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ABSTRACT 

 

 In the first part of this work, we addressed the challenge of producing giant 

unilamellar vesicles (GUV) in solutions of physiologic ionic strength.  Methods of 

producing GUVs were limited previously to low salt concentrations with a few 

exceptions that typically required specific lipid compositions, specialized equipment, or 

complex protocols.  In this work, a dried film of agarose was coated with lipids and 

subsequently hydrated.  GUVs were formed in solutions of physiologic ionic strength 

from a variety of lipid compositions.  Solubilized agarose associated with the 

membranes of GUVs, but the membranes remained fluid. Water retention and 

increased surface area provided by the agarose molecules possibly contributed to 

orientation of lipid lamellae prior to hydration.  Hyperosmotic conditions provided by 

solubilized agarose between lamellae generated forces that led to swelling of the lipid 

film similar to electroosmotic forces produced during electroformation.  Fusion of 

adjacent liposomes occurred frequently in the first few minutes of formation.   

 In the second part of this work, we extended the technique to reconstitute a 

complex transporter, P-glycoprotein (P-gp), into giant proteoliposomes.  P-gp is 

important due to its role in the blood-brain barrier and because its (over)expression can 

cause multidrug resistance in cancer cells.  Most methods of reconstituting proteins 

yield proteoliposomes that are too small to discern individually, and so direct effects of 

potential P-gp modulators can be difficult to evaluate.  With P-gp reconstituted in giant 
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liposomes, the fluorescence of the solution inside liposomes was easily discernible from 

membrane or background fluorescence and enabled artifacts to be excluded.  We found 

that the presence of P-gp in the membrane increased membrane permeability and a 

higher rate of passive diffusion compared to liposomes that lacked P-gp.  Transport 

functionality of P-gp was confirmed by a significantly higher transport rate in the 

presence of ATP than without ATP or with a known inhibitor.  An ATPase assay verified 

ATP hydrolysis functionality of P-gp after reconstitution into giant proteoliposomes.  

Furthermore, patch clamp experiments revealed the presence of a chloride ion channel 

protein that co-purified from the host insect cells.  These assays demonstrate the 

usefulness of giant proteoliposomes for transport and patch clamp studies. 
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CHAPTER I 

 

Introduction and Background 

 

 

Biological cells are surrounded by a membrane that define the boundaries of the 

cells and separate their interiors from their environment.(1-3)  Cellular membranes are 

complex structures composed of phospholipids, proteins, and sterols.(1-3)  Additionally, 

carbohydrate groups may be covalently attached to membrane proteins and 

phospholipids.(1-3)   

 

1.1  Structure of Biological Membranes 

The phospholipids of cellular membranes are arranged into a bilayer (shown 

schematically in Figure 1.1), with their hydrophobic hydrocarbon chains (“tails”) aligned 

toward each other to minimize their energetically unfavorable interaction with water 

molecules.(1-3)  The polar phosphate headgroups of phospholipids point outward to 

interface with the aqueous intra- and extracellular environs to form the inner and outer 

leaflets, respectively.(1, 3)  The headgroups of phospholipids may be zwitterionic (i.e., 

contains an equal ratio of positive and negative charges, such that the molecule is net-

neutral) or charged either negatively or positively.(1)  Charged phospholipids that occur 
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most commonly in biological cells, however, are negatively charged.(1, 4)  The chemical 

structures of phospholipids that commonly exist in cellular membranes are shown in 

Figure 1.2. 

 

Figure 1.1.  Schematic image of phospholipid bilayer.  Components are not to scale.  
Figure is adopted from Bordi and Cametti 2005.(3)  

 
 

Cholesterol molecules are smaller than phosphoslipids and also are amphipathic 

(i.e., have both polar and hydrophobic sections).(1, 5)  Cholesterol has a hydrophobic 

body that is comprised of four hydrocarbon rings and a very small headgroup consisting 

of only a hydroxyl group (see Figure 1.2).(1, 5)  The amphipathic nature of cholesterol 

influences its orientation in the lipid bilayer in the same manner as phospholipids.(5)  

Cholesterol molecules are interspersed among the phospholipids in both leaflets of the 

bilayer and help to laterally fill the space that can occur between phospholipids.(5)   
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Figure 1.2.  Chemical structures of common phospholipids and cholesterol.(5, 6)  R and 

R’ denote hydrocarbon chains, typically 12-18 carbons in length, that may be saturated 

or contain 1-2 double bonds, as shown for POPC. 

 
 

Membrane proteins belong to one of two classes, integral or peripheral, as 

determined by their physical relationship to the membrane.(1)  Integral proteins are 

strongly bound to the membrane and cannot be removed except with the use of 

detergents or nonpolar solvents because a portion of the protein is embedded in the 

hydrophobic region of the bilayer.(1)  Integral proteins may be embedded in one leaflet, 

sometimes by a lipid anchor, or may span both leaflets of the bilayer with one or more 

transmembrane segments.(1)  Peripheral proteins, on the other hand, are water-soluble 

and associate at the surface the membrane, often through electrostatic interactions.(1) 
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Since the membrane components are held together only by relatively weak 

hydrostatic interactions (as compared to strong chemical bonds), the components 

diffuse laterally within each leaflet of the bilayer in a fluid-like manner.(1, 3, 7)  Thus, the 

biological membrane is commonly depicted by variations of a fluid-mosaic model,(7) 

similar to the one shown in Figure 1.3.  The rate of diffusion of the components within 

each leaflet is affected by the structure of the components (e.g., length and saturation of 

hydrocarbon tails of phospholipids, presence of cholesterol, and structure and 

concentration of membrane proteins), temperature, presence of certain chemicals (e.g., 

large alcohols or dimethyl sulfoxide), and by interactions with adjacent surfaces.(1, 5, 8, 9)   

 

Figure 1.3.  Fluid mosaic model of a biological membrane.  Reproduced from Bretscher 

1985.(10)  

 

Cellular membranes regulate the passage of materials in and out of the cell.  The 

membrane is only 4–6 nm thick, but forms an effective barrier between the cellular 

contents and the external environment.(3, 11)  Water molecules pass somewhat freely 



5 
 

through the membrane, but charged particles and larger hydrophilic molecules, such as 

sugar, are not able to pass easily through the hydrophobic region of the bilayer.(1, 2)  

These particles traverse the membrane through channel proteins that enable their 

passage in a regulated and often highly selective manner.(12-14)   

 

1.2  Planar Membrane Models  

The biological membranes of cells are complex structures that can be altered by 

the cell in response to stimuli.(3, 5, 15)  Therefore, to study the properties of cellular 

membranes and their components, different models may be employed to mimic specific 

aspects of the membrane and provide a means to study the effects of environmental 

factors on the properties of membrane components.(16, 17)  Planar models are flat and 

may be supported on a surface or span a pore that separates two small chambers.  

Alternatively, model membranes may be self-enclosed, spherical shells (a “liposome”) 

that are suspended in an aqueous solution. 

1.2.1 Supported lipid bilayer 

A supported lipid bilayer is a planar membrane that lies adjacent to a substrate 

with a thin film of water between the substrate and the membrane.(8, 18, 19)  Common 

materials for the substrate include glass, quartz, silica, and mica.(18, 20)  Chemical 

modifications of these and other substrate materials have been employed as well.(19)  To 

form a supported lipid bilayer, a solution of liposomes may be applied to a clean glass 

surface; as liposomes contact the glass, they rupture spontaneously.(19, 21, 22)  Another 

method of forming a supported lipid bilayer, called the Langmuir-Blodgett method, 

involves dipping the glass twice past a single layer of phospholipids floating on top of an 

aqueous solution.(19)  In the first pass, a single layer of phospholipids (i.e., a monolayer) 
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associate to the glass with the polar headgroups toward the glass and the hydrophobic 

tails oriented outward toward the air.(23)  The second pass yields a bilayer by formation 

of another monolayer on top of the first one, with the hydrophobic tails of both 

monolayers facing toward each other.(23) 

Supported lipid bilayers are useful for studying lateral diffusion of membrane 

components and interactions of molecules with membrane components.(19, 21)  The 

supportive surface helps to prevent rupture of the membrane, and so supported lipid 

bilayers can be stable for days, or even weeks.(11, 12)  This model is limited, however, by 

the potential interaction of the membrane with the supportive surface.(8, 11, 12, 19)  For this 

reason, the membrane may not be able to include large integral proteins because the 

protein may adhere to the surface and may even denature due to interactions with the 

surface.(12) 

1.2.2 Pore-spanning lipid bilayer 

 For a pore-spanning bilayer, a lipid bilayer is suspended over a small hole in a 

thin sheet separating two chambers.(12, 17)  The sheet is most commonly made of Teflon, 

glass, or silica and is perforated with a small hole, or pore.(12, 17)  The pore is typically 

tens of nanometers to a hundred microns in diameter.(12)  To cover the pore with a lipid 

membrane, a bilayer may be formed on one side of the pore, or alternatively, a 

monolayer may be formed on each side of a thin sheet with the tails of the 

phospholipids facing the surface of the sheet.(12, 17, 24)  The phospholipid tails of the 

monolayers on each side of the sheet meet and form a lipid bilayer at the pore.(12, 17, 24)  

The thin sheet and the lipid bilayer separate two chambers containing aqueous 

solution.(12, 17, 24) 
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 Three techniques may commonly be used to form a pore-spanning bilayer – 

painted, folded, or liposome rupture.(11, 12, 24, 25)  In the painted technique, phospholipids 

suspended in an organic solvent, such as decane, are applied to the orifice in the 

membrane.(11, 12)  Lipids self-orient so that their hydrophilic headgroups orient toward 

the aqueous solution and their hydrophobic tails orient inward at the membrane.(11, 12)  

The organic solvent spontaneously spreads over the hydrophobic surface surrounding 

the pore and causes the droplet to thin until the phospholipid tails meet and exclude the 

solvent from this portion of the membrane.(11, 12)  In the folded technique, also referred to 

as the Montal-Mueller technique, the chambers on both sides of the pore contain 

aqueous solution at a level below the pore.(11, 24)  Phospholipids in organic solvent, such 

as hexane, are deposited onto the surface of the solution where the lipids spread out 

and self-orient with their hydrophilic headgroups toward the aqueous solution and 

hydrophobic tails toward the air above the chambers.(11, 24)  The organic solvent 

evaporates from the open chambers and leaves the lipids floating as a film on top of the 

aqueous solution.(11)  Additional aqueous solution is then added at the bottom of the 

chamber to raise the solution level without disturbing the lipid film.(11)  As the lipids reach 

the pore, they cover the aperture with their hydrophilic headroups still oriented to the 

aqueous solution and their hydrophobic tails facing inward toward each other to form a 

bilayer membrane.(11, 24)  In the liposome rupture technique, the pore is oriented 

horizontally.(24)  A solution containing liposomes is deposited above the pore.(24)  The 

liposomes settle downward and rupture when they reach the surface, where they 

spread outward to form a planar bilayer.(11, 24)  If a sufficiently large liposome ruptures 

near the pore, the membrane may spread over the pore and cover it completely.(17, 24)  
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 Pore-spanning bilayers are useful models to study ionic flux through a bilayer 

(e.g., through ion channel proteins or channel-forming peptides).(12, 17, 24)  Pore-spanning 

bilayers can be stable for several hours.(12, 25)  This stability is sufficient for many ion 

channel experiments since channel events can last for less than one second.(11, 12)  To 

study ionic flux through channel proteins or peptides, however, the channel of interest 

needs to be incorporated in the membrane.(12, 17)  Many peptides are small and, 

therefore, will self-insert into the membrane.(11, 17)  Integral proteins, on the other hand, 

often require constant association with phospholipids or detergent molecules to prevent 

denaturing.(11, 17)  Therefore, fusion of small proteoliposomes may be necessary to 

incorporate channel proteins into a pore-spanning bilayer.(11, 12, 17)  This fusion is difficult 

to control and frequently requires the use specific lipids in the liposome preparation or 

inclusion of fusogenic molecules or peptides in the aqueous solution.(11, 12, 17)     

 

1.3  Liposomal Membrane Models 

 Liposomes are self-enclosed, spherical shells of phospholipids.(26, 27)  These 3-

dimensional models of biological membranes can be formed in a variety of sizes, 

ranging from tens of nanometers to a couple hundred microns in diameter.(28)  Much of 

the effort in forming liposomes focuses on the yield of vesicles within a narrow size 

distribution and having a single bilayer (a “unilamellar” liposome), as opposed to having 

multiple bilayers, or lamellae.(28, 29)   

1.3.1 Small liposomes 

Liposomes that are less than 100 nm in diameter are called small unilamellar 

vesicles (SUV).(26)  Due to their tiny size, they cannot be resolved individually by optical 
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microscopy, but fluorescence techniques can be performed to evaluate specific 

biomarkers.(30)  For example, the binding kinetics between two molecules can be 

measure when one molecule is bonded to a surface and the other is linked to 

fluorescently-labeled SUVs.(30)  This method depends on the concentration of SUVs and 

so must be performed in comparison to experiment controls, or standards.(30)  SUVs 

have also been of considerable interest for their potential in drug delivery.(26, 29, 31)  The 

drug(s) of interest can be encapsulated within SUVs to increase circulation time.(26, 29)  

Specific biological molecules may be added to the exterior surface of SUVs to aid in 

targeting specific cells in the body.(26) 

Formation of SUVs is generally straightforward and reliable.  One commonly 

employed technique is by sonication.(27, 28, 32, 33)  Lipids in organic solvent are dried into 

a thin film onto the inner surface of a vessel, and remaining traces of solvent are 

removed under vacuum.(28)  The lipid film is then covered with aqueous solution and the 

solution is ultra-sonicated to disrupt the film and form SUVs.(28)  Alternatively, after 

covering the lipid film with aqueous solution, the vessel may be incubated in a warm 

water bath to allow formation of liposomes of diverse sizes.(28, 32)  The mixture would 

then be passed multiple times across a filter (“extrusion”) to force the liposomes into a 

homogenous population, with the size dependent on the filter pore size.(27, 28, 32)   

1.3.2 Large liposomes 

Liposomes with a single bilayer and in the size range of approximately 100-500 

nm are typically classified as large unilamellar liposomes (LUV).(26)  LUVs are useful for 

studying interactions between membrane components, assessing diffusion or transport 

characteristics of molecules using fluorescence techniques, and determining osmotic 

effects of different solutions on membrane stability.(34-36)  Individual LUVs are difficult to 
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distinguish clearly with an optical microscope, and so attributes are generally based on 

average measurements from the population.(33)   

Formation of LUVs can be difficult to control and often results in a heterogeneous 

population of liposomes.(33)  Two methods typically used include the extrusion method 

and freeze-thaw.(28, 33)  The freeze-thaw method involves subjecting a solution 

containing liposomes (often initially a heterogeneous and multilamellar population) to 

repeated cycles of rapid temperature changes.(37)  This process leads to fusion with 

adjacent membranes, possibly due to the formation of ice crystals disrupting the 

membrane.(37) 

1.3.3  Giant liposomes 

Liposomes that are greater than 1 µm in diameter and consist of a single bilayer 

are giant unilamellar vesicles (GUV).(33)  GUVs are large enough to be observed on an 

optical microscope using phase contrast or fluorescence.(38)  This trait makes GUVs 

useful for studying membrane properties, including phase separations,(39) vesicle 

formation or rupture,(40) and effects of external stimuli on vesicle shape,(41-43) membrane 

diffusivity,(44) or permeability.(42, 45)  The size of GUVs can vary from diameters in the 

single micron range to over a hundred microns.(33)  In many studies of GUVs, however, 

a homogeneous population is desirable to reduce the number of factors affecting the 

results of the experiment.(44, 46)   

 GUVs are the most difficult type of liposome to generate reliably due to the 

fragility of the membrane at such large sizes.(47)  The first method of forming GUVs was 

a “gentle hydration” method, in which lipids in organic solvent are dried into a thin film 

and then rehydrated with aqueous solution.(48)  Gentle hydration yielded a diverse 

population of liposomes including sub-micron sized and multilamellar vesicles.  Isolation 
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of only the GUVs from a diverse population is tedious and may yield only a few GUVs.   

Later, Angelova and Dimivtrov discovered that an electric field applied transverse to the 

dried lipid film (“electroformation”) greatly increased the yield of GUVs.(49)  A variety of 

techniques have been developed that are based on the original protocols of gentle 

hydration and electroformation to help increase the ratio of GUVs over less desired 

structures.(42, 50-53)  Many of these techniques focus on lipid orientation and separation of 

lamellae so that the bilayers peel from the lipid film in large sheets before 

spontaneously closing into vesicles.   

A pre-hydration step is frequently included as part of the protocol, in which the 

dried lipid film is incubated in a humid environment prior to adding aqueous solution.(42, 

50)  Water molecules of the humid air purportedly help the phospholipids to self-orient 

into lamellae, beginning with the phospholipids exposed directly to the moist 

environment.(48, 50)  These phospholipids orient their hydrophobic hydrocarbon chains 

away from the water molecules to minimize their energetically unfavorable interactions.  

Phospholipids directly adjacent to these self-oriented phospholipids then also self-orient 

to minimize their energetically unfavorable interactions of hydrophilic headgroups with 

hydrophobic tails.  This manner of self-orientation continues through a number of layers 

of phospholipids, but their organization decreases with each layer due to defects 

disrupting their orderly arrangement.(49)   

In addition to arranging the phospholipids into lamellae, generation of liposomes 

is influenced by the number of layers detaching simultaneously from the lipid film.(49)  To 

reduce the occurrence of multiple bilayers peeling together, some protocols employ 

techniques to separate lamellae.  Lamellae may repel each other by inclusion of lipids 
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with negatively charged headgroups(42) or headgroups containing a long chain of 

polyethylene glycol (PEG).(50)  Other molecules, such as sugar or ethylene glycol, may 

be dried with the lipids to maintain space between lamellae.(54-56) 

1.3.4  Proteoliposomes 

Liposomes that contain integral membrane proteins (proteoliposomes) are 

increasing in importance in medical research because many of these proteins are 

targets for drug delivery.(27, 57, 58)  Small proteoliposomes can be generated by a 

detergent-dialysis method.(57)  First the protein of interest needs to be expressed in 

native cells or suitable host cells, removed from the native membrane components by 

solubilization with detergent (to prevent denaturing), and purified.(58-61)  These 

solubilized proteins then are incubated with small liposomes to allow the proteins to self-

insert into membranes.(61)  The detergent is removed by dilution and filtration through a 

size-selective filter that allows the detergent molecules to pass but not the liposomes.(59)  

The dialysis process can be hastened by the addition of hydrophobic beads in the 

dialysis buffer to adsorb the detergent and lower the concentration in solution.(62)  The 

detergent-dialysis method generally yields only small liposomes because the presence 

of detergents compromises the integrity of larger liposomes.(63)  The size of the small 

liposomes may be refined after formation by extrusion, fusion, or by using other 

specialized protocols.(60, 64, 65) 

 

1.4  Summary of Dissertation 

Giant unilamellar vesicles (GUVs) are particularly useful models of biological 

membranes because they can be observed individually on an optical microscope.(66, 67)  



13 
 

Due to the sensitive and fragile nature of GUVs, however, methods of their formation 

can be challenging, especially in solutions containing ions or when incorporating integral 

proteins into the membrane.(17, 33)  This work focuses on the development of a new 

method to form GUVs and giant proteoliposomes. 

Chapter II presents a simple and reliable technique that we developed for 

generating GUVs in solutions of physiologic ionic strength (~150 mM monovalent salt) 

using a variety of different lipid compositions.  Results were compared to three stages of 

the mechanism of liposome formation as described in literature and also compared to a 

previously established protocol. 

In Chapter III, an extension of the technique presented in Chapter II is described 

and applied to the formation of giant proteoliposomes that incorporated the large 

transmembrane protein, P-glycoprotein (P-gp).  We used several independent assays to 

test protein functionality.  The suitability of this technique to generate giant 

proteoliposomes for transport studies was compared to a previously established 

protocol. 

Lastly, Chapter IV discusses the overall conclusions from this work and 

additional experiments that would complement the results in each chapter.  
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CHAPTER II  

 

Formation of Giant Liposomes in Solutions of Physiologic 

Ionic Strength 

 

 

Abstract 

This chapter describes a method to form giant liposomes in solutions of 

physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl.  

Formation of these cell-sized liposomes proceeded from hybrid films of partially dried 

agarose and lipids.  Hydrating the films of agarose and lipids in aqueous salt solutions 

resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid 

formation of giant liposomes in high yield.  This method did not require the presence of 

an electric field or specialized lipids; it generated giant liposomes from pure 

phosphatidylcholine lipids or from lipid mixtures that contained cholesterol or negatively 

charged lipids.  Hybrid films of agarose and lipids even enabled the formation of giant 

liposomes in PBS from lipid compositions that are typically problematic for liposome 

formation, such as pure phosphatidylserine, pure phosphatidylglycerol, and asolectin.  

This chapter discusses biophysical aspects of the formation of giant liposomes from 

hybrid films of agarose and lipids in comparison to established methods and shows that 
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gentle hydration of hybrid films of agarose and lipids is a simple, rapid, and reproducible 

procedure to generate giant liposomes of various lipid compositions in solutions of 

physiologic ionic strength without the need for specialized equipment. 

 

2.1  Introduction 

Giant liposomes are useful models to study cellular membranes since they 

approximate the size and membrane curvature of live cells(1-6) and since they can be 

observed individually by optical microscopy.(2, 3, 5-7)  Several methods produce giant 

liposomes; these methods include “gentle hydration”,(7-11) “freeze-and-thaw”,(12, 13) “solid 

hydration”,(14) “solvent evaporation”,(15, 16) emulsion-based methods,(17) and 

“electroformation”.(1, 2, 9, 18-21)  These methods generate giant liposomes of high quality 

and yield, but they are typically limited to solutions of low ionic strength (≤50 mM 

monovalent salt)(1, 3, 7-10, 16, 22) unless specialized lipid formulations(8-10) or specific 

electroformation protocols(22, 23) are used. 

Due to this limitation, most biophysical and biochemical studies on giant 

liposomes so far have been carried out in aqueous solutions with an ionic strength 

significantly below the physiologic range.(22, 23)  At least six important properties of giant 

liposomes can, however, be affected by ionic strength; these include: i) electrostatic 

interactions of lipid membranes with proteins,(24-26) with adjacent lipid membranes,(22, 27) 

or with other molecules or ions in solution;(27-30) ii) osmotic properties;(5, 7, 31, 32) iii) 

packing of lipid headgroups in the membrane;(5, 33) iv) curvature,(7) bending elasticity,(34) 

and mechanical stability of lipid bilayers;(5, 35) v) activity of membrane proteins;(36) and vi) 

ion channel conductance.(35-37)  Consequently, it would be desirable to prepare giant 



21 

 

liposomes in solutions that make it possible to extend these studies to physiologically 

relevant salt concentrations.(22) 

In order to comprehend why it is difficult to form giant liposomes in solutions of 

physiologic ionic strength, a detailed understanding of the molecular mechanisms of 

formation of giant liposomes would be helpful.  While the exact mechanisms of 

formation of giant liposomes still present questions,(23, 33, 38-40) the process can be 

separated into three stages as illustrated in Figure 2.1.(1, 3, 10, 41, 42)  In the first stage of 

the formation of giant liposomes, lipids in a solid lipid film are hydrated, leading to the 

self-assembly and separation of lipid lamellae in the film.(1, 10, 11)  This process can be 

promoted by electrostatic repulsion of negatively charged lipids,(8, 22, 32, 43) steric effects 

from bulky headgroups,(10, 44) and by pre-hydrating the lipid film(8, 10, 11) to orient lamellae 

of lipids and to separate the bilayers.  Solutions of high ionic strength hinder this first 

step of separation of lamellae due to electrostatic screening of repulsive charges.(22, 27)  

The second stage in the formation of giant liposomes involves swelling of liposomes 

due to forces normal to the bilayers(3, 42) and recruitment of lipids from the lipid film.(1, 22)  

Osmotic pressure,(11, 42) line tension,(42) and electric fields(42, 45) can provide this force, 

but can also be affected by solutions of high ionic strength.  The third and final stage 

involves fusion of adjacent liposomes due to mechanical stresses.(33, 41)   

 

Figure 2.1. Cartoon illustrating three important stages during the formation of giant 

liposomes.  A) Orientation and self-assembly of lipids into bilayers, leading to the 
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formation of lipid lamellae.(1, 10, 11)  B) Growth of liposomes promoted by forces normal to 

the bilayers.(3, 42)  C) Fusion of adjacent liposomes into giant liposomes due to crowding 

and associated mechanical forces.(2, 41, 46)  The black lines in B and C represent lipid 

bilayers. 

 

Here we intended to promote all three stages of liposome formation in order to 

develop a method for the formation of giant liposomes in solutions of physiologic ionic 

strength, such as phosphate buffered saline (PBS), without the requirement for 

specialized lipids,(8-10) specialized equipment,(23) or a separate pre-hydration step.(8-11)  

We hypothesized that forming giant liposomes from a hybrid film of hydrogel and lipids 

may (i) promote the separation of lipid lamellae by providing pre-hydration and pre-

orientation of lipids; (ii) promote growth of liposomes by generating forces normal to the 

lipid lamellae during the swelling of the agarose film; and (iii) promote fusion of adjacent 

liposomes due to crowding of growing liposomes that are attached to the swelling, 

porous film of agarose. 

 

2.2  Results and Discussion 

2.2.1 Formation of giant liposomes in physiologic solutions 

Figure 2.2 illustrates the procedure of forming giant liposomes from hybrid films 

of agarose and lipids.  This method proceeded in three simple steps and formed giant 

liposomes in physiological buffers within minutes after hydrating the hybrid films. 
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Figure 2.2.  Procedure of forming giant liposomes from hybrid films of agarose and 

lipids.  A) The procedure started by dipping one side of a clean glass slide in an 

aqueous solution of 1% (w/w) agarose with ultra-low melting temperature (Type IX-A).  

After dripping off excess solution, the slide was turned and dried on a hot plate at a 

temperature of ~40 °C while keeping the agarose solution spread evenly over the glass 

slide (if necessary by moving a straight glass or metal rod tangentially over the surface 

during the drying process).  This procedure generated a film of agarose with fairly 

uniform thickness on one side of the glass slide.  B) In the next step, a total volume of 

30 µL of 3.75 mg mL-1 lipid in 90% (v/v) chloroform and 10% (v/v) methanol was spread 

evenly over (and into) the film of agarose by using a glass or metal rod while the 

solvents evaporated (see Experimental Section, Figure 2.8).  To remove traces of 

solvent, the glass slide with the resulting hybrid film of agarose and lipids was placed in 

a vacuum chamber (approx. -730 mTorr) for at least 20 min.  C) To generate liposomes, 

this slide was placed into a Petri dish such that the hybrid film of agarose and lipids 

faced upwards and an aqueous solution containing 150 mM KCl, PBS, or deionized 

water was poured into the dish until it covered the slide. 
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In order to illustrate the benefit of forming giant liposomes from hybrid films of 

agarose and lipids in ionic solutions, we compared this method to the established 

method of “gentle hydration,” i.e. the formation of liposomes from lipid films formed 

directly on bare glass substrates without agarose.  Figure 2.3 shows that giant 

liposomes formed from films of agarose within a few minutes in remarkable yield in PBS 

solutions.  Since we used optical phase-contrast and fluorescence microscopy to 

observe the formation of liposomes, we could only resolve liposomes with diameters ≥ 1 

µm.  We observed the formation of such giant liposomes only on the surface of the 

hybrid film of agarose and lipids.  Figure 2.4 shows, however, that lipids penetrated the 

entire agarose film, and therefore small liposomes (<< 1 µm) likely formed within the 

agarose network.   
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Figure 2.3.  Phase contrast images of giant liposomes formed within 1 h in phosphate 

buffered saline (PBS).  The column of images on the left shows liposomes that formed 

from hybrid films of agarose and lipids; the column on the right shows the control 

experiments of liposomes that formed from lipid films on bare glass.  The following lipid 

compositions were used (in mol%): A, B) Pure 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphatidylcholine (POPC). C, D) Pure 1,2-dioleoyl-sn-glycero-3-[phospho-L-serine] 

(DOPS).  E, F) Pure 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] 
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(POPG).  G, H) Asolectin from soybean.  I, J) Mixture of 90% POPC with 10% 

cholesterol.  K, L) Mixture of 80% POPC with 20% cholesterol. M, N) Mixture of 90% 

POPC with 10% of the negatively charged lipid POPG(47).  O, P) Mixture of 50% POPC 

with 50% POPG.  Q, R) Mixture of 90% POPC with 10% of the negatively charged lipid 

DOPS.  S, T) Mixture of 95% POPC with 5% 1,2-dipalmitoyl-sn-glycero-3-

phosphatidylethanol-amine-N-[methoxy (polyethylene glycol)-2000] (also referred to as 

PEG-PE or PEGylated lipid).  Scale bars = 100 µm. 

 

The giant liposomes that we could resolve on the surface of the hybrid film were 

typically surface-attached, appeared spherical (or polygonal when aggregated), and 

were often arranged in several layers above the surface.   As new liposomes developed 

and swelled, previously formed liposomes were often pushed away from the surface.  

The liposomes in the resulting layers may be tethered to the surface or to other 

liposomes (some tethers were visible when viewed by phase contrast microscopy).  A 

few liposomes appeared to have detached completely but this occurrence was not 

common within any given population of liposomes.  We procured free-floating liposomes 

by prying apart the chamber and allowing the contents to drip into a collection vessel or 

by applying gentle suction using a pipette or needle and syringe to remove the solution 

from the chamber (see Appendix A, Figure A.1).  Remarkably, giant liposomes formed 

over 30-80% of the surface of the chamber from a range of lipid compositions that 

included pure zwitterionic lipids (Figure 2.3A), lipids that typically pose difficulties for the 

formation of giant liposomes (such as pure DOPS, pure POPG, or asolectin; for full 

names of lipids, see figure caption of Figure 2.3)(19) (Figure 2.3C,E,G), as well as 

mixtures of zwitterionic lipids with 10 or 20 mol% cholesterol (Figure 2.3I,K), with 10 or 

50 mol% negatively charged lipids (Figure 2.3M,O,Q), or with 5 mol% PEGylated lipids 

(Figure 2.3S).  All these lipid mixtures formed hundreds of giant liposomes with 
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diameters above 10 µm in solutions of physiologic ionic strength as well as in deionized 

water when grown from hybrid films of agarose and lipids.  As expected,(8, 10) we 

obtained the best liposomes with respect to their number, size, and surface coverage 

from lipid mixtures containing up to 50% negatively charged lipids or PEGylated lipids.  

The repulsive forces generated by these lipids also reduced the aggregation of 

liposomes that is typical in salt solutions.(1, 8-10, 45, 48)  With respect to the effect of the 

ions present in solution on the formation of giant liposomes, we found that giant 

liposomes formed best in deionized water, followed by 150 mM KCl (see Appendix A, 

Figure A.2) and PBS.  In summary, formation of giant liposomes in PBS proceeded in 

high yield from all lipid compositions that we tried, as shown in Figure 2.3. 

Figure 2.3 illustrates that the presence of a film of agarose was essential for the 

formation of giant liposomes in solutions of physiologic ionic strength.  Control 

experiments with lipid films deposited directly on glass or on surfaces of indium tin oxide 

(ITO), showed either no formation or only sporadic formation of giant liposomes (Figure 

2.3B,D,F,H,J,L,N,P,R,T).  The few giant liposomes that did form from lipid films on bare 

glass (or bare ITO) surfaces were typically smaller than 5 µm.  Interestingly, even lipid 

mixtures containing up to 50% negatively charged lipids or PEGylated lipids generated 

a very low yield of giant liposomes in PBS when formed from lipid films on bare glass 

surfaces (Figure 2.3N,P,R,T).(49)   

To investigate if pre-hydration of the lipid film would improve the yield of giant 

liposomes from bare glass surfaces in PBS, we performed the protocol described by 

Akashi et al. using a lipid mixture containing 90% POPC and 10% POPG.(8)  Using 

Akashi’s method on bare glass surfaces with pre-hydration, we observed the formation 
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of only a few giant liposomes in PBS; these liposomes were typically smaller than 10 

µm.  These results are consistent with those by Akashi et al. who reported no formation 

of giant liposomes in solutions with KCl or NaCl concentrations greater than 100 mM.(8)  

Figure 2.3 hence illustrates that formation of giant liposomes from hybrid films of 

agarose and lipids provides a significant and important benefit over currently existing 

methods of formation of giant liposomes in solutions of physiologic ionic strength. 

2.2.2 Characterization of hybrid films of agarose and lipids 

Before discussing the role of films of agarose in promoting the formation of giant 

liposomes in ionic solutions, it is necessary to understand the location of the lipids 

relative to the agarose molecules in the hybrid films of agarose and lipids prior to adding 

aqueous solution (i.e., at the end of step B in Figure 2.2).  This aspect is important 

because the effect of interactions between lipid and agarose molecules on the formation 

of liposomes likely depends on the contact area between agarose molecules and lipid 

molecules.  If lipids penetrated into the agarose film, then surface interactions between 

lipids and agarose molecules in a porous agarose film would be increased due to the 

larger surface area compared to a flat surface (such as bare glass or the surface of a 

non-porous film).  To test if lipids penetrated the film of agarose, we compared 

micrographs of particularly thick (~16 µm), hybrid films of agarose and fluorescently-

labeled lipids.  Cross-sectional views of these films revealed that the fluorescently-

labeled lipids penetrated the entire thickness of the film of agarose (Figure 2.4).(50)  

Hence, the resulting hybrid film of agarose and lipids inevitably generated a large 

contact area between agarose and lipid molecules, and this extended interface area 

influenced the formation of lipid lamellae and giant liposomes as discussed below. 
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Figure 2.4.  Cross-section through a thick film of agarose that was coated with 

fluorescently-labeled lipids.  A) Epifluorescence image of a cross-section of the film.  B) 

Phase contrast image of the cross-section of the film.  C) Overlap of images A and B 

with A at 50% transparency, indicating that the fluorescently-labeled lipids penetrated 

completely through the film of agarose.  Scale bars = 20 µm. 

 

Another important factor for understanding how the hybrid film of agarose and 

lipids promotes the formation of giant liposomes is whether or not the film of agarose 

dissolves to some extent to form agarose molecules in solution.  Agarose is a 

polysaccharide consisting of alternating residues of β-1,3-linked D-galactose and α-1,4-

linked 3,6-anhydro-α-L-galactopyranose (see Figure 2.5A).(51-57)  This linear polymer 

adopts a structure of left-handed helices(51, 52, 56) that are stabilized by weak hydrogen 

bonds and intramolecular hydrophobic interactions.(55, 57, 58)  As solutions transition into 

a gel, agarose helices aggregate to form long fibers containing 10 to 104 molecules.(51, 

52, 57)  Figure 2.5C illustrates that SEM imaging of a film of agarose that formed a gel 

before drying the film (e.g. standard melting temperature agarose) displayed surface 

features that appeared to contain fibrillar structures.  In contrast, SEM images of films of 

agarose that dried without noticeably forming a gel (e.g. ultra-low melting agarose) did 

not show these structures (Figure 2.5D).  We characterized the surface of films 
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prepared from four types of agarose by AFM and SEM (see Figure A.3 in Appendix A) 

and found that films from ultra-low melting agarose appeared to display the smoothest 

(i.e., the least fibrous-looking) surface.  We attribute this observation to two reasons: 1) 

the average molecular weight of ultra-low melting agarose was the lowest of the four 

types of agarose,(53) and 2) ultra-low melting temperature agarose did not gel to a 

noticeable extent during the formation of the agarose film at 40°C; it remained dissolved 

in solution. 

In the experiments presented here, we formed films of ultra-low melting 

temperature agarose by partially drying agarose solution on a glass surface.  Foord and 

Atkins demonstrated by x-ray diffraction that drying a solution of agarose at elevated 

temperature resulted in a film that contained agarose molecules in the form of extended 

helices, which were not interlinked.(52)  We therefore expected the agarose molecules in 

the films of ultra-low melting agarose to be present in the form of extended helices that 

lay loosely over each other in random directions to form an unbound mesh of agarose 

molecules.  Since the molecules were not tightly associated in a gel structure, it is likely 

that they can dissolve into solution.  We demonstrate below that films of ultra-low 

melting temperature agarose did, indeed, partially dissolve during liposome formation, 

and we discuss the possible importance of this characteristic for the formation of giant 

liposomes in solutions of physiologic ionic strength.  We also show that agarose films 

that did not dissolve noticeable did not promote the formation of giant liposomes in PBS. 

Since ultra-low melting temperature agarose dissolves in solution, one important 

question is if agarose molecules associate with the membranes during the formation of 

liposomes.  This question is relevant because binding of agarose molecules to 
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liposomes may influence their formation in ionic solutions.  To answer this question, we 

formed giant liposomes from a hybrid film of fluorescently-labeled, ultra-low melting 

temperature agarose and POPC lipids.  Confocal microscopy revealed an increase in 

fluorescence intensity of giant liposomes formed from films of fluorescently-labeled 

agarose compared to the fluorescence intensity of liposomes formed from non-labeled 

agarose (see Appendix A, Figure A.4).  These results suggest that the fluorescently-

labeled agarose molecules associated with the liposome membranes.  This association 

of macromolecular agarose molecules with lipid membranes may hence provide a 

similar benefit to the formation of giant liposomes as provided by PEGylated lipids.(10)   

 

Figure 2.5.  Chemical and physical structure of agarose.  A) Chemical structure of the 

fundamental unit of agarose.(51-53)  Agarose is a polysaccharide consisting of alternating 

residues of β-1,3-linked D-galactose and α-1,4-linked 3,6-anhydro-α-L-galactopyranose, 
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and the linear polymer forms left-handed helices.(51, 52, 56)  B) During formation of an 

agarose gel, 10 to 104 helices aggregate into long fibers,(51, 52, 57) which in turn associate 

in three dimensions to form a gel network.(51, 53-55)  Artwork adapted from Arnott, S.; 

Fulmer, A.; Scott, W.E., J. Mol. Biol. 1974, 90, 269-284.(51)  C) SEM micrograph of a film 

of standard melting temperature agarose.  Note the appearance of fiber-like structures.  

D) SEM micrograph of a film of ultra-low melting agarose.  No fiber-like structures could 

be resolved.  Scale bars = 400 nm. 

 

In order to determine the effect of membrane-associated agarose on the 

diffusivity of lipids in the membranes of liposomes formed from hybrid films of agarose 

and lipids, we performed fluorescence recovery after photobleaching (FRAP) 

experiments.(29, 59)  We found that the lipids in the resulting giant liposomes were mobile 

(see Appendix A, Figure A.5), indicating that the presence of (and interaction with) 

agarose did not result in immobilization of lipids in the liposome membranes.  

After determining that agarose molecules associate with the membranes of giant 

liposomes during formation, we assessed the importance of the hybrid film of agarose 

and lipids for the formation of liposomes, in comparison to formation of liposomes from 

bare glass but in the presence of a solution that contained soluble agarose molecules.  

We explored two different approaches for using agarose in solution for the formation of 

giant liposomes.  In the first approach, we exposed a lipid solution to agarose molecules 

before coating the lipids onto a glass slide to determine if this approach would lead to 

formation of giant liposomes.  To carry out this experiment, we agitated a two phase 

system containing a 1% solution of ultra-low melting agarose dissolved in deionized 

water and a solution of POPC lipids in chloroform and methanol.  After vigorous shaking 

and allowing the immiscible fluids to separate, we extracted the chloroform/lipid solution 

and used it to coat plain glass slides with a film of lipids according to Figure 2.2B.  We 
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immersed the resulting lipid-coated slides in PBS and carried out formation of liposomes 

for 3 h.  This method did not lead to significant formation of giant liposomes, indicating 

that, in order to form giant liposomes, agarose molecules had to be present either in the 

form of a film or in the aqueous solution during liposome formation.  In order to 

distinguish between these remaining two possibilities, we carried out a second 

experiment that determined if association of agarose molecules dissolved in aqueous 

phase with lipid molecules during hydration would lead to formation of giant liposomes.  

We tested this possibility by coating plain glass slides with a solution of POPC lipids in 

chloroform and methanol according to Figure 2.2B.  Subsequently, we immersed the 

coated slides in a PBS solution that contained dissolved ultra-low melting temperature 

agarose at a concentration of 0.06% (w/w).  This concentration was similar to the final 

concentration attainable if the slide had been coated with a film of agarose (as 

described in Figure 2.2) and if all of the agarose had dissolved; this concentration was 

also sufficiently low that ultra-low melting agarose did not gel at room temperature.  This 

method did not lead to significant formation of giant liposomes within 3 h.  These 

experiments thus demonstrated that the formation of giant liposomes in PBS depended 

on the presence of agarose as a film prior to generating the hybrid film of agarose and 

lipids. 

2.2.3 Possible role of hybrid film on three stages of liposome formation 

Based on the findings that (i) lipids infiltrate the films of agarose (Figure 2.4) 

during the coating procedure (Figure 2.2), (ii) agarose initially must be present as a film, 

and (iii) agarose molecules associate with lipid membranes after formation (Figure A.4 

of Appendix A), we examined the possible benefits of agarose on each of the three 
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stages of formation that are outlined in Figure 2.1.  Due to the limited understanding of 

the molecular mechanisms of the formation of giant liposomes,(23, 33, 38-40) we cannot 

provide a definitive explanation of the role of films of agarose in the formation of giant 

liposomes.  The work presented here does, however, examine several possible roles of 

agarose in promoting the formation of these liposomes, and it provides evidence in 

support of these roles.   

With regard to stage 1, i.e. the proposed pre-orientation of lipids and formation of 

lamellae,(1, 10, 11) we hypothesized that the porous film of agarose with its large surface 

area may promote the formation of lamellae.  Previous work indicated that the formation 

of lamellae may be influenced by interactions of the lipids with the solid surface on 

which they are supported.(1, 60)  For instance, Angelova and Dimitrov reported that the 

lipid layers closest to a surface are structured differently than lipid layers located further 

away from the surface.(1)  In the case of the hybrid film of agarose and lipids, Figure 2.4 

shows that lipids infiltrate the porous film of agarose.  It is reasonable to assume that 

the resulting large contact area between agarose molecules and lipid molecules affects 

the formation of lipid lamellae, especially when considering that the agarose film 

contained residual water.(51, 54, 61),(62),(63)  Although the method described in Figure 2.2 

involved partially drying the film of agarose for 1-3 h (until the film no longer appeared 

wet), we found that the film of agarose still contained ~15 wt% of water and ~85% 

agarose (see Appendix A). 

The residual water in the hybrid films of partially dried agarose and lipids may 

hence serve a similar function as the traditional pre-hydration step that is required by 

the protocols developed by Akashi et al.(8) and Yamashita et al.(10)  Pre-hydration 
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purportedly affects the orientation of lipids and the formation of lipid lamellae.(8, 10, 11)  

The residual water content in the partially dried film of agarose could thus provide this 

function during the formation of the lipid film from chloroform solutions and thereby 

eliminate the need for a separate pre-hydration step.  To test this hypothesis, we varied 

the residual water content in films of agarose and compared the extent of formation of 

giant liposomes from the resulting hybrid films of agarose and lipids.  First, we prepared 

particularly dry agarose films (water content <1 wt%, agarose content >99%) by keeping 

the agarose films overnight in an oven above 100 °C.  Second, we prepared agarose 

films in the usual way (Figure 2.2) of drying at 40 °C for approximately 2 h (water 

content ~15 wt%, agarose content ~85%).  And third, we prepared films of agarose in 

the usual manner (Figure 2.2) and then provided a separate pre-hydration step by 

exposing the hybrid film of agarose and lipids to water vapor in an enclosed chamber for 

30 min.  This pre-hydration procedure resulted in a water content of ~15-20 wt%.  We 

found that the extent of formation of giant liposomes was reduced when the film of 

agarose was dried overnight at a temperature above the boiling point of water 

compared to the standard procedure as described in Figure 2.2.  The liposomes that we 

did observe were typically smaller than 5 µm.  Interestingly, vapor-based pre-hydration 

of hybrid films of agarose and lipids that had been prepared in the usual manner (2 h 

drying at 40°C) did not yield an increase in formation of giant liposomes.  These results 

suggest that films of agarose, when dried partially at 40°C for ~2 h, provided a similar 

effect as pre-hydration and that additional pre-hydration did not increase the benefit 

provided by the film of agarose alone. 
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With regard to stage 2, i.e. the growth of liposomes promoted by forces normal to 

the film of lipids,(3, 42) it is important to consider the hybrid nature of the films of partially 

dried agarose and lipids (Figure 2.2 and Figure 2.4).  We hypothesize that, as soon as 

water enters this hybrid film, agarose molecules within the hybrid film of agarose and 

lipids dissolve and hence generate hyperosmotic conditions during the initial stages of 

liposome formation when only small amounts of water are present between the lipid 

lamellae.  If this hypothesis is correct, then the resulting hyperosmotic conditions would 

lead to an influx of water(11, 64) and thus generate forces normal to the lipid lamellae in 

the hybrid film, and a film of a cross-linked hydrogel would provide a reduced benefit 

compared to a hydrogel that can dissolve into many individual molecules.  We found 

that a chemically cross-linked polyacrylamide gel facilitated the formation of giant 

liposomes in solutions of physiologic ionic strength, but typically to a smaller extent than 

formation from ultra-low melting temperature agarose (see Appendix A, Figure A.6).  In 

addition, the formation of giant liposomes worked best when the agarose films were 

formed with a type of agarose that dissolved in water and, hence, increased the number 

of agarose molecules in solution; this increased number of molecules affects colligative 

properties, such as osmotic pressure.  For instance, agarose with ultra-low and, to a 

smaller extent, with low melting temperature generated the highest yield of giant 

liposomes in solutions of physiologic ionic strength, whereas dried films of standard or 

high melting temperature agarose did not provide a substantial benefit compared to 

formation from films of lipids supported on bare glass or ITO (see Appendix A, Figure 

A.6).  We observed that ultra-low and low melting agarose dissolved partially during one 

hour of liposome formation, while films from standard and high melting temperature 



37 

 

agarose did not dissolve noticeably.  Moreover, swelling of films from standard and high 

melting temperature agarose proceeded more evenly and slowly (over the course of 1 

h) than swelling of films of ultra-low and low melting agarose types, which occurred 

within the first seconds of formation.   

One additional effect that could promote stage 2 of liposome formation is that the 

presence of partially hydrophilic agarose molecules in this heterogeneous film of 

agarose and lipids might promote the influx of water into the lipid film.(11, 64)  Such 

facilitated hydration may further promote the separation of lipid bilayers in the nascent 

liposomes and generate forces normal to the lipid bilayers.  To test this hypothesis, we 

immersed glass slides containing a film of agarose in PBS for 30 s.  Films of ultra-low 

melting and of low melting agarose appeared to hydrate completely during this short 

immersion in PBS; these hydrated, swollen, and partially dissolved films could be 

displaced from the surface of the glass by a stream of pressurized air.  In contrast, films 

of standard and high melting temperature agarose did not swell noticeably during the 30 

s immersion in PBS (or even after 2 min of hydration) and remained as thin films that 

adhered firmly to the surface of the glass.  These films did not dissolve noticeably, but 

did swell into a firm gel, within 1 h.  

Phase contrast microscopy observations during the early stages of liposome 

formation provided additional evidence for swelling of films of agarose after immersing 

the slides in aqueous solution.  Specifically, this swelling increased the thickness of the 

film and hence moved the nascent layer of liposomes out of the focal plane of the 

microscope away from the surface of the glass.  We followed the swelling by adjusting 

the focal plane of the microscope as the hybrid film of agarose and lipids moved away 
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from the surface of the glass slide.  Given that the entire film swelled observably, 

agarose molecules must have undergone translational motion at a microscopic level.  

This conclusion agrees with findings by Fialkowski et al., who related the influx of water 

to increased elastic energy in hydrogels.(64)  Since the films were composed of both 

agarose and lipids, it follows that forces acting on the agarose film also acted directly or 

indirectly on lipids and on lipid lamellae in the film.  In this sense, the swelling hydrogel 

film may provide benefits similar to the forces provided by alternating electric fields in 

electroformation.(42)   

In order to investigate if applying alternating electric fields would provide an 

additional benefit, we formed giant liposomes in deionized water from hybrid films of 

agarose and lipids with and without an applied AC electric field as well as from ITO 

plates without agarose in the presence (electroformation) and absence (gentle 

hydration) of an electric field.  We found that, in deionized water, the yield of giant 

liposomes from hybrid films of agarose and lipids was not affected by the presence of 

an applied AC electric field; it was similar to the yield from standard electroformation.  In 

contrast, the yield of giant liposomes by gentle hydration from bare glass surfaces 

without electric fields was significantly lower (see Appendix A, Figure A.7) compared to 

formation from hybrid films of agarose and lipids.  Importantly, standard electroformation 

did not generate giant liposomes in PBS whereas giant liposomes formed readily in 

PBS from hybrid films of agarose and lipids, and they did so with or without an electric 

field. 

With regard to stage 3, the fusion of adjacent liposomes, time-lapse series of 

phase contrast micrographs revealed numerous fusion events of giant liposomes in 
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PBS solutions, in particular during the first minutes of formation (Figure 2.6).  We did not 

detect such fusion events in control experiments with lipid films on bare glass, 

presumably due to the low density of liposomes that formed on bare glass in PBS.  

Films of agarose hence strongly promoted fusion of liposomes probably due to crowding 

and the associated mechanical stresses(46) of the large number of liposomes that grew 

outward from the porous agarose film into the solution above the hybrid films and 

possibly due to mechanical stresses generated by the swelling hydrogel film.(41)  One 

may ask if liposomes grown from hybrid films of agarose and lipid formulations that 

contained negatively charged lipids or PEGylated lipids (Figure 2.3C,E,G,M,O,Q,S) also 

fused during the formation process.  In this context, it is instructive that in other methods 

of formation, such as electroformation or freeze-and-thaw, fusion of adjacent liposome 

membranes is also a key characteristic in formation of giant liposomes,(3, 12, 13) and 

these methods also yield giant liposomes from lipid compositions that include 

PEGylated lipids(65) or anionic lipids.(66)  Therefore, the repulsive forces generated by 

these specialized lipid formulations, which are often used to promote initial bilayer 

orientation and separation, can be overcome by appropriate mechanical stresses,(67, 68) 

such as those generated by an electric field, osmotic pressure during freeze-and-thaw 

cycles, or as proposed here, by a swelling hydrogel film.  Figure 2.6 also illustrates that 

films of agarose promoted rapid formation of giant liposomes in PBS: typically, giant 

liposomes formed within 5 min upon addition of aqueous solutions to hybrid films of 

agarose and lipids. 
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Figure 2.6.  Time-lapse series of phase contrast micrographs during the formation of 

giant liposomes in PBS from a hybrid film of ultra-low melting temperature agarose 

(Type IX-A) and pure POPC lipids.  Image capture began within seconds after adding 

PBS to the formation chamber and the micrographs depict the same location on the 

glass slide throughout the entire time series.  Yellow arrows indicate fusion events that 

occurred before the next time point of image capture.  Numbers in the upper left corner 

of each frame indicate elapsed time in minutes from the start of the time series.  Scale 

bar = 100 µm. 

 

2.2.4 Lamellarity of giant liposomes formed from films of agarose and lipids 

One important aspect of the method presented here is the lamellarity of the 

resulting giant liposomes in solutions of physiologic ionic strength.(69),(70),(71)  In order to 

address this question, we analyzed the fluorescence intensity of the membranes using a 

confocal microscope.(8, 10)  We formed liposomes composed of POPC doped with 1% 
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1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(ammonium salt) (referred to as DPPE-rhodamine) and liposomes composed of POPC 

with 5% PEG-PE and 1% DPPE-rhodamine in PBS from films of ultra-low melting 

temperature agarose.  We measured the fluorescence intensity at multiple locations on 

the membranes of free-floating giant liposomes procured from these preparations and 

determined the size and average intensity of each liposome (Figure 2.7).   

Akashi et al. showed previously that the fluorescence intensity of unilamellar 

liposomes varied with the size of the liposomes.  In order to account for this effect, we 

constructed histograms of fluorescence intensity and carried out a best curve fit with a 

lognormal function.  We conducted this analysis first on liposomes that contained 5% 

PEGylated lipids.  Liposomes with such a high content in PEGylated lipids have been 

reported to be predominantly unilamellar, even in the presence of ionic solutions.(10, 44)     

Figure 2.7 shows that almost all giant liposomes with 5% PEGylated lipids had 

fluorescence intensities between 300 and 750 arbitrary units and that a lognormal curve 

with a single maximum at ~577 arbitrary units fit the data very well.  Figure 2.7 also 

shows that the same analysis on POPC liposomes (without PEGylated lipids) that were 

formed from agarose films in PBS solution also yielded a peak with a maximum intensity 

at ~577 arbitrary units.  This result suggests that a significant fraction of free-floating 

giant liposomes was unilamellar when these liposomes were formed from agarose in 

PBS, even in the absence of PEGylated lipids.  Figure 2.7 also shows, however, two 

additional small peaks of fluorescence intensity that appeared in the histograms of 

POPC liposomes at ~1,000 arbitrary units and at ~1,500 arbitrary units (dashed red 

line).  These intensities suggest the presence of two and three bilayers in the 
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liposomes, respectively.  Moreover, this preparation also contained liposomes with 

fluorescence intensities that indicate a larger number of bilayers than three.  Formation 

of giant liposomes from hybrid films of agarose and lipids hence appeared to generate 

both unilamellar and multilamellar liposomes in PBS solutions. 

 

Figure 2.7.  Average fluorescence intensity of giant liposomes as a function of liposome 

diameter and corresponding Gaussian fits to the distribution in fluorescence intensity.  

The panel on the left displays the average fluorescence intensities of free-floating 

liposomes formed for three hours in PBS from hybrid films of ultra-low melting 

temperature agarose and lipids.  Black squares represent giant liposomes composed of 

POPC with 5 mol% PEGylated lipids and 1% DPPE-rhodamine; red circles represent 

giant liposomes composed of POPC with 1% DPPE-rhodamine.  Each symbol in the left 

panel corresponds to one liposome (total count = 95; 51 were composed of POPC and 

44 contained PEGylated lipids).  The center panel shows the distribution of the average 

fluorescence intensities of giant liposomes composed of POPC with 5 mol% PEGylated 

lipids and 1% DPPE-rhodamine (indicated by the black squares connected with a 

dashed black line) and the fit of a lognormal function to the main peak of intensities 

(solid gray line).  The panel on the right shows the distribution of the average 

fluorescence intensities of giant liposomes composed of POPC with 1% DPPE-

rhodamine (indicated by the red circles connected with a dashed red line) and the fit of 

a lognormal function to the main peak of intensities (solid red line).  Note, the camera 

saturated at fluorescence intensities above 4,000. 
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2.2.5 Encapsulation of water-soluble macromolecules into giant liposomes 

One possible application of giant liposomes in physiologic buffer is to carry out 

reactions inside these liposomes.  To this end, it would be useful to encapsulate 

molecules inside the liposomes.  We tested this possibility by forming giant liposomes 

from hybrid films of agarose and lipids in a flow chamber(22) in a solution that contained 

0.1 mM Tris (pH 7.4) with 0.5 µM dextran (MW 70,000) labeled covalently with 

fluorescein isothiocyanate (FITC).  After 3 h of formation, we replaced the fluid in the 

chamber with a 0.1 mM Tris solution (pH 7.4) that did not contain FITC-conjugated 

dextran.  We found that giant liposomes, when formed from hybrid films of agarose and 

lipids, did encapsulate FITC-conjugated dextran but at a lower concentration inside the 

liposomes than was present in the surrounding solution (see Appendix A, Figure A.8).  

In addition, a fraction of the encapsulated dextran remained in giant liposomes after the 

solution was exchanged.  These results demonstrated that this method of forming giant 

liposomes from films of agarose may be useful for encapsulating large water-soluble 

molecules within giant liposomes, thus opening up the possibility to use them as 

microreactors. 

 

2.3  Conclusion 

Gentle hydration of hybrid films of partially dried agarose and lipids provides a 

straight-forward, rapid, and reproducible procedure to generate giant liposomes in high 

yield in solutions of physiologic ionic strength.  This method does not require any 

specialized equipment and makes it possible to generate giant liposomes in PBS from a 

variety of lipids, including lipid compositions that typically pose problems for formation of 
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giant liposomes, such as pure phosphatidylserine, pure phosphatidylglycerol, or 

asolectin.  During the formation process, agarose molecules associate with the lipid 

membranes of the resulting liposomes while the lipids in the liposomes maintain fluidity.  

This interaction of macromolecular carbohydrate molecules with liposome membranes 

may have a similar beneficial effect as PEGylated lipids for the formation of giant 

liposomes in solutions with physiologic ionic strength.  Analysis of free-floating giant 

liposomes prepared from hybrid films of partially dried agarose and lipids revealed that 

this method appeared to generate both unilamellar and multilamellar giant liposomes in 

PBS, even in the absence of PEGylated or charged lipids.  The short time of formation, 

reliability, and high yield of the simple method presented here is appealing for 

generating giant liposomes in physiologic solutions and provides the opportunity to 

extend studies with giant liposomes to physiologically relevant conditions.  Moreover, 

the remarkably strong benefit of hybrid films of agarose and lipids with regard to the 

yield of giant liposomes in ionic solutions supports several proposed mechanisms of 

formation of these important models of cell membranes(1, 3, 10, 41, 42)  and may thus 

contribute to the understanding of the formation of giant liposomes. 

 

2.4  Experimental Section 

2.4.1  Formation of a film of agarose on glass slides by dip-coating   

We investigated the formation of giant liposomes on the following four types of 

agarose (all from Sigma-Aldrich, St. Louis, MO):  Type IX-A ultra-low melting agarose 

(gel point, Tg ≤ 17°C; melting point, Tm ≤ 60°C; electroendosmosis, EEO ≤ 0.11), Type 

VII-A low melting agarose (Tg ~26°C; Tm ≤ 65.5°C; EEO ≤ 0.12), Type II-A medium EEO 
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agarose (Tg ~36°C; Tm ~ 87°C; EEO = 0.16-0.19), and Type VI-A high melting agarose 

(Tg ~41°C; Tm ~95°C; EEO ≤ 0.14).  For each type of agarose, we prepared a 1% (w/w) 

solution in deionized water.  We boiled the suspension of agarose in water in a 

microwave oven, mixed the resulting solution, returned it to a boil, and mixed again to 

promote complete solubilization of the agarose powder.  We poured the warm agarose 

solution into a Petri dish and allowed it to cool either at room temperature (22°C 

overnight) or in a refrigerator (4°C for 1-2 h) to form a gel.  Immediately before dip-

coating the glass slides, we heated the agarose gel in the Petri dish for 10-30 s in the 

microwave oven, just long enough to re-melt the gel into liquid form, and mixed the 

solution gently.  We found that dip-coating slides after this re-melting procedure 

facilitated homogeneous surface coverage of the slides with the agarose solution. 

To dip-coat the glass slides, we contacted only one side of each glass slide (75 x 50 x 

1 mm, Corning Glass Works, Corning, NY) with the surface of the melted agarose 

solution.  We held the coated slides vertically for a few seconds to remove excess 

solution and placed the slides with the agarose-coated side facing up on a temperature-

controlled hotplate (Barnstead Intl, Dubuque, IA) at a temperature of 40°C.  Sometimes 

the solution of agarose did not wet the glass surface evenly; in this case, we placed the 

slide onto the hotplate and used a micropipette to deposit ~300 µL of agarose solution 

onto the surface of the slide.  Using the long edge of the pipette tip, we spread the 

solution of agarose over the surface of the slide by sweeping back and forth slowly until 

the solution of agarose remained spread over the surface.  We left the agarose-coated 

slides on the hotplate until the water evaporated such that a clear, seemingly dry film of 

agarose formed.  This process of drying occurred typically within 1-3 h.  In the case of 
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agarose with ultra-low and low melting temperatures, the solution did not form a gel 

state before drying into a film, whereas standard and high melting temperature agarose 

types gelled before drying into a thin film.  The resulting films of agarose adhered firmly 

to the surface of the slides.  These agarose films had a thickness of ~2 µm, as 

measured by scanning electron microscopy (SEM) of the cross-sections of these films. 

2.4.2  Formation of a film of polyacrylamide on glass slides   

For comparison with agarose films, we formed films of polyacrylamide gel by mixing 

10 mL of a 10% (w/v) solution of 37.5:1 acrylamide:N,N’-methylene-bis-acrylamide (Bio-

Rad Laboratories, Inc., Hercules, CA) with 10 µL of ammonium persulfate (APS) (Bio-

Rad Laboratories, Inc.) and 1 µL of tetramethylethylene-diamine (TEMED) (Bio-Rad 

Laboratories, Inc).  Immediately after depositing the solution onto a glass slide, we 

placed a second slide on top of the solution and allowed the solution to gel for ~20 min.  

We removed one of the glass slides and placed the gel (supported on the other glass 

slide) in deionized water while stirring for ~4 h to remove non-polymerized acrylamide 

monomers.  (Note, acrylamide monomers are toxic).  After this rinsing process, we 

placed the glass-supported gel on a hot plate at 40°C for 1-3 h to dry the surface of the 

gel.  Note, we dried the polyacrylamide gel only partially in order to prevent the film from 

detaching from the surface of the glass.   

2.4.3  Formation of films of lipids on films of agarose or on polyacrylamide   

To generate a film of lipids on and inside the films of agarose or polyacrylamide, we 

spread solutions with a concentration of 3.75 mg mL-1 lipids (all lipids were purchased 

from Avanti Polar Lipids, Inc., Alabaster, AL; except  soybean asolectin, which we 

obtained from Sigma-Aldrich, St. Louis, MO) dissolved in either pure chloroform (CHCl3) 
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(EMD Chemicals, Inc., Gibbstown, NJ) or in 90% CHCl3 and 10% (v/v) methanol 

(MeOH) (EMD Chemicals, Inc.).  Figure 2.8 illustrates the procedure.  (Note, chloroform 

vapors are toxic; this step must be performed in a chemical flow hood). We used the 

following ten lipid compositions to form lipid films (all in mol%): 1) pure 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphatidylcholine (POPC); 2) pure 1,2-dioleoyl-sn-glycero-3-

[phospho-L-serine](sodium salt) (DOPS); 3) pure 1-palmitoyl-2oleoyl-sn-glycero-3-

[phosphor-rac-(1-glycerol)] (POPG); 4) asolectin from soybean; 5) 90% POPC with 10% 

cholesterol; 6) 80% POPC with 20% cholesterol; 7) 90% POPC with 10% POPG; 8) 

50% POPC with 50% POPG; 9) 90% POPC with 10% DOPS; and 10) 95% POPC with 

5% 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy (polyethylene 

glycol)-2000] (PEG-PE, also referred to as PEGylated lipids).  For viewing liposomes or 

lipid films in epifluorescence mode, we doped the lipid solution with 0.5 mol% or 1 mol% 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(ammonium salt) (DPPE-rhodamine).  For fluorescence recovery after photobleaching 

experiments, we used 97% POPC with 3% 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl)(ammonium salt) (DMPE-

NBD). 
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Figure 2.8.  Formation of a film of lipids on glass slides that were pre-coated with a film 

of agarose (or on bare glass without a film of agarose for control experiments).  A) Two 

to three droplets of lipid solution (~5 µL each) were deposited close to one edge of the 

slide.  B) Lateral movement of a rod or needle across the slide, just at the surface, was 

used to spread the lipid solution into an even film.  Steps A and B were repeated to 

deposit a total volume of 30 µL of lipid solution. 

 

We deposited a total of 30 µL of lipid solution onto each glass slide using the two 

steps illustrated in Figure 2.8.  We placed the lipid-coated plates under vacuum (approx. 

-730 mmHg) for at least 20 min to remove residual CHCl3 and MeOH.  Although the lipid 

solution was coated over the film of agarose, lipids penetrated through the agarose film 

and resulted in a hybrid film of lipids and agarose (see Figure 2.4). 

2.4.4  Formation of a thick film of agarose   

To prepare a glass slide with a particularly thick (~16 µm) film of agarose, we 

repeated the dip-coating procedure described in Figure 2.2A ten times.  We then 

deposited a single lipid film of POPC lipids doped with 0.5 mol% DPPE-rhodamine 

using the procedure described in Figure A.9 of Appendix A.   
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2.4.5  Formation of giant liposomes on glass slides   

After removing the solvent from the lipid solution under vacuum, we initiated the 

formation of giant liposomes by placing the agarose- and lipid-coated slides in a clean 

Petri dish (140 x 20 mm Nunc Petri dish, Fisher Scientific, Rochester, NY) with the 

coated side facing upward.  We slowly added aqueous solution to the dish until the 

solution covered the slide completely.  We pre-warmed the aqueous solution either to 

room temperature or to 37°C in a water bath prior to adding it to the dish.  The dish 

remained undisturbed on a leveled surface at room temperature for a period of one to 

three hours to form giant liposomes at the surface of the agarose.  We formed giant 

liposomes in the following three aqueous solutions: deionized water, 150 mM potassium 

chloride (KCl) (EMD Chemicals, Inc., Gibbstown, NJ), and Dulbecco’s phosphate 

buffered saline (PBS) without Ca2+ or Mg2+ (JRH Biosciences, Inc., Lenexa, KS). 

2.4.6  Observation of liposomes   

We observed liposomes using an inverted microscope (Nikon Eclipse TE2000-U) 

in phase-contrast mode with a 10  objective (Nikon, NA=0.25).  We captured images of 

liposomes using a charge-coupled device (CCD) camera (Photometrics CoolSnap HQ 

camera, Roper Scientific, Trenton, NJ) and used calibrated imaging analysis software 

(Metamorph 7.0, Universal Imaging Corporation, Downington, PA) to determine their 

diameters.  To observe the growth and fusion of giant liposomes on films of agarose, we 

recorded time-lapse series of images during the formation of giant liposomes composed 

of pure POPC on films of ultra-low melting agarose in PBS for one hour.  We began 

capturing images within seconds after adding PBS to the formation chamber and 

recorded images from the same spot for the entire hour.  Due to the swelling of the film 
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of agarose, we adjusted the focal plane during the time-series to keep the top surface of 

the swelling agarose film in focus in order to observe the formation of liposomes.   

For confocal imaging, we used a 20  objective (Nikon, NA = 0.75) on an inverted 

microscope (Nikon Eclipse TE2000-U) equipped with an argon laser (Spectra-physics, 

wavelength = 488 nm), a helium-neon laser (Melles-Griot, wavelength = 543 nm), and 

appropriate filter settings for fluorescein, rhodamine, or NBD.  We used EZ-C1 software 

(Nikon, version 3.5) to capture images and analyze data. 

2.4.7  Characterization of films of agarose by scanning electron microscopy   

In order to carry out imaging with a high resolution scanning electron microscope 

(HRSEM) (NOVA 200 Nanolab, FEI Company, Hillsboro, OR), we used glass plates 

coated with a thin film of indium tin oxide(72) (ITO) (Delta Technologies, Stillwater, MN) 

and agarose-coated ITO plates and coated them with a sputter coater (Hummer VI, 

Anatech, Hayward, CA) in gold-palladium (Au:Pd ratio of 60:40, thickness ~6 nm).  To 

measure the thickness of the ultra-low melting agarose films, we peeled agarose films 

that were not coated with gold-palladium from the surface of the glass and examined 

the cross-sections of the films by HRSEM.    

2.4.8  Characterization of films of agarose by atomic force microscopy   

We scanned a randomly selected region (10 µm x 10 µm) of a film from each of 

the four types of agarose with a NanoScope IIa atomic force microscope (AFM) (Digital 

Instruments, Woodbury, NY) using a soft tip (UltraSharp Non-Contact Cantilever, 

MikroMasch, Madrid, Spain) with a resonance frequency of 371.014 kHz in tapping 

mode.  We used image analysis software to flatten the topographic images to produce 

representations of contours of films of agarose.   
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2.4.9  Chemical modification of agarose to produce fluorescently-labeled agarose   

In order to generate fluorescently-labeled agarose, we stirred 10 mL of a 2% 

solution of ultra-low melting temperature agarose at ~50°C and gradually added 200 µL 

of a fresh solution of fluorescein isothiocyanate (FITC) (Fisher Scientific, Rochester, 

NY) dissolved in anhydrous dimethylsulfoxide (DMSO) (99.9% pure, Alfa Aesar, Ward 

Hill, MA) with a concentration of 100 mg mL-1.  After mixing the FITC and agarose for 3 

h, we dialyzed the solution in deionized water using a Slide-A-Lyzer 10K dialysis 

cassette (10,000 molecular weight cut off, Pierce, Rockford, IL) for 3 days while 

changing the water twice daily.  We dip-coated glass slides with films of agarose from a 

solution that contained 0.9% (w/w) ultra-low melting temperature agarose and 0.1% 

FITC-labeled ultra-low melting temperature agarose. 
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CHAPTER III 

 

Functional Reconstitution of Human P-glycoprotein (ABCB1) 

in Giant Liposomes 

 

 

Abstract 

Giant proteoliposomes containing P-glycopotein (P-gp) were generated from a 

solution of small proteoliposomes by utilizing a film of agarose to facilitate formation.  

The inside-out orientation of reconstituted P-gp was confirmed with stimulation of ATP 

hydrolysis by the substrate, verapamil.  To measure active transport of the fluorescent 

substrate rhodamine 123 by reconstituted P-gp, the fluorescence intensity inside giant 

proteoliposomes was analyzed.  These experiments revealed the apparent membrane 

permeability (Ps) and a rate constant of active transport (kT) for this substrate.  The 

apparent Ps value of rhodamine 123 was larger in membranes containing P-gp under 

any condition than membranes that lacked P-gp and indicates that the presence of P-gp 

in the membrane increases its leakiness.  The rate of active transport was significantly 

higher in the presence of ATP than without ATP or in the presence of the competitive 

inhibitor verapamil and verifies that P-gp was functionally active after reconstitution in 
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giant proteoliposomes.  Lastly, patch clamp experiments on giant proteoliposomes 

showed detectable ion channel activity that was consistent with a co-purified chloride 

ion channel protein.  Together, these results confirm that this reconstitution technique 

enables functional assays with transmembrane proteins, such as P-gp or ion channel 

proteins, and demonstrate the advantage of using giant proteoliposomes for 

characterization of transporter properties. 

 
3.1  Introduction 

Giant liposomes are useful models to study diffusion or transport of solutes 

across biological membranes because their interiors are isolated from the surrounding 

fluid by a self-enclosing membrane and can be observed individually by optical 

microscopy.(1-3)  To study protein-mediated transport, functional transmembrane 

proteins must be incorporated into the membrane of giant liposomes that consist of a 

single lipid bilayer (giant unilamellar vesicle, GUV).  Few methods exist for the 

production of such giant proteoliposomes with active ion channels or transporter 

proteins due to the sensitive and fragile nature of many transmembrane proteins and 

GUVs.(4, 5) 

Many of the current methods of forming giant proteoliposomes are variations of 

the classic protocols of gentle hydration or electroformation, but with a carefully 

executed, gentle dehydration step to prevent denaturation of the proteins.(5-14)  To this 

end, most methods involve reconstituting transmembrane proteins into small unilamellar 

vesicles (SUVs), and then partially drying the SUVs into a film under controlled 

conditions before finally rehydrating the film in an aqueous solution.(10-13)  For example, 

during partial dehydration, the surfaces coated with proteoliposome solution can be 
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dried under a flow of inert gas or placed in a desiccator with low humidity (e.g., by the 

presence of a saturated salt solution or anhydrous calcium chloride crystals in a 

dessicator).(10-12)  Carbohydrates or other hydrophilic molecules, such as ethylene 

glycol, may also be added to the solution of proteoliposomes before dehydration to 

protect the protein from denaturing.(11-14)   

Other methods of forming giant proteoliposomes have been reported, but have 

limitations with regard to their final composition.  For example, Yanagisawa et al. 

reported a water-in-oil droplet transfer technique of incorporating transmembrane 

proteins into giant proteoliposomes.(15)  Many integral membrane proteins require 

undisrupted contact with lipids or detergent, however, so this method may not be 

suitable for all proteins.(4)  Another method of forming giant proteoliposomes is based on 

fusion of small proteoliposomes with pre-formed GUVs(16) and was recently refined by 

pre-concentrating GUVs to increase the efficiency of proteoliposome-GUV fusion.(17)  

Fusing small proteoliposomes to GUVs often results in low protein-lipid ratio and 

frequently requires specific lipid compositions, fusion peptides, or other physical or 

chemical inducers to promote membrane fusion.(4, 5, 18) 

Here, we present a novel approach for forming giant proteoliposomes and use it 

to incorporate the human multidrug resistance-linked ATP-binding cassette (ABC) 

transporter, ABCB1, commonly known as P-glycoprotein (P-gp).  Previously, we 

described the use of a hybrid film of dried agarose and lipids to promote formation of 

GUVs in solutions of physiologic ionic strength.(19)  We had demonstrated that the dried 

film of agarose retained a water content of ~15 wt% after drying on a hot plate at 40°C 

for >4 h.  Therefore, we hypothesized that a dried film of agarose might be useful also 
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for reconstituting proteins into giant proteoliposomes because the inherent water 

retention may protect the proteins from denaturing during the dehydration step.  To 

demonstrate the usefulness of this approach, we reconstituted purified P-gp and then 

assessed their orientation and functionality by measuring the rate of ATP hydrolysis, 

determining the transport rate by a fluorescence flux assay, and performing patch clamp 

experiments of a putative chloride channel that appeared to co-purify with P-gp.(20) 

The ability to assay P-gp for drug screening and development is of interest due to 

the role of P-gp in the blood-brain barrier and in cancer cells.(21-24)  P-gp is a transporter 

protein belonging to the ATP binding cassette (ABC) family of proteins with two ATP 

binding domains and 12 transmembrane α-helices.(21-25)  P-gp uses ATP hydrolysis to 

mediate active efflux of a broad range of hydrophobic molecules, and thus its 

(over)expression plays a significant role in multi-drug resistance (MDR) by cancer 

cells.(21-25)  Attempts to study P-gp thus far have been restricted primarily to cell-based 

assays, and so measured transport rates, with or without potential modulators, can be 

complicated by the presence of other transporter proteins and cellular constituents.(22, 24, 

26)  Liposome-based studies using purified P-gp have been conducted using primarily 

small proteoliposomes due, in part, to the difficulty of incorporating P-gp into giant 

proteoliposomes.(4, 27-29)  Sasaki et al. recently described a transport assay using 

commercially available giant proteoliposomes containing reconstituted P-gp.(30)  These 

proteoliposomes had diameters less than 3 µm and were immobilized in microfluidic 

channels for observation.  The fluorescent substrate was restricted to sub-µM 

concentrations because the signal inside the liposomes would otherwise be affected by 

accumulation of fluorescent substrate on or in the membrane.  The use of larger giant 
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proteoliposomes (>10 µm), as demonstrated here, could be useful because, in these 

large GUVs, the internal fluorescence measured near the center of the liposomes is 

located at a sufficient distance from the liposome membrane, thereby minimizing 

background signal from membrane-partitioned fluorescent substrate molecules.(2)  Giant 

proteoliposomes with diameters >10 µm are also easy to distinguish individually to 

provide liposome-specific transport data.(2)  Another advantage of giant proteoliposomes 

with large diameters is that they are well suited for patch clamp experiments.  We 

explored this benefit by performing inside-out current recordings on the same 

preparation of giant liposomes with reconstituted P-gp as used for the transport assays 

with fluorescent substrates.  To our surprise, we detected single ion channel activity that 

was consistent with a chloride channel with regard to the effect of specific chloride 

channel blockers and the single channel conductance.  Previous reports have indicated 

an association between P-gp and a chloride channel protein.(26, 27, 31-34)  Based on these 

results, we propose that reconstitution of purified P-gp into giant proteoliposomes that 

are greater than 10 µm in diameter provides a useful model system for studying the 

direct effects of potential inhibitors on the rate of transport by P-gp and potentially other 

transport or ion channel proteins.  We expect these systems to aid in drug development 

and in studying potential interactions of transport proteins with ion channel proteins.   

 

3.2  Results and Discussion 

3.2.1 Formation of giant proteoliposomes from small proteoliposomes 

We formed giant proteoliposomes that contained P-glycoprotein (P-gp) in the 

phospholipid membrane by first forming small proteoliposomes with P-gp, dehydrating 

the small proteoliposomes onto a dried film of ultra-low melting agarose, and then 
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rehydrating the film.  Giant liposomes formed readily from small proteoliposomes that 

contained P-gp (Figure 3.1C) and also from small liposomes that did not contain 

proteins (Figure 3.1A) that were used for control experiments.  Since the procedure of 

forming small proteoliposomes was previously demonstrated to reconstitute P-gp in the 

inside-out orientation,(27, 35) we hypothesized that at least a portion of the proteins would 

reconstitute into giant proteoliposomes in the same inside-out orientation such that the 

ATP-binding domain would remain accessible on the exterior of the liposome.  Since 

ATP hydrolysis enables active transport by P-gp, the inside-out orientation results in 

transport into the liposome instead of efflux (as naturally occurs in cells).   

 

Figure 3.1.  Confocal images of giant liposomes with or without reconstituted P-

glycoprotein (P-gp) in a solution containing 1 µM of the fluorescent substrate rhodamine 

123 (Rho123).  A) Giant proteoliposomes formed with P-gp, 2 min after immersion in 

Rho123 solution.  B) Giant proteoliposomes formed with P-gp, 30 min after immersion in 

Rho123 solution.  White arrows indicate proteoliposomes with interiors that exhibited a 

change in fluorescence intensity over time and were included in the data analysis to 

obtain apparent permeabilities and transport rates.  C) Control experiment with giant 
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liposomes that did not contain P- gp, 2 min after immersion in Rho123 solution.  D) 

Giant liposomes that did not contain P-gp, 30 min after immersion in Rho123 solution.  

Scale bar = 50 µm.  

 

 

Giant liposomes that formed from hybrid films of ultra-low melting agarose and 

small liposomes with P-gp showed elevated levels of ATPase activity following 

stimulation with the well-known P-gp substrate verapamil (see Appendix B, Table B.1) 

compared to levels of ATPase activity before adding verapamil.  This substrate-induced 

ATP hydrolysis suggested that a fraction of P-gp was measurably active with the ATP-

binding domain accessible to the external solution after the process of reconstitution via 

dried films of ultra-low melting agarose.(23, 35, 36)   

We observed a notable change in fluorescence intensity inside giant 

proteoliposomes that were formed with P-gp 30 min after their immersion in a solution 

containing a fluorescent substrate of P-gp, rhodamine 123 (Rho123),(22, 23, 30, 37, 38) but 

did not observe a similar change after immersion in Rho123 solution for GUVs that 

lacked P-gp.  This difference indicated that P-gp was indeed present at or in the 

membranes of giant liposomes following the reconstitution process and thus affected 

the flux of Rho123 across the membrane of liposomes. 

To test for active transport of a P-gp substrate into giant proteoliposomes, we 

collected time-lapse series of images following immersion of giant proteoliposomes in a 

solution containing Rho123.  We noted a frequent occurrence of brightly fluorescent 

rings in confocal images of the membranes of giant liposomes containing P-gp (as 

compared to the background or to the fluorescence of the liposome interior).  In 

contrast, giant liposomes that were generated without P-gp rarely showed these bright 

fluorescent membranes (see Figure 3.1).  This difference indicated that Rho123 
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associated preferentially with P-gp, while interacting to a smaller extent with the 

phospholipid membrane itself.  We observed this interaction of Rho123 with P-gp-

containing membranes in both the presence and absence of ATP or verapamil (see 

Appendix B, Figure B.1).  These results indicate that ATP was not required for Rho123 

to associate with P-gp and that the presence of verapamil, a known competitive inhibitor 

of P-gp-mediated transport of Rho123,(22, 23, 35, 39) was not able to out-compete this 

association completely.  This incomplete inhibition could be due possibly to a lower 

concentration of verapamil in the membranes of giant proteoliposomes along with 

increased lipid membrane area compared to the membranes of small proteoliposomes. 

To quantify transport, we monitored the fluorescence intensity inside and outside 

the giant liposomes over time.  The fluorescence intensity started low and increased 

significantly in some of the giant proteoliposomes that were formed with P-gp (Figure 

3.1B), whereas the fluorescence intensity remained low in nearly all GUVs that lacked 

P-gp (Figure 3.1D).  When the fluorescence intensity of the interior started low, we 

surmised the giant liposome was filled initially with the fluid used to reconstitute the 

liposome and, therefore, any measurable change in fluorescence intensity would be due 

to active transport and/or passive diffusion of Rho123 from the external solution, across 

the membrane, and into the internal solution.  In images of giant proteoliposomes that 

were formed with reconstituted P-gp, we also observed the occurrence of liposomes 

that were filled with bright fluorescence shortly after immersion in Rho123 solution and 

did not change in fluorescence intensity over time (see Figure 3.1 and Appendix B, 

Figure B.2).  These liposomes were present in images of giant proteoliposomes when 

active transport was enabled (e.g., with ATP) as well as impeded (e.g., without ATP or 
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in the presence of an inhibitor).  These brightly fluorescent liposomes even occurred 

occasionally in giant liposomes that did not contain reconstituted P-gp (see Appendix B, 

Figure B.2A).  We attributed these bright spots to giant liposomes that were filled with 

smaller liposomes.  In fact, most of these liposomes showed inhomogeneous low 

fluorescence indicating the presence of other liposomes inside of them (e.g., Figure 

3.1B).  We surmised that the change in fluorescence intensity inside these giant 

liposomes was caused by the close proximity of adjacent membranes, leading to 

possible membrane-to-membrane transfer of Rho123 and subsequent additive increase 

of the fluorescence intensity inside these giant liposomes.(30)  These brightly fluorescent 

liposomes were excluded from the data analysis. 

3.2.2 Assessment of protein function using a transport assay 

To determine if the reconstituted P-gp proteins were functional, we analyzed the 

rate of change in fluorescence intensity inside the liposomes with respect to the 

background fluorescence in each image and compared the rate of change under four 

different assay conditions: 1) with P-gp and 1 mM ATP, 2) with P-gp but without ATP, 3) 

with P-gp and 1 mM ATP and 30 µM verapamil to inhibit the transport of Rho123 by P-

gp, and 4) without P-gp.   

The change in the concentration of Rho123 inside a liposome is due to the 

molecules of Rho123 crossing the membrane of the liposome.  Molecules can cross a 

membrane via passive diffusion from the solution of high concentration to the solution of 

low concentration in a manner dependent on the area of membrane and a rate constant 

of diffusion,   . Alternatively, molecules can cross the membrane via active transport in 

the presence of active transporter proteins that depends on the number of P-gp (given 

by the surface density of P-p times the area of membrane), the concentration of ATP 
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and a rate constant of transport.  In our analysis, we combined the concentration of ATP 

and the rate constant of transport into one variable,   .  Figure 3.2 depicts 

schematically the role of passive diffusion and active transport on the change in the 

concentration of Rho123 inside a liposome. 

 

Figure 3.2.  Schematic depiction of passive diffusion and active transport of rhodamine 

123 (Rho123) across the membrane of a liposome.  A) Passive diffusion is the net 

movement of molecules from high concentration to lower concentration.  Accumulation 

inside a spherical liposome depends on the concentration difference across the 

membrane, the area of membrane that separates the two solutions, and a permeability 

rate constant.  B) Active transport of Rho123 requires the presence of functional 

transporter protein and ATP.  Since ATP was only added to the external solution, active 

transport yielded a net flux from outside to inside the liposome, independent of the 

concentration inside the liposome.  Therefore, the rate of active transport depends on 

the number of transporter proteins, the concentration of ATP, and a rate constant of 

transport.   

 

 

The change in the concentration of Rho123 in giant liposomes, as demonstrated 

in this work, is given by Equation 3.1,(2, 40, 41) where   is the volume     ,   is the 

concentration [µM],    is the apparent membrane permeability  
 

 
 ;   is the surface area 

    ;            is the difference in concentration of solute across the membrane (from 



68 

 

external solution to the interior); and      is the surface density of P-gp in the 

membrane  
   

  
 .    

  
  

  
                               (3.1) 

By assuming a relatively constant external concentration of Rho123 surrounding 

the liposome, and with liposomes being spherical and of constant volume, integrating 

Equation 3.1 from 0 µM (Cin at   ) to Cin and    to t yields Equation 3.2, where   is the 

time    ;      is the concentration of solute in the external solution;     is the 

concentration of solute inside the liposome at time  ; and 
 

 
 is the surface area of a 

sphere divided by its volume, where   is the radius    .  We calculated the surface 

density of P-gp in the membranes of liposomes to be 7.6 10-11 
   

  , based on the ratio 

of starting materials (see Appendix B, Section B.3). 

 
   

    
    

       

  
      

    
 

        (3.2) 

The fluorescence intensity inside giant liposomes formed with P-gp increased 

rapidly in the first 10-15 min after immersion in 1 µM Rho123 assay solution (see 

Appendix B, Figure B.3).  We determined the time-dependent concentration of Rho123 

from calibration of the fluorescence intensity.  We then accounted for the slight change 

in concentration outside the liposome by evaluating the ratio in concentration between 

internal and external solution  
   

    
  at each time point.  We fitted this ratio to Equation 

3.2 using Origin 8.0 to determine   ,   , and    for each liposome that contained P-gp.  

Liposomes that lacked P-gp, however, did not include the active transport term,   , 

because the surface density of P-gp in this case was zero.   Figure 3.3 shows box plots 

of the apparent    and    values determined from these fits.   
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Figure 3.3.  Box plots of apparent membrane permeability (  ) and rate constant of 

transport (  ) of rhodamine 123 into giant liposomes under different test conditions.  

The median apparent    values for each condition (from left to right, all in m/s) were: 

0.0098, 0.0096, 0.0088, and 1.1 10-7.  Kruskal-Wallis ANOVA revealed that the left 

three conditions have a similar apparent    value, whereas liposomes without P-gp had 

an apparent    value that was significantly lower than the liposomes that contained P-gp 

(p « 0.001).  The median    values for each condition (from left to right, all in m3 mol-1 s-

1) were: 3.7 105, 0, and 0.  The    value for liposomes without P-gp was not evaluated 

because the surface density of P-gp in these membranes was zero.  Kruskal-Wallis 

ANOVA revealed that the    value for liposomes with active transport (i.e., containing P-

gp and assayed with ATP and without verapamil) was significantly higher than the    

value for liposomes assayed without ATP (p = 0.027) or in the presence of verapamil (p 

= 0.033). 

 

 
We found that when P-gp was reconstituted into giant liposomes under any 

assay condition, the apparent    was significantly higher than the apparent    for 

liposomes that lacked P-gp.  Moreover, the apparent    was similar under all assay 

conditions for liposomes that contained P-gp.  The membrane permeability is used 

typically to characterize passive diffusion across membranes, such as into liposomes. 

When comparing the    values under different conditions, a higher    value corresponds 



70 

 

to a faster rate of diffusion.   As the diffusion rate of a solute across a membrane 

increases, the rate of accumulation of the solute inside the liposome also increases in a 

manner that is dependent on the size of the liposome.  Therefore, these results indicate 

that the presence of P-gp in the membrane increased the membrane permeability to 

Rho123, even when active transport was not enabled.  We could not differentiate, 

however, whether the increased permeability was due to leakiness of the membrane 

itself (for example, due to packing defects in the membrane induced by the nearby 

presence of P-gp) or due to passage along the surface of P-gp (for example, via 

passive transport caused by random changes of conformation from inward-facing to 

outward-facing and vice versa). 

The    values for liposomes containing P-gp in the presence of an inhibitor or 

without ATP were significantly lower than the    value for liposomes containing P-gp in 

the presence of ATP without an inhibitor.  Similar to the membrane permeability 

coefficient, the rate of accumulation of solute inside the liposome due to active transport 

is also dependent on the size of the liposome and increases with increasing values of 

  .  In our analysis, the    value also accounts for the concentration of ATP (1 mM for 

all assay conditions that included ATP).  Since active transport of Rho123 across the 

lipid membrane by functional P-gp in the inside-out orientation contributes to an 

increased rate of accumulation of fluorescent molecules inside giant liposomes, we 

attributed the observed increased    values under the appropriate conditions to be due 

to active transport by functional P-gp.  Additional evidence for active transport stems 

from the observation that the fluorescence intensity inside the liposomes exceeded the 

intensity outside the liposomes for several liposomes if the assay was carried out for at 
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least 20 min and seemed to be following an upward trend, whereas the fluorescence 

intensity inside liposomes without ATP or with inhibitor seemed to plateau (see 

Appendix B, Figure B.3).  These results indicate that functionally active P-gp proteins 

were reconstituted from small proteoliposomes into giant proteoliposomes via a dried 

film of ultra-low melting agarose.  Furthermore, ATP-mediated transport of Rho123 into 

giant proteoliposomes supports the hypothesis that at least a portion of the active P-gp 

retained their inside-out orientation. 

Next, we evaluated the rate of change in fluorescence intensity to determine the 

rate of active transport (see Appendix B, Section B.3 for detailed calculations).  We 

assumed that proteins and lipids reconstituted into giant proteoliposomes in the same 

ratio as in the small proteoliposomes prior to coating on a dried agarose film.  Based on 

this ratio and the average surface area of lipids and of P-gp, we determined the 

theoretical number of P-gp to be ~59,000 for a giant proteoliposome with a diameter of 

20 µm.  At a transport rate of ~1 molecule per second per protein,(42) the theoretical 

transport rate is                  

   
.  We then calculated the active transport-related flux 

as the number of molecules per elapsed time from the portion of Equation 3.2 related to 

active transport (i.e., without the portion of Equation 3.2 related to passive diffusion).  

Using the median    value determined from the fits to Equation 3.2, under the 

conditions of active transport (assayed with ATP without inhibitor), we determined the 

transport flux per area to be                  

    
.   

A number of factors may contribute to the three orders of magnitude discrepancy 

between the experimentally determined transport rate and the theoretical transport rate: 

the transport rate of Rho123 by individual P-gp proteins may be faster than 1 molecule 
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per second under the experimental conditions of our work, and the concentration of 

Rho123 in the membrane where transport occurs was likely higher than 1 µM (e.g., we 

had noted brighter membrane fluorescence, see Figure 3.1 and Appendix B, Figure 

B.1). Another possibility is that some lipid or P-gp molecules may have interacted with 

the agarose film preferentially and not been reconstituted into giant liposomes in the 

same ratio as was present in small proteoliposomes.  One other explanation is that, 

given the range of values determined from the fits of Equation 3.2, the true    value 

may differ from the median value.   

A significant benefit of using giant proteoliposomes for transport analyses is the 

ability to discern and evaluate vesicles individually.  The concentration (or number) of 

molecules transported into the liposome is dependent on the surface area of the vesicle.  

Methods of generating giant proteoliposomes, however, yield a heterogeneous 

population with a broad range of sizes.  Here we report a liposome-based transport 

assay that is simple to construct and perform, yields concentration data of fluorescent 

substrates with respect to vesicle size, and provides the ability to visually assess 

individual liposomes for irregularities and artifacts that could affect the influx of 

substrates.  For example, as discussed previously, bright spots inside liposomes 

corresponded to multilamellar liposomes or to giant liposomes filled with small vesicles.  

The presence of such liposomes is not unusual for methods of generating giant 

liposomes with embedded membrane proteins based on variations of the gentle 

hydration method,(43) but could skew the results when liposomes are too small to 

discern individually due to the brightness of the membrane fluorescence.  The giant 
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proteoliposomes prepared with the method presented here make it possible to exclude 

some of these artifacts from the analysis. 

3.2.3 Evaluation of ion channel activity of chloride channels co-purified with P-gp 

Previous reports have associated P-gp with chloride channel activity,(26, 27, 31-34) 

presumably by co-purification of these channels with P-gp.  Therefore, as an additional 

means of testing the functionality of proteins reconstituted in giant proteoliposomes via 

the method introduced here, we performed patch clamp experiments employing the 

inside-out mode from giant proteoliposomes and compared the current recordings of 

membranes containing P-gp with the current recordings of membranes without P-gp 

(Figure 3.4).   

 

Figure 3.4. Patch clamp recordings from giant liposomes formed on an agarose film 

from small liposomes that contained or did not contain purified P-glycoprotein (P-gp). 

Single channel currents were recorded after excising a membrane patch from the 
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proteoliposomes in the inside-out configuration at a holding potential of -100 mV. The 

cut-off filter frequency was 5 kHz and the sampling rate was 25 kHz. (A) Phase contrast 

image of a patch pipette sealed to a giant proteoliposome suspended in bath solution. 

(B) Current trace of single channel recordings from a GUV without P-gp. (C) Current 

traces of single channel recordings from giant proteoliposomes reconstituted with 

purified P-gp. Traces (from top to bottom panel) were filtered at 1 kHz, 2 kHz, 2 kHz and 

5 kHz, respectively. The mean single channel conductance values of open states (from 

top to bottom panel) were: 6, 19, 37, and 238 pS, respectively.  

 

We observed transient, and distinct, open and closed states in the patch clamp 

recordings of membrane patches from giant proteoliposomes that contained P-gp 

(Figure 3.4C).  In comparison, patch clamp recordings of membrane patches from 

GUVs that lacked P-gp did not show current fluctuations beyond baseline noise (Figure 

3.4B).  These results indicate that functional ion channel proteins were reconstituted in 

giant proteoliposomes when reconstituting the purified P-gp preparation by the method 

reported here.     

To investigate if these ion channel events originated from chloride ion channel 

proteins that co-purified with P-gp from the host insect cells, we applied potent chloride 

channel inhibitors (Figure 3.5).  Channel activity was blocked in the presence of 100 µM 

of the potent chloride channel inhibitor, 5-Nitro-2-(3-phenylpropylamino)benzoic acid 

(NPPB), but was restored after washing out the inhibitor.(44, 45)  Channel activity was 

irreversibly blocked after application of 50 µM Gd3+, as expected for chloride 

channels.(44, 46)  The responses observed with these chloride channel inhibitors indicate 

the presence of chloride channel proteins in giant proteoliposomes containing purified 

P-gp and agree with previous studies.(45, 47, 48)  For instance, Ehring et al. reported single 

channel conductance values of 6.1 pS and 25.2 pS from multi-drug resistance cell 

lines(45) while Duan et al. reported a single channel conductance value of 40 pS.(48)  In 
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addition, Schwiebert et al. observed a large conductance Cl- channel with a single 

channel conductance value of 305 pS.(47)  The initial currents at a holding potential of 

100 mV revealed two open states at 4.1 and 15.2 pS. 

 

Figure 3.5. Single channel recordings of Cl- currents in giant proteoliposomes that 

contained purified P-glycoprotein (P-gp) and their corresponding histograms. 

Recordings were performed in the inside-out configuration at a holding potential of 100 

mV. The recording cut-off filter frequency was 5 kHz and the sampling rate was 25 kHz. 

Traces were filtered at 1 kHz. (A) Original single channel Cl- currents. The single 

channel conductance values of two open states were 4.1 and 15.2 pS, respectively. (B) 

Current trace in the presence of 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a 

potent Cl- channel inhibitor, at a concentration of 100 μM, and (C) after washing out 

NPPB with standard bath solution. The conductance values of two open states are 3.8 

and 14.4 pS, respectively. (D) Current trace in the presence of 50 μM Gd3+, another 

chloride channel inhibitor. The dashed lines indicate the closed state (c) and two open 

states (o1 and o2). Peaks in the histogram reveal the open state current amplitudes. 
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3.2.4 Comparison with a previously described method  

When choosing a method for reconstituting proteins into giant proteoliposomes, 

the properties of the resulting liposomes must be considered.  For example, to study ion 

channels using the traditional, pipette-based patch clamp technique, only a few giant 

proteoliposomes need to be present because the experimentalist can select a 

proteoliposome of choice from a heterogeneous population.  For semi-automated, 

suction-based planar patch clamp assays,(49-51) however, a high concentration of 

unilamellar proteoliposomes with large diameters is desirable to ensure acceptable 

success rates of bilayer formation over micro- or nano-pores.(4)  Similarly, for transport 

assays as described in the work presented here, the ideal case would be an abundance 

of unilamellar proteoliposomes with diameters larger than 10 µm so that influx of solutes 

into liposomes can be readily monitored and analyzed using time series of images.  To 

compare the agarose-based method presented here with an existing method for 

producing giant proteoliposomes, we formed giant liposomes containing P-gp using the 

gentle hydration method presented by Riquelme et al.(52)  Both methods produced a 

similar yield of giant liposomes after collecting free-floating liposomes using a pipette 

(see Appendix B, Figure B.4).  Formation of giant proteoliposomes using the previously 

described method of gentle hydration was, however, less reliable (some trials yielded 

very few free-floating giant proteoliposomes) than formation from a film of ultra-low 

melting agarose (every trial produced a good yield of giant proteoliposomes).  We also 

found that the previously described method(52) typically produced liposomes that were 

more often packed with small liposomes compared to the method presented here (see 

Appendix B, Figure B.4).  While these internal liposomes did not interfere with the patch 
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clamp studies performed by Riquelme et al.,(52) these types of liposomes were not 

suitable for transport assays that measure the fluorescence intensity inside liposomes 

as described here.  Therefore, the fractional yield of suitable proteoliposomes for 

fluorescent flux assays was higher when formation was facilitated by a film of ultra-low 

melting agarose in comparison to the previously established protocol. 

 

3.3  Conclusion 

Dried films of ultra-low melting agarose facilitated the formation of giant 

proteoliposomes from small proteoliposomes.  The resulting giant proteoliposomes 

contained purified P-gp transporters and exhibited (i) increased ATPase activity 

following stimulation with a known transport substrate compared to pre-stimulation 

activity, (ii) elevated apparent membrane permeabilities to Rho123 in liposomes 

containing P-gp compared to liposomes lacking P-gp, (iii) elevated rates of transport 

under conditions conducive to active transport by P-gp compared to conditions lacking 

ATP or with an inhibitor, and (iv) patch clamp recordings that are consistent with co-

purified chloride channel proteins.  Together, these results demonstrate that this 

technique yielded functional reconstitution of purified transmembrane proteins, such as 

P-gp and co-purified chloride ion channels, into giant proteoliposomes.  At least a 

portion of the P-gp proteins remained in the inside-out configuration, wherein the ATP-

binding and substrate-binding domains were exposed to the external solution.  Unlike 

cellular assays, this configuration allows straightforward and rapid alteration of the 

environment surrounding these domains and provides a means of studying direct 

effects of potential inhibitors and ATP concentration on the rate of transport.  Agarose-
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mediated reconstitution of transmembrane proteins into giant liposomes resulted in a 

high yield of giant proteoliposomes that were suitable for transport studies and may 

enable experiments with semi-automated planar patch clamp experiments on 

reconstituted and purified proteins. 

 

3.4  Experimental Section 

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO), except when 

noted otherwise. 

3.4.1 Isolation of crude membranes from P-gp-expressing High Five insect cells 

We prepared crude membranes from High Five insect cells infected with 

recombinant baculovirus carrying the 6 His-tagged human MDR1 cDNA (kindly 

provided by S.V. Ambudkar, Laboratory of Cell Biology, Center for Cancer Research, 

National Cancer Institute, NIH, Bethesda, MD) as described previously.(53) We 

incubated cells on ice for 45 min in a lysis buffer containing 50 mM trizma hydrochloride 

(Tris-HCl), pH 7.5, 50 mM mannitol, 2 mM ethylene glycol tetraacetic acid (EGTA), 2 

mM dithiothreitol (DTT), 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), and 

1% (w/v) aprotinin (Roche Diagnostics, Indianapolis, IN) and subsequently disrupted the 

cells using a Dounce homogenizer (30 strokes with pestle A). We removed undisrupted 

cells and nuclear debris by centrifugation at 500 g for 10 min. We diluted the 

supernatant 2-fold in resuspension buffer containing 50 mM Tris-HCl (pH 7.5), 300 mM 

mannitol, 1 mM EGTA, 1 mM DTT, 1 mM AEBSF, and 1% (w/v) aprotinin. We collected 

the membranes by centrifugation for 60 min at 100,000 g and resuspended the pellet in 

resuspension buffer containing 10% (v/v) glycerol. We stored the membranes in small 
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aliquots at -70°C. We revealed the protein content of each preparation using the Amido 

Black protein method described by Schaffner and Weissmann(36) with bovine serum 

albumin (BSA) as a standard. 

3.4.2 Solubilization of P-gp 

We solubilized membranes prepared from insect cells using octyl β-D-

glucopyranoside as described(35) with modifications. We resuspended crude 

membranes at a concentration of 2.0 mg/mL in a buffer containing: 20 mM Tris-HCl (pH 

8.0), 20% (v/v) glycerol,150 mM NaCl, 2 mM β-mercaptoethanol, 2.0% (w/v) octyl 

glucoside, 1.5 mM MgCl2, 1 mM AEBSF, 2 µg/mL pepstatin, 2 µg/mL leupeptin, 1% 

(w/v) aprotinin and a 0.4% (w/v) lipid mixture consisting of Escherichia coli bulk 

phospholipid, phosphatidylcholine, phosphatidylserine, and cholesterol (all from Avanti 

Polar Lipids, Alabaster, AL) at 60:17.5:10:12.5 (w/w), respectively. After 20 min of 

incubation on ice, we removed insoluble material by centrifugation at 100,000 g for 1 h.  

The supernatant, which we call detergent extract, contained the solubilized P-gp. 

3.4.3 Purification of P-gp by metal affinity chromatography 

We incubated the detergent extract (10 mg of protein) in the presence of 2 mM 

imidazole (final concentration) for 30 min at 4°C on a rotary shaker with 0.5 mL of 50% 

(w/v) Talon metal affinity resin in non-buffered 20% ethanol (Clontech, Mountain View, 

CA).  The resin was prewashed once with buffer A composed of 20 mM Tris-HCl (pH 

8.0), 100 mM NaCl, 20% (v/v) glycerol, 2.5 mM β-mercaptoethanol, 1.25% (w/v) octyl 

glucoside, 1 mM MgCl2, 1 mM AEBSF, 2 µg/mL pepstatin, 2 µg/mL leupeptin, 1% (w/v) 

aprotinin and a 0.1% (w/v) lipid mixture (same composition as the solubilization 

reaction). We pelleted the metal affinity beads by centrifugation for 5 min at 500 g and 
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washed twice by resuspending and incubating in 10 mL of buffer A at 4°C for 10 min on 

a rotary shaker. We resuspended the beads in 1 mL of buffer A and transferred them to 

a 4 mL disposable column (Bio-Rad, Hercules, CA). After being washed twice in 5 mL of 

buffer A containing 500 mM KCl, we eluted the proteins stepwise in 2 mL each of buffer 

B (same as buffer A except with 20 mM Tris-HCl at pH 6.8 instead of at pH 8.0) 

containing 10, 100, and 200 mM imidazole. We concentrated the fractions eluted from 

the column using Centriprep-50 concentrators (Amicon, Beverly, MA) and stored in 

aliquots at -70°C. We analyzed the protein content of the purified sample by the Amido 

Black protein method and performed sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunoblot analysis as previously described.(35, 36)  

We estimate the purity of this P-gp preparation to be 70 to 80%. 

3.4.4 Reconstitution of P-gp into small proteoliposomes 

For reconstitution, we used 160-250 µg of purified and concentrated P-gp. We 

mixed the protein sample with 4-5 mg of tip sonicated phospholipid mixture (same 

composition as the solubilization reaction at 50 mg/mL in 50 mM Tris-HCl, pH 7.4), 

1.25% octylglucoside, and 50 mM Tris-HCl, pH 7.4, in a final volume of 1 ml. We 

incubated the mixture for 20 min on ice and formed proteoliposomes or liposomes 

(prepared without protein) at 23-25°C by a 1:25 dilution into buffer C composed of 50 

mM Tris-HCl, pH 7.4, 1 mM DTT, and 1  protease inhibitor cocktail (Roche Diagnostics, 

Indianapolis, IN). We concentrated the proteoliposomes or liposomes by centrifugation 

at 100,000 g, washed once, and resuspended in 150 µL of buffer C containing 

protease inhibitors and 2.5 mM MgCl2. 
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3.4.5 Formation of giant proteoliposomes 

To form giant proteoliposomes from small proteoliposomes, we extended a 

technique that we described previously for the formation of liposomes without 

reconstituted proteins.(19)  We prepared ~10 mL of a solution of 1% (w/w) ultra-low 

melting agarose (Type IX-A from Sigma-Aldrich, St. Louis, MO) in deionized water by 

boiling the suspension of agarose powder and water twice in a microwave with gentle 

agitation between heating.  After the solution cooled to room temperature, we reheated 

it for 10 s in a microwave and immediately dip-coated one side of a cover glass (24   

50   0.15 mm, from Fisher Scientific, Rochester, NY) in the agarose solution.  We 

placed the cover glass with the agarose-coated side facing upward on a temperature-

controlled hot plate (Barnstead Intl, Dubuque, IA) and covered the glass with the lid 

from a Petri dish set at an angle to allow water vapor to escape while also preventing 

dust from settling onto the agarose film.  The cover glass remained on the hot plate with 

the temperature set to 40°C until the solution appeared dry (typically ~20 min). 

After the agarose solution dried into a clear film, we hand-cut a rectangular frame 

of poly-dimethylsiloxane (PDMS) (Sylgard 184 Silicone, Dow Corning Corporation, 

Midland, MI) to the size of the cover glass and placed the PDMS frame onto the 

agarose-coated side of the cover glass.  Using a pipette, we dispersed 150 µL of the 

solution containing small proteoliposomes in small droplets (~10 µL each) onto the dried 

film of agarose while trying to cover the entire surface enclosed within the PDMS frame.  

We dragged the pipette tip over the tops of the droplets until they coalesced into a 

single film of solution while taking care not to disturb the underlying agarose film.  We 

placed the lid from a Petri dish set at an angle over the cover glass and kept the cover 
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glass undisturbed overnight at room temperature, or until the solution appeared dry.  In 

the last few trials, we applied a vacuum (~500 mmHg) to shorten the drying time to less 

than 2 h. 

When the solution of small liposomes appeared dry, we added 1 mL of 190 mM 

sucrose, 1 mM DTT, and 1  protease inhibitor cocktail in 50 mM Tris-HCl, pH 7.0, 

placed the lid of a Petri dish over the cover glass, and left it undisturbed for 3 h to allow 

formation of giant proteoliposomes.  After formation, we transferred the giant 

proteoliposomes to a microcentrifuge tube  (1.5 mL volume, Eppendorf, Westbury, NY) 

while taking care not to transfer visible pieces of the agarose film. 

3.4.6 Assessment of protein activity after reconstitution into giant liposomes 

In order to determine the rate of ATP hydrolysis of reconstituted liposomes, we 

incubated them with 30 µM verapamil (a substrate of P-gp) in the presence and 

absence of 300 µM vanadate in ATPase assay buffer for 10 min at 37ºC.   This ATPase 

assay buffer contained 50 µM KCl, 5 mM NaN3, 2 mM EGTA, 10 mM MgCl2, 1 mM DTT, 

2 mM ouabain, and 50 mM Tris-HCl, pH 7.5.  We used vanadate to inhibit the ATPase 

activity of P-gp. We started the reaction by adding 5 mM ATP and incubated for 20 min 

at 37ºC. We terminated the reaction with the addition of SDS solution (0.1 mL of 5% w/v 

SDS) and quantified the amount of inorganic phosphate released by a sensitive 

colorimetric reaction as described previously.(25) We recorded the specific activity of the 

transporter as vanadate-sensitive ATPase activity.(25) 

3.4.7 Measurement of P-gp transport rate 

We prepared assay solutions at 2  the desired final concentration of magnesium 

ions, rhodamine 123 (Rho123), and adenosine triphosphate (ATP) to account for 
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dilution of these molecules when mixed with an equal volume of solution containing 

giant liposomes.  We used a concentration of sorbitol that was isoosmolar to the 

sucrose solution used to form giant proteoliposomes such that the giant 

proteoliposomes would settle quickly due to the density gradient (see Appendix B, 

Figure B.5) with minimal or no swelling or shrinking from water flux across the 

membrane.  Assay solution without ATP consisted of 207 mM sorbitol, 50 mM Tris, pH 

7.0, 8 mM MgCl2, and 2 µM Rho123.  Assay solution with ATP was the same but 

contained also 2 mM ATP.  To inhibit the P-gp-mediated transport of Rho123 

competitively, we transferred a portion of the solution containing giant proteoliposomes 

to a separate microcentrifuge tube, added verapamil to a final concentration of 30 µM, 

and incubated them at room temperature for >15 min before use. Assay solution with 

inhibitor was the same as assay solution with ATP but contained also 30 µM verapamil.   

For microscopic observation of transport, we punched 5 mm diameter holes in a 

slab of PDMS (approximately 2 mm thick) and adhered the pre-punched PDMS to a 

cover glass to form wells for viewing giant liposomes.  We incubated these wells with 

5% milk (w/v nonfat dry milk powder in phosphate buffered saline) to prevent non-

specific adsorption that may lead to rupture of giant liposomes on the surface of the 

glass.  We then placed 30 µL of assay solution into an observation well, added 30 µL of 

solution containing giant liposomes, and mixed the contents of the well gently using the 

pipette.  After waiting ~1 min to allow the giant liposomes to settle to the bottom of the 

well, we focused on a region that contained multiple liposomes and used a confocal 

microscope (Nikon EZ-C1 software, version 3.20) to capture confocal images at 1 min 

intervals for 30–60 min using an inverted microscope (Nikon Eclipse TE2000-U) with a 
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20  objective (Nikon, NA=0.75) and equipped with an argon laser (Spectra-physics, 

wavelength = 488 nm), a helium-neon laser (Melles-Griot, wavelength = 543 nm), 

appropriate filter settings for Rho123, and a pinhole diameter of 33.3 µm. 

3.4.8 Data analysis 

We used EZ-C1 Freeviewer (Nikon, version 3.50) to measure the diameter of 

liposomes and the fluorescence intensity of their interiors and of the surrounding 

solution as a function of time.  Some liposomes were filled with smaller vesicles and 

appeared as bright spots in confocal images.  These filled liposomes were not analyzed 

because the fluorescence intensity appears to be due to membrane-associated Rho123 

instead of Rho123 transported from the external to the internal solution. 

We determined that the fluorescence intensity was linearly related to the 

concentration of Rho123 (see Appendix B, Fig. B.2).  The detection sensitivity of the 

confocal imaging software, however, was different between days and even each time 

the program was opened.  Therefore, for each date we performed the assay, we used a 

two point calibration to determine the Rho123 concentration from fluorescence intensity 

values using the average intensity inside GUVs without P-gp at the starting time 

(concentration of Rho123 ~0 µM) and the average intensity of the solution outside of 

GUVs at the starting time (concentration of Rho123 ~1 µM).    

The change in the concentration of Rho123 inside a liposome is due to the 

molecules of Rho123 crossing the membrane of the liposome.  Molecules can cross a 

membrane via passive diffusion in a manner that depends on the difference in 

concentration on each side of the membrane and a rate constant of diffusion,   , or via 

active transport in the presence of active transporter proteins that depends on the 
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concentration of ATP and a rate of transport.  In our analysis, we combined the 

concentration of ATP and the rate of transport into one variable,   .  The change in the 

concentration of Rho123 in giant liposomes, as demonstrated in this work, is given by 

Equation 3.1,(2, 40, 41) where   is the volume     ,   is the concentration [µM],    is the 

apparent membrane permeability  
 

 
 ;   is the surface area     ;            is the 

difference in concentration of solute across the membrane (from external solution to the 

interior); and      is the surface density of P-gp in the membrane  
   

   .    

  
  

  
                               (3.1) 

By assuming a relatively constant external concentration of Rho123 surrounding 

the liposome, and with liposomes being spherical and of constant volume, integrating 

Equation 3.1 from 0 µM (Cin at   ) to Cin,t and    to t yields Equation 3.2, where   is the 

time    ;      is the concentration of solute in the external solution;     is the 

concentration of solute inside the liposome at time  ; and 
 

 
 is the surface area of a 

sphere divided by its volume, where   is the radius    .   

 
   

    
    

       

  
      

    
 

        (3.2) 

We calculated the surface density of P-gp in the membranes of liposomes to be 

7.6 10-11 
   

  , based on the ratio of starting materials (see Supporting Information).  We 

then accounted for the slight change in concentration outside the liposome by 

evaluating the ratio in concentration between external and internal solution  
   

    
  at 

each time point.  We fitted this ratio to Equation 3.2 using Origin 8.0 to determine   ,   , 

and    for each liposome that contained P-gp.  Liposomes that lacked P-gp, however, 
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did not include the active transport term,   , because the surface density of P-gp in this 

case was zero.    

For this analysis, we did not evaluate the fluorescence intensity of liposomes that 

were clearly not unilamellar or that visibly contained small vesicles inside because these 

results would not be due solely to active transport by P-gp.  Of the liposomes analyzed 

per Equation 3.2, most fit well to the expected trend with an adjusted R2 >0.98.  Data 

from some liposomes did not follow the expected trend and may have been due to 

multilamellar liposomes or to liposomes with defects.  Therefore, we did not include data 

from liposomes with a poor fit to the expected trend (adjusted R2 <0.90) in the test for 

statistical significance.  We used Kruskal-Wallis ANOVA in Origin 8.0 to assess 

statistical significance of the data for each experimental condition. 

3.4.9 Patch clamp experiments with proteoliposomes  

We placed a 20 μL drop of proteoliposome suspension in the center of a 35 mm 

glass bottom Petri dish (MatTek, Ashland, MA) that we had pretreated with 5% milk (w/v 

dry nonfat milk powder in phosphate buffered saline) for 30 min. Then we covered the 

dish with 2 mL of bath solution while taking care to keep the giant proteoliposomes near 

the center of the dish. Most of the giant proteoliposomes settled to the bottom of the 

dish within a few minutes. The bath solution consisted of 130 mM KCl, 1 mM MgCl2, and 

10 mM HEPES with a pH titrated to 7.2 using KOH. The pipette solution was identical to 

the bath solution supplemented with 5 mM ATP. We fabricated the patch electrodes 

with resistances of 5.0–10.0 MΩ from borosilicate glass (Sutter Instruments, Novato, 

CA) using a P-87 puller (Sutter Instruments, Novato, CA). After formation of a Giga seal, 

we pulled the patch electrode away from the giant proteoliposome and quickly went 
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through the water-air interface in order to ensure the inside out configuration.  We 

recorded the single channel current at room temperature using an Axopatch 200B 

amplifier (Molecular Devices, Sunnyvale, CA) and digitized the recordings using a 

Digidata 1322A (Molecular Devices, Sunnyvale, CA). Data acquisition was done using 

pClamp9 software (Molecular Devices, Sunnyvale, CA). 

 

3.5  Acknowledgements 

This work was supported by a National Science Foundation Career Award (M.M., 

grant no. 0449088) and the National Institutes of Health (M.M., grant no. 

1R01GM081705).  Drs. S. Shukla and S.V. Ambudkar were supported by the Intramural 

Research Program of the NIH, National Cancer Institute, Center for Cancer Research.  

K.S.H. acknowledges a Microfluidics in Biomedical Sciences Training Program 

fellowship from NIH (Grant No. T32EB005582 from the National Institute of Biomedical 

Imaging and Bioengineering at NIH) and a Rackham Engineering Award Fellowship. 

 

References 

1. Luisi, P. L., and Walde, P., (Eds.) (2000) Perspectives in Supramolecular Chemisty: Giant 
Vesicles, Vol. 6, John Wiley & Sons, New York. 

2. Li, S., Hu, P. C., and Malmstadt, N. (2010) Confocal Imaging to Quantify Passive Transport 
across Biomimetic Lipid Membranes, Analytical Chemistry 82, 7766-7771. 

3. Maherani, B., Arab-Tehrany, E., Mozafari, M. R., Gaiani, C., and Linder, M. (2011) 
Liposomes: A Review of Manufacturing Techniques and Targeting Strategies, Curr. 
Nanosci. 7, 436-452. 

4. Tiefenauer, L., and Demarche, S. (2012) Challenges in the Development of Functional 
Assays of Membrane Proteins, Materials 5, 2205-2242. 

5. Walde, P., Cosentino, K., Engel, H., and Stano, P. (2010) Giant Vesicles: Preparations and 
Applications, Chembiochem 11, 848-865. 



88 

 

6. Reeves, J. P., and Dowben, R. M. (1969) Formation and Properties of Thin-Walled 
Phospholipid Vesicles, Journal of Cellular Physiology 73, 49-60. 

7. Angelova, M. I., and Dimitrov, D. S. (1986) Liposome Electroformation, Faraday Discussions 
81, 303-311. 

8. Morales-Penningston, N. F., Wu, J., Farkas, E. R., Goh, S. L., Konyakhina, T. M., Zheng, J. 
Y., Webb, W. W., and Feigenson, G. W. (2010) GUV preparation and imaging: Minimizing 
artifacts, Biochimica Et Biophysica Acta-Biomembranes 1798, 1324-1332. 

9. Shaklee, P. M., Semrau, S., Malkus, M., Kubick, S., Dogterom, M., and Schmidt, T. (2010) 
Protein Incorporation in Giant Lipid Vesicles under Physiological Conditions, Chembiochem 
11, 175-179. 

10. Girard, P., Pecreaux, J., Lenoir, G., Falson, P., Rigaud, J. L., and Bassereau, P. (2004) A 
new method for the reconstitution of membrane proteins into giant unilamellar vesicles, 
Biophysical Journal 87, 419-429. 

11. Keller, B. U., Hedrich, R., Vaz, W. L., and Criado, M. (1988) Single channel recordings of 
reconstituted ion channel proteins: an improved technique, Pflugers Arch 411, 94-100. 

12. Riquelme, G., Lopez, E., Garcia-Segura, L. M., Ferragut, J. A., and Gonzalez-Ros, J. M. 
(1990) Giant liposomes: a model system in which to obtain patch-clamp recordings of ionic 
channels, Biochemistry 29, 11215-11222. 

13. Doeven, M. K., Folgering, J. H. A., Krasnikov, V., Geertsma, E. R., van den Bogaart, G., and 
Poolman, B. (2005) Distribution, lateral mobility and function of membrane proteins 
incorporated into giant unilamellar vesicles, Biophysical Journal 88, 1134-1142. 

14. Battle, A. R., Petrov, E., Pal, P., and Martinac, B. (2009) Rapid and improved reconstitution 
of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a 
modified sucrose method, Febs Letters 583, 407-412. 

15. Yanagisawa, M., Iwamoto, M., Kato, A., Yoshikawa, K., and Oiki, S. (2011) Oriented 
Reconstitution of a Membrane Protein in a Giant Unilamellar Vesicle: Experimental 
Verification with the Potassium Channel KcsA, Journal of the American Chemical Society 
133, 11774-11779. 

16. Kahya, N., Pecheur, E. I., de Boeij, W. P., Wiersma, D. A., and Hoekstra, D. (2001) 
Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced 
fusion, Biophysical Journal 81, 1464-1474. 

17. Varnier, A., Kermarrec, F., Blesneac, I., Moreau, C., Liguori, L., Lenormand, J. L., and 
Picollet-D'hahan, N. (2010) A Simple Method for the Reconstitution of Membrane Proteins 
into Giant Unilamellar Vesicles, Journal of Membrane Biology 233, 85-92. 

18. Estes, D. J., Lopez, S. R., Fuller, A. O., and Mayer, M. (2006) Triggering and visualizing the 
aggregation and fusion of lipid membranes in microfluidic chambers, Biophys J 91, 233-243. 



89 

 

19. Horger, K. S., Estes, D. J., Capone, R., and Mayer, M. (2009) Films of Agarose Enable 
Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength, Journal of 
the American Chemical Society 131, 1810-1819. 

20. Hardy, S. P., Goodfellow, H. R., Valverde, M. A., Gill, D. R., Sepulveda, F. V., and Higgins, 
C. F. (1995) PROTEIN-KINASE C-MEDIATED PHOSPHORYLATION OF THE HUMAN 
MULTIDRUG-RESISTANCE P-GLYCOPROTEIN REGULATES CELL VOLUME-
ACTIVATED CHLORIDE CHANNELS, Embo J. 14, 68-75. 

21. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E., and Gottesman, M. M. (2003) P-
glycoprotein: from genomics to mechanism, Oncogene 22, 7468-7485. 

22. Ramachandran, C., and Melnick, S. J. (1999) Multidrug resistance review in human tumors - 
Molecular diagnosis and clinical significance, Molecular Diagnosis 4, 81-94. 

23. Sharom, F. J. (2011) The P-glycoprotein multidrug transporter, In Essays in Biochemistry: 
Abc Transporters (Sharom, F. J., Ed.), pp 161-178, Portland Press Ltd, London. 

24. Palmeira, A., Sousa, E., Vasconcelos, M. H., and Pinto, M. M. (2012) Three Decades of P-
gp Inhibitors: Skimming Through Several Generations and Scaffolds, Curr. Med. Chem. 19, 
1946-2025. 

25. Ambudkar, S. V. (1998) Drug-stimulatable ATPase activity in crude membranes of human 
MDR1-transfected mammalian cells, Methods Enzymol. 292, 504-514. 

26. Wielinga, P. R., Heijn, N., Westerhoff, H. V., and Lankelma, J. (1998) A method for studying 
plasma membrane transport with intact cells using computerized fluorometry, Analytical 
Biochemistry 263, 221-231. 

27. Howard, E. M., and Roepe, P. D. (2003) Purified human MDR 1 modulates membrane 
potential in reconstituted proteoliposomes, Biochemistry 42, 3544-3555. 

28. Al-Shawi, M. K., and Omote, H. (2005) The remarkable transport mechanism of P-
glycoprotein: A multidrug transporter, Journal of Bioenergetics and Biomembranes 37, 489-
496. 

29. Bucher, K., Belli, S., Wunderli-Allenspach, H., and Kramer, S. D. (2007) P-glycoprotein in 
proteoliposomes with low residual detergent: The effects of cholesterol, Pharmaceutical 
Research 24, 1993-2004. 

30. Sasaki, H., Kawano, R., Osaki, T., Kamiya, K., and Takeuchi, S. (2012) Single-vesicle 
estimation of ATP-binding cassette transporters in microfluidic channels, Lab on a Chip 12, 
702-704. 

31. Higgins, C. F. (1995) P-glycoprotein and cell volume-activated chloride channels, Journal of 
Bioenergetics and Biomembranes 27, 63-70. 

32. Valverde, M. A., Diaz, M., Sepulveda, F. V., Gill, D. R., Hyde, S. C., and Higgins, C. F. 
(1992) Volume-regulated chloride channels associated with the human multidrug-resistance 
P-glycoprotein, Nature 355, 830-833. 



90 

 

33. Johnstone, R. W., Ruefli, A. A., and Smyth, M. J. (2000) Multiple physiological functions for 
multidrug transporter P-glycoprotein?, Trends Biochem.Sci. 25, 1-6. 

34. Mizutani, T., Masuda, M., Nakai, E., Furumiya, K., Togawa, H., Nakamura, Y., Kawai, Y., 
Nakahira, K., Shinkai, S., and Takahashi, K. (2008) Genuine functions of P-glycoprotein 
(ABCB1), Curr. Drug Metab. 9, 167-174. 

35. Ambudkar, S. V., Lelong, I. H., Zhang, J. P., Cardarelli, C. O., Gottesman, M. M., and 
Pastan, I. (1992) Partial-purification and reconstitution of the human multidrug-resistance 
pump - characterization of the drug-stimulatable ATP hydrolysis, Proceedings of the 
National Academy of Sciences of the United States of America 89, 8472-8476. 

36. Schaffner, W., and Weissman, C. (1973) Rapid, sensitive, and specific method for 
determination of protein in dilute-solution, Analytical Biochemistry 56, 502-514. 

37. Shapiro, A. B., and Ling, V. (1998) Stoichiometry of coupling of rhodamine 123 transport to 
ATP hydrolysis by P-glycoprotein, Eur. J. Biochem. 254, 189-193. 

38. Chearwae, W., Anuchapreeda, S., Nandigama, K., Ambudkar, S. V., and Limtrakul, P. 
(2004) Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by 
curcumin I, II, and III purified from Turmeric powder, Biochem. Pharmacol. 68, 2043-2052. 

39. Shukla, S., Wu, C. P., and Ambudkar, S. V. (2008) Development of inhibitors of ATP-binding 
cassette drug transporters - present status and challenges, Expert Opin. Drug Metab. 
Toxicol. 4, 205-223. 

40. Chakrabarti, A. C., and Deamer, D. W. (1992) Permeability of lipid bilayers to amino-acids 
and phosphate, Biochimica Et Biophysica Acta 1111, 171-177. 

41. Michelson, S., and Slate, D. (1992) A MATHEMATICAL-MODEL OF THE P-
GLYCOPROTEIN PUMP AS A MEDIATOR OF MULTIDRUG RESISTANCE, Bull. Math. 
Biol. 54, 1023-1038. 

42. Ambudkar, S. V., Cardarelli, C. O., Pashinsky, I., and Stein, W. D. (1997) Relation between 
the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis 
by human P-glycoprotein, Journal of Biological Chemistry 272, 21160-21166. 

43. Rodriguez, N., Pincet, F., and Cribier, S. (2005) Giant vesicles formed by gentle hydration 
and electroformation: A comparison by fluorescence microscopy, Colloids and Surfaces B-
Biointerfaces 42, 125-130. 

44. de Tassigny, A. D., Souktani, R., Ghaleh, B., Henry, P., and Berdeaux, A. (2003) Structure 
and pharmacology of swelling-sensitive chloride channels, I-Cl,I-swell, Fundam. Clin. 
Pharmacol. 17, 539-553. 

45. Ehring, G. R., Osipchuk, Y. V., and Cahalan, M. D. (1994) Swelling-activated chloride 
channels in multidrug-sensitive and multidrug-resistant cells, Journal of General Physiology 
104, 1129-1161. 

46. Suzuki, M., Morita, T., and Iwamoto, T. (2006) Diversity of Cl- channels, Cell. Mol. Life Sci. 
63, 12-24. 



91 

 

47. Schwiebert, E. M., Mills, J. W., and Stanton, B. A. (1994) Actin-based cytoskeleton regulates 
a chloride channel and cell-volume in a renal cortical collecting duct cell-line, Journal of 
Biological Chemistry 269, 7081-7089. 

48. Duan, D., Winter, C., Cowley, S., Hume, J. R., and Horowitz, B. (1997) Molecular 
identification of a volume-regulated chloride channel, Nature 390, 417-421. 

49. Demarche, S., Sugihara, K., Zambelli, T., Tiefenauer, L., and Voros, J. (2011) Techniques 
for recording reconstituted ion channels, Analyst 136, 1077-1089. 

50. Bruggemann, A., Stoelzle, S., George, M., Behrends, J. C., and Fertig, N. (2006) Microchip 
technology for automated and parallel patch-clamp recording, Small 2, 840-846. 

51. Schmidt, C., Mayer, M., and Vogel, H. (2000) A chip-based biosensor for the functional 
analysis of single ion channels, Angewandte Chemie International Edition 39, 3137-3140. 

52. Riquelme, G., Lopez, E., Garciasegura, L. M., Ferragut, J. A., and Gonzalezros, J. M. (1990) 
Giant Liposomes - a Model System in Which to Obtain Patch-Clamp Recordings of Ionic 
Channels, Biochemistry 29, 11215-11222. 

53. Ramachandra, M., Ambudkar, S. V., Chen, D., Hrycyna, C. A., Dey, S., Gottesman, M. M., 
and Pastan, I. (1998) Human P-glycoprotein exhibits reduced affinity for substrates during a 
catalytic transition state, Biochemistry 37, 5010-5019. 

 

 



92 
 

 

 

 

CHAPTER IV 

 

Conclusions and Future Directions 

 

 

4.1  Improvements in the Field 

This work describes a novel method of generating giant liposomes, both with and 

without integral proteins.  The method is simple and easy to perform and uses low cost 

materials that are available commonly in most laboratories.  Unlike previously described 

methods of generating giant liposomes or proteoliposomes, we formed giant liposomes 

and proteoliposomes effectively, reliably, and without the typical sensitivity to lipid type 

or ionic strength.  

  

4.2  Future Work Based on Chapter II 

Chapter II described experiments that delve into how an agarose film facilitates 

formation of giant liposomes, but other work can be performed to explore the limitations 

of the technique.  For example, the method is useful for formation of giant unilamellar 

vesicles (GUVs) in physiologically relevant solutions, but higher salt concentration may 

be desired if the giant liposomes will be used as microreactors.(1)  I did test a few 

different pHs (pH 5 and 9) with success, but the ionic concentration of these pHs did not 
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exceed the salt concentration of the solutions we had used previously.  Additionally, 

divalent cations have been problematic historically to the formation of giant liposomes.(2, 

3)  Therefore, we avoided solutions containing Mg2+ and Ca2+ during the formation of 

giant liposomes.  These ions purportedly form an ionic bridge between lamellae so that 

the lipid sheets do not separate readily(3).  The swiftness and ease of the formation of 

GUVs from an agarose film, however, may help overcome the disadvantage these 

divalent cations cause with separating lamellae, but we have not yet tested this 

possibility.   

In Chapter II, we demonstrated the benefit of an agarose film to be limited to 

ultra-low melting agarose because the agarose film, as it dried, remained in a 

conformation that could later easily dissolve, swelled during formation before it 

dissolved partially from the film, and associated with the membranes of liposomes.  A 

similar benefit may be obtained from other types of agarose (i.e., with a higher melting 

point than the ultra-low melting agarose) by maintaining a temperature above the gel 

temperature of the agarose while it is drying into a film, but we did not yet examine this 

possibility.  We did, however, investigate the benefit of a gelatin film on formation of 

giant liposomes (unpublished results) with successful formation of GUVs.  Frequently, 

large pieces of the gelatin film disrupted from the surface during formation or while 

collecting free-floating liposomes, and so we considered the use of a gelatin film as less 

beneficial than an agarose film. 

 Other investigations into the method of forming giant liposomes from an agarose 

film can focus on optimizing the procedure to enhance specific qualities of the 

liposomes.  For example, we initially used a larger amount of lipids coated onto the 
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agarose film, but obtained formation of a multitude of liposomes that included a wide 

variety of sizes along with giant liposomes filled with smaller liposomes.  The frequency 

of forming these filled liposomes seemed to decrease when we decreased the amount 

of lipids per area (based on personal observations, unpublished data).  Additionally, my 

early attempts at forming GUVs from small unilamellar liposomes (SUV) formed very 

few giant liposomes.  We obtained formation of giant liposomes in greater yield after 

calculating the amount of SUV suspension to coat on the agarose film based on the 

amount of lipids in chloroform that were previously successful in forming GUVs.  We did 

not conduct further exploration of the optimal concentration of lipids to coat either as 

SUV suspension or dissolved in chloroform for successful formation of primarily 

unilamellar liposomes. 

 

4.3  Future Work Based on Chapter III  

 Chapter III described a method for reconstitution of P-glycoprotein (P-gp) and an 

associated chloride ion channel protein by coating a solution of SUVs on an agarose 

film, and this method may be applicable to other proteins.  I tested the method for 

reconstitution of acetylcholine receptor from crude membrane.  I was unsuccessful in 

reconstituting the protein in giant proteoliposomes by coating a film of agarose with 

crude membrane, but we did not try solubilized protein or acetylcholine receptor in small 

proteoliposomes.  We also attempted, unsuccessfully, to reconstitute giant 

proteoliposomes by applying solubilized P-gp proteins and small liposomes to an 

agarose film and diluting out the detergent (unpublished data).  We formed giant 

liposomes as indicated by phase contrast and fluorescence microscopy, but an ATPase 
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assay revealed that the proteins were not functional.  I concluded from these 

experiments that P-gp proteins do not reconstitute functionally by a detergent dilution 

method even when facilitated by an agarose film.  An agarose film may, however, be 

suitable for reconstitution of other proteins that can be incorporated into SUVs using the 

method described in Chapter III considering that P-gp is a large, complex protein with 

multiple transmembrane domains.  

 In Chapter III, we determined that a portion of the P-gp proteins reconstituted in 

an inside-out orientation.  One extension of the transport assay we used is to determine 

an estimate of the fraction of proteins reconstituted in this orientation.  To do so, we 

would need to combine confocal microscopy with a micropipette similar to those used 

for patch clamp experiments.  After collecting a time lapse series of images to 

determine the rate of transport of rhodamine 123 into a giant proteoliposome, we would 

replace the external solution with a solution that does not contain ATP and rhodamine 

123, attach a micropipette filled with a solution containing ATP to one of the giant 

proteoliposomes in the field of view, and rupture the small patch of membrane within the 

micropipette.  ATP would diffuse from the micropipette into the giant proteoliposome 

and enable active transport by the P-gp proteins in an outward facing orientation.  We 

would collect a time lapse series of images to determine the rate of transport out of the 

giant proteoliposome.  We should be able to estimate the fraction of outward facing P-

gp proteins by comparing the rates of transport in and out of giant proteoliposomes. 

 One important benefit of generating giant liposomes, with or without proteins, is 

to use them for the formation of a planar membrane.  To this end, formation of 

unilamellar giant liposomes in high yield increases the likelihood of forming a planar 



96 
 

membrane that completely covers a micro- or nanopore.  The membrane-covered pore 

would ideally separate two chambers with a small volume so that passive diffusion, 

active transport, or ion channel activity can be measured and studied.   

 

4.4  Applications in Industry 

 To be useful, scientific work should either reveal new fundamental insight or have 

the capacity to be extended beyond the research laboratory.  The results from this work 

are likely to be most useful for research applications, such as: 1) using the transport 

assay to screen for potential therapeutics that will affect P-gp function, or 2) using giant 

proteoliposomes with ion channel proteins for planar patch clamp assays.  The potential 

exists, however, for commercialization.  For example, microscope slides, petri dishes, or 

flat-bottom glass wells can be pre-coated with agarose and lipids or proteoliposomes 

and then frozen to preserve their integrity for shipment.  The end user would simply add 

rehydration solution of choice and wait 2–3 hours for giant liposomes or 

proteoliposomes to form and be ready for use.  Such a system may need some 

investigation to determine optimal amounts, establish a working protocol, and be 

patented before it would be ready to be marketed. 

The coating process might be facilitated by combining the techniques described 

in this work with hydrogel stamping as described by Majd, et al.(4, 5)  Briefly, a 

suspension of small proteoliposomes would be applied to the surface of a hydrogel 

stamp and then pressed onto a dried agarose film.  One benefit of using such a 

technique is that the hydrogel would absorb most of the solution from the suspension of 

proteoliposomes and thereby shorten the dehydration time.  Shortening the preparation 
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time would provide a longer period of time to perform assays before the proteins 

naturally degrade and become non-functional.  Another significant benefit is the ability 

to then automate the process of pre-coating a high density of proteoliposomes onto a 

surface before freezing it for later use.  If the surface to be coated consists of multiple 

wells, different proteins or lipids can be applied to each well so that GUVs or giant 

proteoliposomes of different compositions can be reconstituted simultaneously. 
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APPENDIX A 

 

Supporting Information 

Films of Agarose Enable Rapid Formation of Giant 

Liposomes in Solutions of Physiologic Ionic Strength  

 

 

A.1  Yield of Free-floating Giant Liposomes That Were Formed from 

Films of Agarose 

Since many experiments involving giant liposomes require the use of free-

floating liposomes (i.e. liposomes that are not attached to the surface of formation or to 

each other), we compared the yield of free-floating giant liposomes obtained by 

hydration (without an electric field) of hybrid films of agarose and lipids in PBS and in 

deionized water with the yield of free-floating giant liposomes formed by standard 

electroformation.  We procured free-floating liposomes by prying apart the formation 

chamber and allowing the contents to drip into a collection vessel or by applying gentle 

aspiration through a pipette or needle and syringe to remove the solution from the 

chamber.  Figure A.1A shows free-floating giant liposomes in deionized water that we 

obtained in this manner after generation by electroformation on bare ITO plates.  Figure 

A.1B,C depicts free-floating giant liposomes that we collected using the same technique 
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after formation from hybrid films of agarose and lipids.  The yield of free-floating giant 

liposomes was higher in deionized water than in PBS, which is not surprising since the 

yield of giant liposomes that formed on the surface of the films was also higher in 

deionized water than PBS.  The yield of free-floating giant liposomes in deionized water 

was similar when formed from hybrid films of agarose and lipids compared to standard 

electroformation, and suggests that either of these techniques can be used to obtain a 

good yield of free-floating giant liposomes in deionized water.  Formation from hybrid 

films of agarose and lipids, however, has the important benefit of being capable of 

producing free-floating giant liposomes in solutions of physiologic ionic strength, such 

as PBS, whereas electroformation did not generate giant liposomes in PBS. 

 

Figure A.1.  Free-floating giant liposomes.  Liposomes composed of POPC were 

formed for one hour (A) by electroformation (1.5 V peak-to-peak, 4 Hz) on bare ITO 

plates in deionized water, (B) by hydration of a hybrid film of ultralow melting 

temperature agarose and lipids in deionized water without an electric field, and (C) by 

hydration of a hybrid film of ultralow melting temperature agarose and lipids in PBS 

without an electric field.  Scale bar = 100 µm. 

 

A.2  Formation of Giant Liposomes in Three Types of Aqueous 

Solutions 

To explore the effect of ions present in solution on the formation of giant 

liposomes, we formed giant liposomes from hybrid films of ultralow melting temperature 
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agarose and lipids in three aqueous solutions: deionized water, 150 mM KCl, and PBS.  

These and all other experiments did not employ AC electric fields unless specifically 

mentioned.  Figure A.2 shows giant liposomes composed of POPC in each of the three 

aqueous solutions.  Formation in deionized water yielded giant liposomes with large 

diameters (>>10 µm) over most of the surface.  In contrast to formation in deionized 

water, the formation of giant liposomes from films of agarose in ionic solutions was not 

uniform over the entire surface.  Figure A.2 depicts regions of formation with a good 

yield of liposomes.  Other regions contained fewer or smaller liposomes than these 

selected regions.  Formation of giant liposomes was typically better (in terms of number 

and size of liposomes) in 150 mM KCl than in PBS.  Nonetheless, ~30–80% of the total 

surface area of the liposome formation chamber (100% ≈ 896 mm
2
) contained 

liposomes comparable to those depicted in Figure A.2B,C. 

 

Figure A.2. Giant liposomes composed of 100% POPC formed from films of ultralow 

melting temperature agarose for 1 h in three types of aqueous solutions: (A) deionized 

water, (B) 150 mM KCl, and (C) PBS without Ca
2+

 and Mg
2+

.  Scale bar = 100 µm. 

 
 

A.3  Surface Topography of Films of Different Types of Agarose as 

Determined by SEM and AFM 

The different types of agarose used in this work were distinguished by their 

melting temperature.  Factors that affect the melting temperature of agarose gels 
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include the average molecular weight (MW) of the molecules and the extent of cross-

linking between molecules.
(1, 2)

  Generally, a reduced MW and a reduced number of 

cross-links results in a lower melting temperature of the gels.
(2)

  To provide additional 

characterization of films formed from each of these types of agarose, we assessed the 

surface topography by SEM (Figure A.3, row A) and AFM (Figure A.3, row B).  The 

seemingly porous character of the films in these images, together with the observation 

that lipids penetrate the agarose films and thus form a hybrid film of agarose and lipids 

(see Chapter II, Figure 2.4), suggests that these hybrid films of lipids and porous 

agarose provide a large interface between agarose molecules and lipid molecules. 

 

 

Figure A.3. Comparison of the surface topography of bare ITO plates with films of 

agarose from four different types of agarose.  (Row A) SEM images of a bare ITO plate 

and of films of agarose with different melting temperatures as specified in the column 

headings.  Scale bar = 1 µm.  (Row B) AFM images of a bare ITO plate and different 

films of agarose as specified in the column headings.  The color bar represents a range 

in the z-direction (height) of 0 to 40 nm.  Scale bar = 2 µm. 
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A.4  Fluorescence Intensities of Giant Liposomes Formed from a 

Hybrid Film of Fluorescently Labeled Agarose and Lipids and from a 

Hybrid Film of Nonlabeled Agarose and Lipids 

To determine if agarose molecules associated with giant liposomes when formed 

from hybrid films of agarose and lipids, we formed giant liposomes from films of 

fluorescently labeled, ultralow melting temperature agarose.  If agarose associated with 

the membranes of giant liposomes, we expected the fluorescence intensities of 

liposomes formed from films of fluorescently labeled agarose to be higher than the 

intensities of liposomes formed from nonlabeled agarose.  The fluorescence intensities 

shown in Figure A.4 confirmed this hypothesis, suggesting that agarose indeed 

associated with the membranes of liposomes.  Agarose molecules, which are 

macromolecular carbohydrates, may hence provide a similar benefit to the formation of 

giant liposomes as PEGylated lipids.
(3, 4)

 

 

Figure A.4.  Fluorescence intensities of giant liposomes formed from films of 

fluorescently labeled agarose and from nonlabeled agarose.  Confocal microscopy 

images in the column on the left contain blue lines representing the position of line 
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scans whose corresponding fluorescence intensities are shown in the column on the 

right.  The arrow in the micrograph denotes the starting location of the line scan.  Giant 

liposomes composed of POPC were formed for one hour in PBS.  (A) Giant liposomes 

formed from films of fluorescently labeled agarose.  (B) Giant liposomes formed from 

films of nonlabeled agarose.  Note, the low levels of fluorescence from nonlabeled, 

ultralow melting temperature agarose originated from weak autofluorescence of the 

agarose.
(5)

  The images in A and B were taken at the same microscopy settings (laser 

intensity, sensitivity of the camera, etc.), and thus the fluorescence intensity values in 

the graphs in the column on the right are quantitatively comparable to each other; 

however, the images in the column on the left were contrast enhanced for clarity.  Scale 

bar = 100 µm. 

 

A.5  Determination of Membrane Fluidity by Fluorescence Recovery 

After Photobleaching (FRAP)  

Since agarose molecules associated with the membranes of giant liposomes that 

were formed from hybrid films of agarose and lipids, we determined if this association 

impeded diffusion of lipids within these membranes.  To assess the fluidity of the 

membranes, we used the technique of fluorescence recovery after photobleaching 

(FRAP) and compared the recovery curve of giant liposomes formed from hybrid films 

of agarose and lipids to the recovery curve of giant liposomes formed by 

electroformation.  Using a confocal microscope, we scanned the laser beam to bleach 

only a portion of the membranes of giant liposomes for 30 s.  During the 10 min 

recovery period, we scanned a bigger field of view every 10 s.  For each image, we 

determined the peak fluorescence intensity of four locations on the bleached portion of 

the membrane and calculated the average of these fluorescence intensities.  Recovery 

curves were generated by plotting the average fluorescence intensity of the bleached 

area versus the elapsed time of recovery.  To fit the data, we determined the best curve 

fit of the data to Equation A.1.
(6)

  In order to carry out the best curve fit, we set the 
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parameter Fo to zero, which assumes that the lipids in the exposed portion of 

membrane were completely photobleached,
(6)

 set the parameter a to one, which 

assumes unperturbed Brownian motion of lipids,
(6)

 and ran 100 iterations with an initial 

guess of Fi = 30 and t1/2 = 30.  Figure A.5 and the fitting parameters listed in the figure 

caption show that the recovery curves of giant liposomes formed in deionized water 

were similar for liposomes formed from hybrid films of agarose and lipids compared to 

liposomes formed from bare ITO (i.e. without the presence of agarose) by 

electroformation.  The fluorescence intensities of giant liposomes formed in PBS from 

hybrid films of agarose and lipids were higher, but the recovery curve shows a similar 

trend and value for t1/2 (half-time for recovery).  Therefore, we conclude that the 

association of agarose molecules with the giant liposomes formed from hybrid films of 

agarose and lipids did not significantly alter the diffusion constant of lipids within the 

membrane. 
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 where:  0F  = fluorescence intensity immediately after photobleaching ( 0t ) 

  iF  = fluorescence intensity as t  

  x  = x-coordinate of the plot; here x  corresponds to time, t 

  
2

1t  = half time for recovery 

  a  = time exponent; diffusion is Brownian if a  = 1, or anomalous if a  < 1 
  y  = y-coordinate of the plot; here y corresponds to fluorescence intensity 
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Figure A.5.  Fluorescence recovery curves and micrographs obtained from FRAP 

experiments using confocal microscopy on giant liposomes containing 97% POPC with 

3% DMPE-NBD.  Liposomes were formed for 2 h, photobleached for 30 s, and scanned 

during recovery every 10 s for 10 min.  The fluorescence intensity of the bleached area 

of the membrane was plotted versus time to generate each recovery curve.  (A) 

Fluorescence recovery curves of giant liposomes formed in deionized water.  Red 

circles represent the fluorescence intensity of a giant liposome formed from a hybrid 

film of agarose and lipids.  The solid red line represents a fit to the red circles (Fi = 22.4, 

t1/2 = 28.7 ± 8.7).  Black squares represent the fluorescence intensity of a giant 

liposome formed by electroformation from a bare ITO surface (without agarose).  The 

solid black line represents a fit to the black squares (Fi = 30.6, t1/2 = 32.8 ± 7.2).  (B) 

Fluorescence recovery curve of giant liposomes formed in PBS from a hybrid film of 

agarose and lipids (blue triangles).  The solid blue line represents a fit to the blue 

triangles (Fi = 187.5, t1/2 = 37.1 ± 4.9).  (C) Confocal microscopy image of a giant 

liposome that was laser-bleached after being formed in deionized water by 

electroformation at the time points during recovery indicated in the column headings.  

(D) Confocal microscopy image of a giant liposome that was laser-bleached after being 

formed in deionized water from a hybrid film of agarose and lipids at the time points 
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during recovery indicated in the column headings.  (E) Confocal microscopy image of a 

giant liposome that was laser-bleached after being formed in PBS from a hybrid film of 

agarose and lipids at the time points during recovery indicated in the column headings.  

Fluorescence intensities used to generate recovery curves were obtained using the 

same microscopy settings (laser intensity, sensitivity of the camera, etc.).  The images 

for C,D,E were contrast enhanced for clarity, but were enhanced to the same extent for 

both time points in each given condition of formation.  Scale bar = 50 µm. 

 

A.6  Residual Water Content of Partially Dried Agarose Films 

To quantify the amount of residual water in partially dried films of agarose (1–3 h 

at 40 
o
C), we weighed 10 cover glass slides (24 x 50 mm) before and after coating with 

agarose solution, after partially drying the agarose solution on a hotplate at 40 
o
C, after 

drying the agarose film in an oven at a temperature above 100 
o
C, and after exposing 

the oven-dried agarose film to water-saturated nitrogen for 20 min (prehydration).  The 

mass of agarose solution deposited onto the 10 slides was 0.7280 g (72.8 mg per 

slide), after subtracting the mass of the slides themselves.  Based on a 1% (w/w) 

solution, the theoretical mass of agarose deposited onto each slide was 0.73 mg.  The 

mass of the films of agarose on 10 slides after all films no longer appeared wet was 

0.0088 g (0.88 mg per slide).  These measurements indicate that the films of agarose 

consisted of ~15% water (0.15 mg per slide) and 85% agarose after drying on a 

hotplate at 40 
o
C.  Drying these films at 40 

o
C for an additional 3 h did not measurably 

change the mass.  In contrast, after drying the films of agarose on the slides overnight 

at a temperature >100 
o
C resulted in agarose films with a total mass of 0.0073 g (0.73 

mg per slide).  This result suggest that all (or nearly all) of the residual water in the 

agarose films evaporated in the oven, and the resulting film contained <1% water and 

>99% agarose.  Prehydration of agarose films resulted in an increase in their mass by 

≤5%.  These results indicate that traditional prehydration of oven-dried films of agarose 



108 

 

results in lower water content in the films than the residual water content of partially 

dried films of agarose. 

 

A.7  Formation of Giant Liposomes from a Hybrid Film of Cross-linked 

Hydrogel and Lipids as well as from Hybrid Films of Other Types of 

Agarose and Lipids 

To determine if giant liposomes could be formed from films of lipids that were 

coated over four different types of agarose (identified by melting temperature) or over a 

chemically cross-linked hydrogel (polyacrylamide), we carried out the experiments 

shown in Figure A.6 by hydrating hybrid films of lipids and each type of hydrogel for 1 h 

in deionized water and in solutions of PBS.  Hybrid films of lipids and agarose with 

ultralow and low melting temperature generated the highest yield of giant liposomes in 

all aqueous solutions.  In deionized water, all types of agarose produced a good yield of 

giant liposomes.  In PBS, on the other hand, giant liposomes formed consistently only 

from hybrid films of lipids and ultralow melting or low melting types of agarose.  The 

yield of giant liposomes from hybrid films of lipids and low melting temperature agarose 

was lower in PBS in terms of numbers of giant liposomes and surface coverage 

compared to the yield from hybrid films of lipids and ultralow melting temperature 

agarose in PBS.  The yield of giant liposomes from low melting temperature agarose 

was higher, however, than formation on bare ITO plates or from types of agarose with 

higher melting temperatures.  We found that films of polyacrylamide and lipids also 

facilitated the formation of giant liposomes in solutions of physiologic ionic strength 

compared to formation from bare glass (or bare ITO), but to a lesser extent than from 
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ultralow melting temperature agarose.  Interestingly, polyacrylamide appeared to hinder 

the formation of giant liposomes in deionized water.  

 

Figure A.6.  Giant liposomes consisting of 100% POPC formed for 1 h from different 

hydrogels in PBS (row A) and in deionized water (row B).  Note that although the 

selected image of liposomes formed from polyacrylamide in PBS shows a large number 

of giant liposomes and hence demonstrates that formation of giant liposomes from 

polyacrylamide films can proceed in solutions of physiologic ionic strength, we found 

that most of the area (~90%) of the polyacrylamide film did not yield giant liposomes.  

Scale bar = 100 µm. 

 

A.8  Effect of an Electric AC Field on the Formation of Giant 

Liposomes from Hybrid Films of Agarose and Lipids 

To determine if the generation of giant liposomes from hybrid films of agarose 

and lipids is comparable to established protocols, we compared the yield of giant 

liposomes formed from hybrid films of ultralow melting agarose and lipids with the yield 

of giant liposomes formed by electroformation (without agarose).  The method of 

electroformation uses an electric field of alternating current (AC) to stimulate the 

swelling of giant liposomes from the electrodes, such as glass plates coated with a thin 

film of indium tin oxide (ITO).
(7-10)

  Production of giant liposomes by electroformation is 

typically limited to solutions with low ionic strength (<50 mM), and the best yield is 
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obtained using deionized water.
(9)

  When we carried out formation from hybrid films of 

agarose and lipids, we also obtained the best yield of giant liposomes using deionized 

water, as shown in Figure A.2.  To compare the yield of giant liposomes from hybrid 

films of agarose and lipids with the yield obtained by electroformation, we performed 

both techniques in deionized water.  Additionally, we determined if an electric field 

would provide an additional benefit on the formation of giant liposomes from hybrid 

films of agarose and lipids by applying an AC electric field of 1.5 V peak-to-peak at 4 Hz 

for 1 h to ITO plates that were coated with agarose and lipids.  Figure A.7 shows that, 

when forming giant liposomes from hybrid films of agarose and lipids, an AC electric 

field did not provide a significant benefit, and the area covered by giant liposomes was 

similar to the results of electroformation.  In contrast, the AC electric field was essential 

for the formation of giant liposomes on bare ITO plates (i.e. without agarose) in 

deionized water within 1 h. 

 

Figure A.7.  Time course of formation of giant liposomes from hybrid films of ultralow 

melting agarose and lipids or from lipid films on bare ITO plates in the presence and 

absence of an AC electric field and phase contrast micrographs of giant liposomes 

formed from hybrid films of agarose and lipids in the presence of an AC electric field 

after one hour of formation.  (A) Time course of formation.  Liposomes were composed 

of 95% POPC and 5% PEG-PE and were formed in deionized water.  The field of view 

(~0.6 mm
2
) had been selected randomly before initiating formation.  The following 

conditions of formation were used:  ( ) from hybrid films of agarose and lipids with 

an AC electric field (1.5 V, 4 Hz); ( ) from hybrid films of agarose and lipids without 
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an AC field; ( ) from films of lipids on bare ITO plates with an AC field (1.5 V, 4 Hz); 

and ( ) from films of lipids on bare ITO plates without an AC field. The fraction of the 

field of view occupied by giant liposomes was quantified by calculating the total area 

covered with giant liposomes with diameter >10 µm (normalized by the area of the field 

of view, 0.6 mm
2
).  Note, this fraction may be greater than unity because liposomes 

formed in more than one plane and could thus appear to overlap.  Data for formation 

from hybrid films of agarose and lipids are averages from three independent 

experiments; error bars represent the standard deviation.  (B) Phase contrast 

micrograph of giant liposomes composed of pure POPC formed for 1 h in deionized 

water from a hybrid film of agarose and lipids in the presence of an AC electric field (1.5 

V, 4 Hz).  (C) Phase contrast micrograph of giant liposomes composed of pure POPC 

formed for 1 h in PBS from a hybrid film of agarose and lipids in the presence of an AC 

electric field (1.5 V, 4 Hz).  Scale bar = 100 µm. 

 

A.9  Encapsulation of Water-soluble Macromolecules into Giant 

Liposomes 

To determine if giant liposomes formed from films of agarose were capable of 

encapsulating and retaining macromolecules,
(9)

 we formed giant liposomes consisting 

of POPC doped with 1% DPPE-rhodamine from hybrid films of agarose and lipids in a 

flow chamber that was similar to the apparatus described by Estes et al.
(8, 9)

  The 

dimensions of the chamber used for the experiment described here was 6 cm x 0.6 cm 

x 0.25 cm with a total volume of 0.9 mL.  We filled the chamber with a solution of 0.1 

mM Tris(hydroxymethyl)aminomethane (Tris) (from Fisher Scientific, Rochester, NY), 

buffered to pH 7.4, containing a concentration of 0.5 µM FITC-conjugated dextran 

70,000 (MW 70,000; from Sigma-Aldrich, St. Louis, MO) and allowed formation to 

proceed for a period of 3 h.  We then exchanged the solution for 1 h with a solution of 

0.1 mM Tris (pH 7.4) without dextran at a flow rate of 5 mL h
-1

. 

We found that a fraction of the giant liposomes formed in this fashion from hybrid 

films of agarose and lipids encapsulated FITC-conjugated dextran 70,000 during the 
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formation process, as indicated by the green fluorescence shown in Figure A.8A.  Most 

of these giant liposomes, however, displayed a fluorescence intensity that was lower 

than the intensity of the surrounding solution.  This observation indicates that the 

concentration of encapsulated FITC-conjugated dextran was lower in many of the giant 

liposomes than the concentration of the solution used to form them.  In other words, the 

developing liposomes seemed to experience a greater influx of water molecules than 

macromolecules relative to the surrounding solution.  This observation is not surprising 

since water can flux through lipid bilayers, while dextran can enter liposomes only 

before they form an enclosed structure.  After exchanging the solution with a solution 

that did not contain dextran, a fraction (~10%) of the giant liposomes retained at least a 

portion of the encapsulated dextran, as indicated by the green fluorescence shown in 

Figure A.8B.     

 

Figure A.8.  Confocal micrographs of giant liposomes formed from hybrid films of 

agarose and lipids in the presence of fluorescently labeled, water-soluble 

macromolecules.  Liposomes consisting of POPC doped with 1% DPPE-rhodamine 

were formed from hybrid films of agarose and lipids for 3 h in a flow chamber filled with 

an aqueous solution of 0.1 mM Tris (pH 7.4) containing a concentration of 0.5 µM FITC-
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conjugated dextran 70,000 (MW 70,000).  After formation, the solution was exchanged 

for 1 h at a flow rate of 5 mL h
-1

 with a solution of 0.1 mM Tris (pH 7.4) without dextran.  

(A) Giant liposomes at the end of the three hour period of formation but before 

exchange of solutions.  (B) Giant liposomes after exchange of solutions.  The images in 

A and B were taken at the same microscopy settings (laser intensity, sensitivity of the 

camera, etc.) but were contrast enhanced for clarity.  Scale bars = 50 µm. 

 

A.10  Experimental Section 

A.10.1 Formation of a film of agarose on glass slides by dip-coating   

We investigated the formation of giant liposomes on the following four types of 

agarose (all from Sigma-Aldrich, St. Louis, MO):  Type IX-A ultralow melting agarose 

(gel point, Tg ≤17 
o
C; melting point, Tm ≤60 

o
C; electroendosmosis, EEO ≤0.11), Type 

VII-A low melting agarose (Tg ~26 
o
C; Tm ≤65.5 

o
C; EEO ≤0.12), Type II-A medium EEO 

agarose (Tg ~36 
o
C; Tm ~87 

o
C; EEO = 0.16–0.19), and Type VI-A high melting agarose 

(Tg ~41 
o
C; Tm ~95 

o
C; EEO ≤0.14).  For each type of agarose, we prepared a 1% (w/w) 

solution in deionized water.  We boiled the suspension of agarose in water in a 

microwave oven, mixed the resulting solution, returned it to a boil, and mixed again to 

promote complete solubilization of the agarose powder.  We poured the warm agarose 

solution into a Petri dish and allowed it to cool either at room temperature (22 
o
C 

overnight) or in a refrigerator (4 
o
C for 1–2 h) to form a gel.  Immediately before dip-

coating the glass slides, we heated the agarose gel in the Petri dish for 10–30 s in the 

microwave oven, just long enough to re-melt the gel into liquid form, and mixed the 

solution gently.  We found that dip-coating slides after this re-melting procedure 

facilitated homogeneous surface coverage of the slides with the agarose solution. 

To dip-coat the glass slides, we contacted only one side of each glass slide (75 x 

50 x 1 mm, Corning Glass Works, Corning, NY) with the surface of the melted agarose 
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solution.  We held the coated slides vertically for a few seconds to remove excess 

solution and placed the slides with the agarose-coated side facing up on a temperature-

controlled hotplate (Barnstead Intl, Dubuque, IA) at a temperature of 40 
o
C.  Sometimes 

the solution of agarose did not wet the glass surface evenly; in this case, we placed the 

slide onto the hotplate and used a micropipette to deposit ~300 µL of agarose solution 

onto the surface of the slide.  Using the long edge of the pipette tip, we spread the 

solution of agarose over the surface of the slide by sweeping back and forth slowly until 

the solution of agarose remained spread over the surface.  We left the agarose-coated 

slides on the hotplate until the water evaporated such that a clear, seemingly dry film of 

agarose formed.  This process of drying occurred typically within 1–3 h.  In the case of 

agarose with ultralow and low melting temperatures, the solution did not form a gel 

state before drying into a film, whereas standard and high melting temperature agarose 

types gelled before drying into a thin film.  The resulting films of agarose adhered firmly 

to the surface of the slides.  These agarose films had a thickness of ~2 µm, as 

measured by scanning electron microscopy (SEM) of the cross-sections of these films. 

A.10.2 Formation of a film of polyacrylamide on glass slides   

For comparison with agarose films, we formed films of polyacrylamide gel by 

mixing 10 mL of a 10% (w/v) solution of 37.5:1 acrylamide:N,N’-methylene-bis-

acrylamide (Bio-Rad Laboratories, Inc., Hercules, CA) with 10 µL of ammonium 

persulfate (APS) (Bio-Rad Laboratories, Inc.) and 1 µL of tetramethylethylenediamine 

(TEMED) (Bio-Rad Laboratories, Inc).  Immediately after depositing the solution onto a 

glass slide, we placed a second slide on top of the solution and allowed the solution to 

gel for ~20 min.  We removed one of the glass slides and placed the gel (supported on 

the other glass slide) in deionized water while stirring for ~4 h to remove non-
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polymerized acrylamide monomers.  (Note, acrylamide monomers are toxic).  After this 

rinsing process, we placed the glass-supported gel on a hot plate at 40 
o
C for 1–3 h to 

dry the surface of the gel.  Note, we dried the polyacrylamide gel only partially in order 

to prevent the film from detaching from the surface of the glass.   

A.10.3 Formation of films of lipids on films of agarose or on polyacrylamide   

To generate a film of lipids on and inside the films of agarose or polyacrylamide, 

we spread solutions with a concentration of 3.75 mg mL
-1

 lipids (all lipids were 

purchased from Avanti Polar Lipids, Inc., Alabaster, AL; except  soybean asolectin, 

which we obtained from Sigma-Aldrich, St. Louis, MO) dissolved in either pure 

chloroform (CHCl3) (EMD Chemicals, Inc., Gibbstown, NJ) or in 90% CHCl3 and 10% 

(v/v) methanol (MeOH) (EMD Chemicals, Inc.).  Figure A.9 illustrates the procedure.  

(Note, chloroform vapors are toxic; this step must be performed in a chemical flow 

hood). We used the following ten lipid compositions to form lipid films (all in mol%): (1) 

pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC); (2) pure 1,2-

dioleoyl-sn-glycero-3-[phospho-L-serine](sodium salt) (DOPS); (3) pure 1-palmitoyl-2-

oleoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (POPG); (4) asolectin from soybean; (5) 

90% POPC with 10% cholesterol; (6) 80% POPC with 20% cholesterol; (7) 90% POPC 

with 10% POPG; (8) 50% POPC with 50% POPG; (9) 90% POPC with 10% DOPS; and 

(10) 95% POPC with 5% 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanol-amine-N-

[methoxy (polyethylene glycol)-2000] (also referred to as PEG-PE or PEGylated lipids).  

For viewing liposomes or lipid films in epifluorescence mode, we doped the lipid 

solution with 0.5 mol% or 1 mol% 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-

(lissamine rhodamine B sulfonyl) (ammonium salt) (DPPE-rhodamine).  For 

fluorescence recovery after photobleaching experiments, we used 97% POPC with 3% 
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1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) 

(ammonium salt) (DMPE-NBD). 

 

Figure A.9.  Formation of a film of lipids on glass slides that were pre-coated with a film 

of agarose (or on bare glass without a film of agarose for control experiments).  A) Two 

to three droplets of lipid solution (~5 µL each) were deposited close to one edge of the 

slide.  B) Lateral movement of a rod or needle across the slide, just at the surface, was 

used to spread the lipid solution into an even film.  Steps A and B were repeated to 

deposit a total volume of 30 µL of lipid solution. 

 

We deposited a total of 30 µL of lipid solution onto each glass slide using the two 

steps illustrated in Figure A.9.  We placed the lipid-coated plates under vacuum 

(approximately −730 mmHg) for at least 20 min to remove residual CHCl3 and MeOH.  

Although the lipid solution was coated over the film of agarose, lipids penetrated 

through the agarose film and resulted in a hybrid film of lipids and agarose (see 

Chapter II, Figure 2.4). 

A.10.4 Formation of a thick film of agarose   

To prepare a glass slide with a particularly thick (~16 µm) film of agarose, we 

repeated the dip-coating procedure described in Figure 2.8A (of Chapter II) ten times.  

We then deposited a single lipid film of POPC lipids doped with 0.5 mol% DPPE-

rhodamine using the procedure described in Figure A.9.   
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A.10.5 Formation of giant liposomes on glass slides   

After removing the solvent from the lipid solution under vacuum, we initiated the 

formation of giant liposomes by placing the agarose- and lipid-coated slides in a clean 

dish (140 x 20 mm Nunc Petri dish, Fisher Scientific, Rochester, NY) with the coated 

side facing upward.  We slowly added aqueous solution to the dish until the solution 

covered the slide completely.  We pre-warmed the aqueous solution either to room 

temperature or to 37 
o
C in a water bath prior to adding it to the dish.  The dish remained 

undisturbed on a leveled surface at room temperature for a period of 1–3 h to form 

giant liposomes at the surface of the agarose.  We formed giant liposomes in the 

following three aqueous solutions: deionized water, 150 mM potassium chloride (KCl) 

(EMD Chemicals, Inc., Gibbstown, NJ), and Dulbecco’s phosphate buffered saline 

(PBS) without Ca
2+

 or Mg
2+

 (JRH Biosciences, Inc., Lenexa, KS). 

A.10.6 Observation of liposomes   

We observed liposomes using an inverted microscope (Nikon Eclipse TE2000-U) 

in phase-contrast mode with a 10x objective (Nikon, NA = 0.25).  We captured images 

of liposomes using a charge-coupled device (CCD) camera (Photometrics CoolSnap 

HQ camera, Roper Scientific, Trenton, NJ) and used calibrated imaging analysis 

software (Metamorph 7.0, Universal Imaging Corporation, Downington, PA) to 

determine their diameters.  To observe the growth and fusion of giant liposomes on 

films of agarose, we recorded time-lapse series of images during the formation of giant 

liposomes composed of pure POPC on films of ultra-low melting agarose in PBS for 

one hour.  We began capturing images within seconds after adding PBS to the 

formation chamber and recorded images from the same spot for the entire hour.  Due 

to the swelling of the film of agarose, we adjusted the focal plane during the time-series 
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to keep the top surface of the swelling agarose film in focus in order to observe the 

formation of liposomes.   

For confocal imaging, we used a 20x objective (Nikon, NA = 0.75) on an inverted 

microscope (Nikon Eclipse TE2000-U) equipped with an argon laser (Spectra-physics, 

wavelength = 488 nm), a helium-neon laser (Melles-Griot, wavelength = 543 nm), and 

appropriate filter settings for fluorescein, rhodamine, or NBD.  We used EZ-C1 software 

(Nikon, version 3.5) to capture images and analyze data. 

A.10.7 Characterization of films of agarose by scanning electron microscopy   

In order to carry out imaging with a high resolution scanning electron microscope 

(HRSEM) (NOVA 200 Nanolab, FEI Company, Hillsboro, OR), we used glass plates 

coated with a thin film of indium tin oxide
(11)

 (ITO) (Delta Technologies, Stillwater, MN) 

and agarose-coated ITO plates and coated them with a sputter coater (Hummer VI, 

Anatech, Hayward, CA) in gold-palladium (Au:Pd ratio of 60:40, thickness ~6 nm).  To 

measure the thickness of the ultra-low melting agarose films, we peeled agarose films 

that were not coated with gold-palladium from the surface of the glass and examined 

the cross-sections of the films by HRSEM.    

A.10.8 Characterization of films of agarose by atomic force microscopy   

We scanned a randomly selected region (10 µm x 10 µm) of a film from each of 

the four types of agarose with a NanoScope IIa atomic force microscope (AFM) (Digital 

Instruments, Woodbury, NY) using a soft tip (UltraSharp Non-Contact Cantilever, 

MikroMasch, Madrid, Spain) with a resonance frequency of 371.014 kHz in tapping 

mode.  We used image analysis software to flatten the topographic images to produce 

representations of contours of films of agarose.   
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A.10.9 Chemical modification of agarose to produce fluorescently-labeled 

agarose   

In order to generate fluorescently labeled agarose, we stirred 10 mL of a 2% 

solution of ultralow melting temperature agarose at ~50 
o
C and gradually added 200 µL 

of a fresh solution of fluorescein isothiocyanate (FITC) (Fisher Scientific, Rochester, 

NY) dissolved in anhydrous dimethylsulfoxide (DMSO) (99.9% pure, Alfa Aesar, Ward 

Hill, MA) with a concentration of 100 mg mL
-1

.  After mixing the FITC and agarose for 3 

h, we dialyzed the solution in deionized water using a Slide-A-Lyzer 10K dialysis 

cassette (10,000 molecular weight cut off, Pierce, Rockford, IL) for 3 days while 

changing the water twice daily.  We dip-coated glass slides with films of agarose from a 

solution that contained 0.9% (w/w) ultralow melting temperature agarose and 0.1% 

FITC-labeled ultralow melting temperature agarose. 
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APPENDIX B 

 

Supporting Information 

Functional Reconstitution of P-glycoprotein in Giant 

Liposomes 

 

 

B.1  ATPase Assay 

We tested the functionality of reconstituted proteins by conducting an ATPase 

assay (1) on giant liposomes that formed from films of ultra-low melting agarose and 

small liposomes with human P-glycoprotein (P-gp).  We prepared a solution containing 

small proteoliposomes, coated this solution on a dried film of ultra-low melting agarose, 

and rehydrated the films the following morning to form giant proteoliposomes.  For the 

ATPase assay, we removed a 20 µL sample from the chamber in which the giant 

proteoliposomes were prepared in this manner and tested ATPase activity on these 20 

µL in a microvial.  For comparison, we also tested a 10 uL sample of small 

proteoliposomes on the day they were produced (that is, one day prior to testing giant 

proteoliposomes).   
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Table B.1.  Basal and verapamil-stimulated ATP hydrolysis by P-gp in small and giant 

proteoliposomes 

Sample 
Basal activity 

(nmol Pi/mg protein/min) 
Stimulated activity* 

(nmol Pi/mg protein/min) 
Fold 

increase 

Small 
proteoliposomes 

42.09 166.53 4 

Giant 
proteoliposomes 

7.62 53.37 7 

* Stimulated activity was determined in the presence of 30 µM verapamil 

 

The basal levels of ATPase activity were typically lower for GUVs than SUVs 

because, to estimate protein concentrations within the sample after reconstitution, we 

assumed all of the P-gp from the small proteoliposomes reconstituted into giant 

proteoliposomes.  This scenario is unlikely since residue was visually evident in the 

formation chamber following reconstitution into giant proteoliposomes, so the activity 

levels of small proteoliposomes cannot be compared directly to activity levels of giant 

proteoliposomes.  Importantly, however, the 7-fold increased level of ATPase activity 

following stimulation of P-gp by verapamil addition indicates that active P-gp was 

present in membranes after formation of giant liposomes. 

 

B.2  Rhodamine 123 Fluorescence in GUVs Containing P-gp 

We noted a frequent occurrence of bright membrane fluorescence (as compared 

to the background) for giant liposomes containing P-gp in the presence and absence of 

ATP and inhibitor (see Figure B.1).  These results indicate that ATP was not required for 

Rho123 to associate with P-gp and that the presence of verapamil, a known inhibitor of 

P-gp-mediated transport of Rho123 (2-5), was not able to out-compete this association 

completely. 
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Figure B.1.  Confocal images of giant liposomes in solution containing 1 µM 

Rhodamine 123 (Rho123).  The images shown here were recorded ~20 minutes after 

immersion in Rho123 solution under the following conditions: A) Giant liposomes that 

did not contain P-glycoprotein (P-gp).  B) Giant liposomes containing P-gp, without ATP 

or verapamil.  C) Giant liposomes containing P-gp, with 1 mM ATP but without 

verapamil.  D) Giant liposomes containing P-gp that were incubated for >15 min in 30 

µM verapamil and assayed with 1 mM ATP. Scale bar = 50 µm. 

 

We observed the occurrence of spots that were uniformly bright and did not 

change in fluorescence intensity.  These bright spots occurred in giant proteoliposomes 

when active transport was impeded (e.g., without ATP or with an inhibitor) and 

occasionally, but less frequently, in giant liposomes that lacked reconstituted P-gp (see 

Figure B.2). 
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Figure B.2.  Confocal images of giant liposomes in solution containing 1 µM 

Rhodamine 123 (Rho123).  The images shown here were recorded ~13 minutes after 

immersion in Rho123 solution under the following conditions: A) Giant proteoliposomes 

containing reconstituted P-glycoprotein (P-gp) in an assay solution that did not contain 

ATP.  B) Giant proteoliposomes containing P-gp that were incubated for >15 min in 30 

µM verapamil and assayed with 1 mM ATP and 30 µM verapamil.  C) Giant liposomes 

that did not contain P-gp. Scale bar = 50 µm. 

 

To determine if the reconstituted P-gp proteins were functional, we analyzed the 

rate of change in fluorescence intensity inside the liposomes with respect to the 

background fluorescence.  The fluorescence intensity inside giant proteoliposomes 

formed with P-gp increased quickly in the first 10-15 min after immersion in 1 µM 

Rho123 assay solution (see Figure B.3), whereas the fluorescence intensity inside giant 

liposomes without P-gp typically remained low.  As expected for active transport of 

Rho123, the fluorescence intensity inside giant proteoliposomes increased above the 

intensity of the background fluorescence most often in the presence of 1 mM ATP 

(Figure B.3A).  Although we observed the fluorescence intensity inside a few giant 

proteoliposomes to rise higher than the background fluorescence when assayed without 

ATP (Figure B.3B), it is important to note that these levels of intensity appeared to have 
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reached a plateau whereas, in the presence of ATP, the levels of intensity appeared to 

be continuing to rise in many of the proteoliposomes (Figure B.3A).  

 

Figure B.3.  Time-dependent fluorescence intensity inside giant liposomes (Iin,t) divided 

by the fluorescence intensity of the background (Iout,t).    Giant liposomes were assayed 

in the presence of 1 µM of the fluorescent substrate rhodamine 123.  A) Giant 

proteoliposomes formed with P-gp and 1 mM ATP in the assay solution.  B) Giant 

proteoliposomes formed with P-gp and in an assay solution without ATP.  C) Giant 

proteoliposomes formed with P-gp in an assay solution with 1 mM ATP and with 30 µM 

verapamil.  D) Giant liposomes formed without P-gp. 

 

B.3  Theoretical Number of Proteins and Transport Rate Per Area  

B.3.1 Theoretical number of P-gp 

We started with 250 µg of proteins and 25:1 lipid:protein ratio wt:wt (starting 

amount of lipids was 6,250 µg).  We expected only 10% recovery of active proteins (4, 6) 
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at a purity of about 70-80%, so we expect about 0.70   0.10   250 µg = 17.5 µg of 

active P-gp with 6,250 µg lipids in the small proteoliposomes. 

The total area of lipids or active proteins is given by Equation B.1, where   is 

Avogadro’s number (             
         

   
). 

                    
 

      
      

    

        
 (B.1) 

For the lipids, we used the average molecular weight (avg MW) of asolectin, 800 

g/mol and avg area/lipid ≈ 70 Å2 (7).  Then the total area of lipids is               

 
     

     
               

         

   
     

Å
 

        
   

       

Å
  , for a total area of all lipids of 

      .  But the lipids orient themselves into bilayers, so the area of the lipid membrane 

is half the total area, or       . 

Non-glycosylated P-gp has an average MW of about 140 kDa, or 140 kg/mol.  

We estimated the area of P-gp based on the dimensions determined by its crystal 

structure as ~(70 Å)2, or ~4900 Å2 (8).  The area of all expected active P-gp in small 

proteoliposomes is                 
     

         
               

         

   
       

Å
 

     
  

 
       

Å
   (= total area of all active P-gp is              ).  Thus, the ratio of the area of 

all P-gp to the area all lipid bilayers is 3.7                  ≈ 1:430.  This ratio is in 

agreement with previously published findings.(6) 

The surface area of a GUV was calculated by the formula for the surface area of 

a sphere,          , where   is the radius.  Thus, a 20 µm diameter GUV has a 

surface area of               ≈             . 

The area of a 20 µm diameter GUV occupied by P-gp, if reconstituted at same 

ratio is 
 

   
            , or             .  The number of P-gp in a 20 µm diameter 
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GUV is the area occupied by P-gp divided by the area of 1 P-gp, calculated as 2.9 

                 
Å
 

             
        

Å
    ≈ 59,000 molecules of P-gp, or     

      moles of P-gp. 

The surface density of P-gp,      , is the moles of P-gp divided by the surface 

area.  From the surface area and the number of moles of P-gp in a 20 µm diameter 

GUV,       
                  

                        

  .  We assume this surface density to be 

constant and independent of the liposome size. 

B.3.2 Theoretical transport rate 

P-gp is reported to have an average transport rate of 1 molecule per second per 

protein (9).  Theoretical transport rate (molecules/s/µm2) is the number of P-gp divided 

by the area of the GUV times the transport rate, calculated as 
           

           
          

        
  ≈ 

        
         

   
. 

B.3.3 Experimentally determined transport rate 

We calculated the active transport-related flux as the number of molecules per 

elapsed time using Equation B.2 (the transport portion of Equation 3.2 in Chapter III), 

where    is the transport rate  
  

        
        is the surface density of P-gp  

      

     

     is the concentration of Rho123 in the external solution                 

       is the 

area of the membrane       and   is Avogadro’s Number            
         

   
). 

                 
         

 
                      (B.2) 
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Using the median    value determined from the fits to Equation 3.2 of Chapter III, 

under the conditions of active transport (assayed with ATP without inhibitor), we 

determined the transport flux per area, Transport Flux/A, to be         
         

    
.  

 

B.4 Comparison of Giant Liposomes Formed by Two Different 

Methods 

To assess the ease of forming giant proteoliposomes from a film of dried 

agarose, we followed a previously described protocol(10) and compared the liposomes 

generated by each method.  We found that either method could produce a good yield of 

giant liposomes (see Figure B.4).  When formed from a film of dried agarose, fewer of 

the giant liposomes were filled with smaller vesicles in comparison to giant liposomes 

formed from bare glass.  We also found that formation from a film of dried agarose 

consistently produced a good yield of giant liposomes (i.e., every trial generated a good 

yield of free-floating liposomes), whereas the previously established protocol did not 

always yield many free-floating liposomes. 
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Figure B.4.  Phase contrast images of giant liposomes formed from small 

proteoliposomes.  A) Small proteoliposomes were dehydrated on a dried film of ultra-

low melting agarose before reconstitution in an aqueous solution of 10 mM Tris (pH 

7.0), 190 mM sucrose, 1 mM dithiothreitol, and 1  protease inhibitor.  B) Small 

proteliposomes were partially dehydrated on bare glass in the presence of 5% (v/v) 

ethylene glycol.(10)  Dehydration of small proteoliposomes was followed by overnight 

reconstitution in the aqueous solution used in (A).   Scale bar = 50 µm. 

 

B.5  Calibration Curves of Osmolarity and Density for Solutions of 

Sucrose and Sorbitol 

We analyzed aqueous solutions of sucrose, glucose, and sorbitol with an 

osmometer (Advanced Instruments Inc., Norwood, MA) to establish calibration curves 

for the osmolarity of these substances at varying concentrations.  We measured each 

sample at least three times, plotted the osmolarity against concentration, and 

established a linear fit to the data for each substance (see Figure B.5). 
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We also determined the density of sucrose, glucose, and sorbitol solutions as a 

function of concentration.  We used three pre-weighed centrifuge tubes for each 

sample, weighed each tube with 10 mL of solution, and calculated the density from the 

data.  We then plotted the density against concentration and established a linear fit to 

the data for each substance (see Figure B.5). 

 

Figure B.5.  Dependence of osmolarity and density on concentration for (■) sucrose, 

(▲) glucose, and (●) sorbitol.  A) Calibration curve of osmolarity vs. concentration.  B) 

Calibration curve of density vs. concentration.  Solid lines show the linear fit to the data. 

 

B.6  Calibration Curve of Concentration to Fluorescence Intensity 

To assess the relationship between the concentration of rhodamine 123 

(Rho123) and fluorescence intensity, we used a confocal microscope to collect images 

of samples of Rho123 with known concentrations in 50 mM Tris-HCl, pH 7.0, and 

determined the fluorescence intensity of the images.  We found that the fluorescence 

intensity had a linear dependence on concentration of Rho123 (see Figure B.6). 
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Figure B.6.  Dependence of fluorescence intensity on concentration of rhodamine 123 

(Rho123).  Images of samples of Rho123 at known concentrations in 50 mM Tris-HCl, 

pH 7.0, were collected using confocal microscopy and analyzed for fluorescence 

concentration. 
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