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An improved quadratic inference
function for parameter estimation in the
analysis of correlated data
Philip M. Westgatea*† and Thomas M. Braunb

Generalized estimating equations (GEE) are commonly employed for the analysis of correlated data.
However, the quadratic inference function (QIF) method is increasing in popularity because of its multiple
theoretical advantages over GEE. We base our focus on the fact that the QIF method is more efficient than GEE
when the working covariance structure for the data is misspecified. It has been shown that because of the use of
an empirical weighting covariance matrix inside its estimating equations, the QIF method’s realized estimation
performance can potentially be inferior to GEE’s when the number of independent clusters is not large. We
therefore propose an alternative weighting matrix for the QIF, which asymptotically is an optimally weighted
combination of the empirical covariance matrix and its model-based version, which is derived by minimizing
its expected quadratic loss. Use of the proposed weighting matrix maintains the large-sample advantages the
QIF approach has over GEE and, as shown via simulation, improves small-sample parameter estimation.
We also illustrated the proposed method in the analysis of a longitudinal study. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

The use of generalized estimating equations (GEE) [1] for the marginal analysis of correlated data is
very common in practice. Cluster randomized trials (CRTs) and longitudinal studies are two examples
in which correlated data arise. In CRTs, independent groups of subjects are randomized to differ-
ent trial arms, and subjects within the same group, or cluster, are correlated because of unknown
clustering effects. In longitudinal studies, independent subjects contribute multiple observations over
time, and outcomes from the same subject are correlated. An example is a study we later look at in
which 59 epileptic subjects, who were randomized to either a treatment drug or control, were followed
over time, with interest in the number of seizures each person had during four successional 2-week
intervals [2, 3].

The quadratic inference function (QIF) method, proposed by Qu et al. [4], is an attractive alternative
to GEE when fitting a marginal model. The QIF method rewrites the inverse of the working correla-
tion matrix as the weighted sum of m basis matrices inside the GEE, and then the corresponding m
distinct GEE components are optimally weighted using the generalized method of moments (GMM) [5].
Theoretically, the use of these optimal estimating equations makes the QIF method more efficient than
GEE when both methods utilize the same incorrect covariance structure, whereas both methods are
equally efficient when incorporating the true structure. Furthermore, the QIF method is more robust to
outliers relative to GEE [6], and the QIF can itself be used as a statistic in goodness-of-fit and likelihood
ratio score-type tests [4, 7].
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Westgate and Braun [8] and Westgate [9] showed that for finite-sample sizes, the variances of
parameter estimates from the QIF method can be larger than theoretically expected, implying that the
corresponding estimates from GEE can potentially be less variable in some settings. Therefore, which
of these two methods should realistically be used will be unknown in practice, although theoretical effi-
ciency results imply that the QIF approach should always be utilized. They explain that the empirical
covariance weighting matrix implemented inside the QIF is the source of both its efficiency advan-
tage and potential drawback in small to moderately sized samples. Specifically, the smaller the number
of clusters of subjects in CRTs or the number of subjects with repeated measures, the more variable
this weighting matrix will be. In practice, estimated empirical covariances are used in this weighting
matrix, and because of this matrix’s finite-sample variability, the use of these estimates will increase the
variances of the final parameter estimates [8–11].

This paper develops an improvement to the weighting covariance matrix employed with the QIF
approach that is meant to eliminate potential small-sample estimation deficiencies relative to GEE,
while maintaining the QIF’s large-sample advantages. Specifically, we propose utilizing a weighted
combination of the empirical covariance matrix and its respective model-based version, in which the
corresponding weights minimize the expected quadratic loss of the resulting asymptotically optimal
matrix. Section 2 discusses GEE and the QIF method in more detail. In Section 3, we develop the
proposed weighting matrix for the QIF method, discuss the corresponding estimation procedure, and
derive the estimated covariance matrix of resulting parameter estimates. Via simulation study in general
finite-sample settings, Section 4 illustrates the realized estimation performance from use of the improved
weighting matrix with the QIF as compared with the use of GEE, the typical QIF, and a QIF proposed by
Han and Song [12]. The performances of these methods are then contrasted in application to the seizure
study in Section 5. Section 6 then gives the concluding remarks, whereas the Appendix presents proofs
justifying the use of the proposed weighting matrix.

2. Generalized estimating equations and the quadratic inference function method

We let Y i D ŒYi1; : : : ; Yini �
T denote the vector of outcomes with marginal mean �i D E.Y i / for

the i th independent cluster of correlated data, i D 1; : : : ; N . Furthermore, for the j th observation,
j D 1; : : : ; ni , in the i th cluster, we have f .�ij / D xijˇ, where f is a known link function,
xij D Œ1; xij1; : : : ; xij.p�1/� is a vector of covariate values, and ˇ D Œˇ0; ˇ1; : : : ; ˇp�1�

T is a p � 1
vector of regression parameters.

We can acquire estimates for ˇ by setting the GEE equal to 0,

NX
iD1

DT
i V
�1
i .Y i ��i /D 0;

whereDi D @�i=@ˇ
T and V i DA

1=2
i RiA

1=2
i is the working model-based covariance structure for Y i .

Here,Ai is a diagonal matrix of working marginal variances for the ni outcomes, andRi is their working
correlation structure. As GEE can be inefficient when the working covariance structure is incorrect,
Qu et al. [4] proposed the QIF approach, which assumes R�1i �

Pm
rD1 �riM ri . Here, M ri ,

r D 1; : : : ; m, are known basis matrices, and �ri , r D 1; : : : ; m, are functions of a correlation param-
eter(s) and possibly cluster size [4]. Typically, m D 2 is used to at least approximate the inverse of
independence, unstructured, exchangeable, and autoregressive (AR)-1 correlation structures [3, 7]. We
can then write the GEE as

mX
rD1

NX
iD1

�riD
T
iA
�1=2
i M riA

�1=2
i .Y i ��i /D

mX
rD1

NX
iD1

�rigri .ˇ/D 0:

So that we can optimally weight these m distinct GEE components, the QIF uses extended score
equations (ESEs), given as

NgN .ˇ/D
1

N

NX
iD1

gi .ˇ/D

2
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1
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3
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These are the m components from GEE, but without �ri , r D 1; : : : m; i D 1; 2; : : : ; N . The ESEs
are then used in Hansen’s [5] GMMs to create the QIF, QN .ˇ/ D N NgT

N .ˇ/C
�1
N .ˇ/ NgN .ˇ/, in which

CN .ˇ/D .1=N /
PN
iD1 gi .ˇ/g

T
i .ˇ/ is the empirical covariance matrix for the ESEs and is used to esti-

mate the optimal weighting matrix, EŒCN .ˇ/� D †N D .1=N /
PN
iD1 CovŒgi .ˇ/�. arg minˇ QN .ˇ/

gives the estimate for ˇ, which is asymptotically equivalent to solving

N PgT
N .ˇ/C

�1
N .ˇ/ NgN .ˇ/D 0 (1)

for ˇ, in which PgN .ˇ/ D E
�
@ NgN .ˇ/=@ˇ

T�. As CN .ˇ/�†N
p
! 0 [4, 12], the estimating equations in

Equation (1) are asymptotically equivalent to N PgT
N .ˇ/†

�1
N NgN .ˇ/ D 0, which are estimating equations

that have optimally weighted the ESEs and thus the m distinct GEE components [4, 13, 14]. Therefore,
the QIF method is more efficient than GEE when the working and true covariance structures differ, and
the two methods are equally efficient when using the correct structure [4]. We note, however, as detailed
in Westgate and Braun [8], that if cluster sizes vary and a working exchangeable correlation structure
is utilized, this efficiency result may not hold unless the ESEs replace gri with ˛rigri , r D 1; : : : ; m;
i D 1; : : : ; N .

Westgate and Braun [8] and Westgate [9] demonstrated that the variable empirical nature of
CN .ˇ/ and the use of a working consistent estimate, Q̌ , for ˇ inside CN result in the QIF
method’s potentially inferior, rather than superior, estimation performance relative to GEE. Specifically,
N PgT

N .
Q̌ /C�1N . Q̌ / NgN .ˇ/D 0 gives the estimating equations employed in practice with the QIF approach,

with final estimates denoted by Ǒ . As the variable empirical nature of CN is a cause for the QIF approach
to not realistically attain its theoretical efficiency from the use of †N as the weighting matrix, we pro-
pose an alternative weighting matrix to use in place of CN that is more stable in terms of expected
quadratic loss in finite samples and is still asymptotically optimal.

3. An improved quadratic inference function approach

3.1. An improved weighting matrix

In some settings consisting of small to moderately sized samples, GEE can work better than the QIF
method for parameter estimation owing to employing model-based covariance structures to weight
outcomes. Therefore, when CN is quite variable, a potentially better estimate for †N would uti-
lize the corresponding model-based version, MN D .1=N /

PN
iD1

bCovŒgi .ˇ/�, which incorporates
the working covariance structures. Specifically, bCovŒgi .ˇ/� D OE

�
gi .ˇ/g

T
i .ˇ/

�
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�
Bieie

T
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T
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775 ;

ei D A
�1=2
i .Y i ��i / are defined by Han and Song [12], and OE denotes the estimated expected value

incorporating the model-based covariance structure.
Sole use of MN , rather than CN , as the weighting covariance matrix in Equation (1) can also be

disadvantageous, however. Specifically, the QIF approach will no longer have an efficiency advantage
over GEE. Furthermore, even for small N , if the true covariance structure is misspecified, in some set-
tings, the corresponding bias in MN can be more detrimental than the variability in CN with respect to
parameter estimation. We therefore propose replacing CN .ˇ/ in Equation (1) with an improved weight-
ing matrix, C �N D �NMN C .1 � �N /CN .ˇ/, that optimally takes into account both the variability
in CN and the bias in MN , while maintaining the theoretical advantages the QIF approach has over
GEE. In practice, we note that Q̌ will replace ˇ inside CN . Here, �N D �2N =

�
˛2N C �

2
N

�
D �2N =ı

2
N ,

˛2N D jjMN � †N jj
2, �2N D E

�
jjCN .ˇ/�†N jj

2
�
, and ı2N D E

�
jjCN .ˇ/�MN jj

2
�
, where

jjK jj D
q

tr
�
KKT� =p for some arbitrary p � p matrix K [15]. This value for �N minimizes expected

quadratic loss, given byE
�ˇ̌ˇ̌
C �N �†N

ˇ̌ˇ̌
2
�
. Furthermore, �2N and ˛2N take into account the variability in
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CN and bias inMN , respectively. Additionally, for several conditions that are typically met in practice,

E
�ˇ̌ˇ̌
C �N �†N

ˇ̌ˇ̌
2
�
! 0 as N !1, implying that C �N �†N

p
! 0 [12, 15] (proof in Appendix).

The proposed weighting matrix is related to the works of Ledoit and Wolf [15] and Han and Song
[12]. Ledoit and Wolf [15] proposed a well-conditioned estimated covariance matrix that is a weighted
combination of the identity and sample covariance matrices. Han and Song [12] extended this idea for
the QIF, proposing SN D �N�N I C .1� �N /CN .ˇ/, in which I is the identity matrix, �N is the aver-
age value for the diagonal elements of †N , and �N minimizes E

�
jjSN �†N jj

2
�
. They derived this

alternative weighting matrix, referred to as the linear shrinkage estimator, as CN may not be invertible
in some study designs. However, although the use of SN can lead to more stable results because this
particular problem is fixed, it is not designed to improve the QIF method’s estimation performance in
general settings. Particularly, �N I is not meant to model †N , whereas this is the sole purpose ofMN .

Currently assuming ˇ is known, MN and �N need to be estimated in practice. Similar to Ledoit and
Wolf [15] and Han and Song [12], we propose the following:

� The estimator forMN is OMN , in which covariance parameters are estimated.
� The estimator for ı2N is d2N D jjCN .ˇ/� OMN jj

2.

� The estimator for �2N is t2N Dmin
�
Nt2N ; d

2
N

�
, Nt2N D .1=N

2/
PN
iD1 jjgi .ˇ/gi .ˇ/

T �CN .ˇ/jj
2.

� The estimator for ˛2N is a2N D d
2
N � t

2
N .

� The estimator for C �N is OC �N D .t
2
N =d

2
N /
OMN C .a

2
N =d

2
N /CN .ˇ/D O�N

OMN C .1� O�N /CN .ˇ/.

The use of Nt2N is appropriate in the settings of Han and Song [12], as they deal with balanced covariate
designs. However, in many general applications, the covariances of the N extended score compo-
nents will likely vary, inducing bias in Nt2N . Particularly, Bias

�
Nt2N
�
� .1=N 2/

PN
iD1 jjCovŒgi .ˇ/�jj2 �

.1=N 3/jj
PN
iD1 CovŒgi .ˇ/�jj2 (Appendix). We can estimate bias using model-based covariances, yield-

ing Ot2N Dmax
�
0;min

h
Nt2N �

bBias
�
Nt2N
�
; d2N

i�
as an alternative estimate for �2N . Results using Ot2N and t2N

are asymptotically equivalent.
The Appendix gives the justifications for estimators. Specifically, a2N � ˛

2
N , t2N � �

2
N , and d2N � ı

2
N

all converge in quadratic mean to 0 as N !1, under the assumption that E
h
jj OMN �MN jj

4
i
! 0 as

N !1. Furthermore,E
h
jj OC �N �†N jj

2
i
! 0 asN !1, implying that OC �N is asymptotically optimal

because OC �N �†N
p
! 0 [12, 15] (proof in Appendix). Finally, Q̌ must replace ˇ inside OC �N . However,

because Q̌ � ˇ
p
! 0, we still have OC �N �†N

p
! 0.

3.2. The estimation procedure

As discussed by Westgate (submitted), the estimation procedure that iteratively updates the parameter
estimates inside CN has been suggested in the QIF literature. Specifically, the procedure is given by

Q̌ .kC1/ � Q̌
.k/
�
h
PgT
N

�
Q̌ .k/

�
C�1N

�
Q̌ .k/

�
PgN

�
Q̌ .k/

�i�1
PgT
N

�
Q̌ .k/

�
C�1N

�
Q̌ .k/

�
NgN

�
Q̌ .k/

�
I

k D 1; 2; : : : ;

and iterates until convergence, yielding Ǒ . Furthermore, if the value for the QIF increases at any given
step of the estimation procedure, Loader and Pilla [16] proposed multiplying the quantity that is sub-

tracted from Q̌
.k/

by a scalar that reduces in value until the QIF decreases in value. Westgate (submitted)

showed via simulation that choice of the initial estimates, Q̌
.1/

, whether from GEE using independence or
GEE using the working covariance structure that is implemented with the QIF, has only small influence
on the variances of final estimates. However, holding the initial estimates fixed inside CN throughout the
estimation procedure was shown to decrease the mean squared errors (MSEs) of final estimates, espe-
cially in small-sample settings when the working AR-1 correlation structure was implemented. Thus, we
propose the use of the following estimation procedure that employs our proposed weighting matrix:

Q̌ .kC1/ � Q̌
.k/
�
h
PgT
N

�
Q̌ .1/

�
OC �
�1

N

�
Q̌ .1/

�
PgN

�
Q̌ .1/

�i�1
PgT
N

�
Q̌ .1/

�
OC �
�1

N

�
Q̌ .1/

�
NgN

�
Q̌ .k/

�
I

k D 1; 2; : : : :
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3.3. A bias-corrected covariance matrix for parameter estimates

bcov. Ǒ / D .1=N /J�1N gives the asymptotic empirical sandwich estimator for the covariance matrix
of parameter estimates from the QIF method, where JN D PgT

NC
�1
N .ˇ/ PgN and PgN denotes PgN .ˇ/.

As discussed by Westgate [9], estimates are used in place of ˇ inside CN , inducing two types of
finite-sample biases inside this covariance estimator. First, as already discussed, the use of estimates
inside CN during the estimation procedure increases the variances in the final estimates, which JN
does not take into account. Second, CN . Ǒ / is biased for †N when N is small as estimated resid-
uals, Or i D Y i � O�i , i D 1; : : : ; N , will tend to be too small on average. Westgate [9] there-
fore proposed the following consistent bias-corrected estimate for the covariance of Ǒ : bcov. Ǒ / D
.1=N /.Ip C G/J�1N Pg

T
NC
�1
N
QCNC

�1
N PgNJ

�1
N .Ip C G/T. Here, Ip is a p � p identity matrix and

G D�@
�
J�1N Pg

T
NC
�1
N .ˇ�/ NgN .ˇ/

�
=@ˇ�T jˇ�Dˇ , in which the kth column is given by

J�1N Pg
T
NC
�1
N .ˇ/

@CN .ˇ/

@ˇk�1
C�1N .ˇ/ NgN .ˇ/;

where

@CN .ˇ/

@ˇk�1
D
1

N

NX
iD1

�
@gi .ˇ/

@ˇk�1
gT
i .ˇ/C gi .ˇ/

@gT
i .ˇ/

@ˇk�1

	
:

Also, QCN . Ǒ / replaces Or i Or
T
i , i D 1; : : : ; N , which comprise CN . Ǒ /, with bias-corrected versions given

by either .I i COi /
�1 Or i Or

T
i

�
I i CO

T
i

�
�1 or .I i COi /

�1 Or i Or
T
i , i D 1; : : : ; N . Here,

Oi D
1

N
Di .Ip CG/J

�1
N Pg

T
NC
�1
N

2
664
DT
iA
�1=2
i M1iA

�1=2
i

:::

DT
iA
�1=2
i MmiA

�1=2
i

3
775 :

The use of this G matrix, derived originally for GMM estimators by Windmeijer [10, 11], accounts for
the first type of bias, whereas the use of Oi accounts for the second source of bias. In the simulation
study presented by Westgate [9], the use of .I i C Oi /

�1 Or i Or
T
i

�
I i CO

T
i

�
�1, similar to the correction

Mancl and DeRouen [17] derived for the sandwich estimator with GEE, performed better than the use
of .I i COi /

�1 Or i Or
T
i , similar to the alternative correction derived by Kauermann and Carroll [18].

As our proposed weighting covariance matrix is a weighted combination of CN and OMN ,
.1=N /J �

�1

N PgT
N
OC �
�1

N CN OC
��1

N PgNJ
��1

N gives the sandwich estimator for the covariance matrix of the

resulting parameter estimates, Ǒ , when ignoring both types of bias. Here, J �
�1

N replaces CN with OC �N
inside JN . Modifying the derivations in Westgate [9], we propose the use of the following consistent
bias-corrected estimator, with unknown parameters replaced by their corresponding estimates:

bcov. Ǒ /D .1=N /ŒIp C .1� �N / QG�J
��1

N PgT
N
OC �
�1

N
QCN OC

��1

N PgNJ
��1

N ŒIp C .1� �N / QG�
T:

Here, QG replaces CN and JN with OC �N and J �N , respectively, inside the formula for G. Furthermore, we
use these same replacements, along with .1� �N / QG in place of G, within Oi inside QCN .

4. Simulation study

4.1. Study description

To assess the estimation performances of GEE using a common correlation parameter, the typical QIF,
the QIF proposed by Han and Song [12], and our proposed QIF with the improved weighting matrix,
we use empirical MSE quantities that are the sum of the empirical MSEs from all nonintercept parame-
ters. Tables report MSE ratios, which take the empirical MSE quantity from GEE and divides it by the
MSE value from the specified QIF approach that incorporates the same working correlation structure,
and the empirical mean of the estimated weights given to OMN inside our proposed weighting matrix.
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Table I. Ratios of empirical MSEs from generalized estimating equations divided by empirical MSEs from
the corresponding QIF version, with the use of a working AR-1 correlation structure.

QIF QIF HS Proposed QIF with t2
N

Proposed QIF with Ot2
N

Setting N MSE ratio1 MSE ratio2 MSE ratio OE. O�N ) MSE ratio OE. O�N ) MSE ratio

(1.1) 25 0.88 0.91 0.70 0.94 0.99 0.92 0.99
(1.2) 200 0.98 0.98 0.82 0.98 1.00 0.97 1.00
(1.3) 25 1.21 1.25 0.73 0.56 1.15 0.54 1.16
(1.4) 200 1.37 1.37 1.24 0.08 1.36 0.08 1.36

(2.1) 40 0.80 0.82 0.78 1.00 0.96 0.97 0.96
(2.2) 200 0.94 0.94 0.91 1.00 0.97 0.97 0.97
(2.3) 40 0.84 0.87 0.91 0.98 0.97 0.93 0.97
(2.4) 200 0.99 0.99 0.99 0.46 1.00 0.26 1.00

(3.1) 59 0.80 0.91 0.39 0.86 1.00 0.78 0.99
(3.2) 200 0.96 0.98 0.49 0.90 1.01 0.86 1.01
(3.3) 59 0.84 0.95 0.39 0.94 1.00 0.88 1.00
(3.4) 200 0.98 1.00 0.51 0.89 1.00 0.85 1.00

Empirical means of estimated weights, OE. O�N ), given to OMN in both versions of our proposed QIF approach are also
given. In each scenario, the true correlation structure was AR-1 (exchangeable) for the first (last) two settings. QIF
denotes results from the typical quadratic inference function approach. QIF HS denotes results from the QIF approach
using the weighting matrix proposed by Han and Song [12]. t2

N
and Ot2

N
are the estimators used to obtain O�N for our

proposed QIF approach.
N , number of independent subjects; MSE, mean squared error.
1

Iteratively updating working parameter estimates throughout the estimation procedure inside CN .
2

Holding initial working parameter estimates fixed throughout the estimation procedure inside CN .

We present results from three general longitudinal study designs and two general CRTs, utilizing four
settings in each scenario. Tables I and II present results from the use of working AR-1 and exchange-
able correlation structures, respectively. Each setting was examined via 1000 simulations. We obtained
correlation and dispersion parameter estimates used in model-based covariances for our proposed
weighting matrix from GEE to reduce simulation time, although estimates could be found iteratively
as is performed with GEE. In scenarios 1–3, the true correlation structure was AR-1 (exchangeable) for
the first (last) two settings. However, scenarios 4 and 5 are representative of CRTs in which the true and
working correlation structures are exchangeable, as AR-1 is not feasible, and corresponding results are
thus presented only in Table II.

In scenario 1, the marginal model is given by

Yij D ˇ0C ˇ1x1ij C ˇ2x2ij C �ij I �ij �N.0; 1/I j D 1; : : : ; 10;

in which x1ij D j=10 and x2ij �N.j=10; 1/, i D 1; : : : ; N , similar to a design presented by Qu et al. [4].
The number of subjects was 25 (200) for the first (second) and third (fourth) settings. The correlation
parameter was 0.7, whereas ˇ D Œ0; 0:5; 1�T.

In scenario 2, the marginal model is given by

logit.�ij /D ˇ0C ˇ1x1i C ˇ1x2ij I j D 1; 2; 3; 4;

where �ij is the marginal probability for the j th response from subject i , and logit.�ij / D logŒ�ij =
.1 � �ij /�, x1i was given a value of 0 or 1, depending upon the arm of the trial to which the i th sub-
ject belonged, and x2ij � Uniform.0; 1/ was generated independently from all observations within and
across subjects. The number of subjects in each of two trial arms was 20 (100) for the first (second)
and third (fourth) settings. The correlation parameter was 0.7, whereas ˇ D Œ0; 0; 0:1�T. These settings
have similarities to those used by Song et al. [7]. We generated outcomes using the method presented
by Qaqish [19].

Scenario 3 is a representation of our applied example in Section 5, using the marginal model given by

log.�ij /D ˇ0C ˇ1x1i C ˇ2x2i C ˇ3x3i C ˇ4x4ij I j D 1; 2; 3; 4;

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3260–3273
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Table II. Ratios of MSEs from generalized estimating equations divided by empirical MSEs from the
corresponding QIF version, with the use of a working exchangeable correlation structure.

QIF QIF HS Proposed QIF with t2
N

Proposed QIF with Ot2
N

Setting N MSE ratio1 MSE ratio2 MSE ratio OE. O�N ) MSE ratio OE. O�N ) MSE ratio

(1.1) 25 0.96 0.97 0.32 1.00 1.00 1.00 1.00
(1.2) 200 0.99 0.99 0.89 1.00 1.00 1.00 1.00
(1.3) 25 0.95 0.95 0.04 1.00 1.00 1.00 1.00
(1.4) 200 1.00 1.00 0.50 1.00 1.00 1.00 1.00

(2.1) 40 0.88 0.89 0.91 1.00 1.00 0.99 1.00
(2.2) 200 1.00 0.99 1.00 1.00 1.01 0.99 1.01
(2.3) 40 0.89 0.91 0.90 1.00 1.00 0.99 1.00
(2.4) 200 0.97 0.97 0.96 1.00 0.98 0.99 0.98

(3.1) 59 0.91 0.96 1.01 0.63 0.99 0.50 0.99
(3.2) 200 0.98 0.98 1.00 0.56 1.00 0.47 1.00
(3.3) 59 0.93 0.99 1.01 0.87 1.00 0.79 1.00
(3.4) 200 0.97 0.98 1.00 0.91 1.00 0.88 1.00

(4.1) 20 0.68 0.78 0.79 0.92 0.96 0.74 0.92
(4.2) 200 0.92 0.93 0.77 0.97 0.99 0.94 0.99
(4.3) 40 0.81 0.84 0.71 0.93 0.97 0.75 0.93
(4.4) 400 0.95 0.95 0.68 0.77 0.97 0.60 0.97

(5.1) 20 1.09 1.25 1.45 0.62 1.16 0.28 1.22
(5.2) 100 1.41 1.42 1.50 0.36 1.30 0.11 1.38
(5.3) 20 1.02 1.09 1.20 0.78 1.05 0.42 1.07
(5.4) 100 1.24 1.25 1.31 0.64 1.12 0.37 1.17

Empirical means of estimated weights, OE. O�N ), given to OMN in both versions of our proposed QIF approach are also
given. In scenarios 1–3, the true correlation structure was AR-1 (exchangeable) for the first (last) two settings, whereas
the true structure was exchangeable in scenarios 4 and 5. QIF denotes results from the typical quadratic inference
function approach. QIF HS denotes results from the QIF approach using the weighting matrix proposed by Han and
Song [12]. t2

N
and Ot2

N
are the estimators used to obtain O�N for our proposed QIF approach.

N , number of independent subjects in scenarios 1–3 or the number of independent clusters in scenarios 4 and 5; MSE,
mean squared error.
1

Iteratively updating working parameter estimates throughout the estimation procedure inside CN .
2

Holding initial working parameter estimates fixed throughout the estimation procedure inside CN .

where �ij , j D 1; 2; 3; 4; i D 1; : : : ; N , denotes mean counts, x1i is a subject-level indicator equal to 1
for 31 (105) subjects when N D 59 (N D 200), x2i and x3i are generated independently across subjects
fromN.1:75; 0:5/ and Uniform.2:9; 3:7/, respectively, and x4ij D j . The correlation parameter was 0.3,
whereas the marginal variance for the i th subject’s j th outcome is 4�ij and ˇ D Œ�2; 0; 1; 0:65;�0:05�T.
We generated outcomes using a procedure given by Madsen and Dalthorp [20].

In scenarios 4 and 5, the marginal model is given by

logit.�ij /D ˇ0C ˇ1x1i I j D 1; : : : ; ni :

We randomized an equal number of clusters to the intervention and control arms of the trial, and x1i
was an indicator for intervention assignment. We allowed the number of clusters to vary from 20 to 400
across settings. We independently generated cluster sizes from Uniform.10; 50/ and Uniform.25; 150/
in scenarios 4 and 5, respectively. In the first two settings of scenario 4, marginal probabilities and
correlations were 0.1 and 0.05, respectively, across all clusters. In the last two settings, marginal prob-
abilities (correlations) were 0.5 (0.3) and 0.3 (0.2) for control and intervention clusters, respectively.
In scenario 5, marginal probabilities were 0.5. The exchangeable correlation value for the i th clus-
ter was exp.!1 C !2 � ni /=.1 C exp.!1 C !2 � ni //, in which !1 and !2 were �0:05 (�1:5) and
�0:025 (�0:02), respectively, in the first (last) two settings, allowing correlations to range from 0.02 to
0.34 (0.01 to 0.12). Westgate and Braun [8] utilized similar settings. We generated outcomes using the
beta-binomial distribution.
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4.2. Study results

Results show that the typical QIF approach can produce estimates with greater variability than the
corresponding estimates from GEE that incorporate the same working covariance structure in settings
consisting of a small to moderately sized sample. This result was also evident in some settings in which
the QIF had a theoretical efficiency advantage due to the use of a misspecified working covariance struc-
ture. As also shown by Westgate (submitted), in multiple settings, the estimation procedure that does not
iteratively update the parameter estimates inside CN did improve upon the commonly used estimation
procedure in which the estimates are updated throughout the procedure, although this did not guaran-
tee a better performance relative to GEE. Alternatively, the use of our proposed weighting matrix with
the QIF was in general shown to be superior. Specifically, when the typical QIF approach led to larger
MSEs than GEE, corresponding MSEs from our proposed QIF were only negligibly different relative to
the MSEs from GEE. Furthermore, when MSEs from the typical QIF were notably smaller than MSEs
from GEE, our proposed QIF also produced MSEs that were superior to MSEs from GEE, although the
typical QIF produced smaller MSEs in some of these settings.

Results show that the weighting matrix proposed by Han and Song [12] generally did not work as well
as our proposed matrix, and the QIF approach that incorporates their weighting matrix was also detri-
mental relative to GEE and the typical QIF approach in many settings. Specifically, although the QIF
approach that incorporates their weighting matrix performed best in scenario 5, it was typically detrimen-
tal relative to all other methods under comparison in scenario 3 when using a working AR-1 correlation
structure and in scenarios 1 and 4. In other settings, although not always performing as well as our pro-
posed matrix, the use of their weighting matrix typically led to empirical MSEs that were relatively close
to the corresponding empirical MSEs from one or more of the methods under comparison.

The utility of our proposed weighting matrix with the QIF is most apparent in settings with smaller
values for N in each scenario. However, for larger N , MSEs from the typical QIF were never too much
larger than the corresponding MSEs from GEE and were notably smaller in some settings. Additionally,
for the larger N , the use of our proposed weighting matrix with the QIF performed similarly to the
typical QIF with either estimation procedure. Although this seems to imply that the choice between CN
and OC �N with the QIF does not matter for large N , we still suggest the use of OC �N . How large N needs
to be to obtain similar MSE results with respect to these two weighting matrices will be unknown in
practice, implying that the proposed matrix should be utilized to ensure that estimation precision is not
lost relative to GEE, while still maintaining the possibility of gaining precision.

Both versions of our proposed weighting matrix for the QIF led to parameter estimates with almost
equivalent MSEs in the majority of longitudinal study settings, although some small differences were
evident in the CRT scenarios. This result occurred as estimated mean weights, OE. O�N ), from these two

Weights Not Using Estimated Bias

Estimated Weights

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Weights Using Estimated Bias

Estimated Weights

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Figure 1. Values of O�N , either using
�
Ot2
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�
or not using
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�
the estimated bias of Nt2

N
, from utilizing our proposed

method with a working autoregressive-1 structure to analyze the 1000 simulated datasets from setting (1.3).
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methods either were very similar or had little influence in the longitudinal settings, whereas large varia-
tions in cluster sizes in the CRT settings increased the bias in Nt2N , and thus, notable differences in mean
empirical weights were observed. As examples of what individual values look like, Figures 1 and 2
present histograms of O�N from settings (1.3) and (3.1), respectively. In scenarios 1 and 2, OE. O�N ) was
always close to 1 when the true and working correlation structures were AR-1. However, when the work-
ing structure was AR-1 but the true correlation was exchangeable, the amount of weight given to CN in
our proposed matrix increased with N because of the bias in the model-based covariance matrix and the
decrease in variability in CN . Furthermore, when a working exchangeable structure is used in scenarios
1 and 2, the ordinary QIF did not perform quite as well as GEE, and our proposed weighting matrix with
the QIF performed as well as GEE because O�N D 1 was typically observed. In scenario 3, OE. O�N ) was
large when the working covariance structure was correct, and OE. O�N ) was slightly smaller for the larger
N in settings of a misspecified structure. Similarly, in the third and fourth settings of scenario 4 and all
settings of scenario 5, OE. O�N ) decreased as N increased owing to CN being less variable while utilizing
an incorrect covariance structure.

5. Application

To illustrate differences between GEE and the QIF approaches, we analyze the dataset from the epileptic
seizures study, adding to the results presented by Westgate [9]. We can find details about the study, in
addition to the dataset, in the works of Thall and Vail [2] and Song [3]. In addition to subjects receiv-
ing standard chemotherapy, 28 served as controls whereas 31 subjects were randomized to receive a
treatment drug. The number of seizures a subject had within each of four successional 2-week intervals
served as the outcome of interest. Song [3] and Song et al. [7] fit the following marginal model to show
that the QIF, relative to GEE, is robust to outliers:

log.�ij /D ˇ0C ˇ1x1i C ˇ2x2i C ˇ3x3i C ˇ4x4ij I j D 1; 2; 3; 4:

Here, �ij denotes the mean number of seizures for the i th subject during the j th 2-week interval, x1i is
equal to 1 (0) if subject i received the drug (placebo), x2i is the natural log of one quarter of the number
of seizures the i th subject experienced throughout the 8 weeks prior to randomization, x3i is the natural
log of the i th subject’s age, and x4ij D j denotes the j th 2-week interval.

Table III presents results from analyses, including and excluding a patient with outlying seizure
counts [3, 7], using working AR-1 and exchangeable correlation structures. As discussed in Section 3.3,
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Table III. Parameter, standard error (in parentheses), and weight estimates from analyses of the epileptic
seizures dataset.

Including the outlying subject Excluding the outlying subject

GEE QIF1 QIF2 QIF3 Proposed QIF4 GEE QIF1 QIF2 QIF3 Proposed QIF4

Working AR-1 correlation structure
Ǒ
1 �0.02 �0.05 �0.04 �0.08 �0.03 �0.25 �0.28 �0.27 �0.27 �0.25

(0.28) (0.17) (0.16) (0.31) (0.27) (0.16) (0.18) (0.16) (0.24) (0.16)
Ǒ
2 1.25 1.19 1.20 1.15 1.24 0.99 0.96 0.97 0.93 0.99

(0.28) (0.14) (0.13) (0.24) (0.26) (0.09) (0.08) (0.08) (0.10) (0.09)
Ǒ
3 0.65 0.58 0.60 0.11 0.65 0.78 0.68 0.68 0.25 0.78

(0.34) (0.36) (0.37) (0.74) (0.33) (0.28) (0.37) (0.34) (0.76) (0.27)
Ǒ
4 �0.06 �0.05 �0.05 �0.07 �0.06 �0.05 �0.05 �0.05 �0.07 �0.05

(0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.04)
O�N 0.24 0.91 0.29 1.00

Working exchangeable correlation structure
Ǒ
1 �0.01 �0.02 �0.02 �0.02 �0.01 �0.23 �0.17 �0.17 �0.23 �0.23

(0.27) (0.18) (0.18) (0.27) (0.27) (0.17) (0.17) (0.16) (0.17) (0.17)
Ǒ
2 1.23 1.17 1.17 1.22 1.23 0.99 0.97 0.97 0.99 0.99

(0.26) (0.17) (0.16) (0.25) (0.26) (0.09) (0.09) (0.08) (0.09) (0.09)
Ǒ
3 0.60 0.51 0.52 0.58 0.60 0.72 0.62 0.65 0.70 0.72

(0.34) (0.35) (0.36) (0.33) (0.34) (0.28) (0.34) (0.32) (0.28) (0.28)
Ǒ
4 �0.06 �0.06 �0.06 �0.06 �0.06 �0.04 �0.03 �0.03 �0.04 �0.04

(0.04) (0.03) (0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.04) (0.04)
O�N 0.26 1.00 0.20 1.00

O�N is either the estimated weight given to the model-based covariance matrix within the proposed QIF’s weighting
matrix or the estimate for �N I within the weighting matrix proposed by Han and Song [12] for the QIF.
AR, autoregressive; GEE, generalized estimating equations; QIF, quadratic inference function.
1

The typical QIF approach that uses the estimation procedure in which working parameter estimates are iteratively
updated inside CN .
2

The typical QIF approach that uses the estimation procedure in which initial parameter estimates are fixed inside CN .
3

The QIF approach using the weighting matrix proposed by Han and Song [12].
4

Choice of t2
N

or Ot2
N

with the QIF’s proposed weighting matrix led to equivalent results, except for the analysis in which
O�N D 0:91. Here, this is the estimated weight using t2

N
. When Ot2

N
is used, O�N D 0:89.

standard error (SE) estimates utilize a correction based on the work of Mancl and DeRouen [17]. Results
are similar to results seen in the simulation study of scenario 3. Specifically, only small, but notable,
differences existed in parameter and SE estimates from GEE and both the typical and proposed QIF
approaches. Furthermore, relative to the other methods and when a working AR-1 correlation structure
is incorporated, use of the weighting matrix proposed by Han and Song [12] gave notably larger SE
estimates for Ǒ1 and Ǒ3 and distinctly smaller values for Ǒ3. Additionally, large values of O�N were uti-
lized with our proposed weighting matrix for the QIF approach, resulting in estimates that were similar
to or the same as parameter and SE estimates from GEE. The use of four covariates in the model is
partially the reason for these large values of O�N , as the dimension of, and thus variability within, CN
increases with the number of covariates [8], which leads to an increase in the allocated weight to the
model-based matrix.

It is interesting to note that when the outlying seizure counts from the one patient are included, use
of the typical QIF resulted in smaller SE estimates for Ǒ1 and Ǒ2 as compared with GEE and use of
the proposed QIF, likely because of the original QIF’s robustness to this one subject’s outcomes. This
result suggests that the proposed QIF will not be as robust to outliers as the original QIF, particularly
when O�N > 0. However, after excluding this subjects’ observations from the analyses, SE estimates
for Ǒ3 were smaller for GEE and the proposed QIF approach, whereas only negligible differences were
observed for other SE estimates. We do caution, however, that we cannot make decisive conclusions
with respect to estimation precision for the different analyses of this dataset because results are based on
estimated, rather than true, SEs.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3260–3273
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6. Concluding remarks

Although the QIF method has a theoretical efficiency advantage over GEE, its estimation performance
may actually be inferior in some finite-sample settings. To improve the QIF method in this regard, we
proposed a new weighting covariance matrix, which is related to the weighting matrix proposed by Han
and Song [12], that is a weighted combination of corresponding model-based and empirical covariance
matrices, optimally taking their respective bias and variability into account. Specifically, the utilized
weight minimizes the expected quadratic loss of the proposed matrix and allows for the implementation
of an asymptotically optimal weighting matrix, thus maintaining the QIF’s theoretical efficiency.

In practice, the optimal weight, �N , needs to be estimated, and a simulation study covering general
longitudinal study and CRT scenarios showed, overall, that the proposed QIF approach was superior to
the typical QIF, the QIF of Han and Song [12], and GEE. Specifically, MSEs from the proposed QIF
were always similar to or smaller than the corresponding MSEs from GEE. Furthermore, although in
some settings the MSEs from the typical QIF were slightly smaller than MSEs from the proposed QIF,
the typical QIF’s estimation performance was notably inferior to that of GEE’s and our proposed QIF’s
in many other settings in which N was not large. Additionally, even for large N , we caution against the
general usage of the weighting matrix proposed by Han and Song [12], as this QIF approach was detri-
mental relative to the other methods in multiple settings, while only performing better than our proposed
weighting matrix in one scenario, as their weighting matrix gives weight to a matrix that does not model
the true covariance matrix. In practice, we do not know how large N must be such that the typical QIF
and our proposed version produce estimates with similar MSEs, and we therefore suggest the use of our
proposed weighting matrix for anyN . Additionally, as the sample estimate for the variability in CN con-
tains bias, two different methods for obtaining O�N with our proposed weighting matrix were suggested.
However, no notable differences were seen in terms of estimation performance, except in some CRT
settings, implying that either approach can be utilized.

How robust the proposed QIF method will be to outliers will depend on how much estimated weight
is given to the model-based covariance matrix. Specifically, this approach will be more (less) robust to
outliers relative to GEE (the typical QIF) when this weight is less than 1 (greater than 0). Furthermore,
as both versions of the proposed weighting matrix are asymptotically optimal, the QIF’s large-sample
properties are maintained, and the inference function values can still be used as test statistics. Future
research is needed to determine the validity of the proposed QIF as a test statistic, however, as it partially
employs a covariance matrix that could be biased.

An R function that implements the proposed QIF approach can be obtained by contacting the author
at philip.westgate@uky.edu.

Appendix

General forms for given proofs come from the work of Han and Song [12] and Ledoit and Wolf [15].
Following Han and Song [12], we let c be a finite, generic constant that can change in value. Additionally,
define <K1;K2 >D tr

�
K1K

T
2

�
=p for some arbitrary p � p matrices K1 and K2 [15].

All proofs assume that jjMN �†N jj
2 > 0 and EŒjj OMN �CN .ˇ/jj

2� does not converge to 0. Specif-
ically, we assume that the working covariance structure is misspecified in some manner. In reality, we
have N <1, and even if the covariance structure is correctly specified for all data, our method will still
work. Additionally, if EŒjj OMN �CN .ˇ/jj

2�! 0, for largeN , it would not make a difference how much
weight is given to OMN and CN .ˇ/.

The proof that �N D �2N =
�
˛2N C �

2
N

�
minimizes E

�ˇ̌ˇ̌
C �N �†N

ˇ̌ˇ̌
2
�

closely resembles the corre-
sponding proof given by Ledoit and Wolf [15].

The following proofs are based on the lemma given by Han and Song [12] and its corresponding con-
ditions. The first two parts of their lemma are equivalent in our scenario, whereas ı2N D ˛2N C �

2
N is

easily verified. Additionally, using arguments similar to Han and Song [12], we can show that jjMN jj,
ı2N , and ˛2N remain bounded, whereas Han and Song [12] show that �2N is bounded and �2N ! 0.

We now prove that d2N � ı
2
N converges in quadratic mean to 0 as N ! 1, under the assumption

that E
h
jj OMN �MN jj

4
i
! 0 as N ! 1. Han and Song [12] proved that E

��
Nt2N � �

2
N

�
2
�
! 0 as

N !1, and the proof that E
��
t2N � �

2
N

�
2
�
! 0 as N !1 then follows from Ledoit and Wolf [15].

The derivation for the bias in t2N and the proof that E
��
Ot2N � �

2
N

�
2
�
! 0 asN !1 are given at the end

of this Appendix. The fact that E
��
a2N � ˛

2
N

�
2
�
! 0 then follows.
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Proof
d2N�ı

2
N D

�
jjCN .ˇ/�MN jj

2 �E
�
jjCN .ˇ/�MN jj

2
��
Cjj OMN�MN jj

2�2 < CN .ˇ/�MN ; OMN�
MN >. Following Han and Song [12], we show that the expected value of the square of each of
these three terms goes to 0, thus proving E

��
d2N � ı

2
N

�
2
�
! 0. With respect to the first term,

jjCN .ˇ/�MN jj
2�E

�
jjCN .ˇ/�MN jj

2
�
D ŒjjCN .ˇ/jj

2�E.jjCN .ˇ/jj
2/��2 < CN .ˇ/�†N ;MN >.

Han and Song [12] proved that EŒ.jjCN .ˇ/jj2 � EŒjjCN .ˇ/jj2�/2� ! 0. When the Cauchy–Schwarz
inequality is used, EŒ.2 < CN .ˇ/�†N ;MN >/

2�! 0 as N !1. The expected value of the square
of the second term converges to 0 by assumption. Finally, when the Cauchy–Schwarz inequality is used,
EŒ.< CN .ˇ/�MN ; OMN �MN >/

2�! 0. �

We now prove two theorems similar to those given by Han and Song [12]. We note that five conditions
given by Han and Song [12] must be met for the previous proofs and both theorems to be valid.

Theorem 1
For ˇ 2B, E

�ˇ̌ˇ̌
C �N �†N

ˇ̌ˇ̌
2
�
! 0 as N !1, implying that C �N �†N ! 0.

Proof of theorem 1
0 6 jjC �N � †N jj2 6

�
�2N =ı

2
N

�2
jjMN � †N jj

2 C jjCN .ˇ/ � †N jj
2 C 2

�
�2N =ı

2
N

� �
˛2N =ı

2
N <

MN � †N ; CN .ˇ/ � †N >, which has an expectation that converges to 0 because

E
h�
�2N =ı

2
N

�2
jjMN �†N jj

2
i
D �2N

�
�2N =ı

2
N

� �
˛2N =ı

2
N

�
6 �2N ! 0 and E

�
2
�
�2N =ı

2
N

� �
˛2N =ı

2
N

�
<MN �†N ; CN .ˇ/�†N >

�
D 0. �

Theorem 2
For ˇ 2B, EŒjj OC �N �†N jj

2�! 0 as N !1, implying that OC �N �†N ! 0.

Proof of theorem 2
Following Ledoit and Wolf [15], 06 jj OC �N �C �N jj2 6 jj OMN �MN jj
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and Ledoit and Wolf [15] proved that E
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We have now shown that E
h
jj OC �N �C

�
N jj

2
i
! 0 as N ! 1. Using this in conjunction with

Theorem 1 and the proof given by Han and Song [12], we have E
h
jj OC �N �†N jj

2
i
! 0. �

We now derive the bias in Nt2N and then prove that E
h�
Ot2N � �

2
N

�2i
! 0 as N !1.
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PN
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.1=N 2/
PN
iD1 var.xi /D .1=N 2/

PN
iD1 	

2
i , Nt2N estimates var. NxN / with .1=N 2/

PN
iD1.xi � NxN /

2, and

.1=N 2/

NX
iD1

E
h
.xi � NxN /

2
i
D Œ.N � 1/=N �Var. NxN /C .1=N

2/

NX
iD1

�2i � .1=N
3/

 
NX
iD1

�i

!2
:
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As .N � 1/=N � 1, we ignore the first term, and therefore we can approximate the bias of

the corresponding arbitrary element within Nt2N by using .1=N 2/
PN
iD1 �

2
i � .1=N

3/
�PN

iD1 �i

�2
.

Because we need an estimate for the sum of the variances for each of the .2p/2 elements compris-
ing CN .ˇ/, we need to sum the biases from each of the variance estimates, leading to Bias

�
Nt2N
�
�

.1=N 2/
PN
iD1 jjCovŒgi .ˇ/�jj2 � .1=N 3/jj

PN
iD1 CovŒgi .ˇ/�jj2. We can verify that the bias terms go to

0 as N !1 when using model-based covariances.

We now prove E
h�
Ot2N � �

2
N

�2i
! 0 as N !1.

Proof

We have already established that E
h
Nt2N �

bBias
�
Nt2N
�i
DE

�
Nt2N
�
�bBias

�
Nt2N
�
! 0.

h
Nt2N �

bBias
�
Nt2N
�i2
D
�
Nt2N
�2
C

"
.1=N 2/

NX
iD1

ˇ̌ˇ̌
BiRi .˛/B

T
i

�ˇ̌ˇ̌2#2
C .1=N 2/jjMN jj

4

� 2Nt2N

"
.1=N 2/

NX
iD1

ˇ̌ˇ̌
BiRi .˛/B

T
i

�ˇ̌ˇ̌2#
C 2Nt2N .1=N /jjMN jj

2

� 2

"
.1=N 2/

NX
iD1

ˇ̌ˇ̌
BiRi .˛/B

T
i

�ˇ̌ˇ̌2#
Œ.1=N /jjMN jj

2�

To prove that E

�h
Nt2N �

bBias
�
Nt2N
�i2	

! 0, we need to show that the expected value of each of these six

terms goes to 0 as N !1. The second, third, and sixth terms are each comprised of two terms that do
not contain random variables and have been shown to go to 0, therefore implying that these three terms
go to 0. Han and Song [12] showed that E

��
Nt2N
�
2
�
! 0. The fourth and fifth terms are comprised of a

respective bias term and Nt2N . As we have already shown that the bias terms are bounded and both the bias
terms and Nt2N go to 0, we therefore have the result that the fourth and fifth terms also go to 0.

Following Han and Song [12], E


�
Nt2N �

bBias
�
Nt2N
�
� �2N

�2�
D E

�h
Nt2N �

bBias
�
Nt2N
�i2	

� 2�2N

E
h
Nt2N �

bBias
�
Nt2N
�i
C
�
�2N
�2
! 0 as N ! 1, and the work by Ledoit and Wolf [15] proves that

E
h�
Ot2N � �

2
N

�2i
! 0 as N !1. �
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