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Abstract 

THE ROAD TO IDENTIFYING DISEASE CAUSING GENES: ASSOCIATION TEST, 

GENOTYPE IMPUTATIONS, AND SAMPLING STRATEGIES FOR SEQUENCING 

STUDIES 

by 

Peng Zhang 

 

Chair: Sebastian Zöllner 

Technological advances now allow investigators to use sequencing data to identify 

genetic risk variants for complex diseases. However, it is still expensive to sequence a 

large sample of individuals. While genotype imputation can augment sequence studies, 

challenges still remain, such as imputation with population or family structures and 

imputation of rare variants. This dissertation aims to tackle these two challenges. 

 

 

The first project considers imputation with family structures, which extended from an 

existing imputation program that assumes unrelated individuals in a sample. I propose a 

strategy for imputing data with family structures and apply it to a family-based 

association study for bipolar disorder. The results suggest the involvement of ion 

channelopathy in bipolar pathogenesis. 
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The second and third projects provide sampling strategies for next-generation 

sequencing. The goal is to select a subset from a study sample that incorporates maximal 

number of variants when sequenced, or to achieve maximal imputation accuracy when 

impute the sequences of the rest study sample using the sequenced subset or both. In the 

second project, I propose the “most diverse panel” by adapting the concept of the 

phylogenetic diversity. This strategy assumes that the panel with the biggest overall tree 

length in the phylogenetic tree represents the longest evolutionary time, allowing the 

maximal number of mutation events to occur. Sequencing such a panel can thus identify 

the maximal number of variants. In the third project I propose the “most representative 

panel” by considering both the selected and unselected haplotypes. The goal is to identify 

at least one optimal selected reference haplotype for each unselected haplotype. Because 

it is computationally impossible to perform an exhaustive search for a large sample size, I 

develop a hill-climbing algorithm that updates a randomly selected panel a predefined 

number of iterations or until it converges. Using simulated sequence data and real 

sequence data from the 1000 Genomes Project, I compare the two proposed panels to 

randomly selected panels and provide suggestions on which algorithm to use when 

planning sequencing studies with specific study samples. 



 

1 
 

Chapter 1 Introduction 

On the road to identifying disease-causing genes, investigators have successfully 

identified many common variants that are associated with complex diseases through 

GWAS since 2005 (http://www.genome.gov/gwastudies/). However, the fact that those 

identified common variants can only account for a very small proportion of disease 

inheritability motivates investigators to study rare variants for complex diseases. With the 

dramatic cost reduction in next-generation sequencing, investigators start to sequence 

previous samples from GWAS, either by candidate regions or the whole genomes, to 

identify rare risk variants that contribute to the missing disease inheritability. However, 

sequencing a large sample is still expensive. Genotype imputation can augment sequence 

data. In this dissertation, I address how to perform genotype imputation with structured 

data and how we can use genotype imputation in sequencing studies.  

 

Genotype imputation is an important tool in disease gene mapping and has been widely 

used in association studies. It typically uses a densely genotyped panel to predict the 

genotypes in a less densely genotyped study sample (Li et al. 2009). Genotype imputation 

allows direct testing of untyped markers for associations with phenotypes of interest and 

can increase the power for identifying genetic risk variants for complex diseases (Li et al. 

2009; Marchini and Howie 2010). Genotype imputation is often used in meta-analysis to 

combine samples that are genotyped on different platforms (Zeggini et al. 2008; Scott et 

al. 2009). Currently the most often used genotype imputation programs include MaCH 

http://www.genome.gov/gwastudies/
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(Li et al. 2010), minimac (Howie et al. 2012), IMPUTE (Marchini et al. 2007), IMPUTE2 

(Howie et al. 2009), and BEAGLE (Browning and Yu 2009). All these programs are 

implemented based on a hidden Markov model, modeling samples as unrelated 

individuals. While each imputation program may provide different imputation quality for 

a specific study sample, reference panel selection affects more in imputation accuracy in 

genotype imputation. Previous studies showed that imputation accuracy was higher when 

the reference panel and the study sample derive from the same or similar populations than 

when they are from substantially different populations (Huang et al. 2009).  

 

In Chapter 2, I conduct a family-based association study for identifying genetic risk 

variants for bipolar disorder in the chromosome 8q24 region. This is a follow-up study to 

narrow down the genetic risk variants that could explain a previously observed linkage 

peak at 8q24 (McInnis et al. 2003; McQueen et al. 2005). McInnis et al. (2003) 

performed a genome-wide scan for bipolar disorder in 65 pedigrees and showed the top 

linkage signal at 8q24 for suggestive evidence of linkage. McQueen et al. (2005) 

performed a meta-analysis that combined 11 studies, including the study by McInnis et 

al. (2003), and reported a genome-wide significant LOD score of 3.4 at 8q24. Using 

family data including the families used in the previous linkage analysis, my collaborators 

genotyped over 3000 SNPs across the 123.1 to 139.1 Mb region at 8q24 for 3,512 

individuals from 737 families (Zandi et al. 2007; Zandi et al. 2008; Zhang et al. 2010). I 

perform a detailed family-based association analysis to evaluate the correlations between 

the common genetic variants in this region to bipolar disorder. In addition, I propose a 

novel strategy for imputing genotypes with family-based data and perform genotype 
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imputation to get the genotypes of all the international HapMap markers for our data (The 

International HapMap Consortium 2005). To extend the imputation of related individuals, 

I perform the imputation in two steps by first calibrating imputation parameters using a 

subset of the study sample with unrelated individual, and then conduct the imputation on 

the entire study sample. In addition, I show that family structure can additionally filter 

out poor imputed markers not detected by other quality control measures. The results 

show suggestive evidence of association between bipolar disorder and loci near three 

genes. Consistent with genes identified by genome-wide association studies for bipolar 

disorder (Ferreira et al. 2008), the results indicate the involvement of ion channelopathy 

in bipolar pathogenesis.  

 

Investigators have performed many genome-wide association studies (GWAS) to test for 

associations of common variants with complex diseases, and have identified thousands of 

SNPs associated with diseases of interest Since 2005 (http://www.genome.gov). 

However, many of these findings in one study are not replicated in other GWAS, possibly 

due to their population differences or the heterogeneity of diseases. The search for 

genetic variants in psychiatric disorders is especially difficult because of their extreme 

heterogeneity in clinical features, diagnosis, and interactions with environmental factors 

(Van Os et al. 2008; Scott et al. 2009; Zhang et al. 2010). So far, only a few large meta-

analyses of schizophrenia and bipolar disorder reported genome-wide significant 

associations, as reviewed recently by Lee et al. (2012).  

 

http://www.genome.gov/gwastudies/
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The design of GWAS is to target the common variants (e.g., minor allele frequency > 

0.05) in the genome. Although many GWAS have successfully identified common risk 

variants that are significantly associated with traits of interests, those genetic variants 

combined only contribute to a very small proportion of the observed genetic component 

(Bodmer and Bonilla 2008). On the other hand, less common risk variants, such as 

variants with minor allele frequency less than 0.05, often have large effect sizes for 

disease risk (Cohen et al. 2004; Gibson 2011). With dramatic cost reduction in next-

generation sequencing technology, investigators were able to identify rare genetic risk 

variants through sequencing studies (Shendure and Ji 2008; Li et al. 2011). In principle, 

sequencing can identify most variants in a study sample, especially novel rare variants 

(Cirulli and Goldstein 2010). One caveat, however, is that the rarer of variants, the bigger 

sample sizes are needed to achieve the statistical power for the association testing. 

Sequencing study samples at the GWAS scale is still prohibitively expensive in many 

studies. Thus sampling strategies are often needed for selecting an optimal subset of the 

study sample to sequence. The sequenced subset can then be used as a reference panel to 

impute the rest of the study samples.   

 

In Chapter 3, I introduce an idea of phylogenetic diversity from mathematical 

phylogenetics and comparative genomics and propose the “most diverse reference panel”, 

defined as the subset with maximal “phylogenetic diversity”. The identification of subset 

with maximal diversity has been a common practice in other area of genetics, such as 

biodiversity conservation (Faith 1992; Steel 2005) and biodiversity genome sequencing 

(Pardi and Goldman 2005). The strategy assumes that the panel with the biggest overall 
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tree length in the phylogenetic tree represents the longest evolutionary time, which allows 

the maximal number of mutation events to occur. Sequencing such a panel can thus 

identify the maximal number of variants.  

 

In Chapter 4, I present another sampling strategy for planning sequencing studies. Instead 

of focusing on maximizing phylogenetic diversity in the selected subset, I aim to 

maximize the similarity between haplotypes in the selected subset (R) and haplotypes in 

the unselected subset (U) by minimizing a distance metric I defined between R and U. To 

locate this optimal realization, an exhaustive search is not computationally feasible for a 

large sample size due to the combinatorial nature of this problem, and there are no 

existing alternative algorithms available. Here I adapt a local search algorithm, the hill-

climbing search, to find a local optimum of R and U. To speed up the search and to avoid 

the algorithm being stuck in a local optimum, I randomly start multiple times and choose 

the one with minimum (R, U) distance as the starting status for the hill-climbing update. 

The goal is to get the global optimum or a local optimum distance that is a reasonable 

approximation of the global optimum (Selman and Gomes 2006). 

 

Using simulated sequence data and real sequence data from the 1000 Genomes Project, I 

compare the two proposed panels to randomly selected panels. The results show that both 

the most diverse panel and the representative panel incorporate more sites that are 

polymorphic and also provide better imputation accuracy when used as reference panels 

than randomly selected panels. The major advantage here is the genotypes for extra 

variants gained by the propose panel without experimental cost than using a randomly 
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selected panel. I also compare the performance of the two proposed strategies under 

different settings, such as reference size, imputation length, and maker density in the 

study sample. In the end, I provide some suggestions on which algorithm to use when 

planning sequencing studies with specific study samples based on the observed results 

and outline future directions I plan to extend the current work.  
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Chapter 2 A family-based association analysis to finemap linkage peak 

on 8q24 for bipolar disorder 

2.1 Introduction 

Bipolar disorder (BP) is a common, complex psychiatric disease characterized by 

recurrent depression and manias, with an estimated lifetime prevalence of ~1% 

(Merikangas et al. 2007). Family and twin studies have reported a strong familial 

aggregation of BP, suggesting that genetic factors account for 60% to 85% of disease risk 

(Smoller and Finn 2003). While a large number of genetic variants were reported to be 

either linked or associated with BP, few have been replicated (Burmeister et al. 2008; 

Serretti and Mandelli 2008). Only recent large genome wide association studies (GWAS) 

were able to identify the first BP genes. Ferreira et al. (Ferreira et al. 2008) analyzed a 

combined sample of 4,387 BP patients and 6,209 controls and reported genome-wide 

significant associations to BP with SNPs in Ankyrin 3 (ANK3) and in the alpha 1C 

subunit of the L-type voltage-gated calcium channel (CACNA1C), and the same SNPs in 

both ANK3 (Scott et al. 2009) and CACNA1C (Ferreira et al. 2008) were replicated by 

independent studies. However, these two variants account only for a small proportion of 

BP's heritability, most heritable risk remains unexplained. 

 

Some of this heritability may be explained by variants located in regions previously 

identified by linkage studies. Since the development and subsequent evolution of the 
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human genome map and modern mapping methodologies, over 40 genome-wide linkage 

reports on BP and at least three meta-analysis (Badner and Gershon 2002; McQueen et al. 

2005) were published [for review see (Barnett and Smoller 2009)[. We first reported 

linkage to BP on 8q24 region with an NPL score of 3.25 (Dick et al. 2003; Avramopoulos 

et al. 2004). Cichon et al. (2001) also reported a genome-wide significant two-point LOD 

score (D8S514; LOD = 3.62) at 8q24 in a genome-wide linkage scan of 75 BP families 

(Cichon et al. 2001). These results were included in a meta-analysis of 11 studies by 

McQueen et al. (2005), which reported  a genome-wide significant LOD score of 3.40 in 

a region on chromosome 8q24  under a broad model of BP (BPI and BPII) (McQueen et 

al. 2005). Moreover, Macayran et al. (2006) reported a child with BP carrying a 

duplication of 8q22.1- q24.1 caused by an unbalanced translocation (Macayran et al. 

2006).  

 

To identify genetic variants that account for the linkage signal in this region, we have 

previously performed an association analysis with 249 candidate gene SNPs covering a 

3.4 Mb region in a sample of 583 affected offspring from 258 nuclear families with 

evidence of linkage to BP. We detected suggestive level of associations with SNPs three 

kb upstream of ST3GAL1 (Zandi et al. 2007). We further typed an extended sample of 

3,512 individuals from 737 multiplex families for 1,458 SNPs across a ~16 Mb region on 

8q24. We tested each marker for association with BP, and found suggestive, but not 

experiment-wide significant associations with SNPs in several genes (Zandi et al. 2008). 
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However, this SNP panel tagged (r
2
 > 0.8) only ~ 54% of known common 

polymorphisms in the 8q24 region (Zandi et al. 2008). To fill the gaps we designed a 

complementary panel of 1,536 additional SNPs in the same 8q24 region and typed the 

panel on the same sample (Zandi et al. 2008). Here we present the joint analysis of all 

3,072 SNPs. Furthermore, we developed an approach to apply the imputation method 

MACH to family-based data. We imputed 22,725 HapMap SNPs in a ~ 18 Mb regions on 

8q24 flanking the linkage peak reported by McQueen et al. (McQueen et al. 2005). We 

tested all variants for association to bipolar disorder under several genetic models, and 

obtained evidence of suggestive level of association between BP with loci near KCNQ3, 

ADCY8, and ST3GAL1. None of the observed associations are sufficient to account for 

the previous reported linkage signal.  

2.2 Materials and Methods 

2.2.1 Samples 

The study combined the Johns Hopkins sample of 65 families and the NIMH sample of 

672 families; both samples have been described elsewhere [for Hopkins sample (Dick et 

al. 2003); and for NIMH sample (Dick et al. 2003) (Dick et al 2003, McInnis et al. 2003, 

NIHM Human Genetics Initiative Web Site)].  Both samples collected multiplex families 

segregating BP, ascertained for a linkage study of BP. Family members were assessed 

using the Schedule for Affective Disorders - Lifetime Version (SADS-L) (Endicott and 

Spitzer 1978) or the Diagnostic Interview for Genetic Studies (DIGS) (Nurnberger et al. 

1994). Diagnoses of BPI and SABP were based on Research Diagnostic Criteria (RDC) 

in the first sample and DSM-III-R in the second sample (criteria are essentially the same). 

BPII diagnosis was based on RDC with the additional requirement of recurrent major 
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depression.  The final best estimate diagnosis procedure engaged two non-interviewing 

psychiatrists to review all the data for a consensus clinical diagnosis. In the case of 

disagreement a third psychiatrist reviewed discordant diagnoses and adjudicated a final 

diagnosis. 

 

Our sample comprised 3,525 genotyped individuals including 1,383 males and 2,129 

females from 737 families (Zandi et al. 2008). As the initial linkage peak was obtained 

using a broad definition of affection status, we defined individuals diagnosed with BPI, 

schizo-affective disorder, SABP or BPII as affected (n = 1,958), and individuals who 

were determined to be never mentally ill as unaffected (n = 515). The remaining 

individuals were defined as missing disease status (n = 1,052). 

2.2.2 Genotype data 

Genotype data was collected in two phases. We selected 1,536 SNPs in the region from 

123.1 to 139.1 Mb (Build 35) on chromosome 8q24 using FESTA (Gopalakrishnan and 

Qin 2006) for the first phase that was performed at the Center of Inherited Disease 

Research (CIDR) (Zandi et al. 2008). We aimed to tag all the known common variants 

(minor allele frequency, MAF > 0.05) with r
2
 ≥ 0.5 in region 123 to 131 Mb and r

2
 
 
≥ 0.8 

in region 131 to 139 Mb. 1,461 SNPs passed quality control and were included in the 

final analysis.  

 

To improve coverage, we selected and typed additional 1,536 SNPs conditional on the 

first marker set  using FESTA (Gopalakrishnan and Qin 2006) We designed this marker 

set to maximize the number of SNPs tagged using the same r
2
 criteria as in phase I. 
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Moreover, we retyped 24 SNPs from phase I to estimate genotyping error rates. All 

markers were selected to have an Illumina design cut-off score of 0.6, per manufacturer’s 

instruction, to generate a customized Illumina panel of 1,536 SNPs. These SNPs were 

genotyped using the University of Michigan’s Department of Psychiatry/MBNI 

microarray core facility on a local Illumina Bead Station system, following 

manufacturer’s instruction.  

 

Quality control of the phase II data used PEDSTATS (Wigginton and Abecasis 2005). 

We removed all SNPs that did not satisfy all of the following criteria: successful 

genotyping rate ≥ 90%; number of Non-Mendelian Inheritance (NMI) errors < 6; Hardy-

Weinberg equilibrium (HWE) test using the entire sample with p value ≥ 10
-6

; and MAF 

≥ 5%. After applying these quality control criteria, we retained 1,295 SNPs of the 1,536 

for analysis for a combined dataset of 2,756 SNPs.  

2.2.3 Statistical Analysis 

2.2.3.1 Single marker association analysis 

We performed single marker association tests with program LAMP (Gargus 2006), a 

maximum likelihood method that jointly models linkage and association, to incorporate 

the large family sizes in our dataset (maximum family size, 23). For our main analysis, 

we assumed a multiplicative model with a population prevalence of 1%. In addition, we 

compared to the results obtained under dominant/recessive and a free model without any 

genetic model assumptions. 
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2.2.3.2 Imputation 

We used the program MACH to impute genotypes for all markers in this 8q24 region 

using the CEU population from HapMap (Build 35) database as references (Macayran et 

al. 2006). MACH implements a hidden Markov model to impute unknown SNP 

genotypes, modeling samples as unrelated individuals. To extend the algorithm to related 

individuals, we performed MACH in two steps by first selecting 200 independent 

individuals to calibrate imputation parameters such as the estimates of imputation error 

rates. Based on these estimates we then imputed genotypes for the entire sample treating 

individuals as independent. In total, we imputed 22,725 SNPs in an 18 Mb region by 

expanding one Mb at each end of our genotyped region.  

 

We evaluated imputation quality using three statistics. First, we estimated imputation 

error rates by masking 2% of the original genotypes before imputation and then 

comparing the true genotypes with their imputed counterparts. Second, we assessed the 

distribution of the quality measure  ̂  calculated by MACH, which is an estimate of the 

squared correlation between imputed genotypes and true genotypes. We excluded 

markers with   ̂       (n = 4,225), which has been shown to remove ~70% of badly 

imputed SNPs (Barnett and Smoller 2009). Moreover, the family structure in our dataset 

allowed us to estimate the imputation quality by counting the number of NMIs for each 

imputed SNPs. We removed imputed SNPs that had > 30 NMIs (n = 1,042). We also 

excluded SNPs that had MAF < 5% (n = 1,905). A total of 15,552 SNPs were included in 

the final association analysis.  
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2.3 Results 

2.3.1 Genotype quality and coverage 

We estimated the genotyping error rate by comparing genotypes of 24 SNPs that were 

typed in both phases for all individuals. The estimated average mismatch rate was 0.26% 

per SNP. Both marker sets together covered 94.1% of the common HapMap SNPs (MAF 

> 0.05) in the 8q24 region, they were either genotyped or covered at r
2
 ≥ 0.50, while 

78.3% of those were either genotyped or covered at r
2
 ≥ 0.80.  

2.3.2 Single marker association analysis 

We carried out the association tests of each SNP with BP under various genetic models 

using LAMP. Here we reported results from a multiplicative model with a disease 

prevalence of 1%. The most significantly associated marker was rs2673582 (p = 4.80×10
-

5
), which located 27 Kb upstream of KCNQ3 (Figure 2.1). Three other SNPs had p-

values < 10
-3

, including rs4871780 (p = 1.20×10
-4

), rs3750889 (p = 5.0×10
-4

) and 

rs1023096 (p = 7.0×10
-4

). Both rs3750889 and rs1023096 are located within ADCY8 

gene and are in high linkage disequilibrium (r
2
 = 0.86) (Table 2.1). Result obtained under 

a dominant/recessive model or a free model was not fundamentally different from these 

results (data not shown). 

2.3.3 Imputation 

To assess the performance of the imputation method MACH on family-based data, we 

randomly masked 2% of genotypes and treated them as missing, then estimated the 

performance by comparing the imputed genotypes to the true genotypes. The estimated 

imputation error rate was 0.0577 per genotype and 0.035 per allele, respectively. We 
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further assessed the quality of imputed genotypes for each marker using both the number 

of NMIs among imputed SNPs and the estimated  ̂  values generated by MACH. 4,225 

markers failed only the  ̂  -criteria, 1,145 failed only the NMI-criteria and 103 markers 

failed both. While the numbers of NMIs and the imputation  ̂  were negatively correlated 

(coefficient, -0.41), removing imputed SNPs by the number of observed NMIs provided 

an additional filter for identifying poorly imputed markers.  

 

We tested the imputed genotypes of 15,552 SNPs for association with BP using LAMP. 

Our results showed 11 SNPS with p-values <10
-4

 level, with the most significant being 

rs4339604 (p = 9.4×10
-6

, MAF = 0.057, physical position = 128.93 Mb), followed by 

rs7824868 (p = 2.1×10
-5

, MAF = 0.11, physical position = 128.59 Mb) (Figure 2.2). 

Note that the most significant result near 128 Mb is located in a gene desert. 

2.4 Discussion 

We analyzed a sample of 3,512 individuals in 737 families and tested 2,756 genotyped 

SNPs spanning ~16 Mb across the previously identified linkage peak in 8q24 region 

(McQueen et al. 2005). Furthermore, we imputed and tested all common HapMap SNPs 

in this region. Among the genotyped markers, the most significantly associated SNPs are 

located close to 133 Mb near KCNQ3, which is consistent with the linkage peak 

identified by genome-wide linkage analysis. Our result provided further suggestive 

evidence that supported genetic variants in ST3GAL1 or ADCY8 may be associated with 

BP (Table 2.1) (Zandi et al. 2007; Zandi et al. 2008). This association signal is more 

significant than our previous results (Zandi et al. 2008), it is difficult to assess 

experiment-wide statistical significance. Correcting for the number of sequenced markers 
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tested results in a corrected p = 0.13, for the most significant finding (4.8 x 10
-5

). 

However, Bonferroni correction assumes independent tests and the SNPs in this region 

are highly correlated. Moreover, permutation analysis cannot be applied to assess 

significance because of the family structure in our dataset. Hence it is not clear how to 

assign experiment-wide significance levels. Including imputed SNPs added additional 

signals with suggestive evidence for association, although no SNPs were significant after 

stringent (Bonferroni) correction for multiple testing.    

 

All genes implicated by our analysis have previously been implicated as candidates for 

bipolar and other psychiatric disorders. KCNQ3 has been shown to be expressed highly 

specific to brain and co-expressed with KCNQ2 in most brain regions (Schroeder et al. 

1998). KCNQ2 has been implicated to be associated with BP through phosphatidyl-

inositol phosphate pathway (Carter 2007) and both KCNQ2 and KCNQ3 are key 

components to form a voltage-gated potassium channel that is important in the regulation 

of neuronal excitability (Schroeder et al. 1998). Although no peer-reviewed evidence has 

been forthcoming on KCNQ3 as a susceptibility gene for BP disorder, a recent published 

US patent proposed using a single nucleotide mutation in KCNQ3 gene to assess the 

presence of or predisposition to schizophrenia, BP or a related mental disorder in a 

subject (Chumakov et al. 2006). Furthermore our findings have an intriguing connection 

to replicated GWAS results. ANK3 anchors voltage-gated sodium channels, and both 

ANK3 and subunits of the calcium channel are down-regulated in response to lithium 

treatment in mice (McQuillin et al. 2007). Hence, both the results from ANK3 and that of 

KCNQ3 support the involvement of an ion channelopathy in bipolar disorder (Gargus 
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2006), which was also supported by pathway-based analyses on GWAS data in BP 

(Askland K et al. 2009). 

 

The product of ADCY8 catalyzes the formation of cyclic AMP from ATP, where cyclic 

AMP may be involved in BP pathogenesis as a target for lithium and other mood 

stabilizing agents (Perez et al. 2000; Stewart et al. 2001). Malsen et al. showed that 

ADCY8 was differentially expressed in specific brain region as a function of avoidance 

behavior in mice. The author further explored the human homologous 8q24 region using 

a candidate gene approach to test association with BP with genotypes from a GWAS and 

reported nominally significant associations with ADCY8 (p = 0.0055) and KCNQ3 (p = 

0.0029) (De Mooij-van Malsen et al. 2009).The product of ST3GAL1 gene is a type II 

membrane protein that catalyzes the transfer of sialic acid from CMP-sialic acid to 

galactose-containing substrates. A recent family-based association of candidate genes 

reported evidence of association of ST3GAL1 to BP (empirical p value < 0.005) (Ferreira 

et al. 2008).  

 

As none of the signals we observed can sufficiently explain the linkage signal in 8q24, it 

is likely that additional BP-variants exist in this region. However, as testing 15,552 

additional imputed SNPs did not generate additional interesting signals, our panel of 

2,756 SNPs likely captured most of the common haplotype variation in the 8q24 region. 

Therefore, typing additional common variants in this region would not result in new 

findings. Our results clearly show that the common variants in the 8q24 region do not 

explain the previously observed linkage peak (Dick et al. 2003). This result may be 
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explained by one of two reasons: (1) The linkage peak may be a false positive, and the 

replications of the linkage peak are the result of publication bias. (2) The causal genetic 

variants in this region may be individually rare SNPs or copy number variants, which 

association tests of common SNP markers have low power to detect. To assess the 

contribution of rare variants in 8q24, it will be necessary to sequence a set of candidate 

genes, or the entire 8q24 region in a sample of BP cases. Our results pinpoint to at least 

two potential starting points.   

 

In summary, we identified three biologically feasible signals for association with BP but 

more research is required to understand the contribution of genes in the 8q24 region to 

bipolar disorder.   
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Table 2.1 Top 10 results of single marker association tests. Results are for genotyped 

markers. I performed the tests under a multiplicative model with a disease prevalence of 

1% using LAMP (Gargus 2006). 

 

Marker  Position(Mb)  MAF Gene  Location  LOD P value  

rs2673582  133.59 0.425 KCNQ3 27Kb upstream 3.59 4.80E-05 

rs4871780  128.36 0.421     3.20 1.20E-04 

rs3750889  132.07 0.406 ADCY8 intron 2.63 5.00E-04 

rs1023096  132.10 0.419 ADCY8 intron 2.49 7.00E-04 

rs6986303  134.55 0.289 ST3GAL1 intron 2.32 1.10E-03 

rs6984550  133.63 0.200 KCNQ3 64Kb upstream 2.27 1.20E-03 

rs10095649  135.23 0.133     1.96 0.0026 

rs4523235  132.31 0.303     1.95 0.0027 

rs10094837  135.27 0.138     1.93 0.0028 

rs17602731  133.59 0.314 KCNQ3 32Kb upstream 1.89 0.0032 

MAF: minor allele frequency 
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Figure 2.1 LocusZoom plot of association results for genotyped markers.  The top figure 

shows p values (-      ) from association test for each genotyped SNPs versus position 

(Mb) across linkage peak on 8q24 (McQueen et al. 2005). The bottom figure magnifies 

one Mb surrounding the most significant maker rs2673582 (purple diamond). Below each 

plot, a subset of genes in this region is shown. Light gray lines display recombination 

rates as estimated from the HapMap data. The colors of the circles indicate the strength of 

linkage disequilibrium (LD) with rs2673582. 
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Figure 2.2 LocusZoom plot of association results for all markers.   P values (-      ) for 

association of genotyped and imputed SNPs on 8q24. The horizontal axis shows position 

in Mb. The purple diamond indicates the most significant SNP rs4339604. A subset of 

genes in this region is shown below the main plot. The gray lines indicate recombination 

rates as estimated from the HapMap data. 
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Chapter 3 Genotype imputation reference panel selection using 

maximal phylogenetic diversity 

3.1 Introduction 

Genotype imputation is an essential component of modern genetic association studies. 

This technique enables direct testing of untyped markers for associations with phenotypes 

of interest, thereby increasing the power to identify causal variants in association studies 

(Li et al. 2009). Imputation is especially useful in meta-analyses that combine data from 

genome-wide association studies (GWAS) performed using different genotyping 

platforms (Zeggini et al. 2008; Scott et al. 2009). Moreover, genotype imputation 

performed using study-specific sequenced samples enables analysis of rare variants 

in large GWAS genotyped datasets (Zawistowski et al. 2010). 

 

Imputation methods typically use a reference panel of densely genotyped haplotypes to 

predict the missing genotypes in a less densely genotyped study sample. The choice of 

the reference panel then influences the imputation accuracy obtained in the study sample. 

It has been observed that in general, imputation accuracy is higher when the reference 

panel and the study sample derive from the same or similar populations than when they 

are from substantially different groups (Huang et al. 2009; Huang et al. 2011). However, 

high-diversity reference panels also contribute to increased imputation accuracy. Huang 

et al. (2009) found that increasing reference panel diversity by incorporating a mixture of 

different HapMap populations could increase imputation accuracy in comparison with the 
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use of only a single HapMap population. Similarly, in imputing a study sample from a 

British birth cohort, Jostins et al. (2011) found that adding to the reference panel a 

proportion of HapMap samples from other populations (e.g., taking 17% of the reference 

panel from Toscani or 22% from Chinese and Japanese) yielded a higher imputation 

accuracy than using Northern European samples alone.  

 

Most studies performed to date have selected reference panels from external databases 

such as the International HapMap Project (The International HapMap Consortium 2005; 

Frazer et al. 2007) and the 1000 Genomes Project (The 1000 Genomes Project 

Consortium 2010). Dramatic reductions in sequencing cost now enable an alternative 

strategy: to select an internal reference panel for genotype imputation, that is, to 

sequence a subset of the study sample itself and then to use the sequenced subset as a 

reference panel for imputing the rest of the study sample. Using reference sequences 

derived from the study sample can prevent a mismatch in ancestral background between 

the study population and the reference population. It also enables novel variants 

distinctive to the study sample to be imputed. Employing sequences from a candidate 

gene and the 1000 Genomes Project, Fridley et al. (2010) demonstrated the feasibility of 

imputing genetic variants based on a sequenced proportion of a study sample, and they 

suggested sequencing “the largest and most diverse” subset. In a theoretical study, Jewett 

et al. (2012) found that including sequenced haplotypes from the study population in the 

reference panel improved imputation accuracy, even if the external panel was taken from 

a closely related population. Here, we develop criteria for the selection of an internal 

reference panel for genotype imputation. Our goal is to find a sensible approach for 
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choosing an internal reference panel from the study sample, with the aim of 1) 

maximizing the number of polymorphic sites in the imputed dataset and 2) achieving the 

maximal imputation accuracy. 

 

The identification of maximally diverse subsets of a larger set of individuals has been a 

goal in other areas of genetics, such as in choosing diverse sets of plant accessions for 

inclusion in core collections targeted for agronomic development or experimental use 

(Brown 1989; McKhann et al. 2004; Reeves et al. 2012) and in choosing diverse species 

sets for biodiversity conservation (Faith 1992; Steel 2005) and genome sequencing (Pardi 

and Goldman 2005). In selecting a set of imputation templates, we borrow the concept of 

“phylogenetic diversity” which, for a given subset of a larger set of taxa, measures the 

fraction of the total branch length of an evolutionary tree of the larger set that is included 

in the restriction of the tree to the taxon subset (Faith 1992; Nee and May 1997; Steel 

2005). Conditional on a tree of n taxa, Pardi and Goldman (2005) and Steel (2005) 

proved that among all possible subsets of size m ≤ n taxa from the larger set, the globally 

maximal phylogenetic diversity can be obtained by a greedy algorithm. This greedy 

algorithm provides a computationally efficient solution to a form of combinatorial 

optimization problem that can usually only be solved via exhaustive analysis of all 

possible subsets. Further, if it becomes possible for investigators to increase the number 

of sequenced samples, for example, by an increase in budget, then the greedy algorithm 

guarantees that all of the previously selected individuals will be included in the larger 

optimal subset. 
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We propose the use of the most diverse reference panel for genotype imputation, adapting 

the greedy algorithm for maximizing phylogenetic diversity in our selection of an internal 

reference panel. We assume phased diploid individual genotypes are available, as phasing 

is not our focus. We approximate the ancestral relationships of haplotypes by 

constructing a neighbor-joining phylogenetic tree (Saitou and Nei 1987) using the 

pairwise Hamming distance matrix between the haplotypes in a study sample (Figure 

3.1). We next apply the greedy algorithm of Pardi and Goldman (2005) and Steel (2005) 

to identify the subset at a given size with the maximal “phylogenetic diversity” 

conditional on the tree. Similar to a method of template selection by Pasaniuc et al. 

(2010), our approach is tree-based, but we aim to choose a maximally diverse subset, 

whereas Pasaniuc et al. (2010) select a subset from an external dataset based on similarity 

between haplotypes in the external dataset and each individual haplotype in the study 

sample. The haplotypes chosen by our method are spread across the tree and tend to have 

long external branch lengths (Figure 3.1, bold lines), as our method prioritizes individual 

sequences that are more differentiated. We expect that in comparison with a random 

subset, the subset that is most phylogenetically diverse at the genotyped markers also 

carries a larger number of polymorphic sites that can be identified by sequencing, and 

that are then available for imputation into the remaining sample when this sequenced 

subset is used as a reference panel. Thus, this strategy enables more variants to be 

imputed in the study sample than with the use of a randomly selected reference panel.  

 

Kang and Marjoram (2012) recently proposed a similar tree-based sample-selection 

strategy for next-generation sequencing. Their method selects a subset based on the 
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unweighted pair group method with arithmetic mean (UPGMA) (Sokal and Michener 

1958), which is designed for ultrametric data in which each haplotype has the same 

distance to the root of the constructed tree. The subtree identified by the method of Kang 

and Marjoram (2012) also requires the ultrametric assumption in order to have a maximal 

tree length. In contrast, the neighbor-joining method we use does not require data to be 

ultrametric.  

 

To evaluate the performance of our "most diverse reference" panel in genotype 

imputation, we simulate sequences and create study samples similar to those observed in 

GWAS by masking the genotypes for a number of single nucleotide polymorphisms 

(SNPs). We then impute the masked genotypes in the study sample by using either the 

most diverse reference panel or by using randomly selected reference panels. We also 

apply the “most diverse” method to sequences of European ancestry from the 1000 

Genomes Project. The results from both the simulated sequences and the 1000 Genomes 

sequences show that the most diverse reference panel consistently provides higher 

imputation accuracy, independent of imputation lengths, reference panel sizes, and 

marker densities in the study sample. We thus provide a cost-effective strategy for 

designing sequencing studies for samples with existing genome-wide genotype data. As 

of 2013, thousands of GWAS have been performed, with over one million genotyped 

individuals (http://www.genome.gov/gwastudies/). Effective use of the genotype data 

will make it possible to carry out large-scale sequencing studies on these individuals in 

silico with a limited budget. 
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3.2 Materials and methods 

3.2.1 Phylogenetic diversity 

We use notation similar to that of Steel (2005). Assume a study sample T of n haploid 

individuals, each containing q polymorphic sites that are genotyped for k < q variable 

sites (referred to as markers) in a region of interest. We consider haploid data (phased 

diploid individuals for humans), as we do not focus on phasing. Based on the genotypes 

at those k markers, we aim to identify a subset       of size m ≤ n to be sequenced. 

Sequencing reveals r ≤ q - k additional variable sites in the m individuals. S is then used 

as a reference panel to impute the genotypes of these r sites in the remaining n - m 

individuals in the study sample T.  

 

To identify the optimal selection of S, let XT be an unrooted tree constructed using all 

haplotypes in T on the basis of the k markers. Let λT be the sum of the branch lengths for 

all edges of XT. We denote by XS the induced tree obtained by restricting XT to only the 

haplotypes in S and by λS the sum of the branch lengths of XS. For m ≥ 2, we define the 

size-m subset of T with maximal phylogenetic diversity as pdm: 

 

           {           | |   }. 

 

3.2.2 Identifying the subset with maximal diversity 

To find pdm, we first generate an unrooted tree from the study sample T. Based on the 

genotypes of the k markers, we compute the Hamming distances between individual 
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haplotypes and construct a pairwise distance matrix for T. Based on this distance matrix, 

we construct a tree using the neighbor-joining method, which recursively agglomerates 

pairs of nodes until all nodes have been incorporated into the tree (Saitou and Nei 1987).  

On this tree, we apply a greedy algorithm to identify the subset S with size m that has the 

maximal phylogenetic diversity. Briefly, we first select the pair of haplotypes with the 

greatest distance on the tree and add the pair to S. We then sequentially incorporate as the 

next haplotype in S the haplotype that adds the maximal length to the chosen tree at that 

step, repeating the process until S reaches size m. Pardi and Goldman (2005) and Steel 

(2005) proved that conditional on the tree, the subset chosen according to this greedy 

algorithm has the maximal phylogenetic diversity. 

3.2.3 Simulations 

We analyze simulated datasets to evaluate the performance of the “most diverse reference 

panel” in genotype imputation. We independently generate 50 datasets of 2000 

haplotypes each with the program ms, a coalescent-based sequence sampling program, 

under the neutral Wright-Fisher model (Hudson 2002). We assume a basic population-

genetic model with constant effective population size Ne = 10,000, a mutation rate µ = 

1.0
-8

 per site per generation, and a recombination rate ρ = 1.0
-8

 per site per generation. 

We remove singletons from the simulated sequences to create the "true" imputable 

sequence data. All simulated sites are assumed to have at most two alleles. Emulating the 

density of current genotype arrays, we select the marker panel of the study sample (the 

"genotype data") by randomly choosing 300 markers per Mb that have MAF > 0.1 in the 

sequence data. We mask the genotypes for the remaining sites, which become the set of 

sites that will be imputed. We simulate haplotypes of length 1 Mb, imputing the middle 



 

29 
 

100 kb while keeping the genotypes for the marker panel in both 450-kb flanking regions 

to improve imputation accuracy and to avoid edge effects (Li et al. 2010). Based on these 

simulated marker genotype datasets, we apply our algorithm on the marker panel to 

obtain the most diverse reference panels of 200 haplotypes. To evaluate the performance 

of the most diverse reference panel, for each of the 50 simulated datasets, we generate 

1000 random reference panels, by sampling without replacement 200 haplotypes each 

from the sequence data for comparison. We ignore the pairing status of two haplotypes in 

a diploid individual when selecting the most diverse panel. In practice we can not only 

sequence one chromosome in a diploid individual. To incorporate this more realistic case, 

we consider the pairing status in diploid case and form the “diverse diploid panel”. If we 

plan to sequence 100 diploid individuals out of 1000 diploid individuals, we form the 

diverse diploid panel by continuing to incorporate diploid individuals who carry one or 

two haplotypes into the panel from the top diversity list until we reach 100 diploid 

individuals. In each reference panel, we unmask all imputable sites and use the resulting 

sequences as references for genotype imputations. For each dataset, we perform one 

imputation with the most diverse reference panel, one imputation with the diverse diploid 

reference panel, and one imputation with each of the 1000 randomly selected reference 

panels. 

 

To evaluate the impact of our parameter choices, we modify this basic design by 

changing the length of the imputation target, the reference panel size, and the number of 

genotyped SNPs in a study sample while maintaining the other parameters fixed as 

described above. We consider imputation target lengths of 100 kb, 500 kb, 1 Mb, and 2 
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Mb, each time adding 450 kb flanking regions. We select reference panel sizes of 100, 

200, 300, 400, and 500 haplotypes among a total of 2000 haplotypes. We also vary the 

number of genotyped markers from 300 to 1000 in a 1 Mb region in a study sample. For 

each scenario, we simulate 50 datasets of 2000 haplotypes each. For each dataset, we 

perform one imputation with the most diverse reference panel and 50 imputations with 

randomly selected reference panels.  

 

Based on previous comparisons among imputation methods (Hao et al. 2009; Nothnagel 

et al. 2009; Pei et al. 2010), we employ minimac (Howie et al. 2012) as one of the best-

performing methods. This method is an extension of MaCH (Li et al. 2010) for phased 

diploid data. To assess imputation accuracy on heterozygous genotypes, we then create 

n/2 diploid individuals by randomly combining pairs of haplotypes from the entire study 

sample. After imputation, we evaluate the predicted imputation accuracy by examining 

for each selected reference panel the mean of the estimated correlation coefficient  ̂  

across all markers. To evaluate the imputation accuracy of the r imputed sites for the n/2 

diploid individuals in the imputed datasets, we compute two measures for the discordance 

rate between the imputed genotypes  ̂   and the simulated genotypes     at variant site   

in target individual  . We let  ̂   and     equal to 0, 1 and 2, based on their numbers of 

copies of one specific allele. First we calculate discordance rate   across all sites: 

 

   
∑ ∑ |     ̂  |

 
   

   
   

  
. 

 

As this error function is strongly affected by the minor allele frequencies of the variant 
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sites examined (Huang et al. 2009), we also calculate imputation errors across all 

heterozygous genotypes (     ): 

   
∑ ∑       |     ̂  |

 
   

   
   

 ∑ ∑       
 
   

   
   

. 

 

3.2.4 The 1000 Genomes Project data 

We apply our method to sequence data from the 1000 Genomes Project. We consider the 

phased data of 381 diploid individuals (762 haplotypes) with EUR (European) ancestry, 

including 87 CEU (Utah residents with Northern and Western European ancestry), 93 

FIN (Finnish from Finland), 89 GBR (British from England and Scotland), 14 IBS 

(Iberian populations in Spain), and 98 TSI (Toscani in Italy) 

(http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G-PhaseI-Interim.html, 

the 1000G Interim Phase I Haplotypes 11/23/2010 release). We remove singletons from 

the sample, selecting eight 100-kb regions that are approximately evenly distributed 

across chromosome 20. We create study samples using a similar procedure as the 

simulation above: for each region, we add a 450-kb flanking region on each side, 

randomly choose ~300 genotyped SNPs per Mb among markers with MAF ≥ 0.1, and 

mask the genotypes of all other sites. In each region, we select the most diverse 160 

haplotypes from the set of 762 total haplotypes as the diverse reference panel. For 

comparison, we sample without replacement 1000 random reference panels of 160 

haplotypes each. 
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We next consider the entire chromosome 20 and create a study sample using the same 

procedure as in the 100 kb regions. We select the most diverse reference panel using our 

method and 50 reference panels randomly without replacement. Using the selected 

reference panels, we impute all the masked genotypes and compute the discordance rate 

for each imputation. 

3.3 Results 

3.3.1 Number of imputed sites 

Polymorphic sites in reference panels: Only sites that are polymorphic in the reference 

panel can be imputed into the remaining study sample. Hence, we first evaluate the 

number of polymorphic sites in the reference panels selected. For each of the 50 

simulated datasets, we choose one random reference panel and compare it to the most 

diverse reference panel. We find that for a total of 12,957 masked sites that are 

polymorphic in the study samples across the 50 datasets, 9,642 of sites (74.41%) are 

polymorphic in both types of reference panels. Among the remaining sites, 1,492 sites 

(11.52%) are polymorphic only in the most diverse reference panels, whereas 760 sites 

(5.87%) are polymorphic only in the randomly selected reference panels. Thus, on 

average, 5.65% more sites are polymorphic in the most diverse reference panels than in 

the randomly selected reference panels. 

 

Polymorphic sites in imputed datasets: To ensure that the higher number of polymorphic 

sites in the most diverse reference panels also leads to a higher number of imputed 

polymorphic variants, we count the number of imputed sites that are polymorphic in 

datasets imputed with reference panels generated under three different selection 
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strategies: (1) sampled at random, (2) selecting the 200 most diverse haplotypes and (3) 

selecting the diverse considering the haplotype pairing status (diverse diploid reference 

panel). As it is not currently practical to sequence only one chromosome in a diploid 

organism, strategy (3) represents a scenario in which the individuals that carry the most 

diverse haplotypes are identified and both of their chromosomes are sequenced. Across 

the 50 datasets, the mean number of haplotypes that one diverse diploid panel of 200 

incorporates from the top diversity list is 106, ranging from 102 to 112. Assuming Hardy-

Weinberg equilibrium, this second chromosome is sampled randomly from the 

population. 

 

From the total of 12,957 imputed sites across the 50 datasets, 10,952 are polymorphic in 

datasets imputed with the most diverse reference panels (84.53%), 10,574 are 

polymorphic for the diverse diploid reference panels (81.61%), and 10,151 are 

polymorphic for randomly selected reference panels (78.34%). Figure 3.2 shows 

percentages of polymorphic sites in datasets imputed with the three reference types across 

the 50 datasets. In each of the 50 datasets, imputation with the most diverse reference 

panel captures more polymorphic sites than imputation with the random reference panel. 

The improvement by using the most diverse panel is greater when the randomly selected 

panel captures only a low percentage of polymorphic sites (e.g., replicates 46 to 50). 

Imputations with the diverse diploid panels result in higher percentages of polymorphic 

sites than the random panels in 42 of the 50 datasets (84%) and in a higher percentage of 

polymorphic sites than the most diverse panel in 4 of the 50 datasets (8%). Only in four 

datasets does the random reference panel perform substantially better than the diverse 
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diploid reference panel (replicate 1, 2, 3, and 6) and in all these cases, the random panel 

captures a high (> 83%) percentage of polymorphic sites.  

3.3.2 Imputation accuracy 

As a measurement of imputation accuracy, we evaluate the discordance rate between the 

simulated genotypes and the imputed genotypes for the 50 simulated datasets. For each 

dataset, we compare the accuracy of the imputation using the most diverse reference 

panel to the empirical distribution of imputation accuracies from 1,000 random reference 

panels.  

 

Estimated imputation quality: A predictor for the accuracy of an imputed site generated 

by minimac is the  ̂ , a quantity calculated by comparing the variance of observed 

genotype scores with the variance of expected genotype scores to estimate the squared 

correlation at a marker between the true allele counts and the estimated allele counts (Li 

et al. 2010). To compare this predicted imputation accuracy between the different choices 

of reference panels we compute the average  ̂  across the 12,957 total imputed sites 

across the 50 datasets. For imputations with the most diverse reference panels and the 

diverse diploid reference panels, we generate one value of  ̂  for each site; to evaluate 

imputations with the 1000 randomly selected reference panels for each dataset, we 

compute the mean  ̂  for each site across 1000 imputations, and we then calculate the 

average across all imputed sites. Sites imputed with the most diverse reference panels 

have the highest mean  ̂2 
(0.784), followed by sites imputed with the diverse diploid 

reference panels (0.758). Sites imputed with randomly selected reference panels have the 

lowest mean  ̂  (0.723). As removing variant sites with  ̂      filters most poorly 
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imputed sites (Li et al. 2009), we also compare the number of sites that pass this 

imputation quality threshold. Across the 50 datasets, we observe that a higher percentage 

of sites imputed with the most diverse reference panels pass the threshold (83.17%) 

compared to sites imputed with the diverse diploid reference panels (80.53%) and sites 

imputed with the randomly selected panels (77.48%). For a higher  ̂  threshold of 0.8 

applied by typical association studies, 76.63% of sites pass the threshold for imputations 

with the most diverse reference panels, 74.76% for the diverse diploid reference panels, 

and 59.65% for the randomly selected reference panels. 

 

Discordance rates: For each simulated dataset, we separately calculate discordance rates 

for all sites imputed with the most diverse reference panel, sites imputed with the diverse 

diploid reference panel, and the mean values for sites imputed with random reference 

panels taken across all 1000 random panels. Using the most diverse reference panel 

results in the lowest mean discordance rate across the 50 replicates (0.0019), followed by 

imputation with the diverse diploid reference panel (0.0022). Both quantities are lower 

than the mean discordance rates of imputation with the random reference panels (0.0031) 

(Figure 3.3). Ranking the discordance rate of selected reference panels together with the 

discordance rates of 1000 random panels from the lowest to the highest value, the most 

diverse reference panel is a clear outlier for 24 of the 50 datasets (48%), having a lower 

discordance rate than imputations with all 1000 randomly selected reference panels (rank 

1). Across all 50 datasets, the mean rank of the most diverse reference panel is 13.5, 

ranging from 1 to 135 among 1001 panels. Across the same 50 datasets, the mean rank of 

the diverse diploid reference panel is 111.9, ranging from 1 to 906 among 1001 panels.   
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To generate a more meaningful discordance measure for low-frequency variants, we also 

compare the imputed genotypes and the simulated true genotypes across sites for which 

the true genotypes are heterozygotes. While the heterozygote discordance rate is higher 

than the overall discordance rate, the mean heterozygote discordance across the 50 

replicates is again the lowest for sites imputed with the most diverse reference panels 

(0.0097), followed by the diverse diploid reference panels (0.0121) and the random 

reference panels (0.0165). Comparing across frequency bins, we observe that for all 

reference selection strategies, the heterozygote discordance rate decreases with increasing 

allele frequency. The mean heterozygote discordance rate across the 50 replicates for 

low-frequency variant sites (0 < MAF < 0.1) is considerably higher than the overall mean 

discordance rate for all heterozygote sites across the 50 replicates (0.0258 for the most 

diverse reference panels, 0.0329 for the diverse diploid reference panels, and 0.0415 for 

the random reference panels). In all frequency bins, considering heterozygote discordance 

rates, imputations with the most diverse reference panels generate the lowest discordance 

rates and imputations with the randomly selected reference panels generate the highest 

discordance rates, while imputations with the diverse diploid reference panels generate 

intermediate discordance rates (Figure 3.3). Combining the heterozygote discordance 

rate of the most diverse reference panel with the heterozygote discordance rates of 1000 

random panels for each of the 50 simulated datasets and ranking from the lowest to the 

highest heterozygote discordance rate, the mean rank of the most diverse panel across all 

50 datasets is 17.5 when comparing all heterozygote sites, 27.3 for sites with 0 < MAF < 

0.1, 115.7 for sites with 0.1 ≤ MAF < 0.2, and 68.5 for sites with 0.2 ≤ MAF ≤ 0.5 out of 
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1001 panels ranked. When comparing the diverse diploid reference panel to random 

panels, the mean rank across all 50 datasets is 147.9 for all heterozygote sites, 188 for 

sites with 0 < MAF < 0.1, 163.9 for sites with 0.1 ≤ MAF < 0.2, and 145.9 for sites with 

0.2 ≤ MAF ≤ 0.5. 

3.3.3 Imputation accuracy under different simulation settings 

To assess the robustness of our results, we evaluate the performance of the most diverse 

reference panel under different simulation settings, considering different target sequence 

lengths, different reference panel sizes, and different marker densities in the study 

sample. We first investigate whether the lengths of the target regions affect the 

performance of the most diverse reference panels in imputations. We impute regions with 

lengths of 100 kb, 500 kb, 1 Mb and 2 Mb, using both the most diverse reference panel 

and 50 random reference panels, each of which is compared to the true underlying 

genotypes; the average of the 50 discordance rates is then compared with the discordance 

rate for the most diverse reference panel. As shown in Figure 3.4a, across the four 

different lengths, we observe little effect of the imputation length on the discordance rate. 

The mean discordance rate across the 50 replicates for each group ranges from 0.0028 (2 

Mb) to 0.0037 (500 kb) for the most diverse reference panel and from 0.0052 (2 Mb ) to 

0.0058 (100 kb) for the random reference panels. For all sequence lengths considered, the 

most diverse reference panels provide lower discordance rates than the randomly selected 

reference panels.  

 

Second, we evaluate how the reference panel sizes affect the performance of the most 

diverse reference panel by comparing the genotype discordance rates for reference panels 
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of size 100, 200, 300, 400, and 500 haplotypes. For both reference panels, the mean 

discordance rate across the 50 replicates decreases with larger reference panel sizes, from 

0.008 to 0.0006 for the most diverse panel and from 0.009 to 0.0015 for the random 

reference panels. Especially for a reference panel of size 100 individuals, the discordance 

rate is considerably higher than for larger panel sizes. Across all reference panel sizes, 

imputations with the most diverse reference panels consistently provide lower 

discordance rates than do imputations with the randomly selected reference panels 

(Figure 3.4b).  

 

Third, we examine how the number of markers genotyped initially in the study sample 

affects the performance of the most diverse reference panel by varying the density of 

markers in the study sample, considering 200, 300, 400, 500, 600, and 1000 markers per 

1 Mb region. For both types of reference panels, the mean discordance rate across the 50 

replicates decreases with a higher density of markers in the study samples, from 0.0055 to 

0.0015 for the most diverse panel and from 0.0072 to 0.0023 for the random reference 

panels. Across all marker densities in the study sample, the most diverse reference panels 

consistently provide lower discordance rates than the randomly selected reference panels 

(Figure 3.4c).  We also observe that the improvement in discordance rates for the most 

diverse reference panel over the randomly selected panels slightly decreases with more 

markers genotyped in the study sample. 
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3.3.4 Imputation accuracy on data from the 1000 Genomes Project 

We apply our method to real sequence data of 381 phased individuals with EUR ancestry 

from the 1000 Genomes Project. Considering eight 100-kb regions across chromosome 

20, we impute 3,215 sites after removing singletons. Sites imputed with the most diverse 

reference panels have a mean  ̂2
 of 0.749 across sites; sites imputed with the 1000 

randomly selected reference panels have a mean  ̂2
 of 0.741. Slightly more sites pass the 

imputation quality threshold of  ̂2
 ≥ 0.3 for the most diverse reference panels (85.75%) 

than for the randomly selected reference panels (84.23%). When applying a higher 

imputation threshold of  ̂2
 ≥ 0.8, a similar percentage of sites pass the threshold for the 

most diverse reference panels (62.74%) and the randomly selected reference panels 

(62.89%). 

 

Considering all imputed sites for the eight 100-kb regions, the most diverse reference 

panels result in a lower mean discordance rate across the eight regions (0.0067) than the 

randomly selected reference panels (0.0077). When comparing imputed sites that are 

heterozygotes in real sequenced datasets, sites imputed with the most diverse reference 

panels have a lower mean discordance rate across the eight regions (0.0228) than sites 

imputed with the randomly selected reference panels (0.0262). The lower discordance 

rates from the most diverse reference panels are observed across all frequency bins for 

heterozygote sites:  For sites with 0 < MAF < 0.1, the mean discordance rate across the 

eight regions is 0.074 using the most diverse reference panels versus 0.0895 using 

random reference panels, for sites with 0.1 ≤ MAF < 0.2, the mean discordance rate 

across the eight regions is 0.0177 versus 0.0193, and for sites with 0.2 ≤ MAF ≤ 0.5, the 



 

40 
 

mean discordance rate across the eight regions is 0.0080 versus 0.0099 (Figure 3.5). 

However, we also notice that the performance of the most diverse reference panel varies 

widely among the eight regions. When ranking the discordance rate of the imputation by 

the most diverse reference panel with the discordance rates of the 1000 imputations by 

randomly selected reference panels from the lowest to the highest value for each of the 

eight regions, the most diverse reference panel has an average rank of 116.1 across the 

eight regions, ranging from
 
3 to 496 out of 1001 panels ranked. For heterozygote sites, 

the most diverse reference panel has an average rank of 156.7, ranging from 1 to 508; for 

heterozygotes in different MAF bins, the most diverse reference panel has an average 

rank of 242.7 for sites with 0 < MAF < 0.1, an average rank of 311.0 for sites with 0.1 ≤ 

MAF < 0.2, and an average rank of 129.4 for sites with 0.2 ≤ MAF ≤ 0.5 out of 1001 

panels ranked.  

 

For the whole chromosome 20 data, the sequence dataset contains 259,618 sites after 

removing singletons. We select 18,000 sites with MAF ≥ 0.1 as “genotyped” markers and 

mask the genotypes for the remaining 241,618 sites to create a study sample. Based on 

the genotyped markers, we select the most diverse reference panel to impute the 

genotypes of the masked sites. For comparison, we sample 50 reference panels at 

random. We first compare the number of masked sites that are polymorphic in the 

selected reference panels. In the most diverse reference panel, 211,480 masked sites are 

polymorphic (87.53%), compared to an average of 210,137 across the 50 random 

reference panels (86.97%). After imputation, we observe that the imputation with the 

most diverse reference panel has 201,831 sites with  ̂2
 ≥ 0.3 (83.53%), whereas 200,609 
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sites have mean  ̂2
 ≥ 0.3 with a randomly selected reference panel (83.03%). For the 

higher imputation quality threshold of  ̂2
 ≥ 0.8, 142,996 sites pass the threshold for the 

imputation with the most diverse reference panel (59.18%), whereas averaging 142,281 

sites across imputations with the 50 randomly selected reference panels pass the threshold 

(58.89%). Moreover, sites are imputed slightly more accurately with the most diverse 

reference panel than with random reference panels (Table 3.1). The discordance rate of 

the most diverse panel is lower than all except 2 of the 50 random panels (rank 3). To 

evaluate the imputation accuracy in different frequency bins, we again consider 

discordance rates of heterozygote genotypes. When ranking the discordance rate of the 

imputation by the most diverse reference panel with the discordance rates of the 50 

imputations by randomly selected reference panels from the lowest to the highest value, 

we observe that the most diverse reference panel has a lower discordance rate than all 50 

random panels (rank 1). Examining separate frequency bins, the most diverse reference 

panel has rank 4 for sites with 0 < MAF < 0.1, rank 3 for sites with 0.1 ≤ MAF < 0.2, and 

rank 14 for sites with 0.2 ≤ MAF ≤ 0.5. Averaging across sites, the numerical 

improvement in imputation accuracy by using the most diverse panel is modest, reducing 

imputation errors by 1% across all sites and by 2.3% at less common variants with 0 < 

MAF < 0.1. 

3.4 Discussion 

The cost reduction in modern sequencing technology enables investigators to generate a 

reference panel for genotype imputation by sequencing a subset of the study sample. We 

have proposed a sampling strategy for such an internal reference panel by adapting an 

algorithm based on phylogenetic diversity. In simulated sequence data, our method 
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consistently outperforms randomly selected reference panels, in that it provides higher 

imputation accuracy and recovers more polymorphic sites from the sample. This 

improved performance holds across different imputation lengths, different reference 

panel sizes, and different marker densities in the study sample. Upon analyzing real 

sequence data with European ancestry from the 1000 Genomes Project, the most diverse 

reference panel provides higher imputation accuracy than do randomly selected reference 

panels. We observe this improved performance when imputing eight 100-kb regions on 

chromosome 20 and when imputing the entire chromosome 20, indicating that our 

method can be used to select reference individuals for imputing smaller target regions as 

well as for imputing entire genomes. Our method may be particularly advantageous for 

imputing less common variants, as we found in our simulations that the most diverse 

reference panels have more polymorphic sites than do randomly selected reference 

panels. Moreover, the accuracy gain from using the most diverse reference panel instead 

of randomly selected reference panels is greater for less common variants (e.g., 0 < MAF 

< 0.2) than for more common variants (e.g., MAF ≥ 0.2) (Table 3.1). 

 

Our method is fundamentally different to Pasaniuc (2010). Although both selections are 

based on the genotypes of makers that exist in the study sample and reference sequences, 

we adapt phylogenetic diversity in our method whereas Pasaniuc and colleague’s method 

identifies one different reference panel for each short window (e.g., 15 kb) of the target 

region for each study individual based on coalescent theory. In addition, their method 

requires having a pool of sequences to select from. This is not the case for our purpose as 

we don’t have all the sequences and can only sequence a subset of the study sample. 
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Kang and Marjoram (2012) very recently considered sample selection for next-generation 

sequencing using a similar approach based on maximizing the subtree length. Compared 

to our NJ method, Kang and Marjoram used the UPGMA tree. In general, the NJ method 

is more accurate in computing branch lengths as it considers all taxa on the tree when 

estimating branch lengths whereas UPGMA only select the closest neighbors and 

compute the arithmetic mean. In addition, Bryant (2005) proved the NJ is statistically 

consistent given the distance data whereas UPGMA does not always satisfy the 

consistency criteria. Finally, UPGMA requires the ultrametric condition, the final tree is a 

clock-like tree and each individual on the tree has the same distance to the root. As a 

result, we expect the method based on UPGMA to have more ties that evolve sample 

uniformly at random in selecting a subset with maximal tree length than our method as 

our NJ tree does not require the ultrametric assumption. Although they have used a 

different tree-building algorithm, they examined a similar greedy method, motivated by 

coalescent theory instead of from the standpoint of phylogenetic diversity. In simulations 

that examined different marker densities, target imputation region lengths, and reference 

panel sizes, they found that their algorithm performed well, and we similarly find that our 

related method performs well under these scenarios. In addition, the work of Pardi and 

Goldman (2005) and Steel (2005) provides further theoretical justification for the basis of 

our algorithm, as well as for the method of Kang and Marjoram. Taken together, our 

study and that of Kang and Marjoram demonstrate the value of sensible use of 

genealogical relationships among samples to improve the experimental design for 

sequencing studies. Further, as shown in Pardi and Goldman (2005), our method can 
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incorporate other selection criteria by starting with an initial selection of haplotypes and 

then applying the greedy algorithm as an extension. 

 

We expect that the most diverse reference panel algorithm can work effectively either on 

a limited region of the genome or on whole chromosomes, provided the phylogenetic tree 

based on existing data reasonably captures the ancestral relatedness of the haplotypes in 

the study sample. This is only possible if this ancestral relatedness can be described well 

as a tree, a condition that depends on the population-genetic history of the sample and the 

size of the region of interest. When focusing on a single genomic region, relevant parts of 

its ancestral process can be approximated as a tree due to limited recombination events. 

This single tree can be estimated by a subset of genotyped markers, and thus, our method 

can provide useful information for reference panel selection. On the other hand, many 

uncorrelated trees can be formed to represent the ancestral processes of a large region 

such as the entire genome. Hence, an approximation with a single tree might not capture 

many features of the data. In such a scenario, it is less likely that our method will produce 

a better reference panel than a random sample. In a structured population, the underlying 

population structure generates a correlation of ancestries across the entire genome. The 

resulting clades can be approximated by the tree-building algorithm, and this tree can 

help in selecting a more diverse reference panel. It is encouraging that in a sample of five 

European subpopulations, the population structure was sufficient for the most diverse 

reference panel selected based on the entire chromosome 20 to outperform the randomly 

selected reference panels. Hence, relatively subtle population structure, such as that found 

in samples from closely related European countries, is sufficient to create similarities in 
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the underlying ancestral processes that can be captured by the tree-building algorithm and 

can result in improved reference panel selection. For subpopulations with different 

sample sizes, we expect the diverse algorithm only oversample from subpopulations with 

many individuals that have dramatic longer external branch lengths that individuals from 

other subpopulations on the constructed tree, or undersample in the case of dramatic short 

external branch lengths. Otherwise, we expect our algorithm will pick the number of 

individuals that are proportional to the size of each subpopulation.  

 

Our method is based on local phylogenetic tree. The topology of the local phylogenetic 

tree may change with increasing size of a genome region because of recombination 

events. As the performance of our method is based on how well the local phylogenetic 

tree approximates the ancestral relatedness of the study individuals, we expect the gain in 

imputation accuracy using our method will decrease with increasing length of an 

imputation region. As expected, the average improvement in imputation accuracy when 

imputing 100-kb regions is considerably higher than the average improvement across the 

entire chromosome, reflecting that the ancestry of a 100-kb region is more tree-like than 

the ancestry of an entire chromosome. However, the average improvement in imputation 

accuracy when imputing 100-kb regions is considerably higher than the average 

improvement across the entire chromosome, reflecting that the ancestry of a 100-kb 

region is more tree-like than the ancestry of an entire chromosome.  

 

The method of reference panel selection described here can be adapted to address specific 

study design goals. Our method can be applied to incorporate other criteria in reference 



 

46 
 

panel selection. For example, we have not specifically incorporated phenotype 

information when selecting reference haplotypes, so the selected reference panel is not 

guaranteed to include the individuals with traits of interest. To sequence certain 

individuals because of their phenotypes or other criteria unrelated to their phylogenetic 

placement, we can apply the selection algorithm conditional on including these 

individuals in the reference panel. The greedy algorithm still guarantees that the 

subsequent extension has optimal phylogenetic diversity, as proved in Pardi and Goldman 

(2005). Similarly, our method can be easily extended to form a reference panel by 

incorporating sequences partly from the study sample and partly from an external 

database such as the HapMap Project or the 1000 Genomes Project. For example, we can 

treat sequences from the HapMap Project as an initial set and apply the greedy algorithm 

to the study sample as an extension in a similar manner as in analyses treating other 

inclusion criteria. 

 

Our method should be applicable to imputation in other species of a genome region in 

other species as long as the constructed tree can reasonably represent the ancestral 

relatedness among the study individuals. Wang et al. (2012) proposed to use local 

phylogenetic tree to provide confidence information in imputing sequences in inbred 

mice. The confidence is high for imputing study strains that share one or more genome 

intervals with reference sequences, whereas the confidence is low for strains that do not 

share genome intervals with reference sequences. The authors also proposed that 

sequencing these strains with low confidence imputation quality could provide maximal 

improvement in imputation accuracy and new variant identification. The strategy used by 
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Wang et al (2012) may work well as an extension to our study to combine existing 

sequence data in imputation. For example, to get the full sequences of a genome region 

for a study sample, we can form a reference panel from the 1000 Genomes Project that 

share one or more haplotypes with our study sample and impute the sequences of the 

these study individuals with high confidence, and apply the our method to the rest of 

study individuals or sequencing all the rest of study individuals if budget allows. 

 

In summary, we have demonstrated that an innovative method of choosing an internal 

reference panel — the most diverse reference panel — can be a cost-effective approach 

for planning sequencing studies with existing genotype array data. The method can 

readily incorporate a variety of selection criteria, while still guaranteeing the maximal 

phylogenetic diversity for subsequent selections.  
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Table 3.1 Discordance rates for imputations for real sequencing data.  Data are from 

chromosome 20 of individuals with European ancestry in the 1000 Genomes Project. 

Discordance rates are shown as percentages. We split 381 phased diploid individuals into 

a target sample of 301 target individuals and a reference panel of 160 haplotypes. Shown 

here are results from one imputation with the most diverse reference panel and the mean 

and standard deviation of the discordance rates from 50 imputations with randomly 

selected reference panels. We ranked discordance rates of the most diverse panel together 

with 50 random reference panels from the lowest to the highest value and display the 

rank of the most diverse panel. 

 

Reference types 
Variant groups 

All Heterozygotes MAF(0,0.1) MAF[0.1,0.2) MAF[0.2,0.5] 

Most diverse 1.02 3.53 10.31 2.77 1.92 

Random 

 

mean 1.03 3.57 10.45 2.82 1.93 

standard 

deviation 
0.004 0.019 0.076 0.019 0.014 

Rank of the most 

diverse 
3 1 4 3 14 
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Figure 3.1 Illustration of the selection of the most phylogenetically diverse reference 

panel.  Shown is the phylogenetic tree constructed from 20 simulated haplotypes as well 

as the most diverse subset of five taxa (in bold). The selection algorithm first selects the 

most distant pair of taxa and then identifies haplotypes that are most distant conditional 

on the haplotypes already selected. To choose the five taxa, the greedy algorithm first 

selects pair 1 and 14, and then 12, 19, and 5 sequentially. Notice how the haplotypes 

chosen are spread across the tree and possess long branch lengths. 
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Figure 3.2 Percentages of polymorphic sites in imputed datasets. The white bar represents 

the accuracy of a random panel, the grey bar represents the accuracy of the diverse 

diploid panel, and the black bar represents the accuracy of the most diverse reference 

panel. If the performance of the diverse diploid reference panel is lower than the 

performance of the random reference panel, this difference is indicated by the part of the 

white bar with horizontal stripes. If the accuracy of the diverse diploid panel is higher 

than the accuracy of the most diverse panel, this difference is indicated by the part of the 

grey bar with vertical stripes. Data are 50 imputed datasets that are sorted in decreasing 

order by percentage of polymorphic sites recovered by imputations with random 

reference panels. 
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Figure 3.3 Comparison of imputation accuracy.  Boxplots of discordance rates between 

imputed genotypes and simulated genotypes for imputations with randomly chosen 

reference panels, diverse diploid reference panels, and most diverse reference panels. The 

mean discordance rate across the 50 replicates for each comparison group is indicated by 

a diamond, and the median discordance rate across the 50 replicates for each comparison 

group is indicated by a middle line. The horizontal axis labels the comparison on the 

basis of all sites (All), all heterozygote sites (Heterozygotes), and heterozygotes in 

different MAF groups in the simulated sequence data. 
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Figure 3.4 Imputation accuracy under different scenarios.  Boxplots of discordance rates 

between imputed genotypes and simulated genotypes for imputations with randomly 

chosen reference panels and most diverse reference panels with varying simulation 

settings: A. Imputation length; B. Reference panel size; C. Number of genotyped markers 

per Mb in the study sample. For each dataset, we examine the mean of 50 random 

reference panels and the most diverse reference panel. The mean discordance rate across 

the 50 replicate simulated datasets for each comparison group is indicated by a diamond, 

and the median discordance rate is indicated by a middle line. 
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Figure 3.5 Imputation accuracy on the 1000 Genomes Project data.  Boxplots of 

discordance rates between imputed genotypes and simulated genotypes for imputations 

with randomly chosen reference panels and most diverse reference panels for eight 100-

kb regions on chromosome 20. We analyzed 762 haplotypes of European ancestry from 

the 1000 Genomes Project. The horizontal axis represents comparison of all sites (All), 

all heterozygote sites (Heterozygotes), and heterozygotes in different MAF groups in the 

simulated sequence data. The mean discordance rate across the eight regions for each 

comparison group is indicated by a diamond, and the median discordance rate across the 

eight regions for each comparison group is indicated by a middle line. 
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Chapter 4 Selecting the most representative sample in genotype 

imputation for next-generation sequencing 

4.1 Introduction 

Genome-wide association studies (GWAS) have successfully identified many of the 

common genetic variants for complex diseases. With the dramatic cost reduction in next-

generation sequencing technology, investigators have begun to use sequencing studies to 

identify genetic risk variants for complex diseases with a focus on rare variants (Nelson 

et al. 2012; Xia et al. 2012). However, sequencing a large study sample is still very 

expensive. Thus, we need sampling strategies to select an optimal subset such that we can 

identify the maximal number of variable sites in the study sample and achieve the 

maximal imputation accuracy when imputing the sequences for the rest of the study 

sample using the sequenced individuals as references. 

 

Genotype imputation is a statistical approach that predicts genotypes in a less densely 

typed study sample by using information from a more densely genotyped dataset as a 

reference panel. The most commonly used reference panels are sequences from the 

International HapMap Project (The International HapMap Consortium 2005) and the 

1000 Genomes Project (The 1000 Genomes Project Consortium 2010). Investigators have 

used these sequences as reference panels to impute the genotypes for untyped HapMap 

markers in their GWAS. Here, we aim to identify a subset from a study sample to 

sequence and to use the sequenced subset as a reference panel to obtain sequences for the 
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rest of the study sample. Sequencing can identify novel variants that are unique to a study 

sample. In addition, compared to imputations with reference sequences from public 

databases such as the International HapMap Project, imputations with reference 

sequences from the study sample itself avoid the possible ancestral background mismatch 

between the reference population and the study population. 

 

We have proposed a sampling strategy for sequencing in Chapter 3, where we propose to 

sequence the subset that has maximal subtree length, a panel we term the most diverse 

reference panel. We show that the most diverse reference panel incorporates more 

polymorphic sties and provides higher imputation accuracy than a randomly selected 

reference panel when imputing the sequences of the rest of study sample for individuals 

from one population or closely related populations. Kang and Marjoram (2012) proposed 

another tree-based method that produced similar results. Both Kang’s method and our 

method assume that the number of mutation events is proportional to the genealogical 

tree length, thus the subtree with the maximal tree length is expected to carry more 

mutant alleles that can be identified by sequencing and consequently to recover more 

variants when used as a reference panel. In addition, it assumes that selected haplotypes 

are spread across the tree, thus could well represent the unselected haplotypes. However, 

this may not be true in some cases, for example, the most diverse subset may oversample 

haplotypes in a cluster on the tree that vastly different while fail to sample any haplotypes 

in a cluster that are similar with small branch lengths (Bordewich et al. 2008). The most 

diverse algorithm also does not count the similarity between the selected subset and 
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unselected subset, thus the haplotypes in the unselected subset may not represented well 

by the haplotypes in the selected subset. 

 

Here we propose a subset selection method that considers both the selected subset (R) 

and unselected subset (U). We propose the “most representative” subset, defined by the 

pair (R, U) such that the summation of minimum distances over all unselected haplotypes 

in U to the selected subset R is the smallest among all possible choices of (R, U). 

Because of the combinatorial nature of this problem, it is not computationally feasible to 

compare all instances for a large sample. By our best knowledge, there is no such existing 

approach as the greedy algorithm in Chapter 3 to find such a pair (R,U). Instead, we use a 

local search algorithm, known as the hill-climbing search, to search for the most 

representative panel. The local search algorithm is not systematic, but it has two key 

advantages over an exhaustive search: (1) it uses very little memory – usually constant 

amount; and (2) it can often find reasonable solutions in large state spaces for which 

systematic algorithms are unsuitable (Russell and Norviq 2009). The goal is to find the 

global optimum or a local optimum that is a reasonable approximation of the global 

optimum (Selman and Gomes 2006). To increase the chance of reaching the global 

optimum and minimize the chance of being stuck in local optimum, we randomly start 

multiple times and choose the replicate that has the smallest (R, U) distance as the 

starting point for the hill-climbing search (Figure 4.1). 

 

Using simulated sequences as well as sequences from the 1000 Genomes Project, we 

compare the characteristics and performance the representative panel to the most diverse 
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panel and randomly selected panels so that we can provide guidelines for investigators to 

use when planning sequencing studies with existing genotype data. 

4.2 Materials and methods 

4.2.1 Define the representative panel 

4.2.1.1 Haploid case 

Assume a sample of 2n haplotypes, we want to choose 2k haplotypes as a reference panel 

(k  ≤  n). We represent the selected 2k references in R as I1, I2, …, I2k and represent the 

unselected 2n - 2k haplotypes in U as J1, J2, ...., J2n-2k. For each haplotype j є U, we 

represent the minimum distance to the haplotypes in R as dj = mini  є R {Dji}, where i is the 

haplotype in R that is the closest to j and Dji represents the pair-wise Hamming distance 

between haplotypes j ϵ U and i ϵ R. 

 

The sum of minimum distance for one realization of R and U, represented by (R, U) is, 

 

(   )  ∑       ∑          {   }. 

 

Our goal is to find the realization with minimum distance among all possible realizations 

of (R, U) with size R2k and U2n-2k, the "minimum of minimums", represented by ( ̂  ̂), 

 

( ̂  ̂)     {(   )}        (∑          {   }). 
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4.2.1.2 Diploid case 

Assume a sample of 2n haplotypes, which we randomly pair two haplotypes without 

replacement and form into n diploid individuals. We want to choose k diploid individuals 

out of n phased diploid individuals (k ≤ n). We represent the selected k diploid 

individuals in R as (I1a, I1b), (I2a, I2b), ..., (Ika, Ikb) and represent the unselected n - k 

individuals in U as (J1a, J1b), (J2a, J2b), …, (J(n-k)a, J(n-k)b), where all the individuals are 

phased and they are in arbitrary order. 

 

For each individual j ϵ U, the minimum distance to the selected subset is haplotype i ϵ R, 

defined as 

 

            (   )               (   )     .. 

 

      represents the pair-wise Hamming distance between haplotype js and it for s, t ϵ (a, 

b).  

Our goal is to find the realization with minimum distance out of all the possible 

realizations with size Rk and Un-k, represented by ( ̂  ̂),  

 

( ̂  ̂)        (∑   

   

) 

       {∑ (         (   )               (   )     )   }. 
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4.2.2 Hill-climbing search algorithm 

Hill-climbing is a greedy local search algorithm that results in a local optimum. To 

increase the chance of reaching the global minimum and to speed up the search, we 

randomly divide the study sample into R and U with a certain size for 100 times and start 

the hill-climbing search with set of (R, U) that has the smallest distances (Figure 4.1).  

4.2.2.1 Implementation: haplotype case 

1. Randomly select 100 subsets (R0, size 2k haplotypes), calculate the distances of 

(R0,U0) for each selection. 

2. Select the set of (R0,U0) that has the smallest distance as starting (R, U). 

3. Randomly replace one haplotype in R with one haplotype from U, recalculate (R, 

U)’, if (R,U)’> (R,U), accept the replacement, otherwise keep the previous subset 

selection. 

4. Repeat step 3 for 100,000 times, record the final selection of (R, U).  

4.2.2.2 Implementation: diploid case 

1. Randomly pair two haplotypes into diploid without replacement. 

2. Randomly select 100 subsets (R0, size k diploids), calculate the distances of 

(R0,U0) for each selection. 

3. Select the set of (R0,U0) that has the smallest distance as the starting (R, U). 

4. Randomly replace one pair of haplotypes in R with one pair of haplotypes from 

U, recalculate (R, U)’. If (R,U)’> (R,U), accept the replacement, otherwise keep 

the previous subset selection. 

5. Repeat step 4 for 100,000 times, record the final selection of (R, U).  
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4.2.3 Diverse reference panel 

The most diverse panel and diverse diploid are the same as described in Chapter 3, which 

are obtained from the greedy algorithm.   

4.2.4 Imputation accuracy 

We employ minimac (Howie et al. 2012) as one of the best-performing methods, which is 

an extension of MaCH (Li et al. 2010) for phased diploid data. To evaluate the 

imputation accuracy of imputed sites across all individuals in imputed datasets. For each 

site j, the concordance rate for the minor allele is  

   {  
∑ |     ̂  |

 
    

∑    
 
   

      (   )}. 

 

    and  ̂   are the simulated genotype and imputed genotype for individual i at site j, 

represented by the number of minor alleles in that individual (0, 1 and 2) at that site. n is 

the number of diploid individuals in the study sample. 

 

Similarly, the concordance rate for the major allele of site j is 

      
∑ |     ̂  |

 
    

∑ (     )
 
   

      (   )}. 

 

We compute the expected heterozygote concordance rate for site j by  

        (    )    (    ) . 

Xj and Yj are the allele concordance rate for the minor allele and the major allele, 

respectively.  
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4.2.5 Simulations 

We simulate sequence data using the program ms (Hudson 2002) with parameters and 

datasets created the same as described in Chapter 3. Briefly we first remove singletons 

from the simulated sequences. We create the study samples by randomly choosing ~300 

genotyped SNPs per Mb among markers with MAF ≥ 0.1 and mask the genotypes of all 

other sites. These masked sites are the markers in the study sample for imputation. We 

form diploid individuals by randomly pairing two haplotypes without replacement. We 

consider phased individuals, as we do not focus on phasing.  

 

We simulated 50 datasets. In order to create datasets with imputation target region of 100 

kb, 500 kb, 1 Mb, and 2 Mb, each with a flanking 450 kb region, we simulate 2000 

haplotypes each with 2.9 Mb in total length for each dataset then create each datasets 

with variable lengths (Figure 4.2). We also vary reference sizes from 100, 200, 300, and 

400 and vary genotyped marker density from 100, 300, 500, 700, to 900 SNPs per Mb. 

For each created dataset, we select a representative panel using our method for the 

haploid case and a representative panel for diploid case. For comparison, we also select 

the most diverse, the diverse diploid, and a randomly selected panel. We perform 

imputation with each selected panel and compare their performance. 

4.2.6 The 1000 Genomes Project data 

We apply our method to sequence data from the 1000 Genomes Project. We use the same 

phased data of 381 diploid individuals (762 haplotypes) from five closely related 

European populations described in Chapter 3. We remove singletons from the sample, 



 

63 
 

selecting ten 1-Mb regions that are approximately evenly distributed across chromosome 

20. We create study samples following similar procedures as the simulated data by 

selecting 300 SNPs per Mb for variants with MAF ≥ 0.1 and mask the genotypes for all 

other SNPs. For each region, we select 160 haplotypes from a total of 762 haplotypes as a 

reference panel. For each dataset, we impute with different reference types and compare 

the SNP discovery rates, allele concordance rates and expected heterozygote concordance 

rates. 

4.3 Results 

4.3.1 Number of iterations for the hill-climbing algorithm  

To evaluate if the local optimum is a reasonable approximation to the global optimum, 

we repeat the search by random start multiple times and select the best one. For selecting 

200 haplotypes out of a total 2000 haplotypes, we randomly start the hill-climbing search 

multiple times and record the distances (R,U) at different number of iterations. We find 

that the (R, U) distance drops quickly during the first 5000 iterations, then it slows down. 

Here in our simulation, we run the update until distance (R, U) reaches zero or up to a 

maximum of 100,000 iterations.  

4.3.2 SNP discovery rate 

For the 50 simulated datasets of each 2000 haplotypes, the number of imputed sites 

ranges from 5,104 to 5,909, with a mean number of 5,437 sites in a 1 Mb region. We 

compute the SNP discovery rate in each selected subset and imputed dataset for the 50 

datasets. We consider a SNP as being discovered if at least one minor allele is present in 

the selected subset or the imputed dataset. 
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For variants with MAF ≤ 0.005, the representative subset has the highest SNP discovery 

rate in all cases, except that the most diverse subset has the highest discovery rate at 

subset size of 100. For variants with 0.005 < MAF ≤ 0.05, the representative subset has 

the highest SNP discovery rate, followed by the representative diploid, the diverse, the 

diverse diploid, and the random panel across different subset sizes. The randomly 

selected subset has the lowest SNP discovery rate across panel sizes compared to other 

types of subsets. The SNP discovery rates increase with the increase of MAFs and with 

the increase of subset sizes. For variants with 0.005 < MAF ≤ 0.05 and size of 400 

haplotypes, the SNP discovery rate is close to 1 and the differences among different types 

of subsets are smaller (mean rate from 0.962 to 0.989) (Figure 4.3).   

 

We observe the same pattern for SNP discovery rates in imputed datasets. The 

representative subset has the highest SNP discovery rate in all cases except at subset size 

of 100 and variants with MAF ≤ 0.005 (Figure 4.3).  

4.3.3 Imputation accuracy 

4.3.3.1  ̂  from imputation outputs 

As a measure of predicted imputation accuracy generated by MaCH, we compare the 

average  ̂  (defined in Chapter 3) for imputations with different reference types. Figure 

4.4 shows that  ̂  increases with increasing number of reference haplotypes. The 

representative panel performs the best in most cases, whereas the diverse panel works 

better only in imputing variants with MAF ≤ 0.005 using a reference panel size of 100 

haplotypes.  
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4.3.3.2 Allele concordance rate 

We next compare the minor allele concordance rate for imputations with different 

reference types. We observe a higher concordance rate with the increase of MAF or the 

increase of reference panel size. For variants MAF ≥ 0.005, the representative panel 

provides the best minor allele concordance rate, followed by the diploid representative, 

the diverse, the diploid diverse, and the randomly selected panel. The same order applies 

to variants with MAF < 0.005 except imputations with reference panel of 100 haplotypes 

(Figure 4.5).  

4.3.3.3 Expected heterozygote concordance rate 

The expected heterozygote concordance rate has exactly the same pattern as the allele 

concordance rate, and the individual values are also similar (Figure 4.6). We expect it is 

because the allele concordance rate for the major allele of each site is close to 1, thus, the 

expected heterozygote concordance rate for a site Hj ≈ 1 – [Xj(1-1)+1(1-Xj)] = Xj, where 

Xj is the allele concordance rate for the minor allele of the site. 

4.3.4 Different imputation lengths 

To test the performances of different types of reference panels when impute regions of 

different lengths, we perform imputations of different lengths from 100 kb, 500 kb, 1 Mb, 

to 2 Mb by fixing the reference panel size at 200 and the maker density at 300 SNP per 

Mb. The performances of the proposed panels for imputation length of 500 kb or longer 

follows the order of the representative, the representative diploid, the diverse, the diverse 

diploid, and the random panel when comparing SNP discovery rate (Figure 4.7),  ̂  

(Figure 4.8), minor allele concordance rate (Figure 4.9), and the expected concordance 
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rate (Figure 4.10). But for imputation with 100 kb, the representative diploid performs 

the worst of all reference types.  

4.3.5 Different marker densities in the study sample 

We test how the maker density of 100, 300, 500, 700, and 900 SNPs per Mb affect 

imputations with each reference type. The SNP discovery rate (Figure 4.11), mean 

 ̂ (Figure 4.12), and minor concordance rate (Figure 4.13) and the expected 

concordance rate (Figure 4.14) slightly increase with increasing number of markers in 

the study sample. For variants with MAF ≥ 0.005, the representative panel provides the 

best performance, followed by the diploid representative, the diverse, the diploid diverse, 

and the randomly selected panel, whereas for rare variants with MAF < 0.005, the diverse 

panel provides a better performance than the representative diploid panel. 

4.3.6 The 1000 Genomes data 

For the 1000 Genomes data, we selected ten 1-Mb regions that are evenly distributed 

across chromosome 20. The number of imputed sites ranges from 2,769 to 4,606, with 

mean equal to 3,873 sites within a 1 Mb region.  

 

The imputation accuracy for imputations from the 1000 Genomes data is lower than that 

from the simulated data. The proposed panels all have better performance than the 

randomly selected reference panels. When comparing the SNP discovery (Figure 4.15),
 

 ̂ (Figure 4.16), the minor allele concordance rate (Figure 4.17) and the expected 

heterozygote concordance rate (Figure 4.18), the diverse panel provides the best 

performance among all reference types. The representative panel and representative 

diploid panel perform in between the diverse and the diverse diploid for variants with 
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MAF ≥ 0.005. For rare variants with MAF < 0.005, the diploid diverse performs better 

than the representative and the representative diploid.  

4.4 Discussion 

In this chapter, we propose the representative sample for planning sequencing studies. 

Using simulated sequences, the representative panel performs better than the diverse and 

the randomly selected reference panel in recovering more polymorphic sites from the 

study sample and in providing higher imputation accuracy under most of our simulation 

settings, whereas the diverse reference panel provides better or comparable performance 

to the representative panel when imputing rare variants (MAF ≤ 0.005) or with a small 

reference size (e.g. 100 haplotypes) in simulated data with study individuals from one 

population. In the 1000 Genomes data with study individuals from closely related 

European populations, the most diverse panel works better than other types of reference 

panels. 

 

We expect our method to be applicable to a target genomic region for individuals from 

one population or from closely related populations. For our test regions from 100 kb up to 

2 Mb in the simulated data, the representative panel provides better performance with 

increasing imputation lengths. This might be because the representative algorithm is 

based on the similarity between haplotypes, and longer haplotypes provide more 

information. For the diverse panel, the lengths of imputation regions slightly affect the 

performance of the diverse panel with the best results achieved at the 500 kb region, 

indicating there might be an optimal length where the constructed tree approximates the 

ancestral relatedness the best for the most diverse panel to work. 
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To evaluate the performance of the selected panels in genotype imputation, we find that 

the measures of the minor allele concordance rate and the expected heterozygote 

concordance rate provide similar results for imputation accuracy. We also find that a 

higher SNP discovery rate will often result in a better imputation  ̂  and a higher allele 

concordance rate in imputations.  

 

One limitation for the implementation of the most representative panel is that our hill-

climbing based search can only obtain a local minimum, which might be very different 

from the global minimum. This might count partly why the diverse panel provides a 

better performance than the representative panel when imputing data from the 1000 

Genomes Project. In our simulation, we select multiple (R, U)s but only select the one 

that has the smallest distance as the starting point for the hill-climbing search limited by 

the number of datasets in the simulation. To further optimize the algorithm in practice, 

we can randomly pick multiple starting points, perform the hill-climbing search for each 

starting point, and select the one that provides the smallest final (R, U) distance to 

increase the chance to reach the global minimum. 

 

In summary, we present the most representative sampling strategy for planning sequence 

studies. Using simulated sequence data and real sequence data from the 1000 Genomes 

Project, we show the most representative panel performs better than the most diverse 

panel and randomly selected panels in the majority of simulation settings for individuals 

from one population, while the most diverse panel provide the best performance when 
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imputing sequences for individuals from closely related populations in the 1000 Genomes 

data. Further characterizing these two proposed strategies will certainly provide more 

information for investigators to choose when planning sequencing studies. 
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Figure 4.1 Illustration of using multiple random starts in the hill-climbing search.  Shown 

is a one-dimensional state-space of all (R, U) distances. Because the hill-climbing search 

only moves in one direction, here is to decreasing distances, it is important where the 

search starts on the state space. To speed up the hill-climbing search and increase the 

chance to reach the global minimum, we initiate multiple random starts (dot with an 

arrow point to it) and select the one that has the smallest distance as the starting state 

(marked as bold arrow) for the hill-climbing update (Russell and Norviq 2009).  
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Figure 4.2 Sequence data simulation scheme.  For a total of 2.9 Mb, we impute the 

middle region from 100 kb, 500 kb, 1 Mb, to 2 Mb, with 450 kb flanking region at both 

ends.  
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Figure 4.3 SNP discovery rate in selected subsets and imputed datasets.  A and B: SNP 

discovery rate in reference panels. C and D: SNP discovery rate in imputed datasets. The 

horizontal-axis is the reference panel sizes, The vertical-axis is the discovery rate SNP 

discovery rates in selected subset (A and B) and imputed datasets (C and D) for variants 

with MAF ≤ 0.05. Data are from 50 simulated datasets. Error bars are the standard errors 

at each reference panel size for each variant group.  Imputation length is 1 Mb. 
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Figure 4.4 R-square for imputations with different reference panel sizes. Data are from 50 

simulated datasets. Error bars are the standard errors at each reference panel size for each 

variant group.  Imputation length is 1 Mb. 
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Figure 4.5 Allele concordance rate for imputations of 1 Mb with different reference panel 

types.  Data are from 50 datasets. For each dataset, we performed one imputation with 

each reference panel. The error bars are the standard errors of concordance rates of 

imputed markers at each MAF group.  

 

Legend: Reference types 
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Figure 4.6 The Expected heterozygote concordance rate. Data are from 50 datasets. For 

each dataset, we performed one imputation with each reference panel. The error bars are 

the standard errors of concordance rates of imputed markers at each MAF group.  
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Figure 4.7 SNP discovery rate for different imputation lengths.  Data from 50 datasets for 

each imputation length. Maker density 300 SNPs per Mb. Reference panel size of 200 

haplotypes. 
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Figure 4.8 R-square for imputations with different target lengths. Data from 50 datasets 

for each imputation length. Maker density 300 SNPs per Mb. Reference panel size of 200 

haplotypes. 



 

81 
 

 



 

82 
 

Figure 4.9 Allele concordance rate with different imputation lengths.  Data are from 50 

datasets for each imputation length. Maker density 300 SNPs per Mb. Reference panel 

size of 200 haplotypes. 

 



 

83 
 

Figure 4.10 Expected heterozygote concordance rate for different imputation lengths. 

Data are from 50 datasets for each imputation length. Maker density 300 SNPs per Mb. 

Reference panel size of 200 haplotypes. 
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Figure 4.11 SNP discovery rate for imputations with different marker densities.  Data are 

from 50 datasets for each maker density. Imputation length is 1Mb. Reference panel size 

of 200 haplotypes. Horizontal axis represents number of SNPs per Mb in the study 

sample. A and B are the discovery rates from selected reference panels. C and D are the 

discovery rate from imputed datasets. 

 

 

 

 

D 
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Figure 4.12 R-square for imputations with different marker densities. Data are from 50 

datasets for each maker density.  Imputation length is 1Mb. Reference panel size of 200 

haplotypes. Horizontal axis represents number of SNPs per Mb in the study sample. A 

and B are the discovery rates from selected reference panels. C and D are the discovery 

rate from imputed datasets. 
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Figure 4.13 Allele concordance rate for imputations with different marker density in 

study samples.  Data are from 50 datasets for each maker density. Imputation length is 

1Mb. Reference panel size of 200 haplotypes. Horizontal axis represents number of SNPs 

per Mb in the study sample. A and B are the discovery rates from selected reference 

panels. C and D are the discovery rate from imputed datasets. 
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Figure 4.14 Expected heterozygote concordance rate for different maker density. Data are 

from 50 datasets for each maker density. Imputation length is 1Mb. Reference panel size 

of 200 haplotypes. Horizontal axis represents number of SNPs per Mb in the study 

sample. A and B are the discovery rates from selected reference panels. C and D are the 

discovery rate from imputed datasets. 
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Figure 4.15 SNP discovery rate for the 1000 Genomes data.  Data are from ten regions of 

1 Mb from chromosome 20 of EUR ancestry. For a total 381 diploid individuals, select 

160 haplotypes as a reference panel. Horizontal axis is the MAF group. 
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Figure 4.16 R-square for imputations of the 1000 Genomes data.  Data are from ten 

regions of 1 Mb from chromosome 20 of EUR ancestry. For a total 381 diploid 

individuals, select 160 haplotypes as a reference panel. Horizontal axis is the MAF group. 
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Figure 4.17 Allele concordance rate for the 1000 Genomes data.  Data are from ten 

regions of 1 Mb from chromosome 20 of EUR ancestry. For a total 381 diploid 

individuals, select 160 haplotypes as a reference panel. Horizontal axis is the MAF group. 
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Figure 4.18 Expected heterozygote concordance rate for the 1000 Genomes data.  Data 

are from ten regions of 1 Mb from chromosome 20 of EUR ancestry. For a total 381 

diploid individuals, select 160 haplotypes as a reference panel. Horizontal axis is the 

MAF group. 
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Chapter 5 Conclusion 

 

The technological advancements allow investigators to use next-generation sequencing 

data to identify rare genetic variants for complex diseases. However, association tests of 

rare variants require a large sample size to obtain enough counts of the minor alleles to 

gain sufficient statistical power and it is still expensive to sequence a large sample. 

Genotype imputation can augment sequence data while challenges still remain, such as 

imputations of data with population or family structures and imputations of rare variants. 

In this dissertation I develop an approach to apply genotype imputation to family-based 

data and propose two sampling strategies based on existing array data for planning 

sequencing studies with limited budgets.  

 

In Chapter 2, I propose a novel strategy for imputing family-based genotype data in an 

association study for bipolar disorder, with the aim to fine mapping risk loci that 

contribute to a previous observed linkage peak at 8q24. Using about 3,000 SNPs across 

the region in 3,512 individuals from 737 families with European ancestry including the 

families used in previous linkage analysis, I perform a detailed single-maker analysis 

under different genetic models. In addition, I impute the genotypes for all the HapMap 

markers in the assayed region. The results show marginal significance of loci near three 

genes.  
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The reasons for no statistically significant signals found might be multifold. First, bipolar 

disorder is a highly heterogeneous disease, both phenotypically and genetically. Second, 

the limitations of the software on complex family structures may also reduce power in the 

analysis. Third, there may be no risk loci in the studied region.  

 

Future directions for this project involve further characterizing the disease features and 

identifying more variants in the region through sequencing. Because of the high 

heterogeneity of bipolar disorder, selecting a clinically more homogeneous subset of 

patients might increase the power to detect risk loci that contribute to a certain pathway. 

For example, one can select only patients diagnosed with bipolar I disorder, or bipolar 

patients who also have anxiety disorder (Saunders et al. 2009; Saunders et al. 2012). In 

addition, one can identify the estimated number of shared haplotypes at 8q24 in the 

sample and sequence individuals who carry those shared haplotypes. Once new rare 

variants are identified in this region, one can test associations of these novel rare variants 

with bipolar disorder using the entire study sample or other samples through cost-

effective customized arrays. 

 

In Chapter 3 and Chapter 4, I investigate on how to use genotype imputation when 

planning sequencing studies by proposing two sampling strategies based on genotypes 

from existing array data. The goal is to find an optimal subset to sequence, in a sense that 

one can identify the maximal number of variants via sequencing the selected subset, and 

obtaining the maximal imputation accuracy when using the sequenced subset as a 

reference panel to get the sequences of the entire study sample. In Chapter 3, I focus on 
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the property of the selected panel only and aim to make the selected haplotypes to be 

most distinct from each other in order to incorporate the maximal diversity of the sample 

into the selected panel. To achieve this goal, I adapt the phylogenetic diversity and a 

greedy algorithm to select the subset with the maximal subtree length (Pardi and 

Goldman 2005; Steel 2005). The assumption is that the number of mutation events is 

proportional to the evolutional time and the subset with maximal tree length represents 

the longest evolutionary time. In Chapter 4, I consider both the selected haplotypes and 

the unselected haplotypes when identifying the optimal panel. I propose another sampling 

strategy for sequencing studies, termed as the most representative subset. The goal is to 

select a subset such that every unselected haplotype in the study sample has at least one 

similar haplotype in the selected subset that can be used as its template in imputation.  

 

In summary, I present two sampling strategies for planning sequence studies. Both 

strategies provide better performance than randomly selected samples. Both methods 

allow for incorporating other selection criteria.  For example, one can treat individuals 

selected from other criteria as an initial set and apply the algorithm to the initial set as an 

extension. Based on the results from the simulated data as well as the real sequence data 

from the 1000 Genomes Project, I recommend a few guidelines which strategy 

investigators can choose in order to identify maximal polymorphic sites from a study 

sample when planning sequencing studies with existing genotype data: 1) For study 

individuals that are from one population, the representative reference panel is more likely 

to provide a better performance. 2) For study individuals that are from closely related 

populations, the diverse reference panel is more likely to provide a better performance. 3) 
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The diverse panel might work better than the representative panel when imputing short 

regions (e.g., regions of a few hundred kbs), whereas the representative panel might work 

better when imputing longer regions, e.g., a few Mbs or longer. 4) The differences 

between reference panels become smaller when more individuals are sequenced.  

 

Future work for the most diverse reference panel involves better characterizing the data 

on which the algorithm can work best. For example, Bordewich et al. (2008) found that 

selecting the most diverse subset may not always be the best choice in certain tree 

topologies and proposed an alternative strategy. However, they did not provide a 

systemic measure to categorize the tree topologies. One can better use the algorithm if 

there is a summary statistics that provides such information. Future work for the most 

representative panel involves algorithm optimization. The hill-climbing based approach is 

easy to implement and takes limited memory. But it is often not efficient in finding a 

solution and the solution may not be globally optimal. I intend to further optimize the 

algorithm by borrowing ideas from tag SNPs selection as its idea is similar as the most 

representative panel. 

 

Future directions for both panels include 1) further characterizing the two sampling 

strategies in order to determine when they work the best. My goal is to provide guidelines 

for investigators to select a subset to sequence when they plan sequencing studies. Based 

on simulation results, I have provided several suggestions on which sampling strategy to 

use with a specific study sample. In general, the most diverse algorithm aims to maximize 

variants discovery while the representative algorithm aims to find the maximal 
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imputation accuracy. I intend to characterize the study samples from population genetics 

perspective to see if there exists some summary statistics of a study sample that can be 

used to select the best panel for the specific study sample. 2) Quantifying the gain by 

using the proposed panels than a randomly selected panel, either economically and 

statistically. 3) Combining existing sequence data such as the data from the 1000 

Genomes Project when selecting the optimal reference panel. For example, one can 

identify a subset of the study sample that shares common fragments with sequences from 

the 1000 Genomes Project and get the sequences the selected subset by imputation using 

data from the 1000 Genomes Project as references, while sequencing the rest of the study 

sample that are more different from the sequences from the 1000 Genomes Project. 4) 

Incorporating phenotype information. Ignoring phenotype information in selecting a 

subset to sequence may bias the downstream disease association tests. One can avoid the 

problem by considering sequencing as a SNP discovery step and get genotypes for the 

entire study sample or other samples through more cost-effective customized arrays for 

association tests. Answering these questions and better characterizing the two strategies 

will certainly provide investigators more information in choosing the optimal strategy to 

use when planning sequencing studies in the future. 

 

In summary, in this dissertation, I have addressed challenges and have provided strategies 

in applying genotype imputation to data with family structures and to augment sequence 

data in next-generation sequencing studies. These strategies provide practical solutions to 

the problems arising from identifying risk variants, especially rare risk variants for 

complex diseases. I have presented results in applying one of my proposed methods to 
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bipolar disorder, but all the proposed methods can be applied to other common complex 

disorders. Currently thoughts of GWAS have been performed with millions of individuals 

involved. I expect that investigators have started to sequence them and will eventually get 

the sequences for all these individuals with phenotypes of interest either by direct 

sequencing or high quality imputation. My dissertation work thus has the potential to 

provide investigators a cost-effective way in get the high quality sequences of a large 

study sample with limited budget. 
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