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1. Damage mechanics model for ice under
low tensile stress

Damage mechanics simulates the evolution of distributed
‘flaws’ within the ice and their effect on the bulk rheology
of ice. In this approach, the usual continuum equations
are augmented with an additional internal state variable
D representing material deterioration or damage, ranging
from D = 0 (ice is completely intact) to D = 1 (ice is en-
tirely fractured). The evolution of the damage variable D
accounts for the progressive accumulation and coalescence of
micro-cracks (and also micro-voids) within the ice as it de-
forms under low loading rates. Typically, a damage mechan-
ics model is formulated using the effective stress concept in
conjunction with either the principle of strain equivalence
[Lemaitre, 1971] or the principle of strain energy equiva-
lence [Sidoroff , 1980]. For isotropic damage, this introduces
a mapping between the effective stress σ̃ij and actual stress
σij :

σ̃ij =
1

1−D
σij , (1)

where σij represents the force per unit damaged area (in-
cluding voids or cracks) in the physical space and σ̃ij rep-
resents the effective stress representing the force per unit
undamaged area (not including voids or cracks) in the effec-
tive space. Note that throughout this article we use the Ein-
stein’s indicial notation for tensors and the standard sum-
mation convention for repeated indices.

Assuming small elastic strains, the total strain tensor can
be additively decomposed as,

εij = ε
e
ij + ε

v
ij , (2)

where the superscripts e and v denote the elastic (time-
independent and recoverable component) and viscous (time-
dependent and irrecoverable component) components, re-
spectively. In this study, we neglect the delayed elastic
(time-dependent and recoverable) component of the strain
since it is much smaller compared to the viscous strain com-
ponent at low loading rates. The effect of delayed elasticity
is only important at high strain-rates and can be neglected
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for the low strain-rates observed in ice shelves. We assume
the elastic behavior of undamaged polycrystalline ice to be
isotropic owing to the random orientation of its crystalline
structure; so, we need only two elastic constants, namely, the
Young’s modulus, E and the Poisson’s ratio ν to describe
the elastic behavior. The multi-axial form of the damage-
modified Hooke’s law can be expressed as,

σij =
E(1−D)

3(1− 2ν)
ε
e
kkδij +

E(1−D)

2(1 + ν)

(

ε
e
ij −

1

3
ε
e
kkδij

)

. (3)

The relation for the viscous strain component is given by
the damage modified multi-axial Glen’s flow law,

ε̇
v
ij = Kσ̃

n−1
e σ̃

dev
ij , (4)

where K is a temperature dependent viscosity parameter, n

is the flow law exponent (n ∼3), σ̃e =

√

3

2
σ̃dev
kl σ̃dev

kl is the

effective Von Mises stress and the effective deviatoric stress

tensor σ̃dev
ij = σ̃ij −

σ̃kk

3
δij .

The model is fully specified by a damage evolution equa-
tion, which for creep damage takes on the power-law form
[Kachanov , 1958; Rabotnov , 1963]:

Ḋ =
B〈χ〉r

(1−D)kσ

, (5)

where the dot decoration denotes differentiation with respect
to time (in a Lagrangian sense), 〈 〉 denote the Macaulay
brackets, B is a temperature dependent material parameter
and the exponents r, kσ are material parameters that can
be determined using laboratory data. In the above equa-
tion, χ is the Hayhurst equivalent stress given by a linear
combination of the largest effective principal stress σ̃(1), the
effective Von Mises stress σ̃e and the effective pressure P̃ :

χ =

{

ασ̃(1) + βσ̃e − 3(1− α− β)P̃ , if σii ≥ 0,
0, if σii < 0.

(6)

where α and β material parameters calibrated with labo-
ratory data Pralong et al. [2005]. In this study we mainly
focus on tensile failure behavior and so χ is set to zero under
compression, that is, we assume ice behaves like an undam-
aged viscoelastic material under compression. The presence
of an existing microcrack or microvoid leads to a stress con-
centration in its vicinity and so new damage (i.e. microcrack
or microvoid growth and nucleation) usually occurs near an
existing defect. Thus, existing damage increases the dam-
age rate in tension and this effect is described by the stress
dependent parameter kσ. For a general multiaxial state of
stress, the dependence of kσ on the stress tensor shall be
assumed as,

kσ = k1 + k2|σii|, if 0 ≤ σii ≤ 1MPa, (7)

where k1 and k2 are parameters determined using a linear
fit.
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2. Model Calibration

The model physics is fully specified by Equations (1)–
(7). To apply the model to glacier ice we need to calibrate
the model parameters and unfortunately, there is a dirth
of laboratory measurements available to constrain param-
eters, especially under multi-axial loading. We tentatively
use the laboratory experiments Mahrenholtz and Wu [1992]
on lab grown polycrystaline ice to calibrate the eight param-
etersK,n, B, r, k1, k2, α and β are introduced to describe the
visco-elastic constitutive damage model. The sudden frac-
ture or rupture of ice under tensile loading that is observed
experimentally is modeled by prescribing a critical damage
Dcr. Additionally, we also prescribe a maximum damage
Dmax so that we can continue the computation until com-
plete structural failure occurs. The parameter values used
in this study and their sources are listed in Table 1.

Better laboratory data, preferably using glacier ice or field
observations could be used to improve the calibration. How-
ever, we note that our focus is on determining the maximum
depth to which crevasses penetrate. Re-calibrating the dam-
age mechanics model will cause damage to accumulate faster
(or slower) and will thus alter the speed of crevasse propa-
gation, but not the depth of penetration, which is controlled
by the location where the tensile stress vanishes. The advan-
tage is that our damage model can be useful in identifying
the interplay between macro-scale processes such as surface,
basal and hydrofracture-induced crevasse propagation. The
field data from remote sensing or satellite imagery can be
used to validate model predictions and to discover the role
of various processes in full depth fracture propagation. Al-
ternatively, the construction and calibration of models may
be performed at the large scale using field data, however, in
this case one could lose the ability to decipher the various
mechanisms affecting glacial calving.

3. Discussion of damage model

The model employed for this study is a simplified version
of the one presented in Duddu and Waisman [2012a]. A few
important points to note are:

1. We do not use any threshold criterion for the initia-
tion of damage because it not clear from the experiments
of Mahrenholtz and Wu [1992] whether a stress or strain
threshold exists under tensile loading. Moreover, using a
threshold for the initiation of damage, whose value is usu-
ally small, will only decrease the rate of crack propagation
and, possibly, slightly decrease the predicted crevasse depth.
Therefore, this will not affect the main conclusion of the
study that surface crevasses alone are not responsible for
calving events in marine terminating and thin glaciers..

2. A more general model that takes into account the
damage-induced anisotropy arising from the microcrack
damage can be implemented by defining damage as a second
order tensor [Murakami , 1983; Duddu and Waisman, 2012a];
however, due to limited experimental data and simplicity
of numerical implementation it is practicable to assume a
scalar isotropic damage.

3. The material behavior of ice under compression at tem-
peratures close to its melting point is complex and the ki-
netics of deformation are highly temperature- and loading
rate- dependent. In this study, we neglect damage accu-
mulation due to microcracking and/or softening due to the
microstructure evolution of ice under compression due to dy-
namic recrystallization. Since our objective is to investigate
tensile crevasse propagation, we believe it is reasonable to
approximate the compression behavior of ice as visco-elastic
without any damage or recrystallization effects.

4. Damage initialization using notches

Observations indicate that the surface of tidewater
glaciers is visibly covered with crevasses. Hence, we believe
it is reasonable to assume at least a few defects in ice that
serve as seeds for future crack propagation. The worst-case
scenario is when the location where ice is the weakest (with
zero or very little strength idealized as a notch) coincides
with the location of maximum tensile stress. To determine
the location of the initial notch in our simulations, we first
analyzed an ice slab with no notches assuming homogeneous
material behavior. From this analysis result, shown in Fig-
ure I, we found that the maximum tensile stress develops at
the top surface at a distance approximately one-ice thick-
ness away from the slab terminus (right edge) and the tensile
stress is almost a constant beyond this point away from the
slab terminus. In all the simulation studies we conducted we
initiated crevasses using notches placed a distance greater
than one-ice thickness away from the terminus, as shown in
Figure II. We found that our results are insensitive to the
precise position of the notch when placed beyond one-ice
thickness away from the terminus.

In a fracture mechanics approach it is necessary to pre-
scribe a starter crack to perform crack growth analysis. In
contrast, in a damage mechanics approach it is not necessary
to prescribe a starter crack; however, usually a stress concen-
tration feature such as a notch or hole or an inhomegeneity
is considered to study localized effects that typically lead
to eventual structural collapse [Murakami et al., 1988; Ando
et al., 1990; Hall and Hayhurst , 1991; de Borst , 1997; Becker
et al., 2002; Desmorat et al., 2007; Jirasek and Grassl , 2008;
Chow et al., 2011; Verhoosel et al., 2011]. Alternatively,
one may initiate cracks by considering a random distribu-
tion of damage, however, in this case the crack paths would
be dependent on the choice of the statistical distribution of
damage. Further, to predict crevasse growth the analysis
should be conducted by considering several realizations of
damage patterns and statistical averages need to be deter-
mined. Such an exercise is not pursued herein since this
study is focused on investigating the mechanics of crevasse
propagation rather than on the prediction of glacial calving
rates. However, our numerical implementation is robust and
works well even when damage is not initialized. Figure III
shows the results from a simulation study without consider-
ing an initial notch, wherein multiple crevasses nucleate and
propagate at locations of maximum tensile stress that are at
least one ice-thickness away from the terminus. In this sim-
ulation, we considered a coarse mesh in order to reduce the
computational cost associated with a finer resolution finite
element mesh. Our study shows that considering a notch
does not affect the predicted final crevasse depth but it af-
fects only the crevasse propagation rate.

Investigating the mechanics of crevasse propagation using
an isolated crevasse assuming idealized boundary conditions
and glacier geometries is definitely not realistic. However,
our simulation studies are designed to estimate the maxi-
mum surface crevasse penetration depth. Let us consider a
simulation wherein an initial notch is specified at mid-length
of the slab. The simulation result show in Figure IV indi-
cates that surface crevasses can only penetrate a fraction of
the entire ice slab thickness. This is because crevasses are
driven by tensile stress generated by the cryostatic stress
induced creep flow that varies with the depth. As the first
crevasse, originating from the notch, propagates deeper the
variation of the horizontal creep flow velocity decreases and
so the tensile stress driving crevasse propagation decreases.
Similar to the Nye zero stress model, the crevasse pene-
trates to the depth where the tensile stress at the crevasse
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Table 1. Model parameters for ice at temperature T = −10◦C

Parameter Value in Tension Value in Compression Units Source
E 9500 9500 MPa Karr and Choi [1989]
ν 0.35 0.35 - Karr and Choi [1989]
n 3.1 3.1 - Karr and Choi [1989]
K 2.56× 10−7 9.40× 10−8 MPa−n s−1 Duddu and Waisman [2012a]
B 5.23× 10−7 - MPa−r s−1 Duddu and Waisman [2012a]
r 0.43 - - Pralong et al. [2005]
k1 −2.63 - - Duddu and Waisman [2012a]
k2 7.24 - MPa−1 Duddu and Waisman [2012a]
α 0.21 - - Pralong et al. [2005]
β 0.63 - - Pralong et al. [2005]

Dcr 0.6 - - Duddu and Waisman [2012b]
Dmax 0.97 - - Duddu and Waisman [2012b]

Figure I. Longitudinal stress variation in the ice slab due to creeping flow of the slab after 1 day. Note that in these
simulations ice is considered to be homogeneous and undamaged.

Figure II. Schematic representation of a notched rectangular ice slab extending under the action of gravity and hydrostatic
seawater pressure. The basal boundary condition can be free slip or no slip (fixed). Points A and B denote the top right
corner and the bottom right corner, respectively.

tip becomes very small or vanishes. If the simulation is
continued forward in time we observe that new crevasses
nucleate at the surface and begin to propagate downward
as shown in Figure IV. We have run the simulations for
longer times with no notch, with a single notch and with
multiple notches. In all cases, our simulations indicate that
eventually the whole slab will get cracked with several sur-
face crevasses but none of the crevasses will not propagate
the full depth but rather approach the full depth asymptot-
ically. From these studies we arrive at the conclusion that
only surface crevasses are not responsible for glacial calving
events.

5. Comparison with Nye-zero stress model

In Section 3.2 of the paper, we compared the equilibrium
crevasse depths estimated directly from crack growth simu-

lations with those from the Nye zero-stress model. The Nye
model depths were determined by evaluating the depth at
which tensile stress vanishes from the stress contour plots of
simulations conducted using the viscoelastic model without
any damage. These simulations illustrate the importance of
creep damage evolution which causes tensile stresses to be
established at greater depths as the top surface fractures.
An important point to note is that the Nye model is most
appropriate for a field of closely-spaced crevasses, where the
stress concentration at the bottom of the each fracture is
reduced by the presence of other fractures nearly [Mottram
and Benn, 2009]. However, the simulations presented in the
paper only examined the behavior of a single crevasse in
which stress concentrations are maximized.

To understand the role of creep damage evolution in the
case when multiple closely spaced crevasses can propagate,
we conduct the following simulation study. We consider a
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Figure III. Damage in the ice slab after 9 days without any initial notches. The crevasses nucleate and propagate at
locations of maximum stress. The red colored elements show completely damage elements indicating the crack path. The
blue elements have negligible damage.

Figure IV. Damage in the ice slab after 8 days without one initial notch. At longer times multiple crevasses are found to
nucleate and propagate near the top surface of the ice slab.

Figure V. Damage in the ice slab showing the development of a field closely spaced crevasses. The deepest crevasse after
9 days penetrates about 75% of the ice slab thickness. Note that no crevasses appear near the notches that are located at
a distance less than one ice slab thickness from the terminus.

2000 m x 500 m ice slab with several initial notches placed
100 m apart in order to simulate a closely spaced field of
crevasses using a coarse resolution mesh (see Figure V).
In this case, we found that the stress at the crack tip is
smaller and the crevasse propagation rate was slower due
to the shadowing effect of nearby fractures. An interesting
point to observe in Figure V is the existence of a periodic
length scale for deeper crevasses, wherein one or two shallow
crevasses can exist in between two deep crevasses. This peri-
odic length scale (distance between deep crevasses) depends

on the thickness of the ice slab that determines the flow ve-
locity variation across its depth. The simulation predicts
that after 9 days the deepest crevasse penetrated only 75%
of the ice slab thickness whereas with one single crevasse the
9-day penetration depth was 85% and the Nye depth is esti-
mated to be about 60% ice thickness. However, we still find
that the Nye zero stress model predicted shallower crevasses
compared to the direct crack growth simulations. This is be-
cause in reality only some crevasses will grow deeper while
other crevasses are stunted due to crack shielding effects.
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Therefore, a closely spaced field of crevasses all growing at
the same rate and having the same depth is impossible to
simulate.

6. Favorable location of crevasses

In all the simulations presented in this supplementary ar-
ticle we assume free slip at the ice slab base. There results
indicate that surface crevasses propagate to greater depths
when they are located at a distance greater than one ice slab
thickness. This is because the tensile stress, induced by the
depth variation in ice flow velocity, requires this length scale
for attaining the maximum value as shown in Figure I. Be-
yond a distance of one ice slab thickness from the terminus
the stress is nearly constant with some minor variation. In
Section 3.3 of the paper, we estimated the favorable loca-
tion for a crevasse that is closest to the terminus based on
the location of the maximum tensile stress, whose distance
lmax is measured from the terminus. The idea, therein, was
to demonstrate that the boundary conditions at the glacier
base and terminus can alter the stress distribution in ice
slab and can not only affect the crevasse depth but also the
crevasse location. Since damage evolution is dictated by ten-
sile stress, we assumed the location of the maximum tensile
to be the location of the first crevasse and eventually, this
crevasse leads to a calving event. Thus, determining lmax

can give us an estimate for the size of iceberg that is likely
to calve from the glacier.
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