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Abstract

We explore the idea that eye-movement strategies in reading are precisely adapted to the joint

constraints of task structure, task payoff, and processing architecture. We present a model of sacc-

adic control that separates a parametric control policy space from a parametric machine architec-
ture, the latter based on a small set of assumptions derived from research on eye movements in

reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The

eye-control model is embedded in a decision architecture (a machine and policy space) that is

capable of performing a simple linguistic task integrating information across saccades. Model pre-

dictions are derived by jointly optimizing the control of eye movements and task decisions under

payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields

distinct eye-movement predictions for the same task under different payoffs, including single-fixa-

tion durations, frequency effects, accuracy effects, and list position effects, and their modulation

by task payoff. The predictions are compared to—and found to accord with—eye-movement data

obtained from human participants performing the same task under the same payoffs, but they are

found not to accord as well when the assumptions concerning payoff optimization and processing

architecture are varied. These results extend work on rational analysis of oculomotor control and

adaptation of reading strategy (Bicknell & Levy, 2010b; McConkie, Rayner, & Wilson, 1973;

Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic

control that is shaped by quantitatively varying task demands and the dynamics of processing

architecture.
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1. Introduction

We present a set of novel eye-tracking experiments and computational models that

explore the idea that eye-movement strategies in reading are adaptations to the joint con-

straints of processing architecture, task structure, and task payoff. To our knowledge,

these experiments provide the first evidence for the modulation of low-level saccadic con-

trol in a sequential reading task by the experimental manipulation of an external payoff—
a payoff that quantitatively specifies a speed-accuracy trade-off. The computational

models provide the first systematic analysis of how observed eye movements in reading

might be determined by such task payoffs interacting with the constraints of the process-

ing architecture, including oculomotor dynamics and representation noise. The key com-

ponents of this analysis are a model with multiple control (strategy or policy) parameters

that performs the complete task, and an exploration of how changes in both external pay-

off and processing architecture lead to changes in achieved payoff and optimal strategies,

and thus changes in the predicted behaviors.

1.1. Task effects in psycholinguistics

Task goals and context have long been known to have major effects on human perfor-

mance in psycholinguistic experiments (for an early analysis see the seminal chapter by

Forster et al., 1979). For example, in the area of single-word lexical processing, there are

robust differences in how frequency and other important effects are manifest in naming
versus lexical decision tasks (e.g., Grainger, 1990). Task context in the form of experi-

mental list composition and goal manipulation via instructional emphases have significant

effects, and they have received detailed theoretical treatments (Wagenmakers, Ratcliff,

Gomez, & McKoon, 2008).

There is also a small but growing line of empirical work demonstrating task effects on

eye movements in reading. For example, McConkie and colleagues (McConkie et al.,

1973) have shown that participants tend to read longer when anticipating more difficult

questions (e.g., questions of a factual nature), as well as when they were financially

incentivized to answer the questions correctly. More recently, Rayner and Raney (1996)

have shown that the lexical frequency effect is eliminated when subjects read words in

search of a target word rather than reading for comprehension. Finally, Wotschack (2009)

found that increasing the frequency and difficulty of comprehension questions, as well as

instructing the participants to proofread, led to slower reading speeds.

Although this prior work manipulates task type and difficulty, there has not been a

manipulation of quantitative speed-accuracy trade-offs of the kind we pursue here.

In addition, recent work on visual attention in both linguistic and nonlinguistic contexts

indicates that attention strategies are strongly shaped by prevailing task goals (e.g., Ballard &

Hayhoe, 2009; Rothkopf, Ballard, Hayhoe, & Regan, 2007; see Salverda, Brown, &

Tanenhaus, 2011 for a recent review). In general, effects of strategic adaptation penetrate

all levels of human performance (Newell, 1973), from the most elementary perceptual
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decisions (Tanner & Swets, 1954) to more complex multi-tasking scenarios (Howes,

Lewis, & Vera, 2009; Meyer & Kieras, 1997).

One of our guiding hypotheses is therefore that eye-movement strategies in reading are

shaped by task goals. Just as there are no fixed visual search strategies, neither are there

fixed cognitive or eye-movement control strategies in reading. But we also assume that

there are relatively fixed aspects of the cognitive and oculomotor architecture (Engbert

et al., 2005; Reichle, Rayner, & Pollatsek, 2003) that define the space of possible pro-

cessing strategies and give shape to the payoff surfaces that map strategies to expected

payoff.

1.2. The theoretical challenge: From task and payoff through architecture to behavior

We face a challenge in bridging the gap between high-level task goals and the lowest

levels of moment-to-moment behavioral control that make contact with eye-movement

measures. Meeting this challenge demands a theoretical approach that provides an ana-

lytic means to investigate the effects of both task goals and architectural constraints on

behavior. The broad foundations of the necessary approach were provided by early signal

detection theory (SDT) (Tanner & Swets, 1954): a formal model that specifies parameters

of adaptation, a specification of the fixed processing constraints on performance, and

quantitative feedback on task performance that is used in both human experiments and in

derivations of ideal performance. Ideal observer models built on SDT (Geisler, 1989;

Green & Swets, 1966), and extensions to the dynamics of optimal decisions based on

Bayesian sampling (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Edwards, 1965;

Stone, 1960; Wald & Wolfowitz, 1948) significantly extend this formulation in various

ways but retain its basic form.

1.3. The approach: Bounded optimal control

The most general form of the approach specifies machines and parametric policies capa-

ble of performing sequential decision-making tasks, and a means to derive policies that

optimize some measure of obtained payoff/reward—the reinforcement learning formula-

tion (Kaelbling, Littman, & Moore, 1996; Singh, Jaakkola, Littman, & Szepesvari, 2000;

Sutton & Barto, 1998). Our version of the approach as it is applied to both the human and

computational experiments reported here is shown in schematic form in Fig. 1 and

includes the following components: (a) A linguistic task environment, the List Lexical
Decision Task (LLDT), which requires determining whether a horizontal array of six-letter

strings are all words or not (we describe the LLDT in more detail below). (b) A machine

(agent architecture) that can control both perception (via oculomotor decisions that deter-

mine saccade timing) and task-environment actions (via trial-level decisions that lead to

simulated button presses indicating the response). (c) Machine constraints that embody

assumptions about processing architecture (oculomotor dynamics and representation

noise). (d) A set of distinct quantitative payoff functions that provide feedback on task

performance and impose different speed-accuracy trade-offs (three payoffs we label Accu-
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racy-, Balanced-, and Speed-emphasis). (e) Eye-tracking experiments using these different

payoff functions in which human participants are given cash bonuses based on their per-

formance. (f) Computational experiments in which distinct optimal control policies are

derived for the constrained machine under the different payoff functions, and under ver-

sions of the machine that vary architectural components of theoretical interest.

This approach meets the bridging challenge because it provides a way for specific task

goals (expressed as payoff functions) to interact with machine constraints (through optimi-

zation) to yield detailed behavior. It also has the virtue of reducing theoretical degrees of

freedom in explaining behavior (Howes et al., 2009) because strategic parameters are opti-

mized for task payoff, not fit to data. We refer to the approach as “bounded optimal” con-

trol to emphasize the role that processing architecture plays in defining the optimization

TASK ENVIRONMENT
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Control policies
optimizing reward

predicted behavior under 
ACCURACY payoff

predicted behavior under 
BALANCED payoff

predicted behavior under 
SPEED payoff

behavior under 
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Fig. 1. Overview of the coordinated set of models and experiments. See the text for a detailed description

keyed to the numbered elements.
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problem (Russell, Subramanian, & Parr, 1993), but there is no special sense of “optimal”

intended; it is simply an application of optimal sequential control.

This work is in the growing tradition of rational analysis (Anderson, 1990) approaches

to language processing (Hale, 2011) and eye-movement control (Bicknell & Levy, 2010a,

2012; Legge, Klitz, & Tjan, 1997), and draws substantially on Bayesian sequential sam-

pling and diffusion models of lexical processing (Norris, 2006, 2009; Wagenmakers

et al., 2008) and mathematical models of eye-movement control in reading (Engbert

et al., 2005; Reichle et al., 2003). What distinguishes our present work is the analytic

and empirical focus (and associated novel results) on understanding how task-specific

payoff and processing architecture jointly shape eye-movement behavior. We now intro-

duce our task paradigm in more detail, which will allow us to ground the main theoretical

assumptions and model description.

2. The list lexical decision task

The List Lexical Decision Task (LLDT) is a simple extension of a paradigm first intro-

duced by Meyer and Schvaneveldt (1971). On each trial of the LLDT, participants are

presented with a list of alphabetic character strings, and must make a single decision as

to whether the list contains only words. The top of Fig. 1 shows a typical trial. In the

human and modeling experiments reported below, there are six strings in a horizontal

array; each string is four letters long. There is at most one nonword per list and no words

are repeated in the same list.

The LLDT is a simple task but has several desirable features for our purposes: (a) it is

amenable to quantitative payoff manipulations and trial-by-trial feedback that differen-

tially rewards speed and accuracy (discussed next); (b) it requires the control of serial

visual attention and integration of information across saccades; (c) it involves both per-

ceptual control decisions and a separate trial-level decision, and thus poses a joint optimi-

zation problem over both sets of decisions; (d) it requires the application of (minimal)

linguistic knowledge that can be approximated via corpus frequencies; (e) it is expected

to lead to left-to-right reading and thus yield an eye-tracking record comparable to natural

reading. Because all the words are four letters and selected independently, the LLDT is

also expected to yield a high proportion of single fixations and clean estimates of fre-

quency effects not confounded by length and predictability.

We evaluated both model and human participants according to three different payoff

functions (specified in Table 1). The payoffs were designed to impose different

Table 1

Quantitative payoffs given to both model and human participants. These payoff points translated into cash

bonuses for the human participants

Accuracy Balanced Speed

Incorrect penalty �150 �50 �25

Speed bonus (per second under 5 s) 8 6.7 5.7
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speed-accuracy trade-offs for a given level of success and were all defined in terms of a

bonus for speed and penalty for incorrect responses. The bonus was continuous at the

millisecond level, starting at zero points for responses longer than 5 s and rising by a dif-

ferent number of points per second for each payoff.

3. An optimal control model

We can now state our three main theoretical assumptions:

1. Saccadic control is a “rise-to-threshold” system (Brodersen et al., 2008) conditioned

on task-specific decision variables that reflect the accumulation and integration of

noisy evidence over time. We model the evidence accumulation as Bayesian sequen-

tial sampling, and in our simple two-alternative task this is equivalent to a Sequen-

tial Probability Ratio Test (Wald & Wolfowitz, 1948).

2. The saccade thresholds are set to maximize task-specific payoff, but this is one part

of a joint optimization problem that includes all other policy parameters that deter-

mine behavior in the task. In our model of the LLDT, this consists of a separate

decision variable and threshold that determines the task-level response to the entire

trial. These two thresholds together determine how long the model fixates on indi-

vidual strings, how many strings it reads, and when and how it responds.

3. The shape of the payoff surface (and thus its maxima) over the multi-dimensional

policy space is determined jointly by the payoff function and properties of the per-
ceptual and oculomotor system, including saccade programming duration, eye–brain
lag, saccade execution duration, manual motor programming duration, and represen-

tational noise.

3.1. Overview of processing on a single trial

We provide a brief overview of a typical trial before focusing in detail on each aspect

of the model specification. See Fig. 2 for a schematic diagram of the full model and

Fig. 3 for simulated traces from two sample trials. On a given trial, the first fixation starts

on the leftmost string. During each fixation, noisy information about the fixated string is

acquired at every timestep, with some delay (the eye–brain lag, VanRullen & Thorpe,

2001). This noisy information is used for updating the model’s beliefs about the status of

the current string as well as the trial as a whole. This means that information about the

current word may affect the beliefs about other words, as a consequence of the constraint

that each list has at most one nonword. (We later explore the implications of this in the

model predictions and find support for these predictions in the human performance). The

model receives no parafoveal input—that is, it receives information from one word at a

time. This is a reasonable approximation given the wide spacing of the strings in the

human experiment (approximately 3.4 degrees of visual angle), and we found no empiri-

cal evidence for preview effects.
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The sampling continues until either the string-level or the trial-level belief reaches

some threshold, at which point either a saccade is initiated (if the string-level threshold is

reached), or a manual response is initiated (if the trial-level threshold is hit). We will

refer to these thresholds as the saccade threshold and decision threshold. Information

acquisition continues, while the saccade or manual response is being programmed and

until the saccade begins execution (with some visual persistence offset). Once saccade

programming and execution is complete, the model fixates on the following string (if

there are strings remaining) or otherwise initiates a response. Once motor execution is

complete the trial is over.

3.2. Oculomotor architecture and noise

The model’s sequential perceptual inference mechanism is embedded in a simple oculo-

motor control machine, drawing upon current mathematical models of oculomotor control

in reading. The delays noted above (eye–brain lag, saccade programming and execution

times, and motor time) are drawn from gamma distributions, chosen for convenience

because they are constrained to be positive and have been previously used in eye movement

models (Reichle et al., 2009). For ease of interpretation, we will report the means and

Fig. 2. Structure of the full model. Stimulus arrives from environment with some delay (eye–brain lag) (1),

at which point a posterior update occurs (2), taking into account the new sample information plus prior

beliefs (initialized from knowledge of the experiment and lexicon). Control conditioned on string-level and

trial-level beliefs (3) may initiate manual (button press) (4) or oculomotor action (saccade) (5). In the case of

the latter, the eye moves to the next string with some delay (6), (saccade programming and execution). In the

case of the former, response is made with some delay (motor programming and execution) and the model

receives payoff feedback (7).
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Fig. 3. Simulated model traces for a correct word trial and a correct nonword trial. At the top are the words

in each trial. The filled rectangles show the timing and duration of fixation durations, saccade programming

(prog), eye–brain lag (EBL), sampling, and motor response preparation and execution. At the bottom is the

random walk of the belief probabilities, with the bottom representing 0 and the top 1. The black line is the

trial-level belief (and so starts at 0.5), and the red lines are the string-level beliefs (and so start at about

0.916, the prior probability that a given string is a word). The solid horizontal black lines are the decision

thresholds (the top one for a word-trial and the bottom one for a nonword trial); the dashed horizontal lines

are saccade thresholds.
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standard deviations of these parameters. They were converted to gamma distribution param-

eters by setting the shape parameter k ¼ l2

r2 and the scale parameter h ¼ r2

l , where

r = 0.39l. Means were taken from the existing literature (see Table 2), and mean saccade

duration was estimated directly from our human participants. The scaling value used to

derive standard deviations is consistent with what is used elsewhere in the literature: 0.22 is

used by E-Z Reader (Reichle et al., 2009) and 1
3
is used by SWIFT (Engbert et al., 2005).

3.2.1. Fitting the noise parameter
The Gaussian noise added to the sample vectors is the one parameter that is not fixed in

advance. It functions as a kind of scaling parameter in that increasing noise requires

increasing the number of samples to obtain a given level of accuracy. We fit this parame-

ter to the human data by computing optimal policies across a range of noise values and

choosing the value that minimizes a simple error measure: mean squared deviation from

mean single fixation duration (SFDs, fixation durations on strings fixated only once) for

the three payoff conditions. In this sense, the fixation durations act as our training set, and

the model’s remaining measures are the test set. Other choices, for example, fitting SFD to

only one of the conditions, make little difference. Fig. 9 (red curve) shows the resulting

model error across a range of noise levels in the neighborhood of the minimum. Fig. 9 also

shows model errors for three other architectural variants discussed below. For the architec-

ture described above and illustrated in Figs. 2 and 3, the noise value providing the best fit

is 1.2 and this value is held constant across all predictions for all three payoffs.

3.3. Bayesian evidence integration and assumptions about prior beliefs (lexicon)

We assume that there is some noise in the perceptual information acquisition process

and in the process of matching visual input to the lexicon. To overcome this noise, our

model (and many ideal observer models) iteratively uses Bayes’ update in combination

with some prior belief to determine the probability distribution over the currently fixated

string and the remaining strings in the trial.

The model maintains belief probabilities over the following items: (a) the probability

distribution over all possible strings in the currently fixated position, (b) the probability of

Table 2

Model parameters. All are fixed in advance except sample noise, which is fit as described in the text. Means

were taken from sources noted, with standard deviation fixed at 0.3 9 M (Engbert et al., 2005)

Parameter M (ms) SD (ms) Source

Eye–brain lag 50 15 (VanRullen & Thorpe, 2001)

Saccade programming time 125 37.5 E-Z reader (Reichle et al., 2009)

Saccade execution time 40 12 Estimated from participants

Motor preparation and execution time 100 30 EPIC (Meyer & Kieras, 1997)

Trial onset detection and refixation 150 45 Prior estimate of short fixation and saccade

Sample duration 10 0 Nontheoretical discretization parameter

Gaussian sample noise 0 1.2 SD fit as described in text
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a nonword in each position, and (c) the probability that the current trial is a word trial (note

that this is the complement of the sum over (b)). The prior over (a) is derived from corpus

frequencies from the Brown Corpus (Kucera & Francis, 1967), the prior over (b) is the

probability of a nonword trial divided by the number of positions, and the prior over (c) is

the probability of a word trial. The simplifying assumption here is that the participants

know all of the words in the experiment and thus would categorize all of the word strings

correctly given sufficient time (we discuss below how this assumption may have contrib-

uted to a discrepancy between the accuracy achieved by the model and the humans).

Following Norris (2006), the model represents the string stimuli with a simple indicator

vector coding. The true identity of each letter is represented as a vector of length 26 with a 1

in the position corresponding to this letter, and zeros elsewhere. Each string is represented

as a 4 9 26 matrix with a row for each of the four letters in the string. This coding does not

represent a deep theoretical commitment but is a convenient way to place strings in a repre-

sentational space with plausible similarity relations. Samples are generated by adding mean-

zero Gaussian noise to this representation; we discuss below how this noise parameter is set.

At each time step, upon receipt of a sample the model computes a multi-step Bayes

update: First, it updates its belief of the probability distribution over strings in the current

position; then, it uses this information to update its belief over the other positions and the

trial. In doing so, it takes into account the fact that position-level nonword probabilities

are not conditionally independent given the one-nonword restriction. However, to greatly

decrease the computational cost of each update, the model allows for nonzero belief prob-

abilities over lists with repeated word-strings. The larger lexicons that we can explore as

a result are substantial enough that the probability of repeated words is extremely low

and so we think that this simplification in the model is justified. The full mathematical

detail of the update is included in the Appendix.

The model was tested with 50 different word and nonword lexicons of approximately

500 strings each. The word lexicons always included the experimental words and an addi-

tional set of words drawn uniformly randomly from the set of 1,500 English four-letter

words represented in Kucera and Francis (1967); the nonword lexicons always included

the experimental nonwords and an additional set of nonwords in which letter bigrams

were attested in the English word list. The model’s performance is always evaluated on

the words and nonwords from the human experiments, but for the model these strings are

not distinguished in any way from the rest of the model’s lexicon. Aggregating results

across different model lexicons ensures that the results are not driven by a particular lexi-

con choice (though our experience with the modeling indicates the results are robust

against this choice). Nevertheless, granting the model veridical knowledge of both words

and nonwords in this way is a gross simplification of human subject knowledge; we con-

sider some potential consequences of this below.

3.4. Trial decision and saccade thresholds

What remains is the process of conditioning control on the belief state detailed above.

The control problem is essentially two nested optimal stopping (Edwards, 1961; Stone,
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1960; Wald & Wolfowitz, 1948) problems: when to stop sampling from each string and

move on to the next word, and when and how to respond and thus end the trial. The

model uses two thresholds to implement these control decisions. The saccadic control is

determined by a threshold defined over the evolving probability of a nonword (or word)

in the current position, and the manual button (trial-level response) control is determined

by a threshold over the evolving probability that the trial is a word or nonword trial. The

model thus yields biased random walks (e.g., Ratcliff, 1978), in which the belief probabil-

ities make a noisy rise or fall toward one of two symmetrical thresholds (Fig. 3); crossing

a threshold then triggers the corresponding action. The two thresholds (over saccade and

manual decisions) embody the fundamental speed-accuracy trade-off in the model. As the

thresholds are set higher, the probability of making an error falls but the time to decision

increases; as the thresholds fall, the converse happens.

This dual-threshold policy space is a subset of the full space of possible policies,

which consists of all actions available to the model (saccade, wait, respond yes, respond

no) conditioned on all possible belief states. It is possible that better policies lie outside

of the space we explored. As such, the policy space simplification may be taken as a the-

oretical commitment to a kind of computational bound on control. Although this may be

a plausible assumption, future work must provide support for it by comparing it explicitly

to alternative models. For present purposes, the 2-D space has the virtues of simplicity

and computational tractability.

4. Understanding how the model makes predictions

Recall the fundamental theoretical challenge we identified in the Introduction: find a

way to link high-level task goals and payoff, through processing architecture, to the low-

est levels of moment-to-moment behavioral control. We now describe how we can use

the model to accomplish this, by making predictions on the List Lexical Decision Task

under the three different payoff schemes. The methodology is to explore differences in

the payoff surfaces, especially focusing on optimal and near-optimal policies, and their

implications for behavior. More specifically, in what follows we (a) examine the relation-

ship between policy and expected payoff; (b) examine the relationship between policy

and behavior; and (c) examine the relationship between behavior and payoff. It is impor-

tant to understand that these are not three separate computational steps in the modeling

process but rather different ways of viewing the model’s implications.

4.1. The relationship between policy and payoff

Fig. 4 provides views of the payoff surface in the 2-D policy space. In the first three

panels, payoff is plotted against saccade threshold and each separate line corresponds to a

separate decision threshold. In the fourth panel, payoff is plotted against decision thresh-

old and each line corresponds to a separate saccade threshold—thus, these are different

views of the same 2-D payoff surface. Recall that a policy is simply a pair of threshold
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values (saccade-threshold, decision-threshold). The circled point at the top of each payoff

plot represents the policy that yields the maximum expected payoff under this formulation

of the policy space, and its value is given as the pair of numbers to the left of the point.

The colored points represent policy points that are within 0.2 payoff units of the optimal.

Values of each point are computed from M of 300K Monte Carlo trials; see the Appendix

for details.

Consider the Accuracy payoff graph at the left. This graph indicates that there is a flat

region of the payoff surface when saccade thresholds are below about 0.85; this corre-

sponds to thresholds where the saccade program is initiated almost immediately upon fix-

ation. There is a steep rise in payoff as saccade thresholds increase—because more

samples are obtained and accuracies are increasing significantly—up to a maximum point

near a threshold of 0.99, followed by a steep decline as the additional gain from

increased accuracy diminishes and the time cost begins to dominate. This relationship

holds for most of the good performing decision thresholds. The relationship between deci-

sion threshold and payoff has a similar but simpler profile over the range we explored: a

steady increase in payoff as the decision threshold increases, followed by a steep drop as

the time cost begins to dominate.

The Balanced and Speed payoffs have a similar profile as the Accuracy payoff: for the

saccade thresholds, a flat region, a rise, and a sharp drop. But the qualitative shape differs

considerably in the region of the maximum; payoff surface is considerably flatter for the

Balance payoff, and very flat for Speed. Thus, there is considerably more spread in the range

of thresholds that perform within some close threshold of the optimum. The visualization of

the payoff space suggests that we were more successful in separating the Accuracy condi-

tion from the other two than we were in separating Balanced and Speed from each other.

Fig. 4. Expected payoffs generated by the model over the 2-D policy space defined by decision and saccade

thresholds. The first three panels relate expected Accuracy, Balanced, and Speed payoff to saccade thresholds;

each separate line corresponds to a separate decision threshold. The fourth (rightmost) panel relates the

expected Accuracy payoff to decision thresholds; each separate line corresponds to a separate saccade thresh-

old. (The Balanced and Speed payoffs, not shown, have rising but shallower slopes.) The circled points repre-

sent the optimal policies, whose value is indicated at the left of the point. The colored points (red for

Accuracy, blue for Balanced, and green for Speed) represent policies that are within 0.2 expected payoff

units of the optimal point; thus, the spread of these points in the Balanced and Speed payoffs reflects the flat-

ter surfaces for those payoffs. Expected payoff values were computed over 300K simulated trials.
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The graphs in Fig. 4 provide a visualization of the fundamental basis of the model’s

link between task payoff and predicted behavior: They depict the nature of the adaptive

space that the human participants must navigate according to the model. The overall dif-

ferences in payoff levels are not important; what is important are differences in the opti-

mal and near-optimal policies, and in the shape of the payoff surface. The next step is to

relate these same policy points to predicted behavior directly.

4.2. The relationship between behavioral measures and payoff

Fig. 5 plots SFD and overall trial response time against saccade threshold (we focus

on these two measures for illustration; many other measures are obtained as shown in

Figs. 6, 7, and 8). The colored points correspond to the best policies identified in Fig. 4.

The relationships are clear: Increasing saccade threshold increases single fixation dura-

tion, though it has almost no effect until thresholds are above 0.85, and past 0.99 the fixa-

tion times increase dramatically. The decision threshold lines are indistinguishable

because task decision thresholds have no direct effect on single fixations. The middle

graph shows that trial response times also increase as both saccade and decision thresh-

olds increase. Finally, the right graph shows that increasing saccade threshold increases

overall accuracy.

Finally, the third panel in Fig. 5 visualizes the payoff surface directly in terms of one

of the behavioral measures (SFD); here, each line corresponds to a different payoff. In

this space, it is easy to see the speed-accuracy trade-off in the upside-down U-shaped
curves. On the left side of the curve, spending more time increases payoff because accu-

racy is increasing; on the right side, spending more time decreases payoff because the

cost of the increased time outweighs the diminishing accuracy gains.

Fig. 5. Examples of how thresholds determine behavior, and in turn how behavior and payoff are related.

The first two panels show single fixation duration (SFD) and trial RT as a function of saccade threshold; the

third panel shows expected payoff as a function of SFD. The circled points represent the optimal polices and

the colored points (red for Accuracy, blue for Balanced, and green for Speed) represent policies within 0.2

payoff units of the optimal. See Fig. 4 for the identification of these points.
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5. Model predictions and human experiment results

In what follows, we describe the human eye-tracking experiments and walk through

both the model predictions and human results at the trial level and string (word) level.

Throughout, it is important to understand the constrained nature of the model predictions.

The threshold settings determine how the model behaves—the responses it makes, when

it makes them, and how long it spends fixating on each string—and thus determine pre-

dictions for word and nonword trials, correct and incorrect trials, word and nonword fixa-

tion times, position effects, accuracies, and so on. We report below multiple measures for

each of the three conditions; with the single noise parameter fit to minimize error on

single fixations durations as described above and held constant across the three payoff

conditions. Statistical methods are given in the Appendix.

5.1. Eyetracking experiment methods

5.1.1. Participants
Sixty-one members of the University of Michigan community participated in the exper-

iments. Data from thirteen were unusable due to calibration problems, failure to complete

Fig. 6. Empirical measures at the level of the trial for the full set of human participants and the computa-

tional model. The colored points represent predictions corresponding to the best-performing policies identified

in Fig. 4; the lines connect the means of this set. The error bars on the human data correspond to one stan-

dard error estimated from posterior densities of the mixed effects models.
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the experiment, or equipment malfunctions, leaving a total of 48. Participants were given

a baseline of $10 for participation, plus a bonus of $1 for each 1,000 points they earned

in the task.

5.1.2. Stimuli
Participants responded to 200 trials of the LLDT divided into 10 blocks, preceded by

a 10-item practice block. There were two types of trials in each block: half of trials con-

tained all-words lists, and the other half contained five words and one nonword in a ran-

domly drawn position. Words were all four characters long and drawn from a 234-word

subset of the Brown Corpus (Kucera & Francis, 1967), containing 117 high-frequency

words (mean frequency count 239.2, SD 186.0) and 117 low-frequency words (mean fre-

quency count 5.6, SD 12.8). Nonwords were also all four characters long and were drawn

from a list of 53 nonwords pronounceable according to English phonotactics. While this

means that participants saw each string more than once, the number of times a string

was seen had no effect on fixation durations (effect of �0.64 ms per time seen,

p = 0.61).

Fig. 7. Single fixation durations and frequency effects for human participants and model. The colored points

represent predictions corresponding to the best-performing policies identified in Fig. 4; the lines connect the

means of this set. We show the frequency effect here as means of low- and high-frequency bins (median-

split) but all statistical models used continuous predictors. The error bars on the human data correspond to

one standard error estimated from posterior densities of the mixed effects models.
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5.1.3. Procedure
Each participant was assigned to one of the three payoff conditions used to make pre-

dictions from the model. They were not told the name of their payoff, only a quantitative

description of the requirements (e.g., “You will receive a point for each 125 ms by which

your response is faster than 5000 ms (5 s). You will lose 150 points if your response is

incorrect. You will get a $1 bonus for each 1000 points.”).

Items were presented on a CRT monitor in a 20pt Courier font, separated by six

characters of whitespace. This resulted in each word covering 0.7 inches or 1.6

degrees of visual angle, and whitespace covering 1.48 inches or 3.4 degrees of visual

angle at a distance of 25 inches from the screen. Each trial started with a fixation dot

at the location of the first string. The entire six-string list would appear once subjects

fixated, and the trial ended after subjects responded using a Cedrus response box. Eye

movements were measured using an SR-Research Eyelink I head-mounted eye-

tracker operating at 250 Hz. Single-point drift correction was performed before every

trial.

Fig. 8. Single fixation durations for word and nonword, by correctness (left two columns), and single

fixation durations for words by position in the list (rightmost column), for the full set of human partici-

pants and the computational model. The colored points represent predictions corresponding to the best-

performing policies identified in Fig. 4; the lines connect the means of this set. The error bars on the

human data correspond to one standard error estimated from posterior densities of the mixed effects

models.
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5.2. Trial level effects

Fig. 6 shows the results for key trial-level measures: response times (on correct and

incorrect trials) and percentage correct. The top row is the set of human results, and the

bottom row is the set of model results from a set of policies at or near optimal (within

0.2 payoff units) plotted. Table 3 shows condition means for human participants and

model.

The key empirical result here is that the human participants show marginally decreased

accuracies and response times across the Accuracy-Balanced-Speed payoff conditions:

The accuracy condition results in slower response times (Table 6, contrast set [a]) and

higher percentage correct (Table 6, contrast set [b]). The model predicts this trend

because the optimal thresholds for Accuracy are higher (Table 4) than Speed, leading to

slower but more accurate responses. There is a significant discrepancy in predicted accu-

racies that we address below. The model also correctly predicts that correct word trials

will show slower responses than incorrect trials, with the converse holding in nonword

trials (a reliable crossover interaction, Table 6, contrast set [c]). This result is a conse-

quence of the fact that “all words” responses (correct or incorrect) tend to come after

reading the full list, whereas “not all words” responses tend to come after only reading a

subset of words. Although this is not surprising behavior for the humans, the model need

not have behaved this way: There are suboptimal strategies in the space we explored that

set the decision threshold low enough that an “all words” response are made before all

Table 3

Trial-level measures; payoff reported is mean payoff per trial. See Table 6 for significance tests

Condition

Response Time (ms) % Correct Payoff

Human Model Human Model Human Model

Accuracy 1,667 1,644 92 98 12.91 23.44

Balanced 1,548 1,546 87 97 16.08 21.52

Speed 1,494 1,455 88 95 16.65 18.89

Table 4

Derived policy parameters. The saccade and decision thresholds were derived by evaluating the expected pay-

off achieved by the model with each combination of indicated policy values, and then choosing the pair of

thresholds that maximize payoff; see Fig. 4 for the derivation of the optimal policy

Search Range Final Value Source

Saccade

threshold

0.80, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92,

0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995,

0.999, 0.9999, 0.99999

0.99 (Acc),

0.97 (Bal),

0.92 (Speed)

Maximizing payoff given

task and architecture

Decision

threshold

0.80, 0.85, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98,

0.99, 0.999, 0.9999, 0.99999

0.999 (Acc),

0.999 (Bal),

0.99 (Speed)

Maximizing payoff given

task and architecture
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strings are read, and ones that set it high enough that “not all words” responses are not

made until after the sixth string.

5.3. String-level effects: Payoff, frequency, string type, and list position

Fig. 7 shows the results of key string-level measures: single fixation duration across

fixation types and by frequency class. We report single fixation durations both for brevity

and because this is the measure that our model, currently lacking regressions, is able to

quantitatively predict. Seventy-one percent of the strings were fixated only once, so other

measures (e.g., first fixation and total fixation times) show the same patterns.

Table 5

Single fixation durations for word and nonword strings. See Table 6 for significance tests

Condition

Single Fixation Duration

String Type Human Model

Accuracy Nonword 377 331

Word 264 275

Balanced Nonword 308 294

Word 236 242

Speed Nonword 318 257

Word 244 215

Table 6

Coefficient estimates and p-values calculated using a likelihood ratio test between two linear models identical

except for the presence of the tested predictor. Lines separate different linear models. Condition was coded

as a set of orthogonal contrasts; reported here is the Accuracy versus Speed Contrasts significant at the con-

ventional a = 0.05 threshold are bolded

Contrast Set Effect Estimate p

(a) Condition on RT �180.36 0.09

(b) Condition on % Correct (logit) �0.40 0.08

(c) Trial type (word vs. nonword) on RT �355 <0.001
Correctness (correct vs. incorrect) on RT �91 <0.001
Correctness 9 trialtype interaction on RT �596 <0.001

(d) Condition on SFD �21 0.04
Frequency on SFD �4.45 <0.001
Frequency 9 Condition interaction on SFD 1.64 0.29

(e) Position on SFD 3.26 0.007
Position 9 Condition interaction on SFD �0.65 0.44

(f) String (word vs. nonword) type on SFD 97 <0.001
String type 9 Condition interaction on SFD �61 0.05

(g) String (word vs. nonword) 9 Correctness (correct vs. incorrect) on SFD 71.2 <0.001
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The key result here is that the human data are consonant with the model prediction of

slower fixation durations in the Accuracy as compared to the Speed condition (Table 6,

contrast set [d]). The model provides a straightforward explanation of this effect: When a

payoff provides pressure to respond more correctly, a higher saccade threshold will

increase the amount of information acquired, increasing the likelihood of a correct

response. Note that while the differences in trial response times are consistent with a dif-

ference in fixation durations in the model, this need not have been the case in the human

data; the humans could have adapted via other strategies such as keeping their hands clo-

ser to the keys or minimizing mind wandering. Rather than (or in addition to) these other

adaptations, humans show evidence of adapting their moment-to-moment saccade timing

to the differential speed-accuracy pressures.

The model also correctly predicts an effect of log frequency on fixation durations: fixa-

tions on highly frequent words are faster (Table 6, contrast set [d]). Norris (2006) has

shown that this is a consequence of an otherwise unconstrained ideal observer model

making decisions on single words, but it was not a necessary outcome with the additional

oculomotor constraints we introduced. The effect can disappear with sufficiently low sac-

cade thresholds, even though the model can still perform the task. Indeed, in the Speed

condition, many good-performing thresholds nearly make the frequency effect disappear.

The reason is that thresholds can be set that are near the prior belief in expectation, so a

saccade program is initiated immediately, before samples are taken. There is therefore lit-

tle or no opportunity for frequency to affect fixation duration. However, samples continue

to arrive during the saccade programming time so the task can be performed. The model

also predicts a larger frequency effect in the Accuracy condition as compared to the

Speed condition, for the same reason: Thresholds are set lower in the speed condition

and fewer samples are obtained during the pre-saccade-programming stage of sampling

that affects fixation durations and thus frequency effects. The human data are consistent

with this effect, but the interaction is not reliable.

The model makes other interesting and more subtle predictions attested in the human

data (Fig. 8, left two columns). First, nonwords are read more slowly than words. In the

model, this is a consequence of the fact that the prior probability that any given string in a

word is much higher than a nonword. It therefore takes more evidence (more sampling

time) to reach the nonword threshold. Furthermore, the word-nonword difference is pre-

dicted to be larger in the Accuracy condition than Balance and Speed, an effect that appears

in the human data as a reliable interaction between condition and string type. This reflects a

nonlinear effect of distance-to-threshold on the number of samples required in expectation.

In addition, the effect of trial accuracy is different for words and nonwords (another

interaction): Fixation durations on words are about the same in correct and incorrect trials,

but the model predicts that nonwords are read more quickly in incorrect trials, and the

human data show this pattern (Table 6, set [g]). In the model, this arises because the word

threshold is closer than the nonword threshold, and so incorrect random walks to the word

threshold happen more quickly than correct random walks to the nonword threshold.

Finally, the model predicts that strings in later positions are read somewhat more

slowly than strings in early positions for all three payoff conditions; this effect, though
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tiny, is also reliable in the human data (Table 6, contrast set [e]). This is another

consequence of the list-level Bayesian update. The reason is a somewhat counterintuitive

property of the probabilistic structure of the task: As evidence is accumulated identifying

strings as words in the list, the probability of an all-words list increases—but the proba-

bility that any one of the individual strings remaining is a nonword increases slightly.

Thus, the prior belief that each remaining string is a word is slightly lower, and in expec-

tation additional samples are required to hit the word threshold.

5.4. The accuracy discrepancy

The key discrepancy between model predictions and human performance is that the

model achieves higher accuracy than the human participants (and consequently achieves

a higher total payoff, especially in the accuracy condition). It is important to note that

this discrepancy cannot be straightforwardly addressed by simply increasing the noise

parameter—because the model would adjust its thresholds to maintain higher accuracy

levels (and in doing so increase fixation durations and response times). Thus, there is a

genuine discrepancy that cannot be explained by the present model.

We suggest two possible reasons for this discrepancy, both of which may be explored

with additional modeling. Human participants are given a baseline of $10 at the end of

their participation in addition to their performance-based cash bonus. If participants are

maximizing reward rate, this $10 may be more valuable in 30 min than the $10 plus

bonus is in 40 or 45 min. Similar additional speed pressures may result from temporal

discounting.

Second, the model has veridical knowledge of which strings are classified as words

and which are nonwords. But some of the very low-frequency words on the experiment

list (e.g., bard and nigh) may simply not be in the participant’s lexicons, and no amount

of additional sampling will overcome such errors. These therefore represent a class of

incorrect responses that are not possible for the model to make. Future work can address

this by explicitly testing the full list of strings without time pressure post-experiment and

excluding trials with words not known by the participant.

6. How does architecture shape adaptation?

We have shown that the present model, by optimizing policies for the different pay-

offs, and thereby its behavior, predicts a detailed empirical signature of adaptation across

the payoffs that is largely attested in the human subjects, at the level of single fixation

duration. We now make an initial attempt to address the following questions: Does the

fixed architecture—the dynamics of the oculomotor system—shape adaptive behavior,

and is there supporting evidence for this in the human data?

We begin the exploration by introducing a variant of the model that contains no ocu-

molotor dynamics; we label this the minimal model because it dispenses with eye–brain
lag, saccade programming time, and saccade execution times. With this minimal model,
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we find new best-fitting noise parameters and new optimal policies (Fig. 9); the explora-

tion is thus not simply a “lesioning” of the standard model.

We focus here on some key outcomes of eliminating the architectural constraints.

Fig. 10 reveals a striking difference in the nature of the payoff surface for the minimal

model: The peaks are sharper and the optimal thresholds are higher. There are qualitative

changes to the behavioral predictions as well. The right panel of Fig. 10 shows much lar-

ger effects of payoff and frequency—note the scale changes on the y-axes relative to

Figs. 7 and 8.

Fig. 10. The two panels on left show the payoff surface and optimal policies (for Accuracy and Speed) for

the minimal model that results from eliminating the oculomotor constraints; compare to Fig. 4. The rightmost

panel shows one example of the resulting behavioral predictions. The predicted magnitude of both payoff

effects and frequency effects increase, yielding poorer fit to human data.

Fig. 9. Root mean squared error of model predictions (against mean single fixation duration for the three

payoff conditions) for four architectural variants. For each architecture, new optimal control policies are

derived. In red is the complete architecture explored above and includes saccade programming, eye–brain
lag, and saccade execution. The minimal model dispenses with these oculomotor constraints. The other two

models explore the effect of including or excluding saccade programming.
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Our hypothesis was that the poorer fit is due primarily to the elimination of saccade

programming time: As saccade programming time increases, there is greater pressure to

reduce the saccade threshold, leading to shorter sampling durations during the initial stage

in which the samples can affect fixation durations. Consistent with this hypothesis, the

selected optimal thresholds for all conditions are higher when the saccade programming

time is eliminated.

To test this hypothesis, we explored two additional architectural variants: one which

maintained only the saccade programming time (thus eliminating eye–brain lag and sac-

cade execution), and one which kept eye–brain lag and saccade execution and eliminated

saccade programming. Our hypothesis was partially supported: The saccade-program-

ming-only architecture accounted for the human data nearly as well as the full architec-

ture, with the exception that the log frequency effects were still significantly larger in the

model than in the human data. The fit to human data provided by the architecture with

the eye–brain lag and saccade execution was between the extremes (Fig. 9).

7. Comparison of LLDT to sentence reading

The LLDT was designed as a simple test bed for the empirical and theoretical explora-

tion of optimal control models that will be extended to reading comprehension. But what

is the relation between LLDT and reading sentences? We had two principal design goals

to establish some empirical and theoretical similarities: (a) empirically, the task was

designed to yield a sequential left-to-right fixation scanning pattern as in reading for com-

prehension, but with a high proportion of single fixations; and (b) theoretically, the task

was designed to require the integration of information obtained from multiple lexical

items across saccades.

The first goal is empirical, and given the eye-tracking record on the three payoff vari-

ants, the LLDT meets this goal: The scanning pattern was left-to-right; 71.2% of strings

in our analysis were fixated once; and there were regressions originating in 7.5% of

strings in the analysis, consistent with recent reading experiments.1

The second goal is primarily a theoretical one, but with empirical implications. The

goal is satisfied because LLDT does require integrating information obtained from multi-

ple strings—for example, an alternative sequential lexical decision task, where a yes/no

response must be made on each word, does not satisfy this requirement. Although the

information integration required is minimal, the sequential nature of the left-to-right evi-

dence accumulation and the nature of the probabilistic constraints in the task did give rise

to contextual constraints that differ across positions of the list. This led to the prediction

of a small increase in fixation durations across the list, attested in the human data.

We believe the LLDT is a useful first step in developing quantitative models of task

effects in reading because it permits us to explore novel issues concerning optimal adap-

tation to the joint constraints of task payoff and architecture, but in a sequential eye-

movement setting where the task and prior linguistic knowledge sources are clearly

defined. And because the task structure and prior knowledge sources have a principled
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and integral role in the model and its predictions, there are paths to pursuing the integra-

tion of high-level linguistic processing and eye-movement control that are not available

to approaches not grounded in a rational control analysis. One clear possibility is to adopt

generative language models from computational linguistics to take the place of the gener-

ative model of the simple list structure used here. Indeed, Bicknell and Levy (2010a,

2012) are pursuing such a path, and such models might be combined with the nested eye

and task-control architecture explored here to produce optimal control models of reading

that are tuned to specific tasks.

8. Summary of major results and broader implications

Let us take stock by revisiting the major theoretical challenge and key hypotheses, and

summarizing the major results. The intent was to explore, computationally and empirically,

the idea that eye-movement control in linguistic tasks is shaped jointly by specific task

context, payoff, and fixed processing architecture—an idea motivated in part by a consider-

able body of work in psycholinguistics and visual attention (Ballard & Hayhoe, 2009; For-

ster et al., 1979; McConkie et al., 1973; Rayner & Raney, 1996; Reichle, Reineberg, &

Schooler, 2010; Rothkopf et al., 2007; Salverda et al., 2011; Wagenmakers et al., 2008;

Wotschack, 2009). The challenge was providing a way to bridge the gap between high-

level task goals/payoff, and the lowest levels of moment-to-moment behavioral control that

make contact with eye-movement measures. We believe the approach pursued here meets

the bridging challenge because it provides a way to explore how specific task goals

(expressed as payoff functions) interact with machine constraints (through optimization) to

yield detailed behavior. This approach then motivates the associated empirical methodol-

ogy of running the same task under distinct quantitative payoffs (Tanner & Swets, 1954).

We introduced a simple linguistic task, the List Lexical Decision Task, that requires

the application of lexical knowledge and the integration of information obtained from a

sequence of left-to-right eye movements. We presented an optimal control model of this

task that embodies three key theoretical hypotheses: (a) saccadic control is conditioned

on task-specific decision variables that reflect the accumulation and integration of noisy

evidence over time; (b) these saccade thresholds are set to maximize task-specific payoff,

but this optimization is one part of a joint optimization problem that includes all other

policy parameters that determine behavior in the task; (c) the shape of the payoff surface

(and thus its maxima) is determined jointly by the payoff function and properties of the

perceptual and oculomotor system. The model permitted the exploration of these hypothe-

ses computationally by optimizing control policies for three distinct payoffs imposing dif-

ferent speed-accuracy trade-offs. Once a single noise parameter is fit, the model

executing these optimal policies makes decisions about when to move the eyes, and how

and when to respond to the overall trial, thus generating dozens of behavioral measures,

including fixation durations, for each of the distinct payoff conditions.

We ran eye-tracking experiments on the LLDT in a between-subject payoff manipula-

tion. The detailed empirical predictions of the model were largely supported in the human

R. L. Lewis, M. Shvartsman, S. Singh / Topics in Cognitive Science 5 (2013) 603



results, including the key result that single fixation durations were modulated by payoff

in ways predicted by the optimal control model. This provides some support for the first

two theoretical hypotheses. We explored the third theoretical hypothesis—that the eye-

movement behaviors are adapted not only to the task payoff but are shaped by the spe-

cific architectural constraints of the oculomotor system—by varying the architectural

assumptions in the computational model and re-deriving optimal policies for these varied

architectures. The optimal policies do clearly differ in the model when these constraints

are changed. The modified architectures without saccade programming time provide

poorer fits to the human data; in particular, they overestimate the size of the payoff

effects and frequency effects.

The data from these experiments cannot provide unambiguous support for the effects

of architecture on optimal policy and thus behavior because there is no experimental

manipulation of the human architecture. But it is clear that, given the assumptions of this

model, the human data are better accounted for by assuming that the control policies have

indeed adapted to the saccade programming delay.

There are many interesting directions that may now be pursued. One especially promis-

ing and novel direction is building models that explain individual differences in reading

strategies as bounded-optimal adaptations to individually varying architectural constraints.

This approach was demonstrated by Howes et al. (2009) in their individual differences

models of Psychological Refractory Period (PRP) tasks, where differences in dual-task

costs were explained as signatures of near-optimal adaptations to low-level processing

characteristics (stage durations and motor noise), not as differences in an underlying

dual-tasking capacity. It is also possible to explore effects of differences in internally

modulated speed-accuracy trade-offs—essentially differences in intrinsic reward. For

example, the modulation of frequency effect by payoff suggests a way to understand the

increase in lexical frequency effect on reading times in older adults (Laubrock, Kliegl, &

Engbert, 2006). Our results show a similar increase in younger adults under a payoff

which emphasizes accuracy; it is known that older adults tend to emphasize accuracy

more so than young adults (Rabbitt, 1979; Smith & Brewer, 1995; Starns & Ratcliff,

2010).

Other useful directions include scaling the model to more complex sentence-level tasks

as indicated above, as well as incorporating richer sets of cognitive constraints (such as

short-term memory, e.g., Lewis & Vasishth, 2005; Lewis, Vasishth, & Van Dyke, 2006).

These will of course introduce formidable computational and empirical challenges. But

given the ubiquity of adaptive effects at all levels of human performance, we see this

combination of optimal (rational) control analysis and mechanistic architecture modeling

as a necessary part of understanding language and cognition.
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Note

1. For example, Engbert et al. (2005) show regression out probability between 6%

and 1%; Reichle et al. (2009) show regression out probability between 8% and

11%, and Levy, Bicknell, Slattery, and Rayner (2009) show regression out proba-

bility between about 10% and 20%.
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Appendix

Monte Carlo simulation details

For the modeling results reported below, we computed expected values for the mea-
sures (payoffs, reaction times, single fixation duration, etc.) by taking means of these val-
ues over 300,000 simulated model trials, where the words and nonwords in the trials
were drawn from the experimental list used for human participants using the distribution
described above. As in the human experiments the probability of a word trial was 0.50
(and thus a nonword trial 0.50). Across the 300,000 trials, there were 50 different word
and nonword lexicons of approximately 500 strings each as described in the text.

We do not report statistical tests on the empirical measures that the model produces:
At 300K simulated trials for each noise and policy setting, the confidence intervals
around the reported means are negligible.

Statistical methods

Data analysis on the human data was carried out using mixed effects regression
(Pinheiro & Bates, 2000) using the lme4 package for the R environment for statistical
computing (R Development Core Team, 2011). For inference, models with maximal ran-
dom-effects structures were fit: In trial-level analyses of condition this included by-partici-
pant and by-trial random intercepts, and by-trial random slopes (by-subject random slopes
are not necessary because ours was a between-subjects design). In string-level analysis of
condition this additionally included random slopes and intercepts of word and list position.
In string-level analysis of frequency, this included random slopes and intercepts of position
but only random intercept of word (since frequency is a between-word factor). In string-
level analysis of position, this included a random slope and intercept of word. Linear models
were fit to all timing measures, and a logit model was fit to accuracy. The first and last
strings in each trial were excluded from analysis, as were strings appearing after a nonword.

Response times and single fixation durations (SFDs) that were farther than 3 SD from
the mean of those respective measures were removed. Some additional response times
had to be removed due to a bug in response collection code.
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Hypothesis tests were conducted using a single pair of normalized orthogonal contrasts.
The first contrast, and the one of theoretical interest, is the contrast between the accuracy
and speed payoffs (i.e., coding accuracy and speed as �0.5 and balanced as 0). The sec-
ond contrast is included for orthogonality but is not theoretically informative, so we do
not report it here. This contrast design allowed us to retain the balanced condition for
purposes of improving our error estimates, increasing overall power. We treated log
frequency and position as numeric linear predictions for the purposes of those hypothesis
tests. The effect of each contrast is reported as the p-value of a likelihood ratio test (using
the chi-squared distribution) comparing two models identical except for the presence of
the contrast set of theoretical interest.

The belief update

Here, we detail the Bayesian belief update. Some definitions: A trial consists of a pre-
sentation of a list of l strings of h letters S1S2. . .Sl�1Sl. Let the set of all word strings be
denoted fWigni¼1 and the set of nonword strings be denoted fNigmi¼1. Let T denote the mul-
tinomial random variable for trial type; it can take on mutually exclusive and exhaustive
values W for word-trial, and N k

for a nonword trial with the nonword being at position
1≤k≤l. Let PrðT ¼ WÞ denote the probability of a word trial and PrðT = N kÞ denote the
probability of a nonword trial with nonword in position k. We will assume that for all k, i,
and PrðSk ¼ WijT ¼ WÞ = PrðSk ¼ WijT = N j6¼kÞ and we will denote these equal quanti-
ties by PrðSk ¼ WijT 6¼N kÞ for probability of a word string Wi given that this is a trial
that cannot have a nonword at position k, and finally PrðSk ¼ NijT = N kÞ for the probabil-
ity of nonword Ni at position k given that it is a trial with a nonword at position k.

For each string W (similarly for N), let lij be the h 9 26 matrix of 1’s and 0’s repre-
senting the indicator coding for the string, where each row i corresponds to a position in
the string and each column corresponds to a letter of the alphabet. lij ¼ 1 if the ith posi-
tion in W has the jth letter, otherwise lij ¼ 0. A sample s from word W (or nonword N)
is a h 9 26 real-valued matrix, where each element sij is sampled independently from a
normal distribution with mean 1 or 0 as given by the indicator coding and standard devia-
tion r, the sample noise parameter:

sij�Nðlij;r2Þ:

The likelihood of a sample s given some word string W (or nonwordstring N) is given
in the following:

PrðsjWÞ ¼
Y

i;j

f ðsij; lij;r2Þ

where f ðx;l;r2Þ is the probability density function of the Gaussian distribution with

mean l and standard deviation r.
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Let a sample from location k be denoted sk. On receiving sample sk, the belief update
proceeds as follows. First, we compute some intermediate variables:

ProldðskjT 6¼ N kÞ

¼
Xn

j¼1

PrðskjSk ¼ Wj; T 6¼ N kÞProldðSk ¼ WjjT 6¼ N kÞ

¼
Xn

j¼1

PrðskjSk ¼ WjÞProldðSk ¼ WjjT 6¼ N kÞ

ProldðskjT ¼ N kÞ

¼
Xm

j¼1

PrðskjSk ¼ Nj; T ¼ N kÞProldðSk ¼ NjjT ¼ N kÞ

¼
Xm

j¼1

PrðskjSk ¼ NjÞProldðSk ¼ NjjT ¼ N kÞ;

ProldðskÞ
¼ProldðskjT 6¼ N kÞProldðT 6¼ N kÞþ
þ ProldðskjT ¼ N kÞProldðT ¼ N kÞ

where ProldðT 6¼ N kÞ ¼ ProldðT ¼ WÞ þ
P

j6¼k ProldðT ¼ N jÞ ¼ 1:0� ProldðT ¼ N kÞ.
Next, we update the string-level beliefs:

PrnewðSk ¼ WijT 6¼ N k
; skÞ

¼ PrðskjSk ¼ Wi; T 6¼ N kÞProldðSk ¼ WijT 6¼ N kÞ
ProldðskjT 6¼ N kÞ

¼ PrðskjSk ¼ WiÞProldðSk ¼ WijT 6¼ N kÞ
ProldðskjT 6¼ N kÞ

PrnewðSk ¼ NijT ¼ N k
; skÞ

¼ PrðskjSk ¼ Ni; T ¼ N kÞProldðSk ¼ NijT ¼ N kÞ
ProldðskjT ¼ N kÞ

¼ PrðskjSk ¼ NiÞProldðSk ¼ NijT ¼ N kÞ
ProldðskjT ¼ N kÞ
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Finally, we update the trial level beliefs:

PrnewðT ¼ WjskÞ

¼ ProldðskjT ¼ WÞProldðT ¼ WÞ
ProldðskÞ

¼

¼ ProldðskjT 6¼ N kÞProldðT ¼ WÞ
ProldðskÞ

PrnewðT ¼ N j6¼kjskÞ

¼ ProldðskjT ¼ N jÞProldðT ¼ N jÞ
ProldðskÞ

¼ ProldðskjT 6¼ N kÞProldðT ¼ N jÞ
ProldðskÞ

;

PrnewðT ¼ N kjskÞ

¼ ProldðskjT ¼ N kÞProldðT ¼ N kÞ
ProldðskÞ

To make decisions, in addition to the probability that the trial is a word trial or not
that we compute above, we also need the probability that the string at position k is a
word or nonword, that is, PrðSk 2 [n

i¼1W iÞ and PrðSk 2 [m
i¼1N iÞ:

PrðSk 2 [n
i¼1W iÞ ¼

Xn

i¼1

PrnewðSk ¼ WijT 6¼ N kÞPrnewðT 6¼ N kÞ

PrðSk 2 [m
i¼1N iÞ ¼ 1:0� PrnewðSk 2 [n

i¼1W iÞ

The full process then iterates on the next sample, with each Prnew becoming the next
Prold.
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