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SUMMARY

For complex dynamic systems, a modular control design process is often employed, wherein the overall
design is partitioned into smaller modules. This paper considers a particular inner-loop/outer-loop modular
control strategy in which the designer of the outer-loop module does not know the specifics of the inner loop
but instead possesses a reference model that captures the ideal inner-loop input–output behavior. In the first
part of this paper, we establish analytical properties of the modular reference-model-based design. In the
second part, we introduce a novel mechanism, referred to as the modular control error compensation, which
mitigates the performance loss that arises when the inner-loop reference model is not matched. We propose
an iterative algorithm, using � synthesis, to design this compensator to reduce performance loss on the basis
of two concrete worst-case performance metrics. The effectiveness of the modular control strategy with the
modular control error compensation is demonstrated through experimental results on an automotive system.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To address the complexities of many modern industrial systems, modular control designs are com-
monly used, where the overall control system is partitioned into multiple modules, each of which
addresses a subset of the overall system dynamics. A very common modular strategy is an inner-
loop/outer-loop strategy, where an outer-loop controller is designed to achieve overall system
performance objectives whereas an inner-loop controller is used to allocate control inputs among
individual actuators. This strategy has seen widespread application in the automotive [1, 2],
aerospace [3–7], and marine [8–12] industries. Additionally, theoretical work on inner-loop/outer-
loop cascade control designs also exists in [13] and [14].

The particular inner-loop/outer-loop strategy and corresponding nomenclature for this paper are
shown in Figure 1, where the ultimate objective is to drive the performance variable, y 2 R, to
a given setpoint, r 2 R. The outer-loop controller computes a desired overall effect, vdes 2 R,
whereas the inner-loop control allocation determines control inputs, u 2 Rp , for the actuators, to
closely track vdes. v is commonly referred to as the virtual control input (and will be in this work),
which represents an overall force, moment, or other generalized effect that drives the dynamics
of the system. The control strategy in Figure 1 is widely employed in the industry because of its
practicality in addressing the plant dynamics and actuator dynamics through separate controllers,
particularly when different vendors are responsible for different components. The modular control
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ROBUST MODULAR CONTROL USING AN INNER LOOP REFERENCE MODEL 1339

Figure 1. Block diagram of the overall system under a modular control strategy.

strategy splits the design work across different areas of expertise, allows plug-and-play application
of different inner-loop modules, and reduces the complexity of the control allocation task.

When the actuator dynamics are very fast relative to the plant dynamics and overall closed-loop
system requirements, the modular approach can easily be carried out by two designers in paral-
lel. However, parallel design and seamless integration of the inner-loop and outer-loop controllers
represent challenges when the inner-loop dynamics are significant relative to the outer-loop dynam-
ics and exact tracking of vdes is impossible. Different integration mechanisms have been proposed
in the literature, each with its own benefits and pitfalls. For example, Luo et al. [7] and Tjonnas
and Johansen [12] proposed algorithms that achieve asymptotic tracking of vdes by performing a
target state calculation at every instant and then designing the inner-loop controller to asymptot-
ically track that target state trajectory. The ability to track vdes asymptotically, however, requires
advanced information about vdes to be passed to the inner loop. These strategies, however, do not
assess the implications of the delay, which can be significant in the presence of significant inner-
loop/outer-loop timescale separation, which must be introduced at the outer-loop level to provide
sufficient advanced information to the inner loop. The strategies in [13] and [14] provide systematic
design approaches for parallel outer-loop and inner-loop designs but also restrict the form that these
controllers may take.

In this paper, we propose an alternative system integration approach to those proposed in ear-
lier literature, which allows outer-loop and inner-loop designers to work in parallel. The proposed
strategy does not place restrictions on the design methodology for either controller and does not
require significant timescale separation between the inner and outer loops. In the proposed strategy,
we introduce an inner loop reference model to capture the target inner-loop behavior from vdes to v.
This reference model can by tailored to reflect dynamics that are both desirable and realistic for the
inner loop and can, under appropriate conditions, be matched exactly. In our analysis, we will derive,
through a constructive proof, necessary and sufficient conditions on the reference model and actua-
tor dynamics under which it is possible to match the reference model behavior. We also show that
if the same conditions hold for the actuator dynamics, then the modular control strategy is capable
of achieving equivalent performance to its centralized counterpart, shown in Figure 2. The ultimate
result of this two-part analysis will be a set of ideal modular control conditions, which provide us
with guidelines on how to choose the reference model and insight with regard to the features of the
actuator dynamics that will cause difficulty in modular control design.

Because exact inner-loop model matching is not possible in many circumstances that involve
uncertainties or nonideal properties of the actuator dynamics, the second part of this work proposes
robust control techniques to manage this mismatch between the ideal and actual performance. Here,

Figure 2. Block diagram of the overall system under a centralized control strategy.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
DOI: 10.1002/rnc



1340 C. VERMILLION, J. SUN AND K. BUTTS

we capture the performance mismatch between the desired and actual inner closed loop through
an uncertainty model and propose a novel control strategy, modular control error compensation
(MCEC), to reduce the performance mismatch through use of an add-on compensator. This mech-
anism is inspired by the original work in [15], which considers a similar compensation mechanism
but is restricted to parametric uncertainty. The MCEC design proposed in this work, which builds
upon ideas from [15] and our earlier work in [16], uses � synthesis for the compensator design.
This results in a design framework that is applicable to a broader class of uncertainties and allows
us to optimize performance on the basis of two concrete objectives. Furthermore, unlike other appli-
cations of � synthesis such as in [17, 21], which impose an inherent trade-off between nominal
performance and performance in the presence of uncertainty, our approach does not sacrifice nom-
inal performance in achieving performance recovery in the presence of uncertainty. This is made
possible by the fact that an add-on compensator, rather than the main outer-loop controller, is used
to achieve performance recovery. We demonstrate the effectiveness of this strategy through experi-
mental results on an automotive application example. Through this example, we also show how the
usage and proper choice of an inner-loop reference model represents a key step in containing and
ultimately reducing the mismatch between the ideal and actual system behavior.

The paper is organized as follows. In Section 2, we conduct an in-depth analysis of the reference-
model-based modular control design, deriving necessary and sufficient conditions for reference
model matching and then demonstrating the close relationship between these conditions and a set of
sufficient conditions for modular versus centralized equivalence. In Section 3, we treat the circum-
stances where the inner closed loop does not match the ideal behavior specified by the reference
model. Here, we formally introduce MCEC and the uncertainty model that is used to describe the
inner-loop performance mismatch. In Section 4, we use this uncertainty model to formulate a �
synthesis problem to optimally design MCEC from two concrete worst-case performance metrics.
Finally, in Section 5, we present design, analysis, and experimental results for modular control with
MCEC on an automotive thermal management system.

2. REFERENCE-MODEL-BASED MODULAR CONTROL DESIGN

This section details the reference-model-based modular design framework, which is depicted in
Figure 3. Mathematically speaking, the system in Figure 3 is identical to that in Figure 1; how-
ever, the block diagram has been manipulated in Figure 3 to illustrate the reference-model-based
design process. Here, the inner-loop reference model, F.s/, represents the ideal performance from
the desired virtual control input, vdes, to the virtual control input, v. x1 2 Rn1 represents the plant
states, and x2 2 Rn2 represents the actuator states, whereas xm1 and xm2 represent those plant and
actuator states, respectively, that are measured. Qv represents the difference between the virtual con-
trol input, v, and the output of the reference model, vfdes. It is therefore the objective of the inner-loop
controller to drive Qv to 0.

To characterize the performance achieved by the reference-model-based modular control design
and quantify its design limitations, we will consider linear time-invariant systems whose dynamics
are represented as follows:

X1.s/D P
x1.s/V .s/, (1)

Y.s/D P y.s/V .s/, (2)

X2.s/D A
x2
u .s/U.s/CA

x2
x1
.s/X1.s/, (3)

V.s/D Avu.s/U.s/CA
v
x1
.s/X1.s/, (4)

where P y.s/ is a scalar transfer function; P x1.s/, Avu.s/, and Avx1 are n1�1, 1�p, and 1�n1 trans-
fer function vectors, respectively; and Ax2u .s/ and Ax2x1.s/ are n2 � p and n2 � n1 transfer function
matrices, respectively. The outer-loop and inner-loop control laws are given by

Vdes.s/D C
o
r .s/R.s/CC

o
x1
.s/X1.s/ (5)
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Figure 3. Block diagram of the reference-model-based modular control design.

and

U.s/D C ivdes
.s/Vdes.s/CC

i
x2
.s/X2.s/, (6)

respectively, where C or .s/ is a scalar transfer function, C ox1.s/ and C ivdes
.s/ are 1 � n1 and p � 1

transfer function vectors, respectively, and C ix2.s/ is a p � n2 transfer function matrix.

Remark 1
In the absence of full state measurements, the entries in C ox1.s/ and C ix2.s/ corresponding to unmea-
sured states will be equal to 0. Thus, we will typically omit the xm1 and xm2 notations throughout the
paper, without loss of generality, to simplify the presentation.

Given an inner-loop controller (C ivdes
.s/ and C ix2.s/), the closed-inner-loop input–output dynam-

ics can be described by

V.s/D T1.s/Vdes.s/C T2.s/X1.s/, (7)

where, suppressing the s notation for simplicity, we have

T1 D A
v
u.I �C

i
x2
Ax2u /

�1C ivdes
, (8)

T2 D A
v
u.I �C

i
x2
Ax2u /

�1.C ix2A
x2
x1
/CAvx1 . (9)

For the modular reference-model-based control strategy, when the inner-loop reference model is
matched, we have

T1.s/D F.s/, (10)

T2.s/D 0, (11)

which we will refer to as the nominal closed inner loop. The notion of relative degree will
be important to our subsequent analysis, and we will use the following scalar definition of
relative degree.

Definition 2
A 1�q transfer function vector,H.s/, has relative degree �.H.s//,mini �.Hi .s//, where, taking
Hi .s/DN.s/=D.s/, �.Hi .s//, deg.D.s//� deg.N.s//.

Thus, we take the relative degree of transfer function vectors as the lowest among the input–
output pairs.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
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1342 C. VERMILLION, J. SUN AND K. BUTTS

2.1. Overall system performance metric

We will use the following metric for evaluating the overall system performance.

Definition 3 (overall performance index)
Let Gy.s/ and Gdes.s/ represent the actual and desired transfer functions, respectively, from r to
y, and let Gv.s/ represent the actual transfer function from r to v, and assume that these transfer
functions are stable. The performance level, �p , of the closed-loop system is defined as

�p ,
��� W y.s/.Gy.s/�Gdes.s// W v.s/Gv.s/

���
1

, (12)

where W y.s/ and W v.s/ are stable weighting transfer functions that emphasize or penalize
performance at different frequencies.

This performance metric places importance on both setpoint tracking and the size of the virtual
control input that is to be generated by the inner loop. In this section, we consider this perfor-
mance on the nominal system, in the absence of uncertainty; however, subsequent sections treat the
problem of recovering this nominal performance, to the greatest extent possible, in the presence of
nonparametric uncertainty in the inner-loop dynamics.

2.2. Inner-loop performance metric

Because the objective of the inner-loop controller is to achieve T1.s/ D F.s/ and T2.s/ D 0, the
performance of the closed inner loop can be evaluated by

C i D arg min
C ivdes,x2

� i , (13)

� i D
��� W 1.s/.F.s/� T1.s// W 2.s/T2.s/

���
1

. (14)

Although we do not place any restrictions on the inner-loop control structure, we do derive a model-
matching controller for cases when � i D 0 is achievable (through a constructive model-matching
proof). We also derive both necessary and sufficient conditions for model matching to be achievable.

2.3. Conditions for reference model matching

As a first step of our analysis, we determine the conditions under which reference model matching,
that is, � i D 0, can be achieved.

Proposition 4 (model-matching conditions)
Suppose that the states x2 are available for measurement, that is, xm2 D x2. Then, given an arbitrary,
stable F.s/, there exists a causal and stabilizing inner-loop controller (i.e., proper and stabilizing
transfer function matrices C ivdes

and C ix2) that results in V.s/ D F.s/Vdes.s/ if and only if the
following conditions exist:

1. �.Avu.s//6 �.F.s//.
2. �.Avu.s// < �.A

v
x1
.s//.

3. There are no unstable zeros common to all p transfer functions in Avu.s/.

The detailed proof is provided in the Appendix. The proof of sufficiency involves construction
of a controller that achieves model matching and stability. In particular, although a single con-
trol input is sufficient to achieve model matching, the proof shows that additional control inputs
(if p > 2) can be used to stabilize the inner loop in the presence of nonminimum phase zeros. The
necessity proof is quite straightforward and makes use of the notions of relative degree and stable
pole-zero cancelations.

Because the reference model, F.s/, is a design choice, condition (1) in Proposition 4 can always
be achieved and therefore does not restrict the set of systems for which model matching can be

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
DOI: 10.1002/rnc
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achieved. Condition (2) essentially requires the disturbance from x1 to affect v more slowly than u,
such that state feedback can be used to reject this disturbance. In practice, there exist plants where
this scenario is violated, and it is important, therefore, to address scenarios where system features
or uncertainties lead to a mismatch between the reference model and actual inner-loop behavior
(i.e., where F.s/ ¤ T1.s/ or T2.s/ ¤ 0). For this reason, Sections 3 and 4 of this paper are dedi-
cated to performance recovery in these instances. Finally, condition (3) ensures that reference model
matching can be achieved without introducing internal instability into the inner loop. The assump-
tion degenerates into a very standard nonminimum phase model reference control assumption for a
single-input, single-output inner loop, but multiple actuators provide greater flexibility in relaxing
this condition.

2.4. Modular versus centralized performance

In this section, we compare the performance level of the modular control strategy with that of its
centralized counterpart. For our performance comparison, we introduce the following notation.

Definition 5
Let �po , �pc , and �pm represent the values of �p , as defined in (12), achieved with a given outer-loop
controller when T1 D F and T2 D 0 (i.e., ideal modular control), with centralized control and with
modular control, respectively.

Our comparison of these three levels of performance is given in the following proposition.

Proposition 6 (modular versus centralized performance inequality)
Assume that the optimal levels of performance achievable (i.e., the lowest values of �p , as defined in
Definition 3) by the ideal modular design, centralized control system, and modular control system,
under causal and stabilizing controllers, are given by ��o , ��c , and ��m, respectively, and suppose that
F.s/ is stable, is a minimum phase, and satisfies �.F.s// 6 �.Avu.s// and �.F.s// 6 �.Avx1.s//.
Then, ��o 6 ��c 6 ��m.

Proof
��c 6 ��m: Because the modular control system is a special case of the centralized controller, ��c 6 ��m
follows immediately.
��o 6 ��c : Consider an optimal centralized control law given by

U �.s/D C cr .s/R.s/CC
c
x1
.s/X1.s/CC

c
x2
.s/X2.s/, (15)

which yields �pc D ��c . The corresponding closed-loop system transfer functions, Gv.s/ and Gy.s/,
that are relevant to the performance index of (12) can be expressed by (suppressing the s notation)

Gv D
�
1�Avu

�
I �C cx2A

x2
u

��1 �
C cx1 CC

c
x2
Ax2x1

�
P x1

�Avx1P
x1
��1

Avu
�
I �C cx2A

x2
u

��1
C cr , (16)

Gy D P yGv . (17)

For the outer-loop controller in the modular control system, apply the causal and stabilizing
control law

Vdes.s/D F
�1.s/.Avu.s/

OU .s/CAvx1.s/X1.s//, (18)

where

OU.s/D
�
I �C cx2A

x2
u

��1 �
C cr RC

�
C cx1 CC

c
x2
Ax2x1

�
X1
�

. (19)
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1344 C. VERMILLION, J. SUN AND K. BUTTS

Note that Ou in (19) is identical to u� in (15) when x2 is solved for in terms of u and x1. When ideal
conditions are met (i.e., V.s/D F.s/Vdes.s/), this yields

Gv D
�
1�Avu

�
I �C cx2A

x2
u

��1 �
C cx1 CC

c
x2
Ax2x1

�
P x1

�Avx1P
x1
��1

Avu
�
I �C cx2A

x2
u

��1
C cr , (20)

Gy D P yGv , (21)

which is identical to (16) and (17), thereby yielding �po D ��c . Thus, it follows that ��o 6 ��c
6 ��m. �

This simple inequality yields more profound implications when combined with the earlier
reference-model-matching conditions of Proposition 4, leading to the following proposition.

Proposition 7 (modular versus centralized equivalence conditions)
Suppose the states xm2 D x2, F.s/ is stable and a minimum phase, �.F.s// D �.Avu.s//,
�.Avu.s// < �.A

v
x1
.s//, and Avu.s/ has no unstable zeros common to all p transfer functions. Then,

��o D �
�
c D �

�
m.

Proof
Suppose F.s/, C or .s/, and C ox1.s/ are chosen optimally to yield �o D ��o . From Proposition 4,
there exists a causal, stabilizing inner-loop controller (with transfer functions C ivdes

.s/ and C ix2.s/)
that yields V.s/ D F.s/Vdes.s/, thus yielding �m D �o D ��o . It then follows immediately from
Proposition 6 that ��m D �

�
c D �

�
o . �

2.5. Summary—ideal modular control conditions

We now have conditions on the actuator dynamics and reference model that, when satisfied, simul-
taneously yield reference model matching and modular versus centralized equivalence (based on the
performance index, �p , defined in Definition 3). These conditions are summarized as follows:

1. F.s/ is stable and a minimum phase.
2. �.Avu.s// < �.A

v
x1
.s//.

3. �.F.s//D �.Avu.s//.
4. Avu.s/ has no unstable zeros common to all p constituent transfer functions.

In addition to providing a set of conditions on the actuator dynamics for which modular versus cen-
tralized equivalence can be achieved, these conditions also provide clear guidelines as to how the
reference model, F.s/, should be chosen. Conditions (1) and (3) can always be satisfied with an
appropriately designed reference model, whereas conditions (2) and (4) are dependent on the actu-
ator dynamics themselves. Recognizing that modular control remains an appealing strategy even
when these ideal conditions are not exactly met and when uncertainties render it impossible to
match F.s/ exactly, in the remainder of this paper, we focus on mechanisms that reduce the gap
between ideal and actual modular control performance. Because the impact of uncertainty on the
overall system depends on one’s choice of F.s/, we will also focus on how F.s/ can be fine-tuned
for a particular uncertainty model.

3. PERFORMANCE RECOVERY FORMULATION

Attributes of the actuator dynamics, in conjunction with inevitable modeling uncertainties, will typ-
ically result in a mismatch between ideal and actual closed-inner-loop performance. To perform a

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
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more general analysis of system performance in the presence of this mismatch, we first express the
closed inner loop through an uncertainty model:

T1 D F CW1�1, (22)

T2 DW2�2,

k�1k1 6�max
1 ,

k�2k1 6�max
2 .

W1,2 are known stable transfer function matrices of size 1� 1 and 1� n1, respectively, that capture
information known about the mismatch between the actual and ideal inner-loop performance.

The design of weighting functions W1,2 in (22) represents an important design decision that will
affect the feasibility of the forthcoming � synthesis design and the engineering value that such
a design will have. We summarize general guidelines for the design of W1,2 and then show in
Section 5 how these guidelines are applied on an application example.

To ensure well-posedness of the D-K iteration that is used in subsequent � synthesis design, we
impose the following requirement on W1,2:

There does not exist a frequency, ! > 0, at which W2.j!/D 0 and W2i .j!/D 0, i D 1 : : : n.

This requirement is not difficult to achieve and simply requires at least one weighting function to
have a nonzero gain at any given frequency. Two engineering approaches can be used to choose a
weighting function that is appropriate for the system at hand:

(1) Simulation of likely parametric uncertainty: Given some physical understanding of the system
at hand and the simplifications made in the modeling approach, one can identify likely sources
of parametric uncertainty. The designer can then generate Bode plots of T1 � F and T2 under
random variations in these uncertain parameters and shape W1 and W2 to match the shapes of
these Bode plots, subject to well-posedness restrictions on W1,2.

(2) Experimental uncertainty characterization: Given sufficiently rich experimental data for the
closed-inner-loop system and the frequency content of vdes and x1, one can also approximate
the frequency domain behavior of T1 �F and T2 and shape W1,2.

To quantify the difference between the output of the nominal and actual (with uncertainty)
closed-loop systems, we introduce a new variable, e

0

, which is defined as follows:

e
0 , y � yr . (23)

Here, y represents the actual output whereas yr represents the output when (10) and (11) are satis-
fied. For notational convenience and in preparation for later � analysis and synthesis, we will cast
both uncertainty sources (�1 and �2) together in a block diagonal matrix, as follows:

�D

�
�1 0

0 �2

	
. (24)

Given this uncertainty representation, the closed-inner-loop error dynamics can be described by

QV D
�
W1 W2

� � �1 0

0 �2

	 �
Vdes

X1

	
. (25)

Remark 8
Although the uncertainty in (24) assumes a block diagonal structure, this structure is not restrictive
in the sense that this structure allows every input to the inner closed loop (vdes and every element
of x1) to affect the single output, v, through an uncertain transfer function.

For performance recovery, we will make extensive use of the worst-case gain, �wc, from r to e
0

,
where �wc is defined as

�wc , max
k�k16�max

kGerk1, (26)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
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where

Ger , E
0

.s/

R.s/
. (27)

Estimation and analysis of worst-case performance in an uncertain system has been the topic
of extensive literature (studied, for example, in [22]), and tools such as MATLAB’s Robust
Control Toolbox have facilitated the estimation of �wc for numerous robust control applications such
as ours.

We propose a novel mechanism, referred to as MCEC, which is depicted in Figure 4 and is char-
acterized by an add-on compensator, Cv . The proposed MCEC design structure exploits the signal
Qv, which represents the difference between the virtual control input, v, and its nominal value, vfdes
(the output of F ), to reduce the gap between nominal and actual performance. The proposed strat-
egy differs from other robust controller synthesis applications, such as in [17–20], which design
the main controller to guarantee a certain level of overall system performance in the presence of
uncertainty. Because the strategies take into consideration the nominal model as well as uncertainty
in their design, they impose an inherent trade-off between nominal performance and performance
in the presence of uncertainty. Our structure, employing Cv as an add-on compensator, has two key
advantages over strategies that redesign the main controller for robust performance:

(1) Our strategy retains the modularity of the inner and outer loops in the sense that it allows the
two controllers to be designed in parallel without knowledge of each other;

(2) There is no trade-off between nominal performance and performance in the presence of
uncertainty—when the inner-loop reference model is matched (T1.s/ D F.s/, T2.s/ D 0),
Qv will go to 0.

We show that by recasting the optimization problem for the MCEC design, we can formulate
a � synthesis problem to optimize specific worst-case performance on the basis of two synthesis
objectives, S1 and S2:

S1 Given that k�k1 < 1, find a stabilizing Cv that minimizes �wc.
S2 Given � th > 0 (� th is a performance threshold representing tolerable performance degradation),

find Cv that maximizes k�k1 such that the closed-loop system remains stable and �wc < � th.

4. MODULAR CONTROL ERROR COMPENSATION DESIGN FOR PERFORMANCE
RECOVERY USING � SYNTHESIS

To design Cv , the block diagram in Figure 4 is cast in the form given by Figure 5, where NP is a
transfer function matrix containing all of the system components besides Cv , �, and scalar gain k.

Figure 4. Block diagram of the reference-model-based modular control design with modular control
error compensation.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
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Figure 5. � synthesis performance formulation. Physical entities of the system are contained inside the
dashed lines, whereas fictitious entities (k and �P ), which are strictly introduced for � synthesis design

purposes, lie outside.

The expression for NP is given in (29). Under this configuration, � synthesis considers an uncertainty
structure given by

�aug ,
�
� 0

0 �P

	
. (28)

The following properties hold for the system in Figure 5 [23].

Proposition 9 (robust performance interpretation of �)
Let� be the structured singular value for the system shown in the figure of Balas [23]. The following
two properties hold:

(1) The closed-loop system in Figure 5 is stable and kkGerk1 < � for all uncertainties satisfying
k�k1 < 1=�.

(2) There exists a perturbation � W k�k1 D 1=� for which the closed-loop system in Figure 5 is
unstable or kkGerk1 D �.

NP D

2
666666664

Cox1
Px1W1

1�Cox1
Px1F

Cox1
Px1W2

1�Cox1
Px1F

Cor
1�Cox1

Px1F

1

1�Cox1
Px1F�

I �Px1FCox1


�1
Px1W1

�
I �Px1FCox1


�1
Px1W2

�
I �Px1FCox1


�1
Px1FCor

�
I �Px1FCox1


�1
Px1F

PyW1
1�FCox1

Px1

PyW2
1�FCox1

Px1
0 PyF

1�FCox1
Px1

W1 W2 0 0

3
777777775

(29)

� synthesis optimizes Cv to minimize �, which allows us to carry out objectives S1 and S2. This
optimization is carried out through the so-called D-K iteration [23], which relies on an underlying
iterative H1 optimization and is subject to the following well-posedness conditions:

(1) The last row of NP .j!/ is right invertible for all ! > 0.
(2) The last column of NP .j!/ is left invertible for all ! > 0.

Condition (1) can be satisfied through appropriate design ofW1,2, as detailed in Section 4. Condition
(2) requires the gain of at least one of the transfer functions in the last column of NP to be nonzero
at any given frequency.

Given that the well-posedness conditions have been satisfied, the following propositions show
how one can develop a design algorithm to achieve the synthesis objectives by iteratively adjusting
k and carrying out � synthesis to design Cv .
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Proposition 10 (synthesis objective S1)
Assume that S1 is feasible. Let ��.k, NP / be the structured singular value of the system shown in
Figure 5 where Cv has been designed using � synthesis, for a given constant k. Furthermore, let k�1
be the maximum value of k such that ��.k, NP /D 1. Then, k�1 exists. Furthermore, if Cv is designed
using � synthesis, with k D k�1 , then �wc is minimized and the closed loop is stable, subject to
k�k1 < 1.

Proof
Existence: Given that S1 is feasible, there exists a stabilizing Cv when k�k1 < 1, which results
in a finite �wc. When k D 1=�wc is taken into account, it follows from Proposition 9 that
�.Cv , k, NP /D 1, thereby proving the existence.
When Cv is designed with k D k�1 , the closed loop is stable and �wc is minimized, subject to
k�k1 < 1: Closed-loop stability when �� D 1 follows directly from property (1) of Proposition
9. To show that �wc is minimized, we first show by contradiction that �wc D ��=k�1 . Suppose that
�wc < ��=k�1 (�wc > ��=k�1 violates Proposition 9, property (1), and need not be considered).
Then, there exists k > k�1 that also yields ��.k, NP / D 1, which contradicts the fact that k�1 is
the maximum value of k yielding ��.k, NP / D 1. Therefore, �wc D ��=k�1 D 1=k�1 . Because k is
maximized and � synthesis minimizes �, �wc is minimized for all Cv , k that yield �.Cv , k, NP /D 1.
Finally, note that for all Cv that yield a stable closed loop when k�k1 < 1, there exists a k such that
�.Cv , k, NP /D 1. Therefore, minimizing �wc over all Cv , k that yield �.Cv , k, NP /D 1 is equivalent
to minimizing �wc over all Cv that yield a stable closed loop when k�k1 < 1. �

Proposition 11 (synthesis objective S2)
Let ��.k, NP / be the structured singular value of the system shown in Figure 5 where Cv has been
designed using � synthesis, for a given constant k. Let k�2 be the minimum value of k such that
��.k, NP / D k� th. Then k�2 exists, and if Cv is designed with k D k�2 , then � synthesis maximizes
the value of k�k1 such that �wc < � th and the closed-loop system remains stable.

The proof is omitted but follows exactly the same logical sequence as the proof of Proposition 10.
Using Propositions 9 and 10, we propose the following iterative algorithm to design the MCEC
controller Cv to achieve objectives S1 and S2; for S1, take �o D 1, and for S2, take �o D k� th:

(1) (a) Initialize klow to any value that is known to satisfy klow < k
�
i (i D 1 or i D 2 depending

on the objective). Take klow D 0 if no other lower bound is known. Proceed to step (1b).
(b) Initialize khigh to any value that is known to satisfy khigh > k

�
i , and proceed to step (2). If

no upper bound on k is known, make an initial guess, kinit, and carry out � synthesis for
k D kinit.
(i) If ��.kinit, NP /��o > �, take khigh D kinit and continue with step (2).

(ii) If ��.kinit, NP /��o < �, increase kinit and repeat step (1b).
(2) Carry out � synthesis for k D 1=2.khigh C klow/, which will return Cv and ��. Proceed to

step (3).
(3) (a) If j�� ��oj< �, move to step (4) for S1 and step (5) for S2.

(b) If �� ��o < ��, set klow D k and repeat step (2).
(c) If �� ��o > �, set khigh D k and repeat step (2).

(4) (a) If jkhigh � kj< �k , where �k is a user-defined threshold, terminate the algorithm.
(b) If jkhigh � kj> �k , take klow D k and move to step (4c).
(c) Take k D 1=2.klowC khigh/, and carry out � synthesis.

(i) If j��.k, NP /��oj> �, set khigh D k and repeat step (4c) until jkhigh � kj< �k .
(ii) Otherwise, take klow D k and repeat step (4c) until jkhigh � kj< �k and then terminate.

(5) (a) If jk � klowj< �k , terminate the algorithm.
(b) If jk � klowj> �k , take khigh D k and move to step (5c).
(c) Take k D 1=2.klowC khigh/, and carry out � synthesis.

(i) If j��.k, NP /��oj> �, set klow D k and repeat step (5c) until jk � klowj< �k .
(ii) Otherwise, take khigh D k and repeat step (5c) until jk � klowj< �k and then terminate.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1338–1359
DOI: 10.1002/rnc



ROBUST MODULAR CONTROL USING AN INNER LOOP REFERENCE MODEL 1349

Remark 12
As an alternative to the iterative procedure proposed here, a skew � synthesis procedure may be
employed, in which the size of one uncertainty block is held fixed whereas the other(s) are allowed
to vary [24, 25]. This framework requires additional mathematical tools to set up but may result in
reduced computational effort once implemented.

5. ENGINE THERMAL MANAGEMENT APPLICATION

The proposed modular control design approach is now studied on an engine thermal management
system, which is used to facilitate engine mapping and calibration within an automotive test cell.
The system, depicted in Figure 6, with a photograph of the actual experimental system given in
Figure 7 (showing the unit containing the heater, heat exchanger, and mixing valve, which is con-
nected through flexible piping to the engine), consists of parallel heating and cooling loops, used for
controlling fluid temperature at the engine outlet. Readers are referred to [26] and [27] for system
details, including a complete model description.

5.1. Modular system description and properties

The states in the thermal management system consist of eight temperatures, namely

� Tout,eng D engine outlet temperature,
� Teng1 D engine block temperature in the vicinity of coolant,
� Teng2 D engine block temperature in the vicinity of oil,
� Tout,mv D mixing valve outlet temperature,
� Tout,ht D heater outlet temperature,
� Tht D heater coil temperature,
� Tout,hex D heat exchanger outlet temperature,
� Tout,cw D cooling water temperature at its outlet from the heat exchanger.

In this work, we utilize an effective general control strategy proposed in [27], where the heater
is kept at a constant input of 2.25 kW, which has been deemed optimal for the speed and load
that we consider in our experiments (2000 rpm and 75 N/m). We perform a linearization about
Tout,eng D 80

ıC (and the corresponding steady state), and the valve, with control input �, is manip-
ulated to achieve temperature tracking. We work with translated coordinates, that is, ıTout,eng D
Tout,eng � T

ss
out,eng, etc., as well as a translated control input, ı�, with the ultimate objective of con-

trolling engine outlet temperature (Tout,eng) to a setpoint. The virtual control input is taken as Tout,mv,

Figure 6. Thermal management system diagram (for the oil loop).
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Figure 7. Oil fluid conditioning unit.

yielding the following modular system description:

x1 D

2
4 ıTout,eng

ıTeng1

ıTeng2

3
5 , x2 D

2
6664
ıTout,mv

ıTout,ht

ıTht

ıTout,hex

ıTout,cw

3
7775 ,y D ıTout,eng, v D ıTout,mv,uD ı�.

For the linearized actuator dynamics, Avu.s/ is minimum phase, �.Avu.s//D 1, and �.Avx1.s//D 2.
Thus, our modeled actuator dynamics satisfy the conditions for equivalence between optimal mod-
ular and centralized system performance, making this system an excellent candidate for reference-
model-based modular control. Nevertheless, modeling uncertainties are present, and this will be the
focal point of the MCEC design for the thermal management application.

5.2. Inner-loop reference model

For our system, we choose the simplest matchable reference model, namely

F.s/D
1

�f sC 1
. (30)

In our system analysis and experimental results, we will explore the effect of adjusting �f , both
with and without MCEC in place.

5.3. Outer-loop control design

The objective of the outer-loop controller is to yield desirable overall system performance when the
inner closed loop matches the reference model, that is, V.s/ D F.s/Vdes.s/. In our case, a simple
outer-loop PI controller, given by

ıT des
out,mv D

2sC 0.05

s
.ıT des

out,eng.s/� ıTout,eng.s//, (31)

yields excellent tracking performance when the reference model is matched.

5.4. Inner-loop design

Given our actuator model, it is possible to design the control law for ı� such that ıTout,mv.s/ D
F.s/ıT des

out,mv.s/ (hence achieving perfect model matching) by taking

ı� D k1ıT
des

out,mv � k2ıTout,mv � k3ıTout,ht � k4ıTout,hex, (32)
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where �t is the modeled time constant associated with the temperature dynamics of the mixing valve
and k1, k2, k3, and k4 are directly determined from model parameters described in the detailed
model in [27]. The values of k1, k2, k3, and k4 required for reference model matching are functions
of the reference model time constant, �f .

5.5. Performance recovery in the presence of uncertainty—� synthesis setup

Given that our actuator model is not perfect, we now pursue an MCEC design that aims to keep
the system within 10% of the ideal performance. Thus, we pursue synthesis objective S2 and take
� th D 0.1 to capture the 10% requirement.

To construct weighting functions, we consider three likely sources of uncertainty in the
actuator model:

� Flow dynamics, where the flow distribution through the heater and the heat exchanger does not
respond immediately, but rather through a time constant, �flow;
� Uncertain time constant, �t , associated with mixing valve thermal mixing dynamics;
� Inaccurate steady-state estimates, �ss, T ss

out,ht, and T ss
out,hex, which impact our linearized dynam-

ics. We will see through experimental results that an uncertain value of �ss is especially realistic
for two reasons. First, the valve is not position controlled (it is pressure controlled and some-
times yields inconsistent response). Second, the ambient temperature affects the required value
of �ss to achieve a particular steady state (through the effect of ambient temperature on the
cooling water temperature supplied to the system).

When augmented to include flow dynamics (33), the inner-loop dynamics that are affected by the
uncertainty are given by

ı P� D
1

�flow
.�ı� C ıumv/, (33)

ı PTout,mv D
1

�t
.�ıTout,mvC �

ssıTout,ht (34)

C.1� �ss/ıTout,hexC
�
T ss

out,ht � T
ss

out,hex

�
ı�
�

,

where the mixing valve command, umv, does not immediately affect the valve position (and flow
distribution), represented by �. The uncertain values, their nominal values, and their uncertain
ranges are given in Table I.

We consider these aforementioned uncertainty sources to design the weighting transfer func-
tions, W1.s/ and W2.s/, that are necessary for our � synthesis design of Cv . Analyzing the
closed-loop effects of these uncertainties through Bode plots of closed-loop systems generated
by randomly varying uncertain parameters over there pre-specified range, we have found that the

Table I. Uncertain actuator model parameters.

Parameter Nominal value Range

�flow (s) 0.00 0.0 – 2.0

�t (s) 8.00 6.0 –10.0

�ss 0.75 0.7 – 0.8

T ss
out,ht � T

ss
out,hex (ıC) 40.80 35.0 – 45.0
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following weighting functions capture the frequency-dependent impact of the expected sources of
system uncertainty:

W1.s/D
0.2.0.1sC 1/.100sC 1/

.0.3sC 1/.20sC 1/
, (35)

W2.s/D 0.1.

Remark 13
Note that for the thermal management system, although there are three plant states, only one of
these states has any effect on the actuator dynamics; thus, althoughW2.s/ is a 3�3 transfer function
matrix according to the formulation of (22), two of the entries in W2.s/ (in (22)) will be equal to 0.
For simplicity, we drop these transfer functions from the formulation (the resulting � is 2� 2).

Remark 14
Nonzero DC content is essential to capture the true system uncertainty because there is no integrator
in the inner loop (nor is one necessary because of the outer-loop integrator), and uncertainties will
contribute to a DC error.

� synthesis was performed for several reference models (with different time constants, �f ),
each leading to a different compensator, Cv.s/. In spite of the differences and the high orders of
the resulting compensators, each reflects a somewhat de-tuned and causal approximation of the
compensator Cv.s/ D 1=F.s/, which results from setting Ger.s/ D 0 and solving for Cv.s/. In
light of this fact, the resulting compensators were parameterized as

Cv.s/D
b1sC b0

a2s2C a1sC a0
, (36)

where the transfer function coefficients were determined through a balanced truncation. The result-
ing worst-case performance levels, �wc, under these (reduced-order) compensators, considering the
aforementioned uncertainty sources, are given in Figure 8, for different values of �f .

Figure 8 shows that although MCEC provides benefit for all reference models, it is most helpful
for aggressive reference models (i.e., fast time constants), where the inner-loop designer is pursuing
a higher-bandwidth reference model, which exacerbates the effect of uncertainties on inner-closed-
loop performance. Although the reference model is typically negotiated in the beginning stages of
a control design project, the graph in Figure 8 can only be generated after the outer-loop controller
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γw
c

Performance Estimate for Different F(s)
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With MCEC

γ th
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constant (ref. model)

Figure 8. Performance comparison with and without modular control error compensation (MCEC), for dif-
ferent reference model time constants, based on speculated sources of uncertainty. In parameterizing the

reference model, we take �f D 0.25.2n/.
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has been designed and closed-inner-loop uncertainty has been characterized (through weighting
functions). Therefore, although it is evident from Figure 8 that F.s/D 1=4sC 1 represents a good
reference model choice both with and without MCEC, this may not be known to a designer a priori;
thus, it is advantageous to have MCEC available because it results in a system performance that is
more robust to one’s choice of reference model.

For very slow reference models, overall behavior degrades because the inner loop is designed to
a bandwidth specification that is not well separated from that of the outer loop. This lack of band-
width separation makes the overall system performance more sensitive to any mismatch between
the reference model and actual inner-loop performance; thus, control performance both with and
without MCEC deteriorates.

To gain deeper insight into the mechanisms by which MCEC improves performance, we can
examine the Bode plots in Figures 9 and 10, which provide the open-loop transfer functions of the
overall system (from where ıT eng

out enters the outer-loop controller to where ıT eng
out is outputted from

the plant), under worst-case uncertain parameter values and for �f equal to 4 and 1 s, respectively.
The figures indicate improved phase margins with the use of MCEC, particularly for the case of
�f D 1 s.

Whereas Figure 8 showed worst-case performance over a variety of reference models, Figures 11
and 12 show how worst-case performance varies with the level of uncertainty in system parame-
ters. Specifically, Figures 11 and 12 provide worst-case performance levels when the parameters
of Table I are allowed to vary over a specified percentage of their range (for example, for a value
of 50%, �flow may vary between 0 and 1 s, �t may vary between 7 and 9 s, and �ss may vary
between 0.725 and 0.775). To compare the use of MCEC with traditional applications of � synthe-
sis, Figures 11 and 12 additionally show the worst-case gains when MCEC is not used but instead
the outer-loop controller, C , is designed using � synthesis. From these figures, it is evident that
although standard � synthesis leads to improved performance in the presence of sufficiently large
uncertainty, it also leads to a degradation in nominal performance, which is a trade-off that is not
faced with MCEC.

5.6. Experimental results

The performance of the modular control strategy and MCEC was verified in an engine test cell, with
the rapid prototyping setup using MATLAB Real-Time Workshop™ and xPC Target™. We con-
sider temperature setpoint changes, where the engine is kept at constant speed and load (2000 rpm
and 75 N/m, respectively). The plots given in Figures 13 and 14 show the data collected from
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Figure 9. Open-loop transfer function under worst-case uncertain parameters with �f D 4 s. MCEC,
modular control error compensation.
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Figure 13. Experimental results with �f D 4 s. MCEC, modular control error compensation.
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Figure 14. Experimental results with �f D 1 s. MCEC, modular control error compensation.

experiments, both with and without MCEC. The results are summarized, along with model-based
analysis results, in Table II, where experimental results are characterized quantitatively by the
performance metric

� exper D

�Pn
iD0

��
ıTout,eng.i/� ıT

r
out,eng.i/


2��1=2
�Pn

iD0

��
ıT des

out,eng.i/
�2

1=2 , (37)
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Table II. Thermal management experimental and analysis results.

�f (s) �
exper
MCEC �

exper
No MCEC �wc

MCEC �wc
No MCEC

1 0.074 0.129 0.098 0.274
4 0.072 0.087 0.072 0.127

MCEC, modular control error compensation.

where ıT rout,eng represents the engine outlet temperature (deviation from nominal) when the inner-
loop reference model is matched exactly. This metric is intended to approximate the gain from r to
e
0

for our experimental data.
As expected, � exper is lower with MCEC than without under both reference models, but the dif-

ference is much more pronounced when �f D 1 (the more aggressive reference model). Also, with
MCEC, �wc < � th with both reference models, indicating that we have achieved acceptable perfor-
mance with MCEC in both cases. For comparison, Table II also provides �wc as predicted through
an analysis of hypothesized sources of uncertainty. The experimental results correlate directionally
well with the worst-case analysis results.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a reference-model-based modular control design framework. We
analyzed the nominal performance of a modular control system, concluding that under certain ideal
circumstances, it can perform as well as its centralized counterpart. To treat cases when the inner
closed loop does not perform exactly as specified, we have developed a modular control error com-
pensator (MCEC) for recovering desired performance. We have shown how � synthesis may be
used iteratively to achieve the design goals and have demonstrated the effectiveness of the pro-
posed method on an engine thermal management system. Future work will include the development
of deeper insights with regard to the trade-offs between the inner-loop performance specification,
F , and the ability to achieve robust modular performance with the use of Cv . Additionally, the
ability to incorporate inherently nonlinear characteristics (especially saturation) into closed-loop
uncertainty models that are applicable to MCEC represents a great avenue (and challenge) for
future investigation.

APPENDIX: PROOF OF PROPOSITION 4

Sufficiency: Take �1 D �
�
Avu.s/

�
and �2 D �

�
Avx1.s/

�
, and express F.s/ as

F.s/D
N.s/

D1.s/D2.s/
, (A.1)

where D2.s/ is �th
1 order. Consider the control structure depicted in Figure A.15, which divides the

controller into a feedback part that places �1 poles and a feed-forward lead-lag element that places
the zeros and remaining poles. The causality of the controller follows from condition (1) and Figure
A.15, where N.s/=D1.s/, K, and L are all proper.

Figure A.15. Block diagram of the inner-loop controller used in this model-matching proof.
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Perform an observable realization of the actuator dynamics; V.s/ D Avu.s/U.s/C Axv1 .s/X1.s/
results in �

PNx21
PNx22

	
D

�
A11 A12
A21 A22

	 �
Nx21
Nx22

	
C

�
B1
B2

	
uC

�
E1
E2

	
x1

v D
�
1 0 : : : 0

�
Nx21, (A.2)

where Nx21 2R�1 and Nx22 2Rn2��1 ,

B1 D

�
0.�1�1/�1 : : : 0.�1�1/�1

b1 : : : bp

	
, (A.3)

B2 D
�
B21 : : : B2p

�
, (A.4)

whereB2i 2Rn��1 ,8i , and bi are scalars. From condition (2),E1 D 0, which is essential for reject-
ing the x1 disturbance. Define ua , u1C .b2=b1/u2C : : :C .bp=b1/up , ub D

�
u2 : : : up

�T

to obtain �
PNx21
PNx22

	
D

�
A11 A12
A21 A22

	 �
Nx21
Nx22

	

C

�
B11
B21

	
ua C

�
0�1�p�1
NB22

	
ub C

�
0

E2

	
x1

v D
�
1 0 : : : 0

�
Nx21, (A.5)

where

B11 D
�
01�.�1�1/ b1

�T
, (A.6)

NB22 D
h
B22 �

b2
b1
B21 : : : B2p �

bp
b1
B21

i
. (A.7)

Now consider the control law

ua D L Nvdes �K11 Nx21 �K12 Nx22, (A.8)

ub D�K22 Nx22, (A.9)

where K12 D
�
�1=b1 0 : : : 0

�
, which yields the following closed-loop dynamics:"

PNx21
PNx22

#
D

"
A11 � NB11K11 0�1�.n2��1/

A21 � NB21K11 A22 � NB22K22

#�
Nx21

Nx22

	

C

�
B11
B21

	
L NvdesC

"
0�1�p�1
NB22

#
ub C

�
0

E2

	
x1

v D
�
1 0 : : : 0

�
Nx21 (A.10)

The Nx21 dynamics are decoupled from the Nx22 dynamics (and hence from x1 and ub). It is easily
verified that .A11,B11/ represents a controllable pair; hence, K11 can be designed such that the
eigenvalues of A11 � B11K11 are equal to those of D2.s/. Let M.s/ represent the transfer func-
tion vector from u� to v for fixed K11 and K12, where M1.s/ represents the first element of M.s/,
and take

LD
h

F.0/N.0/
M1.0/D1.0/

0 : : : 0
iT

(A.11)

to obtain V.s/D F.s/Vdes.s/.
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We are left to use ub to stabilize the zero dynamics, given by

PNx22 D .A22 �B21K12/ Nx22 (A.12)

C NB22ub C .A21 �B21K11/ Nx21CE2x1.

To do this, first note that the eigenvalues of A22 � B21K12 are identical to the zeros of Avu1.s/.
From condition (3), for every unstable zero, 	i , of Avu1.s/, there exists j , such that 	i is not
a zero of Avuj .s/ and is therefore also not a zero of Avuj .s/ � .bj =b1/A

v
u1
.s/. It follows that

.A22 � B21K12, NB22/ is a stabilizable pair, and therefore, there exists K22 that stabilizes the zero
dynamics of (A.12).

Necessity: To achieve T1.s/D F.s/, T2 D 0, we require

Avu
�
I �C ix2A

x2
u

��1
C ivdes

D F , (A.13)

Avu
�
I �C ix2A

x2
u

��1
C ix2A

x2
x1
D�Avx1 . (A.14)

The necessity of conditions (1) and (2) is obvious from comparing (A.13) and (A.14) with the
following facts:

�
�
Avu

�
I �C ix2A

x2
u

��1
C ivdes



> �

�
Avu
�
> �.F /,

�
�
Avu

�
I �C ix2A

x2
u

��1
C ix2A

x2
x1



> �

�
Avu
�
> �

�
Avx1

�
.

Clearly, (A.13) and (A.14) cannot be achieved if the relative degrees of the left-hand and right-hand
sides of (A.13) and (A.14) cannot even be made equal to each other.

Finally, suppose that there exists 	 such that Re.	/ > 0 and Avuj .	/ D 0,8j . Then, Avu can be

factored as Avu D .sC 	/ NA
v
u.s/, and (A.13) can be written as

.sC 	/ NAvu
�
I �C ix2A

x2
u

��1
C ivdes

D F , (A.15)

and for (A.15) to hold for any stable F , 	 must be canceled with an unstable pole (at 	), thereby
destabilizing the actuator dynamics.
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