Comparison of *In Vitro–In Vivo* Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes

PENG ZOU,¹ XINGRONG LIU,² SUSAN WONG,² MEIHUA ROSE FENG,¹ BIANCA M. LIEDERER²

¹Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109

²Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California 94080

Received 6 April 2013; revised 3 May 2013; accepted 6 May 2013

Published online 27 May 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jps.23620

ABSTRACT: Biliary clearance (CL_b) is often underestimated by *in vitro-in vivo* extrapolation from sandwich-cultured hepatocytes (SCHs). The objective of this study was to compare the performance of a universal correction factor with transporter-based correction factors in correcting underestimation of CL_b . The apparent in vitro CL_b of a training set of 21 compounds was determined using the SCH model and extrapolated to apparent in vivo CL_b (CL_b, app). A universal correction factor (10.2) was obtained by a linear regression of the predicted $CL_{b, app}$ and observed *in vivo* CL_b of training set compounds and applied to an independent test set (n = 20); the corrected CL_b predictions of 13 compounds were within twofold error of observed values. Furthermore, two transporter-based correction factors (Organic anion transporting polypeptides/multidrug-resistance-related protein 2 and diffusion/P-glycoprotein) were estimated by linear regression analysis of training set compounds. The applications of the two correction factors to the test set resulted in improved prediction precision. In conclusion, both the universal correction factor and transporter-based correction factors provided reasonable corrections of CL_b values, which are often underestimated by the SCH model. The use of transporter-based correction factors resulted in an even greater improvement of predictions for compounds with intermediate-to-high CL_b values. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2837-2850, 2013

Keywords: biliary excretion; hepatocytes; clearance; drug transport; hepatobiliary disposition; *in vitro/in vivo* correlations (IVIVC); organic aniontransporting polypeptide transporters; P-glycoprotein

INTRODUCTION

The accurate prediction of hepatic clearance (CL_H) is an essential step in the identification of new chemical entities as drug candidates and in the estimation of human pharmacokinetics. CL_H is determined by hepatic metabolism and biliary excretion. Reasonable prediction accuracy of CL_H for compounds with high hepatic metabolism has been achieved by interspecies scaling and *in vitro-in vivo* extrapolation (IVIVE) from liver microsome or hepatocyte incubations.^{1,2} By contrast, the quantitative prediction of CL_H is still very challenging for compounds with low hepatic metabolism and high biliary excretion.²

In vitro-in vivo extrapolation from sandwichcultured hepatocytes (SCHs) is an approach to estimating biliary clearance (CL_b); however, low bile or blood flow and the variable expression levels of influx and/or efflux transporters can result in a 10-100fold underestimation of CL_b in IVIVE from SCH.^{3,4} Several reports reveal that the expression levels and activities of influx transporters such as Oatps, Ntcp, and Oct1 in rat hepatocytes were consistently and considerably reduced in the SCH model,⁵⁻⁷ thus leading to underestimation of CL_b. Additionally, the expression levels of canalicular efflux transporters are inconsistent between different laboratories. Li et al.⁸ reported a 40% decrease in the bile salt export pump (Bsep) protein level, a 50% decrease in the multidrugresistance-related protein 2 (Mrp2) protein level, and

Additional Supporting Information may be found in the online version of this article. Supporting Information

Correspondence to: Bianca M. Liederer (Telephone +650-467-7343; Fax: 650-225-6452; E-mail: liederer.bianca@gene.com)

Journal of Pharmaceutical Sciences, Vol. 102, 2837–2850 (2013) @ 2013 Wiley Periodicals, Inc. and the American Pharmacists Association

a fivefold increase in the breast cancer resistance protein (Bcrp) level in sandwich-cultured rat hepatocytes (SCRHs) over 5 days in culture. Tchaparian et al.⁷ observed dramatically increased protein levels of P-glycoprotein (P-gp), Bcrp, and Mrp 1, 2, 3, and 4 over 4 days in culture. In Borlak's report,⁵ the expression levels of canalicular transporters P-gp and Mrp2 were similar to those determined *in vivo*.

One strategy for correcting the underestimation of CL_b is to incorporate a universal empirical correction factor determined by correlating CL_b predicted from SCRHs with the observed in vivo CL_b.⁹ A reasonable correlation between CL_b predicted by SCRHs and in *vivo* CL_b was observed among drugs that undergo similar uptake (Organic anion transporting polypeptides, Oatps) and efflux mechanisms (Mrp2 or Bcrp) such as angiotensin II receptor blockers, 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA)reductase inhibitors, and β -lactam antibiotics.^{9–11} On the contrary, for compounds in which different combinations of influx and efflux transporters are involved in the biliary excretion, or when passive diffusion is involved, the universal correction factor might not work. To address this issue, Li et al.⁴ proposed using the ratio of the protein amount of canalicular efflux transporters (Mrp2, Bsep, and Bcrp) in rat liver to that in SCRH as a correction factor. Improved prediction accuracy was achieved by this method; however, this strategy ignored the decreased expression levels of sinusoidal influx transporters in SCRHs, which might seriously affect the predictability of the SCRH model.

In the current study, a universal correction factor and a series of correction factors based on the activities of both influx and efflux transporters were examined for IVIVE of CLb. A universal correction factor was estimated by linear regression analysis of 21 compounds in a training set. To determine whether transporter-specific correction factors can improve IVIVE, the compounds in the training set were divided into transporter-specific subgroups based on uptake and excretion mechanisms. Although both the universal correction factor and the transporterspecific correction factors provided reasonable CL_b predictions when applied to the independent test set; the use of transporter-specific correction factors resulted in a greater improvement of prediction precision.

MATERIALS AND METHODS

Chemicals

Topotecan, benazeprilat, rosuvastatin, rosuvastatind6, candesartan, atorvastatin, olmesartan, deferasirox, temocaprilat, irinotecan, and octreotide acetate were purchased from Toronto Research Chemicals (North York, Ontario, Canada). Trovafloxacin and fluvastatin were obtained from Torcris Bioscience (Ellisville, Missouri) and Cayman Chemical Company (Ann Arbor, Michigan), respectively. Probenecid was supplied by Santa Cruz Biotechnology (Santa Cruz, California). [³H]Taurocholate (5 Ci/mmol; purity >97%) was purchased from PerkinElmer Life and Analytical Sciences, Inc. (Waltham, Massachusetts). All other chemicals were purchased from Sigma– Aldrich (St. Louis, Missouri).

Metabolic Stability Assay

Cryopreserved rat hepatocytes (Celsis IVT, Baltimore, Maryland) were used for the hepatocyte stability assay. The cryopreserved hepatocytes were thawed in InVitroGROTM HT (Celsis IVT, Baltimore, Maryland) medium and centrifuged at 100g for 10 min. Cells were resuspended in Dulbecco's Modified Eagle Medium (DMEM) (Gibco[®], Grand Island, New York), and viability was assessed by the trypan blue exclusion method. Hepatocytes with viability greater than 80% were used in the study. The compounds $(1 \mu M \text{ in }$ DMEM) were incubated with hepatocytes (0.5×10^6) cells/mL) in a CO_2 incubator with 95% air/5% CO_2 at 37°C and 95% humidity. At 0, 10, 30, and 60 min, aliquots of the incubation mixture were taken out and the reaction was quenched by adding two volumes of acetonitrile containing 100 nM of rosuvastatin-d6. The mixtures were then centrifuged at 2095g for 10 min to precipitate the protein. The supernatants were diluted with two volumes of water and transferred into a 96-well assay plate to measure the disappearance of parent compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The predicted hepatic metabolic clearance (CL_{met}) was calculated using the following previously reported equation²:

$$CL_{met} = (Q_P \times f_u \times CL_{int}) / (Q_P + f_u \times CL_{int}) \quad (1)$$

where Q_p represents the rat hepatic plasma flow rate (40 mL*min^{-1*}kg⁻¹), CL_{int} represents the intrinsic clearance, and f_u represents the unbound fraction in rat plasma, which was collected from the literature (Table 1).

Hepatocyte Culture

Sandwich-cultured rat hepatocytes (B-CLEAR[®]), which were isolated from male Wistar rats and cultured in 24-well plates, were purchased from Qualyst, Inc. (Durham, North Carolina). Hepatocytes were cultured in the medium provided by Qualyst, Inc. at 37° C in a humidified incubator with 95% air/5% CO₂. Medium was changed daily. On day 4 after hepatocyte seeding, the SCRHs were subjected to accumulation studies.

						Predicted	CL _b Corrected by	Observed In	Category
Compounds	Major Influx Transporters	Major Efflux Transporters	$\underset{(mL*min^{-1}*kg^{-1})^{a}}{\text{cL}}$	$f_{ m u}$	$\mathrm{CL}/_{\mathrm{b,app}} imes f_{\mathrm{u}}$	$\begin{array}{c} CL_{b, \; app} \; (Eq. \; 4) \\ (mL^{*}min^{-1}*kg^{-1}) \end{array}$	$\times 10.2 \\ (mL^*min^{-1}*kg^{-1})$	Vivo CL _b (mL*min ⁻¹ *kg ⁻¹)	Predicted/ Observed ^b
Vincristine	Diffusion (Ref. 12)	P-gp (Ref. 12)	11.5	0.4 (Ref. 13)	4.61	4.13	42.1	33.1 (Ref. 14)	H/H
Taurocholate	Ntcp (Oatps)	Bsep	19.7	0.15 (Ref. 4)	2.95	2.75	28.0	29.8 (Ref. 9)	H/H
Temocaprilat	Oatps (Ref. 15)	Mrp2 (Ref. 16)	45.7	0.0639 (Ref. 17)	2.92	2.72	27.8	34.4 (Ref. 17)	M/H
Probenecid	Oat2 (Ref. 18) (Oatns)	Mrp2 (Ref. 19)	25.2	0.116 (Ref. 20)	2.92	2.72	27.8	28.59 (Ref. 19)	H/M
Irinotecan	Oatps (Ref. 21)	P-gp(Mrp2)	9.44	$0.2 ({ m Ref.}24)$	1.89	1.80	18.4	20.6 (Refs. 24,25)	M/M
		(Refs. 22,23)							
Erythromycin	Oat2 (Ref. 26) (Oatps) (Ref. 27)	P-gp (Ref. 28)	2.34	0.78 (Ref. 29)	1.83	1.75	17.8	15.5 (Ref. 27)	M/M
Rosuvastatin	Oatos (Ref. 30)	Bcrp (Ref. 30)	44.9	0.039 (Ref. 11)	1.75	1.68	17.1	24.3 (Ref. 11)	M/M
Benazeprilat	Oatps (Refs. 15.17)	Mrp2 (Ref. 17)	7.04	0.245 (Ref. 17)	1.72	1.65	16.9	20.2 (Ref. 17)	M/M
Fexofenadine	Oatps (Ref. 31)	Mrp2(Bsep)	12.0	0.11 (Ref. 32)	1.32	1.28	13.0	11.4 (Ref. 33)	M/L
		(Kef. 31)							
Colchicine	Diffusion (Ref. 34)	P-gp(Mrp2) (Refs. 35,36)	3.04	0.389 (Ref. 37)	1.18	1.15	11.7	$9.05 ({ m Ref.}35)$	L/L
Trovafloxacin	N.A.	N.A.	7.36	0.11 (Ref. 38)	0.810	0.794	8.09	8.39 (Ref. 38)	L/L
Enalaprilat	Oatps (Ref. 39)	Mrp2 (Ref. 39)	1.51	0.42 (Ref. 17)	0.634	0.624	6.36	2.96 (Ref. 17)	Γ/Γ
Atorvastatin	Oatps (Ref. 40)	Mrp2 (Ref. 40)	9.76	0.0567 (Ref. 41)	0.553	0.546	5.56	6.2 (Ref.42)	L/L
Mitoxantrone	Diffusion (Ref. 43)	Bcrp(P-gp)	8.24	0.05 (Ref. 45)	0.412	0.408	4.16	$7.2 ({ m Ref.}46)$	Γ/Γ
A A TOTA / 14)		(Kets. 43,44)						J D C	
AAFE $(n = 14)$	A 14	AT A	007 0	0 TOO (D - C 4T)		1100		07.1 0.950 /J .C 47	1 1
Lomefloxacin	N.A.	N.A. W 2.D 2 10	0.480	0.722 (Ket. 47)	0.347	0.344	3.50	0.253 (Ket. 47)	Т/Г - Ч
Fluvastatın	Oatps (Ref. 48)	Mrp2 (Ref. 49)	29.1	0.00986 (Ref. 41)	0.287	0.285	2.91	3.78 (Kef. 41)	T/T
Indomethacin	Oat2 (Ref. 50)	P-gp (Ref. 51)	120	0.002 (Ref. 52)	0.241	0.240	2.44	$0.45 ({\rm Ref.}53)$	L/L
Octreotide	N.A.	P-gp (Ref. 54)	0.302	0.41 (Ref. 55)	0.124	0.124	1.27	7.44 (Ref. 56)	Γ/Γ
Deferasirox	Diffusion	Mrp2 (Ref. 57)	10.4	0.01 (Ref. 58)	0.104	0.104	1.06	$5.6 ({ m Ref.}57)$	Γ/Γ
Olmesartan	Oatps (Ref. 59)	Mrp2 (Ref. 59)	3.44	0.01 (Ref. 10)	0.0344	0.0344	0.351	2.22 (Ref. 10)	Γ/Γ
Candesartan AAFE of total	N.A.	N.A.	1.55	0.00651 (Ref. 17)	0.0101	0.0101	0.103	3.03 (Ref. 17) 2.20	L/L
training set) 	
(n=21)									
^a CL/ _{b, app} (mL/i ^b CL _b categories	min/kg) was derived by s s: low, <i>in vivo</i> CL _b ≤30%	scaling <i>in vitro</i> appare (12 mL*min ⁻¹ *kg ⁻¹)	nt CL _b (mL*min ⁻¹ *mg ⁻) of liver plasma flow; me	⁻¹ of protein) with phy oderate, 30%–70% (12	siological parame –28 mL*min ^{–1} *k	ters: 200 mg protein/g :g ⁻¹) of liver plasma flo	rat liver tissue and 40 w; and high, ≥70% (2) g rat liver tissue/kg 8 mL*min ⁻¹ *kg ⁻¹) o	body weight. f liver plasma
flow.									
Compounds ar Predictions out AAFE, average	e ordered based on predi tside the twofold error of absolute fold error; CL _t	icted CL _{b, app} . f observed <i>in vivo</i> CL _b ,, biliary clearance; Cl	are highlighted in bold. L _{b, app} , apparent biliary (clearance; CL/ _{b,app} , apl	parent biliary cle	arance scaled to kg bod	ly weight; f _u , unbound	fraction in plasma; h	V.A., not
av allawite.									

Accumulation Studies and Analysis

Accumulation studies were conducted as described previously.¹⁰ Hepatocytes were rinsed twice and then preincubated for 10 min at 37°C with 0.6 mL of warmed Hank's balanced salt solution (HBSS) either containing Ca^{2+} or not containing Ca^{2+} to maintain or disrupt the tight junctions sealing bile canalicular networks, respectively. Subsequently, hepatocytes were incubated with the test compound $(1 \mu M$ for $[^{3}H]$ taurocholate and 10 μ M for the other compounds) in standard HBSS for 10 min at 37°C. After incubation, the dosing solution was aspirated from the cells, and uptake was stopped by washing the cells three times with ice-cold standard HBSS. For radiolabeled compound, cells were lysed with 0.5 mL of 0.5% Triton X-100 in phosphate-buffered saline (Sigma-Aldrich, St. Louis, Missouri). The samples were analyzed for compound concentrations by liquid scintillation counting. For other compounds, cells were lysed with 0.3 mL of 90% (v/v) methanol containing 100 ng/ mL of rosuvastatin-d6 (internal standard) and sonicated for 30 s with a sonic dismembrator (model 100; Thermo Fisher Scientific, Waltham, Massachusetts) and then transferred to a 96-well centrifugation filterplate (Corning Inc., Acton, Massachusetts). After centrifugation (2095g \times 20 min), the filtrates were transferred to a 96-well plate and sealed for LC-MS/ MS analysis. Substrate accumulation was corrected for nonspecific binding by using Matrigel-precoated 24-well plates without cells. Because of incompatibility of the protein assay with methanol, the average protein concentration for standard HBSS or Ca²⁺-free HBSS incubations in the same liver preparation was used to normalize accumulation. Lysates were quantified by the bicinchoninic acid protein assay (Pierce Biotechnology, Inc., Rockford, Illinois) using bovine serum albumin as the reference standard, and accumulation was normalized to protein concentration.

LC-MS/MS Analysis

An Agilent 1100 HPLC system (Agilent Inc., Santa Clara, California) connected to an Applied Biosystems API 3000 triple quadrupole mass spectrometer with an electrospray ion source (Foster City, California) was used for sample analysis. A total of $20 \,\mu L$ of sample was injected into the LC-MS/MS. The flow rate of the mobile phases [aqueous phase, water with 0.1% formic acid (v/v) and 10 mM ammonium formate; organic phase, acetonitrile with 0.1% formic acid (v/ v)] was 0.3 mL/min. Isocratic or gradient elution was used to elute the various compounds from a Zorbax ODS C18 $(50 \times 2.1 \text{ mm}^2, 3 \mu \text{m})$ column (Agilent Inc.). Rosuvastatin-d6 was used as an internal standard. The standard curve for each compound was individually established by using Matrigel-precoated 24-well plates with hepatocytes.

 $CL_{b, app, invitro}$

$$= \frac{accumulatation_{cells+bile} - accumulatation_{cells}}{concentration_{(medium)} \times 10 \text{ min}}$$

(2)

CL_{b, app, invitro}

=

$$\frac{accumulatation_{cells+bile}-accumulatation_{cells}}{(accumulatation_{cells}/intracellular volume) \times 10 \ min}.$$

(3)

The concentration of compound in the medium was defined as the initial substrate concentration (1 or 10 μ M) in the incubation medium. Intracellular volume was assumed to be 5.2μ L/mg protein.⁶⁰ CL_{b, app, in vitro} and CL_{b, int, in vitro} (mL*min^{-1*}mg⁻¹ of protein) were scaled to kilograms of body weight (CL'_{b, app} and CL'_{b, int}) assuming 200 mg protein/g rat liver tissue and 40 g rat liver tissue/kg body weight. The predicted *in vivo* CL_{b, app} values were estimated according to Eq. 4 given below, based on the well-stirred model of hepatic disposition, assuming that the red blood cell partitioning of test compounds was minimal.

$$In vivo \operatorname{CL}_{\mathrm{b,app}} = (Q_{\mathrm{p}} \times f_{\mathrm{u}} \times \operatorname{CL'}_{\mathrm{b,app}}) / (Q_{\mathrm{p}} + f_{\mathrm{u}} \times \operatorname{CL'}_{\mathrm{b,app}})$$
(4)

where Q_p represents the rat hepatic plasma flow rate $(40 \text{ mL}^*\text{min}^{-1}\text{*kg}^{-1})^8$ and f_u represents the unbound fraction in rat plasma.

Average absolute fold error (AAFE)¹ was used to assess the prediction precision of various correction approaches. AAFE was calculated as following:

$$AAFE = 10^{1/n} \sum \left| \log \left(\frac{\text{predicted CL}}{\text{observed CL}} \right) \right|$$
(5)

Data Set

Forty-one compounds, which were reported to undergo biliary excretion, were randomly assigned to a training set (n = 21) and a test set (n = 20). The *in vitro* biliary excretion parameters of 21 compounds in the training set were experimentally determined from the SCRH model. The SCRH biliary excretion parameters of 20 compounds in the independent test set, the values of $f_{\rm u}$ in rat plasma and the *in vivo* CL_b values for the 41 compounds from the training and test sets were all collected from the literature. When *in vivo* CL_b was not available in the literature, it was calculated by the following equation: $CL_b =$ $CL_{total} \times \%$ of dose as parent compound in bile. Compounds in the training and test sets were divided into low, moderate, and high CL_b categories on the basis of predicted or observed in vivo CL_b values. Compounds with an *in vivo* CL_b of 30% $(12 \text{ mL}^*\text{min}^{-1}\text{*kg}^{-1})$ or less of liver plasma flow were assigned to the low CL_b category, and compounds with an *in vivo* CL_b of 70% (28 mL*min⁻¹*kg⁻¹) or more of liver plasma flow were assigned to the high CL_b category. All other compounds were assigned to the moderate CL_b category. Information regarding the major uptake and efflux transporters of each compound was collected from the literature (Tables 1 and 2) and UCSF-FDA TransPortal (http://bts.ucsf.edu/fdatransportal/ index/).

RESULTS

Selection of Probe Substrates

The selection criteria for probe substrates in the training set included: rat *in vivo* CL_b and rat plasma f_u values available in literature; active hepatic uptake and/ or biliary excretion; and limited hepatic metabolism. To ensure limited hepatic metabolism, the metabolic stability of 18 compounds in the training set were assessed in suspended rat cryopreserved hepatocytes. As shown in Table S1, IVIVE from cryopreserved rat hepatocyte incubation showed that all the 18 compounds were metabolically stable. The other three compounds (rosuvastatin, fexofenadine, and olmesartan) in the training set have been previously reported to be stable in rat liver microsome and hepatocyte incubations.^{4,98}

Determination of Universal Correction Factor

In vitro apparent CL_b values based on compound concentration in the medium were calculated using Eq. 2 and scaled to kilograms of body weight ($CL'_{b, app}$; $mL^*min^{-1}*kg^{-1}$) (Table 1 for training set and Table 2 for test set). The predicted $CL_{b, app}$ was obtained from $CL'_{b, app}$ using Eq. 4 (Tables 1 and 2). A reasonable linear correlation ($R^2 = 0.875$) between the predicted $CL_{b, app}$ and observed *in vivo* CL_b was observed for 21 compounds in the training set (Fig. 1a), although the observed *in vivo* CL_b values were on average 10.2-fold higher than the predicted values. Similarly, a linear correlation ($R^2 = 0.746$) between predicted $CL_{b, app}$ and observed *in vivo* CL_b was observed for 20 compounds in the independent test set (Fig. 1b), and the predicted $CL_{b, app}$ values were underestimated by an average of 11.0-fold.

The slope (10.2) of the linear correlation equation obtained from the training set was used as a universal correction factor to correct the underestimation of CL_b. The correction factor was applied to both the training and test sets (Tables 1 and 2), and the corrected CL_b values were plotted against the observed in vivo CL_b for the training (squares) and test (triangles) sets (Fig. 2). A total of seven out of 21 compounds in the training set (highlighted in bold font in Table 1) and seven out of 20 compounds in the test set (highlighted in bold font in Table 2) were outside the limit of twofold error of the observed in vivo CL_b. Noticeably, the CL_b values of candesartan and cefmetazole were underpredicted, even after correction, by more than 30- and 20-fold, respectively. Poor prediction accuracy of absolute CL_b values was observed for compounds with predicted $CL_{b, app} \times 10.2 \le 3.5 \, mL^* min^{-1} kg^{-1}$ in the training set (Fig. 2, solid squares; one out of seven predictions within twofold error) and test set (solid triangles; two out of seven predictions within twofold error). By contrast, more accurate predictions (13 out of 14 predictions within twofold error for the training set and 11 out of 13 predictions within twofold error for the test set) were achieved when the predicted $CL_{b, app} \times 10.2$ was greater than $3.5 \,\text{mL/}$ min/kg. Overall, when corrected by a universal factor of 10.2, IVIVE from the SCRH model 10.2 provides acceptable predictability for compounds with moderateto-high CL_b.

Although the absolute CL_b values of compounds with predicted $CL_{b,\,app} \times 10.2$ of $3.5\,mL^*min^{-1}kg^{-1}$ or less were inaccurately predicted, both predicted and observed in vivo CL_b consistently suggested low biliary excretion. For all seven compounds with predicted $CL_{b,\,app} \times 10.2$ of $3.5\,mL^*min^{-1}kg^{-1}$ or less in the test set (Table 2), both predicted and observed values consistently indicated that the compounds were in the low CL_b category ($CL_b < 12\,mL^*min^{-1}kg^{-1}$). Similar results were found in the training set (Table 1). These observations suggest that the SCRH model combined with a correction factor can be utilized to predict whether an unknown compound has low, moderate, or high CL_b .

As a comparison, *in vivo* CL_b was tentatively extrapolated from $CL_{b, int, in vitro}$, which is based on the intracellular drug concentration in the SCRH model (Eq. 3).⁹⁹ $CL_{b, int, in vitro}$ (mL*min⁻¹*mg⁻¹ of protein) was scaled to *in vivo* CL_b (mL*min⁻¹*kg⁻¹) using physiological parameters; however, no linear correlation between the predicted CL_b and observed *in vivo* CL_b was observed in the training set (Table S2 and Fig. S1). The linear regression R^2 value was 0.235.

Compounds	Major Influx Transporters	Major Efflux Transporters	$\underset{(mL*min^{-1}*kg^{-1})^{\alpha}}{\text{cL}}$	$f_{ m u}$	${ m CL'}_{ m b, app} imes f_{ m u}$	$\begin{array}{c} Predicted \\ CL_{b,\;app}\;(Eq.\;4) \\ (mL^*min^{-1*}kg^{-1}) \end{array}$	$\begin{array}{l} CL_b \ Corrected \ by \\ \times \ 10.2 \\ (mL^*min^{-1}*kg^{-1}) \end{array}$	Observed In Vivo CL _b (mL*min ^{-1*} kg ⁻¹)	Category Predicted/ Observed ^b
$E_217\beta G$	Oatps (Ref. 61)	Mrp2 (Ref. 62)	45.6 (Ref. 4) (0.069 (Ref. 4)	3.15	2.92	29.7	32.1 Ref. 4)	H/H
Digoxin	Diffusion (Ref. 63)	P-gp (Ref. 64)	4.9 (Ref. 64)	$0.61 ({ m Ref.}65)$	2.99	2.78	28.3	21 (Ref. 66)	H/M
$5-CFDA^c$	Diffusion (Ref. 67)	Mrp2 (Ref. 67)	39.05 (Ref. 68)	0.074 (Ref. 69)	2.89	2.70	27.5	44.78 (Ref. 68)	H/M
ICG^d	Oatps(Ntcp) (Ref. 70)	Mrp2 (Ref. 70)	25.2 (Ref. 71)	0.1 (Ref. 72)	2.52	2.37	24.2	32 (Ref. 71)	H/M
Ouabain	N.A.	N.A.	3.12 (Ref. 71) (0.8	2.50	2.35	23.9	14.7 (Ref. 71)	M/M
Rhodamine123	Diffusion (Ref. 73)	P-gp (Ref. 64)	8 (Ref. 64) (0.3 (Ref. 74)	2.40	2.26	23.1	18.3 (Ref. 64)	M/M
Pravastatin	Oatps (Ref. 75)	Mrp2 (Ref. 75)	4.43 (Ref. 10) (0.472 (Ref. 10)	2.09	1.99	20.3	27.9 (Ref. 10)	M/M
Methotrexate	Oatps (Ref. 76)	Mrp2(Bcrp) (Ref. 77)	4.1 (Ref. 9)	0.34 (Ref. 78)	1.39	1.35	13.7	12.1 (Ref. 9)	M/M
Doxorubicin	Diffusion (Ref. 79)	Mrp2(P-gp) (Ref. 80)	2.48 (Ref. 71)	0.344 (Ref. 81)	0.853	0.835	8.51	16.6 (Ref. 71)	I/M
Cimetidine	Oct1 (Ref. 82)	Mate1 (Ref. 83)	0.8 (Ref. 68)	0.81 (Ref. 68)	0.648	0.638	6.50	2.58 (Refs. 84,85)	Γ/Γ
Cefpiramide	Oatps (Ref. 86)	Mrp2 (Ref. 87)	4.72 (Ref. 4) (0.099 (Ref. 4)	0.467	0.462	4.71	5.47 (Ref. 4)	Γ/Γ
Topotecan	N.A.	Bcrp(P-gp) (Ref. 88)	0.487 (Ref. 60)	0.747 (Ref. 60)	0.364	0.361	3.67	5.3 (Ref. 60)	Γ/Γ
Rifampicin $AAFE (n = 13)$	Oatps (Ref. 89)	N.A.	1.99 (Ref. 68)	$0.18 ({ m Ref.}68)$	0.358	0.355	3.62	1.01 (Ref. 68) 1.55	L/L
Pitavastatin	Oatps (Ref. 90)	Bcrp (Ref. 91)	34.6 (Ref. 10) (0.008 (Ref. 10)	0.277	0.275	2.80	4.55 (Ref. 10)	L/L
Cefoperazone	Oatps (Ref. 92)	Mrp2 (Ref. 87)	$0.56 ({\rm Ref.}4)$ (0.429 (Ref. 4)	0.240	0.239	2.43	11 (Ref. 4)	Γ/Γ
Dexamethasone	N.A.	P-gp (Ref. 93)	$0.9 ({\rm Ref.}68)$ ($0.2 ({ m Ref.}68)$	0.180	0.179	1.83	0.43 (Ref. 68)	Γ/Γ
Valsartan	Oatps (Ref. 94)	Mrp2 (Ref. 94)	28 (Ref. 11) (0.004 (Ref. 11)	0.112	0.112	1.14	3.5 (Ref. 11)	Γ/Γ
Cephradine	N.A.	Mrp2(Bcrp) (Ref. 87)	0.08 (Ref. 68)	$0.94 ({ m Ref.}95)$	0.0752	0.0751	0.765	3.1 (Ref. 68)	T/T
Tolbutamide	Oatps (Ref. 96)	N.A.	0.16 (Ref. 68) (0.24 (Ref. 68)	0.0384	0.0384	0.391	0.28 (Ref. 68)	Γ/Γ
Cefmetazole AAFE of total test set	Oatps (Refs. 92,97)	Mrp2 (Ref. 87)	0.04 (Ref. 11) (0.738 (Ref. 11)	0.0295	0.0295	0.301	6.5 (Ref. 11) 2.14	ГЛ
(n = 20)									
${}^{a}\mathrm{CL/}_{\mathrm{b},\mathrm{app}}~(\mathrm{mL/n})$ ${}^{b}\mathrm{CL}_{\mathrm{b}}$ catagories flow.	uin/kg) was derived by so s: low, <i>in vivo</i> CL _b ≤30%	:aling <i>in vitro</i> apparen (12 mL*min ^{-1*} kg ⁻¹)	tt CL _b (mL*min ⁻¹ *mg ⁻¹ of liver plasma flow; mod	of protein) with phys lerate, 30%–70% (12–	iological paramet –28 mL*min ^{–1} *k	ers: 200 mg protein/g ¹ g ⁻¹) of liver plasma fl	rat liver tissue and 40 ow; and high, ≥70% (2	g rat liver tissue/kg h 8 mL*min ^{-1*} kg ⁻¹) o	ody weight. f liver plasma

Table 2. Independent Test Set (n = 20)-Observed and Predicted CL_b (Extrapolated from $CL_{b, app, in vitro}$)

DOI 10.1002/jps

^dICG: Indocyanine green Compounds are ordered based on predicted CL_{6, app}. Predictions outside the twofold error of observed *in vivo* CL_{6, app}, are highlighted in bold. AAFE, average absolute fold error; CL₆, biliary clearance; CL_{6, app}, apparent biliary clearance scaled to kg body weight; *f*u, unbound fraction in plasma; N.A., not available.

^c5-CFDA: 5-carboxyfluorescein diacetate

Figure 1. Linear correlations between observed in vivo CL_b and predicted $CL_{b, app}$ in the (a) training set (n = 21) and (b) test set (n = 20). Predicted $CL_{b, app}$ was based on compound concentration in medium (Eq. 2) and obtained from Eq. 4. Squares, compounds in the training set; triangles, compounds in the test set.

Determination of Transporter-Specific Correction Factors

As the variable (*in vitro* vs. *in vivo*) expression levels of hepatic influx and efflux transporters in the SCRH model lead to inaccuracies in predictions, transporterspecific correction factors were introduced into IVIVE to determine whether these corrections would improve the model. The major influx and efflux transporters involved in the active transport of substrates are listed in Tables 1 and 2. The transporters in parentheses are minor transporters responsible for uptake and efflux. Compounds in the training set were selected for linear regression analysis by the following criteria: predicted $CL_{b,\,app}\,\times\,10.2$ was greater than 3.5 mL*min⁻¹*kg⁻¹; both uptake and efflux mechanisms are known; and at least two compounds were available in each group for linear regression. Hence, seven compounds in the training set were divided into an Oatps/Mrp2 group (n = 5) and a diffusion/Pgp group (n = 2). Linear correlation analysis among the five Oatps/Mrp2 substrates (Fig. 3a, squares) and the two diffusion/P-gp substrates (Fig. 3b, squares) in the training set gave Oatps/Mrp2-specific and diffusion/P-gp-specific correction factors (11.8 and 8.0, respectively).

Application of Transporter-Specific Correction Factors to Test and Training Sets

The two transporter-specific correction factors were appropriately applied to five Oatps/Mrp2 substrates

Figure 2. Plot between observed in vivo CL_b and predicted $CL_{b, app} \times 10.2$ (n = 41). Dashed lines represent the limit of twofold error of observed values. The dotted line represents the boundary (predicted $CL_{b, app} \times 10.2 =$ 3.5 mL*min⁻¹*kg⁻¹) between inaccurate predictions (left) and accurate predictions (right). Squares, compounds in the training set; triangles, compounds in the test set; solid squares or triangles, compounds with predicted $CL_{b, app}$ × $10.2 \leq 3.5 \ mL^*min^{-1}*kg^{-1}.$

Figure 3. Linear correlations between observed in vivo CL_{b} and predicted $\mathrm{CL}_{b,\,app}.$ (a) Oatps/Mrp2 substrates (n = 5). (b) Diffusion/P-gp substrates (n = 2). Squares, compounds in the training set; triangles, compounds in the test set. The linear correlation analysis was based on compounds in the training set.

and two diffusion/P-gp substrates in the test set (Table 3; Fig. 3, triangles). The CL_b values of the other 13 compounds in the test set were not corrected because either the corresponding correction factors were not available or the predicted $CL_{b, app} \times 10.2$ was $3.5 \,mL^*min^{-1}kg^{-1}$ or less. The observed in vivo CL_b values were plotted against the predicted CL_b values based on transporter-specific

Figure 4. Plot between observed *in vivo* CL_b and predicted CL_b (n = 14) after correction with (a) transporter activity-based factors and (b) a single universal factor (10.2). Dotted lines represent the limits of 1.5-fold error of observed values. Squares, compounds in the training set; triangles, compounds in the test set; solid squares or triangles, predictions outside 1.5-fold error.

corrections (Fig. 4a, triangles). All seven predictions for the test set compounds were within 1.5-fold error of the observed *in vivo* CL_b. When the transporter-specific correction factors were appropriately applied to seven compounds in the training set (five Oatps/Mrp2 substrates and two diffusion/P-gp substrates), six predictions fell within 1.5-fold error, whereas the predicted CL_b of enalaprilat (7.35 mL*min^{-1*}kg⁻¹) was more than twofold of the observed CL_b (2.96 \pm 0.32 mL*min^{-1*}kg⁻¹)¹⁸ (Fig. 4a, squares).

As a comparison, the general correction factor (10.2) was applied to the seven test set compounds and seven training set compounds (Table 3). The observed in vivo CL_b values were plotted against the predicted CL_b values based on the correction factor of 10.2 (Fig. 4b, triangles for the test set and squares for the training set). The results show that the transporterspecific corrections improve prediction precision compared with the universal correction. For the seven compounds in the test set, the AAFE of predictions decreased from 1.24 (universal correction factor 10.2) to 1.11 (transporter-specific correction factors). For the seven compounds in the training set, the AAFE of predictions decreased from 1.31 (universal correction factor 10.2) to 1.21 (transporter-specific correction factors).

DISCUSSION

Biliary excretion is an important elimination mechanism of xenobiotics and their metabolites. Although SCH models have been utilized to estimate human and rat CL_b for more than a decade, 99,100 the accurate prediction of CL_b is still a challenging task. For drugs that undergo similar uptake and efflux mechanisms, such as angiotensin II receptor blockers, HMG-CoA reductase inhibitors, and β-lactam antibiotics, the CL_b values predicted by SCHs are linearly correlated with observed in vivo CL_b.^{9,11,100,97} However, CL_b can be underestimated by 10–100-fold because of limited dynamic bile and blood flow and time-dependent alterations in the protein concentration of influx and efflux transporters.^{3,4} To address this underestimation, Li et al.⁴ incorporated ratios of efflux transporter protein levels in rat liver to those in SCRHs into IVIVE as correction factors. Similarly, in the present study, compounds were divided into subgroups based on uptake and efflux mechanisms. We utilized the ratio of the active transport activity in rat liver and to that in SCRH as a transporter-specific correction factor for each subgroup. Transporter-based correction factors were obtained by linear correlation analysis between the observed in vivo CL_b and predicted CL_{b, app} of training set compounds that undergo the same influx and efflux mechanisms. Compared with correction factors based on the protein amount of efflux transporters only, the transporter-based correction factors in this study address the variable activities of both influx and efflux transporters in the SCRH model. The predictability of the correction factors was examined using an independent test set in which the in vitro and in vivo data were collected from the literature. The results showed that both the prediction accuracy and precision were improved by incorporating the transporter-based correction factors into IVIVE.

In this study, a linear correlation between predicted CL_{b, app} from the SCRH model and in vivo CL_b was observed in both a training and an independent test set (Figs. 1a and 1b), although different uptake and efflux mechanisms were involved in the biliary excretion of these compounds (Tables 1 and 2). The lower coefficient of determination in the literature-based test set $(R^2 = 0.746)$ than in the training set $(R^2 = 0.875)$ is likely because of interbatch and interlaboratory variations. The underestimation of CL_{b, app} between the training set (10.2-fold) and the independent test set (11.0-fold) was consistent, suggesting that the underestimation of CL_b can be corrected by an empirical correction factor. Consistent with the previous reports, 11,60,101 normalization with $f_{\rm u}$ in rat plasma in Eq. 4 significantly improved the linear correlation between the predicted CL_{b, app} and observed in vivo CL_b but caused further underestimation of CL_b . When f_u

			$Predicted \ CL_b \ (mI$	$k^*\min^{-1*}kg^{-1})$	
Compounds	Transporter-Based Subgroup	$\begin{array}{c} Predicted \ CL_{b, \ app} \ (Eq. \ 4) \\ (mL^*min^{-1}*kg^{-1}) \end{array}$	With Transporter-Based Correction ^a	With Universal Correction Factor ^b 10.2	$\begin{array}{c} Observed \ In \ Vivo\\ CL_b\\ (mL^*min^{-1*}kg^{-1}) \end{array}$
Training Set					
Atorvastatin	Oatps/Mrp2 (11.8)	0.546	6.43	5.56	6.2
Temocaprilat	Oatps/Mrp2 (11.8)	2.72	32.1	27.8	34.4
Enalaprilat	Oatps/Mrp2 (11.8)	0.624	7.35	6.36	2.96
Benazeprilat	Oatps/Mrp2 (11.8)	1.65	19.5	16.9	20.2
Fexofenadine	Oatps/Mrp2 (11.8)	1.28	15.1	13.0	11.4
Vincristine	Diffusion/P-gp (8.0)	4.13	33.1	42.1	33.1
Colchicine	Diffusion/P-gp (8.0)	1.15	9.19	11.7	9.05
AAFE of training set	(n = 7)		1.21	1.31	
Test Set					
Pravastatin	Oatps/Mrp2 (11.8)	1.99	23.4	20.3	27.9
Methotrexate	Oatps/Mrp2 (11.8)	1.35	15.9	13.7	12.1
$E_2 17\beta G$	Oatps/Mrp2 (11.8)	2.92	34.4	29.7	32.1
Cefpiramide	Oatps/Mrp2 (11.8)	0.462	5.44	4.71	5.47
ICG	Oatps/Mrp2 (11.8)	2.37	27.9	24.2	32
Rhodamine123	Diffusion/P-gp (8.0)	2.26	18.1	23.1	18.3
Digoxin	Diffusion/P-gp (8.0)	2.78	22.3	28.3	21
AAFE of test set $(n =$	7)		1.11	1.24	
AAFE of both training set and test set $(n = 14)$			1.16	1.27	

Table 3. Comparison of CL_b Predictions for Seven Compounds in the Training Set and Seven Compounds in the Test Set Using Transporter-Specific Corrections Versus a Universal Correction

 a A correction of 11.8 was applied to compounds in the Oatps/Mrp2 subgroup, and a correction of 8.0 was applied to compounds in the diffusion/P-gp subgroup.

^bA universal correction factor of 10.2 was used.

Predictions outside the 1.5-fold error of observed in vivo CL_b are highlighted in bold.

AAFE, average absolute fold error; CL_b, biliary clearance; CL_{b, app}, apparent biliary clearances.

was not incorporated into Eq. 4, the predicted CL_b was closer to *in vivo* CL_b but the correlation coefficient of determination was much lower (data not shown).

The value of $3.5 \,\mathrm{mL/min/kg}$ for predicted $\mathrm{CL}_{\mathrm{b, app}} \times$ 10.2 was found to be a cutoff level for accurate prediction of CL_b in the SCRH model. The CL_b of compounds with high $CL_{b, app, in vitro}$ and/or low plasma protein binding are more likely to be accurately predicted by the SCRH model. For compounds with low CL_{b, app, in vitro} and/or high plasma protein binding, CL_b might be underestimated by up to 30-fold (e.g., candesartan) or overestimated by up to 14-fold (e.g., lomefloxacin), although both predicted and observed CL_b consistently suggested low biliary excretion for these compounds (CL_b < $12\,mL^*min^{-1}*kg^{-1}).$ The poor predictions could be a result of many factors. First, a measurement error in *in vitro* and *in vivo* CL_b may affect the prediction accuracy, especially for compounds with low biliary excretion. Second, prediction errors might be caused by variable transporter activities in the SCRH model. For example, decreased sinusoidal influx transporter activities in SCRH might have caused the underprediction of CL_b of octreotide, cefoperazone, cephradine, and cefmetazole. A previous report showed that CL_b values of cefoperazone and cefmetazole were consistently underestimated by more than 10-fold, even though the Mrp2 protein concentration ratio between rat liver

and SCRH was incorporated into IVIVE as a correction factor.⁴ On the contrary, increased or relatively unchanged canalicular efflux transporter activities likely resulted in the overprediction of CL_b for lomefloxacin, rifampicin, and dexamethasone, especially when the universal correction factor 10.2 was incorporated into IVIVE. Third, compounds with high plasma protein binding, not surprisingly, exhibit poor predictions of CL_b . When f_u is 0.01 or less (e.g., indomethacin, deferasirox, olmesartan, candesartan, and valsartan), normalization with $f_{\rm u}$ (Eq. 4) is expected to cause significant prediction errors because of potential measurement errors in $f_{\rm u}$. Fourth, to achieve good responses on LC-MS/MS, most compounds, especially those with low hepatocyte uptake, were incubated at 10 µ M in protein-free medium. For high-protein-binding compounds, the free concentration in the medium was much higher than the plasmafree drug concentrations in rats used for *in vivo* CL_b measurement. The high concentration in the medium might partially saturate influx and/or efflux transporters in SCRHs, especially for compounds with low $CL_{b, app, in vitro}$ and a low Michaelis constant (K_m), thus resulting in underprediction of CL_b (e.g., deferasirox, olmesartan, candesartan, and valsartan). If a very sensitive assay is available for compound quantitation, the prediction errors caused by high protein binding might be reduced by adding plasma protein

to the incubation medium³⁵ or preparing the dosing solution in rat serum¹⁰² for which normalization with $f_{\rm u}$ is not required. It is noteworthy to mention that the addition of serum proteins to incubation medium did not remarkably change hepatocyte uptake of some lipophilic compounds with very high protein binding.³⁵ For these lipophilic compounds, serum proteins in culture medium serve as a drug solubilizer. The protein-bound drug might be transferred to hepatocyte cell membranes during protein-hepatocyte interaction, and the serum proteins facilitate drug uptake. This observation might explain the underestimation of CL_b for very high-protein-binding drugs such as olmesartan and candesartan in the current study where $f_{\rm u}$ correction was incorporated (Eq. 4).

Most SCRH studies are designed to determine $\operatorname{CL}_{b, \text{ app, } in \text{ vitro}}$ on the basis of compound concentration in medium (Eq. 2), and then the predicted $CL_{b, app}$ is correlated with the observed in vivo $CL_{b, app}$ on the basis of compound concentration in rat plasma. Recently, Nakakariya et al.⁶⁰ reported IVIVE between CL_{b, int, in vitro} and in vivo intrinsic CL_b, which are based on compound concentrations in hepatocytes in the SCRH model (Eq. 3) and in liver tissue, respectively. In the SCRH model, the expression levels of sinusoidal influx transporters considerably decrease, whereas the protein expression of canalicular efflux transporters is relatively maintained during culture. Theoretically, IVIVE from CL_{b, int, in vitro} values that reflect only canalicular efflux processes, should, therefore, be less susceptible to the variable expression of influx transporters.⁶⁰ Unfortunately, compound concentrations in rat liver were not available, and so in vivo intrinsic CL_b values were unable to be determined in the current study. We, therefore, tentatively plotted the CL_b extrapolated from CL_{b, int, in vitro} and the observed in vivo CL_b. A very poor correlation between in vivo $\operatorname{CL}_{b,\,app}$ and $\operatorname{CL}_{b,\,int,\,in\,vitro}$ was observed (Table S2 and Fig. S1). The CL_{b, int, in vitro} only takes into account the canalicular efflux of a compound. However, in vivo CL_b is a function of both the basolateral uptake and canalicular efflux. Therefore, a correlation would be expected only in cases where the canalicular efflux was the rate-limiting step.

Two uptake and efflux mechanism-based factors were obtained by linear correlation analysis between predicted $CL_{b, app}$ and observed *in vivo* CL_{b} . The Oatps/Mrp2-specific factor (11.8) was higher than the universal factor (10.2), which might be explained by the decreased expression of Oatps in the SCRH model. The low value of the diffusion/P-gp-specific factor (8.0) was likely due to the unchanged or increased expression of P-gp in the SCRH model. Transporter expression variability between batches of SCRHs might limit the successful application of transporter-based corrections. Previous transporter quantitation

studies^{7,8} consistently revealed that the changes in transporter expression and activities were mainly dependent on SCRH culture time. A dramatic decrease or increase in transporter expression occurred during 0–72 h after cell seeding. On day 4 and day 5 after cell seeding, further changes in transporter expression were relatively limited. In this study and the studies in the literature, the incubation of compounds with SCRHs was usually conducted on day 4 and day 5 after cell seeding, which might explain the comparable transporter activities among SCRH models used for the training set and test set compounds. Because of the time-sensitive changes in transporter expression in the SCRH model, a consistent culture time is highly recommended.

The transporter-based correction approach for CL_b predictions requires an understanding of the major uptake and efflux mechanisms undergone by the drug candidate, which are usually not available at the early stage of drug development. In the absence of this information, the universal correction factor gave reasonable CL_b predictions when the predicted CL_b was greater than 3.5 mL/min/kg. For compounds with low *in vivo* CL_b , the SCRH model combined with the universal correction factor could not quantitatively estimate absolute values of CL_b , but it could qualitatively assign compounds to low, moderate, and high CL_b categories.

CONCLUSIONS

In this study, we demonstrated that both the universal correction factor and transporter-based correction factors provide reasonable corrections of CL_b , which are usually underestimated by the SCRH model. Transporter-based correction factors improved predictions compared with a universal correction factor. Considering the complicated hepatobiliary clearance processes of hepatic uptake, sinusoidal efflux, metabolism, and canalicular efflux, this transporterbased corrected IVIVE method provides excellent predictions of rat CL_b .

ACKNOWLEDGMENTS

We thank Juli Teague, Bilin Chou, and Dr. Brian Dean for their technical assistance and the DMPK department of Genentech, Inc. for their support.

REFERENCES

- 1. Zou P, Yu Y, Zheng N, Yang Y, Paholak HJ, Yu LX, Sun D. 2012. Applications of human pharmacokinetic prediction in first-in-human dose estimation. AAPS J 14(2):262–281.
- Chiba M, Ishii Y, Sugiyama Y. 2009. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J 11(2):262–276.

- 3. Swift B, Pfeifer ND, Brouwer KL. 2010. Sandwich-cultured hepatocytes: An in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42(3):446–471.
- Li N, Singh P, Mandrell KM, Lai Y. 2010. Improved extrapolation of hepatobiliary clearance from in vitro sandwich cultured rat hepatocytes through absolute quantification of hepatobiliary transporters. Mol Pharm 7(3):630–641.
- Borlak J, Klutcka T. 2004. Expression of basolateral and canalicular transporters in rat liver and cultures of primary hepatocytes. Xenobiotica 34(11–12):935–947.
- Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, Takezawa T, Kusuhara H, Sugiyama Y. 2011. Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510.
- Tchaparian EH, Houghton JS, Uyeda C, Grillo MP, Jin L. 2011. Effect of culture time on the basal expression levels of drug transporters in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos 39(12):2387–2394.
- Li N, Bi YA, Duignan DB, Lai Y. 2009. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharm 6(4):1180–1189.
- 9. Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL. 1999. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27(6):637–644.
- Abe K, Bridges AS, Yue W, Brouwer KL. 2008. In vitro biliary clearance of angiotensin II receptor blockers and 3hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in sandwich-cultured rat hepatocytes: Comparison with in vivo biliary clearance. J Pharmacol Exp Ther 326(3):983– 990.
- 11. Fukuda H, Ohashi R, Tsuda-Tsukimoto M, Tamai I. 2008. Effect of plasma protein binding on in vitro-in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos 36(7):1275–1282.
- Watanabe T, Miyauchi S, Sawada Y, Iga T, Hanano M, Inaba M, Sugiyama Y. 1992. Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P-glycoprotein in biliary excretion of vincristine. J Hepatol 16(1-2):77-88.
- Obach RS, Lombardo F, Waters NJ. 2008. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36(7):1385-1405.
- 14. Song S, Suzuki H, Kawai R, Sugiyama Y. 1999. Effect of PSC 833, a P-glycoprotein modulator, on the disposition of vincristine and digoxin in rats. Drug Metab Dispos 27(6):689–694.
- Ishizuka H, Konno K, Naganuma H, Nishimura K, Kouzuki H, Suzuki H, Stieger B, Meier PJ, Sugiyama Y. 1998. Transport of temocaprilat into rat hepatocytes: Role of organic anion transporting polypeptide. J Pharmacol Exp Ther 287(1):37-42.
- 16. Ishizuka H, Konno K, Naganuma H, Sasahara K, Kawahara Y, Niinuma K, Suzuki H, Sugiyama Y. 1997. Temocaprilat, a novel angiotensin-converting enzyme inhibitor, is excreted in bile via an ATP-dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J Pharmacol Exp Ther 280(3):1304–1311.
- 17. Watanabe T, Maeda K, Kondo T, Nakayama H, Horita S, Kusuhara H, Sugiyama Y. 2009. Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab Dispos 37(7):1471–1479.
- Gigon PL, Guarino AM. 1970. Uptake of probenecid by rat liver slices. Biochem Pharmacol 19(9):2653–2662.

- 19. Chen C, Scott D, Hanson E, Franco J, Berryman E, Volberg M, Liu X. 2003. Impact of Mrp2 on the biliary excretion and intestinal absorption of furosemide, probenecid, and methotrexate using Eisai hyperbilirubinemic rats. Pharm Res 20(1):31–37.
- Emanuelsson BM, Paalzow LK. 1988. Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm Drug Dispos 9(1):59–70.
- 21. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. 2005. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7ethyl-10-hydroxycamptothecin: In vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33(3):434-439.
- 22. Sugiyama Y, Kato Y, Chu X. 1998. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: Role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol 42 Suppl:S44–S49.
- Chu XY, Kato Y, Sugiyama Y. 1997. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res 57(10):1934–1938.
- 24. Yang XX, Hu ZP, Xu AL, Duan W, Zhu YZ, Huang M, Sheu FS, Zhang Q, Bian JS, Chan E, Li X, Wang JC, Zhou SF. 2006. A mechanistic study on reduced toxicity of irinotecan by coadministered thalidomide, a tumor necrosis factor-alpha inhibitor. J Pharmacol Exp Ther 319(1):82–104.
- Gupta E, Safa AR, Wang X, Ratain MJ. 1996. Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res 56(6):1309–1314.
- 26. Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. 2005. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos 33(5):619-622.
- 27. Lam JL, Okochi H, Huang Y, Benet LZ. 2006. In vitro and in vivo correlation of hepatic transporter effects on erythromycin metabolism: Characterizing the importance of transporter-enzyme interplay. Drug Metab Dispos 34(8):1336–1344.
- Frassetto LA, Poon S, Tsourounis C, Valera C, Benet LZ. 2007. Effects of uptake and efflux transporter inhibition on erythromycin breath test results. Clin Pharmacol Ther 81(6):828–832.
- 29. Yamano K, Yamamoto K, Kotaki H, Takedomi S, Matsuo H, Sawada Y, Iga T. 2000. Quantitative prediction of metabolic inhibition of midazolam by erythromycin, diltiazem, and verapamil in rats: Implication of concentrative uptake of inhibitors into liver. J Pharmacol Exp Ther 292(3):1118–1126.
- 30. Kitamura S, Maeda K, Wang Y, Sugiyama Y. 2008. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 36(10):2014–2023.
- Matsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, Sugiyama Y. 2008. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol 73(5):1474–1483.
- 32. Sanofi-Aventis. 2006. Product monograph—Allegra (fexofenadine hydrochloride). p 19.
- 33. Tahara H, Kusuhara H, Fuse E, Sugiyama Y. 2005. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug Metab Dispos 33(7):963-968.
- 34. Wolf KK, Brouwer KR, Pollack GM, Brouwer KL. 2008. Effect of albumin on the biliary clearance of compounds in sandwich-cultured rat hepatocytes. Drug Metab Dispos 36(10):2086-2092.

- 35. Speeg KV, Maldonado AL. 1994. Effect of the nonimmunosuppressive cyclosporin analog SDZ PSC-833 on colchicine and doxorubicin biliary secretion by the rat in vivo. Cancer Chemother Pharmacol 34(2):133–136.
- 36. Dahan A, Sabit H, Amidon GL. 2009. Multiple efflux pumps are involved in the transport of colchicine: Combined effect of p-glycoprotein and multidrug resistanceassociated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos 37(10):2028–2036.
- Chen YJ, Huang SM, Liu CY, Yeh PH, Tsai TH. 2008. Hepatobiliary excretion and enterohepatic circulation of colchicine in rats. Int J Pharm 350(1–2):230–239.
- Teng R, Girard D, Gootz TD, Foulds G, Liston TE. 1996. Pharmacokinetics of trovafloxacin (CP-99,219), a new quinolone, in rats, dogs, and monkeys. Antimicrob Agents Chemother 40(3):561–566.
- 39. Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, Pang KS. 2006. Vectorial transport of enalapril by Oatp1a1/ Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther 318(1):395–402.
- 40. Lau YY, Okochi H, Huang Y, Benet LZ. 2006. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: Application of in vitro and ex situ systems. J Pharmacol Exp Ther 316(2):762–771.
- 41. Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y. 2010. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38(2):215–222.
- 42. Dong J, Yu X, Wang L, Sun YB, Chen XJ, Wang GJ. 2008. Effects of cyclosporin A and itraconazole on the pharmacokinetics of atorvastatin in rats. Acta Pharmacol Sin 29(10):1247-1252.
- Coloma F, Lacarelle B, Poitou P, Filleul A, Covo J, Catalin J. 1994. Hepatic transport of mitoxantrone in relation to multiple resistance. Bull Cancer 81(5):425–430.
- 44. Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B. 2001. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117.
- 45. Shenkenberg TD, Von Hoff DD. 1986. Mitoxantrone: A new anticancer drug with significant clinical activity. Ann Intern Med 105(1):67–81.
- Yang X, Morris ME. 2010. Pharmacokinetics and biliary excretion of mitoxantrone in rats. J Pharm Sci 99(5):2502– 2510.
- 47. Sasabe H, Kato Y, Terasaki T, Tsuji A, Sugiyama Y. 1999. Differences in the hepatobiliary transport of two quinolone antibiotics, grepafloxacin and lomefloxacin, in the rat. Biopharm Drug Dispos 20(3):151–158.
- 48. Noe J, Portmann R, Brun ME, Funk C. 2007. Substratedependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35(8):1308-1314.
- 49. Lindahl A, Sjoberg A, Bredberg U, Toreson H, Ungell AL, Lennernas H. 2004. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: Possible involvement of mrp2. Mol Pharm 1(5):347–356.
- 50. Morita N, Kusuhara H, Nozaki Y, Endou H, Sugiyama Y. 2005. Functional involvement of rat organic anion transporter 2 (Slc22a7) in the hepatic uptake of the nonsteroidal anti-inflammatory drug ketoprofen. Drug Metab Dispos 33(8):1151–1157.
- Kouzuki H, Suzuki H, Sugiyama Y. 2000. Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res 17(4):432–438.

- 52. Paine SW, Parker AJ, Gardiner P, Webborn PJ, Riley RJ. 2008. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 36(7):1365–1374.
- Duggan DE, Hooke KF, White SD, Noll RM, Stevenson CR. 1977. The effects of probenecid upon the individual components of indomethacin elimination. J Pharmacol Exp Ther 201(2):463-470.
- 54. Yamada T, Niinuma K, Lemaire M, Terasaki T, Sugiyama Y. 1996. Mechanism of the tissue distribution and biliary excretion of the cyclic peptide octreotide. J Pharmacol Exp Ther 279(3):1357-1364.
- 55. Lemaire M, Azria M, Dannecker R, Marbach P, Schweitzer A, Maurer G. 1989. Disposition of sandostatin, a new synthetic somatostatin analogue, in rats. Drug Metab Dispos 17(6):699–703.
- 56. Yamada T, Niinuma K, Lemaire M, Terasaki T, Sugiyama Y. 1997. Carrier-mediated hepatic uptake of the cationic cyclopeptide, octreotide, in rats. Comparison between in vivo and in vitro. Drug Metab Dispos 25(5):536–543.
- 57. Bruin GJ, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, Boernsen KO, Waldmeier F. 2008. Pharmacokinetics, distribution, metabolism, and excretion of deferasirox and its iron complex in rats. Drug Metab Dispos 36(12):2523– 2538.
- 58. Weiss HM, Fresneau M, Camenisch GP, Kretz O, Gross G. 2006. In vitro blood distribution and plasma protein binding of the iron chelator deferasirox (ICL670) and its iron complex Fe-[ICL670]2 for rat, marmoset, rabbit, mouse, dog, and human. Drug Metab Dispos 34(6):971–975.
- 59. Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, Ikeda T. 2006. OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos 34(5):862–869.
- 60. Nakakariya M, Ono M, Amano N, Moriwaki T, Maeda K, Sugiyama Y. 2012. In vivo biliary clearance should be predicted by intrinsic biliary clearance in sandwich-cultured hepatocytes. Drug Metab Dispos 40(3):602–609.
- 61. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y. 2005. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/ breast cancer resistance protein. J Pharmacol Exp Ther 314(3):1059–1067.
- 62. Heredi-Szabo K, Glavinas H, Kis E, Mehn D, Bathori G, Veres Z, Kobori L, von Richter O, Jemnitz K, Krajcsi P. 2009. Multidrug resistance protein 2-mediated estradiol-17beta-D-glucuronide transport potentiation: In vitro-in vivo correlation and species specificity. Drug Metab Dispos 37(4):794-801.
- 63. Kimoto E, Chupka J, Xiao Y, Bi YA, Duignan DB. 2011. Characterization of digoxin uptake in sandwich-cultured human hepatocytes. Drug Metab Dispos 39(1):47–53.
- 64. Annaert PP, Turncliff RZ, Booth CL, Thakker DR, Brouwer KL. 2001. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab Dispos 29(10):1277–1283.
- 65. Evans RL, Owens SM, Ruch S, Kennedy RH, Seifen E. 1990. The effect of age on digoxin pharmacokinetics in Fischer-344 rats. Toxicol Appl Pharmacol 102(1):61–67.
- 66. Funakoshi S, Murakami T, Yumoto R, Kiribayashi Y, Takano M. 2003. Role of P-glycoprotein in pharmacokinetics and drug interactions of digoxin and beta-methyldigoxin in rats. J Pharm Sci 92(7):1455–1463.

- 67. Nezasa K, Tian X, Zamek-Gliszczynski MJ, Patel NJ, Raub TJ, Brouwer KL. 2006. Altered hepatobiliary disposition of 5 (and 6)-carboxy-2',7'-dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp2) knockout mice. Drug Metab Dispos 34(4):718–723.
- 68. Yin J, Meng Q. 2012. Use of primary rat hepatocytes in the gel entrapment culture to predict in vivo biliary excretion. Xenobiotica 42(5):417–428.
- 69. Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. 2012. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos 40(9):1825–1833.
- Stieger B, Heger M, de Graaf W, Paumgartner G, van Gulik T. 2012. The emerging role of transport systems in liver function tests. Eur J Pharmacol 675(1–3):1–5.
- Pan G, Boiselle C, Wang J. 2012. Assessment of biliary clearance in early drug discovery using sandwich-cultured hepatocyte model. J Pharm Sci 101(5):1898–1908.
- Ott P, Weisiger RA. 1997. Nontraditional effects of protein binding and hematocrit on uptake of indocyanine green by perfused rat liver. Am J Physiol 273(1 Pt 1):G227–G238.
- Forster S, Thumser AE, Hood SR, Plant N. 2012. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7(3):e33253.
- 74. Ando H, Nishio Y, Ito K, Nakao A, Wang L, Zhao YL, Kitaichi K, Takagi K, Hasegawa T. 2001. Effect of endotoxin on P-glycoprotein-mediated biliary and renal excretion of rhodamine-123 in rats. Antimicrob Agents Chemother 45(12):3462–3467.
- Kivisto KT, Niemi M. 2007. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 24(2):239–247.
- 76. van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, Schinkel AH. 2009. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic aniontransporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 37(2):277-281.
- 77. Masuda M, I'Izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni'inuma K, Suzuki H, Sugiyama Y. 1997. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res 57(16):3506–3510.
- Henderson ES, Adamson RH, Denham C, Oliverio VT. 1965. The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res 25(7):1008–1017.
- Hilmer SN, Cogger VC, Muller M, Le Couteur DG. 2004. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab Dispos 32(8):794–799.
- 80. Asakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Hasegawa T. 2004. Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol 484(2–3):333–339.
- Terasaki T, Iga T, Sugiyama Y, Hanano M. 1984. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: Interorgan and interspecies variation of tissueto-plasma partition coefficients in rats, rabbits, and guinea pigs. J Pharm Sci 73(10):1359–1363.
- 82. Umehara KI, Iwatsubo T, Noguchi K, Kamimura H. 2007. Functional involvement of organic cation transporter1 (OCT1/Oct1) in the hepatic uptake of organic cations in humans and rats. Xenobiotica 37(8):818-831.
- 83. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y. 2012. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mech-

anism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther 340(2):393-403.

- 84. Kurata T, Muraki Y, Mizutani H, Iwamoto T, Okuda M. 2010. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: The role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet 25(4):328-334.
- 85. McPherson FJ, Lee RM. 1977. Biliary excretion and metabolism of 14C cimetidine following oral administration to male and female rats. Experientia 33(9):1139–1140.
- 86. Tamai I, Maekawa T, Tsuji A. 1990. Membrane potentialdependent and carrier-mediated transport of cefpiramide, a cephalosporin antibiotic, in canalicular rat liver plasma membrane vesicles. J Pharmacol Exp Ther 253(2):537–544.
- 87. Kato Y, Takahara S, Kato S, Kubo Y, Sai Y, Tamai I, Yabuuchi H, Tsuji A. 2008. Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weightdependent biliary excretion of beta-lactam antibiotics. Drug Metab Dispos 36(6):1088–1096.
- Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH. 2000. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92(20):1651–1656.
- 89. Tirona RG, Leake BF, Wolkoff AW, Kim RB. 2003. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther 304(1):223–228.
- 90. Shimada S, Fujino H, Morikawa T, Moriyasu M, Kojima J. 2003. Uptake mechanism of pitavastatin, a new inhibitor of HMG-CoA reductase, in rat hepatocytes. Drug Metab Pharmacokinet 18(4):245–251.
- Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. 2005. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 68(3):800– 807.
- 92. Nakakariya M, Shimada T, Irokawa M, Koibuchi H, Iwanaga T, Yabuuchi H, Maeda T, Tamai I. 2008. Predominant contribution of rat organic anion transporting polypeptide-2 (Oatp2) to hepatic uptake of beta-lactam antibiotics. Pharm Res 25(3):578–585.
- Kimura Y, Kioka N, Kato H, Matsuo M, Ueda K. 2007. Modulation of drug-stimulated ATPase activity of human MDR1/ P-glycoprotein by cholesterol. Biochem J 401(2):597–605.
- 94. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. 2006. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos 34(7):1247–1254.
- Singhvi SM, Heald AF, Schreiber EC. 1978. Pharmacokinetics of cephalosporin antibiotics: Protein-binding considerations. Chemotherapy 24(3):121–133.
- 96. Wang XB, Wang SS, Zhang QF, Liu M, Li HL, Liu Y, Wang JN, Zheng F, Guo LY, Xiang JZ. 2010. Inhibition of tetramethylpyrazine on P-gp, MRP2, MRP3 and MRP5 in multidrug resistant human hepatocellular carcinoma cells. Oncol Rep 23(1):211–215.
- 97. Sasaki M, Suzuki H, Aoki J, Ito K, Meier PJ, Sugiyama Y. 2004. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a doubletransfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 66(3):450-459.
- Cvetkovic M, Leake B, From MF, Wilkinson GR, Kim RB. 1999. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27(8):866–871.

2850 ZOU ET AL.

- 99. Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KL. 1999. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289(3):1592–1599.
- 100. Abe K, Bridges AS, Brouwer KL. 2009. Use of sandwichcultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos 37(3):447–452.
- 101. Umehara K, Camenisch G. 2012. Novel in vitro-in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res 29(2):603–617.
- 102. Blanchard N, Richert L, Notter B, Delobel F, David P, Coassolo P, Lave T. 2004. Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur J Pharm Sci 23(2):189– 199.