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We are pleased to present this Special Issue onDiscipline-Centered Post-Secondary Science

Education Research. For the last 20 years, research into learning at the post-secondary level has

grown substantially. We are quite fortunate, for this introduction, that the challenge of reviewing

the background of this area has already been carried out and made public, less than a year ago, in

the National Research Council’s report on Discipline-Based Education Research (DBER)

(NationalResearchCouncil, 2012b).

Thefivegoals ofDBER (p. 2) provide a starting point for our interest in this topic.

(a) Understand how people learn the concepts, practices, and ways of thinking of science

and engineering.

(b) Understand the nature anddevelopment of expertise in a discipline.

(c) Help identify andmeasure appropriate learning objectives and instructional approaches

that advance students toward those objectives.

(d) Contribute to the knowledge base in a way that can guide the translation of DBER

findings to classroompractice.

(e) Identify approaches tomake science and engineering education broad and inclusive.

In their report, the committee charged with defining and describing DBER decided on six

areas of undergraduate science education at its foci. From the list, above, the single item (b),

“understand the nature and development of expertise in a discipline,” carries the burden for

differentiating DBER from Education Research (ER), because the other four goals describe

Education Research, in science and in general, quite well. We think that understanding the role of

the discipline in post-secondary science education is important to address.

A Case for the Discipline

Wedid not use “DBER” as the title for this Special Issue becausewewere neither interested in

seeing (or worse, causing) a debate about whether teaching, learning and research in the K-12

sector is informed by disciplinary expertise (we think it is), nor werewe concerned about drawing
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sharp lines in the epistemological sand between these instructional levels. To keep the discussion

on target, we have acknowledged both “discipline-centered” and “post-secondary science” as the

key terms in the titlewe selected for this Special Issue.

Certainly the disciplines play a role inK-12 science education.A glance at the Framework for

K-12 Science Education (National Research Council, 2012a) reveals standards that are strongly

informed by the disciplines. And education research can have multiple foci, or emerge from a

Psychology-Centered perspective, a Sociology-Centered perspective, and so on. One question

that is worth asking, then, is whether the role played by the discipline in post-secondary education

has a distinctiveness that can locate a significant difference between education research in

postsecondary versusK-12 settings.

In reviewing the literature since the publication of Braxon and Hargens’ (1996) analytical

frameworks for variation among academic disciplines, Jones (2011) notes the re-emergent

growth of a social psychological perspective on disciplines, derived from the Holland Theory

of Occupational Classification (Smart, Feldman, & Ethington, 2000). In particular, Smart et al.

(p. 19) emphasize how instruction in a discipline is a socialization process: “The term

[socialization] is not used as a synonym for development; rather, it refers to the social pressures

on new members to adhere to the prevailing ways of thinking, feeling, and behaving found in

the group.” One possibility for understanding what might be meant by discipline-centered

teaching and learning is the degree to which knowing the facts, concepts, and principles depends

on their integration with the details of these ways of thinking, feeling, and behaving.

Discipline is a continuum of increasing focus as one moves through education. Although the

distinction is fuzzy-edged, one characteristic of post-secondary science education is the shift from

introductory survey classes with multiple topics (e.g., High School and General Chemistry) to

classes that specialize according to amore specificdisciplinary expertise (e.g.,OrganicChemistry,

Physical Chemistry, Cellular and Molecular Biology, or an Organismal and Population Biology)

and the increased chance that the instructor is also a person who is versed in the art of that specific

area (an Organic Chemist, a Physical Chemist, a Molecular Biologist, or an Organismal

Biologist). The common impression from survey classes, and one that is never a goal, is that

scientific knowledge reduces to a bundle of facts. Ideally, disciplinary context provides an

integrated understanding, where the “thinking, feeling, and behaving” part of understanding is an

indispensible feature of the story. Progressing through the K-20 spectrum, the larger cross-

disciplinary ideas about science, as a way of knowing, become highly contextualized through the

more detailed study through the lenses of disciplinary focus.

K-12 and postsecondary instructors generally differ greatly in both the time with, and depth

of, their prior experiences carrying out work in the discipline. An educational environment

designed and implemented by a scientist whose expertise involves years of first-hand generation

of data in the discipline carries the possibility, at least, that contextual, practical, epistemological,

theoretical, and experimental issues are part of the knowledge and cannot be easily separated from

them. As we have said, this is a fuzzy-edged distinction, in that there are certainly K-12 teachers

who understand and can convey disciplinary insights from having only limited experiences; and

there are postsecondary educators whose Ph.D. does not guarantee that they are aware of, or

capable of conveying, the deeper understanding from their fields.

Students at the postsecondary level should begin to experience situations where unilateral

one-reason decision-making (Gigerenzer & Gaissmaier, 2011) is not adequate, and where a

conditional model of evidence-based decision-making, accounting for variation in individual

cases, is required (Falzer & Garman, 2009). This means, for example, that posing a question to a

group of university students in an organic chemistry class about a new and unfamiliar situation,

such as “which intra-molecular force is more important in this set of molecular conformations?”
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ought to be greeted with “give me the experimental result and I can evaluate the relative

contribution of the competing forces.” The answer to this question, in which a unique balance of

multiple criteria must be proposed, for this case, is not a certain and knowable fact that can be

conveyed, recalled or selected. In principle, at least, the pedagogical content knowledge of a

disciplinary practitioner should provide an increasing degree of fidelity to a broader array of

disciplinary values than someone whose experience in the discipline is less extensive or less

sophisticated.

If disciplinary expertise and focus is a continuum, then so too must be the influence of the

discipline on carrying out education research. Investigators who carry a discipline-centered

understanding of the subject, that is, a broad array of integrated disciplinary values, should be able

to design experiments that dependmore substantially and substantively on that understanding and

on those values. They also should be able to observe more detail, interpret with greater subtlety, and

findmoremeaning indiscipline-centereddata.They should alsobe able to translate their findings into

more highlyarticulated recommendations for instructional designand/or pedagogical approaches.

On the other hand, if the socialization into differentiated ways of thinking is also what we

mean by a discipline, then thismight also differentiate approaches to discipline-centered research.

We already know that the ground rules for carrying out research in the social sciences and

humanities differs from science, and designing astrophysics experiments to test theories of

universal origins differ from Phase III clinical trials for an anti-cancer therapy. As discipline-

centered education research evolves, disciplinary differences could appear as limitations and

restrictions on transferability, that is, the ways in which research is designed and carried out, or in

the ways that results from investigating one disciplinary area can inform work in others. For

instance, formal ability in statistical reasoning in non-probabilistic fields, such as chemistry and

law, stays flat or decreases during graduate education (Nisbett, Fong, Lehman, & Cheng, 1987;

Lehman, Lempert, &Nisbett, 1988). Even studies carried out in chemistry andmedical education

settings would potentially need to take a significant difference in the expectations for statistical

reasoning into account.

Relation to the Scholarship of Teaching and Learning

The DBER report (NRC, 2012b) acknowledges that (p. 12) “the boundaries between

Scholarship of Teaching andLearning [SoTL] andDBER are blurred.”Despite the continued lack

of consensus in defining the Scholarship of Teaching and Learning (Hutchings, Huber, &

Ciccone, 2011; Ochoa, 2011; Shulman, 2011), the concepts and practices associated with SoTL

emerged exclusively from postsecondary education settings, from a sense thatmainstream faculty

members could learn to investigate and document their classroom practices, and from a sincere

motivation to improve and understandwhat ismeant by students attaining a deep understanding of

a field. SoTL did not emerge, however, from the realms of educational theory or the learning

sciences, and can often comeoff as naı̈ve and uninformed.

Germane to its foundation in higher education, the conversation around the Scholarship of

Teaching and Learning has always been sensitive to the effects of the discipline, and so over

20 years of discourse on SoTL reinforces the premise, above, that disciplinary differences can

have a profound effect not only on instructional practices, but also on education research. Unlike

DBER, which defines itself as emerging from the sciences, SoTL provides a broader landscape

for comparison when considering the role of the discipline, in that SoTL was defined

(Boyer, 1990) and refined (Glassick, Huber, & Maeroff, 1997) across the entire academy. Only

two of the ten areas selected for an examination of how disciplinary styles have affected the

Scholarship of Teaching and Learning were from science (chemistry) and engineering (Huber &

Morreale, 2001). The editors, in their analysis of the essays, noted, particularly for these two
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essays, that there can be tension for disciplinary practitioners when they need to navigate the

differences between carrying out research in their native scientific disciplines and carry out

social science research when investigating teaching and learning. In their non-probabilistic

research domain, chemists, for example, are accustomed to carrying out research with 1023 self-

equilibrating, cognitively incapable particles, where the Law of Large numbers holds and where

control of experimental conditions is real and reproducible over a limitless number of trials.

None of these features characterizes the research chemists might carry out in an educational

setting, but the expectations from laboratory research can nonetheless linger (see below,

“scientific teaching”).

Learning-Related Attitudes, Values, and Beliefs

Disciplinary socialization, according to Smart et al. (2000) includes learning “the prevailing

ways of thinking, feeling, and behaving,” (i.e., dispositions) and these represent aspects of

disciplinary understanding that are highly integrated with data, how it arises and how it is used, as

well as pedagogical design and implementation, and with education research, in away that makes

them discipline-centered. Once again, there is a continuum, where some dispositions span the

breadth of the sciences (relative to the social sciences or humanities) and others are more

specifically attached to a given discipline or sub-discipline.

In searching for guidance on how these “prevailing ways” are integrated into formal

conceptions of postsecondary education, we are drawn to a recentmeta-analysis of 40 years worth

of education reform. Slavich and Zimbardo (2012) have proposed a three-level model for what

they call transformational teaching. The middle tier of their model, called the Basic Principles

(p. 582), includes (a) acquisition and mastery of key course concepts, (b) enhanced strategies and

skills for learning and discovery, and (c) positive learning-related attitudes, values, and beliefs. As

educational psychologists, the authors included ideas such as motivation and self-efficacy in their

third category.

As science educators, we would include discipline-centered “ways of thinking, feeling, and

behaving” (i.e., scientific disposition) among these learning-related attitudes, values, and beliefs:

those things that accompany learning the more specific subject matter topics and concepts.

Developing evidence-based skepticism, for example, probably never appears on the syllabus of a

science class, but one nonetheless hopes that improving students’ sense of skepticism is an actual

learning outcome. Camins (2012) urges that other lessons that scientists have integratedwith their

conceptual understanding, and should accompany instruction, are: comfort with ambiguity, the

search for uncertainty, and learning from failure. In general, the integration of one’s subjectmatter

knowledgewith the outcomes from a liberal arts education (Ege et al., 1997), andmaking these an

explicit part of learning, is a potentially satisfying way of thinking about the third basic principle

in the transformational teachingmodel.

Challenges

Post-secondary science education research has challenges that distinguish it from work in

K-12 settings. University instructors, by and large, are not the product of a deliberate and

intentional system of professional development for their classroom duties, so relationships

between training and enactment are going to be hard to identify. University students come with

whatever background they have gained from their K-12 education, along with prejudices and

preconceptions, from the prior instruction they have had in the subject, so accounting for the

effects of prior knowledge, beliefs, and experiences is a complex problem. Post-secondary

instructors, and their classrooms, have been less open to direct study than their K-12

counterparts, so our sense of how teaching is carried out, in practice, as an observed act, is
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limited. University students are not a monolithic group, and their learning environments are

diverse and multi-faceted. The classroom, per se, does not dominate the locus for instruction

and learning to the degree that it does in K-12 settings.

An underlying assumption that advocates for science education reform often make, whether

the results are from DBER, ER, or SoTL, is best exemplified in the argument made by the

proponents for “scientific teaching” (Handelsman et al., 2004; Handelsman, Miller, &

Pfund, 2007). They ask: “. . .why do outstanding scientists who demand rigorous proof for

scientific assertions in their research continue to use and, indeed, defend on the basis of the

intuition alone, teachingmethods that are not themost effective?”

In other words: if scientists, according to this model of “scientific thinking” routinely change

their minds in the light of new scientific facts, then why don’t they behave the sameway about the

results from education research when it comes to teaching? Their answers are simple (2004,

p. 521): “Many scientists are still unaware of the data and analyses that demonstrate the

effectiveness of active learning techniques.Othersmaydistrust the data because they see scientists

who have flourished in the current educational system. Still others feel intimidated by the

challenge of learning new teachingmethods or may fear that identification as teachers will reduce

their credibility as researchers.”

But perhaps these answers are too simple. Even paradigmatic change in science has never

been as easy as “having rigorous proof for scientific assertions” (Kuhn, 2012); or, as Planck put it

(1949): “A new scientific truth does not triumph by convincing its opponents andmaking them see

the light, but rather because its opponents eventually die, and a new generation grows up that is

familiar with it.” Our educational psychology colleagues remind us that changing behavior is

complex, requiring the skill (knowledge), the will (motivation), and the thrill (reward) (Paris &

Paris, 2001). That is, an overweight, sedentary physician who smokes has all the knowledge

needed to make a good choice, and yet changing these behaviors (like teaching) requires more

than the facts (Coppola, 1998).

Thinking about incomplete and/or inaccurate understanding ideas that students come to class

with, based on their prior experiences, is shifting away from “misconceptions,” in which, to a

significant degree, the learner receives the blame for misunderstanding, to what some call a

“resources” framework (Redish & Sayre, 2013), derived from the “knowledge-in-pieces”

framework (diSessa, 1993; Özdemir & Clark, 2007). This latter framework takes into account

prior, relevant classroom experiences and their effects on prior knowledge coming into a new

class, and how that experience might set strong expectations for how new instruction can activate

and possibly reinforce counterproductive ideas. These are highly relevant when thinking about

post-secondary students, and could cause the need to re-evaluate work that was based on a

misconceptions framework.

In summary, discipline-centered postsecondary science education research is expected to

reflect its deeper contextualization of scientific knowledge in both their idiosyncratic disposition

(ways of thinking, models, explanations) from the discipline and their deep integration with

learning-related attitudes, values, and beliefs about scientific ways of knowing. The role of prior

knowledge and experience should play a more prominent role in understanding instructional

interventions. Efforts to make direct observations of the diverse contributions to the learning

environment of university students is a complex problem, starting with the paucity of empirical

information about classroomand non-classroom settings.

The Special Issue

We received 16 submissions from our call for papers, and the peer-review process

resulted in the six articles comprising this issue. We have three articles in the area of
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chemistry, two in physics, and one in the biological sciences. The articles include direct

investigations of classroom interventions, international settings, and under-represented student

populations. In every case, the authors have attended carefully to balancing the level of

disciplinary expertise needed to understand the details of the work with the need to maintain

accessibility to a broad audience. We especially thank JRSTAssociate Editor Valerie Otero for

her significant contribution in the development of Article #5 prior to our adoption of it for this

Special Issue.

Dr. Susan Singer, who chaired the committee that generated the NRC DBER report,

has provided the closing essay for the Special Issue. She emphasizes the need for venues,

such as this one, for the cross-fertilization of results. The various discipline-based

approaches to research on undergraduate teaching and learning, she notes, have created

difference emphases and traditions that could benefit from having better ways to speak to

one another.

Article 1: Analyzing change in Students’ Gene-to-Evolution Models in College-1 Level

Introductory Biology

In the first article, Dauer and colleagues look at the effects of using a systems thinking

approach in introductory biology. Systems thinking seeks to place conceptual order and

organization on what is commonly perceived, by students, as a list of memorized, disconnected

facts. Using an explicit representational tool (box and arrow models, which are an adaptation of

concept maps), the students learn to connect, literally as well as conceptually, the molecular level

ideas of genetics to the population level ideas of evolution.

The study was carried out with 368 students who were enrolled in two of four sections of an

introductory Biology course for life sciencesmajors. Over the duration of the course, the students’

models were used as a source of data, and evaluated for complexity and correctness against a

backdrop of their prior achievement. Over the first part of the term, the students’ models were

observed to increase in both factors, and the correctness gap between different student groups

decreased. As indicated by their physical models, the students went through stages of accreting

ideas, followed by major and minor restructuring of the relationships between them. The authors

observed a potentially interesting ceiling effect, where the sophistication of the students’Gene-to-

Evolution models flattened out, although the origin of this is open to multiple explanations. This

article, and one of the others (#5), speaks directly to grounding instruction in large, introductory

classes in principles that allow students to make connections in the otherwise long list of subject

matter topics.

Article 2: Self-Regulated Learning Study Strategies and Academic Performance in

Undergraduate Organic Chemistry: An Investigation Examining Ethnically Diverse

Students

In the article by Lopez and colleagues, an ethnically diverse set of students taking organic

chemistry were asked to keep diaries of their study and learning habits. Using a self-regulated

learning framework in order to analyze the entries, the content of the diaries was analyzed against

a variety of course outcomes: performance on problem sets, construction of concept maps, and on

course grades.

The researchers observed, for this population of ca. 90 students, that the students engaged in

four common study strategies. Therewere no differences between the different ethnicities, and the

strategies were of the “reviewing” type rather than higher-level strategies, such as using peer-

learning options, seeking assistance, and engaging variousmetacognitive skills.
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The study highlights the need for more in-depthmonitoring of students’ use of resources, not

only whether or not they engage with them, but also how they engage with them. In addition, the

study raises the question of how background characteristics of students relates (or not) with the

resources they select.

Article 3: Students’ Conceptual Change in Electricity and Magnetism Using Simulations:

A Comparison of Cognitive Perturbation and Cognitive Conflict

Using a population of 45 university-level physics students in Ethiopia, Dega et al. carried out

a quasi-experimental design in which subjects were divided by the instructional model used for

conceptual change in the areas of electricity and magnetism. With computer-based simulations

being used as the trigger, some of the students experienced instruction designed according to a

more classical cognitive conflict approach as the control group: “students’ existing ideas about the

concepts under intervention were made explicit and were then directly challenged.” The

experimental group was taught with a cognitive perturbation strategy, where the instructor would

“move step by step from [students’] preconceptions towards scientific conceptions . . . due to the
contention that cognitive perturbation would help the students’ learning towards the forming of

intermediate . . . conceptions.”
Although both of the groups showed small increases in their normalized gain scores, the effect

size was noteworthy. The results from this experiment are interesting, given it was carried out

under some sub-optimal conditions (e.g., too many students grouped around too few computers),

in that it opens up numerous questions worth investigating in subsequent studies in addition to

providing a concrete and well-considered example of how subtle differences in direct instruction

can influence outcomes in the context of conceptual change theory.

Article 4: An Investigation of College Chemistry Students’ Understanding of

Structure–Property Relationships

In Article 4, Cooper and colleagues carry out a qualitative study in order to identify themes in

the reasoning used by students for structure–property relationships. Based on semi-structured

interviews, 17 students, some from general chemistry and some from organic chemistry, made

predictions, and provided explanations about boiling point differences among pairs of organic

compounds.

In this study, the researchers identified four areas, or themes, that students included in their

reasoning: use of a phase change model, use of representations, use of language and terminology,

and use of heuristics. Significantly, although most of the students could rank correctly the pairs of

molecules according to their predicted properties, their reasoning was often incoherent, at best,

and often ripewith incorrect ideas.

The researchers provide strong and detailed evidence for their conclusion that “simply

categorizing ‘misconceptions’ is not enough,” and that students can “do well in . . . chemistry

courses without a thorough understanding of a core chemistry concept.” They support diSessa’s

conception of knowledge-in-pieces, and argue for instructional programs that more intentionally

link new knowledge with prior knowledge, and which ask students to explain more deeply and

coherently in themajor thematic areas.

Article 5: How Do Students in an Innovative Principle-Based Mechanics Course

Understand Energy Concepts?

As with the Gene-to-Evolution article (#1), Ding et al. provide a study of university-level

physics instruction in which a small number of fundamental principles is used to provide the

backbone for an updated version of the standard, introductory class. In this case, the study involves
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the development of energy concepts in the Matter & Interactions (M&I) Modern Mechanics

course.

Lots of detail is provided for how the M&I course approaches the topic of energy, and this

provides a compelling backdrop for why a specific assessment instrument was needed in order to

match the intended learning outcomes from this approach, which are significantly different that

those fromother approaches.

Through a combination of using their assessment instrument with 262 matched pre/post-

subject with a small group of interviews, the researchers revealed significant evidence for the

success of this principles-basedmethod. Studentswho stuckwith the program, that is,whoworked

their way to solutions from the basic principles, were indeed more successful that their

counterparts who did not. Because energy was the targeted concept, and because the M&I

approach is blind to issues of scale, the results from this study potentially have broad and direct

application to theway energy concepts are handled inmanydisciplinary areas.

Article 6: Making Predictions About Chemical Reactivity: Assumptions and Heuristics

In the last article, Talanquer andMaeyer extend thework on studying students’ understanding

on structure/property relationships to include structure/reactivity relationships. Using interviews

with 33 students enrolled in a second-term general chemistry class, the researchers presented their

subjects with three chemical reactions and asked the students to arrange them in the order of

anticipated extent of reaction. The interview population was judged to be representative of the

larger, 1,229 student enrollment through a combination of demographic comparisons with the

results fromadministering the ranking task as a timed, in-class survey to 424 students.

These researchers identified, in their students, numerous assumptions, that is, ideas driven by

prior knowledge and experience. These assumptions, which were categorized as intuitive,

spurious, and valid, appeared to drive, and constrain, the ability of the students to provide answers

to the ranking task. In identifying the various heuristics used by the students, familiar-looking

molecules appeared to drive recognition and recall as the main strategy, while one-reason

decision-making (ifA, thenB)was themost commonly employed.

As in a number of the other articles, this article contributes to the idea that designing

instructional environments should provide ways to elicit, in addition to providing, the deeper,

interconnected, and mutually dependent concepts that comprise scientific explanations. Such

teaching practices, which build explicitly on understanding brought into the class, may be more

significant for post-secondary students than K-12 students. These practices, which start with the

understanding held by students, can provide multiple opportunities to address the coherence and

conflict betweenwhat students understand coming into a class and the instructional objectives.

Closing Commentary: Advancing Research on Undergraduate Science Learning

In her essay, Singer points to the compelling reasons of national interest that are driving the

need to improve teaching and learning at the undergraduate level. Through the DBER report, the

National Research Council is seeking to bring focus and attention to the idea that our

understanding for the direction of change to make in postsecondary science education is ahead of

ourwidespread implementation of those changes.

Singer acknowledges the same dilemma as we have, above, when it comes to the role of

evidence in changing behavior. She states, “evidence is necessary but not sufficient to change

undergraduate STEM education.” This is a critical point. Another apt scientific analogy might be

to not confuse thermodynamics and kinetics. To get fromA toB, it does not onlymatter howmuch

more favorable the thermodynamic destination is, because you always have to overcome the
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kinetic barrier (in fact, poor destinations with low barriers are often quite attractive pathways to

follow). The futurist, Paul Sappho, says it this way (Sappho, 2013): “Never mistake a clear view

for a short distance.”

Singer’s analysis of the contributions from the articles in this Special Issue highlights their

placement in areas of research interest: conceptual understanding and conceptual change, use of

representations, problem solving, and instructional strategies. She also points to important places

where there are gaps in our understanding, particularly in understanding how change can occur in

postsecondary instructional settings, the inclusiveness of science education for all students, what

discipline-centered expertise means and how it develops during an undergraduate education, as

well as the question of what sorts of cross-cutting interdisciplinary understanding might emerge

from studying the development of scientific expertise.

The DBER report notes another critical component to change is not waiting until faculty

members are hired before acknowledging their broad array of duties, responsibilities and

obligations to the discipline, as both researchers and educators. Our system of scholarly

development works; it results in scientists who are prepared to identify and take on research

problems at the state of the art. This professional, disciplinary education starts in the

undergraduate years, which makes this process important to study and to understand. Similarly,

broadening the system of professional education for those who are thinking about becoming

faculty members, to include DBER and practice for designing instruction, also starting from the

undergraduate years, is a strategy that can prospectively take advantage of everything we already

know about preparing future faculty and end up “catapulting the next generation past what we

could accomplish.” (Coppola, 2007, p. 1909).

Summary

As guest editors for this issue and as an associate editor and editor for JRST, we sought to have

this Special Issue, as we desire to open up the dialog in Discipline-Centered Post-Secondary

Science Education Research and provide a resource to share research, methods, and results. Over

the last few years we have received numerous research articles focusing on discipline-centered

research in higher education, but these manuscripts were scattered among different issues of the

Journal. Our hopewith this Special Issue is to bring a collection of thesemanuscripts together and

to point a focus on how disciplinary knowledge and thinking influence the research in higher

education.

Next Steps

Our Special Issue was designed to draw attention to the disciplinary communities of post-

secondary science education research, and to provide a place where the question of “discipline”

might be raised through the publication of side-by-side articles. This issue, in effect, is the

experiment.

Our six articles highlight a number of the ideas that we suggestedmightmake post-secondary

science education distinctive from its K-12 counterpart. The significance of prior knowledge in

the discipline, among students, played a role in articles #3, #5, and #6, while detailed descriptions

of instruction in the subject matter played a role in articles #1 and #5. These latter two

demonstrated strongly how principle-based reasoning, as a characteristic of scientific thinking,

was illustrated through their instructional designs. Targeting connected understanding, and the

need to scaffold and iteratively reinforce the relationships between new and prior knowledge

appeared in all six articles.

One common refrain over these past few decades has been: where can research in post-

secondary science education be published, particularly the types of extensive, detailed studies that
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are characteristic of education research, andwhich covers the STEMfields, in general?As editors,

we see clearly the need for the disciplinary research communities represented in this Special Issue

to have a place formaking theirwork public, and together.

The work is there. In their review of the literature on chemistry education research (CER),

Towns and Kraft (2011) identified 27 relevant articles in JRSTover the 2000–2010 period (ca. 5%

of articles), 49 in the International Journal of Science Education, and 28 in the Journal of Science

Education andTechnology, with 255 (67%of those located) split between the Journal of Chemical

Education andChemistry Education Research and Practice andUniversity Chemistry Education.

Roughly the same percentage (7%) of education articles were identified as biology education

research (BER) by DeHann (2011), with a 50:50 distribution between studies at the high school

level and studies at the university level.

We wrote, earlier, on the potential character of the line between K-12 and post-secondary

science education and science education research.We notewith interest that one of our long-time

JRST reviewers reacted to one of our submissions this way: “My problem is that it is too much

chemistry detail in nature, and it might interest only a limited number of readers.” We think this

comment focuses a dilemma: will the details that define discipline-centered work keep post-

secondary science education research in the same disciplinary silos that have kept the disciplines

separated fromone another?

One of the recommendations made in the DBER report (NRC, 2012b, p. 4) is for

high-quality journals for postsecondary science education research. By sharing research on

teaching and learning across the disciplines, openly and confidently in a well-respected

venue, one seeks to inspire, for example, chemists and biologists who face the challenges

of teaching large, introductory survey classes to read and understand the details of how

Ding and colleagues principle-based mechanics course might inform their own thinking.

This is the main rationale used by members of the DBER, SoTL, and Scientific Teaching

communities.

We have also offered a line of reasoning that, across the disciplines, science education shares

many “ways of thinking, feeling, and behaving” in the “learning-related attitudes, values, and

beliefs” included among the instructional goals from transformational teaching. Identification of

how (and whether) instruction in organic chemistry or molecular biology results in an increase in

scientific skepticism among students is an interesting problem, as is the degree to which it takes

place in other science instruction. Avenue for critical, accessible, cross-disciplinary discourse is a

useful mechanism to facilitate and to study this type of work. And while there are differences, we

can learn from each other’s work to promote the teaching and learning of science in higher

education through research.

We invite comments and reactions to this Special Issue. Its publication also corresponds to a

call for papers for a second Special Issue on discipline-centered post-secondary science education

research.

Manuscript SubmissionDeadline:November 30, 2013.

Reviews returned: February 15, 2014.

First revisions due:April 15, 2014.

Second revisions due:May15, 2014.

Expected publication:August 2014.

Looking to the future: the Association and our publisher, Wiley, are interested in this

Special Issue, as well as the one planned for publication in 2014, as trial balloons. If there is

enough attention and support generated from these Special Issues, we are potentially

interested in spinning off a new journal dedicated to discipline-centered post-secondary

science education research.
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