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Abstract 

To investigate the potential of using Landsat imagery to detect grassland biophysical conditions, 

in particular biomass and biodiversity, harvested aboveground biomass and biodiversity were 

recorded along an ecological gradient in Inner Mongolia Autonomous Region (IMAR), China. 

Simultaneously vegetation spectral signatures were recorded by an analytical spectral device 

(ASD) Fieldspec 3 spectrometer. Vegetation indices (VIs) were calculated from the field 

spectrometer data following the same method as that of traditional Landsat-derived indices. 

Spatial regression analysis was used to assess the relationships between biomass and biodiversity 

and VIs. Based on maximum log likelihood and Akaike’s Information Criterion (AIC), we 

determined that the spatial error model between the log-transformations of both fresh biomass 

(lnBiom_f) and RVI (lnRVI) (R
2
=0.795, log = -13.77, AIC = 31.54) performed best in predicting 

fresh biomass for all sites. And the spatial error model between the log-transformations of both 

biodiversity (lnBiod) and RVI (lnRVI) (R
2
=0.763, log = -0.70, AIC = 5.40) performed best in 

predicting biodiversity through the ecological gradients in the entire study area. When predicting 

dry biomass, the spatial error model between the log-transformations of both dry biomass 

(lnBiom_d) and RVI (lnRVI) (R
2
=0.662, log = -20.28, AIC = 44.55) was the best, but the 

estimations for dry biomass were generally poor. This study verifies that Landsat data can 

reasonably monitor grassland biophysical conditions across large areas and different ecoregions. 
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Introduction 
Covering about 40% of the global land area (Moore, 1966; Chapin et al., 2001), natural 

grasslands and savannas are undoubtedly among the most significant terrestrial ecosystems.  

They are also the dominant ecosystems in the vast semi-arid regions of the Eurasian continent 

(Sha et al. 2008). Unfortunately, due to global climate change, fast-growing human population 

and increasing grazing intensity, grassland degradation and desertification has been a great 

concern since the 1980s, especially in the Inner Mongolia Autonomous Region (IMAR), China 

(He et al., 2005; Kawamura et al., 2005). For example, over the past 50 years (1961-2010), the 

average grass productivity of IMAR has decreased from 1871 kg/ha to about 900 kg/ha, and 

nearly 90% of these grasslands are at various stages of degradation (Wang 2012). In order to 

promote grassland conservation and restoration, the accurate monitoring of aboveground 

grassland biophysical conditions - in particular biomass and biodiversity - is crucial.  

Broadly speaking, biomass is the total mass of living matter (Ricklefs 2010). In this study, 

we concentrate on vegetation, or grass, within grassland areas of the Mongolian Plateau. There 

are two kinds of biomass for grass collected from the wild, namely fresh biomass and dry 

biomass. Fresh biomass (often also called wet biomass) is the mass of the fresh grass collected 

from the field. Fresh grass is dried in a heater at a certain temperature for certain length of time 

to make sure that all moisture is evaporated (Bai et al. 2008), and the weight of the remaining 

grass is the dry biomass. Because it includes the water content of plants, the amount of wet 

biomass is more responsive to changes in moisture conditions, driven by changes in the weather, 

whereas day biomass is a measure of the amount photosynthetic activity carried out by annual 

plants over the period of a season and is less sensitive to recent weather. 

Biodiversity refers to the variation among organisms and ecosystems, from the genetic 

variation within populations, morphological and functional differences among species, to 
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differences in biome structure and ecosystem process (Ricklefs 2010). In this study, we restrict 

our focus to biodiversity within grassland communities, measured as the number of species (i.e. 

species richness) occurring within the study area (Ricklefs 2010). 

Biomass and biodiversity are both useful and important aspects of grassland ecosystem 

conditions. They are affected by climate change (Bai et al. 2008), and can be crucial parameters 

of terrestrial ecosystem process-based models (Ren et al. 2011). One way to monitor them is to 

conduct field surveys in the study area. Surveyors will usually record sample quadrat information 

on location, canopy structure, above-ground biomass, and the number and name of plant species 

(Bai et al. 2008). Although this traditional method can provide the most accurate vegetation 

information, it usually requires large amounts of sample quadrats, and is thus very time-

consuming and expensive, especially when covering large areas (Xie et al., 2009).  

In an effort to address these drawbacks, demand for applying remote sensing technology to 

grassland monitoring has been increasing because it can repeatedly monitor large scale with 

relatively lower costs. Remote sensing relies on spectral responses, and airborne and field 

spectrometer readings are a way of measuring spectral responses. Several works have shown the 

possibility and remarkable ability of using these spectrometers to detect grassland biomass and 

biodiversity (Mutanga 2004; Cho et al. 2007; Ren et al. 2011; Gao et al. 2012; and Rocchini 

2007). Because of the chlorophyll and water in plants, healthy green vegetation has higher 

spectral reflectance in green wavelengths than in red, and a steep increase in reflectance in the 

near-infrared wavelengths. But for dry grass, the spectral reflectance will increase gently all the 

way from blue toward near-infrared wavelengths (Du et al. 2004). Spectral heterogeneity is more 

likely to occur in vegetation communities with higher level of diversity (Rocchini 2007; Palmer 

2002). If spectral responses are sensitive to vegetation conditions and diversity, there is some 
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hope that satellite-imaging sensors can be used for estimating the same quantities. However, 

differences in sensor spectral and spatial resolution can reduce the sensitivity to vegetation 

conditions (Mutanga et al. 2004; Ren et al 2011). Mutanga et al. (2004) found out that when 

estimating the biomass of tropical grassland, narrow-band NDVI derived from spectrometer 

performed much better than standard NDVI (R
2
 = 0.78 vs. R

2
 = 0.25); the study of Ren et al. 

(2011) also showed that red-edge reflectance curve area method can better predict green 

aboveground biomass than traditional NDVI derived from Landsat in desert steppe.  

Of the remote sensing satellites and sensors, the Landsat series of satellites has long served 

as effective tools for monitoring grassland dynamics throughout the world. The most widely used 

Landsat data is that collected by the multispectral sensors, Thematic Mapper (TM) on Landsat 4 

and 5 and Enhanced Thematic Mapper Plus (ETM+) on Landsat 7. Using Landsat data, coupled 

with ground observations, can provide acceptable and affordable estimates of biomass and 

biodiversity (Li and Liu, 2001; Zheng et al., 2004).  

Statistical models have been used to build empirical relationships between Landsat-derived 

and other satellite-derived spectral data (using either original spectral bands or vegetation indices) 

and vegetation variables. There have been several efforts to build regression models to estimate 

grassland aboveground biomass using multispectral satellite data (Anderson et al., 1992; Schino 

et al. 2003; Xie et al. 2009). Anderson et al. (1992) developed bivariate models to examine the 

relationships between vegetation index (i.e., NDVI) derived from Landsat TM data and the 

aboveground biomass on semi-arid rangelands in northeast Colorado, USA. Although the results 

were not very satisfying due to sample size, they did reveal significant relationships between 

biomass and vegetation indices. Using refined ground campaigns carried out in previous years in 

central Italy, Schino et al. (2003) developed a simple linear regression function between 
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vegetation indices and the in-situ ground measurements. Indices that have been tested include 

NDVI and transformed soil adjusted vegetation index (TSAVI; Baret & Guyot 1991). They 

concluded that the NDVI provides better accurate estimate of grass biomass. Based on this idea, 

Xie et al. (2008) developed an artificial neural network (ANN) model to predicting biomass in 

the Xilingol River Basin in Inner Mongolia, China. They included spectral reflectance from 

Landsat Band 3 and 4, and reached a coefficient of determination of 0.817. 

Landsat-derived spectral data have also been incorporated to predict or assess vegetation 

biodiversity for tropical trees (Gillespie et al. 2009), boreal plants (Gould 2000; Parviainen et al. 

2009), and wetland marsh (Rocchini, D. 2007; Rocchini et al. 2007). The study of Gould (2000) 

show high correlation (r=0.808) between NDVI and vascular plant species richness. Similarly, 

Rocchini (2007) found out that vegetation species richness was highly correlated to both 

Quickbird image heterogeneity (r=0.69), and resampled 60 m Landsat ETM+ images (r=0.69).  

Although several studies have shown the possibility of using Landsat data to estimate grass 

biomass (Anderson et al., 1992; Schino et al. 2003; Xie et al. 2009) and biodiversity (Rocchini, 

D. 2007; Rocchini et al. 2007), as reviewed above, they were all taken in small areas or focused 

on one particular kind of grassland. To better monitor the grassland conditions in Inner Mongolia, 

China, the objective of this work is to investigate the responses of Landsat data to grassland fresh 

and dry biomass and species richness across an ecological gradient on the Mongolian plateau. I 

explore the possibility of estimating vegetation biomass and biodiversity by developing simple 

regression models. I first calculated vegetation indices (VI) measured by the spectrometer 

following the same method as that of Landsat, and their relationships to biomass/biodiversity. 

Then I relate biomass and biodiversity to VIs derived from Landsat imagery, and compare the 

predictive ability of Landsat and that of the spectrometer.  Following this introduction, I briefly 
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introduce the study area and field data collection procedures. Then I illustrate the methods of 

processing the source data, as well as the statistical models applied for linking Landsat, in-situ 

hyperspectral data to the ecological data. The outcomes are presented in Results section. Finally, 

I will discuss the significance of the results, drawbacks of the analysis, and possible future 

improvements. 
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Study Area 
This study was conducted on the Mongolian Plateau in the Inner Mongolia Autonomous Region 

(IMAR) of China (Figure 1). Covering about 66% of the region’s total land area, grasslands are 

the dominant ecosystem type of IMAR (Bai et al. 2008).  In this study, 16 sites on the Mongolia 

Plateau were selected along a northeast-southwest transect, running from 41.86°-49.93° N 

latitude and 111.94°-120.42° E longitude. This transect covers mainly three vegetation 

community types. These are in order of their descending trend of annual precipitation: meadow 

steppe, typical steppe, and desert steppe. Geographically, they grade from northeast to southwest 

respectively. Most of the study area has a gentle ground slope with elevation ranging from about 

600 m above sea level (ASL) in the northeast to 1500 m ASL in the southwest. The mean annual 

temperature (MAT) ranges from -1.5°C to 5.2°C, and mostly the further southwest, the warmer 

(Bai et al. 2008). However, the mean annual precipitation (MAP) presents a descending trend 

from northeast to southwest, ranging from about 180 to 500 mm (Bai et al. 2008). Approximately 

70-80% of precipitation occurs in the growing season (May to August), synchronized with the 

warmer months of the year (Bai et al. 2008).   

Within the study area, plant community types were found to have various levels of biomass, 

species richness, and MAP, the last of which is the major determinant of vegetation types. The 

meadow steppe in the northeast is mainly dominated by Carex pediformis, Filifolium sibiricum, 

Stipa baicalensis, Stipa krylovii, and Leymus chinensis. This vegetation community also has the 

highest biomass, species richness, and MAP. Dominated by Leymus chinensis, Stipa grandis, and 

Anemarrhena asphodeloides, the typical steppe shows intermediate levels of biomass, species 

richness, and MAP. Finally at the southwest end of the transect, the desert steppe is mostly 

dominated by Artemisia frigida, Allium polyrhizum, Ceratoides latens, Salsola collinsa, and 

Stipa klemenzii, and presents the lowest biomass, species richness, and MAP (Qi et al. 2008). 
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Methods 

 Field data processing 
A field survey was conducted by a team from the Institute of Botany, Chinese Academy of 

Sciences, using a stratified sampling design during August, 2010. The sample sites were mainly 

adopted from Bai et al. (2008), and located with considerable respect to travel distance and 

availability. The data were collected at 16 sites, distributed among strata as follows: seven sites 

in meadow steppe, three in typical steppe, and six in desert steppe. For most of these sample sites, 

three replicate plots were sampled. The plot size was 90 m by 90 m, with approximately 50 m 

distance between each replicate. In meadow steppe, three of the six sites had permanent fences. 

For these three sites, six replicate plots were sampled: three located inside the enclosure, and 

three outside. In total, 57 field plots were sampled across the ecological gradients. 

Nine 1 m by 1 m quadrats were sampled along the two diagonals within each square plot 

(Figure 2b). Within each quadrat, longitude/latitude (decimal degrees), canopy height (cm), 

canopy cover (%), above ground fresh biomass (g/m
2
), and the number and name of plant species 

(# and text), were measured. Later in the laboratory fresh grass was dried in a heater at 65°C for 

48 hours to make sure that all moisture was evaporated (Bai et al. 2008). Then dry biomass (g/m
2
) 

was measured. A GPS device was used to measure the latitude and longitude at the quadrats and 

plot corners.  

Meanwhile, 16 in situ canopy spectral samples, eight each along the two diagonals of each 

plot (Figure 2a), were recorded using Analytical Spectral Devices (ASD) FieldSpec 3 

spectrometer. The spectrometer has a spectral range from 350 to 2500 nm with a sampling 

interval of 1.4 nm for spectrum 350-1000 nm and 2 nm for spectrum 1000-2500 nm. The 

sampled spectra were later interpolated by the ASD software to produce readings at every 1 nm 

(ASD Inc., Boulder, Colorado, USA). 
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The spectral samples were recorded between 10:00 am and 2:00 pm GMT +8 under sunny 

and clear weather conditions. With a 25° view angle, the sensor scanned from a 1.5 m height 

looking towards the nadir, thus the field of view (FOV) at the ground was 1.4 m in diameter. The 

equipment itself and any shadow were carefully avoided within the FOV. Each of the 16 

replicates in one plot was automatically sampled ten times by the device. The sensor was 

calibrated with a white reference panel after every eight measurements to offset any variations in 

solar illuminations and weather conditions. The radiances recorded by the sensor were then 

converted to reflectance using the software package ViewSpecPro (ASD Inc., Boulder, Colorado, 

USA).  

The converted reflectances were displayed in MATLAB (MathWorks Inc., Natick, 

Massachusetts, USA). First, measurements from the spectral range corresponding to the 

combined Landsat visible and infrared bands (Table 1) were kept and displayed (Figure 3). In the 

next step, outlier measurements were deleted and the remaining measurements taken at a given 

sample point were averaged to represent the spectral reflectance of that point. Then, all 16 

replicates in one plot were averaged to represent the spectral reflectance of that plot (Figure 4). 

Finally, the measurements were averaged according to the spectral ranges of Landsat bands, so 

that we can calculate VIs from field spectrometer following the same method as that of Landsat-

derived VIs.  

 Landsat imagery processing 
Five Landsat-5 TM scenes from 23 July to 5 September 2010 were acquired from USGS Earth 

Explorer (http://glovis.usgs.gov/) for this study. The processing levels are terrain corrected 

processing. The criteria for selection of imagery were: 

(1) No clouds or shadows should occur above the sampling sites.  
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(2) Scene date should be as close as possible to field sampling dates (Table 2), with respect 

to grassland phenology. 

(3) Ideally, Landsat scenes and in-situ spectrometer should capture the spectral signatures 

of the grass in the same phase of growth, and under the same weather conditions.  

The scenes were radiometrically and atmospherically corrected using ATCOR 3 module in 

ERDAS IMAGINE 2010. A digital elevation model (DEM) covering the study area with a 

spatial resolution of 30 m created from ASTER data was used in the atmospheric correction. All 

data were registered in a projected coordinate system based on the Albers Conical Equal Area 

projection. 

To match the 90m by 90m ground sampling plots, the ArcGIS resample tool was used to 

create a 90m pixel size layer from the original 30m spatial resolution Landsat scene. For each 

sample plot, the processing extent was set to ensure that the plot’s center overlapped the pixel’s 

core, so that the entire plot was located within the same pixel (Figure 5). Both bilinear 

interpolation (BI) and cubic convolution (CC) were tested for resampling, and there was no 

apparent difference in the resulting digital number values. BI was used for resampling. 

 Vegetation indices 
Digital number values extracted from Landsat-5 TM bands 1, 2, 3, 4, 5 and 7 were used to 

compute the vegetation indices for input to the statistical analyses. The thermal infrared band 

(band 6) was not used in this study. Four vegetation indices were selected as potential predictive 

variables. These were the ratio vegetation index (RVI), NDVI, soil-adjusted vegetation index 

(SAVI) and modified soil-adjusted vegetation index (MSAVI). 
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RVI was reported in one study to have the highest correlation with sampled biomass (Ren 

2008). It is produced by the following equation, where NIR is the Landsat near infrared band 

values (band 4) and Red is the red band values (band 3). 

     
   

   
 

Developed by Tucker (1979), NDVI is produced by the equation below. The NDVI reflects 

the degree of vegetation greenness on a scale between -1 and 1, with 1 being the greatest value. It 

was chosen because of its sensitivity to vegetation structure and productivity, and because it has 

been used to predict vegetation biomass for decades by many studies (Anderson et al., 1992; 

Schino et al. 2003; Mutanga 2004; Cho et al. 2007; Xie et al. 2009; and Gao et al. 2012). 

      
       

       
 

Since nearly one-half of the sampling plots (27 out of 57) are located in arid/semi-arid 

areas, the spectral reflectance from other land elements, especially soil, should be taken into 

consideration. Huete (1988, p. 295) developed SAVI to alleviate the influence of background soil 

brightness by incorporating a soil adjustment factor L and claimed it can “eliminate soil-induced 

variations in vegetation indices.” SAVI is calculated with the following equation.  

      
              

         
 

In this study, for each plot, the adjustment factor L was set to the average canopy coverage of the 

nine replicates.  

Later Qi et al. (1994) argued that the soil adjustment factor L should vary in accordance 

with the amount of vegetation present, and replaced the constant with a variable function. This 

resulted in the modified SAVI, which is calculated with the equation below. 



12 

 

       
         √                    

 
 

 Statistical analysis 
Simple linear regression analysis was used to analyze the relationships between each measure of 

grassland biophysical condition and each calculated vegetation index. The dependent variables 

were fresh biomass (Biom_f ) and dry biomass (Biom_d), as well as biodiversity (Biod), which 

was represented by species richness, (i.e., the number of species occurred in the whole sampling 

plot). The independent variables were the four vegetation indices, RVI, NDVI, SAVI and 

MSAVI. Natural log transformations of above variables were also tested in the regression models. 

Because plots within the same sampling site were relatively close to each other, the 

assumption of independence in the samples was likely violated, thus spatial autocorrelation was 

tested and taken into account.  The most commonly used index for measuring spatial 

autocorrelation of residuals is Moran’s I. The values of Moran’s I fall in the range between -1 

(indicating perfect dispersion) and1 (perfect clustering), and a zero value indicates a totally 

random distribution.   

There are two primary ways to deal with spatial autocorrelation in regression models. First, 

if the observed values of dependent variable values are directly influenced by the neighboring 

values, we can treat spatial correlation as a process or effect of interest, and add a “spatially 

lagged” dependent variable among the covariates (Anselin 1988; Ward & Gleditsch 2008).  This 

is the spatial lag model, which is illustrated in the following equation: 

y = βx + ρWy + ε 

where x is a matrix of observations on the independent variables, Wy stands for the spatially 

lagged dependent variables for weights matrix W, ρ is the spatial coefficient, and ε represents a 

vector of error terms.  
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Another way to address spatial issues is to use a spatial error model. The spatial error 

model is appropriate for situations where the dependent variable is not influenced by neighbors, 

but by some spatially clustered feature that is omitted from the model. Here we incorporate the 

spatial effects through an error term: 

y = βx + λWε + ξ 

where Wε stands for the vector of error terms, spatially weighted using the weights matrix W; λ 

is the spatial error coefficient, and ξ is a vector of uncorrelated error terms.  

The correlation coefficient (R
2
) is calculated based on the ratio between explained and 

unexplained (residual) variation, which requires the residuals to be independent from each other. 

The main reason we use spatial regression is that the residuals are not independent, thus the 

variances of parameter estimates are not accurately obtained. Because spatial regression requires 

a maximum likelihood estimator, R
2
 is no longer appropriate for stating and comparing fitness of 

the regression model. Instead, we will compare the log likelihood and Akaike Information 

Criterion (AIC) in the test report. Log likelihood is the measure for fit used by maximum-

likelihood estimation (MLE) of the model. It provides estimates for the model parameters. In this 

case we would select the model with the highest log likelihood. Meanwhile AIC is a criterion for 

choosing the best one among a group of competing statistical models (Anselin 2005). We prefer 

the model with the lowest AIC.  

Models were developed for all sites and, to analyze the effects of variations among 

ecoregion types, for only the meadow steppe sites. Meadow steppe sites was the only ecoregion 

for which we had sufficient observations (n=30) to perform an ecoregion-specific analysis. 

The statistical analyses were performed in OpenGeoDa (Anselin 2012). For each pair of 

dependent and independent variables, I first perform a classic linear regression, and performed 



14 

 

diagnostics for spatial dependence in the residuals. If the test of the residual’s Moran’s I showed 

a significant result (p<0.05), which means spatial autocorrelation affected the results of the 

regression, a spatial lag model or spatial error model was implemented. The detailed model 

selection process can be found in Anselin (2005). In some instances, the model selection process 

was incomplete. These cases were usually due to heteroskedasticity of the variables, or 

misspecification of the model. Under these circumstances I dropped the particular relationship 

and use the either or both log-transformations of the original variables. In cases where none of 

the models with transformed variables produced results, the only method available was to discard 

this VI from the model. 
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Results 
The correlations between Landsat-derived and in-situ hyperspectral VIs fall in the range from 

0.92 to 0.94 (RVI: 0.93, NDVI: 0.94, SAVI: 0.92, MSAVI: 0.93), which suggest a close and 

positive relationship. This close relationship implies that they have the potential to have similar 

predictive abilities.  

The relationships between the dependent variables and the four selected VIs (i.e., RVI, 

NDVI, SAVI and MSAVI) show that both biomass and biodiversity had positive relationships 

with all VIs (Table 3 and 4). Reasonably strong relationships (i.e., R
2 

> 0.70) were obtained for 

both biomass and biodiversity. The highest levels of predictive ability were generally observed 

for biomass, followed by biodiversity. Dry biomass consistently had the lowest levels of 

predictive ability (always R
2 

< 0.70). 

 Detecting fresh biomass 

Using VIs derived from field spectrometer, the models’ coefficient of determination fell in the 

range 0.590 to 0.803 (Table 3). The spatial error model between the log-transformed fresh 

biomass lnBiom_f and NDVI (R
2
=0.803, log = -9.44, AIC =22.88) was best for the model with all 

57 plots. For the 30 meadow plots, since the residual’s Moran’s I was not significant (Moran’s I 

= 0.074, p=0.81), the classic linear regression model was used. For this model, the models’ 

coefficient of determination varied from 0.274 and 0.360. The log-transformations of both fresh 

biomass (lnBiom_f) and NDVI (lnNDVI) resulted in the highest coefficient of determination 

(R
2
=0.360, p<0.001).  

As for the Landsat-derived VIs, the models’ coefficient of determination fell in the range 

0.684 to 0.795 (Table 4). The spatial error model between the log-transformations of both fresh 

biomass (lnBiom_f) and RVI (lnRVI) (R
2
=0.795, log = -13.77, AIC = 31.54) was the best in 

predicting fresh biomass for all plots. But for the meadow plots, because the Moran’s I 
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calculated on the residuals was not significant (Moran’s I = 0.038, p=0.49), the classic linear 

regression model was used. For this model, the models’ coefficient of determination varied from 

0.375 and 0.488. The log-transformations of both fresh biomass (lnBiom_f) and NDVI (lnNDVI) 

presented the highest coefficient of determination (R
2
=0.488, p<0.001). Field spectrometer data 

performed slightly better in predicting fresh biomass of all plots, but worse than Landsat in 

meadow plots.  

Detecting dry biomass 

Using field spectrometer derived VIs, the models’ coefficient of determination fell in the range 

0.472 to 0.603 (Table 3). The spatial lag model between the log-transformed dry biomass 

lnBiom_d and MSAVI (R
2
=0.603, log = -23.98, AIC =53.96) was best for the model with all 57 

plots. For the 30 meadow plots, since the residual’s Moran’s I was not significant (Moran’s I = 

0.074, p=0.81), the classic linear regression model was used. For this model, the models’ 

coefficient of determination varied from 0.155 and 0.173. Dry biomass (Biom_d) and the log-

transformation of NDVI (lnNDVI) presented the highest coefficient of determination (R
2
=0.173, 

p=0.02).  

As for the Landsat-derived VIs, the models’ coefficient of determination fell in the range 

0.467 to 0.662 (Table 4). The spatial error model between the log-transformations of both dry 

biomass (lnBiom_d) and RVI (lnRVI) (R
2
=0.662, log = -20.28, AIC = 44.55) was the best in 

predicting fresh biomass for all plots. But for the meadow plots, because the Moran’s I 

calculated on the residuals was not significant (Moran’s I = 0.038, p=0.49), the classic linear 

regression model was used. For this model, the models’ coefficient of determination varied from 

0.261 and 0.326. The log-transformations of both dry biomass (lnBiom_d) and NDVI (lnNDVI) 
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presented the highest coefficient of determination (R
2
=0.326, p<0.01). Landsat performed better 

in predicting dry biomass of both all plots and meadow plots. 

 Detecting biodiversity 

When using field spectrometer derived VIs, the models’ coefficient of determination fell in the 

range 0.696 to 0.719 (Table 5). The spatial lag model between the log-transformations of lnBiod 

and MSAVI performed the best in predicting species richness for both all plots (R
2
=0.719, log = -

4.82, AIC = 15.64). For meadow plots, the models’ coefficient of determination varied from 

0.341 and 0.472. The spatial error model between lnBiod and MSAVI (R
2
=0.472, log = -0.22, 

AIC = 4.44) was the best.  

When using Landsat-derived VIs, the models’ coefficient of determination fell in the range 

0.717 to 0.763 (Table 6). The spatial error model between the log-transformations of both 

biodiversity (lnBiod) and RVI (lnRVI) (R
2
=0.763, log = -0.70, AIC = 5.40) performed best for all 

plots. For meadow plots, the models’ coefficient of determination falls in the range between 

0.472 and 0.680. The spatial error model between lnBiod and MSAVI (R
2
=0.680, log = 5.44, AIC 

= -6.88) was superior for meadow plots. Landsat performed better in estimating biodiversity for 

both all plots and meadow plots. 
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Discussion 
The predictive ability of the VIs for fresh biomass was consistently better than that of dry 

biomass. This may suggest that instead of providing precise quantities about the amount of 

vegetation productivity over a season, and serving as an adequate substitute for ecological 

measurements, remote sensing is more capable of monitoring ecosystem conditions that change 

over a short time period. The sensitivity of fresh biomass to moisture conditions, for example, 

suggest that remote sensing can be used, and has been used, to monitor drought conditions in 

grasslands. 

When predicting fresh aboveground biomass, the field spectrometer data performed 

slightly better than Landsat for all sites across the ecological gradients. Due to the atmospheric 

effects that affect the Landsat measurements, but not those that come from the spectrometer, this 

result is as what I expected. However, that they both present reasonable potentials of predicting 

grassland biomass holds promise for the use of satellite sensors for measuring grassland 

condition. 

Models predicting all plots always performed better than for meadow plots. A possible 

reason may be the sample size and reduced variability of a single eco-region. Since we are not 

including the full variability between desert, typical and meadow steppe, meadow steppe is 

undoubtedly less diverse than the full set of sites; thus we may get poorer fit of the models. 

As for species richness, Landsat-derived VIs had a better predictive ability than the 

spectrometer-derived VIs. According to the Spectral Variation Hypothesis (Palmer, 2002), the 

foundation for satellite images to predict plant species richness is to capture the spectral 

differences of different plants. The reason Landsat-derived VIs performed better is likely due to 

the greater spectral variation being encompassed as Landsat sensors captured the spectral 

reflectance of the whole plot, whereas the spectrometer covering only 16 sample points with a 
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1.4-meter-diameter FOV. What’s more, the trimming and averaging of the spectral details 

captured by the spectrometer can result in significant losses of information, where continuous 

quantitative spectral reflectance was degraded into discrete bands. Using more of the information 

in the spectrometer signatures could surely improve the predictive ability of these data. The 

crucial point is to detect the potential spectral heterogeneity between different plant species. 

As for the drawbacks of this study, possible variations may come from the different dates 

between Landsat imagery and field survey (Table 2). I tried to ensure the dates were as close as 

possible and in the same grass phenological stage, but there were still inevitably gaps of 6 to 17 

days. What’s more, some of the models could not be estimated for some reason. This is not 

implausible because the variables were not independent. We substituted variables with their log-

transformed versions in attempt to fit the models. But there are still cases where we cannot use 

one particular VI to predict dependent variables. For example none of the Landsat-derived SAVI 

models can pass the spatial model selection process. Unfortunately, this makes a complete 

comparison of the predictability of each VIs for each ecological variable impossible. 
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Conclusion 
(1) The poor fitness of the dry biomass models indicates that VIs (both Landsat- derived and 

field spectrometer-derived) are not good indicators for the variable.  

(2) Landsat can decently reflect grassland biophysical conditions through gradients in Inner 

Mongolia, China. Landsat-derived RVI is best for estimating both fresh biomass and biodiversity 

through the gradients. The spatial error model between the log-transformations of both fresh 

biomass (lnBiom_f) and RVI (lnRVI) performed best in predicting fresh biomass for all sites. 

And the spatial error model between the log-transformations of both biodiversity (lnBiod) and 

RVI (lnRVI) performed best in predicting biodiversity through the ecological gradients.  

(3) VIs calculated from field spectrometer data following the traditional Landsat method 

performed slightly better in predicting fresh biomass than Landsat-derived VIs. But the latter 

work better in predicting biodiversity. 

(4) Instead of serving as an adequate substitute for ecological productivity measurements, remote 

sensing is more suitable for monitoring ecosystem conditions. 

(5) Limitations in the spatial-statistical modeling approach resulting from models that did not 

converge meant that the exploration and comparison of VIs for predicting ecological variables 

was incomplete. 
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Figures and tables 

 
Figure 1: Study area and sample sites. 
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                                                        (a)                                           (b) 

Figure 2: Spatial distributions of hyperspectral sampling points and ecological sampling quadrats 

in each field plot: (a) sampling patterns for ecological data; (b) sampling patterns for 

hyperspectral data. 

  

90 m 

90 m 90 m 

90 m 
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(a) 

 
(b) 

Figure 3: Spectrum corresponds to Landsat bands were kept while other parts of the spectrum 

were disposed. (a) ten measurements of one replicate; (b) mean and standard deviation interval 

of the ten measurements. 
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(a) 

 
(b) 
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Figure 4: Sixteen replicates in one plot were averaged to represent the spectral reflectance of that 

plot. (a) sixteen replicates of one plot; (b) mean and standard deviation interval of the sixteen 

measurements. 
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(a) (b) 

Figure 5: Landsat imagery was resampled from the original 30 m spatial resolution (a) to 90 m-

by-90 m-pixel layers (b). For each sampling plot, processing extent was set to ensure that the 

plot’s center would overlap the pixel’s core, so that the entire plot would locate within the same 

pixel. 
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Table 1: Landsat Bands 

Landsat Band Spectrum (nm)  

1 450-520 Blue 

2 520-600 Green 

3 630-690 Red 

4 760-900 Near-Infrared (NIR) 

5 1550-1750 Mid-Infrared (MIR) 

7 2080-2350 Mid-Infrared (MIR) 

 

Table 2: Ground sampling dates and corresponding Landsat scene dates 

 

Type Site Hyper Date 
Landsat Scene 

Path/Row 
Landsat Date 

Meadow 

1 30 Jul 
123/026 

23 Jul 

2 31 Jul 

3 2 Aug 123/025 

4 4 Aug 

123/026 
5 5/6 Aug 

6 7 Aug 

7 8/9 Aug 

Typical 

8 14 Aug 

123/029 24 Aug 9 15 Aug 

10 15 Aug 

Desert 

11 19 Aug 

126/030 13 Aug 
12 19 Aug 

13 21 Aug 

14 21 Aug 

15 25 Aug 
127/031 5 Sep 

16 25 Aug 
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Table 3: Coefficient of determination (R
2
), maximum log likelihood and Akaike’s Information Criterion (AIC), and estimated coefficients  for the 

relationships between fresh and dry-aboveground biomass and spectrometer-derived VIs. Bold numbers stand for best fit models; N stands for noon-

significant results (p<0.05); * implies incomplete model selection process and spatial regression models cannot be implemented. 

Indices 

Biomass ~ Spectrometer VIs 

All Meadow 

Fresh Dry Fresh Dry 

R
2
 slope intercept log AIC R

2
 slope intercept log AIC R

2
 slope intercept R

2
 slope intercept 

Biom ~ VI 

RVI * * 0.274 12.84 58.18 0.155 4.28 36.68 

NDVI * * 0.325 276.23 -53.54 0.173 89.61 1.00 

SAVI 0.590 130.53 -1.45 -282.1 570.355 0.472 51.49 5.33 -243.4 492.714 N N 

MSAVI 0.613 158.39 -1.35 -278.0 565.992 0.489 59.99 5.54 -242.2 490.393 N N 

  Biom ~ lnVI 

RVI * * 0.311 74.86 6.82 0.169 24.54 20.20 

NDVI * * 0.328 175.28 203.46 0.173 56.50 84.20 

SAVI 0.590 36.43 87.12 -281.9 569.757 0.478 15.19 41.84 -242.8 491.612 N N 

MSAVI * * N N 

  lnBiom ~ VI 

RVI 0.749 0.10 1.09 -18.49 42.974 * 0.303 0.11 4.18 0.157 0.08 3.57 

NDVI 0.803 2.72 3.08 -9.440 22.881 * 0.357 2.40 3.21 0.165 1.71 2.90 

SAVI 0.730 1.74 1.05 -20.14 46.273 0.589 1.38 1.07 -25.15 56.308 N N 

MSAVI 0.746 1.91 1.14 -18.12 42.245 0.603 1.51 1.12 -23.98 53.956 N N 

  lnBiom ~ lnVI 

RVI * * 0.343 0.65 3.73 0.166 0.47 3.26 

NDVI 0.797 0.97 5.22 -9.505 23.011 * 0.360 1.52 5.44 0.161 1.06 4.48 

SAVI 0.740 0.56 2.65 -18.14 42.283 0.595 0.41 2.16 -24.30 54.602 N N 

MSAVI 0.762 0.61 3.04 -15.06 36.127 * N N 

 



29 

 

 

Table 4: Coefficient of determination (R
2
), maximum log likelihood and Akaike’s Information Criterion (AIC), and estimated coefficients  for the 

relationships between fresh and dry-aboveground biomass and Landsat-derived VIs. Bold numbers stand for best fit models; N stands for noon-

significant results (p<0.05); * implies incomplete model selection process and spatial regression models cannot be implemented. 

Indices 

Biomass ~ Landsat VIs 

All Meadow 

Fresh Dry Fresh Dry 

R
2
 slope intercept log AIC R

2
 slope intercept log AIC R

2
 slope intercept R

2
 slope intercept 

Biom ~ VI 

RVI 0.728 20.02 26.35 -272.1 548.240 0.603 8.17 18.26 -236.1 476.291 0.375 18.54 28.35 0.261 6.88 23.25 

NDVI 0.684 208.51 -2.94 -275.0 554.050 * 0.421 388.60 -130.59 0.299 145.48 -36.58 

SAVI * * N N 

MSAVI * * N N 

  Biom ~ lnVI 

RVI 0.712 79.19 8.98 -273.0 549.927 0.590 31.61 11.93 -236.5 476.975 0.406 104.16 -42.23 0.286 38.82 -3.23 

NDVI * * 0.429 255.50 233.87 0.307 96.12 100.07 

SAVI * 0.467 13.96 37.24 -244.0 494.092 N N 

MSAVI * * N N 

  lnBiom ~ VI 

RVI 0.792 0.20 3.70 -15.24 34.473 0.667 0.18 3.08 -20.53 45.065 0.413 0.16 3.92 0.271 0.14 3.30 

NDVI 0.783 2.49 3.22 -14.63 33.257 * 0.477 3.43 2.51 0.316 2.91 2.09 

SAVI 0.712 1.48 0.82 -23.01 52.022 0.573 1.12 0.91 -27.07 60.138 N N 

MSAVI * * N N 

  lnBiom ~ lnVI 

RVI 0.795 0.89 3.42 -13.77 31.537 0.662 0.74 2.90 -20.28 44.554 0.455 0.91 3.29 0.300 0.77 2.77 

NDVI * * 0.488 2.26 5.72 0.326 1.93 4.83 

SAVI 0.715 0.46 1.98 -22.28 50.566 0.574 0.33 1.71 -26.84 59.670 N N 

MSAVI * * N N 
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Table 5: Significant coefficient of determination (R
2
), maximum log likelihood and Akaike’s 

Info Criterion (AIC) for the relationships between biodiversity and spectrometer-derived VIs. 

Bold numbers stand for best fit models; * implies incomplete model selection process and spatial 

regression models can’t be implemented. 

Indices 

Biodiversity ~ Hyperspectral VIs 

All Meadow 

R^2 slope intersect log AIC R^2 slope intersect log AIC 

Biod ~ VI 

RVI   0.396 3.98 18.57 -107.47 218.947 

NDVI 0.696 49.24 3.90 -196.09 396.182 0.436 87.78 -17.76 -106.79 217.578 

SAVI * * 

MSAVI * 0.500 84.47 6.62 -104.50 213.000 

  Biod ~ lnVI 

RVI 0.708 17.69 7.73 -194.81 393.621 0.443 24.03 1.24 -106.56 217.123 

NDVI * 0.403 53.68 62.86 -107.53 219.052 

SAVI * * 

MSAVI * 0.511 33.08 71.73 -104.21 212.422 

  lnBiod ~ VI 

RVI 0.706 0.08 0.90 -7.087 20.174 0.394 0.12 3.02 -2.520 9.039 

NDVI   
 

       * 
  

0.382 2.44 2.05 -2.883 9.765 

SAVI 0.711 1.74 0.99 -5.507 17.013 0.392 2.38 2.63 -1.675 7.351 

MSAVI 0.719 1.69 0.99 -4.821 15.641 0.472 2.45 2.69 -0.221 4.443 

  lnBiod ~ lnVI 

RVI * 0.409 0.68 2.55 -2.284 8.567 

NDVI * 0.341 1.46 4.27 -3.688 11.377 

SAVI * 0.387 0.94 4.47 -1.752 7.505 

MSAVI * 0.468 0.94 4.56 -0.285 4.570 
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Table 6: Significant coefficient of determination (R
2
), maximum log likelihood and Akaike’s 

Info Criterion (AIC) for the relationships between biodiversity and Landsat-derived VIs. Bold 

numbers stand for best fit models; * implies incomplete model selection process and spatial 

regression models can’t be implemented. 

Indices 

Biodiversity ~ Landsat VIs 

All Meadow 

R^2 slope intersect log AIC R^2 slope intersect log AIC 

Biod ~ VI 

RVI 0.761 5.29 8.91 -188.83 381.650 0.602 5.96 9.69 -102.23 208.452 

NDVI 0.717 54.00 1.79 -193.17 390.333 0.566 117.64 -36.28 -103.39 210.770 

SAVI * 0.591 146.20 -17.75 -101.38 206.753 

MSAVI * 0.719 134.01 -6.11 -97.823 199.647 

  Biod ~ lnVI 

RVI 0.745 20.42 4.88 -190.28 384.557 0.598 32.78 -11.43 -102.42 208.841 

NDVI * 0.529 74.00 72.30 -104.36 212.727 

SAVI * 0.557 52.36 89.07 -102.36 208.711 

MSAVI * 0.680 47.43 91.63 -99.455 202.909 

  lnBiod ~ VI 

RVI 0.767 0.17 2.60 -1.184 6.369 0.579 0.17 2.78 2.027 -0.054 

NDVI 0.746 1.94 2.28 -2.320 8.641 0.514 3.34 1.49 0.218 3.564 

SAVI * 0.554 4.23 1.99 2.454 -0.908 

MSAVI * 0.680 3.89 2.33 5.442 -6.884 

  lnBiod ~ lnVI 

RVI 0.763 0.71 2.42 -0.700 5.399 0.557 0.94 2.18 1.345 1.309 

NDVI * 0.472 2.08 4.56 -0.755 5.511 

SAVI * 0.521 1.51 5.07 1.622 0.756 

MSAVI * 0.629 1.36 5.14 3.619 -3.239 
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Appendix: Regression reports for best-fit models 
Classic linear regression between lnBiom_f and Landsat derived lnRVI for all sites. 
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Spatial error model between lnBiom_f and Landsat derived lnRVI for all sites. 
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 Moran’s I of (a) classic linear regression between lnBiom_f and Landsat derived lnRVI for all 

sites; (b) spatial error model between lnBiom_f and Landsat derived lnRVI for all sites. 

 

(a) 

 

(b) 
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 Classic linear regression between lnBiod and Landsat derived RVI for all sites. 
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Spatial error model between lnBiod and Landsat derived RVI for all sites. 
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Moran’s I of (a) classic linear regression between lnBiod and Landsat derived RVI for all sites; (b) 

spatial error model between lnBiod and Landsat derived RVI for all sites. 

 

(a) 

 

(b) 
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Classic linear regression between lnBiom_f and Landsat derived lnNDVI for meadow sites. 
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Moran’s I of classic linear regression between lnBiom_f and Landsat derived lnNDVI for 

meadow sites. 
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Classic linear regression between lnBiod and Landsat-derived MSAVI for meadow sites. 
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Spatial error model between lnBiod and Landsat-derived MSAVI for meadow sites. 
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Moran’s I of (a) classic linear regression between lnBiod and Landsat derived MSAVI for all sites; 

(b) spatial error model between lnBiod and Landsat derived MSAVI for all sites. 

 

(a) 

 

(b) 
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Classic linear regression between lnBiom_f and hyper NDVI for all sites. 
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Spatial error model between lnBiom_f and hyper NDVI for all sites. 
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Moran’s I of (a) classic linear regression between lnBiom_f and hyper NDVI for all sites; (b) 

spatial error model between lnBiom_f and hyper NDVI for all sites. 

 

(a) 

 

(b)  
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Classic linear regression between lnBiod and hyper MSAVI for all sites. 
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Spatial error model between lnBiod and hyper MSAVI for all sites. 
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Moran’s I of (a) classic linear regression between lnBiod and hyper MSAVI for all sites; (b) 

spatial lag model between lnBiod and hyper MSAVI for all sites. 

 

(a) 

  

(b)  
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Classic linear regression between lnBiom_f and hyper lnNDVI for meadow sites. 
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Moran’s I of classic linear regression between lnBiom_f and hyper lnNDVI for meadow sites. 
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Classic linear regression between lnBiod and hyper MSAVI for meadow sites. 
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Spatial error model between lnBiod and hyper MSAVI for meadow sites. 
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Moran’s I of (a) classic linear regression between lnBiod and hyper MSAVI for all sites; (b) 

spatial error model between lnBiod and hyper MSAVI for meadow sites. 

 

(a) 

 

(b)   
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