly and accurately than models that do not allow for regressions (Bicknell & Levy 2010a), 

so they must be a part of any good reading strategy. This point is especially important for models 

which explore how rational agents should behave. 

In this paper I will provide an overview of several computational models of reading, with 

a particular emphasis on what these models have to say about regressions. Then I will outline a 

new model which acts as an ideal observer with some imposed, physiological constraints. This 

model attempts to find the optimal eye-movement strategy for a reading task that is performed 
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under varying payoff conditions which differentially reward accuracy and speed. I will then 

assess whether the model makes regressions in a manner similar to humans. If it does, that may 

imply that the model and the humans have a similar underlying mechanism for making 

regressions. 

Overview of Present Research 

E-Z Reader 

 E-Z Reader tries to answer when and where people move both their eyes and their 

attention as they read. It belongs to the class of cognitive-control models of reading because it 

posits a tight link between the mind and the eyes. The goal is not to merely understand reading 

but to understand how cognition interacts with perception and motor control (Reichle, Pollatsek, 

Fisher, & Rayner 1998). 

When E-Z Reader was first formulated, it only had two core assumptions. The first is that 

attention is required for lexical access and is allocated serially to one word at a time; the second 

is that saccadic programming is decoupled from shifts of attention. Lexical access occurs in two 

stages: L1 and L2. The authors remain somewhat agnostic on the psychological interpretations of 

these stages and choose to focus more on how they function in the model, but L1 is often referred 

to as the “familiarity check” and L2 is referred to as the “completion of lexical access.”  L1 

begins on word n once attention has been allocated to it, and when L1 is completed a saccade is 

programmed to word n + 1, the word immediately to the right. While the saccade is being 

programmed, L2 begins on word n. Once L2 is complete, word n has been identified, and 

attention is then moved to word n + 1. If word n + 1 is highly predictable, L1 may occur 

instantaneously, in which case a saccade to word n + 2 will be programmed while the eye is still 
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fixated on word n, meaning that word n + 1 will be skipped (Reichle, Pollatsek, & Rayner, 

2006). 

Because it is known that regressions are more prevalent in difficult text (Jacobson & 

Dodwell, 1979; Rayner & Pollatsek, 1998) and regressions often occur after errors in 

comprehension (Blanchard & Iran-Nejad, 1987; Frazier & Rayner, 1982), early versions of E-Z 

Reader assumed that regressions were caused by errors in higher level linguistic processes and 

thus were out of the scope of the model (Reichle et al., 1998). However, later versions of the 

model have some additional assumptions that allow for regressions. E-Z Reader 10 introduces a 

post-lexical integration stage of processing after L2. This stage has some probability of failing, 

and when that occurs, a regressive saccade is made to the offending word (Reichle, Warren, & 

McConnell, 2009). 

In sum, regressions in E-Z Reader are exceptions to a more general rule. The model 

always chooses the word to the immediate right of the current fixation as its target and only 

revisits previous words when an error has occurred.  

SWIFT 

 SWIFT (Saccade-generation with inhibition by foveal targets) differs from E-Z Reader in 

that attention and lexical access are not applied to words serially. Instead, lexical access is 

performed simultaneously on all words within an “attentional window” that extends from one 

word to the left of the current fixation to two words to the right. When attention is allocated to a 

word, its lexical activity increases until reaching some maximum value, at which point lexical 

access is complete, and lexical activity drops back down to zero. Another difference is that 

SWIFT decouples the decision of when to make a saccade from the decision of where to make a 

saccade. Unlike other models, SWIFT does not assume that saccade programming is modulated 
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by high level linguistic processing. Instead, it assumes that saccades are controlled by a mostly 

autonomous, stochastic system that tries to maintain a constant mean rate of saccades (Engbert, 

Longtin, & Kliegle, 2002; Engbert, Nuthmann, Richter, & Kliegle, 2005).  However, much 

research has shown that low frequency words produce longer fixation times than high frequency 

words (Rayner, 1998), and obviously such a “dumb” system would not be able to account for this 

effect. Therefore the probability of initiating a saccade may be inhibited by foveal lexical 

activity; when the fovea is fixated on a difficult word, it may suppress the probability of making 

a saccade. The decision of where to saccade is also modulated by lexical activity, with words 

with higher activity having a greater chance of being targeted than words with lower activity, but 

this processes occurs independently of saccade timing. This target selection mechanism is 

motivated by the idea that important target words are in an intermediate state of lexical 

processing, with their lexical activities close to their maximal amounts (Engbert, et al., 2002; 

Engbert, et al. 2005).  

Two types of regressions can occur in SWIFT. Since the probability of making a saccade 

to a word is determined by that word’s lexical activation, any word within the attentional 

window with nonzero lexical activity can be targeted simply due to chance. When a saccade is 

made to the word immediately to the left of the current word, this is known as a “local” 

regression due to its limited length. The second type of regression, called a “global regression,” 

occurs when a word has not been completely processed before it has exited the attentional 

window. Once a word moves outside the attentional window, its degree of lexical activity is 

maintained, and so it remains a candidate for target selection, and its chance of being targeted 

increases over time, which reflects difficulties in comprehension (Engbert, Longtin, & Kliegle, 

2002). Therefore, as in E-Z Reader, regressions in SWIFT are caused by difficulties in linguistic 
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processing, but unlike in E-Z Reader, regressions can be explained using the same mechanism as 

forward saccades. 

The Bicknell and Levy Model 

 Bicknell and Levy (2010b) have criticized SWIFT’s mechanism for regressions as being 

irrational. Moving away from a word before it has been identified, only to return to it later, is 

illogical and inefficient, and this is contrary to a growing body of work of rational analysis 

(Anderson, 1990) in language processing (Hale, 2011) and eye-movement control (Legge, Klitz, 

& Tjan, 1997).  

 Bicknell and Levy claim the problem with both SWIFT and E-Z Reader is that they gloss 

over how word identification actually works, and they identify words with absolute certainty, but 

it has been shown that word identification is a noisy process and that readers maintain some 

uncertainty about the identities of words they have already read (Levy et al., 2009). Bicknell and 

Levy have presented their own model of reading which performs word recognition via Bayesian 

inference, and develops probabilistic beliefs about word identities, with high probabilities 

indicating confident beliefs and low probabilities indicating uncertain beliefs. Under this 

framework, occasionally making regressions actually is rational. 

 At each timestep, the model receives noisy information from several letters at a time, 

with the noise of each letter being a function of that letter’s distance from the model’s fovea. The 

model uses this information to update its belief about both the letters it is currently looking at 

and its belief about prior letters. For instance, take the case where the model only knows two 

strings, AB and BA, and only gets information from one letter at a time. After obtaining some 

noisy information about the first letter, the model believes that that letter is A, and moves on to 
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the second letter. If the model gets information from the second letter that again indicates that it 

is A, the model’s certainty about the first letter will decrease because there is no string AA. 

 The model can take one of three actions at each timestep: remain at the currently fixated 

position, stop reading, or make a saccade to a new position, with a two timestep delay 

representing the time it takes to program and execute a saccade. The model has two thresholds, α 

and β. If the belief about the current position is less than α, the model will remain fixated at that 

position. Otherwise, if the belief of some prior position is less than β, the model will saccade to 

the closest such position. If the belief of all positions up to the current position is greater than β, 

the model will saccade to n characters past the closest position to the right of the current fixation 

whose belief is less than α, where n is an arbitrary parameter used to ensure that the model 

moves forward at a decent pace. If no such position to the right exists, the model stops reading.  

 Bicknell and Levy found that not only are regressions rational in this model, but 

regressive policies are actually both faster and more accurate than otherwise equivalent non-

regressive policies (i.e., policies where β = 0). The intuitive reason that regressive policies are 

more accurate is that regressions allow the model to reread words and correct for initially bad 

input. The reason that they are faster is that they allow for a lower value of α. When regressions 

are not allowed, a high value of α is desirable because the model only gets one chance to look at 

letters and thus needs to be highly confident about their identities before moving on. But when 

regressions are allowed a lower value of α is permissible because the model can go back and 

reread words if its uncertainty about those words drops later on. This means fewer timesteps will 

be needed to collect enough information to develop a high enough belief to move on to the right, 

thus increasing reading speed.  
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 Although Bicknell and Levy’s model is successful at explaining how regressions can be 

part of a rational reading strategy and corrects some of the problems of E-Z Reader and SWIFT, 

it does have its own limitations. Notably, it does not provide a comprehensive explanation for 

how forward saccades work.  

Mr. Chips 

 Mr. Chips is an ideal observer model that reads text in the minimum number of saccades. 

As Mr. Chips reads, he constantly tries to identify the current word, or the leftmost word in the 

text that has not been identified. Mr. Chip often has some partial information about the current 

word such as its length or the identity of some of the letters. Mr. Chip finds the subset of words 

in its lexicon that is consistent with that partial information and makes a saccade according to the 

following rule: make the rightmost saccade that will, on average, minimize the uncertainty about 

the current word. Mr. Chips cannot leave the current word until it is identified unambiguously. 

Regressions are an emergent phenomenon under this simple rule. Making saccades far to the 

right is a bit of a gamble because some letters to the left might be left out of the visual field and 

remain unidentified. This could leave the leftmost word ambiguous, in which case a regressive 

saccade will be necessary to fill in the missing letters. Oftentimes, however, Mr. Chips will have 

enough information about the words to left to be able to infer what the missing letters are without 

actually looking at them, and therefore is able to skip some words and move through the text 

more quickly (Legge et al., 1997).  

 Although Mr. Chips was not originally formulated to directly model human behavior but 

rather to serve as a benchmark, it has been shown to produce eye movements similar to those of 

humans (Legge et al., 2002). Bicknell and Levy (2010b) have found fault with this model as 

well, however. They point out that on average Mr. Chips produces shorter regressions and skips 
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fewer words than human readers. They claim that Mr. Chips makes two oversimplifications. The 

first is that, like E-Z Reader and SWIFT, Mr. Chips identifies words with complete certainty 

rather than developing probabilistic beliefs about word identities. The second is that Mr. Chips 

does not take linguistic context into account when performing word identification. Bicknell and 

Levy implemented two changes to the model which made its behavior correspond even more 

strongly to real human eye movements. First, the model moves from the current word not when it 

is identified unambiguously but rather when its belief about the word’s identity crosses some 

threshold, and second, the model now takes the identities of prior words into account when 

identifying the current word. 

By making risky saccades and occasionally allowing for regressions, Mr. Chips is able to 

read texts in fewer saccades on average than if he used a more conservative strategy in which all 

letters to the left must be viewed before any letters to the right. Therefore as in Bicknell and 

Levy’s model, regressions in Mr. Chips are not aberrations, but necessary components of an 

ideal reading strategy, and it is able to explain regressions using the same mechanism as forward 

saccades without having to posit separate mechanisms for decisions about where and when to 

saccade. Furthermore, Mr. Chips posits an elegant solution for deciding where exactly forward  

saccades should land, unlike Bicknell and Levy’s model. However, this model only accounts for 

saccade trajectories and says nothing about fixation durations. 

The Bounded Optimal Model 

 The preceding models all have their own strengths and weaknesses, but one limitation 

that they all share is that they cannot account for the effect of task demands on eye movement 

strategies. Lewis, Shvartsman, and Singh (to appear) had participants perform a reading task in 

varying conditions that differentially awarded points for reading either quickly or accurately. 
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They showed that people unconsciously adapt to these varying task demands by making shorter 

fixations when they are required to read quickly and longer fixations when they are required to 

read accurately. Furthermore, they showed that the fixation times produced by participants in the 

different conditions aligned with those predicted by their computational model, which found the 

optimal reading strategy for each condition. This model will henceforth be referred to as the 

Bounded Optimal model because the driving idea behind it was bounded optimality, the notion 

that human behaviors are approximately optimal adaptations to the joint constraints of the human 

information processing system, the external probabilistic environment, and an internal reward 

function.  

Currently this model cannot account for regressions because it only allows for forward 

saccades. But task goals may play an important role in regressions as well. It may be that people 

will make more regressions when they are required to read accurately because regressions would 

allow for a second chance at identifying words. It could also be, though, that regressions are 

more frequent when people are required to read quickly because reading too quickly may cause 

problems in comprehension, and as noted before, regressions are often associated with 

difficulties in linguistic processing. Whatever the case may be, a model that could account for 

such differences would be useful, so the Bounded Optimal model will provide the basis for the 

model that will be the focus for the rest of the paper. 

The List Lexical Decision Task 

In order to understand the Bounded Optimal Model, one must first understand the List 

Lexical Decision (LLDT), an extension of the Lexical Decision task first introduced by Meyer 

and Schvaneveldt (1971). On each trial of the LLDT, participants are presented with a list of 6 

character strings consisting of 4 letters each. The goal is to report, via a button press, whether all 
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strings are real English words or if at most one of the strings is a nonword. No strings are 

repeated in the same list. 

Both human participants and the computational model are evaluated on the LLDT 

according to three payoff conditions: accuracy, balanced, or speed. In each condition, when 

participants get a trial correct they are awarded some points according to how quickly they 

responded, but they also lose points when they get a trial incorrect. The speed payoff awards 

fewer points than the other payoffs for the same reaction times, so participants are pressured 

more to respond quickly. In contrast, the accuracy payoff awards more points for the same 

reaction times, but it penalizes incorrect responses much more severely, so participants are 

encouraged to take their time in this condition. Complete quantitative descriptions of each payoff 

scheme can be found in Table 1. 

 The LLDT was chosen for a number of reasons. Firstly, it requires both the application 

of linguistic knowledge and the control of serial visual attention through eye movements, so it 

allows hypotheses about the interaction between high level and low level reading processes to be 

tested. Secondly, participants always start out fixated on the leftmost string, and the quickest 

means to get through the trial would be to simply read the strings in order. Therefore it should 

produce left-to-right reading and yield an eye-tracking record similar to natural reading. Finally, 

the task allows for trial-by-trial feedback and quantitative payoff schemes that differentially 

reward speed and accuracy. 

Word Recognition via Bayesian Inference 

 Like Bicknell and Levy’s model, one of the core assumptions of the Bounded Optimal 

model is that there is some noise in acquiring perceptual information from written words and in 

the process of matching orthography to the lexicon, and to overcome this noise, the model 
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iteratively uses Bayesian inference. However, the Bounded Optimal model performs recognition 

at the level of whole words rather than individual letters as in Bicknell and Levy’s model. 

The model’s representation of words is adapted from Norris’ Bayesian Reader (2006). 

Each letter is represented as a vector of length 26 with a 1 in the position of the corresponding 

letter and a 0 in all other positions. Each string is comprised of four of such vectors. Samples are 

generated by adding mean-zero Gaussian noise to each element of each vector. The model only 

receives information from one word at a time, which is a reasonable assumption given the wide 

spacing of the strings in the human experiment (approximately 3.4 degrees of visual angle). This 

coding is not meant to represent how words and letters are actually stored in the human mind but 

rather provides a convenient means for performing mathematical operations, with the additional 

benefit of placing strings in a representational space with plausible similarity relations.   

 At each time step, the model receives a sample from the string it is currently fixated on 

and uses Bayes rule to update its belief about the string corresponding to each word in its lexicon 

and each nonword in its list of known nonwords. The priors over the words are derived from 

corpus frequencies from the Brown Corpus (Kucera & Francis, 1967). The model then updates 

its belief that there is a nonword in each position, taking into account the fact that there can be at 

most one nonword in every trial, but in order to reduce computation time, it does not take into 

account that strings cannot be repeated in each trial. The prior over a nonword being in each 

position is the probability of a nonword trial divided by the number of positions. The model then 

updates its belief that the current trial is a word trial (this belief this is the complement over the 

sum of there being a nonword in each position). The prior over the trial being a word trial is 

simply the probability of a word trial. For complete mathematical details, see Lewis et al.’s 

original article. 
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The Oculomotor Architecture 

 The model’s perceptual inference mechanism is embedded within a larger oculomotor 

architecture, which is derived from current mathematical models of oculomotor control in 

reading. This architecture introduces some delays into the model. When the model fixates on a 

word, it does not obtain information from it right away, but after short lag due to the time it takes 

for information to travel from the eye to the brain (the eye-brain lag, VanRullen & Thorpe, 

2001). Saccades and the motor actions required to press the response buttons also take time to 

program and execute. The means and standard deviations of these delays are reported in Table 2. 

The actual durations of these delays are drawn from gamma distributions, with the shape 

parameter k = 
  

  
 and the scale parameter Θ = 

  

 
. The only parameters that were not set ahead of 

time were the sample rate and the noise parameter, which effectively serve as a scaling 

parameters by increasing or decreasing the time and the  number of samples required to form a 

high belief probability that as string is either a word or nonword. The sample rate was fixed at 

one sample every 10 ms, and the noise parameter was fit to this. This fitting process is described 

in detail the method section. 

The Old Policy Space 

 This section describes the Bounded Optimal Model as originally formulated by Lewis et 

al. At each time step, the model can take four different actions: program a saccade, program a 

motor response for “word trial,” program a motor response for “nonword trial,” or do nothing. 

The decisions to program a saccade and to program a motor response are not mutually exclusive. 

After a saccade or motor response has been programmed, it will automatically be executed after 

some delay (see preceding section) and cannot be cancelled. Regardless of what action the model 

takes, it will continue to receive samples from the string it is fixated on. 
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 The model must decide when it has collected enough information from a string and 

should make a saccade to the next, and it must decide when it has collected enough information 

to decide what type of trial it is in and make a response. These decisions are governed by two 

thresholds: the saccade threshold and the decision threshold. As the model collects samples from 

a string, its belief about the string will perform a random walk towards either “word” or 

“nonword.” When the model’s belief that the string is either a word or a nonword crosses the 

saccade threshold, the model will program a saccade to the string immediately to the right. 

Similarly, when the model’s belief that the current trial is either a word trial or a nonword trial 

crosses the decision threshold, the model will program the appropriate motor response. Figure 1 

shows how this process works schematically. 

 The strategies that the model may employ are completely determined by the values of the 

saccade and decision thresholds. Higher thresholds require the model to have more confident 

beliefs before deciding to saccade or make a motor response, and thus will produce more 

accurate responses. However, lower thresholds require the model to collect fewer samples before 

being able to make a decision, and thus will produce faster reaction times. Therefore there is a 

speed-accuracy tradeoff, and not all values of these thresholds will perform equally well in the 

three payoff conditions. Lewis et al. used Monte Carlo simulations to find the values of these 

thresholds that produced the highest expected payoffs in each condition (see the method section 

for details), and they found that the single fixation durations (SFDs—fixation times of words that 

are only read once) produced by the model were similar to those of the humans they tested. 

The New Policy Space 

 Although the original formulation of this model was successful in producing fixation 

durations similar to those of humans, it cannot explain regressions because saccades are always 
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made to the string immediately to the right, so a new mechanism must be implemented for 

choosing which string to saccade to. There are many possible ways to do this. The Bounded 

Optimal model could adapt the various states of lexical access from E-Z Reader, or SWIFT’s 

distinct mechanisms for choosing where and when to saccade, but in the interests of parsimony 

and computational tractability, a mechanism that requires the fewest parameters and requires 

minimal changes from the original model should be chosen. 

 The policy space of the new model is identical to the old except that saccadic control is 

no longer governed by thresholds. Instead the model follows a simple rule similar to that of Mr. 

Chips: the model always targets the string with the most uncertainty, i.e., the string whose belief 

is closest to 0.5. At each time step, if the currently fixated string’s belief is closest to 0.5, the 

model will remain fixated there. Otherwise, it will program a saccade to the string whose belief 

is closest to 0.5. Once a saccade has been programmed, it cannot be cancelled or target to a new 

string, even if the targeted string’s belief is no longer closest to 0.5 after saccade programming 

has completed. If two strings’ beliefs are equally close to 0.5, the one closest to the current 

fixation will be chosen. 

In order to discourage the model from frequently making very long saccades, however, a 

new parameter is introduced: the distance weight. The distance of each string’s belief from 0.5 is 

adjusted according to the following function: adjusted distance = abs(belief – 0.5) + distance 

weight * distance from current fixation, where the distance from the current fixation is measured 

in number of strings. Figure 2 illustrates this policy in action. 

The distance weight functions similarly to the saccade threshold in that a higher saccade 

weight requires the model to collect more information about a string before it can move on to the 

next, so a similar speed-accuracy tradeoff exists. However the nature of this tradeoff is more 
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nuanced with the distance weight, because although a lower saccade threshold may allow the 

model to saccade away from a string before it has collected sufficient information about it, that 

lower distance weight will also make it easier for the model to return to that string later. The 

ability to “double-check” a string may lead to greater accuracy, but may also waste valuable 

time, so like the saccade and decision thresholds, this parameter must be optimized individually 

for the speed, accuracy, and balanced conditions. 

Now that the model has been outlined, I will detail the behavioral experiments used to 

extract data from human participants, how parameters in the model were optimized, and examine 

how well their results matched. 

Method 

Participants 

 107 members from the University of Michigan community participated in this 

experiment.  61 were paid a baseline of $10 for participation, plus a bonus of $1 for each 1000 

points they earned in the task. The remaining participants earned course credit for their 

participation. Data from 29 were unusable due to failure to complete the experiment, eye-tracker 

calibration problems, or other equipment malfunctions, leaving a total of 78 participants.   

Procedure 

 After completing the informed consent form, participants were sat in front of a CRT 

monitor and an Eyelink I head-mounted eye-tracker operating at 250Hz was placed on their 

heads. After the eye-tracker was calibrated, participants were given instructions for completing 

the LLDT. Each participant was assigned to one of the payoff conditions described previously, 

but they were not told the name of their condition. They were only given a description of their 

task requirements, e.g., ”You will receive a point for each 125 milliseconds by which your 
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response is faster than 5000 ms (5 s). You will lose 150 points if your response is incorrect. You 

will get a $1 bonus for each 1000 points.”  

Participants responded to 200 trials of the LLDT divided into 10 blocks preceded by a 

10-item practice block. Half of the trials contained all words, and the other half contained 5 

words and one nonword. Word and nonword trials were dispersed randomly throughout the 

experiment. In order to correct for drift in the eye-tracker, participants had to fixate on a dot in 

the center of the screen before every trial. After drift correction, participants then had to fixate on 

a dot in the leftmost string position to make the list of strings appear. This ensured that all 

participants would start reading from the left. Responses were recorded using a Cedrus response 

box. 

Words were taken from a 234-word subset of the Brown Corpus (Kucera & Francis, 

1967) which contained 117 high-frequency words (mean frequency count 239.2, SD 186) and 

117 low frequency words (mean frequency count 5.6, SD 12.8). There were 53 different 

nonwords in total, and all were pronounceable according to English phonotactics. Items were 

presented on a CRT monitor in a 20pt Courier font and were separated by 8 characters of 

whitespace. At 25 inches from the screen, each word covered 0.7 inches, or 1.6 degrees of visual 

angle, and whitespace covered 1.48 inches, or 3.4 degrees of visual angle. 

Model Simulations 

 In order to find the optimal policy for the model in each condition, all combinations of 

values within specific ranges were tested for the distance weight, decision threshold, and 

standard deviation of the perceptual noise. Search ranges for each value can be found in Table 6. 

For each combination of values, 10,000 trials were simulated, and the expected value of each 

policy was computed by taking the mean payoff of those trials. The policies with the highest 
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expected values for each noise level were then fit to the human data by choosing the noise level 

which minimized the root mean squared error from SFDs for the three payoff conditions. The 

model was then simulated again for 100,000 trials using only these derived parameters in order 

to get highly accurate estimates for its SFDs and regression behavior. 

 As in the human experiment, each trial in the simulation had a 50% chance of being 

either a word or a nonword trial. The strings in each trial were drawn from a list of 500 words 

and 500 nonwords. For every parameter combination, new lists were generated. This was done to 

ensure that the model’s results were not due to any particular choice of lexicon.  

Results 

Trial Level Results in the Human Data 

 Data analysis for the human data was conducted using mixed effects logistic regressions 

(Pinheiro & Bates, 2000), using the lme4 package for the R environment for statistical 

computing (R Development Core Team, 2011). Models with maximal random effects structures 

were fit.  Trials with reaction times of 250ms or less were excluded from the analysis, but no 

other data were excluded. Hypothesis tests involving payoff condition were conducted using a 

single pair of normalized orthogonal contrasts. The only contrast of interest is the contrast 

between the speed and accuracy payoffs (i.e., accuracy and speed were coded as ±0.5, and 

balanced as 0); the second contrast is included for orthogonality but is not theoretically 

informative, so it is not reported. Under this design the balanced condition exists to improve 

error estimates and improve statistical power. All results are reported at the .05 significance 

level. 

 In the trial level analysis, the dependent variable was the probability that the trial would 

contain at least one regression. The model was fit with the following variables used as random 
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intercepts: participant, trial number, block, and whether or not the participant was paid. The 

following variables were used as random slopes: payoff condition, trial type (word trial or 

nonword trial), trial correctness, and the interactions between all these terms.  

Complete trial level results can be found in Table 3 with a graphical illustration in Figure 

3a. Significant main effects were found for trial type and trial correctness, with regressions being 

more likely in word trials and in incorrect trials. Significant interactions were found between trial 

type and payoff condition and trial type and trial correctness, with regressions being more likely 

in word trials in the accuracy condition and in incorrect word trials generally. A significant three-

way interaction was found between payoff condition, trial type, and trial correctness; a crossover 

interaction between trial type and correctness exists in the accuracy condition but not the speed 

condition. 

String Level Results in the Human Data 

 Two separate analyses were performed at the individual string level. Both the probability 

of making a regression from a string, and the probability of making a regression to a string were 

used as dependant variables. Participant, trial number, and block were used as random intercepts. 

Payoff condition, string type (word or nonword), word frequency (coded as high frequency or 

low frequency), trial type, trial correctness, string position, the interaction between payoff 

condition and string frequency, and the interaction between payoff condition and string position 

were all used as random slopes. Each string position was coded as a separate categorical value, 

labeled 1-6, with 1 being the leftmost string and 6 the rightmost. For the analysis on regressions 

from strings, hypothesis tests about string position were conducted by individually contrasting 

positions 3, 4, 5, and 6  with position 2. For the analysis on regressions to strings, positions 2, 3, 

4, and 5 were each individually contrasted with position 1. Positions 2 and 1 served as baselines 
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because they are the first positions that can be regressed from and regressed to, respectively (note 

that a regression cannot be made from position 1, and a regression cannot be made to position 6).  

 For the analysis on regressions from strings, complete results can be found in Table 4, 

and a graphical representation can be found in Figure 4a. As in the trial level analysis, significant 

main effects were found for trial type and trial correctness, with regressions being more likely in 

word trials and in incorrect trials. Main effects were also found for string type, with regressions 

from nonwords being more unlikely than regression from words, and main effects were found for 

string position, with regressions from position 3 being more unlikely from position 2, but with 

regressions from positions 4, 5, and 6 being more likely. A significant interaction was found 

between payoff condition and string position, with regressions being more likely to occur from 

position 6 in the accuracy condition. 

 For the analysis on regressions to strings, complete results can be found in Table 5, with a 

graphical representation in Figure 5a. Again significant main effects were found for trial type 

and trial correctness, with regressions being more likely in word trials and in incorrect trials. 

Main effects were found for string type and word frequency, with regressions being more likely 

to be made to nonwords and low frequency words. A main effect was for string position, with 

regressions to string positions 2, 3, 4, and 5 being more likely than regressions to position 1. 

Unlike in the other analyses, a main effect for payoff condition was also found, with regressions 

being more likely in the accuracy condition. Significant interactions were found between payoff 

condition and string position, with regressions to string positions 3, 4, and 5 being less likely in 

the accuracy condition. 
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Model Results 

 The optimal distance weight and decision threshold for each condition are reported in 

Table 6, as well as the noise level which best fit the human results. A comparison of between the 

SFDs in the human data and the model data can be found in Table 7. Results from the model’s 

simulations are displayed graphically in Figures 3b, 4b, and 5b. Statistical tests are not reported 

for these results because with 100,000 simulated trials, the confidence intervals around the 

means are negligible.  

Discussion 

The results from the human data confirm that task demands do indeed affect people’s 

regression behavior. Figure 3a indicates that humans are using similar strategies in the accuracy 

and balanced conditions. They are more likely to make regressions in correct nonword trials than 

in incorrect nonword trials, and they are more likely to make regressions in incorrect word trials 

than in correct word trials. This means that people are more likely to make regressions when they 

think they saw a nonword. This strategy makes sense. If a person gets to the end of a trial and is 

still unsure about whether it was a word or a nonword trial, the most sensible thing to do is look 

back at any strings that might have been nonwords. 

 A different strategy seems to be going on in the speed condition. People are somewhat 

more likely to make regressions in incorrect trials than in correct trials in this condition, but this 

effect is consistent between the two trial types. The “double-checking” behavior in the accuracy 

and balanced conditions would probably waste too much time in the speed condition to be 

effective. Regressions in the speed condition probably happen when people rush through the trial 

too quickly and need to look back at some words to gain enough confidence to make a decision. 
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More regressions happen in incorrect trials because incorrect trials reflect a greater level of 

uncertainty. 

 One thing that is consistent among all conditions is that more regressions occur in word 

trials than in nonword trials. This is counterintuitive since Figure 5a indicates that regressions are 

most likely to be made to nonwords, but there might actually be more suspect nonwords in word 

trials. If a person encounters a string like “pago,” which does not closely resemble any common 

real words, he or she will likely conclude that it is a nonword quickly and make a response. 

However if a person encounters a very low frequency word like “helm” or “hilt,” he or she might 

be uncertain about whether it is a word or a nonword, because although such words are 

occasionally found in writing, they are rarely used in everyday speech. A reasonable strategy in 

this situation might be to look through the rest of the list to see if any other strings are obviously 

nonwords, and if no such words are found, go back to the suspect string to see if it was misread 

the first time around. This interpretation is consistent with the fact that 7 out of the 10 most 

regressed to strings are in fact very low frequency words, as can be seen in Table 8. 

 The model predicts a very different pattern of data. Unlike the humans the model is less 

likely to make a regression when it thinks it has seen a nonword. This may be due to the fact that 

unlike the humans, the model knows exactly which strings are words and which are nonwords. 

So when the model encounters a nonword and gets good information about it, it will quickly 

decide that it is in a nonword trial without wasting any time looking at the other strings in the 

trial. But since humans are less certain about what strings are and are not words, even when they 

get good information about a string and realize that it is not a word in their lexicon, they still may 

prefer to see what the other strings are before making a decision about the trial. This may be a 

good strategy because if humans are unsure about the identity of a string early in the trial but 
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encounter a string later in the trial that they know for certain is a nonword, they will be able to 

infer that the earlier string actually was a word, and that information will allow them to perform 

better in subsequent trials. 

 The fact that the model know for certain which strings are and are not words also means 

that all the regressions produced by the model are not due to the “double checking” behavior 

seen in the humans but rather due to rushing through the trial too quickly and needing to collect 

more information before a trial decision can be made. Since the optimal policy in each condition 

has a distance weight of 0, the model will almost always program a saccade away from a string 

as soon as it receives information that that string is a word, because that string will usually no 

longer be the string with the most uncertain belief. However, if the model receives information 

that a string is a nonword, this will usually increase the string’s uncertainty, so the model will 

continue to fixate on that string. The net result is that the model will rush through word trials 

very quickly and need to make lots of regressions, but will take its time on nonword trials and 

respond without looking at the other strings and without making any regressions. Having a 

distance weight of 0 in every policy leads to another limitation in the model: the differences in 

SFDs seen in the human data across the payoff conditions are virtually nonexistent in the model, 

as can be seen in Table 7. Furthermore the SFDs predicted by the model are not very accurate, 

being 55 ms off of the human SFDs on average. 

 Two important qualities of the human data are captured by the model, however. The first 

is that the model correctly predicts that regressions will be most likely to occur on the final 

string. This finding, however, says more about the LLDT than natural reading, however. What is 

more interesting is how the position effect adapts to each payoff. The humans are more likely to 

regress in the accuracy condition in the speed condition, but this is only true for correct word 
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trials in the model. The model is less likely to make regressions in the accuracy condition for 

incorrect nonword trials. 

The second quality that was captured was that regressions will be more likely to be made 

to nonwords than words (although this effect is not nearly as pronounced as in the human data). 

This finding is of relevance to natural reading. If a regression is made to a nonword, that 

indicates that the nonword was misidentified the first time it was fixated on (because otherwise 

the model would have responded with “nonword trial” right away). This indicates that 

regressions are induced by difficulties in linguistic processing, which is consistent with the 

predictions of E-Z Reader and SWIFT. 

 One change to the model that might bring its behavior more in line with the humans 

would be to decouple the decision of when to make a saccade from where to make a saccade, as 

in SWIFT. This change might reproduce the payoff effects on SFDs seen in the original model, 

and this may make the model more physiologically plausible as well, because there is some 

evidence that the decisions of where and when to saccade are mediated by different neural 

pathways (Carpenter, 2000; Findlay & Walker, 1999; Wurtz, 1996).   

In order to test these hypotheses, a new version of the model was run using methods 

identical to those described above. This implementation of the model has both saccade thresholds 

and trial decision thresholds as in its original formulation, but instead of automatically saccading 

to the next string after crossing the saccade threshold, the model now chooses the string with the 

most uncertainty, as in the prior formulation, and it may continue to make saccades even after 

reaching the final string in the trial. The derived policy parameters of this model can be found in 

Table 9, a comparison of its SFDs to the human data can be found in Table 10, and graphical 

summaries of its regression behavior can be found in Figure 6.  
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The results indicate that this model is actually a worse fit to the human data in several 

aspects. Although there is a noticeable effect of payoff on SFDs this time, this model’s SFDs are 

still overall a poor fit to the human data, with an average error of 50 ms. And unlike the last 

model, this model is no more likely to make regressions to nonwords than words, and the 

position effects seen in this model are not as strong as those in the last, and the interaction 

between position and payoff is opposite of what is seen in the human data. This version of the 

model still does not produce any “double-checking” behavior. It only makes regressions when it 

moves through the trial too quickly, and since it spends more time on each string in the accuracy 

and balanced conditions, it is more likely to make regressions in the speed condition. 

This second model does have one advantage over the last model, however. Because this 

model is a generalization of the original model that allows for regressions, it can be used to test 

Bicknell and Levy’s claim that regressive policies are faster and more accurate than 

nonregressive policies. Mean trial reaction times, percent of trials correct, and mean trial payoff 

can be found in Table 11 for both this model (the regressive model) and the model originally 

presented in Lewis et al. (the non-regressive model). While the regressive model is more 

accurate than the non-regressive model in all three conditions, it is only faster in the accuracy 

condition, and thus its payoff is also only higher in the accuracy condition. This means that the 

policy space of the regressive model must not be a superset of the policy space of the non-

regressive model, because otherwise the regressive model would perform at least as well as the 

non-regressive. Therefore, given a choice between the target selection mechanism of the new 

models and the forced forward saccade mechanism of the original model, a rational agent should 

choose the latter. This does not imply that the humans in this study were irrational for making 

regressions, however, since the model’s oculomotor architecture clearly does not have the same 
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bounds as the humans’. But this finding  does imply that Bicknell and Levy’s claim that 

regressive strategies are better than non-regressive strategy depends on the specific type of 

model being tested and is not true in general. 

There are two changes to the model that could make its behavior more similar to the 

humans’. The first change would be for the model to no longer have a clear distinction between 

words and nonwords, but instead to have a probabilistic belief about each string being a word. As 

discussed earlier, humans probably condition their belief that the current string is a nonword on 

their belief that the other strings are nonwords, so this change might cause the model produce 

some of the “double checking” behavior seen in the human data. 

The second change would be to make this model a “leaky, competing accumulator” 

model (Usher & McClelland, 2001). At present, the model has perfect memory for its beliefs 

about each string in the current trial. This is probably unrealistic, though, because the human 

participants have to complete hundreds of these trials, and memories for all those trials are likely 

to interfere with each other. When humans make a regression, it is probably because they cannot 

remember if they really saw a nonword in that trial or if they are thinking of another trial. This 

could be simulated in the model by having its beliefs about each string slowly degrade back to 

their priors. This would mean that once the model reaches the end of a trial, its belief about 

strings from the beginning of the trial will be more uncertain, so it will need to make regressions 

in order to cross the decision threshold.  

Summary of Results and Conclusion 

Being able to explain regressions is important for computational models of reading 

because it addresses the more fundamental question of how readers choose which word to read 

next and whether or not human reading strategies are rational. Many models have been put 
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forward that try to explain regressions, but all have their own limitations. Both E-Z Reader and 

SWIFT propose that regressions arise from difficulties in linguistic processing, but E-Z Reader 

unparsimoniously requires separate mechanisms for regressions and forward saccades, and the 

mechanism for regressions in SWIFT is irrational. Bicknell and Levy’s model proposes that 

regressions allow for faster and more accurate reading in a stochastic system, but it does not 

account for forward saccades. Mr. Chips proposes that regressions are an emergent phenomenon 

arising from a simple rule that tries to minimize uncertainty, but says nothing about fixation 

durations.  

None of these models can account for possible effects of task demands on regression 

behavior. The Bounded Optimal Model was previously successful in explaining the effects of 

task demands on single fixation durations, and so it was modified to allow for regressions. The 

core of this model is bounded optimality, the notion that human behaviors are approximately 

optimal adaptations to the joint constraints of the human information processing system, the 

external probabilistic environment, and an internal reward function. This model examines the 

interaction between the high level cognitive processes of word recognition and decision making 

and the low level oculomotor processes of eye movements. 

 Both humans and computer simulations of the Bounded Optimal Model completed trials 

of the list lexical decision task, in which the goal was to decide if a list of strings were all real 

English words, or at most one of them was a nonword. Results from the human experiment 

presented in this paper showed that tasks demands, and in particular the tradeoff between speed 

and accuracy, affect peoples’ regression behavior. The Bounded Optimal Model tried, and 

ultimately failed, to explain the humans’ behavior, and it failed to corroborate Bicknell and 

Levy’s claim that regressions allow for faster and more accurate reading. It seems that humans 
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used two types of regressions in the LLDT. The first type were used to “double check” their 

work and to ensure that they did indeed see a nonword earlier in the trial; the second were used 

to compensate for rushing through trials too quickly and not acquiring enough information to 

make a decision. The model was only able to make the second type of regressions. Two possible 

changes to the model may cause it to produce the first type, however.. The first is to give the 

model more continuous, probabilistic beliefs about which strings are words and which are 

nonwords. The second is to introduce “leaks” into the model’s memory, so that its belief about 

each string will become less confident over time.   
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Table 1 

Quantitative description of each payoff condition 

 

 

 

 

 

  

 Accuracy Balanced Speed 

Incorrect penalty -150 -50 -25 

Speed bonus (per second under 5s) 8 6.7 5.7 
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Table 2  

Model parameters 

Parameter Mean 

Std 

Deviation 

Source 

Eye-brain lag 50 15 

(VanRullen & Thorpe, 

2001) 

Saccade programming 

time 

125 37.5 

E-Z Reader (Reichle et al., 

2009) 

Saccade execution 

time 

2.8 * (distance of saccade in 

degrees)  + 24.7 

0.3 * mean 

(Harwood, Mezey, & 

Harris, 1999) 

Motor preparation and 

execution time 

100 30 

EPIC (Meyer & Kieras, 

1997) 

Trial onset detection 

and refixation 

150 45 

Prior estimate of short 

fixation and saccade 

Sample duration 10 0 

Nontheoretical 

discretization parameter 

Gaussian sample noise 0 1.5 

Standard deviation fit as 

described in text 

Note. Means were taken from sources noted. All units are in milliseconds. 
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Table 3 

Trial level analysis of regressions 

Predictor Estimate SE z p 

Condition 0.16 0.25 0.63 .532 

Trial Type 0.76 0.11 7.10 <.001 

Correctness 0.22 0.06 3.51 <.001 

Condition x Trial Type 0.64 0.27 2.38 .017 

Condition x Correctness 0.23 0.16 1.44 .151 

Trial Type x Correctness -0.63 0.11 -5.57 <.001 

Condition x Trial Type x Correctness -0.63 0.28 -2.22 .026 

Note. Coefficient estimates, standard errors, Wald’s z-scores, and p values calculated using a 

mixed effects logistic model. 
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Table 4  

Analysis of regressions from string. 

Predictor Coef. β SE(β) z P 

Condition 0.24 0.16 1.53 .123 

Word Frequency 0.03 0.02 1.16 .246 

String Type -2.28 0.08 -27.23 <.001 

Correctness 0.22 0.03 6.45 <.001 

Trial Type 0.75 0.03 29.58 <.001 

String Position 3 -0.1 0.04 -2.50 .012 

String Position 4 0.10 0.04 2.43 .015 

String Position 5 0.54 0.04 14.36 <.001 

String Position 6 2.57 0.03 75.67 <.001 

Condition x Word Frequency  -0.06 0.06 -1.10 .272 

Condition x String Type 0.16 0.19 0.82 .411 

Condition x String Position 3 -0.111 0.10 -1.18 .238 

Condition x String Position 4 -0.11 0.10 -1.12 .261 

Condition x String Position 5 -0.03 0.10 -0.40 .688 

Condition x String Position 6 0.25 0.08 3.12 .002 

Note. Coefficient estimates, standard errors, Wald’s z-scores, and p values calculated using a 

mixed effects logistic model. 
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Table 5 

Analysis of regressions to strings 

Predictor Coef. β SE(β) z P 

Condition 0.45 0.13 3.52 <.001 

Word Frequency -0.19 0.02 -8.38 <.001 

String Type 2.96 0.06 48.61 <.001 

Correctness -0.18 0.03 -5.91 <.001 

Trial Type -0.57 0.03 -21.91 <.001 

String Position 2 0.66 0.03 20.25 <.001 

String Position 3 0.96 0.03 30.83 <.001 

String Position 4 0.85 0.03 26.21 <.001 

String Position 5 1.04 0.03 32.82 <.001 

Condition x Word Frequency  0.09 0.06 1.68 0.093 

Condition x String Type 0.01 0.12 0.10 0.918 

Condition x String Position 2 -0.13 0.08 -1.60 0.109 

Condition x String Position 3 -0.27 0.08 -3.58 <.001 

Condition x String Position 4 -0.31 0.08 -3.88 <.001 

Condition x String Position 5 -0.27 0.08 -3.54 <.001 

Note. Coefficient estimates, standard errors, Wald’s z-scores, and p values calculated using a 

mixed effects logistic model. 
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Table 6 

Derived policy parameters. 

 

Search range 

Derived Values 

 Accuracy Balanced Speed 

Distance Weight 

0 – 0.09 

in 0.01 increments 

0 0 0 

Decision Threshold 

0.709 – 0.999 

in 0.01 increments 

0.999 0.989 0.989 

Standard Deviation 

of Perceptual Noise 

1 – 3 

In 0.25 increments 

1.5 
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Table 7 

Single fixation durations in the human and model data 

  

Human Model RMSE 

Accuracy Nonword 383 400 30 

 

Low Frequency Word 274 299 53 

 

High Frequency Word 256 274 36 

Balanced Nonword 324 404 84 

 

Low Frequency Word 256 319 80 

 

High Frequency Word 242 272 43 

Speed Nonword 358 404 53 

 

Low Frequency Word 268 319 78 

 

High Frequency Word 253 272 36 

Note. Means and root mean squared errors are reported in milliseconds. 
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Table 8 

The 10 most regressed to strings in the human data 

String Number of Regressions Frequency 

garb 105 3 

pith 102 1 

bard 101 3 

prim 84 1 

bout 82 7 

stad 79 0 

nigh 79 1 

meck 78 0 

fore 76 7 

fets 74 0 

Note. Frequency is reported as number of occurrences out of 1,000,000 words (Kucera & 

Francis, 1967). 0 indicates a nonword. 
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Table 9 

Derived policy parameters for the second model 

 

Search range 

Derived Values 

 Accuracy Balanced Speed 

Distance Weight 

0 – 0.09 

in 0.01 increments 

0 0 0 

Saccade Threshold  0.919 0.919 0.879 

Decision Threshold 

0.709 – 0.999 

in 0.01 increments 

0.999 0.999 0.999 

Standard Deviation 

of Perceptual Noise 

1 – 2 

In 0.25 increments 

1 
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Table 10 

Single fixation durations in the human and the second model data 

  

Human Model RMSE 

Accuracy Nonword 383 416 46 

 

Low Frequency Word 274 290 43 

 

High Frequency Word 256 280 45 

Balanced Nonword 324 416 98 

 

Low Frequency Word 256 290 53 

 

High Frequency Word 242 280 54 

Speed Nonword 358 378 41 

 

Low Frequency Word 268 261 41 

 

High Frequency Word 253 242 29 

Note. Means and root mean squared errors are reported in milliseconds. 
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Table 11 

Mean reaction times,% correct, and mean payoff of regressive and non-regressive models 

  Reaction Time (ms) % Correct Mean Payoff 

 Condition 

Non-

regressive 

Model 

Regressive 

Model 

Non-

regressive 

Model 

Regressive 

Model 

Non-

regressive 

Model 

Regressive 

Model 

Accuracy 1644 1569 98 99.49 23.44 28.456 

Balanced  1546 1569 97 99.49 21.52 19.893 

Speed 1455 1637 95 99.37 18.89 15.957 

Note. Data for the Regressive Model comes from the second model described in the discussion. 

Data for the Non-regressive Model comes from Lewis et al. (to appear). 
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Figure 1. Simulated correct word trial and correct nonword trial. The strings at the top are the 

strings presented in the trial. The filled rectangles show the timing and duration of fixation 

durations, saccade programming (prog), eye-brain-lag (EBL), sampling, and motor response and 

execution. At the bottom is the random walk of the belief probabilities, with the bottom 

representing 0 and the top 1. The black line is the belief that the trial is a word trial (starting at 

0.5), and the red lines are the beliefs that each string is a word (starting at 0.92). The solid black 

lines represent the decision thresholds, and the dashed lines represent the saccade thresholds. 

Adapted from (Lewis, et al., to appear).  
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Figure 2. Simulated trial of 3 strings under new policy space with a distance weight of 0.05. (a) 

The model begins the trial fixated on the nonword “sart.” The beliefs of all strings start out 

equal, but the belief of “sart” has lowest adjusted difference from .5, so the model remains 

fixated there. (b) After collecting some noisy information, the model incorrectly starts to believe 

“sart” is a word. The lowest adjusted difference is now at “love” so the model programs a 

saccade. (c) The model executes a saccade to “love.” During saccade programming, the model’s 

belief about “sart” decreased. (d) The model begins to believe that “love” is a word, and the 

lowest adjusted difference is now at “cold,” so a saccade is programmed. (e) The model executes 

a saccade to “cold.” During saccade programming, the model became even more confident that 

“love” is a word. (f) After receiving some noisy information, the model begins to believe that 

“cold” is a word. “Sart” now has the lowest adjusted difference, so a regression is programmed 

back to it. 
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 Figure 3. Proportion of trials that contain at least one regression, divided by payoff 

condition, trial type, and correctness. Human results are shown in (a) and model results are 

shown in (b). 

(a) 

(b) 
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Figure 4. Proportion of fixations on each string position that precede a regression. Strings are 

ordered 1-6, with 1 being the leftmost string and 6 the rightmost string. String 1 is not shown 

because a regression cannot be made from that position. Human results are shown in (a) and 

model results are shown in (b).  

(a) 

(b) 
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Figure 5. Proportion of fixations on string frequency level that are regressive. Human results are 

shown in (a) and model results are shown in (b). 

 

 

(a) 

(b) 
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Figure 6. Regression behavior in the second model. (a) Overall frequency of regressions divided 

by trial type and correctness. (b) Proportion of fixations on each string position that precede a 

regression. (c) Proportion of fixations on each string frequency that are regressive.  


